
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

QED and Abelian lattice gauge theories in
2+1 dimensions

Relatrice:

Prof.ssa Elisa Ercolessi

Correlatore:
Dott. Giuseppe Magnifico

Presentata da:

Andrea Maroncelli

Anno Accademico 2017/2018





Alla mia famiglia e a Luisa



Sommario

La simulazione di sistemi quantistici con molti gradi di libertà è oggi una sfida impegna-
tiva per la comunità scientifica a causa degli elevati tempi computazionali che crescono
esponenzialmente all’aumentare del numero di particelle.

Al seguito degli orizzonti aperti dall’articolo "Simulating physics with computers" di
Feynman, oggi sono stati fatti numerosi progressi. Egli teorizzò un simulatore quantistico
che fosse un vero e proprio apparato fisico che evolvesse nello stesso modo del sistema
da studiare e la cui dinamica potesse essere controllata. Sulla base di quest’idea, oggi è
possibile abbattere l’elevato costo computazionale che, in tal modo, cresce linearmente
con la taglia dello spazio di Hilbert. Negli ultimi anni, infatti, sono stati svolti diversi
esperimenti in numerosi laboratori. Ad esempio, sono stati utilizzati atomi ultrafreddi
intrappolati in reticoli ottici per simulare fenomeni quantistici come la superconduttività.

Seguendo tale principio, in questo lavoro di tesi abbiamo implementato teorie abe-
liane, in special modo la QED, su reticolo bidimensionale che serviranno per una futura
simulazione quantistica. Da qui, abbiamo analizzato alcuni fenomeni di attivo interesse
di ricerca, come lo studio di transizioni di fase in modelli con simmetria Z2 e Z3, che
presentano una fase confinata e una deconfinata, classificato gli stati gauge invarianti ed
esaminato il meccanismo dello string-breaking su reticolo.





Contents

Introduction 1

1 Abelian lattice gauge theories in (2+1)D 7
1.1 Classical field theory in the continuum . . . . . . . . . . . . . . . . . . . 7

1.1.1 Some notations and electrodynamics in (2+1)D . . . . . . . . . . 7
1.1.2 The free Dirac field in (3+1)D . . . . . . . . . . . . . . . . . . . . 12
1.1.3 The minimal coupling with the four-vector potential . . . . . . . . 15
1.1.4 Geometrical considerations about the minimal coupling . . . . . . 17

1.2 Regularization on a two-dimensional lattice . . . . . . . . . . . . . . . . . 20
1.2.1 The fermion doubling problem . . . . . . . . . . . . . . . . . . . . 20
1.2.2 The Nielsen-Ninomiya Theorem . . . . . . . . . . . . . . . . . . . 24
1.2.3 Staggered fermions in (2+1)D . . . . . . . . . . . . . . . . . . . . 27
1.2.4 Lattice gauge theory in (2+1)D . . . . . . . . . . . . . . . . . . . 31
1.2.5 The discrete symmetries of H . . . . . . . . . . . . . . . . . . . . 35

2 The discrete Schwinger-Weyl group 39
2.1 Quantum local transformations . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 The quantum Gauss’ law . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.2 Gauss’ law on lattice . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 The Quantum Link Model . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 The case S = 1

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 The Schwinger-Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 The Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 The discrete Schwinger-Weyl group . . . . . . . . . . . . . . . . . 55
2.3.3 The continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . 60

ii



Contents

3 Zn gauge symmetry in lattice QED 64
3.1 Implementation of a Zn symmetry . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 The electric field energy term . . . . . . . . . . . . . . . . . . . . 67
3.2 The case n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Phases in a Z2 LGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 The ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 The non-local order parameter . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Abelian anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Z3 symmetry 84
4.1 Phases in a Z3 LGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 The non-local order parameter . . . . . . . . . . . . . . . . . . . . 89
4.2 The string breaking mechanism . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Implementation for a numerical analysis in Z2 . . . . . . . . . . . . . . . 97

4.3.1 Hamiltonian decomposition . . . . . . . . . . . . . . . . . . . . . 97

Conclusive remarks and perspectives 103

A Presence of doublers in (1+0)D 105

B Duality transformations of the Ising model 107

C Z3 invariant sites’ states 110

D Z3 invariant plaquettes’ states on a ladder 112

References 121

iii





Introduction

Simulating models of the physical world is crucial in advancing scientific knowledge and
developing technologies: hence, this task has long been at the heart of science. For in-
stance, orreries have been used for millennia to simulate models of celestial bodies and,
more recently, differential analysers and mechanical integrators have been developed to
solve hard differential equations modelling.
The purpose of a simulator is to reveal informations about a model and compare these
with the behavior of the physical system of interest. This allows us to argue whether
or not the model provides a good description of the system and if the results bear any
relevance to the real world. Only when we have developed confidence in a model accu-
rately representing a system we are able to design a simulator of it to inform us about
the system.
Unfortunately, simulations might be not easy. There are numerous important questions
to which simulations would provide answers but which remain beyond current techno-
logical capabilities. These span a myriad of research areas, from high-energy, nuclear
atomic and condensed matter physics to chemistry and biology.
An exciting possibility is that the first simulation devices capable of answering some
of these questions may be quantum, not classical: it was Feynman in 1982 that origi-
nally suggested, in an inspiring article entitled "Simulating physics with computers" [1],
to use single purpose quantum computers to simulate a quantum system of interest,
which is hardly controllable. Ultracold trapped ions and quantum degenerate atomic
gases are ideal candidates, because of the excellent controllability of the system param-
eters (e.g. inter-particle and external field interactions) [2]; in fact, atomic simulation is
nowadays a well established research area in condensed matter physics.

A new frontier is the quantum simulation of field theories and in particular lattice
gauge theories, which describe strongly correlated systems with dynamical gauge fields
and therefore are non-perturbative formulations of high-energy physics models, such as
quantum electrodynamics (QED). These theories are versatile and play a central role in
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Introduction

many areas of physics. In particle physics, Abelian and non-Abelian gauge fields mediate
the fundamental strong and electroweak forces among quarks, electrons and neutrinos,
while in condensed matter physics effective gauge fields may emerge dynamically at low
energies [3]. Some quantum spin systems can be described by quantum dimer models [4],
that are U(1) gauge theories, while others have Abelian Z2 (like Kitaev’s toric code [5])
or non-Abelian SU(2) symmetry.
Gauge theories seem reflect a redundancy in our description of nature. When we in-
troduce vector potentials to describe magnetic fields, we are substantially introducing
unphysical degrees of freedom, which ultimately decouple thanks to a local gauge symme-
try; similarly, in condensed matter physics, when we apply the so-called "slave" particle
decomposition of an electron field operator into a charged spinless boson and a fermion
operator carrying the spin, a phase ambiguity arises because of an U(1) gauge symme-
try [6].
It is well-known that gauge theories dominate the scene of low-energy physics, and it hap-
pens that dynamics is difficult to describe, since perturbative analytic methods fail and
one must resort to numerical calculation. Despite tremendous successes of Monte Carlo
simulations in condensed matter and particle physics, these problems remain largely
intractable, due to very severe sign problems which prevent the importance sampling
method underlying classical and quantum Monte Carlo. Indeed, the dimension of the
Hilbert space grows exponentially with the size of a quantum system and simulate this
with a classical computer may be very difficult.

Let us elucidate these last points. A general quantum simulation problem aims at
finding the state of a quantum system described by a wave function |Ψ〉 at the time t
and computing the value of some interesting physical quantities. The solution of the
Schrödinger equation for a time-independent Hamiltonian is given by

|Ψ(t)〉 = e−i~Ht |Ψ(0)〉 . (1)

To compute the wave function |Ψ(t)〉 numerically, it is necessary to discretize the problem
in order to encode it in the computer memory. But the inconvenience is that, as earlier
mentioned, the memory required to describe quantum systems grows exponentially with
the size. Indeed, if we want to represent the state of, using a standard example, 40 spin-1

2

particles, we need 240 numbers and the time evolution of this system is a 240×240 matrix,
i.e. ∼ 1024 matrix elements, which does not worry if we consider that an Hamiltonian
describing a physical system has generally a very regular structure. Assuming single
precision, about 4 TB are required to represent the state of such a system. Doubling the
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number of spins, about 5 × 1012 TB would be required, that, to make a comparison, is
like 104 times more than the amount of information stored by humankind in 2007 [7].
Classical numerical methods (e.g. Monte Carlo algorithm) allow us to evaluate phase
space integrals in a time that scales polynomially with the particles and generally work
when the integrated functions do not change sign and vary slowly, in this way sampling
the function at a small number of points gives a good approximation of it. Unfortunately,
for some quantum systems the numerical evaluation of the integrals bumps into the
problem of sampling non-positive semidefinite functions, that is the already cited sign
problem, which causes the exponential growth of the simulation time with the number
of particles.

This brings us back to the initial argument and to the reason for this dissertation.
As already said, an alternative simulation method was proposed by Feynman, who imag-
ined the universal computer as a true physical system, whose dynamics can be controlled,
evolving in the same way as the phenomenon to be simulated, thus emulating it. This
is different from a common numerical simulator, which generates successions of states
compatible with a certain model. The advantage of a quantum simulator is that its
complexity scales linearly with the size of the physical system.
Therefore, if the state of the system is |Ψ〉, the quantum simulator, being a controllable
system, can be prepared in a state |Φ(0)〉 evolving with the unitary matrix U = e−i~Hsimt,
with Hsim being the controllable Hamiltonian of the simulator which can be engineered,
and the final state |Φ(t)〉 can be measured. If we can establish a map between |Ψ(0)〉
and |Φ(0)〉, then the system can be quantum simulated.
Since gauge theories are a fascinating theme to simulate, in the last years many theo-
retical physicists have attempted to implement the dynamics of lattice gauge theories,
e.g. with quantum simulators realized with ultracold atoms trapped in an optical lattice.
The simplest gauge theories to implement are surely the U(1) Abelian theories (studied
in works like [4, 8–10]), but much effort is also given to non-Abelian models (see [11, 12]).

In this master degree thesis we study a model for the implementation of an Abelian
gauge theory on a two-dimensional lattice. A decisive step to the formulation of models
for quantum simulators is the possibility of defining discrete gauge fields on a lattice. For
this reason, we will study the possibility of implementing gauge fields on a finite Hilbert
space and their relation to the symmetry group that can be implemented in this new
formulation.
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In particular, the dissertation is organized as follows. In Chapter 1 we introduce
Abelian gauge theories, focusing the interest on the coupling between the Dirac and
electromagnetic fields on a (2 + 1)-dimensional space-time, introducing the so-called
"comparator", a unitary function useful to implement the minimal coupling. Later,
we discretize the Hamiltonian describing this system, facing with the fermion doubling
problem, a phenomenon which arise when we try to put fermions on a lattice, and that
produces unphysical extra-fermions. To avoid these extra-excitations, we are forced to
adopt the solution provided by the Susskind’s "staggered fermions method", and thus
to lose the locality of the fermion’s propagator. At the end of the chapter, we find the
staggered Hamiltonian and analyze its discrete symmetries in some details.

In Chapter 2 we quantize the free model and later we introduce the interaction
with the gauge field, evaluating the wave functions to operators acting on the Fock
space. Moreover, we will find that the gauge symmetry can be encoded in the quantum
analogous of the electrical Gauss’ law: this makes sense since the U(1) gauge symmetry
implies the electric charge conservation. After this preamble, we will study how it is
possible to implement a Quantum Link Model, thus reducing the infinite-dimensional
Hilbert space per link to a finite one, noting that the comparator and the electric field
satisfy the SU(2) algebra, which permits us to work with finite-dimensional irreducible
representations of the link operators. A problem arises, since in this representation
the comparator is no more unitary. To restore the unitarity, we introduce the discrete
Schwinger-Weyl group, which permits us to define discrete unitary operators that in the
continuum limit satisfy the correct operator commutation rules.

In Chapter 3 we employ the notions of the previous chapter to our model, then
implementing a Zn symmetry for the lattice QED Hamiltonian. In particular, we focus
on the Z2 symmetry, finding the possible gauge invariant sites’ states, in presence or
absence of particles and defining the lattice versions of a quark, anti-quark, meson and
anti-meson, following here the one-dimensional argument analyzed in [13]. Furthermore,
in the attempt of comparing the gauge invariant states in a spin-1

2
Quantum Link Model

with a Z2 pure-gauge model (i.e. without particles), we notice that in the latter there
are two more possible states that allow the presence of a confined and a deconfined
topological phase in a generalized theory.

In Chapter 4 we present the original part of this thesis. We introduce the Z3 model,
presenting its ground states and order parameter generalizing the Z2 model, and finally
computing the Z3 invariant vacuum configurations. Then, we study the QED lattice
model with the notions learned and study the string breaking mechanism. We implement
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the Z2 model for a future numerical analysis with the DRMG algorithm: this serves to
study the mentioned phases on a ladder, which is a lattice made of two interacting
spin chains (this is for computational capability). Lastly, we give an outlook for an
implementation of Z3, listing all the gauge invariant states.

In the Conclusions we summarize the results we have achieved, we compare the
aspects of the theory we implemented and give possible outlooks: in fact, with the
formalism we have introduced, it is an easy task to generalize the model not only to
larger n, but also to larger dimensions, and choose in what sector we want to work.
Indeed, we manly worked in the pure-gauge sector but we can also add particles degrees
of freedom if our computer grants it.
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Chapter 1

Abelian lattice gauge theories in
(2+1)D

In this chapter the free Dirac and electromagnetic fields are introduced. We want to
discretize the Hamiltonian of a (2 + 1)-dimensional system with a fermion matter field
coupled with an Abelian gauge field. In order to obtain such an expression, we have to
introduce the fermion doubling problem and the Nielsen-Ninomiya Theorem and adopt
the solution provided by the use of staggered fermions. Finally, we will obtain the lattice
gauge invariant Hamiltonian and discuss about its symmetries.

1.1 Classical field theory in the continuum

1.1.1 Some notations and electrodynamics in (2+1)D

The physical space in which the fields are defined is the flat, four dimensional Minkowski
space, in which we impose the natural system of units c = ~ = 1.
Each physical event is identified by the so called "contravariant" four-vector xµ, where
µ = 0, 1, 2, 3, while x0 is the temporal coordinate and xi a spatial component of the three
dimensional vector (the Latin index i runs over 1, 2, 3).
The metric tensor is conventionally

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.1)
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1.1. Classical field theory in the continuum

We now define the "covariant" coordinates of the four-vector xµ as

xµ = ηµνx
µ =

x0 = x0

xi = −xi
(1.2)

in such a manner that the scalar product of two four-vectors a and b is obtained by
"contracting" equal indexes in the following way:

a · b = aµbµ = ab = a0b0 − bibi, (1.3)

where the Einstein convention about the summation over repeated indexes is understood.
In particular, the four-momentum of a particle with mass m and energy E is given by

pµ =
(
E, pi

)
with p2 = pµp

µ = m2 (1.4)

in which pi is the i-th component of the spatial momentum.
The derivatives of a function in the Minkowski space are written in the form

∂µ
def
=

∂

∂xµ
=

(
∂

∂x0
,∇
)
. (1.5)

Let us recall the Pauli matrices and their anti-commutation algebra,

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(1.6)

{σi, σj} = 2δij (1.7)

The gamma matrices in the Weyl representation, with their anti-commutation algebra,
are

γ0 =

(
0 12

12 0

)
γi =

(
0 σi

−σi 0

)
(1.8)

{γµ, γν} = 2ηµν (1.9)

and, according to the slash notation, given a covariant vector Aµ one defines /A def
= γµAµ.

We generally work with the four-dimensional Minkowski form of the Maxwell equations

εµνρσ∂νFρσ = 0 ∂µF
µν = Jν (1.10)
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1.1. Classical field theory in the continuum

where
Aµ =

(
A0, Ai

)
Fµν = ∂µAν − ∂νAµ Jµ =

(
ρ, J i

)
(1.11)

B =∇×A =
(
F32, F13, F21

)
Bj =

1

2
εjklFkl (1.12)

E = −∇A0 − Ȧ =
(
F 10, F 20, F 30

)
Ek = F k0 = F0k. (1.13)

Notice that in the Heaviside–Lorentz C.G.S. system of electromagnetic units we have
[E] = [B] = eV

1
2 cm−

3
2 = G, while [A] = G cm and [J] = G cm−1. The electron

charge e has instead no dimensions: this comes from the relation that connects it to the
adimensional fine structure constant

α =
e2

4π
' 1

137
. (1.14)

Concerning the Levi-Civita symbol ε0123, i.e. the totally anti-symmetric unit tensor, we
follow the conventions of Lev D. Landau and Evgenij M. Lifšits in [14], namely

ε0123 = +1 = −ε0123 ε123 = +1 = −ε123. (1.15)

In this work it will be analyzed QED in a two-dimensional space, therefore it is useful
to start from the classical electrodynamics in such a space. In two spatial dimensions,
Gauss’ law for the electric field generated by a charge q brings to the nontrivial form (in
Gaussian units)

E =
q

r
r̂, E = (E1, E2), (1.16)

where obviously r is the distance from the charge. Moving charges lead to time-varying
electric fields at a fixed observer, so wave phenomena are possible, differently from what
happens in one spatial dimension [15]. Gauss’ law for the electric field, given a loop
containing a total charge Qin, becomes∮

E · dl = 2πQin = 2π

∫
d2x ρ (1.17)

where ρ is the surface charge density. The differential form of Gauss’ law in two dimen-
sions is

∇ · E = 2πρ. (1.18)

When two charges q and q′ are in motion with constant velocities v = (v1, v2) and
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1.1. Classical field theory in the continuum

v′ = (v′1, v
′
2), charge q′ experiences the Lorentz force (c is reintroduced for clarity)

Fq′ = q′
(

E +
v′⊥
c
B

)
, (1.19)

where
v′⊥ = (v′2,−v′1) v′⊥ · v′⊥ = v′ · v′ = v′21 + v′22 v′⊥ · v′ = 0 (1.20)

and the scalar B is the third component of the magnetic field in two dimensions generated
by the moving charge q, which reads

B = q
v · r⊥
cr3

. (1.21)

In fact, for a continuous steady surface current density J of moving charges, this magnetic
field has the Biot-Savart form

B =

∫
d2x

J · r⊥
cr3

(1.22)

with
∇ · J = −∂ρ

∂t
= 0. (1.23)

Introducing the vector derivative operator perpendicular to the canonical "nabla" oper-
ator

∇⊥ =

(
∂

∂x2

,
∂

∂x1

)
∇⊥ ·∇ = 0, (1.24)

the differential Ampère law in a (2 + 1)-dimensional space-time reads

∇⊥B =
2π

c
J (1.25)

while the Faraday-Lenz law shows that a time-varying magnetic field affects the electric
field according to the forms∮

E · dl = −1

c

∂

∂t

∫
d2x B ∇ · E = −∇⊥ · E = −1

c

∂B

∂t
. (1.26)

Finally, The Maxwell equations in (2+1)-dimensions generalize the Ampère law to time-
varying situations by introducing the 2 + 1 "displacement current" (1/2π)∂E

∂t
, such that
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1.1. Classical field theory in the continuum

the microscopic Maxwell equations read

∇ · E = 2πρ ∇⊥ · E =
1

c

∂B

∂t
∇⊥B =

1

c

∂E

∂t
+

2π

c
J. (1.27)

Note that there is no equivalent version of the three-dimensional equation ∇ ·B = 0.
Applying the operator ∇⊥ to the third equation of (1.27) and using the second of these,
we have the wave equation for the magnetic field

�B =
2π

c
∇⊥ · J. (1.28)

Analogously, using the identity ∇⊥(∇⊥ · E) = ∆E −∇(∇ · E), applying ∇⊥ to the
second of (1.27) and using the first and third of these, we have the wave equation for
the electric field

�E = 2π∇ρ+
2π

c2

∂J

∂t
. (1.29)

Therefore, waves of the electric and magnetic field propagate with speed c, which can be
called the speed of light in 2 + 1 electrodynamics.

To write the magnetic field in terms of potentials, we introduce the two-components
vector potential A = (A1, A2), so that

B = −∇ ·A⊥ = −∇⊥ ·A (1.30)

and the second Maxwell equation of (1.27) becomes

∇⊥ ·
(

E +
1

c

∂A

∂t

)
= 0. (1.31)

Therefore the quantity in brackets can be related to a scalar potential A0 and

E = −∇A0 −
1

c

∂A

∂t
. (1.32)

The first Maxwell equation in (1.27) leads to

∆A0 +
1

c

∂∇ ·A
∂t

= −2πρ (1.33)

and, invoking the Lorentz gauge,

∇ ·A +
1

c

∂A0

∂t
= 0 (1.34)
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1.1. Classical field theory in the continuum

(1.33) becomes

∆A0 −
1

c2

∂2A0

∂t2
= −2πρ. (1.35)

Using this gauge fixing the third equation in (1.27) becomes

∆A− 1

c2

∂2A

∂t2
= −2πJ. (1.36)

Formal solutions of (1.35) and (1.36) are the retarded potentials

A0(x, t) =

∫
d2x′

ρ(x′, t′ = t− r/c)
r

A(x, t) =

∫
d2x′

J(x′, t′ = t− r/c)
cr

(1.37)

where r = |x− x′|.
We see that electrodynamics in 2 + 1 is almost identical to that in 3 + 1 so problems in
the former case are essentially as complicated as in the latter.

