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ABSTRACT 

The orbital and the attitude control in real-time of an artificial satellite in orbit around a celestial body 

has been one of the most important aspects of space missions for decades, including those conducted 

through the use of CubeSats, namely nanosatellites and/or microsatellites of cubic form, increasingly 

used in space thanks to their simplified structure that requires low costs of design, production and 

putting into orbit, since the couplings between CubeSats and launchers take place through 

standardized processes that reduce the hours of work of the designers and offer the possibility of 

modifying the payload without having to fully re-evaluate the launch project, in addition to the fact 

that the size of a single CubeSat is so small that allows the launch of multiple nanosatellites 

simultaneously, going to further reduce the launch costs. 

Moreover, the use of a CubeSat often offers the possibility to release it directly into orbit thanks to 

the transport on a "mother" satellite, necessary in many space missions to put the satellite in 

communication with the terrestrial operating centers, eventuality that allows further reduction of the 

launch costs. 

Obviously, each CubeSat must be autonomous from the point of view of the production of electrical 

energy, which usually occurs through the usage of solar panels alternating with accumulators of 

electricity or batteries for the periods of occultation of sunlight, and from the point of view of 

navigation, as previously mentioned. 

Although the artificial satellites often operate on terrestrial orbits LEO (low Earth orbit) or MEO 

(medium Earth orbit), for which it is possible to use the assisted navigation through Global 

Positioning System (GPS) for orbital determination, which requires the availability of a GPS receiver 

mounted onboard, there exist particular space missions outside the Earth's gravitational field that 

require autonomous navigation systems in real-time for both attitude control and orbital control. 

The latter also includes AIDA, the joint NASA-ESA mission that will operate in the 65803 Didymos 

binary system and whose main purpose is to experiment and investigate the kinetic impact technique 

for the deviation of the asteroid trajectories in space with a view to a possible collision between one 

of them and the planet Earth in the future. 

HERA, the "mother" satellite designed by ESA in collaboration with other European research 

institutes, will aim to collect data about the chemical-physical composition of the binary system and 

about the characteristics of the impact between DART, the bullet-satellite realized and run by NASA 

together with other US research institutes, and the minor of the two celestial bodies that compose 

Didymos, which should occur around October 2022. 
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The "mother" HERA satellite will carry high-level technology onboard, including some CubeSats 

that will be released when HERA is already in orbit in the Didymos system. 

This panorama also includes the DustCube mission, a project proposal for a CubeSat carried out by 

the Department of Industrial Engineering sited in Forlì (IT) of the University of Bologna in 

collaboration with other academic and research institutions of the European Union, which the main 

objective is to assist HERA in the acquisition of data concerning the impact between DART and the 

minor of the two celestial bodies that form Didymos. 

The DustCube mission provides for the need to operate in complete autonomy, communicating in a 

continuous manner the data collected at HERA, which will send them to the terrestrial operating 

centers. 

The physical configuration of the binary system and the type of mission, which requires the use of 

infrared cameras, focused on the two celestial bodies that form Didymos, which take pictures of them 

continuously, lead to prefer the development of an optical navigation filter able to estimate the 

position and the speed of the CubeSat starting from direction and range measurements with respect 

to a target body obtained precisely by means of optical technology. 

This thesis project, which continues the work done during my curricular internship in the 

Microsatellite Laboratory of the University of Bologna sited in Forlì (IT), is part of the DustCube 

project with the aim of investigating in depth the orbital navigation of this CubeSat immersed in the 

Didymos system and the main one to develop an extended Kalman filter based on optical 

measurements that allows to simulate the DustCube real-time navigation. 
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SOMMARIO 

Il controllo orbitale e d’assetto in tempo reale di un satellite artificiale in orbita attorno ad un corpo 

celeste riveste da decenni uno degli aspetti più importanti delle missioni spaziali, tra cui rientrano 

quelle condotte tramite l’utilizzo di CubeSats, ovvero nanosatelliti e/o microsatelliti di forma cubica, 

sempre più utilizzati in ambito spaziale grazie alla loro struttura semplificata che richiede bassi costi 

di progettazione, di produzione e di messa in orbita, dato che gli accoppiamenti tra CubeSats e 

lanciatori avvengono tramite processi standardizzati che riducono le ore di lavoro dei progettisti e che 

offrono la possibilità di modificare il carico utile senza dover rivalutare totalmente il progetto di 

lancio, oltre al fatto che l’ingombro di un singolo CubeSat è così ridotto da permettere il lancio di più 

nanosatelliti contemporaneamente, andando a ridurre ulteriormente i costi di lancio. 

