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INTRODUCTION 

1. THE PINNIPEDS 

The pinnipeds are a widely distributed clade of carnivorous semiaquatic mammals that consists 

of 33 different species and 29 subspecies (Berta and Churchill, 2012). The pinnipeds range in 

size from 1 meter and 40-45 kg of the Baikal seal (Pusa sibirica - Gmelin, 1788), to 

approximately 5 meters and more than 3,000 kg of the southern elephant seal (Mirounga 

leonina - Linnaeus, 1758). The three families of this clade are represented by Otariidae (fur 

seals and sea lions), Phocidae (true seals) and Odobenidae (walruses, Odobenus rosmarus - 

Linnaeus, 1758). There are 19 species and 16 subspecies of phocid seals (Phocidae), 13 species 

of Otariidae and Odobenidae, which is a family restricted to the Arctic region and the adjacent 

seas, represented by only one species, the walrus. During their evolution, appendages such as 

limbs and feet have degenerated and gradually modified into fins and flippers that can propel 

the animals through the water with great force. Sex organs and mammary glands are retracted 

inside the body within slits or pockets beneath the skin. In the phocids and odobenids, the testes 

are inguinal, or inside the body. Otariids, however, have externally visible, scrotal testes. The 

otariid ear is tiny, and phocid seals have no external ears – only a hole visible on each side of 

the head. The otariid seal uses its long fore flippers, or pectoral fins, for balance and propulsion, 

while the phocid uses the rear flippers. The hair or fur has largely disappeared in walruses, 

while phocid and otariid seals have retained a fur coat that is visible (Riedman, 1990), and the 

sea lion males grow out a “mane” around the neck upon reaching adulthood. In the phocid the 

limbs are attached to the vertebral column while in otariid and walruses the articulation is still 

present, and it provides them with better mobility on land. True seals, like the Weddell 

(Leptonychotes weddellii - Lesson, 1826) and elephant seals, as well as walruses, generally 

perform longer and deeper diving sessions than the sea lions and otariid in general.  

 

WALRUS BIOLOGY  

 

Taxonomy and evolution 

Repenning and Tedford in 1977 have traced the Odobenidae to a common origin with the 

Otariidae in the early Miocene some 20 million years ago from an aquatic ancestral group 

having close affinity to primitive ursine (bear-like) carnivores. The primitive, walrus-like 



 
2 

pinnipeds evidently flourished and became greatly diversified in late Miocene-early Pliocene 

times, but only one form has survived to the present — the living walrus (Figure 1), Odobenus 

rosmarus (Fay, 1982). Odobenid monophyly is strongly supported, although there is 

controversy about whether walruses are more closely related to otariid or phocid. 

Morphological studies support a sister relationship between walruses and earless seals whereas 

molecular data and recent genetic studies consistently position odobenids closer to Otariidae 

(Schröder et al., 2009, Berta and Churchill, 2012). Several fossils species have been recognized 

within the extant genus Odobenus, but most of these have been reallocated to the extinct genus 

of Ontocetus. Pleistocene fossils have been recovered from the Arctic, and from northern 

coastlines of the eastern Pacific and Atlantic (Berta and Churchill, 2012). The walrus has a 

disjunct circumpolar distribution. Two subspecies – the Atlantic walrus, Odobenus rosmarus 

rosmarus (Linnaeus, 1758) and the Pacific walrus, Odobenus rosmarus divergens (Illiger, 

1815) – have long been recognized. A third subspecies, Odobenus rosmarus laptevi, confined 

to the Laptev Sea, was suggested by Chapskii in 1940. The status of this taxon is, however, 

questionable (Born et al., 1995). 

 

Figure 1. Adult female walrus in Wrangel Island, Russia. Photo: Sergej Gorshkov (www.nationalgeographic.it).  
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Habitat and distribution 

The Atlantic walrus ranges from the eastern and central Canadian Arctic eastward to the Kara 

Sea. Several, more or less, well defined subpopulations or stocks exist within this range (Born 

et al., 1995). There are at least six populations around the Northern Hemisphere that appear to 

be geographically isolated at present: in the Hudson Bay-Davis Strait region, eastern Greenland, 

Svalbard and Franz Josef Land, Kara Sea-Novaya Zemlya, Laptev Sea, and Bering and Chukchi 

seas (Figure 2). This last population is regarded as the Pacific walrus (Fay, 1982).  

 

Figure 2. Bering-Chukchi region (Fay, 1982). 

In 2011, Speckman and colleagues, estimated that the number of Pacific walruses was 129,000 

with 95% confidence limit of 55,000-507,000 individuals, while the last assessment of 112,500 

mature individuals of walrus (Odobenus rosmarus) was made on February 2016 and it is shown 

in the IUCN Red List as a vulnerable species (Figure 3). In the IUCN, it is also shown that the 

abundance of Atlantic walrus is likely more than 25,000 with some subpopulations increasing 

while the Pacific walrus total abundance is likely more than 200,000. In any case, for both 

subpopulations the trend is unknown. Past aerial surveys in the Alaskan region commonly 

observed walruses around St. Lawrence Island during spring, with very few animals observed 

to the east. It seems that walruses prefer large ice floes that were common in the interior ice 

pack. Many walruses migrate in conjunction with sea ice expansion and retreat, but a portion 

of the male walrus population remains in the Bering Sea and uses coastal haul-out sites during 
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the summer. They are observed primarily in the interior ice pack, which expands southward 

with the ice edge but is still available farther north. In this region, walruses were most 

commonly seen in the western benthic part, rarely seen within the northern region and they are 

also rarely, if ever, seen in light -coverage or cake-floes habitats (Simpkins et al., 2003). 

Walruses have a comparatively narrow ecological niche. Their populations probably depend 

on: 1) the availability of large areas of shallow water with suitable bottom substrate to support 

a productive bivalve community; 2) the presence of reliable open water over rich feeding areas, 

particularly in winter when access to many feeding areas is denied due to ice cover; 3) the 

presence of haul-out areas near feeding areas. Haul-out platforms are usually ice pans although 

terrestrial haul-out sites are used in the ice-free summer and autumn period (Born et al., 1995). 

 

 

 

Figure 3. The IUCN Red List of Threatened Species (www.iucnredlist.org).  

 

Morphological characteristics 

At birth and for at least one month thereafter, male and female walrus calves are about equal in 

length. During the first two months, the calves increase in length by about 10 to 15 cm per 

month, and the males tend to grow slightly faster than the females. In the females, full 

development in length is reached at about 10 years, in the males, the adult length is not attained 

until about 15 years (Fay, 1982). Adult males can reach a length of more than 320 cm, while 

females normally reach a length of about 270 cm and both can reach an age, in the wild, up to 

30-35 years. The tusks of the males can reach one meter and weigh up to 5.4 kg (Berta et al., 

2015). These tusks are present in both sexes, but are shorter in females, and are used, among 

other, for hauling out (Kastelein and Gerrits, 1990). Pacific walruses are about four to seven 

percent longer than their Atlantic counterparts. In both populations, the males tend to be 15 to 
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20% longer than the females. The calves at birth and for most of the first month after birth 

weigh between 45 to 75 kg, and by the end of their second month, they have increased in weight 

by only about 30%. Females appear to reach an average weight of about 830 kg at an age of 12 

to 14 years; males reach their maximum weight sometime thereafter the sixteenth year, with an 

average of 1,200 kg. In general, adult males tend to be about 45% heavier than adult females. 

The skin of walruses is extraordinarily thick; at birth is uniformly leaden gray to gray-brown, 

and has a thin coat of fine hair, about five millimetres long, of similar colour; by the end of the 

third week, the flippers are nearly black and the pelage, about seven to 10 mm long, is rusty 

brown to tawny. At this stage in development, the skin is pigmented similar to the haired seals 

(Phocidae) of the Bering-Chukchi region and more intensely than in fur seals and sea lions 

(Otariidae). With advancing age, the skin of the walrus becomes progressively paler, as does 

the pelage. The thickness of the skin is greatest on the neck and shoulders, greater on the dorsal 

than on the ventral surfaces, and greater in males than in females. The skin is thinnest on some 

parts of the face and attains its greatest thickness on the neck and shoulders of adult males, 

where it is supplemented by rounded bosses or “lumps” about one centimeter thicker than the 

surrounding skin. The bosses are generally absent in males whose length is less than 300 cm, 

and they are usually well developed on males whose zoological length is 340 cm or greater. 

Like other pinnipeds, the walrus has a thick layer of cutaneous fat, the blubber or hypodermis. 

This layer varies in thickness over different parts of the animal; it is thickest on the torso and 

thinnest on the head and appendages. The pelage of adult walruses is coarser and less dense 

than that of the calves. On the bosses of the neck and shoulders of adult males, the hair is very 

sparse or absent, exposing the surface of the skin to view. The walrus, moreover, may be the 

only pinniped that bears three different pelages and undergoes two true moults within one year 

of fetal to early postnatal life. In those animals, the annual moult is triggered as much by thermal 

as by photoperiodic stimuli (Fay, 1982). Most of the cranial muscles are found to be related to 

the movements of the vibrissae pads, which is of ecological importance for communication and 

food identification, excavation, manipulation, and processing (Kastelein et al., 1991). In this 

species the mystacial vibrissae are well developed and they range in number from about 400 to 

nearly 700 per walrus and are situated in 13 to 18 rows on the anterior surface of the rostral. 