1.1.2 The free Dirac field in (3+1)D

The steps and the considerations which lead to the formulation of the Dirac spinor and
its Lagrangian density can be found in any of the main texts about field theory, e.g. in
[14] or [16]; in the present paragraph we will not be addressing the argument in depth,
but rather we will recall its essential features.
Dirac fields are four-component fields Ψ(x) which describe the evolution of spin−1

2
par-

ticles. The free fields’ dynamics follows from the Lagrangian density and is given by

LD = Ψ̄(x)
(
i/∂ −m

)
Ψ(x) (1.38)

with Ψ̄(x) = Ψ†(x)γ0, m the mass and [Ψ] = cm−
3
2 . The free spinor wave equation can

be obtained as the Euler-Lagrange field equation from the above Lagrangian by treating
Ψ(x) and Ψ̄(x) as independent fields. This actually corresponds to take independent
variations with respect to ReΨα(x) and ImΨβ(x), where α, β = 1L, 2L, 1R, 2R are the
spinorial components’ indexes of the left and right handed Weyl spinors.
The Dirac action SD is given by

SD =

∫
dt LD =

∫
d4x LD(Ψ, ∂µΨ, Ψ̄, ∂νΨ̄) (1.39)

12



1.1. Classical field theory in the continuum

by requiring its stationarity with respect to Ψ, Ψ̄ and their derivatives we obtain respec-
tively the Dirac and the adjoint Dirac equation:(

i/∂ −m
)
Ψ(x) = 0 (1.40)

Ψ̄(x)
(
i
←−
/∂ +m

)
= 0. (1.41)

The Dirac equation (1.40) can also be written in the Schrödinger form

i~
∂Ψ

∂t
= HΨ H = γ0γkpk + γ0m (1.42)

where H is the 1-particle self-adjoint Hamiltonian operator with pk ; −i~∂k.
Owing to the Lorentz transformation rules it is immediate to verify the Lorentz covariance
of the Dirac equation (1.3). For m 6= 0 we have two couples of plane wave stationary
solutions with positive and negative energies and with two possible polarization (spin)
states with s = 1, 2

Ψp,s(x) =

us(p)e−ip·xvs(−p)eip·x
pµ = (ωp,p), Ep = ±

√
p2 +m2 = ±ωp (1.43)

where p is the four-momentum, u(p) and v(p) are the four-components sponors.
A general solution is given by the superposition of plane waves [16]

Ψ(x) =

∫
d3p

[(2π)32ωp]−1/2

∑
s=1,2

[
as,pus(p)e−ip·x + b∗s,pvs(p)eip·x

]∣∣
p0=ωp

. (1.44)

In this solution positive and negative energy wave functions are included, multiplied by
coefficients as,p and b∗s,p, which, as we will see, for internal consistency to the quantum
case must be taken as Grassmann-valued numbers, i.e. satisfying

{ap,r, aq,s} = 0 {a∗p,r, a∗q,s} = 0 {bp,r, bq,s} = 0 {b∗p,r, b∗q,s} = 0. (1.45)

The spin-states ur(p) and vr(p) do fulfill(ωpγ
0 − γkpk −m)ur(p) = 0

(ωpγ
0 − γkpk +m)vr(p) = 0

(1.46)
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1.1. Classical field theory in the continuum

and are nothing but the degenerate solutions of the eigenvalue problems

Hur(p) = ωpur(p) Hvr(p) = −ωpvr(p). (1.47)

In the chiral representation (1.8) for the gamma matrices we can build a very convenient
set of spin-states such thatur(p) = 2m(2ωp + 2m)−1/2ζ+µr

vr(p) = 2m(2ωp + 2m)−1/2ζ−ηr
(1.48)

where the projectors ζ± on the two-dimensional spaces with positive and negative energy
are

ζ±
def
= (m± /p)/2m

ζ+ur(p) = ur(p) ζ−vr(p) = vr(p)

ζ−ζ+ =ζ+ζ− = 0

(1.49)

and

µ1
def
=


1

0

1

0

 µ2
def
=


0

1

0

1

 η1
def
=


0

1

0

−1

 η2
def
=


−1

0

1

0

 . (1.50)

The latter are the common eigenvectors of the γ0 matrix, whose eigenvalues indicate the
sign of the energy:

γ0µr = µr γ0ηr = −ηr r = 1, 2 (1.51)

and of the spin matrix s3 ≡ 1
2
Σ3 = i

4
[γ1, γ2]:

(Σ3 − 1)µ1 = (Σ3 − 1)η2 = 0 (Σ3 + 1)µ2 = (Σ3 + 1)η1 = 0 (1.52)

so that µ1 has positive energy and spin, µ2 positive energy and negative spin, η2 negative
energy and positive spin and η1 negative energy and spin.
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1.1. Classical field theory in the continuum

1.1.3 The minimal coupling with the four-vector potential

We now want to write a Lagrangian density that describe the interaction between the
fermion and the electromagnetic fields. First we can observe that the Dirac Lagrangian
(1.38)

LD = Ψ̄(x)
(
i/∂ −m

)
Ψ(x)

is invariant under U(1) global transformations of fields, that is, for α ∈ R,

Ψ(x)→ e−iαΨ(x) (1.53)

Ψ̄(x)→ eiαΨ̄(x) (1.54)

we have L U(1)−→ L and therefore our model has a U(1) global symmetry.
If we consider U(1) local transformations, i.e. transformations of the same form of (1.53)
and (1.54) where α(x) is now a real function, namely

Ψ(x)→ e−iα(x)Ψ(x) (1.55)

Ψ̄(x)→ eiα(x)Ψ̄(x), (1.56)

we can convince ourself that the mass term is invariant, while the kinetic one is not, due
to the presence of field derivatives.

In order to achieve the local symmetry, we have to replace the standard derivative ∂µ
with a new operator Dµ, called the covariant derivative. If we introduce the four-vector
potential Aµ, that is the gauge field of our model, we can define the covariant derivative
as

Dµ
def
= ∂µ + ieAµ (1.57)

where e is the electric coupling with [e] = G cm2.
Then, the replacement of the standard derivative by the vector operator Dµ induces the
minimal coupling between the Dirac and electromagnetic fields and promotes the global
symmetry U(1) to the local one, identified with the invariance under (1.55), (1.56) and

Aµ → Aµ − ∂µα(x) (1.58)
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1.1. Classical field theory in the continuum

of the new Lagrangian density

Lm.c. = Ψ̄(x)
(
i /D −m

)
Ψ(x). (1.59)

It can be easily shown that the gauge invariant electromagnetic energy density is given
by

−1

4
FµνF

µν =
1

2
(E2 −B2) (1.60)

and can be put together with (1.59) to form the Lagrangian density

L = Ψ̄(x)
(
i /D −m

)
Ψ(x)− 1

4
FµνF

µν . (1.61)

Now we want to obtain the Hamiltonian of the model that is simply the Legendre trans-
formation of (1.61) that maps the manifold described by (Ψ, Ψ̄, Aµ, ∂0Ψ, ∂0Ψ̄, ∂0Aµ) in
its phase space.
In order to do this, we define the conjugate momenta of the Dirac and four-vector po-
tential fields

Π(x) =
δL

δ(∂0Ψ)
= iΨ†(x) (1.62)

Π̄ =
δL

δ(∂0Ψ̄)
= 0 (1.63)

Πµ(x) =
δL

δ(∂0Aµ)
=

Π0 = 0

Πi = −Ei
. (1.64)

The last expression (1.64) shows that Π0 = 0 (just as Π̄ = 0) is a primary constraint [17]
and the evolution of A0 is not fixed by any dynamical law and is arbitrary and intercept
a sub-manifold in the phase space (described by fields and momenta); in fact we can
modify it by a gauge transformation and a point in the phase space has not a unique
inverse in the configurations’ one.

In order to render this transformation single-valued, one need to introduce an extra
parameter that indicates the location of ∂0A

µ on the inverse manifold. This parameter
would appear as a Lagrange multiplier when we define the Hamiltonian, and is called
the gauge fixing parameter. The same argument is valid for the gauge freedom related
to the Dirac field. Here we limit ourself to use the gauge fixing function

∂0α(x) = A0. (1.65)
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1.1. Classical field theory in the continuum

In this way, under a gauge transformation with the function α(x), we have

A′0 = 0 A′i = Ai − ∂iα(x) (1.66)

and the dynamics does not change. So we can use A0 = 0 as the gauge fixing of our
theory, keeping in mind that it does not completely eliminate the gauge freedom: a
residual set of time-independent transformations with α(x) is still allowed.

Finally, we can write the Hamiltonian density as

H = Π(x)∂0Ψ(x) + Π̄∂0Ψ̄ + Πµ∂0A
µ − L (1.67)

and we obtain

H =

∫
d3x

{
− iΨ̄( /∇+ ie /A)Ψ +mΨ̄Ψ +

1

2
(B2 + E2)

}
. (1.68)

1.1.4 Geometrical considerations about the minimal coupling

In this paragraph we discuss about an alternative realization of the minimal coupling,
which follows from general geometrical properties of the fields and the U(1) local trans-
formations.
We recall that the implementation of a local symmetry followed by defining a new dif-
ferential operator that transformed in the same way of the fields.
To obtain such an operator, we write explicitly the directional derivative of a Dirac field
along the direction identified by a generic versor k̂

∂k̂Ψ(x)
def
= lim

ε→0

Ψ(x+ εk̂)−Ψ(x)

ε
= k̂µ∂µΨ(x). (1.69)

Under a local U(1) transformation this quantity transforms as

(
∂k̂Ψ(x)

)′
= lim

ε→0

eα(x+εk̂)Ψ(x+ εk̂)− eiα(x)Ψ(x)

ε
. (1.70)

Now let us define a new quantity u(x, y), that we will call comparator, to compensate
for this phase difference between the two points which is identified by its transformation
rule under a U(1) local transformation [18]

u(x, y)→ eiα(x)u(x, y)e−iα(y). (1.71)
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1.1. Classical field theory in the continuum

In this way we can define a new mathematical object which we call covariant derivative,
that is

Dk̂Ψ(x)
def
= lim

ε→0

u(x, x+ εk̂)Ψ(x+ εk̂)−Ψ(x)

ε
(1.72)

and we notice that under a U(1) local transformation (1.72) transforms like Ψ(x)

(Dk̂Ψ(x))′ = lim
ε→0

eiα(x)
(
u(x, x+ εk̂)Ψ(x+ εk̂)−Ψ(x)

)
ε

= eiα(x)Dk̂Ψ(x). (1.73)

The aim of this paragraph is to show that the covariant derivative defined in (1.72) is
the same of (1.57).

First, let us assume that u(x, y) is unitary, therefore there exists a regular function
φ(x, y) such that u(x, y) = eiφ(x,y) and we impose that u(x, x) = 1, so u−1(x, y) = u(y, x).
Now, we can expand the comparator u(x, x+ εk̂)

u(x, x+ εk̂) = 1 + iεk̂µVµ (1.74)

where
Vµ

def
=

∂φ(x, y)

∂yµ

∣∣∣∣
y=x

, (1.75)

then the covariant derivative (1.72) can be written as

Dk̂Ψ(x) = lim
ε→0

(1 + iεk̂µVµ)Ψ(x+ εk̂)−Ψ(x)

ε

= k̂µ
(
∂µ + iVµ

)
Ψ(x)

(1.76)

and the two definitions for the covariant derivative are equivalent.
With the introduction of the four-vector field Vµ the comparator can assume the form

u(x, y) = exp

{
ie

∫ y

x

dzµVµ

}
(1.77)

and using the transformation rule (1.71) we obtain(
u(x, x+ εk̂)

)′ ' eiα(x)
(
1 + ieεk̂µVµ

)
e−iα(x+εk̂)

' eiα(x)
(
1 + ieεk̂µVµ

)(
1− iεk̂µ∂µα(x)

)
e−iα(x)

' 1 + ieεk̂µ
(
Vµ − ∂µα(x)

)
,

(1.78)

from which we can see that the transformation rule of Vµ is the same of Aµ in (1.58);
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1.1. Classical field theory in the continuum

then for our purposes we can identify the two vector fields (Vµ ≡ Aµ) and, using the
gauge condition A0 = 0, we have

u(x0,x,y) = exp

{
ie

∫ y

x

dzjAj(x
0,x)

}
. (1.79)

Finally we consider a gauge invariant quantity that will be necessary to obtain the
lattice magnetic field in the next section, that is the comparator evaluated on a square
closed path with side ε (called plaquette):

u�(x)
def
= u(x, x+ ε1̂)u(x+ ε1̂, x+ ε1̂ + ε2̂)

× u−1(x+ ε2̂, x+ ε2̂ + ε1̂)u−1(x, x+ ε2̂),
(1.80)

where 1̂ and 2̂ are the versors of two different directions. This quantity is clearly gauge
invariant by construction and to perform the calculation of (1.80) we need to consider
the second order term for U(x, x+ εk̂) [19]

u(x, x+ εk̂) = exp

{
ieεk̂jAj

(
x+

1

2
εk̂

)
+O(ε3)

}
(1.81)

that is the only term for which we have u−1(x, x + εk̂) = u∗(x, x + εk̂); therefore the
unitarity condition is satisfied. Using this approximation, (1.80) becomes

u�(x) = exp

{
ieεA1

(
x+

1

2
ε1̂

)
+ ieεA2

(
x+ ε1̂ +

1

2
ε2̂

)
− ieεA1

(
x+ ε2̂ +

1

2
ε1̂

)
− ieεA2

(
x+

1

2
ε2̂

)}
= exp

{
ieε2[∂1A2(x)− ∂2A1(x)] +O(ε3)

}
' exp

{
−ieε2(∇×A)3

}
(1.82)

which is nothing but an application of the Stokes’ Theorem: in fact in the last term of
(1.82) there is the third component of the curl of Aµ multiplied by the plaquettes’ area
ε2, i.e. the flux of the third component of the magnetic field trough the plaquette.
Moreover, since u�(x) is gauge invariant, the term ∂1A2(x)− ∂2A1(x) is gauge invariant
too for any directions in the Minkowski space; so we can define the gauge invariant tensor
Fµν = ∂µAν − ∂νAµ that is exactly the electromagnetic tensor of (1.60).
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1.2. Regularization on a two-dimensional lattice

1.2 Regularization on a two-dimensional lattice

The purpose of this section is to achieve a lattice formulation of the Dirac theory coupled
with a gauge field in a two-dimensional space, hence we must learn to deal with fermions
on a lattice. We start discussing about the fermion doubling problem, a phenomenon
that one has to avoid when discretizing the Minkowski space and that is related to the
chiral symmetry. In order to resolve this difficulty we have to lose the locality of the
theory: this will bear a series of interesting new considerations.

1.2.1 The fermion doubling problem

Let us start from the Euclidean action of the free Dirac field in 3 + 1 dimensions

SE[Ψ̄,Ψ] =

∫
d4xE Ψ̄(x)

(
γEµ ∂

E
µ +m

)
Ψ(x) (1.83)

where xµE = (xi, ix0), γE4 = γ0 and γEi = −iγi, since in Euclidean space the Lorentz
group is replaced by the rotation group in four dimensions and the new Clifford algebra
is {γEµ , γEν } = 2δµν . Since from now on we shall be interested only in the Euclidean
formulation, we will drop any labels reminding us of this.
The corresponding Feynman propagator can be obtained inverting the kinetic term of
the action since the propagator, as we will see, is as the Green’s function of the kinetic
operator. If we now define our fields on a discrete domain {n} of points equally spaced
by a, on which x = an, they can be replaced by variables Ψx and the derivatives become
finite differences. The new variables are defined in a dimensionless way

m→ 1

a
m (1.84)

Ψα(x)→ 1

a3/2
Ψα,x (1.85)

Ψ̄α(x)→ 1

a3/2
Ψ̄α,x (1.86)

∂µΨα(x)→ 1

a5/2
∂µΨα,x (1.87)
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1.2. Regularization on a two-dimensional lattice

and the action becomes
S = a4

∑
x,y,α,β

Ψ̄α,xKα,β,x,yΨβ,y (1.88)

with
Kα,β,x,y =

∑
µ

1

2a
(γµ)αβ

[
δx,y+µ̂ − δx,y−µ̂

]
+mδαβδxy (1.89)

where k̂ is a vector of length a in the k-direction. To obtain the lattice propagator we
make use of the path integral formalism [20]. The generating functional is

Z[η, η̄] =

∫
DΨ̄DΨ exp

{
−S +

∑
x,α

[
η̄α,xΨα,x + Ψ̄α,xηα,x

]}
(1.90)

where the integration measure is defined by

DΨ̄DΨ
def
=
∏
x,α

dΨ̄α,x

∏
y,β

dΨβ,y (1.91)

and η̄ and η are the sources. The integral (1.90) can be easily performed using the
extended version of the standard Gaussian integral

Z[η, η̄] = det(K) exp

{ ∑
x,y,α,β

η̄α,xK
−1
α,β,x,yηβ,y

}
. (1.92)

Hence the two-point function is

GF (x− y) =
1

Z[0]

δ2Z[η, η̄]

δη̄δη

∣∣∣∣
η=η̄=0

= K−1
x,y. (1.93)

The inverse matrix elements K−1
α,β,x,y can be computed making use of the Fourier repre-

sentation of the δx,y in the momentum space

δx,y =

∫ π/a

−π/a

d4p

(2π)4
eip(x−y) x = an, y = am (1.94)

and using the relation ∑
z

KxzK
−1
zy = δx,y. (1.95)
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1.2. Regularization on a two-dimensional lattice

From (1.89) it results

Kx,y =

∫ π/a

−π/a

d4p

(2π)4
K̃pe

ip(x−y) (1.96)

with
K̃p =

i

a

∑
µ

γµ sin(pµa) +m, (1.97)

therefore, from (1.95),

K−1
xy =

∫ π/a

−π/a

d4p

(2π)4

eip(x−y)

i
a

∑
µ γµ sin(pµa) +m

. (1.98)

We can define
p̃µ

def
=

1

a
sin(pµa) (1.99)

to obtain the Feynman lattice propagator

Glatt
F (x− y) =

∫
BZ

d4p

(2π)4

[(−i)γµp̃µ +m]

p̃2 +m2
eip(x−y). (1.100)

For p̃→ p this integral would reduce to the well-known 2-point function

GF (x− y) =

∫
d4p

(2π)4

[(−i)γµpµ +m]αβ
p2 +m2

eip(x−y) (1.101)

for the Dirac field in the limit a → 0. It can be proved [20] that in the scalar case the
argument of p̃ is half than that in the fermion case. This makes a big difference and is
the origin of the so-called fermion doubling problem. The reason is clearer if we look at
the Fig. 1.1 where we have plotted p̃µ as a function of pµ, for pµ in the interval [−π

a
, π
a
],

often called the Brillouin zone (BZ). Within half of the BZ [− π
2a
, π

2a
]d the deviation from

the straight line which corresponds to p̃µ = pµ occurs only for large momenta where both
pµ and p̃µ are of order 1/a.

What destroys the correct continuum limit are the zeros of the sine-function at the
edges of the BZ. It is not difficult to see that there exist sixteen regions of integration in
(1.100), fifteen of which involving high momentum excitations of order |p| ∼ π/a; in the
continuum limit the propagator receives contributions from all of these regions giving
rise to sixteen fermion-like excitations, fifteen of which are pure lattice artifacts having
no continuum similar. This argument can be generalized in d-dimensions where the
fermion-doublers would be 2d−1. Since the phenomenon of fermion doubling is a serious
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1.2. Regularization on a two-dimensional lattice

π
a

−π
a

pµ

p̃µ

Figure 1.1: Plot of p̃µ versus pµ in the Brillouin zone. The blue line corresponds to p̃µ = pµ, the red
one is p̃µ = 1

a sin(pµa) with a = 1.

block in constructing lattice actions with fermions, an explicit calculus of the continuum
limit of (1.100) in 1 + 0 dimensions can be found in Appendix A, the generalization to
other dimensions being tedious and straightforward.

Lastly, we want to explain the physical reason of these non-physical excitations. The
contribution of these new fermions arise to avoid an apparent clash between classical
and quantum theory. In classical electrodynamics the Lagrangian (1.61) with m = 0 is
invariant under the global chiral transformation

Ψ(x)→ eiθγ5Ψ(x) Ψ̄(x)→ Ψ̄eiθγ5 , θ ∈ R (1.102)

and there is the conserved axial vector current

Jµ5 = Ψ̄(x)γµγ5Ψ(x) γ5 = γ1γ2γ3γ4. (1.103)

In particle physics, this symmetry plays a very important role in the theory of weak
interactions. Indeed, it then follows that the two states with opposite chirality ±1, ob-
tained from the action of the projectors 1

2
(1±γ5), are decoupled in a massless theory and

remain so, even when turning on the interaction. It is thus possible to write an action
for particles with definite chirality, without introducing partners of opposite one. The
standard model of Glashow-Weinberg-Salam for electroweak interactions uses this prop-
erty in a crucial way: it is therefore desirable to construct a chiral invariant regularized
lattice model, without the unwanted feature of particle doubling.
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1.2. Regularization on a two-dimensional lattice

However, once performed the quantization, it can be shown, e.g. using the so-called Fu-
jikawa method [21], that the current (1.103) diverges and there is no chiral conservation.
This effect is usually called chiral anomaly. In a lattice regularized theory, on the other
hand, such a symmetry implies that this current is strictly conserved for any lattice spac-
ing. The way the lattice restores the symmetry consists in generating extra excitations,
the "doublers", which cancel the anomaly present in the continuous version of the theory.

1.2.2 The Nielsen-Ninomiya Theorem

In order to prevent the fermion doubling when we perform the regularization on a lattice,
we must consider the Nielsen-Ninomiya Theorem, a no-go Theorem which states [22–24]

Theorem 1.1 (Nielsen-Ninomiya). Consider a discrete fermionic system on a regular
lattice, with a local, hermitian and translational invariant action. Then there are as many
states with chirality +1 than states with chirality −1 (i.e. there is no net chirality).

Proof. Reasoning by contradiction, we assume that it is possible to write an action for
fermions with chirality +1. The most general quadratic term satisfying the hypothesis
is ∑

µ,x,y

Ψ̄xγµ
1

2
(1 + γ5)iKµ,x−yΨy x = an, y = am, n,m ∈ Zd. (1.104)

The function Kµ,x is clearly translational invariant, since it depends on the difference
of arguments, and the hermiticity is implemented with K∗µ,x = Kµ,−x, if the lattice has
simmetry x→ −x. The Fourier transform is

K̃µ(k) =
∑
x

Kµ,xeikx (1.105)

which is real and periodic with the periodicity of the lattice. We also need that |x|dKµ,x
vanishes sufficiently fast at large distance.
In the momentum space the kinetic term is diagonal and the physical states are those
s.t. δS = 0, i.e. the zeroes k̄ of K̃µ(k) (often called "critical points" [23]). In the neigh-
bourhood of such a point, we can expand K̃µ(k)

K̃µ(k) =Mµν(k − k̄)ν +O((k − k̄)2) (1.106)

with Mµν = ∂K̃µ(k)

∂kν

∣∣
k=k̄

non singular. Since K̃µ is real, also Mµν is so, and can be
decomposed as a product of an orthogonal O and a symmetric positive definite matrix
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1.2. Regularization on a two-dimensional lattice

S, i.e.M = OS. The orthogonal matrix can be absorbed into a redefinition of the fields;
in fact we can observe that a d-dimensional space can be considered as a subspace of
(d + 1)-dimensional one. We can extend Oµν to an element of SO(d + 1) by acting on
the last coordinate by ε def= detO = ±1. Since SO(d+ 1) admits a spinor representation,
there exist an isomorphism R in the Clifford algebra such that

R−1


γ1

γ2

...
γ5

R =

(
γµOµν
εγ5

)
. (1.107)

Then
γµ(1 + γ5)Oµν = R−1γν(1 + εγ5)R. (1.108)

The matrix S generates just a positive rescaling of each component of k− k̄ in a rotated
reference frame around k̄. As a consequence, the critical point can be interpreted as
giving rise to a physical state of chirality ε.
The real field K̃µ(k) is a periodic function defined in a compact manifold, here a d-
dimensional torus. A theorem due to Poincarè and Hopf [25] states that the sum of
indices ε of a real vector on a compact manifold is equal to the Euler characteristic χ
of this manifold; in the case of a torus χT = 0. More intuitively, this theorem is a
generalization of the following well-known one-dimensional result: a periodic function
vanishes as many times with a positive derivative as with a negative one.