Inoltre, l’utilizzo di un CubeSat offre spesso la possibilità di un rilascio dello stesso direttamente in 

orbita grazie al trasporto su un satellite “madre”, necessario in molte missioni spaziali per mettere in 

comunicazione il satellite con i centri operativi terrestri, eventualità che permette un’ulteriore 

riduzione dei costi di lancio. 

Ovviamente, ogni CubeSat deve essere autonomo dal punto di vista della produzione di energia 

elettrica, che avviene solitamente tramite l’utilizzo di pannelli solari alternati ad accumulatori di 

energia elettrica o batterie per i periodi di occultazione della luce solare, e dal punto di vista della 

navigazione, come accennato precedentemente. 

Sebbene spesso i satelliti artificiali operino su orbite terrestri LEO (low Earth orbit) o MEO (medium 

Earth orbit), per le quali è possibile utilizzare la navigazione assistita tramite Global Positioning 

System (GPS) per la determinazione orbitale, che richiede la disponibilità di un ricevitore GPS 

montato a bordo, esistono particolari missioni spaziali al di fuori dal campo gravitazionale terrestre 

che necessitano di sistemi di navigazione autonoma in tempo reale sia per il controllo d’assetto che 

per il controllo orbitale. 

In quest’ultimo insieme rientra anche AIDA, la missione congiunta NASA-ESA che opererà nel 

sistema binario 65803 Didymos e che si prefigge come scopo principale quello di sperimentare ed 

indagare la tecnica di impatto cinetico per la deviazione delle traiettorie degli asteroidi nello spazio 

in un’ottica di possibile collisione tra uno di essi ed il pianeta Terra in futuro. 

HERA, il satellite “madre” progettato dall’ ESA in collaborazione con altri istituti di ricerca europei, 

avrà come obiettivo quello di raccogliere dati sulla composizione chimico-fisica del sistema binario 

e sulle caratteristiche dell’impatto tra DART, il satellite-proiettile realizzato e gestito dalla NASA 
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assieme ad altri istituti di ricerca statunitensi, e il minore dei due corpi celesti che formano Didymos, 

che dovrebbe avvenire all’incirca nell’Ottobre del 2022. 

Il satellite “madre” HERA trasporterà a bordo tecnologia di alto livello, tra cui alcuni CubeSats che 

verranno rilasciati quando HERA si troverà già in orbita nel sistema Didymos. 

In questo panorama rientra anche la missione DustCube, una proposta di progetto di un CubeSat 

realizzato dal Dipartimento di Ingegneria Industriale con sede a Forlì (IT) dell’Università di Bologna 

in collaborazione con altri istituti accademici e di ricerca dell’Unione Europea, che ha come obiettivo 

principale quello di assistere HERA nell’acquisizione dei dati relativi all’impatto tra DART ed il 

minore dei due corpi celesti che compongono Didymos. 

La missione DustCube prevede la necessità di operare in completa autonomia, comunicando in modo 

continuo i dati raccolti ad HERA, che provvederà all’invio degli stessi ai centri operativi terrestri. 

La conformazione fisica del sistema binario e la tipologia di missione, che richiede l’utilizzo di 

fotocamere a raggi infrarossi, puntate sui due corpi celesti che formano Didymos, che scattino 

immagini degli stessi in modo continuo, portano a prediligere lo sviluppo di un filtro di navigazione 

ottica in grado di stimare la posizione e la velocità del CubeSat partendo da misure di direzione e di 

distanza rispetto ad un corpo-bersaglio ottenute per l’appunto tramite tecnologia di tipo ottico. 

Questo progetto di tesi, che continua il lavoro svolto durante il mio tirocinio curriculare nel 

Laboratorio di Microsatelliti dell’Università di Bologna con sede a Forlì (IT), si inserisce nel progetto 

DustCube con l’obiettivo di indagare approfonditamente la navigazione orbitale di questo CubeSat 

immerso nel sistema Didymos e quello principale di sviluppare un filtro di Kalman di tipo esteso 

basato su misurazioni ottiche che permetta di simulare la navigazione in tempo reale di DustCube. 
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INTRODUCTION 

The University of Bologna takes part to AIDA (Asteroid Impact & Deflection Assessment) mission, 

that is divided in two main independent missions and, consequently, in two main large spacecrafts: 

• DART (Double Asteroid Redirection Test), that will be the impactor S/C and it is directed by 

NASA to the Johns Hopkins University Applied Physics Laboratory (JHU/APL) with support of 

Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), Johnson Space Center 

(JSC) and other institutions and laboratories; 

• HERA, named like the Greek goddess of marriage, that will be the observatory S/C. It has 

substituted AIM and is directed by ESA with support of German Aerospace Center (DLR), 

Observatoire de la Côte d’Azur (OCA) and other institutions and laboratories. 