The mean number per side is slightly greater in males. The dense population of those vibrissae 

in the walrus identifies the broad snout as an organ of extreme tactual importance. They are 

extremely mobile, and each vibrissae can be moved up, down and laterally, and can be rotated 

through at least 100° of arc, such that the tips can be turned upward and inward, toward the 

centre of the snout, as well as downward and outward (Fay, 1982). The walrus eye is small in 
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comparison to that of other pinnipeds and the extrinsic eye muscles are well-developed. The 

strong palpebral muscles can open the eyelids and probably protrude the eye by thickening 

during contraction. The protrusion and mobility of the eyes enlarges the monocular visual field. 

Supraorbital processes are not found in the walrus but, for protection, the eyes can be retracted 

deep into the orbital cavity. Based on behavioural observations, anatomical findings and 

histological investigation of the retina, visual acuity in walruses is judged to be less than in the 

other investigated pinnipeds and seems specialized for short range use underwater (Kastelein 

et al., 1993). Walrus ears have special features which are not found in the ears of most terrestrial 

carnivores. They lack of the pinnae, the long, tubular outer ear of which the lateral side is 

covered with fat and skin, the ability to open and close the external meatal orifice by auricular 

muscles, the lining of ear wax, the large middle ear cavity by vascularized tissue, the elastic 

fibres, collagen tissue and cartilaginous rods in the wall of the Eustachian tube, and the dense 

bones surrounding the base of the outer ear and the entire middle and inner ears (Kastelein et 

al., 1996). The nose has anatomical turbinates which are used for warming inspired air to 

prevent heat and water loss like in all mammals (Hillenius, 1992). It is represented by anteriorly 

placed and forwardly diverted nostrils, that can be hermetically closed while underwater by the 

contraction of the surrounding muscles.  

 

Diet 

In the wild, walrus pups depend on their mother’s milk for at least 15 months. However, little 

is known about the suckling period because wild walruses live in remote areas and only a few 

pups have been reared by their mothers under human care. In fact, most of them have been 

hand-reared. In addition, the milk transfer and early growth patterns in wild walruses are not 

well known (Kastelein et al., 2003). Walruses are gregarious and forage in large groups 

throughout their range and feeding bouts may last up to 36 hours. Walruses usually feed in 

depths less than 100 m on prey that range in size and classification from tiny crustaceans to 

adult seals. Walruses feed by oral suction and typically ingest only the soft tissues of their prey 

(Fay 1982, Sheffield et al. 2001, Sheffield and Grebmeier, 2009). Walruses mainly eat sessile 

benthic prey. Usually only the siphons and feet of bivalve molluscs are found in walrus 

stomachs, and it is thought that walruses use oral suction to separate the molluscs from their 

shells. The walrus has good control of its tongue muscles and both pressure and duration of 

suction. Many adults have been observed feeding on bivalve molluscs in a sandy substrate 
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leaving the empty shells on the bottom. The suction force of the walrus, required to separate 

the body or body parts from the shells, probably depends on the degree of retraction and closure 

of the clam. It is probable that beyond a certain state of retraction, the walrus is unable to extract 

the edible parts. This foraging technique is highly efficient as adult walruses in the ocean eat 

about 50 kg of food per day. This would be about 3000 adult sand gapers Mya arenaria 

(Linnaeus, 1758) with an average soft body weight of 17 g (Kastelein et al., 1994). Early diet 

studies were largely based on the numbers and volume of prey items in stomachs. Due to the 

large amount of bivalve parts found in these stomachs it was thought that walruses were highly 

selective for bivalves. Non-bivalve prey species were considered of minor importance and 

assumed to be eaten accidentally when bivalves were scarce or nutrient-poor. Later diet studies 

used larger sample sizes over a larger geographic area than the earlier studies and the samples 

contained many new non-bivalve prey items. Bivalves, gastropods and polychaete worms were 

the most frequent prey items in both Bering and Chukchi seas. Male and female walruses 

consumed essentially the same prey when in the same location, however, current climatic 

changes may affect walrus’s access to diverse, productive shallow water feeding areas. 

Moreover, benthic faunal composition and biomass vary regionally due to heterogeneous food 

availability, depth, substrate types, predation and physical disturbances such as ice gouging. 

The ability of walruses to feed on a wide variety of soft-bodied prey types gives the population 

the flexibility to adapt to potential changes in benthic community structure. In addition, an 

increase in the occurrence of some taxa in walrus diets, such as sea stars, brittle stars, and sea 

urchins that are found throughout the Bering and Cukchi seas may indicate a food-limited 

population and be a cause of concern. These taxa are likely poor food for walruses because 

much effort is required to separate soft tissue from the substantial skeletal parts (Sheffield and 

Grebmeier, 2009); further information concerning the interpretation of walrus stomach contents 

are given by Sheffield et al. (2001). Fish are generally not present in walrus stomachs and 

frequency of octopus is negligible. While seal eating walruses have been described, they do not 

represent the norm of the population. Based on nitrogen isotope ratios obtained from samples 

in a study conducted by Dehn (2007), it was shown that it was not likely that these walruses 

had consumed other pinnipeds in the recent past. On the other hand, Lowry and Fay (1984) 

Rausch et al. (2007) and more recently, Seymour et al. (2014), supports the hypothesis that 

predation on seals by walruses has been increasing over the last 40 years, due to the 

environmental changes, that can alter the abundance, distribution, size, digestibility and 

energetic content of prey (Barboza et al., 2009). Anyway, walruses are specialists and rely 

almost exclusively on benthic prey and the benthic food chain. Interesting studies about the 
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walrus feeding excavation and disturbance on the Bering Sea benthos were conducted by Oliver 

et al. (1985) and Nelson et al. (1987). It was thought that walruses only consume the foot and 

the siphons of the clams. For this reason, if walruses do consume all clam soft parts, then their 

impact on clam stocks was probably overestimated (Sheffield et al., 2001). 

 

 

Reproduction  

Reproductive patterns of 79 female and fetal growth of Atlantic walruses were well described 

by Garlich-Miller and Stewart (1999). The reproductive tracts of 152 female and 174 male 

Atlantic walruses were analysed by Born (2001, 2003). The breeding behaviour of Atlantic 

walruses were studied and described by Sjare and Stirling (1996) while Pacific walrus 

reproductive behaviours were previously described by Fay (1982). Like all pinnipeds, walruses 

are polygynous, in the sense that males will mate with more than one female. Walruses give 

birth to a single calf at intervals of two or more years. Spotte (1982) analysed the incidence of 

twins in pinnipeds but it seems that there is exist no study that has reported this in this species. 

The average sexual maturity in females is reached between six and eight years of age and around 

11 years for males. Mating normally occurs in winter, but implantation of the fertilized egg in 

the uterus does not occur until June-July of the same year, a phenomenon known as “delayed 

implantation” or “diapause”. Consequently, walruses are among the slowest reproducing of all 

marine mammals (Krupnik and Ray, 2007). However, females show fertility from late summer 

to may.  

 

Social structure 

Walruses are extremely social animals, and when on land or ice they are normally found in tight 

groups (Figure 4) ranging in size from a few individuals up to thousands. They travel in groups 

as well and the adult males normally migrate in summer, while separating from the females and 

calves, to haul-out on ice blocks or land when possible. This strong sexual segregation ends 

with the migration back to the females, that usually starts in late fall, for the mating season. The 

herd structure and activity budgets of summering males was described by Miller (1976). The 

walrus ethology and the social role of tusks in males were also described by Miller (1975) and 

Fay (1982), while the complex structure of sounds and structural variations of the songs were 
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studied by Sjare et al. (2003). Further information about the walrus communications are given 

by Miller (1985) and vocal learning in pinnipeds is described by Reichmuth and Casey (2014). 

More detailed information about the behaviour and social structure of those animals are given 

by Fay (1982, 1985).  

 

Figure 4. 10 August 1993, 43 walruses were hauled out on Brooman Point. Eight others, including females with 

newborn calves, were in the water. Photo: E W Born (Born et al., 1995) 

 

Relationship with humans 

One of the most remarkable creatures in the Artic is the walrus, whose very existence and 

natural history were cloaked in mysticism and anthropomorphism until the 19th century. For 

thousands of years, this mammal was regarded by Eskimos and other native people of the North 

as having supernatural powers and human attributes (Fay, 1982). People spoke of walruses in 

tales and myths, honoured them in ceremonies and prayers, and called children and 

geographical places by names used to described them. Thus, indigenous knowledge of walruses, 

springs from millennia of use. Indigenous people have been exploiting Beringian marine 

ecosystem for at least 6000 years; walrus hunting became the staple of local economies as early 

as 2000 years ago. Prior to the economic era, walrus hunting supplied 60-80% of all subsistence 

food consumed in many communities in the Bering Strait region (Krupnik and Ray, 2007). 
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When European man arrived on the scene in the 18th century, he brought with him both the 

means and the incentive to take quantities far in excess of the requirements for mere survival. 