As a consequence of this theorem, if one wants to construct a chiral invariant lattice
model without the doublers, it is necessary to violate one of the hypothesis.
A proposal in this direction was made by Wilson in 1975 [20], and is one of the two
popular schemes which deal with fermion doubling. However, in this method one has to
break explicitly the chiral symmetry in order to avoid the doublers. This method has
been studied a lot and we think that it is worth it to recall its essential features, even
though we will implement another method.
To avoid the doublers, Wilson proposed a chiral symmetry breaking, irrelevant operator
[26]:

Kw =
1

2
γµ(∇µ +∇∗µ)− 1

2
∇∗µ∇µ (1.109)

where ∇µ and ∇∗µ are the forward and backward lattice derivatives, respectively, defined
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1.2. Regularization on a two-dimensional lattice

as [27]

∇µΨx
def
= Ψx+~µ −Ψx

∇∗µΨx
def
= Ψx −Ψx−~µ.

(1.110)

Due to the explicit breaking of chiral invariance, however, some extra problems appear,
such as the breaking of the chiral symmetry at finite lattice spacing (recovered only in
the continuum). Back in 1982 Ginsparg and Wilson [28–30] suggested a way to avoid
the no-go theorem and preserve consequences of the chiral symmetry. They suggested
to require, instead of the relation γ5K−1 +K−1γ5 = 0 (K is the kinetic Dirac operator),
the following milder condition

γ5K−1 +K−1γ5 = 2aRγ5. (1.111)

Here, the coefficient 2 is for historical reasons and R is a local operator, understood as
satisfying the bound ||R|| ≤ e−λ|x−y|, with λ > 0. For simplicity, it is assumed also that R
is trivial in Dirac indexes. The locality of R expresses the requirement that propagating
states are effectively chiral, so at distances larger than the range of R its presence is not
felt. This is an highly non trivial condition since the propagator K−1 ≡ GF on the l.h.s.
is non-local. It then follows that the Dirac operator satisfy the Ginsparg-Wilson relation

γ5K +Kγ5 = 2aKRγ5K. (1.112)

Therefore we obtain a relation that restore the naive chiral symmetry for a→ 0 and we
note that the r.h.s. is zero on solutions, where KΨ = 0.
Ginsparg and Wilson suggested that a Dirac operator satisfying their relation would
break the chiral symmetry in the mildest way and should maintain the consequences of
chiral invariance in the theory. However, no solutions has been found in the interacting
case in QCD, and the paper [28] has been forgotten for 15 years. The interest in the
relation (1.112) is reviving in the last years after a paper of Peter Hasenfratz who found
an action satisfying the Ginsparg-Wilson relation [31].

After a proper historical comment on the attempts concerning how to avoid the
Nielsen-Ninomiya Theorem, we will proceed in a second direction, using a method sug-
gested by Susskind that is known in literature as staggered fermions method.
The basic idea arises from the fact that the doublers originate from the integration at the
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1.2. Regularization on a two-dimensional lattice

edges of the lattice propagator (1.100). This suggests the possibility of eliminating the
unwanted fermion modes by reducing the BZ, by doubling the effective lattice spacing,
therefore the BZ becomes [− π

2a
, π

2a
]d. This could in principle be fulfilled if we are able

to distribute the fermionic degrees of freedom over the lattice in such a way that the
new lattice spacing for each type of fermionic variable is twice the previous one, and if
in the continuum limit the action reduces to the desired form (1.83). In this case, the
presupposition of the Nielsen and Ninomiya theorem which is violated is the locality,
while the chiral symmetry is preserved. In the next section we will provide a complete
explanation of this method in the (2+1)-dimensional model (in what follows, we come
back to the Minkowski space).

1.2.3 Staggered fermions in (2+1)D

We start writing the free massive Hamiltonian in 2 + 1 dimensions

H0 =

∫
d2x

{
− iΨ̄γi∂iΨ +mΨ̄Ψ

}
. (1.113)

A spinorial representation of the Lorentz group SO(2 + 1) in three dimensions can be
two-component spinors, with the gamma matrices given by the Pauli ones

γ0 = σ2, γ1 = iσ3, γ2 = iσ1. (1.114)

These matrices resolve the Clifford algebra {γµ, γν} = 2ηµν , but there is not another non
trivial 2×2 matrix that anti-commutes with all the γµ (since the Pauli matrices with the
identity span C2). So we cannot generate a chiral symmetry that would be broken by
the mass term. This means that the massless theory has no additional symmetry than
the massive one.

Now consider the fermion field to be a four-component spinor [32]. The three 4 × 4

γµ-matrices can be chosen to be

γ0 =

(
σ3 0

0 −σ3

)
, γ1 =

(
iσ1 0

0 −iσ1

)
, γ2 =

(
iσ2 0

0 −iσ2

)
. (1.115)

In this way, the matrices

γ4 =

(
0 12

12 0

)
, γ5 = i

(
0 −12

12 0

)
(1.116)
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1.2. Regularization on a two-dimensional lattice

anti-commute with the γ0, γ1 and γ2. The massless theory is therefore invariant under
the transformations

Ψ(x)→ eiαγ
4

Ψ(x) Ψ(x)→ eiβγ
5

Ψ(x) (1.117)

and, for each component of the spinor, there will be a global U(2) symmetry generated
by

14, γ
4, γ5, γ45 def

= −iγ4γ5. (1.118)

The mass term reduces this symmetry to the subgroup U(1) × U(1), generated by 14

and γ45. Using this representation for the Clifford algebra we can finally discretize our
model. Since the spinor’s components are

Ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 , (1.119)

we expand (1.113) in the four equations

Ĥ0ψ1(x) ≡ i∂tψ1(x) = −i[i∂1ψ2(x) + ∂2ψ2(x)] +mψ1(x)

Ĥ0ψ2(x) ≡ i∂tψ2(x) = −i[−i∂1ψ1(x) + ∂2ψ1(x)]−mψ2(x)

Ĥ0ψ3(x) ≡ i∂tψ3(x) = −i[i∂1ψ4(x) + ∂2ψ4(x)]−mψ3(x)

Ĥ0ψ4(x) ≡ i∂tψ4(x) = −i[−i∂1ψ3(x) + ∂2ψ3(x)] +mψ4(x)

(1.120)

where Ĥ0 is the Hamiltonian operator, which acts on the components as time evolution
operator. The solution is provided by (1.44), but, since we are working in 2+1 dimensions
and the representation for the gamma matrices is different, we have to redefine the spin
states, in particular the bispinors (1.50), in this way:

µ̃1
def
=


1

0

0

0

 µ̃2
def
=


0

0

0

1

 η̃1
def
=


0

1

0

0

 η̃2
def
=


0

0

1

0

 . (1.121)
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1.2. Regularization on a two-dimensional lattice

With this choice it holds that

γ0µ̃r = µ̃r γ0η̃r = −η̃r r = 1, 2 (1.122)

and
(Σ3 − 1)µ̃1 = (Σ3 − 1)η̃2 = 0 (Σ3 + 1)µ̃2 = (Σ3 + 1)η̃1 = 0. (1.123)

In this representation from (1.49) we have

ζ± = ± 1

2m


±m+ ωp ip1 + p2 0 0

−p2 + ip1 ±m− ωp 0 0

0 0 ±m− ωp −p2 − ip1

0 0 p2 − ip1 ±m+ ωp

 (1.124)

and then from (1.48)

u1(p) = (2ωp + 2m)−1/2


m+ ωp

−p2 + ip1

0

0

 u2(p) = (2ωp + 2m)−1/2


0

0

−p2 − ip1

m+ ωp

 (1.125)

v1(p) = (2ωp+2m)−1/2


−ip1 − p2

m+ ωp

0

0

 v2(p) = (2ωp+2m)−1/2


0

0

m+ ωp

−p2 + ip1

 , (1.126)

which satisfy orthonormality and completeness relations. These are the four eigenstates
of the two projectors (see (1.49)) and, in the basis where they are diagonal, that is
the rest reference frame, the spin states are proportional to (1.121). This is convenient
as each spinor’s component is in a precise spin-energy sector. Indeed each of ψi with
i ∈ {1, 2, 3, 4} is proportional to one of the vectors µ̃r and η̃r, in such a way that µ̃r
(connected to ψ1 and ψ4) and η̃r (related to ψ2 and ψ3) indicate the positive and negative
energy solutions respectively, while µ̃1 and η̃2 (connected to ψ1 and ψ3) represent solutions
with s3 = 1

2
Σ3 equal to 1

2
, while the remaining two have s3 = −1

2
.

In the discrete we rename these components and recombine them in the following
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1.2. Regularization on a two-dimensional lattice

way [33]:

Ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 −→ 1

2
√

2a


0 −i 0 1

1 0 −i 0

−i 0 1 0

0 1 0 −i



ξ1,x

ξ2,x

ξ3,x

ξ4,x

 . (1.127)

So eq.ns (1.120) become

i∂tξ1,x =
−i
2a

[
− (ξ2,x+~1 − ξ2,x−~1) + (ξ4,x+~2 − ξ4,x−~2)

]
−mξ1,x

i∂tξ2,x =
−i
2a

[
− (ξ1,x+~1 − ξ1,x−~1) + (ξ3,x+~2 − ξ3,x−~2)

]
+mξ2,x

i∂tξ3,x =
−i
2a

[
(ξ4,x+~1 − ξ4,x−~1) + (ξ2,x+~2 − ξ2,x−~2)

]
−mξ3,x

i∂tξ4,x =
−i
2a

[
(ξ3,x+~1 − ξ3,x−~1) + (ξ1,x+~2 − ξ1,x−~2)

]
+mξ4,x

(1.128)

where x = an, n ∈ Z2 and ~1 = a1̂, ~2 = a2̂. The symbol of vector above the index
i is a notational abuse to underline the translation in the i-direction of length a; it is
maintained on the whole thesis as it makes no confusion.

The new components ξi,x are therefore a recombination of the old ones, so we have to
check if the four degrees of freedom (energy sign and spin projection) are well separated
or mixed in the new spinor. By inspection, it results that

ξ1 = 1
2
(ψ2 + iψ3)

ξ2 = 1
2
(ψ4 + iψ1)

ξ3 = 1
2
(ψ3 + iψ2)

ξ4 = 1
2
(ψ1 + iψ4)

. (1.129)

Therefore the energy states are well separated, whereas the spin ones are mixed.
Remembering that our purpose is to prevent the fermion doubling problem, this dis-
cretization looks very interesting. In fact, we can see in the first equation of (1.128)
that ξ1 is connected to ξ2 and ξ4 only on sites with different parity, and vice versa (the
site’s parity is given by (−1)x1+x2). In particular, ξ1 is connected to ξ2 moving in the
1-direction with one lattice spacing, and to ξ4 moving in the 2-direction. Analogous
considerations can be employed for the remaining equations of (1.128). The component
ξ2 is connected to ξ1 along 1-direction and to ξ3 along 2-direction, while ξ3 is connected
to ξ4 along 1-direction and to ξ2 along 2-direction. Lastly, ξ4 is connected to ξ3 along
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1.2. Regularization on a two-dimensional lattice

1-direction and to ξ2 along 2-direction. Therefore, although we have four components
on each site, de facto these variables form four independent sets: if x has even parity,
ξ1,x depends only on ξ2,x±~1 and on ξ4,x±~2, while ξ2,x±~1 only on ξ1,(x±~1)±~1 and on ξ3,(x±~2)±~2

(and so on). Vice versa for ξ2,x, ξ3,x and ξ4,x. So, we can consider only one of these
connected groups of variables by defining a unique variable ξx that must reduce to one of
the components depending on the parity of the site and on the parity of the 2-directional
component. Explicitly

ξx
def
=


ξ1,x (−1)x1+x2 = −1, (−1)x2+1 = −1

ξ2,x (−1)x1+x2 = +1, (−1)x2+1 = −1

ξ3,x (−1)x1+x2 = −1, (−1)x2+1 = +1

ξ4,x (−1)x1+x2 = +1, (−1)x2+1 = +1

. (1.130)

The four spinor components are therefore delocalized on four lattice sites (see Fig. 1.2):
on even sites there are negative energy solutions, on odd sites positive energy solutions.
The number of degrees of freedom are divided by four as each component is two lattice
space distant from the previous and next and the periodicity of the system is 2a, avoiding
in this way the extra-excitations at the edges of the Brillouin zone. The fermion doubling
problem is eliminated, but the price we payed in the use of staggered fermions is the loss
of the Hamiltonian’s locality.

We remark that the fermion doubling problem arise from the discretization of the
physical space, so the time is always kept continuous. So, in a (2 +1)-dimensional model
the extra-excitations without staggered fermions would be 3 and not 8.
Redefining ξx with a new spinor ξx

def
= ix1+x2χx, the resultant free Dirac Hamiltonian

with the use of staggered fermions in a two-dimensional lattice model is

H0 =
1

2a

∑
x,i

ηi(x)
[
χ†x χx+~i + h.c.

]
+m

∑
x

(−1)x1+x2+1 χ†x χx (1.131)

where η2 = 1 and η1 = (−1)x2+1, i = 1, 2 specifies the direction along the lattice.

1.2.4 Lattice gauge theory in (2+1)D

Now we want to implement in our model the interaction of the fermionic field with the
gauge one. As discussed in Sect. 1.1.4 this means the promotion of the U(1) global
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34

21

(a, 0)

(a, a)(0, a)

(0, 0)

Figure 1.2: Assignment of spinor components to sites of the 2× 2 cell. The cyan dots indicate negative
energy solutions, while the orange dots are positive energy solutions.

symmetry to the local one. We will use the comparator defined in (1.79)

u(x, y, t) = exp

{
ie

∫ y

x

dziAi

}
with the transformation rule

u(x, y, t)→ eiα(x)u(x, y, t)e−iα(y). (1.132)

A general definition for the comparator on the lattice is

ux,x+~i

def
= e−ieaA(x

~i∗) (1.133)

where we have used the gauge A0 = 0 and x~i∗ is a suitable point in the interval [x, x+~i].
In [20, 34] the point x~i∗ is chosen in the lattice sites, then x~i∗ = x, x +~i. Note that in
2 + 1 dimensions both the electric charge and the vector potential have the dimensions
of a (mass)

1
2 = cm−

1
2 so that the exponent in (1.133) is adimensional. In this thesis, we

consider the vector potential defined in the links’ space, and adopt the so-called midpoint
rule, i.e. x~i∗ = x+

~i
2
. This second formulation is adopted in the path integral quantization

of non-relativistic electrodynamics: it is the only choice with which the wave functions
evolution obtained with the path integral formula is equivalent, in the continuum limit,
with the evolution given by the Schrödinger equation [35]. Therefore we have

ux,x+~i = e−ieaAx,x+~i (1.134)
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1.2. Regularization on a two-dimensional lattice

with
Ax,x+~i

def
= A

(
na+

an̂i
2

)
, n ∈ Z2, ni ∈ Z. (1.135)

So, given a real function αx, the U(1) local transformation between two lattice sites is

ux,x+1 → eiαx ux,x+~i e
−iαx+~i . (1.136)

Under this transformation the kinetic part of the staggered Hamiltonian

Hkin =
1

2a

∑
x,i

ηi(x)
[
χ†x χx+~i + h.c.

]
(1.137)

becomes
H ′kin =

1

2a

∑
x,i

ηi(x)
[
e−iαxeiαx+~iχ†x χx+~i + h.c.

]
. (1.138)

Renaming for brevity ux,x+~i = ul = ui,x, where l ∈ L (the links’ space), the gauge
invariant kinetic term is naturally

HkinG =
1

2a

∑
x,i

ηi(x)
[
χ†xui,xχx+~i + h.c.

]
(1.139)

and the continuum limit, adding the mass term, yields to (1.113).
Lastly, we look at the lattice version of the electric and magnetic fields, in order

to write the correct discrete gauge invariant energy terms. The lattice electric field is
connected to its continuum counterpart by the relation

Ei → e

a
El, (1.140)

while for the magnetic field we have

−
∑
�

1

2e2a4

(
u� + u†�

)
, (1.141)

where we remind that the plaquette comparator u� comes from (1.80)

u� = u1,x u2,x+~1 u
†
1,x+~2

u†2,x (1.142)

and
∑

� represents the summation over all plaquettes.

33



1.2. Regularization on a two-dimensional lattice

This can be proved if we use the result (1.82) which states that

u� = e−iea
2B B ≡ B3, (1.143)

that is the third component of the magnetic flux over the plaquette with side a. In the
continuum limit, a becomes very small and we can expand to the second order (1.141)
until it remains a constant term which can be neglected and

1

2
B2 (1.144)

which is the magnetic energy density.
Finally we can write the gauge invariant lattice Dirac Hamiltonian in (2+1)-dimensions

with the suitable coupling constants [11, 36]

H =
g2

2a
W, W = W0 + yW1 + y2W2, (1.145)

where

W0 = We +Wµ =
∑
l

E2
l + µ

∑
x

(−1)x1+x2+1χ†x χx

W1 =
∑
x,i

ηi(x)
[
χ†xui,xχx+~i + h.c.

]
W2 = −

∑
�

(
u� + u†�

)
while the coupling constants are

y = 1/g2, g2 = e2a, µ =
2m

e2
.

Eq. (1.145) is the correct lattice version of the (2 + 1)-dimensional (1.68) which is gauge
invariant by construction, but we have still to quantize the model and define how a
generic lattice variable transforms under a U(1) local transformation: this will yield to
the definition of the Hilbert subspace of physical states, the so-called gauge invariant
Hilbert subspace. This is one of the objects of the next chapter, where we will quantize
all these quantities and specify exactly how they transform, whereas the last paragraph
of this chapter is dedicated to show the discrete symmetries of the Hamiltonian just
obtained.

34



1.2. Regularization on a two-dimensional lattice

1.2.5 The discrete symmetries of H

The symmetry group of the lattice Hamiltonian (1.145) is composed of the following
elements [33]:

1. Even translations
It can be easily seen that the kinetic and mass term both have even-shift invariance

χx → χx+2~i, ui,x → ui,x+2~i, (1.146)

this is the lattice version of translational symmetry of the continuum Hamiltonian.

2. Odd translations
χx → χx+~1, ui,x → ui,x+~1 (1.147)

or
χx → (−1)x1χx+~2, ui,x → ui,x+~2. (1.148)

These are the lattice versions of the chiral transformation, in fact only the massless
Hamiltonian is invariant under such transformations.

3. Diagonal shifts
This is a combination of an odd shift along the 1-direction and an odd shift along
the 2-direction

χx → (−1)x1χx+~1+~2, ui,x → ui,x+~1+~2, (1.149)

which is the lattice version of the rotation

Ψ(x)→ iγ45Ψ(x) (1.150)

and it is a symmetry also in the massive case.

4. Plaquettes’ rotations
Let R denote a π

2
-rotation about the origin (0, 0)

χx → Rx′χx′

u2,x → u1,x′ , u1,x → u†
2,x′−~2

x′1 = x2, x
′
2 = −x1

Rx =
1

2

[
(−1)x1 + (−1)x2 + (−1)x1+x2 − 1

]
(1.151)
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1.2. Regularization on a two-dimensional lattice

Repeated rotations generate symmetry group of the plaquettes’ rotations (Fig. 1.3).
In the continuum model, it corresponds to rotation in both space and spin.

34

21

(0, 0)

R

41

32

(0, 0)

Figure 1.3: π
2 -rotation of a plaquette around (0, 0). Point 1 is assumed fixed.

5. "Axial parity" inversion

χx → χ−x, ui,x → u†
i,−x−~i (1.152)

which is equivalent to R2, a π-rotation. In the continuum limit it corresponds to

Ψ(x)→ iγ0Ψ(x), Ψ̄(x)→ Ψ̄iγ0 (1.153)

6. Reflection
The reflection in the x2-axis is

χx → χx′

u1,x →u†1,x′−~1, u2,x → u2,x′

x′1 =− x1, x
′
2 = x2.

(1.154)

7. Charge conjugation
Charge conjugation transforms particles into anti-particles, changing charges to
anti-charges and reversing fluxes. In the continuum, this transformation is

C = γ2eiφcγ45 (1.155)
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and, taking φc = 0,

Ψ(x)→ −CΨ̄(x)T = −γ2γ0(Ψ(x)†)T , Ψ̄(x)→ Ψ(x)TC†. (1.156)

By inspection, in the discrete this transformation becomes

χx → (−1)x1χ†
x+(−1)x1~1

χ†x → (−1)x1+1χx+(−1)x1~1

(1.157)

In Fig. 1.4 we show how the physical spinor’s degrees of freedom recombine after
charge conjugation.

χ3χ4

χ2χ1

C

χ†3−χ†4

χ†2−χ†1

Figure 1.4: Sketch of a charge conjugation on the spinor’s components of a plaquette.

However, since we are not able to write an invariant Hamiltonian starting from this
result, we prefer to adopt an analogous transformation that translate the plaquette
of one lattice spacing in the 1̂ direction, maintaining the transformation essentially
unaltered. Also, we have to remember that the fluxes in the directions i = 1, 2

must be inverted.