The over exploitation that resulted from introducing new technological and social innovations 

was such that walruses were extirpated from some areas in the Bering Sea by the end of the 18th 

century and severely depleted overall before the last two decades of the 19th century (Fay, 

1982). Whaling ship logbooks and statistical models indicate that about 200,000 walruses were 

killed from 1867 to 1883, with 35,700 killed in 1876 alone (Bockstoce and Botkin, 1982). 

Apparently, the retrieved harvest of some 10,000 to 20,000 walruses per year at the time were 

far greater than the population could sustain. Up until about half a century ago most of the 

taking of walruses by Alaskan Eskimos in the 20th century was done from homemade boats 

(umiak), which consisted of a wooden frame about 10 m long, one meter deep, and 1.5 to two 

meters wide, over which a covering split walrus hides or whole bearded seal hides was stretched 

(Figure 5).  

 

Figure 5. Six Eskimos standing beside native skinboat (umiak) on sled, Point Borrow, Alaska, 1935. Unknown 

or not provided author (from the web). 

In recent years, these boats were powered by an outboard engine, as in some Alaskan localities 

along most of the Siberian coast, where wooden boats of various kinds are equipped in the same 

way (Fay, 1982). The walrus population is an economic resource of considerable importance to 

many coastal inhabitants of the region, in both Alaska and Chukotka, hence a sustainable 

harvest is desirable. The declines occurred when large numbers were killed for commercial 

purposes firstly by annual removal by man, and secondly, there are those killed but lost due to 



 
11 

sinking during the hunting. Some are killed outright; others are wounded, most of which 

eventually die from their wounds. Thirdly, the annual removal is the dependent calves and 

yearlings that die when their mothers are killed. Many calves are harvested in Alaska, and some 

are taken along the Russian coast as well (Fay et al., 1997). Walrus meat is excellent for food 

for sled dogs as well as people for several reasons: The hide is strong and durable; the blubber 

produces good-quality oil for burning; and the ivory has always been popular for constructing 

tools and weapons and, more recently, for carving. The commercial exploitation of walruses 

for their oil, tusk ivory and hides proceeded on an enormous scale, with no check whatsoever 

to ensure sustainability. As a result, by the mid-20th century the aggregate population of walrus 

has been reduced in nearly all areas and its range has shrunk substantially (Born et al., 1995). 

However, nowadays this kind of hunting is more selective; the kinds of animal taken, in terms 

of sex and age, vary with the season, location, availability, and local preferences, and, of course, 

with the current regulations and quotas. The scientific information is highly dynamic and is 

advancing rapidly. In contrast, the body of data typical for indigenous knowledge is based on 

long-term personal observations and elders’ memories, and thus changes very slow. Although 

the body of scientific information on the walrus increased from the late 1800s to the mid-1900s, 

the dynamics of hunter’s knowledge has been totally different. If one were to ask hunters of the 

1800s about walruses, the observational side of their knowledge would probably be similar to 

that in recent years. Actually, the knowledge of subsistence hunters is, perhaps, changing faster 

than the knowledge of the scientist. The generation of elders that once held traditional 

worldviews and belief is mostly gone. Alaskan subsistence hunters have been working closely 

with wildlife biologists for over half-century and they are now quite familiar with the biologist’s 

views and studies (Krupnik and Ray, 2007). To conclude, walruses can be negatively affected 

by various human activities apart from hunting, such as the disturbance from different sources 

of noise, the pollution like the oil spills and the interactions with fisheries and changes in walrus 

food resources (Born et al., 1995). 
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2. PHYSIOLOGY AND ADAPTATIONS 

 

ENERGY SUPPLY AND METABOLISM 

 

Mammals adapted to aquatic life 

In his work, Lavigne et al. (1986) says that the perception that pinnipeds and cetaceans have 

metabolic rates that are higher than those of terrestrial mammals of similar size has been widely 

accepted for decades. The basal metabolic rate of mammals is described by the Kleiber’s power 

equation Y=aMb (Kleiber, 1975). Regarding that, many marine mammals appear to have 

metabolic rates about two times the value predicted by Kleiber (Lavigne et al. 1982).  Elevated 

metabolic rates in seals and whales have also been linked with consumption of high protein 

diet, large livers in whales, relatively large thyroid glands in porpoises, and increased output of 

thyroid hormone (Lavigne et al, 1986). Williams et al. (2001) discovered that the morphology 

of the gastrointestinal tract reflects the metabolic demands of the animal and individual 

requirements for processing, distributing and absorbing nutrients. She found out that the basal 

metabolic rates of Weddell seals and dolphins resting on water surface are higher than the 

predicted levels for similarly sized domestic terrestrial mammals resting in air, confirming that 

there are different things that could affect the metabolism. Even more, when we talk about the 

field metabolic rate, regarding diet specialization and foraging mode, carnivorous mammals 

scale differently (significantly higher slope in the equation of power) than non-carnivore 

mammals (Nagy, 2005). Small intestinal lengths for carnivorous marine mammals depend on 

body size and are comparatively longer than those of terrestrial carnivores. Those large 

intestinal tracts of marine mammals are presumably required for sustain the energetic demands 

of an aquatic lifestyle and predation, in fact, there is considerable selective pressure for 

energetic efficiency during underwater hunting by marine mammals. A study of how those rates 

in marine animals can be evaluated in relation to deep gradient and temperature was conducted 

by Seibel and Drazen (2007) but they were principally not focused on marine mammals. In any 

case, there are differences in opinions regarding basal and field metabolic rates, some of which 

consider the marine mammals ones as the same of terrestrial ones.  
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Metabolism in relation to body size 

In his review, Speakman (2005), described the relationship between body size, energy 

metabolism and lifespan. In this work he showed that bigger animals live longer, and they also 

expend more energy and due to this, the relationship of resting metabolic rate (RMR) to body 

mass lies somewhere between 0.66 and 0.8. Moreover, independent of the body size effect, he 

assumed that animals living in colder habitats tend, on average, to have greater lifetime 

expenditures energy per gram of body tissue. The result is that body mass and ambient 

temperature, when combined, explain the 45% of the variability in the lifetime energy 

expenditure per gram of the mammals. 

 

Walrus metabolic demand 

An animal’s energetic costs are dependent on the amount of time it allocates to various 

behavioural activities. For Arctic pinnipeds, the time allocated to active and resting behaviours 

could change with future reductions in sea ice cover and longer periods of open water. Large 

numbers of walruses foraging near land haul-outs could deplete nearshore prey, and thus lead 

walruses to either move to other land haul-out sites or spend more time searching for prey. 

Greater searching efforts by foraging walruses would likely lead to greater individual daily 

energetic demands. A mammal’s metabolizable energy is either stored (somatic and 

reproductive growth) or respired. Respired energy is used for basal metabolism, digestion, 

thermoregulation, and activity. Therefore, energy used for foraging activities (swimming and 

feeding) is not available for growth and endogenous energy reserves (blubber lipid). The 

amount of time an animal allocates to various activities affects its energetic costs. For example, 

a walrus that spends 93% of its time in water expends 18% more energy than a walrus that 

spends 70% of its time in water (Jay et al., 2017). The only direct measurement of field 

metabolic rate in this species were conducted by Acquarone et al. (2006) while the main studies 

present in literature were conducted in captivity. The main problem is that specific data, such 

as total food consumption per day, fluctuations in food intake during the year, and changes in 

intake due to age, sex or individual differences, are difficult to obtain in wild, thus, food records 

of captive mammals usually provide the only available information (Kastelein et al., 2000). 

Even more, compared to free-ranging walruses in the Arctic, walruses in aquaria are likely to 

have relatively low base (basal and activity) energetic demands because in aquaria, at least in 

temperate regions, thermoregulatory demands are lower. Also, because the captive walruses do 
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not need to forage for their food or avoid predators, their activity demands are undoubtedly 

lower (Noren et al., 2012). In his work, Fisher et al. (1992) confirmed that the approximate 

maintenance gross energy requirements for a 1200 kg nonpregnant, nonlactating adult walrus 

in captivity were 31,350 kcal day-1. In accord, the amount of energy required to maintain healthy 

walruses, thought to weigh 250- 1200 kg, is known to range from 22,500 to 70,300 kcal day-1 

(Fay, 1982, Kastelein et al., 2000). With his bioenergetics model, Noren et al., (2012, 2014) 

estimated that the caloric demand of nonreproductive females 0–12 years old (65−810 kg) 

ranged from 16,359 to 68,960 kcal d−1 for years with readily available sea ice assuming the 

animals spending 83% of their time in water, and that a caloric requirements which ranges from 

26,900 kcal d-1 to 93,370 kcal d-1 is needed for simultaneously lactating and pregnant walruses. 

Daily consumption requirements are higher for pregnancy than lactation, reflecting energetic 

demands of increasing body size and lipid deposition during this stage. In fact, some of the 

energetic demand of lactation in walruses is undoubtedly met by utilizing endogenous energy 

reserves (blubber) accumulated during pregnancy. Moreover, youngest animals must consume 

nine to ten percent of their body mass on a daily basis, while older animals need to consume 

only seven to eight percent of their body mass to satisfy their caloric demand (Noren et al., 

2014). Indeed, immature animals require more energy per unit of body mass each day than do 

adults (Kleiber 1975). Estimating the daily energy requirements of marine mammals is difficult. 

Metabolic rates are influenced by activity level, age (and hence growth), body size, moult (for 

pinnipeds), reproductive status, and environmental conditions. Directed research on walruses 

to determine how caloric intake and energy stores (body mass) are linked to meet energy 

requirements, are always recommended (Noren et al., 2012). Sadly, greater reductions in sea 

ice cover and longer periods of open water are expected in coming decades, which could 

increase energetic demands on walruses during summer and autumn. Estimates of the cost of 

altered behaviours from habitat change will be key to forecasting the status of walruses in a 

warming Arctic (Jay et al., 2017).  

 

The walrus digestion 

In their study, Sheffield et al., (2001) explained that the time of passage of food through the 

digestive system of a captive walrus is about ten hours — more rapid than in most other 

carnivores. Presumably, not more than half of that passage time is involved in gastric digestion. 

Sheffield et al. (2001) made a full laboratory digestion of a different cluster of walrus preys: 
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polychaetes; echiurids; sipunculid worms; clam; snails and crabs. They demonstrated that these 

prey items did not remain equally identifiable during digestion. Polychaetes and sipunculids 

were the least persistent prey, and they were both unidentifiable after two to three hours of 

digestion. Echiurids part were unidentifiable at hour five and none of the worms was persistent 

at the sixth hour of digestion trials. Over 50% of the clams maintained their diagnostic tissues 

(foot and/or siphon) through hour six while the viscera did not survive hour two. Snails and 

crustaceans were the most persistent prey. Anyway, it is known that no significant differences 

in the caloric values of those kind of walrus prey were found (Wacasey and Atkinson, 1987). 

Since the caloric value of clams and other prey are similar, no apparent energy loss occurs in 

consuming non-clam prey. Non-clam prey which are easily ingested and rapidly digested would 

be energetically valuable to walruses. Thus, the optimal walrus foraging strategy might be to 

consume any potential prey item, including non-clam taxa, encountered while rooting along the 

seafloor during a feeding bout (Sheffield et al., 2001). An interesting study on the fluctuations 

of food consumption and body weight related to sex, age, lactation, pregnancy and seasonal 

changes through the year were conducted by Kastelein et al. (2000). Fisher et al. (1992) 

conducted a study on four captive walruses to determine their digestive efficiency. All of them 

where fed on a diet of herring and clams for a total of six combinations for each animal. His 

results showed that the digestive efficiency of male walruses may be lower than that on females 

while the coefficients of protein in the animals fed with both herring and clams seems to be 

similar to the values reported for other carnivores. The apparent lipid digestibility in animals 

on the herring diet was significantly greater than in those on the clam diet. As aforementioned, 

we are facing an important climate change which, in addition to changing the composition of 

habitats, could affect a possible change in the prey composition and diet of these animals. Thus, 

analyzing the digestive efficiency is a fundamental step for the conservation and preservation 

of this species. 
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BREATHING 

 

The mammalian respiratory system  

The lungs are the primary organs of the respiratory system in mammals and are located within 

the thoracic cavity of the chest. The respiratory tract begins with the trachea that is divides into 

two branches, the bronchi. The bronchi further divide into the bronchioles. The gas exchange 

with the blood, in ‘normal’ lungs, takes place in the alveoli, that are the terminal part of the 

alveolar ducts originating from the respiratory bronchioles. The quantity of oxygen inspired 

and exchanged with the blood needs to be sufficient to support the aerobic metabolic demands 

of the animal. As previously said, the metabolic needs are related to activity efforts, for 

example, if a well-trained man runs, the mitochondria of his muscles can consume over five 

litres of O2 every minute. To maintain oxidative metabolism at such level a continuous flow of 

O2 has to be maintained: From the pool in environmental air O2 is carried into the lung by 

inspiration, is transferred to the blood’s erythrocytes, moved into the tissues by circulation, and 

finally reaches the cells and their mitochondria by diffusion. Conversely, the CO2 produced 

needs to be removed by a similar mechanism in the reverse direction. In order to maintain steady 

state condition in any situation, the flow of O2 at each level of the respiratory system must equal 

the O2 flow into the mitochondrial sink. Hence, each of the steps could potentially limit the 

overall O2 flow thus the O2 available for aerobic metabolism in the muscle cells. Moreover, the 

size of the pulmonary gas exchange apparatus is normally large enough to afford the 

conductance required to allow an O2 flow rate matched to the muscles’ needs during maximal 

work. For this reason, the structural design of the respiratory system should thus be matched to 

the functional requirements. Anyway, animals are known to be designed economically, so to 

speak, and that, at each step in the respiratory system, the flow of oxygen at maximum volume 

is limited by structures involved, in fact, animals do not build or maintain structures that exceed 

what is needed (Taylor and Weibel, 1981).  

 

Breathing system in marine mammals and lung adaptations 

In marine mammals, in general, the airways are reinforced with an unusual amount of cartilage 

which extends in some species to the openings to the alveolar sacs. As the animal descends, the 

gas in the much weaker alveoli is forced into the non-absorptive airways. Comparing to fresh-

water aquatic mammals and terrestrial mammals one of the most remarkable divergencies is, in 
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fact, the structure of the small airways. In general, the lung volume in marine mammals tends 

to be slightly larger than that of terrestrial mammals (Kooyman, 1973) However, in terms of 

maximal lung volumes, except deep-diving cetaceans and the sea otters, diving animals seem 

to be in range with terrestrial ones (Kooyman, 1973; Fahlman et al., 2011; Piscitelli et al., 2013; 

Fahlman et al., 2017). There also is a great variability in the diving lung volume within and 

between species or different dives of same individuals. While most seals exhale before diving, 

sea lions and cetaceans dive on inhalation taking full advantage of their lung store (Kooyman, 

1973; Kooyman, 1989; Fahlman et al., 2017). Moreover, it has been demonstrated that deep-

diving species with smaller lungs had a higher myoglobin concentration whereas species that 

are assumed to be shallow divers, like the walrus, had larger lungs. Larger lungs help to increase 

the quantity of available O2 during short shallow dives, while higher muscle myoglobin 

concentration with lower lungs volume prevent the increase of the amount of N2 during deep 

dives (Piscitelli et al., 2010; Fahlman et al., 2017). Marine mammals are also known to have an 

efficient ventilatory strategy, because they can exchange almost the entire lung volume in a 

single breath, minimizing dead space ventilation (Fahlman et al., 2017). Moreover, when 

compared with terrestrial mammals with similar size, the breathing frequency is generally 

significantly lower, and the tidal volume is higher in resting cetaceans and pinnipeds when in 

water or breathing at the surface, and for pinnipeds on land. In addition, the terrestrial breathing 

in mammals involves a brief expiratory pause whereas the aquatic breathing in marine 

mammals involves an inspiratory pause that can lasts from seconds to minutes (Scholander, 

1940; Kooyman et al., 1971; Kooyman, 1973; Fahlman et al., 2017). In cetaceans and 

pinnipeds, it also appears that the expiratory phase represents the peak of maximal respiratory 

flow and it is not limited by the conducting airways and lung volume as in terrestrial mammals 

(Fahlman et al., 2017). To conclude, we know that diving animals are subjected to continue 

chest compressions due to the different pressure gradient through the water column, and that 

the consequence is an alteration of the properties of the lung (Fahlman et al., 2014). For that 

reason, a certain degree of plasticity in the anatomical and physiological structure of the lungs 

and related mechanical properties and pulmonary size, may depend on the life history of the 

animals (Fahlman et al., 2017).  
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Breathing system in pinnipeds 

Seals (Phocidae) have the least-modified airway structure, where a non-cartilaginous segment 

of bronchiole is present and merges into respiratory bronchiole and finally into the alveolar 

duct. The cartilage-free portion have a large amount of smooth muscle, while the cartilage 

normally extends far out into the respiratory tree. In the walrus and sea otter there are some 

parts of the terminal airways that, like in seals, are without cartilage, while in other portions the 

airways with cartilage empty directly into alveolar sacs. Sea lions have the most divergent 

airway structures. There are only cartilaginous supported airways, which empty into alveolar 

sacs, moreover, respiratory bronchioles and alveolar ducts have been lost (Figure 6).  

 

Figure 6. Diagram of the structure of alveoli and associated cartilage and muscle in pinnipeds (Berta et al., 

2006). 