In particular, if i = 1 the fields transform as

ui,x → −u†i,x+~1
, u†i,x → −ui,x+~1, Ei,x → −Ei,x+~1, (1.158)

while for i = 2

ui,x → u†
i,x+~1

, u†i,x → ui,x+~1, Ei,x → −Ei,x+~1, (1.159)
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and the spinors

χx → (−1)x1χ†
x+~1

, χ†x → (−1)x1+1χx+~1. (1.160)
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Chapter 2

The discrete Schwinger-Weyl group

In the previous chapter we illustrated one of the possible ways to discretize the continuous
Dirac theory on a two-dimensional lattice, describing also the interaction of the Dirac
matter with an Abelian gauge field. Now we focus on the quantization of this model
promoting both spinorial and vector potential fields from functions of the Minkowski
space to operators acting on the Fock space. This will lead to the definition of the gauge
invariant physical space that is a subspace of the Hilbert’s one and we’ll be able to
write the belonging condition of a state to this space as the analogous quantum version
of Gauss’ law for the electric field. The model described is usually called Link Gauge
Theory (LGT).

Later, we will describe the Quantum Link Model (QLM), where the links’ operators
act like ladder spin operators among electric states, which are finite for such a theory.
We will focus on the minimal special case with spin s = 1

2
.

Lastly, we will define the continuousWeyl group and its discrete version: the Schwinger-
Weyl group. The latter is necessary if we want to implement a quantum simulator [38].
In fact the discretization of high-energy physics theories on lattices was initially moti-
vated by the possibility to simulate them by classical computation, however the complex
nature of gauge theories represents a severe obstruction, which can be overcome through
a quantum simulation. This latter purpose involves a reduction of the system’s degrees
of freedom, so that it is possible to work with a finite number of links’ states leaving the
links’ operators unitary, differently to a QLM. The reason why we study these models is
that in a suitable thermodynamic limit they should recover the corresponding continuous
gauge theory that, in our case, is QED.
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2.1. Quantum local transformations

2.1 Quantum local transformations

The canonical quantization of fields consists of promoting the classical fields Ψ(x) and
Π(x), defined in the (3 + 1)-dimensions Minkowski space, to field operators Ψ̂(x) and
Π̂(x) whose components satisfy the equal-time anti-commutation relations

−i{Ψ̂α(x0,x), Π̂β(x0,y)} = {Ψ̂α(x0,x), Ψ̂†β(x0,y)} = δαβδ
(3)(x− y). (2.1)

Given the wave expansion (1.44) of Ψ(x)

Ψ(x) =

∫
d3p

[(2π)32ωp]−1/2

∑
s=1,2

[
as,pus(p)e−ip·x + b∗s,pvs(p)eip·x

]∣∣
p0=ωp

, (2.2)

the quantization procedure consists in promoting the Grassmann coefficients as,p and
bs,p to operators âs,p and b̂s,p which satisfy the anti-commutation relations

{âs,p, â†r,q} = (2π)3δ(3)(p− q)δs,r

{b̂s,p, b̂†r,q} = (2π)3δ(3)(p− q)δs,r.
(2.3)

The Hilbert space on which these operators act has the structure of a Fock space, i.e. is
the direct sum of Hilbert spaces, one for each value of the particles’ number.
We define a vacuum state |0〉 in the Hilbert space, s.t.

âs,p |0〉 = 0

b̂s,p |0〉 = 0, ∀s,p.
(2.4)

We know that the operators âs,p refers to particles, while b̂s,p to antiparticles, and their
Hermitian conjugated operators act on the vacuum state as creation operators

â†s,p |0〉 =
1√
2ωp

|s,p,+〉

b̂†s,p |0〉 =
1√
2ωp

|s,p,−〉
(2.5)

We can construct many-particle states |Ω〉 = |s1,p1; ...; sn,pn〉 by applying creation
operators relative to different momentum and spin values. Due to the anti-commutation
relations obeyed by Dirac fields, a state cannot contain more than one particle with the
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2.1. Quantum local transformations

same momentum, spin and electric charge. The Dirac Fock space HD is therefore

HD =
∞⊕
n=0

AH⊗n = H0 ⊕H⊕ A(H⊗H)⊕ . . . (2.6)

where H0 is the space with zero particles while H contains one particle and A antisym-
metrizes the tensor product, due to the particles’ fermionic nature.
The quantum free Dirac Hamiltonian Ĥ0, which acts on this space, reads

Ĥ0 = ˆ̄Ψ(x)
(
− iγi∂i +m

)
Ψ̂(x). (2.7)

We now implement the quantization of the electromagnetic field, by promoting Ai and
Πi to field (conjugate) operators Âi and Π̂i which obey to the equal-time commutation
relations

[Âi(x
0,x), Π̂j(x

0,y)] = iδ(3)(x− y)δij (2.8)

i.e.
[Âi(x

0,x), Êj(x
0,y)] = −iδ(3)(x− y)δij. (2.9)

The Hilbert space associated to the electromagnetic field is the span of the basis |{Ei(x0,x)}〉,
in which each vector is characterized by the electric field value at each position, at a fixed
time. A state |Φ〉 of the Hilbert space can be projected onto this basis, generating the
wave function Φ({Ei(x0,x)}), a functional of the electric field values. The operator
Êi(x

0,x) acts on this functional as a multiplication factor, while Âi(x0,x) acts as

Âi(x
0,x) = −i δ

δÊi(x0,x)
. (2.10)

The quantum version of the comparator (1.79), called also the link’s operator, is

û(x0,x,y) = exp

{
−i
∫ y

x

dz · Â(x0, z)

}
. (2.11)

The QED Hamiltonian reads:

ĤQED =

∫
d3x

{
− i ˆ̄Ψ( /∇+ ie /̂A)Ψ̂ +m ˆ̄ΨΨ̂ +

1

2
(B̂2 + Ê

2
)
}
. (2.12)

Our system is now composed by the Dirac and electromagnetic fields and the total Hilbert
space basis is given by the tensor product of their two basis, i.e. {|Ω〉D} ⊗ {|Φ〉e.m.}.
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2.1. Quantum local transformations

The electric charge density operator Ψ̂†(x)Ψ̂(x) is the generator for global and local
U(1) transformations of Dirac fields, in fact given the real function α(x) we define the
operator

X̂[α]
def
= exp

{
i

∫
d3x α(x)Ψ̂†(x)Ψ̂(x)

}
(2.13)

and using the rules (2.1), the Dirac field transformation reads

Ψ̂(x)→ X̂†Ψ̂(x)X̂ = Ψ̂(x)eiα(x) (2.14)

which coincides with the local U(1) transformation of the quantum Dirac field. We notice
that, if α is a constant

[Ĥ0, X̂] = 0 (2.15)

rediscovering the global U(1) symmetry of the free Dirac theory.
Instead, the gauge transformations

Âi(x
0,x)→ Âi(x

0,x)− ∂iα(x) (2.16)

can be implemented defining the operator

Ŷ [α]
def
= exp

{
−i
∫
d3x α(x)∇ · Ê(x0,x)

}
(2.17)

and the gauge transformation, using (2.9), is

Âi(x
0,x)→ Ŷ †Âi(x

0,x)Ŷ (2.18)

and, for the comparator, it can be shown that

û(x0,x,y)→ Ŷ †û(x0,x,y)Ŷ = eiα(x)û(x0,x,y)e−iα(y). (2.19)

The equation (2.12) results invariant under the gauge transformation given by the tensor
product of these new operators(

X̂ ⊗ Ŷ
)†
ĤQED

(
X̂ ⊗ Ŷ

)
= ĤQED (2.20)
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2.1. Quantum local transformations

2.1.1 The quantum Gauss’ law

Since gauge transformations do not alter the physics of the model, physical states must be
invariant under gauge transformations. For the free electromagnetic field, this condition
is encoded in the following formula

Ŷ [α(x0,x)] |Φ〉 = |Φ〉 (2.21)

that is
∇ · Ê(x0,x) |Φ〉 = 0, ∀x0,x (2.22)

which is nothing but the quantum version of Gauss’ law ∇·E = 0 for a free electromag-
netic field.

If we now consider a system in which the Dirac and the electromagnetic fields interact
with each other, the Hilbert space will be the tensor product of the Hilbert spaces on
which the two fields act: physical states like |Ψ〉 def= |Ω〉D ⊗ |Φ〉e.m. (i.e. product states
with zero entanglement entropy [39]) must be invariant under the tensor product of the
gauge operators (

X̂ ⊗ Ŷ
)
|Ψ〉 = |Ψ〉 (2.23)

which is equivalent to (if e = 1)(
∇ · Ê(x)− Ψ̂†Ψ̂

)
|Ψ〉 = 0; (2.24)

namely, Gauss’ law in presence of charges.

2.1.2 Gauss’ law on lattice

Now, our aim is to rewrite the gauge transformations just illustrated on a two-dimensional
lattice. Following the beginning of this chapter, in order to obtain the quantum version
of (1.145), we can promote the lattice Dirac variables to field operators and implement
on the lattice the fermionic anti-commutation relations

{χ̂x, χ̂†y} = δx,y, {χ̂x, χ̂y} = {χ̂†x, χ̂†y} = 0, x = an, y = am, n,m ∈ Z2. (2.25)

The discrete version of the operator (2.13) is

X̂[αx] =
∏
y

exp

{
iαx
{
χ̂yχ̂y +

1

2

[
(−1)y1+y2+1 − 1

]}}
(2.26)
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2.1. Quantum local transformations

where the term 1
2

[
(−1)y1+y2+1−1

]
is due to the use of staggered fermions and its physical

meaning will be clear later. So, it can be easily shown that

X̂†χ̂xX̂ = χ̂xe
iαx (2.27)

and the quantum version of the free staggered Hamiltonian (1.131), which is simply

Ĥ0 =
1

2a

∑
x,i

ηi(x)
[
χ̂†x χ̂x+~i + h.c.

]
+m

∑
x

(−1)x1+x2+1 χ̂†x χ̂x (2.28)

is invariant under such a transformation when α is a constant, i.e.

[X̂, Ĥ0] = 0. (2.29)

Since the Fock space per site is two-dimensional, since it can be only empty or occupied
by one fermion, the site’s state is a two level system where

Hx = {|0〉 , |1〉}
χ̂† |0〉 = |1〉 , χ̂† |1〉 = 0, χ̂ |0〉 = 0, χ̂ |1〉 = |0〉

(2.30)

where the subscript, which indicate the site, is implicit and the creation and annihila-
tion operators are referred to particles or antiparticles depending on the site’s parity.
Therefore the ground state of the free Hamiltonian (2.28) consists of a Dirac sea filled of
negative energy solutions, which correspond to the complete occupation of even sites.

Now, we want to reach a two dimensional lattice formulation of QED, then we intro-
duce the link operators Âx,x+~i, Êx,x+~i and ûi,x which satisfy

[Âx,x+~i, Êy,y+~i] = −iδx,y, (2.31)

or, for l ∈ L (the links’ space),

[Êl, Âl′ ] = iδll′ , [Êl, ûl′ ] = ûlδll′ , [Êl, û
†
l′ ] = −iû†l δll′ . (2.32)

Therefore we can introduce the discrete version of (2.17), which perform the gauge
transformation of the quantum vector potential

Ŷ [αx] =
∏
y,i

exp
{
−iαy

(
Êx,x+~i − Êx,x−~i

)}
(2.33)
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2.1. Quantum local transformations

and, using (2.32), one finds

Ŷ †ûi,xŶ = eiαxûi,xe
−iαx . (2.34)

The quantum lattice version of the QED Hamiltonian in (2 + 1)-dimensions is simply

ĤQED =
g2

2a
Ŵ , Ŵ = Ŵ0 + yŴ1 + y2Ŵ2 (2.35)

with

Ŵ0 = Ŵe + Ŵµ =
∑
l

Ê2
l + µ

∑
x

(−1)x1+x2+1χ̂†x χ̂x

Ŵ1 =
∑
x,i

ηi(x)
[
χ̂†xûi,xχ̂x+~i + h.c.

]
Ŵ2 = −

∑
�

(
û� + û†�

)
and

y = 1/g2, g2 = e2a, µ =
2m

e2
.

In fact, equations (2.27) and (2.34) are enough to ensure the local invariance of this
Hamiltonian under the complete gauge transformation which operates simultaneously
on the Dirac and the electromagnetic field analogously to the continuum model, i.e.

(X̂ ⊗ Ŷ )†ĤQED(X̂ ⊗ Ŷ ) = ĤQED. (2.36)

We can write X̂ ⊗ Ŷ in a more compact way as

X̂ ⊗ Ŷ =
∏
x

eiαxĜx , (2.37)

where the Ĝx, acting as generators of the local transformations, are

Ĝx = Ψ̂†xΨ̂x −
∑
i

(Êx,x+~i − Êx,x−~i) +
1

2
[(−1)x1+x2+1 − 1] (2.38)

and, as already studied in the continuum case, we can restrict the Hilbert space to the
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2.2. The Quantum Link Model

gauge invariant one, defined by the condition

Ĝx |Ψx〉 = 0 ∀x, (2.39)

which represents the quantum Gauss’ law on a two-dimensional lattice. We remark that
now

|Ψx〉 =
⊗
i

∣∣Φx−~i
〉
⊗ |Ωx〉 ⊗

∣∣Φx+~i

〉
(2.40)

is referred to the site’s state |Ωx〉 and its neighbouring links’ states.

2.2 The Quantum Link Model

In this section we explain how it is possible to realize a quantum simulator for Abelian
gauge theories. In particular, physically interesting quantum many-body systems, which
cannot be solved using classical simulation methods, are becoming accessible to analogical
or digital quantum simulation with cold atoms, molecules, and ions. We want to find
a physical implementation of Abelian gauge theories with ultracold atoms, represented
by fermionic particles trapped in an optical lattice, which hop between lattice sites and
interact with dynamical gauge fields on the links.

The LGT to be implemented is the so-called Quantum Link Model (QLM), where
the fundamental gauge variables are represented by quantum spins. QLMs extend the
concept of Kenneth G. Wilson’s LGT [40, 41], the inventor of the non-perturbative
formulation of quantum field theories using lattice regularization, using infinite degrees
of freedom for the gauge field. In fact, in the two-dimensional lattice QED Hamiltonian
that we found in (2.35), the fermionic species live in a finite Hilbert space, while the
links operators ûi,x are defined in an infinite-dimensional one (the electric field can take
arbitrary values on each link).

The main point of a QLM is the introduction of finite-dimensional Hilbert spaces for
links’ variables: this is achieved using the commutation relations in (2.32), in particular

[Êl, ûl′ ] = ûlδll′ , [Êl, û
†
l′ ] = −iû†l δll′ , [ûl, û

†
l′ ] = 2Êlδll′ , (2.41)

and noticing that they satisfy the SU(2) algebra and the links’ variables can be repre-
sented with quantum spin operators Ŝi, i = 1, 2, 3. In particular, since

[Ŝ3, Ŝ±] = ±ŝ±, Ŝ± = Ŝ1 ± Ŝ2, (2.42)
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2.2. The Quantum Link Model

where Ŝ± are the ladder operators, the natural correspondences are:

ûl ; Ŝ+
l

û†l ; Ŝ−l

Êl ; Ŝ3
l .

(2.43)

With each link we can associate a real electric flux el such that

Êl |el〉 = el |el〉 (2.44)

where |el〉 is the electric flux state related to the link l. The operators ûl and û†l increase
and decrease the flux on each link by one unit, respectively. Consider first the massless
theory, i.e. µ = 0. In the strong coupling limit, we have y = 0 and in the Hamiltonian
(2.35), Ŵ reduces to Ŵe. The ground state is then degenerate, having flux el = 0 on each
link, but with the fermionic states completely arbitrary. The strong degeneracy is broken
by the linear term, which is the kinetic term Ŵ1, which leaves only two degenerate states
|A〉 and |B〉 s.t.

|A〉 =

|1〉 , on odd sites

|0〉 , on even sites
(2.45)

|B〉 =

|1〉 , on even sites

|0〉 , on odd sites
(2.46)

and the chiral transformations (1.147) and (1.148) map these states into each other. If
we include the mass term the chiral symmetry is explicitly broken and the state |B〉
is favoured energetically, so we choose |B〉 as the unperturbed strong coupling ground
state even in the massless case and interpret this as the state with no excitation present
(the Dirac sea). Now we understand the need of the term 1

2
[(−1)x1+x2+1 − 1] in (2.38):

it includes the ground state in the gauge invariant Hilbert space. An excitation on an
odd or even site creates a positively or negatively charged fermion respectively. The first
order perturbation Ŵ1 creates or destroys a quark-antiquark pair on neighbouring sites,
joined by a link of flux. The second order term Ŵ2 creates or destroys a plaquette of
flux. Therefore the ground state is highly non trivial because of these flipping terms.
Gauge invariance ensures that for any state obtained from the unperturbed vacuum by
application of the operators Ŵ1 and Ŵ2, the net flux from any site is equal to the charge
of the fermion at that site, i.e. Gauss’ law is obeyed.
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2.2. The Quantum Link Model

The advantage of this formulation is that, since the group SU(N) has rank N − 1,
there are N − 1 Casimir operators which commute with all the N2 − 1 generators and
define the irreducible representations. A given irreducible representation is then labelled
by N−1 numbers and the corresponding operators span the so-called Cartan subalgebra,
which is the maximal Abelian algebra. In SU(2), the Cartan subalgebra consists of only
the generator Ŝ3

l whose eigenvalues on each link cover the interval {−S,−S + 1, . . . , S}
and labels the state within each multiplet. Therefore, if Sl is the modulus of the spin on
the link l, the electric field can take only discrete finite values and the Hilbert space per
link is (2S + 1)-dimensional

Hl = {|el〉 , el = −S, . . . , S}. (2.47)

Now, the kinetic term of (2.35) tells us that if a fermion hops from an odd site x+~i to
an even site x, the electric field on that link is increased from |el〉 to |el + 1〉 and vice
versa, in order to conserve energy.

The U(1) gauge invariance of (2.35) is preserved, since

[Ĝx, ĤQED] = 0 ∀x (2.48)

with the suitable generators for a QLM

Ĝx = Ψ̂†xΨ̂x −
∑
i

(Ŝ3
x,x+~i

− Ŝ3
x,x−~i) +

1

2
[(−1)x1+x2+1 − 1] (2.49)

and, if we restrict to the space with Ĝx |Ψ〉 = 0, the correspondent eigenvalues are

nx −
∑
i

(S3
x,x+~i

− S3
x,x−~i) +

1

2
[(−1)x1+x2+1 − 1] = 0 (2.50)

where nx is the fermion number eigenvalue.
However, there is an important difference between the LGT and the QLM formu-

lations: the correspondences (2.43) preserve the commutation relations (2.41), but the
structure of the gauge coupling is altered: the new comparator is no longer unitary since

(Ŝ+
l )†Ŝ+

l ≡ Ŝ−l Ŝ
+
l 6= 1̂. (2.51)

In the classical limit Sl →∞∀l, QLMs reduce to the Hamiltonian formulation of Wilson’s
LGT [40].
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2.2. The Quantum Link Model

2.2.1 The case S = 1
2

A special scenario arises for the minimal S = 1
2
representation, where the electric field

energy E2
l = (S3

l )
2 = 1

4
and thus only contributes as a constant energy shift which can

be excluded from the Hamiltonian. The generators are the Pauli matrices and the links’
Hilbert space becomes the direct product of local two-dimensional spaces on each lattice
link: in fact the spin 1

2
representation restricts us to two possible states per link, so we

can have a flux E3
l± = ±1

2
, i.e. the flux is either flowing to the right (top) or left (bottom)

on any link on a square lattice. This will be indicated by drawing an arrow on every link
as illustrated in Fig. 2.1.
The Hamiltonian (2.35) is written in terms of the operators Êl, χ̂x, χ̂†x and Û�. The first
one, as already said, can be omitted, the second and the third ones destroy and create
particles and antiparticles, while the last one, denoted by the capital letter U (instead of
u), in order to emphasize that acts on a finite dimensional space, operates on closed loops
of flux around elementary plaquettes, flipping them from clockwise to counter-clockwise,

antiparticle
particle
|+〉
|−〉

Figure 2.1: (left)-In a U(1) lattice gauge theory, the electric field is represented by operators Êl that
live on the links of a (two-dimensional) lattice. An eigenstate |el〉 of the electric field operator Êl is
represented by a flux arrow between the sites connected by the link l.
(right)-Mapping between an electric flux configuration and the corresponding spin states of the S = 1

2
quantum link model. The fluxes flowing to the right or top correspond to the states with S3 = + 1

2
(red spheres), while those flowing to the left or bottom correspond to the states with S3 = − 1

2 (blue
spheres).
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Û�

Û †�

Û� = 0

Figure 2.2: The plaquette operators Û� act on the four electric flux states around a plaquette, flipping
them from clockwise to counter-clockwise, while annihilating all other configurations. Its Hermitian
conjugate changes the flux in the opposite way.

while annihilating all other configurations. Its Hermitian conjugate Û †� changes the flux
in the opposite way, i.e. from counter-clockwise to clockwise, while also annihilating all
other configurations. This behavior is illustrated in Fig. 2.2.
In this case, a gauge invariant extension of the Hamiltonian can be considered, for ex-
ample, of the form [12, 42, 43]

Ĥ 1
2

= Ĥ0 − J
∑
�

[
Û� + Û †� − λ

(
Û� + Û †�

)2
]

(2.52)

where the first term is the free Hamiltonian, J = 1
2ag2

, the second term (kinetic energy)
inverts the direction of the electric flux around flippable plaquettes, while the third term
(potential energy), proportional to the adjustable parameter λ, counts the number of
flippable plaquettes, i.e. the number of elementary plaquettes with a closed, circular flux
around them. These terms are also known as "ring-exchange" and "Rokhsar–Kivelson"
interactions, respectively. We can convince ourself that the term proportional to λ indeed
counts the number of flippable plaquettes by observing that Û2

� and (Û †�)2 annihilate any
configuration on a plaquette. Therefore the only surviving term in the square is actually
Û�Û

†
� + Û †�Û

2
�. This yields a constant for any flippable plaquette and zero for every

other configuration. Furthermore, in this representation, there is no other similar higher
orders of the λ term, because all of those correspond to a product of a projection operator
(i.e. of the λ term) with (odd powers) or without (even powers) an additional flipping of
plaquettes.

In order to fully define the model, we have to speak about Gauss’ law in this repre-
sentation. As already learnt, a gauge invariant theory needs to work with gauge invariant
states, i.e. those satisfying Ĝx |Ψ〉 = 0, which is a consequence of charge conservation.
In this case it means that at each site x, the in- and out-going fluxes have to add up to
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2.2. The Quantum Link Model

the charge present in x, i.e.∑
i

(
ex,x+~i − ex,x−~i

)
= qx, qx ∈ {−2,−1, 0, 1, 2}; (2.53)

in fact the value of the charge is restricted to the integer numbers given by adding up
the fluxes surrounding the site. Practically, these charges can be used to measure static
properties like e.g. the energy of flux strings between charge-anticharge pairs.
In the case qx = 0, the in- and out-going fluxes have to add up to zero, i.e. there have
to be as many arrows pointing to x as there are pointing away from x. The possible
vertexes’ configurations (in the "spheres’ picture") are six as we can see in Fig. 2.3.
Fig. 2.4 instead shows the allowed configurations corresponding to local charges ±2 and
±1.
The last argument we want to consider about the spin-1

2
representation concerns the

symmetries. Apart from the gauge symmetry of the model and the discrete symmetries
analyzed in Par. 1.2.5, this model has conserved global fluxes in either direction which
are related to the U(1) center symmetry [44, 45]. We now consider to work with a 2-
dimensional spatial lattice with volume V = L1 × L2. The center of the group U(1) is
U(1) itself and this leads to an additional symmetry that gives rise to super-selection
sectors within the theory describing the total electric flux winding around the lattice in
a given periodic spatial direction. The generators of this symmetry are

Êi =
1

Li

∑
x

Êi,x, i ∈ {1, 2}, (2.54)

which are the sum in the i-direction of all fluxes on a given line going through the dual
lattice points. This is graphically explained by the dashed lines in Fig. 2.5. These lines
|+〉
|−〉

Figure 2.3: The six possible ways of fulfilling Gauss’ law at a lattice site x with q = 0 in two dimensions.
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Figure 2.4: (left)-The two ways of placing a charge +2 (up) and −2 (down). (right)-The eight ways of
placing a charge +1 (up) and −1 (down).

can also be locally deformed because of Gauss’ law. It can be easily shown that[
Êi, Ĥ 1

2

]
= 0 ∀i, (2.55)

in fact flipping a plaquette doesn’t change the total flux on a given line. Moreover, the
links basis’ states are eigenstates of these generators, i.e.

Êi
⊗

l∈{i,x}x

|el〉 = ei
⊗

l∈{i,x}x

|el〉 , ei ∈
{
− Li

2
,−Li

2
+ 1, . . . ,

Li
2

}
(2.56)

making the conserved flux a global property of a given configuration and every gauge
invariant configuration of fluxes is actually an eigenstate of it.

Figure 2.5: Example of a gauge invariant configuration. The fluxes on either of the dashed lines have
to be added up in order to obtain the total flux along 2-direction of e2 = −1 for this case.
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2.3. The Schwinger-Weyl group

Moreover, since the electric flux is related to the electric energy of the system (at least
for λ < 1 [4, 10]), the ground state is part of the flux sector with the lowest energy. In
lattices with an even extent in one direction, the fluxes in that direction is integer valued,
while in directions with an odd extent are half-integer valued. This means that if we
consider lattices with at least one odd-length direction, the flux sectors with lowest en-
ergy are

(
± 1

2
, 0
)
and are therefore degenerate. In order to consider only non-degenerate

ground states with a zero-flux sector we can limit ourself to consider only lattices with
even extent in both directions.

2.3 The Schwinger-Weyl group

In the previous section, we studied the Quantum Link Model to pass from a continuous
electric field to a finite one, therefore defining a finite links’ Hilbert space. On this space
we defined the links’ operators satisfying the correct continuous algebra (2.32) with the
electric field operators: thanks to this relations the generators (2.49) commute with the
Hamiltonian (2.35) and the construction of a gauge theory was possible. Unfortunately,
a problem arise, since the comparator in a QLM is not unitary, as noticed in (2.51).
It could be shown that is impossible to define, in general, a unitary operator û and a
Hermitian operator Ê, in a finite Hilbert space, satisfying the commutation relation

[Ê, û] = û (2.57)

as in (2.32). We will show that for discrete fields this assertion is not true and that there
is no group algebra generators; but first, we introduce the problem in the continuum and
then we will implement the correct formalism in the discrete case, without renouncing
to a unitary comparator.

2.3.1 The Weyl group

The abstract Weyl group is a two-real and continuous parameters group whose gener-
ators obey the Heisenberg’s commutation relation. Heisenberg, in 1925, associated two
Hermitian operators to the particle’s position and momentum, q̂ and p̂, obeying the
commutation rule

[q̂, p̂] = i (2.58)
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with the other commutators vanishing. For our purposes, the operators taken are the
electric field Êl and the vector potential field Âl′ at each link, which satisfy analog rules

[Êl, Âl′ ] = iδll′ . (2.59)

We interpret operators Â and Ê as generators of infinitesimal unitary transformations
of vectors in Hl: these transformations are

δû
def
= 1̂ +

η

N
Â δv̂

def
= 1̂ +

ξ

N
Ê (2.60)

in which η and ξ are real and finite parameters, N is a large positive integer and the
links’ indexes are understood. A finite transformation is given by

lim
N→∞

(
1̂ +

ηÂ+ ξÊ

N

)N
(2.61)

so that we can define the Weyl operators:

û(η)=e−iηÂ

v̂(ξ)=eiξÊ

ŵ(η, ξ)
def
= ei(ηÂ+ξÊ).

(2.62)

Since the generators do not commute, using the Baker-Campbell-Hausdorff formula, one
finds

ŵ = ûv̂e−
1
2
ηξ[Â,Ê], (2.63)

since the commutator [Â, Ê] commutes with both Â and Ê. We have also

e−iηÂeiξÊe−
1
2
ηξ[Â,Ê] = eiξÊe−iηÂe−

1
2
ηξ[Ê,Â], (2.64)

then
eηξ[Ê,Â] = e−iηÊeiξÂeiηÊe−iξÂ (2.65)

and the commutator between the Weyl operators in a given representation is

v̂ûv̂† = ûeiηξ. (2.66)

From the Von Neumann theorem we know that [46]
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Theorem 2.1 (Von Neumann). All the irreducible representations of the Weyl group,
such that unitary operators representing the abstract elements û(η) and v̂(ξ) are strongly
continuous in η and ξ, respectively, are unitarily equivalent.

Therefore, given two irreducible representations satisfying the continuity condition,
there exists a unitary transformation to pass from one to the other. In particular, it
is interesting the action of these operators in the Schrödinger representation [47], as it
evidences some properties analog to that associated with the discrete Schwinger-Weyl
group, the subject of the next paragraph.

2.3.2 The discrete Schwinger-Weyl group

We can adapt the construction of the Weyl group in the discrete case, taking the proper
precautions, but obtaining similar results: this new group is known in literature as
Schwinger-Weyl group [48].

We consider an n-dimensional Hilbert space and define an orthonormal basis

{|ek〉}1≤k≤n, 〈ek|ek′〉 = δkk′ , (2.67)

which is called, for our purposes, the electric field basis. We also define the unitary
comparator Û acting on this space as

Û |ek〉
def
= |ek+1〉

Û |en〉
def
= |e1〉

Ûn def
= 1̂

(2.68)

The condition defined in (2.68) guarantees the unitarity of the comparator, in fact a
ladder operator ÛL would act as

ÛL |en〉 = 0

Û †L |e1〉 = 0
(2.69)

and it is not true in this construction. We can define the eigenvector basis of Û , called
the vector potential basis, {|uk〉}1≤k≤n, and its correspondent eigenvalues {uk}1≤k≤n, s.t.

Û |uk〉 = uk |uk〉 . (2.70)
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2.3. The Schwinger-Weyl group

Since Ûn = ~1, it follows that unk = 1 and therefore

uk = e
2πi
n
k ∈ Zn, 1 ≤ k ≤ n. (2.71)

Our goal now is to write the relation that connects the two basis {uk} and {el}. By
writing Û using its projectors

Û =
n∑
k=1

uk |uk〉 〈uk| (2.72)

it is an easy task, starting from Ûn −~1 = 0, to obtain

n∑
l=1

(
uj
uk

)l
= nδjk j, k ∈ {1, . . . , n}. (2.73)

Therefore
1

n

n∑
l=1

(
Û

uk

)l
=

1

n

n∑
j=1

n∑
l=1

(
ûj
uk

)l
|uj〉 〈uj| = |uk〉 〈uk| (2.74)

and the action of these projectors on the basis state |en〉 is

|uk〉 〈uk|en〉 =
1

n

n∑
l=1

(
Û

uk

)l
|en〉 =

1

n

n∑
l=1

(Û)l+n−1

(uk)l
|e1〉 =

1

n

n∑
l=1

|el〉
(uk)l

. (2.75)

Multiplying by the bra 〈en|, it results

|〈en|uk〉|2 =
1

n
(2.76)

and, without loss of generality, we can impose that

〈en|uk〉 =
1√
n
. (2.77)

Then, multiplying (2.75) by 〈el|, making use of (2.77), we have

〈el|uk〉 〈uk|en〉 =
1

n
e−

2πik
n
l. (2.78)
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2.3. The Schwinger-Weyl group

Finally we can write the basis’ element |uk〉 in function of the basis {|el〉} as follows

|uk〉 =
1√
n

n∑
l=1

e−
2πik
n
l |el〉 , (2.79)

which is nothing but a discrete Fourier transform.
Now we introduce a new operator V̂ , which acts on the bras of the vector potential

basis as Û does on the kets of the electric field’s one:

〈uk| V̂
def
= 〈uk+1|

〈un| V̂
def
= 〈u1|

V̂ n def
= 1̂.

(2.80)

Its eigenvalues coincide with those of Û in its basis, namely

vl = e
2πi
n
l ∈ Zn, 1 ≤ l ≤ n. (2.81)

Analogously to the previous procedure, the projectors relative to a generic eigenstate |vl〉
are of the form

|vl〉 〈vl| =
1

n

n∑
k=1

(
V̂

vl

)k
(2.82)

and, multiplying by 〈un|, we have

〈un|vl〉 〈vl| =
1

n

n∑
k=1

〈uk|
vkl

. (2.83)

Then, fixing the arbitrary phase to one, it results

〈un|vl〉 =
1√
n
, (2.84)

then
〈vl|uk〉 =

1√
n
e−

2πil
n
k (2.85)

and, from (2.83), we conclude that

|vl〉 =
1√
n

n∑
l=1

e
2πil
n
k |uk〉 ≡ |el〉 . (2.86)
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2.3. The Schwinger-Weyl group

Therefore, the basis initially defined coincides with V̂ ’s eigenstates and |vl〉 is related
to {|uk〉} by an inverse Fourier transform. We can observe that we have defined two
operators with the same spectrum and that, by construction, each of them permutes
cyclically the eigenstates relative to the other operator, i.e.

Û |uk〉 = e
2πi
n
k |uk〉

Û |vl〉 = |vl+1〉 , Û |vn〉 = |v1〉
〈uk| V̂ = 〈uk+1| , 〈un| V̂ = 〈u1|

V̂ |vl〉 = e
2πil
n |vl〉 .

(2.87)

The simultaneous action of Û and V̂ is given by

〈uk| V̂ Û = e
2πi(k+1)

n 〈uk+1|

〈uk| Û V̂ = e
2πik
n 〈uk+1| ,

(2.88)

⇒ V̂ Û = e
2πi
n Û V̂ . (2.89)

Generalizing (2.88)-(2.89), i.e. exponentiating the operators with two integers k and l,
we obtain

〈uj| V̂ kÛ l = e
2πi(j+k)

n
l 〈uj+k|

〈uj| Û lV̂ k = e
2πij
n
l 〈uj+k| ,

(2.90)

⇒ V̂ kÛ l = e
2πi
n
klÛ lV̂ k. (2.91)

The commutator is therefore given by

V̂ Û V̂ † = e
2πi
n Û

V̂ −kÛ jV̂ k = e−
2πikj
n Û l

Û jV̂ kÛ−j = e−
2πikj
n V̂ k

(2.92)

Since Û and V̂ are unitary operators, they can be written as complex exponentials of
Hermitian operators. However, we cannot define the generators since the group is discrete
and there are no infinitesimal transformations; this implies that we cannot derive the
group commutator from that of the generators, as in (2.63).
The continuum limit is finally recovered taking n → ∞, so that Zn → U(1) yielding to
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2.3. The Schwinger-Weyl group

the continuous Weyl group [48].
We now turn to the physical problem, i.e. we consider an n-dimensional Hilbert space

for each link of the lattice. The definition of a unitary comparator requires the implemen-
tation, at each link, of an n-dimensional representation of the discrete Schwinger-Weyl
group: that is ûl and v̂l defined in (2.62) are replaced with two operators with the same
properties of Û and V̂ in (2.92). Therefore we have

Ûn
l = 1̂

V̂ n
l = 1̂

V̂lÛlV̂
†
l = e

2πi
n Û

V̂ −kÛ jV̂ k = e−
2πikj
n Û j

Û j
l V̂

k
l Û
−j
l = e−

2πikj
n V̂ k

l l ∈ L j, k ∈ Z

(2.93)

while the operators on different links commute. Then, defining the basis of eigenstates
of V̂l as {|vl,k〉}1≤k≤n, the action of Ûl and V̂l follows

Ûl |vl,k〉 = |vl,k+1〉 , Ûl |vl,n〉 = |vl,1〉
Û †l |vl,k〉 = |vl,k−1〉 , Ûl |vl,1〉 = |vl,n〉
V̂l |vl,k〉 = ei

2π
n
kl |vl,k〉 , kl ∈

{
0, . . . , n− 1

}
V̂ j
l |vl,k〉 = ei

2π
n
jkl |vl,k〉 , j ∈ Z.

(2.94)

Since the V̂ ’s eigenvalues vl,k have the property vl,k = vl,k+n, we can rename them in this
more convenient way:

vl,−n/2 = e−
2πi
n

n
2 , . . . , vl,n/2−1 = e

2πi
n

(n
2
−1), n even

vl,−(n−1)/2 = e−
2πi
n

n−1
2 , . . . , vl,(n−1)/2 = e

2πi
n

n−1
2 , n odd.

(2.95)

We define and represent the electric field operator in the electric field basis with an n×n
matrix as

k̂l
def
=


−n

2
0 . . . 0

0 −n
2

+ 1 . . . 0
...

... . . . ...
0 0 0 n

2
− 1

 for even n, (2.96)
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and a similar definition holds for odd n. Therefore

V̂ = ei
2π
n
k̂l (2.97)

and the electric field values differing by n generate the same eigenvalue. Analogously,
we can define an operator âl s.t. Û

def
= e

2πi
n
âl .

This model has now the same integer-valued spectrum for the electric field operator as
that in the Quantum Link Model. The only difference is that in the QLM we had

Ûl |s, kl,QLM = s〉 = 0

Û †l |s, kl,QLM = −s〉 = 0
(2.98)

while now

Ûl

∣∣∣n
2
− 1
〉

=
∣∣∣−n

2

〉
Û †l

∣∣∣−n
2

〉
=
∣∣∣n
2
− 1
〉
.

(2.99)

2.3.3 The continuum limit

In the continuous case, the electric field’s and vector potential eigenvalues are

{eiξEl}, {eiηAl} ξ, El, η, Al ∈ R (2.100)

and, comparing with the last equation of (2.94), we interpret the transition from contin-
uum to discrete as

ξ →
√

2π

n
k

η →
√

2π

n
j

El →
√

2π

n
kl

Al →
√

2π

n
al.

(2.101)

The continuum limit must be done with qualifications: to better understand the passage
from integer electric values to real ones, it helps to make a few considerations. From
eq. (2.93) we see that (we neglect links’ indexes and use the exponent l instead of k for
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the sake of clarity)

e−
2πi
n
lk̂e

2πi
n
jâe

2πi
n
lk̂ = e−

2πilj
n e

2πi
n
jâ = e

2πi
n
j(â−l) (2.102)

and
e

2πi
n
jâe

2πi
n
lk̂e−

2πi
n
jâ = e−

2πilj
n e

2πi
n
lk̂ = e

2πi
n
l(k̂−j). (2.103)

We see here unitary transformations on a function of an operator, a function that is
defined by a power series. So, since in general, given a unitary transformation Û and an
operator Â, it holds

Û−1ÂjÛ = Û−1ÂÂÂ · · · Û
= Û−1ÂÛ Û−1ÂÛ · · ·
= (Û−1ÂÛ)j,

(2.104)

therefore a function f(Â) expressible in power series is transformed under unitary trans-
formations as

Û−1f(Â)Û = f(Û−1ÂÛ). (2.105)

So, from eq.ns (2.102) and (2.103) we have

e
2πi
n
j(e−

2πi
n lk̂âe

2πi
n lk̂) = e

2πi
n
j(â−l)

e
2πi
n
l(e

2πi
n jâk̂e−

2πi
n jâ) = e

2πi
n
l(k̂−j).

(2.106)

It is tempting to equate the exponents of the l.h.s. and r.h.s. of the last equations, but
it is not generally correct because of the periodicity of the exponentials. However, in
the limit n → ∞, this can be done. It helps to look at Fig. 2.6, where the circle of
periodicity is drawn: in the continuum limit the gap between two angles decreases until
the spectrum becomes continuous and the radius 1

2π/n
→ ∞. Therefore the periodicity

is lost and the circle becomes essentially a straight line; but to avoid the fact that, if
the line is continued indefinitely in both directions, the two ends ultimately meet, one
must implicitly restrict all applications to physical situations, i.e. to finite values of the
electric and vector potential fields. Now we can identify the exponents and make use of
the relations (2.101):

e−iξÊÂeiξÊ = Â− ξ

eiηÂÊe−iηÂ = Ê − η.
(2.107)
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Since now the parameters ξ and η are continuous, we can expand the exponentials in
power series. We are interested only on the expansions until the first power

(1− iξÊ + . . . )Â(1 + iξÊ + . . . ) = Â− ξ
(1 + iηÂ+ . . . )Ê(1− iηÂ+ . . . ) = Ê − η,

(2.108)

then

Â+ iξ(ÂÊ − ÊÂ) = Â− ξ
Ê + iη(ÂÊ − ÊÂ) = Ê − η.

(2.109)

Both the last equations bring to the non-commutativity of Â and Ê with the relation

[Ê, Â] = i (2.110)

or, if we consider operators acting on different links,

[Êl, Âl′ ] = iδl,l′ (2.111)

retrieving the relations (2.32). The correct passage to the continuum is crucial as it is
the essence of Heisenberg’s discovery, in 1925, of non-commutativity of the momentum

1
2π/n

2π
n

(n−1
2

)
0

2π
n

4π
n

−2π
n

−2π
n

(n−1
2

)

Figure 2.6: The figure shows a circle of radius ρ = 1
2π/n , with odd n. In the continuum limit n → ∞

and the points on the circle, that are separated by a gap ε = 2π
n , move close and the spectrum become

continuous. Moreover the radius grows and any finite portion including 0 is indistinguishable from a
continuous straight line. An analogous argument holds for even n.
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p̂ and the position q̂ [48], and, in our case, of Âl and Êl.
The definition of the unitary comparator using the discrete Schwinger-Weyl group will
be useful to study the possibility of implementing a gauge theory in our model: this is
the topic of the next chapter.

Finally, we represent graphically in Fig. 2.7 the differences among the spectra of a
QLM, a Zn and a continuum model.

−n
2

+ 1

−n
2

−n
2
− 1

. . .

n
2

−n
2
− 1 −n

2
. . . n

2

0

(a)

(b)

(c)

Figure 2.7: Graphical representations of the electric field spectrum. (a) Ûl and V̂l belong to the
Schwinger-Weyl group and the electric field values can be represented as n points on a circle, since
the operators are unitary. (b) Representation of a QLM, where Ûl and V̂l are ladder operators. (c) Con-
tinuous model, the electric field values can be taken in R.
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Chapter 3

Zn gauge symmetry in lattice QED

In this chapter we present the implementation of a local Zn symmetry on the lattice QED
staggered Hamiltonian in (2 + 1)-dimensions, using the tools just learned in Chapt. 2.
We first implement the new gauge transformations on the kinetic part of our model, and
then we will convince ourself about the consistence of this new formalism on the whole
Hamiltonian, in particular we focus on the electric energy term. Then we will consider
the minimal but rich theory with n = 2, studying the gauge invariant configurations
of the lattice sites and, lastly, we generalize the gauge sector adding a parameter that
involves two phases in the theory: one magnetic confined and one deconfined.

3.1 Implementation of a Zn symmetry

We want to implement the new comparator and electric field in the finite dimensional
links’ model, so it is useful to recall the kinetic Hamiltonian (2.35), in order to study the
gauge transformations

Ĥk =
1

2a

∑
x,i

ηi(x)
[
χ̂†xÛi,xχ̂x+~i + h.c.