In seals, the trachea does compress during diving and submucosal vascular structures in the 

conducting airways have been reported in some cetaceans and phocids. This plexus consists of 

large veins and arterioles, which may engorge and fill the tracheal lumen with blood, reducing 

the internal volume of the airway, preventing intraluminal negative pressures and minimizing 

deformity of the tracheal wall (Fahlman et al., 2017). Anyway, in pinnipeds, the chest does not 

resist compression and is highly compliant (Leith, 1976; Fahlman et al. 2014, Fahlman et al., 

2017), in fact, one of the mechanical and structural properties of lungs in pinnipeds is that the 

chest can be compressed to the limit of collapse without the risk of lung squeeze (Scholander, 

1940), because the functional residual capacity (FRC) and residual volumes (RV) are equal. 

FRC and RV are, respectively, the amounts of air that remain in the lung following a passive 
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and maximal exhalation. The high compliance of the chest in seals and sea lions is, indeed, a 

great example of how those species prevent lung squeeze (Fahlman et al., 2017).  

 

Walrus respiration 

There are few studies in literature that aim to measure and study the respiratory rates and 

patterns in walruses (Stirling and Sjare, 1988; Bertelsen et al., 2006; Lyamin et al., 2012) and 

little is known about physiological parameters of free-raging walruses (Bertelsen et al., 2006). 

Most of the data that we have, comes from studies conducted in parks and zoo and many 

estimated values on the breathing patterns were taken before immobilization or anesthesia 

(Stirling and Sjare, 1988; Born and Knutsen 1990a) and they might have been disturbed or 

stressed by the manipulation (Bertelsen et al., 2006). In 2006, Bertelsen and colleagues have 

measured the resting respiratory rates in ten male walruses in Northeast Greenland, while the 

animals were hauled-out for at least one hour. They obtained values which ranged from 2.7 to 

3.7 breaths per minute, with a mean of 3.3 ± 0,3. Most of the values presented in this study 

corresponded well with Stirling and Sjare’s (1988) and Born and Knustsen’s (1990a).  

 

General diving adaptations 

The description of diving behaviours, respiratory characteristics and adaptations of air-

breathing vertebrates and marine mammals is the topic of many reviews and studies both past 

and recent (Scholander, 1940; Lenfant et al., 1970; Kooyman et al., 1971; Kooyman, 1973; 

Zapol et al., 1979; Kooyman et al., 1980; Schreer and Kovacs, 1997; Piscitelli et al., 2010; 

Piscitelli et al., 2013; Fahlman et al., 2014; Fahlman et al., 2015b; Fahlman et al., 2017). Is 

known that diving mammals exhibit an exceptional tolerance to sustained hypoxia compared 

with mammals which do not dive habitually. However, the ability to endure submersion 

asphyxia varies among aquatic mammals. The physiological factors responsible for the degree 

of hypoxic endurance can be summarized as: Metabolic adjustments in relation to the aerobic 

and anaerobic heat production; oxygen storage factors and respiratory properties of blood; 

oxygen economy factors which tend to conserve available oxygen stores (Lenfant et al., 1970). 

The first important thing to know in describing what happens to the animal organism when 

diving is that, following the dive, and in relation to its duration, there is an increase in the lactic 

acid circulating in the blood and a consequent drop in pH. As the concentration of this substance 
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decreases exponentially when the animal starts to ventilate at the surface, the pH rises. The 

moment in which the diving animal switches the aerobic metabolism to the anaerobic one and 

starts to produce lactic acid, is known as the aerobic dive limit (ADL) (Kooyman, 1973; 

Kooyman et al., 1980). The advantage of an aerobic diving schedule is that no anaerobic 

metabolites are accumulated, and there is little acid-base disruption. If so, only the oxygen store 

needs to be replenished, a process which can be rapidly accomplished. For example, while 

hunting, it is useful for a seal to spend as much time as possible underwater and when a single 

45-minute dive requires about 70 minutes of surface time for blood to return to normal-lactate 

concentration (39% time spent diving), a succession of six 15-minute dives only requires four 

recovery minutes for each (79% time spent diving). Thus, close interval and short dives are 

twice effective as long, single dives (Kooyman et al., 1980). In fact, as previously said, long 

diving sessions led to a greater production in lactic acid. As the quantity of this substance 

increase, the recovery-time needed by the animal to absorb it, will be prolonged. Regarding the 

oxygen storage factors and the properties of blood, we know that it is possible, during the dive, 

central respiratory control is more responsive to blood oxygen tension than to carbon dioxide 

or pH (Kooyman et al, 1971). Anyway, we know that the maximum oxygen store differs among 

species of marine mammals, in relation to the diving habits (Lenfant et al., 1970) and that 

considering total body oxygen stores, cetaceans have available considerably less oxygen per 

unit mass than either penguins or phocids (Schreer and Kovacs, 1997). Following the theories 

of Lenfant et al. (1970), the respiratory properties of blood show no significant adaptive features 

in O2 haemoglobin affinity or Bohr shift in the marine mammal species present in his studies, 

but that a distinctly higher buffering capacity distinguishes blood of marine mammals from 

terrestrial non-diving species. He also discovered that generally, in marine mammals, adult 

haemoglobin concentrations are high only in phocid seals. For example, phocid seals have 

higher concentrations of haemoglobin for a given blood volume and more myoglobin per unit 

of muscle than otariids, which allows them to store more oxygen and hence dive deeper and 

longer (Schreer and Kovacs, 1997). Moreover, a notable difference exists between new born 

and young or adult sea lions in that the new born have about a 30% higher haemoglobin content, 

difference that is present in the Weddell seal as well (Lenfant et al., 1969a). Focusing on the 

myoglobin maturation, it has been demonstrated that generally in odontocetes is correlated with 

the calf nursing interval, suggesting that the rate for muscle maturation evolves to match the 

maternal dependency period (Noren et al., 2014), while the pattern across pinnipeds 

demonstrates a delineation between phocids and otariids. Phocids typically show more rapid 

development of myoglobin contents compared to otariids and this may be attributed to early 
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entry into water and short maternal dependency periods. Walruses demonstrate one of the most 

rapid developmental trajectories of myoglobin among pinnipeds and is similar to the 

development patterns observed for phocids (Noren et al., 2015). Moreover, it appears that 

phocid diving capacity is significantly correlated with mass, while that of otariids is not. 

Additionally, observations of phocids generally indicate that they dive deeper and longer in 

relation to body mass than otariids do. They also seem to have lower metabolic rates while 

diving, in part because of slower swim speeds, which decreases their rate of oxygen 

consumption. On the basis of body size, both odontocete and mysticetes are surpassed by the 

relative smaller phocids in average diving capacity, if fact, plots of duration and depth versus 

mass shows that mysticetes always fell below the overall regression lines. This means that if 

phocids were as large as mysticetes or even odontocete, they would dive deeper and longer 

(Schreer and Kovacs, 1997). To conclude, we know that animals normally show diving 

behaviours that rarely exceed the ADL. For example, on his field study near Svalbard, Wiig et 

al., (1993), described the diving patterns of a walrus with a time-dive recorder and he estimated, 

for a 1500 kg male walrus, an aerobic dive limit of about 10.5 minutes and only about five 

percent of all the walrus dives he recorded exceeded the estimated ADL, and never for more 

than two minutes. More recently Noren et al., (2015), with their calculations, demonstrated that 

a mature 830 kg female and a 1200 kg male walrus can dive aerobically for up to 13.3 and 14.8 

minutes respectively, achieving a maximum possible depth of 319 and 355 m, respectively. 

They also measured that calves (first two years postpartum) only dive aerobically for 4.7 

minutes. In his study, Kooyman and colleagues (1971), demonstrated that in the Weddell seal 

dives up to 15 minutes do not completely exhaust muscle aerobic stores and that beyond that 

value the dive is primarily anaerobic as far as the major muscle mass is concerned and the 

accumulation of metabolites results in maximal post-dive recovery stimulus and prolonged 

recovery times. He also recorded dives that lasted for more than 80 minutes and he 

demonstrated that those animals would dive longer after a 100% oxygen ventilation.  