]
, (3.1)

where Ûi,x is the unitary comparator defined in the previous paragraph and together
with V̂i,x they satisfy (2.94), the change of links’ notation being straightforward. The
Hilbert space is finite dimensional for both links and sites and is given by the span of
the following basis {∏

x

|Ωx〉 ⊗
∏
x

|vi,x〉
}
, (3.2)
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where |Ωx〉 is the eigenstate of both χ̂x and χ̂†x, while |vi,x〉 is an electric field basis
element. The Hamiltonian (3.1) is again invariant under gauge transformations

χ̂x → ei
2π
n
αxχ̂x (3.3)

Ûi,x → ei
2π
n
αxÛi,xe

−i 2π
n
αx+~i (3.4)

with αx ∈ R; but, since we are dealing with a finite group, we cannot implement these
transformation by exponentiation of an analog of (2.38): in fact the Schwinger-Weyl
group is not a Lie group and we cannot use the Baker–Campbell–Hausdorff formula.
However, if we consider αx ∈ Z, we can implement the transformations (3.3)-(3.4) as
follows

χ̂x → ei
2π
n
αxχ̂

†
xχ̂xχ̂xe

−i 2π
n
αxχ̂

†
xχ̂x (3.5)

Ûi,x → (V̂ †i,x)
αx+~i(V̂i,x)

αxÛi,x(V̂
†
i,x)

αx(V̂i,x)
αx+~i . (3.6)

The transformations (3.6) turn into (3.4) (with αx ∈ Z) using (2.92), while (3.5) becomes
(3.3) since

ei
2π
n
αxχ̂

†
xχ̂x = 1̂ +

(
ei

2π
n
αx − 1

)
χ̂†xχ̂x (3.7)

and making use of the anti-commutation relations (2.25). The local transformation acting
on the Hamiltonian is the tensor product of (3.5) and (3.6), adding the staggerization
term with 1

2
[(−1)x1+x2+1 − 1]:

T̂ [αx] =
∏
y

T̂αyy =
∏
y

e
2πi
n
αyχ̂

†
yχ̂ye

2πi
n
αy

1
2

[(−1)y1+y2+1−1] ⊗
∏
i

(V̂ †i,y)
αy(V̂i,y−~i)

αy (3.8)

and the Hamiltonian transforms as

Ĥ → T̂ †ĤT̂ . (3.9)

The operator T̂x is the generator of a transformation Zn, since if we raise it by αx ∈ Z, we
obtain all the n elements of the group, with T̂ nx = 1̂. The gauge invariance is guaranteed
by [47]

[Ĥk, T̂x] = 0. (3.10)
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In this framework, the Hilbert subspace of physical gauge invariant states is determined
by a generalized Gauss’ law:

T̂x |Ψx〉 = |Ψx〉 , ∀x (3.11)

which translates into a condition on the eigenvalues nx, the fermionic occupation number,
and vl,k related to the physical states:

ei
2π
n

{
nx+ 1

2
[(−1)x1+x2+1−1]

}∏
i

v∗k,(i,x)vk,(i,x−~i) = 1. (3.12)

This equation allows us to understand how the physical states can be built: if an even
site x is empty, i.e. nx = 0, the eigenvalues of V̂ in the neighboring links must satisfy∏

i

v∗k,(i,x)vk,(i,x−~i) = ei
2π
n , (3.13)

while if nx = 1, the eigenvalues must be equal two by two. Instead, if an odd site x is
occupied, it follows that ∏

i

v∗k,(i,x)vk,(i,x−~i) = e−i
2π
n , (3.14)

while if it is empty the eigenvalues of V̂ are equal two by two.
In terms of the electric field, eq. (3.12) tells us that, since vk,(i,x) = ei

2π
n
ki,x ,

nx +
1

2
[(−1)x1+x2+1 − 1] = ∆x

∆x
mod n≡

∑
i

(
ki,x − ki,x−~i

) (3.15)

where, by definition, two integers (the l.h.s. and the r.h.s. of the last equation) are
congruent modulo n if their difference is an integer multiple of n. According to (2.95),
we choose for k the sets {−n/2, · · · , n/2−1} if n is even, while {−(n−1)/2, · · · , (n−1)/2}
if n is odd. From the first equation in (3.15) we conclude that ∆x can assume only three
values: (0,±1). By assuming that fermions on sites bring positive density electric charge,
there are three possible situations:

1. ∆x = 1: in this case we have negative parity and nx = 1, therefore∑
i

ki,x
mod n≡

∑
i

ki,x−~i + 1 (3.16)
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2. ∆x = 0: in this case we have positive parity and nx = 1 or negative parity and
nx = 0. It follows that ∑

i

ki,x
mod n≡

∑
i

ki,x−~i (3.17)

3. ∆x = −1: in this case we have positive parity and nx = 0 and∑
i

ki,x
mod n≡

∑
i

ki,x−~i − 1. (3.18)

Therefore it is possible to implement a gauge theory on a lattice with an n-dimensional
links’ Hilbert space and the group symmetry is Zn. The differences between T̂x in (3.8)
and Ĝx in (2.38) is in the operators which transform the Hamiltonian: in fact, in the
first case we have V̂i,x and the invariance is given by the relations (2.92), while in the
second case we deal with eiÊi,x and the symmetry is due to the commutation relations
(2.32). Finally, if we consider continuous electric field and vector potential we construct
a U(1) gauge theory, whereas if we deal with a discrete links’ space the local symmetry
group is Zn.

3.1.1 The electric field energy term

Here we consider how to implement the electric field energy term in the lattice two-
dimensional QED Hamiltonian. In the continuous field theory this term is given by

ĤE =
g2

2a

∑
l

Ê2
l . (3.19)

In a Zn theory we know that there is the correspondence Êl → V̂l = ei
2π
n
k̂l , therefore we

want to write an Hamiltonian whose electric energy term depends on V̂l and not on Êl.
The term (3.19) is an unbounded, positive operator which reaches its minimum value
when the electric field is zero on each link. A possible choice for the new term is

ĤV = − 1

2e2a4

∑
l

f(V̂l) (3.20)

where
f(V̂l)

def
= V̂l + V̂ †l . (3.21)
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Indeed, the new operators are good candidates to replace the electric field operators,
since they satisfy a number of properties, such as hermiticity, that makes the new object
a good observable, and gauge invariance. In fact, since V̂l and V̂ †l commute each other,
it follows that

ĤV → T̂ †xĤV T̂x = ĤV . (3.22)

The continuum limit is reached as follows (see eq.ns (2.101))

lim
n→∞

(V̂l + V̂ †l ) |vl,k〉 = 2 cos(El) |vl,k〉 . (3.23)

To be more precise, the argument of the cosine is ea2El, then when we make the con-
tinuum limit a → 0, we retrieve the term E2 of the continuous theory and it results

ĤV
n→∞−→ ĤE (3.24)

up to a constant energy shift term that can be omitted from the Hamiltonian. Another
proof that V̂l + V̂ †l is a good candidate to replace the electric field energy term comes
from the fact that, likewise Êl, its spectrum has a minimum in energy only when El = 0,
i.e. when cos(El) = 1, since there is a minus sign in front of (3.20). There are several
possibilities for the choice of f(V̂l), however not all those ones that have the correct
continuum limit have also a non-degenerate vacuum state; an example of such an operator
is well illustrated in [47].

3.2 The case n = 2

In this section we will focus on the discrete gauge lattice QED in 2 + 1 dimensions,
setting n = 2. We learned that, due to the use of staggered fermions method, there is
a split between even and odd sites: the first ones corresponds to negative energy states
and are related to antiparticles, while the second ones are referred to positive energy
states and therefore to particles. Since the four components of the fermion are staggered
on four sites organized around a plaquette (the "physical fermion") with side the lattice
spacing a, we can interpret the two even sites as fermions with negative energy, with a
non defined spin projection along a reference axis (see Subsect. 1.2.3). Analogously, the
two odd sites of the plaquette are fermions with positive energy.

We know, from Sect. 2.2, that the vacuum state is represented by occupied even
sites and empty odd sites. Following [13], the presence/absence of two fermions in two
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3.2. The case n = 2

odd/even sites on a plaquette can be interpreted by the presence of a quark/anti-quark.
Indeed, this is a toy model of a more complete non-Abelian SU(2) theory which describes
more realistically quarks and mesons. Therefore if we want to create a quark we have
to excite two odd sites organized on the diagonal of a plaquette. Clearly, in order to
obtain an anti-quark we have to excite the other two sites. A meson is a configuration
made up of a quark and an anti-quark. These fermionic configurations are better shown
in Fig. 3.1.
Since we are working with n = 2, there are two possible electric field states on a link,

i.e. two eigenstates of V̂l that we can label in this way (following (2.95))

|vl,−1〉 s.t. V̂l |vl,−1〉 = − |vl,−1〉 kl = −1

|vl,0〉 s.t. V̂l |vl,0〉 = |vl,0〉 kl = 0.
(3.25)

We pictorially interpret these states as configurations in which the electric field is oriented
to the left (kl = −1) or non-oriented (kl = 0). We can also use the "spheres’ picture"
in which |−〉l corresponds to kl = −1 and |0〉l to kl = 0. The Hilbert space associated

Vacuum Quark Antiquark

Meson Antimeson

empty even site
occupied even site
empty odd site

occupied odd site

Figure 3.1: Fermionic configurations on a plaquette. From left to right we have (in the upper side):
the vacuum state given by empty odd sites and occupied even sites, while quarks and anti-quarks are
obtained by all occupied and all empty sites, respectively. Finally, in the lower side there are a meson,
made up of a quark and an anti-quark and an anti-meson. The dashed lines means that electric field on
the links has to be implemented to define these configurations, as the anti-particles are obtained with a
charge conjugation, which involves translational and electric field’s shifts (see eq.ns (1.158)).
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to a site and the neighboring four links is, in principle, 2 × 24 = 32 dimensional, but,
due to Gauss’ law (3.12), the allowed configurations are fewer, as shown in Fig.s 3.2-3.3,
and the Hilbert space of a site and its neighboring links is 16 dimensional. We can
denote these states with

∣∣nx, {kl}l∈{x±i}〉, in which kl ∈ {0,−1}. The Hilbert space of N
neighbouring sites on a string, with open boundary conditions, can be constructed with
linear combinations of states having the tensor product form∣∣∣n(0,0), {kl}l∈{(0,0)±~i}

〉
⊗ · · · ⊗

∣∣∣n(M,N−M), {kl}l∈{(M,N−M)±~i}

〉
(3.26)

where the right/up electric field of a site must be equal to the left/down one of the
next site in a two-dimensional grid. The whole configuration of a path, even closed,
due to Gauss’ law, depends only on the presence/absence of fermions on all sites (2N

possibilities) and to the electric field of the sites (8 possibilities).
The complete definition of a quark/antiquark configuration needs the possibility of

having at least two opposite values of the electric field, because an antiquark is obtained

|0〉 = |v0〉
|−〉 = |v−1〉

Figure 3.2: The eight possible configurations to fulfill Gauss’ law (3.12) for an even site x with nx = 1
and an odd site y with ny = 0 for n=2. We notice that there are two extra configurations than those in
a QLM with s = 1

2 (see Fig. 2.3). The two extra states are represented here on the right of the figure,
and are responsible of the existence of short closed loops, as we will soon see.
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3.3. Phases in a Z2 LGT

Figure 3.3: The eight possible ways to satisfy Gauss’ law (3.12) and (3.13) for an even site x with nx = 0
and an odd site y with ny = 1 for n=2. Their number is much less than those in a QLM with s = 1

2 , as
we can see in Fig. 2.4.

by the charge conjugation (see (1.158)) of a quark, and vice versa. We can reach this by
taking, instead of a negative and a null electric field, two opposite values of kl, sacrificing
the possibility of having a null links’ flux (the ground state would be simply shifted).
However, we prefer to define these particles’ configurations in a more physical way, thus
considering the Z3 symmetry, which allows us to have a null and two opposite electric
fluxes; this is one of the objects of the last chapter, that is dedicated to the study of
an extended theory, which presents two interesting phases, a confined and a deconfined
one, and in which QED is retrieved with a particular choice of the parameters. The last
section of this chapter is dedicated to introduce these phases in Z2.

3.3 Phases in a Z2 LGT

The Z2 LGT just described has an important property, which emerges if we consider the
vacuum state at each site (i.e. the Dirac sea): this means that the possible states in odd
and even sites are the eight depicted in Fig. 3.2. Comparing these states with that of a
spin-1

2
zero-charge QLM (see Fig. 2.3), we notice that in the Z2 LGT there are two extra

configurations, isolated on the right of the Fig. 3.2. The two extra states are responsible
of the existence of short closed loops, like those in Fig. 3.4, where a pictorial comparison
with the spin-1

2
QLM is displayed. The different string pattern have deep consequences

on the physics of the models.
In this section, we present an excursus on a more general pure gauge Hamiltonian
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3.3. Phases in a Z2 LGT

Figure 3.4: (left)-A possible gauge invariant configuration in a Z2 LGT where short closed loops are
possible. (right)-In a spin- 12 QLM, due to the absence of the two extra states in Fig. 3.2, strings are
forced to close wrapping around the whole lattice, therefore their typical length exceeds that of the
linear lattice size. Blue lines are drawn as a guide to the eye to recognize the closed string wrapping
around the periodic boundaries of the lattice.

which presents two phases, a topological confined phase and a deconfined one. These
phases are the same of the ground state Hamiltonian of the Toric Code [49] and can be
found also for n > 2. We focus on the study of these possible phases in a Z2 LGT, which
will serve in the next chapter for the implementation of a future numerical analysis with
the DMRG (Density Matrix Renormalization Group) algorithm, a variational method
that enables us to study numerically our model, providing accurate informations about
the lowest part of the spectrum and various properties of the ground state.

As just mentioned, In a Z2 LGT there are two possible phases, a confined phase and
a deconfined phase. In the confined phase short loops abound, while long closed strings
are very rare and vice versa in the deconfined phase [9, 50]. A more general Hamiltonian
which describes the passage between these phases can be written adding a parameter h
in the following way

ĤZ2 = −
∑
�

Û� − h
∑
l

V̂l, (3.27)

which is a pure gauge Hamiltonian where Gauss’ law is codified in

Âx |φ〉
def
=

⊗
l∈{li}x

V̂l |φl〉 = |φ〉 ∀x, (3.28)

where Âx is the so-called star operator of a generic site x of the lattice L and
{li} ∈ {1, . . . , 4} is the set of all the links intersecting in x, and where V̂l ≡ σ̂1

l in the
potential vector basis (see Fig. 3.5). In the electric field basis we have to diagonalize σ̂1

l
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Âx
l1l3

l4

l2
Û�

l1

l3

l2l4

Figure 3.5: Example of how the star operator (red) and plaquette operator (blue) act.

so that:
V̂l = σ̂1

l = |0〉l 〈0|l − |−〉l 〈−|l . (3.29)

In this basis, all those states formed as tensor products of four eigenstates of σ̂1 with an
even number of |−〉 are eigenstates of Âx with eigenvalue +1, and thus gauge invariant.
The plaquette operator, renaming in counterclockwise direction the plaquette links from
1 to 4 starting from the bottom, is now

Û� = Ûl1 ⊗ Ûl2 ⊗ Û
†
l3
⊗ Û †l4 =

⊗
l∈{li}�

σ̂3
l =

⊗
l∈{li}�

(
|+〉l 〈−|l + |−〉l 〈+|l

)
. (3.30)

We notice that in eq. (3.27) there are no hermitian conjugated terms, since in a Z2 theory
both Û� and V̂l are hermitian, as we can easily see from the definitions we just gave. The
limit of pure gauge theory associated to the Z2 QED Hamiltonian is retrieved, up to a
constant, in the limit h = 1, in which there are the same factors in front of the electric
and magnetic terms.

3.3.1 The ground state

In order to identify the two phases, let us consider firstly the dynamics induced by the
Hamiltonian (3.27) when h = 0. Since, differently from a QLM, in a Z2 LGT two
plaquette operators sharing one link do commute, i.e. [Û�, Û�′ ] = 0, the ground state is
simultaneous eigenvector of all the Û�’s.
Considering the lattice formed by a single plaquette let us define the Hamiltonian

Ĥ0 = −Û� = −
⊗
l∈{li}�

σ̂3
l . (3.31)
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3.3. Phases in a Z2 LGT

The ground states are given by

∣∣φU0 〉 =
1√
2

(
|0 0 0 0〉+ |− − −−〉

)
∣∣ξU0 〉 =

1√
2

(
|− − 0 0〉+ |0 0−−〉

)
∣∣µU0 〉 =

1√
2

(
|0 −− 0〉+ |− 0 0 −〉

)
∣∣νU0 〉 =

1√
2

(
|−0− 0〉+ |0− 0 −〉

)
(3.32)

and the first excitation are∣∣φU1 〉 =
1√
2

(
|0 0 0 0〉 − |− − −−〉

)
∣∣ξU1 〉 =

1√
2

(
|− − 0 0〉 − |0 0−−〉

)
∣∣µU1 〉 =

1√
2

(
|0 −− 0〉 − |− 0 0 −〉

)
∣∣νU1 〉 =

1√
2

(
|−0− 0〉 − |0− 0 −〉

)
(3.33)

and we see that the energy gap between the states, that does not depend on the system
size, is

∆ = 2. (3.34)

In the limit h = 0 we can make some considerations about the system’s ground state.
Since, on a L × L torus, there are L2 star operators (corresponding to the number of
lattice sites) and L2 plaquette operators (the number of plaquettes), the ground state
fulfilling Gauss’ law is characterized by the constraints

Âx |φ〉 = |φ〉 , Û� |φ〉 = |φ〉 ∀x,� (3.35)

the first being the contraint due to the symmetry and holds always, while the second is
only for ground states. The star and plaquette operators fulfill⊗

x

Âx = 1̂
⊗
�

Û� = 1̂ (3.36)

and therefore there are 2L2 − 2 independent constraints in the space of 2L2 operators
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c2

c1

Figure 3.6: The non-contractible cuts c1 and c2 are the support of operators X̂1 and X̂2.

acting on qubit states. As a result, there are 22 = 4 linearly independent operators,
whose eigenstates build the ground-states subspace. In general, it can be shown that the
ground state is 4g-fold degenerate, with g the genus of the surface (for a torus g = 1).
Such a basis vectors are characterized by two topological numbers: we introduce the
operators

X̂1
def
=
⊗
l∈c1

σ̂1
l X̂2

def
=
⊗
l∈c2

σ̂1
l , (3.37)

where c1 and c2 are the two non-contractible cuts (i.e. wrapping around the whole lattice)
in Fig. 3.6. These operators does commute with each other and with the Hamiltonian
(this means a Z2×Z2 global symmetry) and cannot be expressed in terms of Âx and Û�.
The eigenstates of X̂1 and X̂2 are indexed by the pair (v1,v2) as

∣∣φ0
v1,v2

〉
and satisfy

X̂1

∣∣φ0
v1,v2

〉
= v1

∣∣φ0
v1,v2

〉
, X̂2

∣∣φ0
v1,v2

〉
= v2

∣∣φ0
v1,v2

〉
(3.38)

where v1, v2 = ±1. These eigenstates form a basis of the ground-state gauge invariant
subspace. We refer to {

∣∣φ0
+,+

〉
,
∣∣φ0

+,−
〉
,
∣∣φ0
−,+
〉
,
∣∣φ0
−,−
〉
} as the ground state of the four

topological sectors of the model, each labeled by (v1,v2). Note that in the case of a single
plaquette, we have 4 sites, 1 plaquette and 1 + 4 − 2 constraints: 1 is the plaquette
constraint, 4 due to the Z2 invariance in sites but with a single plaquette it is sufficient
to impose only 2 of that 4: this leaves only four possible ground states (see (3.32)). The
generalization to d dimensions can be found in [51]. Moreover the Z2 LGT in the limit
h = 0 can be viewed as a particular case of Kitaev’s Toric Code Hamiltonian and the
two vector spaces fulfill the relation VLGT ⊆ VTC , where [49]

VTC ' (C2)⊗2L2

(3.39)
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Figure 3.7: Closed loops in one plaquette (left) versus in one grid (right) where states (3.44) are possible.

where L is the lattice’s length in both directions, and

VLGT =

{
|φ〉 ∈ VTC ; Âx |φ〉 = |φ〉 , ∀x ∈ L

}
' (C2)⊗L

2+1. (3.40)

On the other hand, in the opposite limit h → ∞ in (3.27), we have, considering
initially one plaquette,

Ĥ∞ = −
∑
li

σ̂1
li
, (3.41)

whose ground state is a product state:∣∣φV0 〉 = |0 0 0 0〉 , (3.42)

and its first excitation (with gap ∆ = 8) is∣∣φV1 〉 = |− − −−〉 , (3.43)

which is a small closed loop. If we enlarge the space, there are more gauge invariant
excited states with a smaller energy gap than before, such as

∣∣φV1′〉 =


|0 0 0 −〉

|0 0−−〉

|0−− −〉

(3.44)

and the possible permutations. Their gaps in relation to the ground state are ∆ = 2, 4, 6,
respectively. These excited states allow the presence of closed loops larger than the single
plaquette (Fig. 3.7 is explanatory). From the above discussion it is easy to accept the
presence of a phase transition at a given hc between h = 0 and h → ∞, that separate

76



3.3. Phases in a Z2 LGT

the so-called topological-deconfined phase and the confined phase, respectively.

3.3.2 The non-local order parameter

The two phases can be characterized in an additional way, introducing the concept of
magnetic vortex. From (3.13)-(3.14) for n = 2, we say that a state |Ψx〉 contains an
electric charge if

Âx |Ψx〉 = − |Ψx〉 . (3.45)

Following the same reasoning, since the ground state is characterized by

Û� |φ0〉 = |φ0〉 , (3.46)

we can morally define a state |φ〉 containing a magnetic vortex (or magnetic monopole)
if

Û� |φ〉 = − |φ〉 . (3.47)

A space with the conditions (3.46) and (3.28) is said protected [5] and exhibits a Z2×Z2

symmetry, corresponding to conservation of electric charges and magnetic vortexes.
Acting with σ̂3

j on the ground state
∣∣φV0 〉 for h → ∞, we produce an excited state with

a pair of electric charges sitting on the two sites connected by the link j. In fact, from
the properties of the Pauli matrices, it holds

Âx
(
σ̂3
j |φ0〉

)
= −σ̂3

j Âx |φ0〉 = −
(
σ̂3
j |φ0〉

)
. (3.48)

In the same way, acting with σ̂1
j on a ground state |φ0〉, we produce an excited state with

a pair of magnetic vortices sitting on the two plaquettes sharing the link j:

Û�

(
σ̂1
j |φ0〉

)
= −σ̂1

j Û� |φ0〉 = −
(
σ̂1
j |φ0〉

)
. (3.49)

The deconfined phase is characterized by the presence of pairs of magnetic vortices
created locally which can be separated an arbitrary distance, costing only a finite energy
penalty. Mathematically, we can further define this phase introducing the string operator

Ĉ
def
=
⊗
j∈C

σ̂1
j (3.50)
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�1

C

�0

Figure 3.8: The cut C connects two plaquettes �0 and �1 that are as far apart in the lattice as possible.

where C is a possible string, like in Fig. 3.8. Since Ĉ anticommutes with both Û�0 and
Û�1 , the extremities of the string C , and commutes with the other plaquette terms, this
operator acting on the ground state

∣∣φU0 〉 for h = 0 produces a state with a pair of
magnetic vortices on the plaquettes �0 and �1. This state is orthogonal to the ground
state and therefore, for h = 0, the ground-state expectation value of Ĉ vanishes, i.e.

〈Ĉ〉 def=
〈
φU0
∣∣ Ĉ ∣∣φU0 〉 = 0. (3.51)

In the thermodynamic limit (i.e. for large L), 〈Ĉ〉 vanishes for the whole deconfined
phase and it is used as a non-local order parameter.
The deconfined phase is a topologically ordered phase with four nearly degenerate ground
states, one for each sector and the (+,+) sector has the smallest energy with energy
separation ∆ from the ground states in the other sectors scaling as

∆ ∝ e−L/ξ (3.52)

for some ξ > 0 [5].
For h → ∞, the model is in a ground state where the spins are polarized in the 1̂

direction and is characterized by a positive value of the order parameter:

〈Ĉ〉 > 0 (3.53)

which sanctions that we are in a different phase, the confined phase. The spin-polarized
phase can be interpreted as a Bose condensate of magnetic vortices/monopoles.

It can be shown [49, 52] that the phase transition is at h ∼ 0.3 and the model is in
the 3D Ising universality class. In particular, the gauge/plaquette model just described
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is dual to the 2D quantum Ising model with transverse field [53]

ĤI = −
∑
〈x∗y∗〉

µ̂1
x∗ ⊗ µ̂1

y∗ − h
∑
x∗

µ̂3
x∗ (3.54)

where {x∗} is the set of the dual lattice points. The value of the spontaneous magneti-
zation is

m1 ≡
1

L2

∑
x∗

〈µ̂1
x∗〉. (3.55)

The duality transformations can be found in Appendix B. This is useful to interpret the
meaning of the non-local order parameter 〈Ĉ〉 by noting that (3.50) can be written as

Ĉ = σ̂1
�0
σ̂1
�1
. (3.56)

In the thermodynamic limit 〈σ̂1
�0
σ̂1
�1
〉 is expected to factorize into 〈σ̂1

�0
〉〈σ̂1

�1
〉 since the

two plaquettes are far apart, and

〈Ĉ〉 = 〈σ̂1
�0
σ̂1
�1
〉 L→∞−→ 〈σ̂1

�0
〉〈σ̂1

�1
〉 = m2

x. (3.57)

Therefore we can interpret 〈Ĉ〉 as the square of the expectation value of a creation
operator of a single magnetic vortex.

Alternatively, the deconfined phase (i.e. h = 0) could also be defined by the scaling
of the expectation value of Wilson loops [54]. By definition, for every contractible loop
` on the lattice (see Fig. 3.9), a Wilson loop operator is

Ẑ
def
=
⊗
l∈`

σ̂3
l . (3.58)

Operator Ẑ is the product of Û� operators for all plaquettes contained in `. Given any
ground state for h = 0, the expectation value of this operator is

〈Ẑ〉 = 1. (3.59)

More generally, it can be shown [55] that in the deconfined phase Wilson loops obey a
perimeter law, s.t.

〈Ẑ〉 ' e−αp(`), (3.60)

where p(`) is the perimeter of the loop `, and α ≥ 0 vanishes for h = 0.
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`

Figure 3.9: Example of a loop with perimeter p(`) = 8 which encloses an area of four plaquettes,
i.e. a(`) = 4.

The confined phase is instead characterized by an area law, which means

〈Ẑ〉 ' e−βa(`), (3.61)

where a(`) is the area enclosed in the loop `. for h→∞ it holds that β →∞, therefore
〈Ẑ〉 = 0.

What about the ground state of the total Hamiltonian? We rewrite it for convenience:

ĤZ2 = −
∑
�

⊗
l∈{li}�

σ̂3
l − h

∑
l

σ̂1
l , (3.62)

which corresponds to add a magnetic field in the 1 direction in the Hamiltonian (3.31).
Since also

∑
l σ̂

1
l commutes with the operators X̂1 and X̂2 in (3.37), the total Hamiltonian

still decomposes into four topological sectors, but the ground state of any of the sectors
may no longer fulfill the plaquette constraints, indicating thus the presence of magnetic
vortices. In fact, since the Z2 Hamiltonian is dual to the 2D Quantum Ising model, its
ground state is 1-fold degenerate and two of the sectors contain excited states.

3.3.3 Abelian anyons

Let us study the possibility of creating particles in this model. We already studied the
possibility of creating a magnetic vortex when Û� |φ〉 = − |φ〉 and we also know that a
particle is created in x when Âx |φx〉 = − |φx〉. Because of the relations⊗

x

Âx = 1̂
⊗
�

Û� = 1̂ (3.63)
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x1
S

x0

Figure 3.10: The string S connects two sites x0 and x1 that are as far apart in the lattice as possible.

it is impossible to create a single particle or vortex, however it is possible to create a
two-particle state introducing the string operator (see Fig. 3.10)

Ŝ
def
=
⊗
j∈S

σ̂3
j (3.64)

and defining the two-particle excited state as

|φ(S )〉 def= Ŝ |φ0〉 , (3.65)

where |φ0〉 is a ground state (we already know that a two-magnetic vortex state is created
by Ĉ and we define it as |φ(C )〉 def

= Ĉ |φ0〉). Operator σ̂3
j produces a state with a

pair of electric charges sitting on the two sites connected by link j. It is an easy task
to convince ourselves that a site x at the begin or end of the string S is in a state
s.t. Âx |φx(C )〉 = − |φx(C )〉. Therefore, looking also at Fig. 3.8 we see that particles, or
electric charges, live on the sites, while magnetic vortexes on the faces (the plaquettes).
The property of Ĉ and Ŝ is that they commute with all Âx and Û� except for those at
the endpoints of their corresponding string. It is interesting to note that the particles
and magnetic vortexes states depend only on the homotopy class of the strings, while
the operators that generate them depend on the strings themselves.
We can connect these states by strings in an arbitrary way. Each configuration define
a 4-dimensional physical subspace (that depend on the topological numbers v1 and v2)
in the global Hilbert space. This subspace is independent of the strings but a vector
Ŝ1 · · · Ŝn |φ0〉 depends on S1, . . . ,Sn. Indeed, if we draw these strings in a topologically
different way, we find another vector in the same 4-dimensional subspace. Therefore, the
strings are unphysical but we cannot exclude them in our formalism.
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C

S

Figure 3.11: The figure shows a magnetic vortex moving around a particle (the path is colored in red).
The strings S and C intersect in the point that causes the anti-commutation of the respective operators
Ŝ and Ĉ. The squares represent the magnetic vortex and the circles are particles.

It is interesting to see what happens when a particle or a magnetic vortex move
around the torus. Moving a particle along a path around the lattice is equivalent to
apply the Wilson loop operator (3.58) when the loop encircles the torus. Thus, we can
operate on the ground state and create a particle pair with Ŝ and move one of the
particles around the torus until it annihilates with the stationary one. This is a simple
realization of a so-called quantum gate.

We can also see what happens if we move particles/magnetic vortexes around each
other. Moving a magnetic vortex around a particle we find (see Fig. 3.11)

|φin〉 = Ŝ |φ0〉
|φfin〉 = ĈŜ |φ0〉 = − |φin〉

(3.66)

indeed Ŝ and Ĉ anti-commute and Ĉ |φ0〉 = |φ0〉. Note that the global wave function (the
state) acquires a phase factor −1. It is quite unusual for fermions and bosons acquire
this phase in such a process, which characterizes instead the so-called Abelian anyons.
They are generally defined as particles which realize non-trivial one-dimensional repre-
sentation of the braid group. In our case, the phase change can also be attributed to the
Aharonov–Bohm effect [56], since it does not occur if we choose particles of the same
type. Abelian anyons exist in real solid state systems and are related to the fractional
quantum Hall effect [57]; there, they have fractional electric charge 1/q and when one
particle moves around the other, it acquires a phase e

2πi
q .

In the next chapter we adapt the considerations about the Z2 model for the Z3

symmetry, evidencing similarities and differences and finally we will set up the Z2 model
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for a future numerical analysis, also listing the gauge invariant state in Z3 for a future
implementation.
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Chapter 4

Z3 symmetry

The most interesting minimal scenario from the physical point of view is surely the case
when n = 3, in which we can have positive, negative and null electric field’s values.
The main difference with respect to the Z2 theory is that the group algebra of Z3 has
dimension 3 and not all the elements of the group are the inverse of themselves, therefore
we have to make attention to the orientation of the links around each lattice site. This
means that we have to be careful when computing the gauge invariant states, since the
backward and forward lattice links have to follow the relations (3.16), (3.17) and (3.18).
In the potential vector basis the operator V̂l rotates cyclically the basis elements, therefore
a possible representation for V̂l is

V̂l =

0 0 1

1 0 0

0 1 0

 . (4.1)

As done previously, we can diagonalize this matrix and pass to the electric basis
{|vl,0〉 , |vl,1〉 , |vl,−1〉}, in which

V̂l =

e
2πi
3 0 0

0 1 0

0 0 e−
2πi
3

 (4.2)

with

|vl,1〉 =

1

0

0

 , |vl,0〉 =

0

1

0

 , |vl,−1〉 =

0

0

1

 (4.3)
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and (see eq. (2.95))

|vl,−1〉 s.t. V̂l |vl,−1〉 = e−
2πi
3 |vl,−1〉 kl = −1

|vl,0〉 s.t. V̂l |vl,0〉 = |vl,0〉 kl = 0

|vl,+1〉 s.t. V̂l |vl,+1〉 = e
2πi
3 |vl,+1〉 kl = +1,

(4.4)

while now the Ûl operators rotate cyclically this basis.
In order to find all possible gauge invariant states as in the previous case, we use eq.ns
(3.16), (3.17) and (3.18) to pictorially represent these configurations. The Hilbert space
associated to each site and the neighboring four links is, in principle, 2 × 34 = 162 di-
mensional, but, due to Gauss’ law, the allowed configurations decrease in number, as
shown in Appendix C, and the Hilbert space of a site and its neighboring links is 53

dimensional.
In a Z3 model it is also possible to characterize better the plaquettes’ states in order to
give a more realistic interpretation of the antiparticles: this because we have available
three electric field values, whose one null and two opposites, thus the charge conjugation
is always possible. Indeed, in the Z2 there were just two values and we had to choose
between one null and one non null value or two opposites, imposing a background field’s
shift φ s.t. El =

√
π(kl + φ) (see eq. (2.101)).

At the end of this chapter, we will implement the Z2 model for a numerical analysis using
plaquettes on a ladder, since it is sufficient to characterize our system and, computa-
tionally speaking, it is very hard to numerically describe a system with so many degrees
of freedom. Even more so this argument applies to Z3: indeed suffices it to think that
if we count all possible Z3 invariant plaquettes in absence of particles, their number is
6561. Instead, a plaquette on a ladder has "only" 81 possible configurations, determined
by the 34 values that the electric field can take on the plaquette. The possible configu-
rations are listed in Appendix D. In Fig. 4.1 we give an example of quark-antiquark and
meson-antimeson configurations.

4.1 Phases in a Z3 LGT

Here we introduce how it is possible to extend the lattice QED Hamiltonian to a more
general, although without particles, Z3 lattice gauge theory, adding the parameter h as
already done in Sect. 3.3. We have to keep in mind that now the operators Û� and V̂l
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C

C

(a)

(b)

(c)

(d)

Quark

Antiquark

Meson

Antimeson

empty even site
occupied even site
empty odd site

occupied odd site

Figure 4.1: In figure are shown four examples of particles, encircled in a dashed line, in a Dirac sea. In
particular, (a) shows a quark, (b) the antiquark obtained by (a) through the charge conjugation (1.158),
(c) represents a meson and (d) its respective antimeson. Arrows pointing to the right and up correspond
to positive electric field’s values, while arrows pointing to the left and down correspond to negative ones.
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are no more hermitian, and therefore the Hamiltonian has to look like

ĤZ3 = −1

2

∑
�

Û� −
1

2
h
∑
l

V̂l + h.c. (4.5)

Denoting the basis, for a better reading, with {|−〉l , |0〉l , |+〉l}, corresponding respec-
tively to the previous {|vl,−1〉 , |vl,0〉 , |vl,+1〉} in (4.4), in the electric field basis it follows
that

V̂l = |0〉l 〈0|l + e
2πi
3 |+〉l 〈+|l + e−

2πi
3 |−〉l 〈−|l (4.6)

and

U� = Ûl1 ⊗ Ûl2 ⊗ Û
†
l3
⊗ Û †l4 =

⊗
l∈{li=1,2}

(
|+〉l 〈0|l + |0〉l 〈−|l + |−〉l 〈+|l

)
⊗

m∈{li=3,4}

(
|+〉l 〈0|m + |0〉l 〈−|m + |−〉l 〈+|m

)† (4.7)

with the links oriented as in Fig. 3.5. Since the operator V̂l is no more hermitian as in
Z2 case, we have to modify the star operator in

Âx =
⊗

l∈{li=1,2}

V̂l
⊗

m∈{li=3,4}

V̂ †m (4.8)

with the standard denomination of links (see Fig. 3.5).
As in the previous case, this model is characterized by two phases, one confined and

one deconfined. The only difference, looking at the 27 vacuum gauge invariant states in
Appendix C, is that the confined phase is made of short oriented loops. This can be
noted by looking at the ground states in the two limits h = 0 and h → ∞ of the LGT
Hamiltonian.

Considering h = 0 and the lattice formed by a single plaquette, the Hamiltonian
reads

Ĥ0 = −1

2
Û� + h.c. (4.9)

It is easy to realize that the eigenvalues of Ĥ0 are −1 or +1/2 and its ground state on a
single plaquette is given by

∣∣φU0 〉 =
1√
3

(|0 0 0 0〉+ |+ +−−〉+ |− −++〉) (4.10)

and note that the sum is over three states, the cardinality of the group. Its excited states
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are ∣∣φU1′〉 =
1√
3

(|0 0 0 0〉+ e
2πi
3 |+ +−−〉+ e−

2πi
3 |− −++〉),∣∣φU1′′〉 =

1√
2

(|+ +−−〉 − |0 0 0 0〉),∣∣φU1′′′〉 =
1√
2

(|− −++〉 − |0 0 0 0〉)

(4.11)

and the gap is ∆ = 3/2, that is smaller than in the Z2 case (where ∆ = 2).
Since each link is a three-dimensional state, with an analogous argument as in Sect. 3.3.1,
we can argue that there are 32 = 9 linearly independent ground states. We can adapt
the operators X̂1 and X̂2 to this model defining

Ŵ1
def
=
⊗
l∈c1

V̂l Ŵ2
def
=
⊗
l∈c2

V̂l. (4.12)

Again, they commute with the Hamiltonian and cannot be expressed in terms of Û� and
the star operator. Therefore these share the same eigenstates of the Hamiltonian with
eigenvalues

Ŵ1

∣∣φ0
w1,w2

〉
= v1

∣∣φ0
w1,w2

〉
, Ŵ2

∣∣φ0
w1,w2

〉
= v2

∣∣φ0
w1,w2

〉
(4.13)

with w1, w2 = 1, e
2πi
3 , e−

2πi
3 . These eigenstates form a basis of the ground state subspace

and we label each topological sector with the multi-index (w1, w2). Note that in the
case of a single plaquette there are as much variables than constraints and therefore the
ground state is one-dimensional. Indeed, an extra constraint arises from the fact that
the links connected to a site (that are 2) are less than the cardinality of the group: this
means that on the plaquette the sum of the electric field on links must be zero.

Studying the opposite limit with h→∞, the Hamiltonian of a single plaquette is

Ĥ∞ = −1

2

∑
li

V̂li + h.c. (4.14)

where the sum is over the links of a plaquette (see Fig (3.5)). Its ground state is given
by

∣∣φV0 〉 = |0 0 0 0〉 (4.15)
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∣∣φV1 〉 ∣∣φV1′〉

Figure 4.2: The orientation of the two excited states of the single-plaquette ground state in (4.16).

and its first excited states are ∣∣φV1 〉 = |− −++〉 ,∣∣φV1′〉 = |+ +−−〉 ,
(4.16)

with energy gap ∆ = 6, smaller than the Z2 case, where it was ∆ = 8. These states
correspond to oriented closed loops, as we can see in Fig. 4.2. Enlarging the space to a
lattice with more than one plaquette, some less-gapped extra-excited states appear, such
as

∣∣φV1′′〉 =



|+ 0 0 0〉 , ∆ = 3/2

|− 0 0 0〉 , ∆ = 3/2

|+ + 0 0〉 , ∆ = 3

|− − 0 0〉 , ∆ = 3

|+ + + 0〉 , ∆ = 9/2

|− − − 0〉 , ∆ = 9/2

|+ +− 0〉 , ∆ = 9/2

|− −+ 0〉 , ∆ = 9/2

(4.17)

and the possible permutations. Their gaps in relation to the ground state are smaller
than the closed oriented loops in (4.16) and grow of 3/2 every time we substitute one
0 with one + or −. An explanatory example of an oriented loop on a grid is shown in
Fig. 4.3.
Therefore, also in the Z3 model there is a deconfined and a confined phase, respectively
when h = 0 and h→∞.

4.1.1 The non-local order parameter

As just learned, it seems that there are two possible phases also in the Z3 model. Then
what is the order parameter of such a model? We, knowing that of the previous model,
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try to retrace the same track. Let us start writing the commutation relations between
V̂l and Ûl:

ÛlV̂l = e
2πi
3 V̂lÛl

ÛlV̂
†
l = e−

2πi
3 V̂ †l Ûl

Û †l V̂l = e−
2πi
3 V̂lÛ

†
l

Û †l V̂
†
l = e

2πi
3 V̂ †l Û

†
l .

(4.18)

The gauge condition with the prescription (4.8) is unaltered and we say that a particle
is created in a lattice site x if

Âx |φ〉 = e±
2πi
3 |φ〉 , (4.19)

where the positive phase produces a particle, while the negative an antiparticle. The
state |φ〉 can be created by applying the operator Ûl or Û †l on the ground state, which
produce a particle/antiparticle pair on the sites x and s connected by the link l (see
Fig. 4.4), since

Âx(Ûl |φ0〉) = e±
2πi
3 (Ûl |φ0〉)

Âs(Ûl |φ0〉) = e∓
2πi
3 (Ûl |φ0〉).

(4.20)

The same argument can be applied for magnetic vortices and we say that a magnetic
vortex is created on a plaquette state |φ〉 if

Û� |φ〉 = e±
2πi
3 |φ〉 , (4.21)

|++ 0 0〉

|0 0− 0〉|+ 0 0 −〉

Figure 4.3: An example of an oriented loop on a grid, with the states in (4.17), some of them also
written in the respective plaquettes.
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lx s(a) (b)
�0

�1

Figure 4.4: (a) Example of two adjacent sites connected by a link l on which Ûl creates a particle/an-
tiparticle pair (the position of the type of particle depends on the position of l, in this case x contains a
particle while s an antiparticle). (b) Example of two adjacent plaquettes that share the link l on which
V̂l act (�0 contains a positive magnetic vortex while �1 a negative one).

where the phase can be interpreted as a sort of direction of the magnetic vortex, clockwise/left-
handed (−) or counterclockwise/right-handed (+). Such a state can be constructed from
the ground state |φ0〉 applying the operator V̂l or V̂ †l which produce a couple of magnetic
vortices with opposite direction on the plaquettes with the link l in common. Indeed

Û�0(V̂l |φ〉) = e±
2πi
3 (V̂l |φ〉)

Û�1(V̂l |φ〉) = e∓
2πi
3 (V̂l |φ〉).

(4.22)

We already argued that the deconfined phase (with h = 0) is characterized by the
presence of pairs of magnetic vortices created locally, which can be separated an arbitrary
distance. To characterize this phase, we can introduce a new string operator

F̂
def
=

⊗
l∈ ~F

l∈{li=1∨2}�

V̂l
⊗
m∈ ~F

m∈{li=3∨4}�

V̂ †m, (4.23)

where ~F is an oriented string and the notation means that, starting from the first
plaquette �0, as in Fig. 4.5, we have V̂l every time the link l is the link 1 or 2 of the
plaquette in which the string is, following the convention in the right of Fig. 3.5, while
we multiply for V̂ †m every time the link m is the number 3 or 4. With this definition, F̂
anticommutes with Û�0 and Û�1 with the rules in (4.18), while commutes with the other
plaquette operators. Therefore, this string operator produces always one left-handed
and one right-handed vortex at the extremities of the string and the position of them
depends on the orientation and the topology of such string.
We can use this operator as the non-locaI parameter of the theory: in the deconfined
phase (with h = 0), when it acts on a ground state |φ〉0, the excited state with magnetic
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~F
�1

�0

Figure 4.5: The figure shows one possible pattern for the oriented string ~F . Here, taken a ground state
|φ0〉, the state

∣∣∣φ( ~F )
〉
= F̂ |φ0〉 presents two magnetic vortices (�0 has a right-handed vortex, while

�1 left-handed).

vortices produced is orthogonal to the ground state, i.e.

〈F̂ 〉 = 0. (4.24)

For h → ∞, the model is in a ground state with spins aligned to the 1̂ direction and it
is characterized by a positive value of the order parameter

〈F̂ 〉 > 0, (4.25)

this tells us that we are in the confined phase. Alternatively, using the definition of
Wilson loops, we can characterize these phases without altering the definition (3.58).

4.2 The string breaking mechanism

Studying the possible ground states on varying h we learned that the general ground
state is highly non-trivial, since not describable as tensor product of plaquettes’ states
because of the shared links. We also know that the eigenvectors of Ĥ are the same of
all Û� because they commute. Therefore a state like that depicted in Fig. 3.3 is possible
only when h → ∞ and the initial model can be treated essentially as a QED model of
a (1 + 1)-dimensional system, because for h = 0 we have a non-trivial superposition of
possible gauge invariant states.

The aim of this paragraph is to use the notions assimilated for a pure gauge Z3 LGT
on the staggered Hamiltonian of the first chapter. It is useful to recall the mentioned
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Quark Antiquark

Meson Antimeson

(a)

(b)

Figure 4.6: (a) System with a quark and an antiquark on a ladder, with vacuum elsewhere. (b) A
meson-antimeson pair, with vacuum elsewhere.

Hamiltonian with the implementation (3.20)-(3.21)

ĤQED =
g2

2a
Ŵ , Ŵ = Ŵ0 + yŴ1 + y2Ŵ2 (4.26)

with

Ŵ0 = Ŵµ = µ
∑
x

(−1)x1+x2+1χ̂†x χ̂x

Ŵ1 =
∑
x,i

ηi(x)
[
χ̂†xûi,xχ̂x+~i + h.c.

]
Ŵ2 = −

∑
�

(
Û� + Û †�

)
−
∑
l

(V̂l + V̂ †l )

and
y = 1/g2, g2 = e2a, µ =

2m

e2
.