 

General cardiac adaptations while diving 

There have been many studies on diving physiology of air-breathing animals in the first half of 

20th century, but the experimental protocol for many of them has been to forcibly dive restrained 

and static animals. Some of the responses that may occur under these restrained dive conditions 

are upon immersion like marked bradycardia with reduction in cardiac output, widespread 
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redistribution of blood flow in which circulation to many regions of the body decreases 

profoundly while blood flow to the brain is maintained at or above pre-dive levels and a drop 

in body temperature as the result of a decline in metabolic rate (Kooyman et al., 1980). Anyway, 

the decrease in mean cardiac outputs is a well-recognized physiological modification that 

happens while diving and it has been measured in many studies (Murdaugh et al., 1966; 

Kooyman and Campbell, 1972; Sinnet et al., 1978; Zapol et al., 1979) and the action of 

arteriovenous anastomoses in the skin and many other organs, that drive the blood flow to the 

primary vital organs like brain and heart and thus prevent heat dissipation, has been 

demonstrated as well (Molyneux and Bryden, 1975; Zapol et al., 1979). All the mentioned 

studies are related to pinnipeds — both restrained and freely diving — and they all sow an 

average decrease of heart rate of about 85% while diving, an analogous cardio-vascular 

adaptation mechanism is likely to be present in cetaceans too.  
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3. THE STRESS 

 

Through the ages, a lot of researchers worked on theories concerning stress, in which they tried 

to give many different definitions that aimed to fit on what exactly stress is. In this section, this 

author assumes, following modern theories, that stress is a simple state in which the homeostasis 

is lost (Reeder and Kramer, 2005) or the experience of having intrinsic or extrinsic demands 

that exceed an individual’s resources for responding those demands (Morgan and Tromborg, 

2007). The event that causes the disruption in equilibrium, or that force that challenges 

homeostasis, that may be physical, psychological or both, is defined as “stressor” (Selye, 1976; 

Reeder and Kramer, 2005; Morgan and Tromborg, 2007). Physiological stressors may include 

those internal or external to the animal, such as anoxia and hypoglycaemia, heat or cold, 

exercise or injury and many others. Psychological stressors may include stimuli or forces that 

affect emotions like eliciting fear, anger, anxiety, depression or frustration (Reeder and Kramer, 

2005). In either case, stressors result in a cascade of physiological events, and behavioural 

reactions, designed to prepare the body for homeostatic challenge, requiring the animal a higher 

expenditure of energy (Reeder and Kramer, 2005; Morgan and Tromborg, 2007). The stress 

response is mediated by an integrated network of neuroanatomical structures and peripheral 

organs that produce the behavioural and physiological changes used to re-establishing 

equilibrium (Reeder and Kramer, 2005). Regarding those neuroanatomical structures, Porges 

(1995) created a model which emphasized the role of the brainstem in regulating behavioural 

and physiological reactivity to stress. This model is based on neurophysiological structures 

common to all mammals, like the nucleus ambiguous, which coordinate the sucking, 

swallowing, breathing and regulate shift in heart rate and vocalization frequencies in response 

to stressful events. The two most important physiological responses to stress are the stimulation 

of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis, 

which result in altered physiological processes (Reeder and Kramer, 2005). To better 

understand the complex mechanism of the responses we can also divide the stressors in two 

principal branches in which they are associated with different reactions: short-term or acute 

stressor; long-term or chronic stressors. Acute, or short-term stressors are typically associated 

with behavioural responses of orientation, alarm, increased vigilance (Morgan and Tromborg, 

2007), escape or avoidance, altered cognition and attention span, increased awareness, altered 

sensory threshold, stress-induced analgesia, suppression of feeding behaviour (Reeder and 

Kramer, 2005). On the other hand, physiological components of this response profile include 
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tachycardia, increased respiration rate, increased glucose metabolism, and an increase in 

various isomers of glucocorticoids (GCCs), which shift metabolism toward energy mobilization 

and away from energy conservation (Romero, 2004; Morgan and Tromborg, 2007). In 

comparison, chronic, long-term stress results in prolonged elevation of GCC levels (Romero, 

2004) that in effect become self-sustaining, as prolonged high levels of circulating GCCs 

damage areas of the brain responsible for terminating stress response (Morgan and Tromborg, 

2007). Physiologically, chronic stress may be indicated by suppressed reproductive cycling or 

reduced growth hormone with inhibited growth rate (Chrousos, 1997) reduced body weight and 

others. The main behavioural responses are also related with altered reproductive conduct, 

abnormal behaviour like increased aggression (Bartolomucci et al., 2004) or increased 

behavioural inhibition with a reduction in complexity (Rutheford et al., 2004; Vyas and 

Chattaii, 2004; Carlstead and Brown, 2005) and many more that can be found in literature 

(Morgan and Tromborg, 2007). To conclude, it is useful to know that this particular cascade of 

events, which starts when a stressor is perceived as such by the brain, can vary over time within 

an individual. That is, what initiates a stress response in one animal may not do so in another, 

and also may depend on factors such as the life-history stage, developmental history and 

reproductive conditions (Reeder and Kramer, 2005).  

 

Stress sources in captivity and reactions 

Approximately 26 billion animals spanning more or less ten thousand species are kept under 

managed care. The locations vary and include farms, zoos, conservation breeding centres, 

household and laboratories. Animals held under managed care are known to be healthier, 

longer-lived and sometimes more fecund than wild ones, because they receive food and water, 

veterinary care and protection from predation and conflict. It is not always true, however, that 

all captive wild animals do not flourish in this way, with some surviving breeding less than 

might be expected, and there is much evidence of compromised welfare that suggests that 

physiological or psychological needs, or both, are not being met. As previously summarized, 

they can include avoidance of potential threat, associated acute stress responses like the release 

of catecholamine and corticosteroid and their functional consequences as increased heart and 

respiration rates, while long-term responses such as adrenal enlargement, compromised growth, 

reproductive suppression, immunosuppression and stereotypic behaviour are often present 

(Mason, 2010). In their work, Morgan and Tromborg (2007) accurately described a wide variety 

of stress sources that can be found in managed care animals and regarding this, I will briefly 
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summarize the ones of interest for this section. First of all, they explain that greatest stressors 

for captive mammals are those over which the animals have no control and form, which they 

cannot escape. Perhaps unexpectedly, one of sources stress for animals may be the artificial 

environment or enrichment that normally aim to offer greater opportunity of exploration and 

withdrawal from observation enhancing the complexity of the animal surrounding. It is clear 

that many environmental enrichment techniques and strategies have improved the captivity 

conditions, but we must pay heed to the fact that we are often unaware of sensory elements of 

the captive environment that animals may find stressful (Figure 7).  

 

 

Figure 7. Orphaned harbour seal with environmental enrichment at The Marine Mammal Center of Sousalito, 

CA, during a research to discover whether enrichment may help to reduce stress and recovery time. Photo: Sarah 

van Schagen (www.marinemammalcenter.org). 

  

At this point it would be appropriate a summarized and simple review of the main stressful 

sources listed in the Morgan and Tromborg (2007) paper. The sound — which the pressure 

levels in nature nowhere near approach the ones recorded in zoos — can affect blood pressure 

and heart rate when intense and continuous for protracted time and also can be related to 

elevated levels of physiological and behavioural arousal. An example of a sound source that 

may affect the animals can be the cages and facility cleaning or the noise related to the 

increasing number of visitors. The artificially-induced light conditions in closed environments, 
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which are often not corresponding the normal ones, and may alter the melatonin and serotonin 

ratio or suppress the circadian activity. If we focus on the fact that almost all mammals are 

macro-osmatic (they largely depend on olfactory cues), even the smell may be considered as a 

source of stress, such as the ones that comes from the cleaning products, from forced proximity 

to humans, conspecifics or possible predators. They are mostly related to increased blood 

pressure, production of long-lasting changes in anxiety-like behaviour or increase in defensive 

behaviours. The temperature plays a fundamental role in the animal life, and any variation 

(intended as both increase or decrease) in level may be considered as a possible source of 

stressor, depending on the animal that we are taking in consideration. Regarding this precise 

point, this author suggests the consultation of the given literature for more interesting 

information concerning the principal responses and reactions to temperature variation (Welch, 

1992; Mortola and Frappell, 2000). Anyway, looking back on Morgan and Tromborg (2007) 

work, temperature principally affects the behaviours of the animals. High temperature has been 

often described as a source of discomfort and distress while low temperatures and cold result 

in a higher frequency of stereotypical behaviour, even more, prolonged and irregulated shift on 

thermal levels may be related to abnormal growth rate and altered sexual behaviour and 

maturation. Moreover, one of the greatest stressors in captivity is the restriction of movement 

due to small cages or environments in general which is often related to abnormal behaviour, 

stereotypic locomotion or increase in agonistic behaviour and impaired growth rate. On the 

other hand, increasing cage size or absence of retreat space may be stressful for prey animals 

that are hunted in open spaces. In captivity, the opportunity to move away from one another or 

from human passers-by is often negate due to the architecture of the buildings in which the 

animals are hauled that led in a possible forced proximity to humans.  Regarding this, the 

authors says that zoos, parks and aquariums normally increase visitor-animal interaction to 

promote empathy and sense of connection needed to improve attitudes with respect to 

conservation (this was true in this author’s personal experience as well), but that forced 

proximity or contact can be deleterious to animal well-being. In fact, the human’s presence 

appears to reduce species-typical behaviour, and in some cases, overall activity. An interesting 

and recent study on visitor effects on harbour seals and California sea lions were conducted by 

Vere (2018) in a park in California, and she discovered that the sea lions showed no significant 

changes in behaviour while seals showed increased feeding behaviour and vigilance. This is to 

explain that the proximity of humans is not always a source of stress, it depends on the life 

history of the animal and it surely depends on the species, for example, seals are well known 

for being much more bashful and vigilant and compared with sea lions (personal experience 
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and observation). Indeed, the effect of possible contact with humans varies depending on the 

nature of that contact and animal’s past experiences (Hemsworth, 2003), moreover, positive 

interactions can result in improved well-being and they are often searched out by animals. In 

this list it cannot go unmentioned the routine husbandry events, often associated with human 

caretakers, that even if they aim to give more variables to the animals they keep, is often really 

difficult to avoid certain kinds of daily routines. For example, repeated events such as cage-

cleaning may be a source of distress, or restricted feeding and foraging opportunity with an 

inflexible or unaccommodating daily schedule. The food is substantially different from what 

the animals would eat in nature in many situations and for many species, and the portion of 

daily activity for search and consumption of food in captivity is minimal or absent and it 

requires minimal effort. Some authors have discovered that the frustration of appetitive 

behaviour results in locomotor stereotypies as animals attempt to search for food in a restricted 

environment (Morgan and Tromborg, 2007). For example, post-feeding oral stereotypic 

behaviours and tusk rubbing in walruses has been widely recognized (Dittrich, 1987; 

Steenkamp, 2003), probably reflecting natural molluscivorous diet in wild (Mason, 2010). 