Let us start by neglecting the magnetic field term Ŵ2 and the kinetic term and noticing
that the ground-state, as said over and over again, is built with occupied even sites and
empty odd sites, with null electric field on each link.
Now let us add a quark and an anti-quark on this Dirac sea. In Fig. 4.6 it is represented
such a situation on a ladder, even if in what follows we consider an L × L system. We
see that the quark-antiquark pair generates strings of electric flux. In the above figure
there are 4 plaquettes which contain a non null electric flux, these Z3 invariant states
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can be numbered and are listed in Appendix D. We say that the length of the string is
l = 6, because there are six links on which there is a non null electric field. The energy
of such string-state is

Es(l) = E0 + 4µ+ 3
l

2ag2

E0 = −µ
2
L2 − 2

L2

ag2

(4.27)

where L2 is the volume of the system. The question is: increasing the length of the
string, it is more energetically convenient to have a long string of electric flux or creating
e meson-antimeson pair? If the second, what is the critical length lc at which such string
breaking happens? The meson-antimeson state in Fig. 4.6 has energy

Em = E0 + 8µ+ 6
1

ag2
. (4.28)

In static terms, we can determine the string length lc at which string breaking happens,
equating the last expressions in the following way

Es(lc) = Em ⇒ lc =
8µ

3
ag2 + 4. (4.29)

Therefore, if we want to simulate the string breaking process, we have to tune µ and g
in a way that lc results smaller than the length L. This result is essentially the same of
the one-dimensional case, but since the possible configuration of the particles are many
more, there is also more variability on how the strings can break.

What happens if we switch on the magnetic field energy? A generic state cannot be
written as a product state but we know that if a particle/antiparticle is present on a site
x, then condition (4.19) is satisfied. To create a state with a particle/antiparticle pair
we define the following string operator

Ĝ
def
=

⊗
l∈ ~G

l∈{li=1∨2}+

Ûl
⊗
m∈ ~G

m∈{li=3∨4}+

Û †m, (4.30)

where ~G is an oriented string and this time such definition means that, starting from
the site x, as in Fig. 4.7, we have Ûl every time the link l is the link 1 or 2 of the cross
intersecting in the site in which the string is passing trough, following for the enumeration
the convention on the left of Fig. 3.5; instead, we multiply for Û †m every time the link m
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is the number 3 or 4. In this way, such operator produces a particle and an antiparticle
at its extremities, depending on its orientation and topology.

In our model, antiparticles stay on even sites while particles on odd ones, and a quark
is created when two odd sites on the primary diagonal of a plaquette are excited while we
have an antiquark when two even sites on the primary diagonal are excited. Such a state
can be created when the operator (4.30) is applied two times on the above-mentioned
sites. We identify such state as ∣∣∣φ( ~G1, ~G2)

〉
= Ĝ1Ĝ2 |φ0〉 (4.31)

and its energy is

Es = E0 + 4µ+
1

2ag2

(
2l − le

2πi
3 − le−

2πi
3

)
= E0 + 4µ+ 3

l

2ag2

E0 = −µ
2
L2 − f(L2)

(4.32)

since L2 is the number of sites and l the sum of strings’ lengths (f(L2) is the electric
energy). Now we can ask: is there a critical length lc at which the string breaks? Is a
meson-antimeson pair created? Since we are not able to define a string operator that
creates a two-particle or two-antiparticle pairs, at a certain length we expect that the
strings break and a couple meson-antimeson appear (see Fig. 4.8-(b)). The energy of
such state is

Em = E0 + 8µ+ 12
1

2ag2
. (4.33)

~G

x

s

Figure 4.7: The figure shows one possible pattern for the oriented string ~G . Here, taken a ground state
|φ0〉, the state

∣∣∣φ( ~G )
〉
= Ĝ |φ0〉 presents a particle in x (in orange) and an antiparticle in s (in cyan).
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~G2

~G1

Q

AQ

(a) (b)

M

AM

Figure 4.8: (a) The figure shows two possible patterns for the oriented strings ~G1 and ~G2. Here, taken
a ground state |φ0〉, the state

∣∣∣φ( ~G1, ~G2)
〉
= Ĝ1Ĝ2 |φ0〉 presents a quark (Q) and an antiquark (AQ).

In principle the strings can also intersect, but we take as example the most simple patterns. (b) After
string breaking, we have a meson-antimeson pair.

Therefore the length lc at which the string breaks is

Es(lc) = Em ⇒ lc =
8

3
ag2µ+ 8, (4.34)

that is the same as before. Note that the cases considered are nothing but the ones with
h→∞ and finite h, respectively, and we found that with the appropriate modifications
the theory is unchanged. If we reintroduce the parameter h, we would find

lc =
4µag2

3h
+ 2, (4.35)

which means that for h → 0 the critical length is large, with the possibility of having
long flux electric strings, while for h → ∞ is very small. We say that the phase with a
large critical length is electrical deconfined, while the other is confined since mesons can
exist isolated. We can also define the string tension

Ts
def
= lim

l→∞

Es(l)− Em
l

(4.36)

that reduces essentially to a ratio h/l and, for l → ∞ and h → 0 the tension vanishes,
which means that it is not expensive to have long flux strings, while in the opposite case
h and l compete and the strings are shorter.
Therefore for large h we are in a phase of electric and magnetic confinement, while in
the opposite case we are in a deconfined theory. It would be interesting to study the
discontinuities of Ts (or of its derivatives) to see the transition point of the electric phase
in order to compare with that magnetic: this would tell us if the theory presents two (if
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the transition points coincide) or three phases.

4.3 Implementation for a numerical analysis in Z2

In this section we analyze the discrete Z2 pure gauge model, starting from an Hilbert
space made of physical invariant states and their superpositions, then we will decompose
the Hamiltonian in a form which is computable for DMRG algorithm to study the ground
states and the relevant quantities (such as the order parameter and the energy). This
approach can be extend also to the Z3 model.

4.3.1 Hamiltonian decomposition

Let us write the Hamiltonian which we want to implement:

Ĥ = −1

2

∑
l

Ê2
l − h

∑
�

Û� (4.37)

where we used the electric field operator instead of V̂ for simplicity, imposing the con-
stants in front of the QED Hamiltonian equal to 1, except for h, the parameter that
characterizes the phases.
The system we want to analyze is a ladder and not a complete torus: this choice is
for computation capability and because we think that describe the system on a ladder
is sufficient to obtain the quantities of interest, since the fundamental building blocks,
i.e. links and plaquettes,are present also in the ladder.

The Hamiltonian is written as a sum over lattice links and plaquettes. We can group
the sites four by four (two even and two odd) in a square and rewrite it as a sum over
an index α that counts these squares (see Fig. 4.9)

Ĥ = −1

2

[∑
α

(Ê2
α−1,O,1;α,E,1 + Ê2

α−1,E,2;α,O,2) +
∑
i,j

Ê2
α,E,i;α,O,j

]
− h

∑
α

(Ûα;α + Ûα;α−1)

(4.38)
where O and E means "odd" and "even" respectively, i = 1, 2 is an index of the chain
of the lattice site on the ladder (lower or upper). In this way, for example, Ê2

α−1,O,1;α,E,1

specifies the electric energy on the link between the odd site in the chain 1 in the plaquette
α − 1 and the even site in the chain 1 in the plaquette α. The operator Ûα;α−1 is the
plaquette operator between two groups and Ûα;α is the same operator in the same group.
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Ûα−1;α−1

α− 1

Ûα;α

α

Ûα;α−1

E O

EO

α

Êα,E,1;α,O,1

Êα,E,1;α,O,2 Êα,E,2;α,O,1

Êα,E,2;α,O,2

Figure 4.9: The figure shows how the sites are grouped and how acts the electric and plaquette operator
terms.

Let us explain the single terms. The first electric term correspond to the energy of the
links in the lower chain between two squares α and α − 1, while the second counts the
same quantity but in the upper chain. The last electric term instead counts the links
in the plaquette α. The first magnetic term counts the energy internal to the group α
while the second, as mentioned, is related to the energy in the plaquettes between two
groups.
Our goal is to write any term in the sums as a tensor product of operators defined on
Hα⊗Hα+1, that is the tensor product of Hilbert spaces of the groups α and α+ 1, using
the ordered 16-dimensional basis of Fig. 4.10.
In particular, each state of the basis is uniquely fixed by the 4 links internal to the
plaquette, therefore we can label each state with the electric state of the plaquette and
the basis can be written as

Figure 4.10: The figure shows the ordered basis of our local Hilbert space Hα.
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{|φ〉} =



|0− 0−〉
|−0− 0〉
|0−−−〉
|−0 0 0〉
|− − 0−〉
|0 0− 0〉
|0 0 0 0〉
|− − −−〉
|0− 0 0〉
|−0−−〉
|0−−0〉
|−0 0−〉
|− − 0 0〉
|0−−0〉
|− − 0−〉
|0 0− 0〉



(4.39)

where we followed the ordered basis in Fig. 4.10 with the orientation of the plaquette’s
links given by the convention in Fig.3.5.

• Electric field term: if we consider the left links and the plaquette links of the group
α, this term can be written as

1

2
(E2

1,2 + E2
3)α ⊗ Iα+1 (4.40)

provided that a term which represents the configurations of the right links of the
last group must be added. This last term has the form

1

2
(I1 ⊗ · · · ⊗ Iα ⊗ Iα+1 ⊗ · · · ⊗ E2

4). (4.41)

The matrix introduced are in the following diagonal form:

E2
1,2 = diag{2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2}
E2

3 = diag{2, 2, 3, 1, 3, 1, 0, 4, 3, 1, 2, 2, 2, 2, 3, 1}
E2

4 = diag{2, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0}

(4.42)
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4.3. Implementation for a numerical analysis in Z2

• Magnetic field term: the first magnetic term acts on the squares α and can be
written as

(−h)B1,α ⊗ Iα+1 (4.43)

and the term between two squares α and α + 1 is

(−h)B2,α ⊗ B3,α+1 (4.44)

The matrices introduced have the following form:

B1 = blockdiag{σ1, σ1, σ1, σ1, σ1, σ1, σ1, σ1} (4.45)

where σ1 is the first Pauli matrix,

B2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.46)
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4.3. Implementation for a numerical analysis in Z2

B2 =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



(4.47)

since, fixed the three left/right links, there are two possible plaquettes in the Hilbert
space (we evidenced the 1 with red for an easier reading).

This decomposition allows us to write the Hamiltonian of L groups as sum of tensor
products of these matrices: this is a significant starting point for numerical processing.
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Conclusive remarks and perspectives

In this master degree thesis we studied QED on a two-dimensional lattice. We intro-
duced the fermion doubling problem and the possibility of circumventing it through the
staggered fermions method. We defined fermions and gauge fields on a lattice and we
posed special attention on the quantized theory and, in particular, on the quantum gauge
transformations, since gauge invariance provides us the criterion to select physical states.
We studied the Quantum Link Model and the Zn Model, that are the main solutions
proposed in literature to implement a quantum simulator, thus involving a reduction of
the link degrees of freedom.

In particular, we studied that in a QLM the U(1) gauge invariance is preserved but
a critical aspect emerges: the comparator is no more unitary and it is substituted by a
ladder operator. We analyzed the minimal QLM, i.e. with spin-1

2
, focusing on the gauge

invariant states. In order to retrieve a unitary operator, we introduced the Zn models,
studying deeply the Weyl group and its discrete counterpart, the Schwinger-Weyl group.
This allowed us to reproduce a discrete gauge theory with a unitary comparator, recov-
ering the U(1) model in the continuum limit. We obtained principally that on a discrete
n-dimensional Hilbert space per link the symmetry group is Zn and the algebra commu-
tation rules are substituted by discrete analogous which cause some peculiar aspects of
the theory described. Indeed, implementing the minimal Z2 model on QED we found the
physical states and, comparing with those of a spin-1

2
QLM, we noticed that two more

states are available for the former. These permit the formation of square loops on the
lattice, so we decided to set aside the fermionic matter for a moment and focus only on
the gauge part, since it presents this interesting feature. Therefore we studied a more
general theory adding a parameter and finding that, varying it, the model falls into two
phases: one magnetic confined and one deconfined. We examined the ground states in
the two phases and their excited states, finding that the confined phase is characterized
by the presence of many short loops. Then we defined the non-local order parameter
introducing the concept of magnetic vortex.
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4.3. Implementation for a numerical analysis in Z2

We generalized such model to a Z3 symmetry, underlining similarities and differences
with the previous theory and finding all the gauge invariant states, in presence or ab-
sence of particles. Lastly, we retrieved the QED lattice theory and comment about the
possibility of defining quarks, antiquarks, mesons and antimesons and studied the mech-
anism of string breaking. Finally we implemented the Z2 theory for a future numerical
investigation (also outlining the same for Z3).

Several possible outlooks are provided by this work. Indeed, following the path we
tracked, we can implement a Zn symmetry and study the electric and magnetic phase
diagrams on varying n, or examine the dynamical processes of the models studied as well.
We can numerically simulate the Z2 and Z3 models for which we found the invariant
states and verify the transition points and calculate the ground states energies and other
relevant physical observables. Also, the theory can be transposed in three dimensions: it
should be interesting to see how the fermionic degrees of freedom spread over the lattice
sites to form quarks and knowing the two-dimensional theory is surely a good starting
point since the relevant lattice building blocks, that are links and plaquettes, remain so
also in three dimensions. Many other projects could sprout within these theories, since
quantum simulation models are a breeding ground and a relatively new research field.
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Appendix A

Presence of doublers in (1+0)D

Here we present an explicit calculus to show the existence of doublers in 1+0 dimensions,
since the temporal part does not contribute to the problem and the calculus in higher
dimensions is just more tedious, but the method is analogous.
The lattice Dirac propagator in (1 + 0)D is:

Glatt
F (x− y) =

∫ π
a

−π
a

dp

2π

[(−i)γ1p̃+m]

p̃2 +m2
eip(x−y), (A.1)

where p̃ = 1
a

sin(pa). Separating the integral it follows

Glatt
F (x− y) =

(∫ − π
2a

−π
a

+

∫ π
2a

− π
2a

+

∫ π
a

π
2a

)
dp

2π

[(−i)γ1p̃+m]

p̃2 +m2
eip(x−y). (A.2)

In the second integral, being in the half Brillouin zone, we can replace p̃ with p when
a is sufficiently small. In the first and third integrals we can approximate the relation
p̃ = 1

a
sin(pa) near p = ∓π

a
, respectively. Therefore we obtain

Glatt
F (x− y) '

∫ π
2a

− π
2a

dp

2π

[(−i)γ1p+m]

p2 +m2
eip(x−y)

+

∫ − π
2a

−π
a

dp

2π

[(−i)γ1(−p− π
a
) +m]

(−p− π
a
)2 +m2

ei(−p−
π
a

)(x−y)

+

∫ π
a

π
2a

dp

2π

[(−i)γ1(−p+ π
a
) +m]

(−p+ π
a
)2 +m2

ei(−p+
π
a

)(x−y).

(A.3)
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A. Presence of doublers in (1+0)D

With the substitutions k = −p− π
a
in the second integral and k = −p + π

a
in the third,

we can retrieve the integration limits of the Brillouin zone in the continuum limit in the
following way

Glatt
F (x− y) '

∫ π
2a

− π
2a

dp

2π

[(−i)γ1p+m]

p2 +m2
eip(x−y)

−
∫ − π

2a

0

dk

2π

[(−i)γ1k +m]

k2 +m2
eik(x−y)

−
∫ 0

π
2a

dk

2π

[(−i)γ1k +m]

k2 +m2
eik(x−y),

(A.4)

and

Glatt
F (x− y) '

∫ π
2a

− π
2a

dp

2π

[(−i)γ1p+m]

p2 +m2
eip(x−y)

+

∫ 0

− π
2a

dk

2π

[(−i)γ1k +m]

k2 +m2
eik(x−y)

+

∫ π
2a

0

dk

2π

[(−i)γ1k +m]

k2 +m2
eik(x−y).

(A.5)

Finally, in the continuum limit

Glatt
F (x− y) '

∫ π
2a

− π
2a

dp

2π

[(−i)γ1p+m]

p2 +m2
eip(x−y)

+

∫ π
2a

− π
2a

dp

2π

[(−i)γ1p+m]

p2 +m2
eip(x−y)

a→0−→ 2GF (x− y).

(A.6)

This result tells us that in the continuum limit we find an additional fermion propagator,
which is a lattice artifact and does not have physical sense. In a d-dimensional space the
spurious fermions are 2d − 1, also the number of the possible edge modes.
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Appendix B

Duality transformations of the Ising
model

In this appendix we show the duality transformations from the Z2 Hamiltonian (3.27)
and the two-dimensional Quantum Ising model with a transverse field.
We recall the starting Hamiltonian

ĤZ2 = −
∑
�

⊗
l∈{li}�

σ̂3
l − h

∑
l

σ̂1
l . (B.1)

As mentioned, this Hamiltonian presents a gauge invariance due to a Z2 symmetry
generated by the star operator

Âx =
⊗
l∈{li}x

σ̂1
l , (B.2)

s.t.
ÂxĤZ2Â

−1
x = ĤZ2 , (B.3)

with the links ordered as in the left of Fig. 3.5. In the gauge invariant subspace, this
operator acts like the identity

Âx = 1̂, (B.4)

so
σ̂1

1,x ⊗ σ̂1
2,x ⊗ σ̂1

−1,x ⊗ σ̂1
−2,x = 1̂ (B.5)

and
σ̂1
i,x = σ̂1

2,x ⊗ σ̂1
−1,x ⊗ σ̂1

−2,x. (B.6)
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B. Duality transformations of the Ising model

xx−~1x− 2~1. . .

Figure B.1: The figure sketches the operation in (B.7): the operators σ̂1 acting on the blue links can be
written in terms of those acting in the 2̂ direction (in red). The same occur on the left and right links.

With the same spirit, considering the site x−~1, we can treat similarly σ̂1
2,x−~1 by consid-

ering the gauge transformation on that site. Iterating this procedure, one can write σ̂1

on any link in the 1̂ direction just in terms of those in the 2̂ direction:

σ̂1
1,x = σ̂1

2,x ⊗ σ̂1
−2,x ⊗ σ̂1

2,x−~1 ⊗ σ̂
1
−2,x−~1 ⊗ σ̂

1
2,x−2~1

⊗ σ̂1
−2,x−2~1

⊗ · · · . (B.7)

For clarity, see Fig. B.1. With such procedure we are treating σ̂1 on links acting in 1̂

direction as dependent variables. To be consistent, also the operators σ̂3 acting in 1̂

direction have to be eliminated from the independent degrees of freedom of the theory.
In particular, the gauge transformation has no operators which do not commute with σ̂3

on those links. Therefore, we choose it to act like the identity (we make a gauge fixing)

σ̂3
1,x = 1̂ (B.8)

(it should make no confusion the fact that on the r.h.s. there is the identity operator and
not the versor pointing in the 1̂ direction). Now σ̂1

2,x and σ̂3
2,x are the only independent

variables and we can finally define the duality transformations. We associate a site x∗

of the dual lattice with each plaquette of the original lattice and define a dual spin-flip
operator on this site as

µ̂3
x∗

def
=

⊗
l∈{li}�∗

σ̂3
l (B.9)

where the product tensor is on the σ̂3 acting on the plaquette surrounding x∗ (see
Fig. B.2). We define the dual spin variables as

µ̂1
x∗

def
=
⊗
n≥0

σ̂1
2,x−n1̂

. (B.10)
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B. Duality transformations of the Ising model

x

x∗

Figure B.2: Sketch of the dual point x∗.

The dual variables satisfy the Pauli algebra

(µ̂1
x∗)

2 = (µ̂3
x∗)

2 = 1̂

µ̂1
x∗ ⊗ µ̂3

x∗ = −µ̂3
x∗ ⊗ µ̂1

x∗

(B.11)

since they can be written in terms of σ̂1 and σ̂3 and have one link in common on which
σ̂1σ̂3 = −σ̂3σ̂1. Moreover

µ̂1
x∗ ⊗ µ̂3

y∗ = µ̂3
y∗ ⊗ µ̂1

x∗ x∗ 6= y∗ (B.12)

since the identity σ̂1 ⊗ σ̂3 = −σ̂3 ⊗ σ̂1 must be applied an even number of times. To
write the Hamiltonian in terms of the dual operators note that

µ̂1
x∗ ⊗ µ̂1

x∗−1̂
= σ̂1

2,x (B.13)

and, as a consequence of (B.7),

µ̂1
x∗ ⊗ µ̂1

x∗−2̂
= σ̂1

1,x. (B.14)

Therefore, the dual Hamiltonian is

ĤI = −
∑
〈x∗y∗〉

µ̂1
x∗ ⊗ µ̂1

y∗ − h
∑
x∗

µ̂3
x∗ (B.15)

which we recognize as the quantum version of the three-dimensional Ising model (or the
two-dimensional Quantum Ising).
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Appendix C

Z3 invariant sites’ states

In this appendix are listed the gauge invariant states in presence or absence of parti-
cles/antiparticles.

Vacuum states

The figure shows the 27 possible configurations with symmetry Z3 and ∆x = 0. These
states correspond to vacuum states, in which no particle is present. The arrows pointing
to the right and up correspond to positive electric field’s values

(
El =

√
2π
3

)
, while arrows

pointing to the left and down correspond to negative electric field’s values
(
El = −

√
2π
3

)
.
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C. Z3 invariant sites’ states

Particle states

The figure shows the 13 possible configurations with symmetry Z3 and ∆x = 1. These
states correspond to the presence of a particle on a site with negative parity.

Antiparticle states

The figure shows the 13 possible configurations with symmetry Z3 and ∆x = −1. These
states correspond to the presence of an antiparticle on a site with positive parity.
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Appendix D

Z3 invariant plaquettes’ states on a
ladder

In this appendix are listed the 27 possible configurations of the Z3 invariant plaquettes
in presence ora absence of quarks/antiquarks/mesons.

Vacuum states

The figure shows the 81 possible gauge invariant plaquettes’ configurations that corre-
spond to vacuum states with the condition ∆x = 0, ∀x. We remember that the Dirac
sea is made of occupied even and empty odd sites.

112



D. Z3 invariant plaquettes’ states on a ladder
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D. Z3 invariant plaquettes’ states on a ladder

Quark states

The figure shows the 81 possible gauge invariant plaquettes’ configurations that corre-
spond to quark states with the condition ∆x = 1 on odd sites, and ∆x = 0 on even sites.
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D. Z3 invariant plaquettes’ states on a ladder
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D. Z3 invariant plaquettes’ states on a ladder

Antiquark states

The figure shows the 81 possible gauge invariant plaquettes’ configurations that corre-
spond to antiquark states with the condition ∆x = −1 on even sites, ∆x = 0 on odd
sites.
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D. Z3 invariant plaquettes’ states on a ladder
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D. Z3 invariant plaquettes’ states on a ladder

Mesonic states

The figure shows the 81 possible gauge invariant plaquettes’ configurations that corre-
spond to mesonic states with the condition ∆x = −1 on even sites, ∆x = 1 on odd sites.
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D. Z3 invariant plaquettes’ states on a ladder
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