Moreover, the predictable availability of food in some cases appears to generate abnormal 

behaviour like stereotyped pacing and other repetitive locomotor activity that seems to increase 

as feeding times approach (Vickery and Mason, 2004; Morgan and Tromborg, 2007). In fact, 

the predictability of captive life may be stressful even if the animals tend to choose 

predictability over unpredictability when a choice is given (Gliner, 1972).  
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AIM OF THE WORK  

The general aim of the study is to evaluate the effect of some variables, some of which may be 

potential stressors, on the physiology of respiration in three adult female walruses, housed in 

managed care facilities. More specifically, the aim of the present study is to find the relation of 

these potential stressors with respiratory frequency. As already described (1.4 chapter), 

variations in respiration rate in certain situations may be an indicator of acute stress. The 

variables that were considered in the research are variables that cannot be controlled by the 

animal, in fact, as we know, greatest stressors for captive mammals are those over which the 

animals have no control and form which they cannot escape (Morgan and Tromborg, 2007). 

Taking as a reference some studies, observations and reviews (Dittrich; 1987; Porges, 1995; 

Morgan and Tromborg, 2007; Mason, 2010; De Vere, 2018) conducted on pinnipeds and other 

animals, the variables analyzed in this study are: time of the day, level of public 

(low/medium/high), presence / absence of environmental enrichment, pre-feed/ post-feed / non-

feed and body mass. The temperature and the light conditions were not considered in the study, 

because they were kept almost constant. Moreover, no less important, it would be interesting to 

provide, through the present work, useful insights for future research perspectives, such as the 

construction of a detailed respiratory rate pattern to be able to estimate the metabolic rates 

where respirometry is of difficult application. The present work is to be considered valid for 

the subjects and the study environment, the possible application to the population and other 

individuals will be discussed below. 
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MATERIALS AND METHODS 

1 INDIVIDUALS 

I measured respiratory frequency in three adult female Pacific walrus Odobenus rosmarus 

divergens (Figure 8), raised in managed care and housed in the ‘Artico’ department at Avanqua 

Oceanogràfic Ágora in Valencia, Spain, in the current study. All were born in the wild and 

arrived together to the park when they were few months old and still not weaned. At the time 

of the study, they were fed on a diet composed principally of herrings (Clupea harengus -

Linnaeus, 1758), capelin fish (Mallotus villosus - Müller, 1776), squids (Loligo vulgaris - 

Lamarck, 1798), mussels (Mytilus galloprovincialis - Lamarck, 1819) and edible jelly (Table, 

1). They were normally fed by hand and the composition of the diet, such as quantities and 

percentage of each food item were determined by the husbandry staff and veterinarians. A 

supplement in vitamins (Aquavits) was provided daily, with the first meal in the morning.  

 

Table 1. Individuals information at the beginning of the study. 

Animal ID  Weight (kg) Age (years) Sex 

26005389 900 16 F 

26005390 783 16 F 

26005388 665 16 F 

 

 

 

Figure 8. Individuals. 



 
30 

2 CHARACTERISTICS OF THE STUDY AREA 

 

The walrus exhibition pool consisted of two sections (Figure 9). The first one is the land area 

(4), called ‘beach’ and is a normal smooth basement where the animals can haul-out to rest and 

is the zone in which the keepers and trainers usually feed them, making the public able to watch. 

The second area (5) is the aquatic one, filled with sea water and without topographical features, 

which is the one where all the observations for the study were conducted. There were more 

sections and facilities on the backstage (Figure 2), out of the view of visitors, which is the 

reason why they are not considered in the study, such as the medical pool (1), the ‘scale’ area 

where the animals were weighed (6), the ‘shower’ area where the walruses were sometimes 

hauled out to sleep (2) and the veterinary section (3). In all the described sections, the animals 

could be trained and fed by their trainers. A brief summary of the total volumes and surfaces of 

the pools is presented below (Table 2).  

 

 

Figure 9. Walruses pools and facilities divided into areas. 
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Table 2. Total volumes and surfaces of the water areas.  

Pools and water areas Volume (m3) Surface (m2) Depth (m) 

Exhibition 528 220 4 

Beach 8 75 0,24 

Medical pool 340 85 3 

Total 876 380 / 

 

 

3 SAMPLING METHODOLOGY 

 

Evaluation of the respiratory frequencies and variables 

Respiratory rate (breaths  min-1) was determined visually, without any manipulation of the 

animals and only while they were in water due to the difficulties on evaluating proper measures 

while hauled-out. The observation of the animals started the first of May and lasted till the 31 

of July. When fed, observations lasted for three minutes (Bertelsen et al., 2006), one for each 

animal. The data were taken randomly through the day, but not daily, one measure for each 

animal in the 15 minutes prefeed and one in the 15 minutes post feed. At least half an hour after 

a feeding session, two breathing rate values for each animal were captured for the ‘non-fed’ 

measures, in observation sessions that lasted normally ten to fifteen minutes (Franks et al., 

2010). All the respiratory frequencies have been evaluated by observing the exhalation and the 

nostrils while they emerged from the water to breath.  Rare episodes of apnoea were observed 

and signed as 0 (breaths/min) in the dataset. Data regarding environmental enrichment were 

taken only as presence/absence in the tank or outside or both. The visitor presence was 

evaluated by counting the people around the pool while monitoring the animals and summarized 

into four categories: 0 when 0; 1 when 1 to 25; 2 when 25 to 50; 3 when more than 50 (Table 

3). The body mass (kg) was determined weekly using a Mettler Toledo scale, as a normal 

routine in the park. The date and the hour were noted down for each observation.  
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Table 3: Here is shown a portion of 26005389’s dataset. Under the voice Treatment, ‘C’ is unfed, ‘B’ is prefeed 

and ‘A’ is post feed. Under the voice Enrichment presence, ‘YES’ means presence and ‘NO’ means absence. 

 

4 DATA AND STATISTICAL ANALYSIS 

 

During the experiment, a total of 375 measures of breathing frequency were collected. The 

relationship between the dependent variable (breathing frequency) and experimental covariates 

animal, body mass, enrichment (yes/no), treatment (no food/before feeding/after feeding), and 

visitor state (low/medium/high), time of day, was analyzed using linear-mixed effects models 

(lme, R: A Language and Environment for Statistical Computing, R Foundation for Statistical 

Computing, version 3.3.3, 2016). The individual animal was treated as a random effect, which 

accounted for the correlation between repeated measurements on the same individual (Littell et 

al., 1998). Best models were chosen by the AIC statistics against nested models. In this study, 

P-values ≤ 0.05 were considered as significant and P ≤ 0.1 were considered a trend. Data are 

presented as the mean ± standard deviation (s.d.), unless otherwise stated. 

  

Date Animal ID 

Breath 

frequency 

(breaths/min) 

Treatment 
Public 

level 
Body mass (kg) Hour 

Enrichment 

presence 

01/05/2018 26005389 1 C 2 890 14:00 YES 
 26005389 3 C 2 890 14:00 YES 
 26005389 4 C 1 890 17:45 YES 
 26005389 4 C 1 890 17:45 YES 

02/05/2018 26005389 2 B 1 890 15:30 NO 
 26005389 4 A 1 890 16:00 NO 

03/05/2018 26005389 5 B 1 890 10:10 NO 
 26005389 3 A 1 890 10:40 NO 
 26005389 3 B 1 890 15:50 NO 
 26005389 5 A 1 890 16:20 NO 
 26005389 3 B 1 890 15:50 NO 
 26005389 7 A 1 890 16:20 NO 

06/05/2018 26005389 3 C 1 890 17:10 NO 
 26005389 4 C 1 890 17:10 NO 
 26005389 4 B 1 890 11:25 NO 
 26005389 5 A 1 890 11:55 NO 
 26005389 4 B 1 890 17:00 NO 
 26005389 4 A 1 890 17:30 NO 

07/05/2018 26005389 6 B 1 890 10:55 NO 
 26005389 6 A 1 890 11:25 NO 
 26005389 3 B 1 890 13:45 NO 
 26005389 2 A 1 890 14:15 NO 
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RESULTS AND GRAPHICS 

The multivariate analysis, including animal as a random factor, indicated that only treatment 

(before feeding/after feeding) warranted inclusion in the model, while the number of visitors, 

presence of enrichment, the time of the day and body mass did not affect the fR. A post-hoc 

Tukey test indicated that there was no difference in fR without food and before feeding, and 

these two treatment periods were pooled and the final model was (c2=4.79, 1 df, P = 0.029): fR 

= 3.55 + 0.46 * after feeding, showing that fR increased by 13% after feeding. For mass-

corrected fR (sfR) the equation was: fR/Mb = 0.0047 + 0.00059 * after feeding (c2=4.88, 1 df, P 

= 0.027). 

 

 

Table 4. Animal ID, mean breathing frequency (fR), body mass (Mb,). Superscripted numbers are the number of 

repeated measurements 

Animal 

ID 
fR (breaths * min-1) Mb (kg) 

26005389 3.7 ± 1.6126 906±2812 

26005390 3.0±2.2126 787±1112 

26005388 4.3±1.4123 665±913 
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Graphics 

 

As long as there are no differences within animals, we may not consider the uneven number of 

samples and we can summarize the distribution of the treatments in the following boxplot 

graphics (Figure 10).   

 

 

Figure 10. On the x-label A indicates the after feeding treatment and B indicates the before feeding treatment, 

with the frequencies as y-label.  
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The graphic “fr vs Treatment – total” shows a symmetric distribution of the measures with low 

dispersion around the median in the before feeding (“B”) treatment, while the distribution is 

asymmetric with more dispersion in the after feeding (“A”) treatment. The higher dispersion in 

the upper limit of the after feeding treatment, that ranges for higher values of respiration 

frequencies, supports the results that we obtained by the model. The presented fR data are not 

mass-corrected, and the differences in the boxplots 26005388 and the others suggests a possible 

high correlation with body mass.   
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DISCUSSION 

In this study, I am presenting mean values of fR that ranged between 3.0±2.2 and 4.3±1.4 breaths 

per minute while the animals were active in water. The animals of this study are used to be in 

almost constant visual contact with visitors. They are grown in managed care and the number 

of visitors present did not seem to affect their fR. The same seems to happen with the 

environmental enrichment presence and is not likely to have a negative impact. As this, the time 

of the day is not affecting their respiration rates even if we know that the basal metabolism 

varies through the day. Is good to mention again that the facility where they are housed is 

indoors, and that the temperature and the light conditions (mostly artificial) are kept almost 

constant. It is possible that those conditions may play a role on the regulation of their 

metabolism. For the body mass, more measures are needed to make this variable significant, or 

it may not be significant, but anyway, we already know that it correlates well with the breathing 

frequencies in mammals, and then, we need to consider that smaller individuals tend to show 

higher rates if compared to bigger ones. For the feeding state, we discovered that after feeding 

treatment showed an increase on mean fR rates of about 13% in comparison to before feeding. 

This can be explained in many ways. First of all, we already know that oral stereotypic 

behaviours such as tusk rubbing and food searching on the bottom of the pools in walruses, due 

to the natural molluscivorous diet, has been widely recognized after feeding session (Dittrich, 

1987; Steenkamp, 2003; Mason, 2010). This allows us to think about the fact that if they 

actively spend more time underwater then they emerge more times to breathe in a given period 

of time, due to a physical effort or simple stereotyped swimming.  As already mentioned, the 

predictable availability of food can affect the locomotor activity like stereotyped pacing as 

feeding times approach (Vickery and Mason, 2004; Morgan and Tromborg, 2007). Anyway, 

this remains unclear for the population that we considered in this study, as it seems that there 

may be no differences between before feeding and non-feed, and as such, it is of the opinion of 

this author that they are not likely to anticipate feeding times. Even more, we know that those 

animals are almost always fed by hand, and that the nature of contact with the human caretaker 

is often positive and can result in improved well-being and they are often searched out by the 

animals (Hemsworth, 2003). Then, we can speculate the fact that they are likely stay in a sort 

of excitation the first minutes after a feeding session, because it brings not only food, which is 

the primary reinforcement used in training, but variability, traduced in different contacts and 

activities with the keepers, like playing. Thus, it seems logical to think that those results are the 
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normal consequence of the physiology of digestion, with higher metabolic rates and then higher 

fR rates. Furthermore, the mean fR in the current study agreed well with results from previous 

reports in wild animals (Stirling and Sjare, 1988; Born and Knutsen 1990a; Bertelsen et al., 

2006). The measures taken in those studies comes from resting animals or before anaesthesia, 

then, it seems that there is not a noteworthy difference in the mean breathing frequencies 

between a resting animal and an active one. Bertelsen et al. (2006) obtained a mean value of 

3.3 ± 0.3 breaths per minute on resting wild animals, mean values of 3.9 breaths per minute 

were obtained by Born and Knutsen (1990a) and 4.5 breaths per minute by Stirling and Sjare 

(1988) before anesthesia. Obviously, it must be taken in consideration the physiological state 

of the animal. Is reasonable to think that a sick individual is likely to respond differently in 

comparison to a healthy one. Even more, Bertelsen et al. (2006) says that in his field work the 

animals were not disturbed by the presence of the researcher, and that they did not even react 

to the application of electrodes to measure the hearth rate. The lower heart rates and breathing 

frequencies that he took, according to the other mentioned studies, support his view. The results 

that we obtained by animals kept in managed care seems to give strength to this theory, but still, 

we cannot exclude that the presence of visitors and people in general can be a potential source 

of stress, and that the alteration in breathing frequencies are much more closely related to acute 

stress than chronic (Morgan and Tromborg, 2007) and for now, we cannot define which kind 

of possible stressor the public presence might be due to its situational nature. Thus, we must 

consider many variables in any one given situation of contact with an animal — either in the 

nature or in managed care — like the eventual presence of calf or new born, the physiological 

state of the animal, the circumstances, and life history. On the other hand, in many scenarios 

the public may play as a source of distraction, and the contact, intended as the simple presence 

of the people around the pool can potentially be positive. To conclude, it is necessary to mention 

that the managed care parks aim to reach the highest level on animal welfare and that those 

organizations spend a lot of resources and efforts to get this target. In the past few years the 

knowledge concerning this topic has improved as has public sensitivity. In addition, it is 

important to say that the results obtained in this study can potentially be useful for future 

researchers and studies and that more attention need be paid in certain situations. Even if this 

work gives clues that supports the possibility that the presence of people is not considerable as 

a stressor, it is of the opinion of this author that it remains difficult to answer to the question: 

“Is this species affected negatively by the presence of humans?”.  
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CONCLUSIONS 

As previously showed, it seems that there are no noteworthy differences on the respiratory 

frequencies between resting and active walruses. First of all, it is beneficial to be aware that the 

quantity of data in concerned literature is poor, and therefore, we cannot confirm this hypothesis 

quite yet. And then, another interesting research prospective would be the construction of a 

detailed respiration pattern for the different activities of those animals through the day. This 

would allow us to make more solid conclusions and mostly, to be able to build a model to 

estimate the metabolic rates. In essence, the visitor level, the enrichment presence and the time 

of the day, seems not to affect the respiration rates of the walruses housed at the at Avanqua 

Oceanogràfic Ágora in Valencia, Spain. And for now, it is right to accept the fact that those 

variables may not be considerate as a source of stress in those animals, or better, we can say 

that they do not affect this particular component of the physiological response to stress. A 

component, which seems to be affected by the feeding state. The possibility that the frequencies 

are affected as a result of the behavioral component of stress response is yet to be evaluated, 

even if it seems a reasonable view.  For this reason, it would be of invaluable interest to pursue 

research in this particular field, by monitoring the behaviors of those animal over the same 

conditions and following the same treatments. It appears clear that some work still needs to be 

done and for the moment, it is untimely to say that the differences that have been discovered 

reflect stress, but rather a normal consequence of digestion. Until now, we cannot pinpoint 

exactly what is occurring and thus more attention is needed. To conclude, the present study 

provides novel data concerning the respiratory frequencies of walruses and the methodology 

presented here, provides a simple way of performing active monitoring without any 

manipulation of the animal by the researcher. This suggests that the technique would be 

applicable under the same condition in another park as-well. More so, the fact that we treated 

the subjects of this study as a random factor, allows us to speculate about the entire walrus 

population under managed care over the same conditions, in any park. In fact, we are dealing 

with variables concerning physiology, such as differences in respiration rates related to 

metabolism and digestion, variables, that are unlikely to change for different individuals in the 

same health conditions. This said, we can consider our individuals as random walruses of a 

certain size. If we think about the possibility that any one of those walruses could be a part of 

the given population, then we can apply the results of this study to them as well. 
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