The main objective of the AIDA mission (Figure i.1) is to investigate the kinetic impact technique to 

change the motion of an asteroid in space, which is the selected near-Earth binary system 65803 

Didymos (Figure i.2), composed by two celestial bodies, called Didymain and Didymoon. 

 

Figure i.1: AIDA mission concept infographic (European Space Agency (ESA)) 

https://www-n.oca.eu/michel/AIDA/
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Figure i.2: Didymos orbit inside Solar System (Jet Propulsion Laboratory (JPL), NASA) 

Obviously, the goal will be accomplished by divided the tasks into the two independent missions. 

Therefore, the main objectives of DART mission are: 

1. to test the technologies developed to accomplish a rendezvous with a binary asteroid system, such 

as autonomous navigation and targeting, reducing the key risks; 

2. to demonstrate the kinetic impact technique to change the motion of realistic scale asteroid, 

crashing into Didymoon with proper angle and velocity, in order to look for possible solutions to 

deflect asteroids in future events of close encounters with the Earth; 

3. to improve impact models by comparing the motion of Didymoon in post-impact phase to one 

predicted in pre-impact phase; 

4. to refine CONOPS for deflection missions. 

Consequently, the main goals of the HERA mission are: 

1. to acquire data about the deflection of Didymoon and about the cloud of dust generated by its 

collision with DART spacecraft; 

2. to investigate the deep-space optical communication technology and the inter-satellite network 

ling between CubeSats and a lander; 
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3. to study the interior structure of an asteroid; 

4.  to investigate the formation of binary asteroid systems and, more in general, the formation 

processes of our Solar System. 

DART is considered as the first test in a Planetary Defense Technology Demonstration Plan. 

It will be launched in January 2021, it will escape from the Earth’s sphere of influence in August 

2021 and will crash into Didymoon in October 2022 (see Figure i.3). 

For the launch window, DART will utilize the NEXT-C thruster, that is the next generation system 

based on the Dawn spacecraft propulsion system, developed by Glenn Research Center (GRC) in 

Cleveland, Ohio, USA. 

NEXT-C will exploit solar electric propulsion system as its primary in-space propulsion one, so that 

it will be able to obtain significant flexibility for the mission timeline, to extend the launch window 

and to decrease the cost of the launch vehicle. 

DART will intercept Didymoon with the aim of an onboard optical camera and an autonomous 

navigation software and it will crash into the asteroid at an approximated velocity of 6 km/s, changing 

its motion after collision. 

 

Figure i.3: DART Mission Concept (National Aeronautics and Space Admnistration (NASA)) 
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The HERA spacecraft, which was named AIM (acronyms of Asteroid Impact Mission) in the first 

developing steps, will be launched in October 2020 from the Guiana Space Center (CSG) situated in 

Kourou, a city of the French Guiana, using an Ariane 6.2 rocket, so that it should enter in the gravity 

field of Didymos in May 2022 (Figure i.4). 

 

Figure i.4: HERA (AIM) Mission Concept infographic (Credits: ESA/Science Office) 

HERA is planned to carry at least three smaller spacecrafts: Mascot-2 asteroid lander, developed by 

DLR, and two or more CubeSat Opportunity Payloads (COPINS). 

Mascot-2 will be released by HERA in August 2022 and will be directed towards Didymoon, where 

its landing is expected and where it will establish a radar communication channel with HERA.  

It will emit low frequency radar waves that will pass through Didymoon from side to side, before 

reaching HERA, to chart asteroid deep interior structure in pre-impact phase and to determine the 

variations in structure and surface of Didymoon in the post-impact phase. 

The CubeSats will be released in August 2022 too and they will establish inter-satellite radio network 

through triangulation technique with HERA and Mascot-2. 

HERA and the CubeSats will monitor the impact of DART, acquiring data about the change of 

velocity of Didymoon and its angle of deflection, together with the Earth’s observatories. 

After the collision, the emitted cloud of dust will be analysed by HERA using thermal images, 

obtaining important info about the type of debris ejected, their amount, the dimensions of the cloud, 

its ultimate distance reached and the shape and dimensions of the crate. 
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The collected data will be continuously sent to the Earth’s observatories by using high-resolution 

laser communication. 

The Department of Industrial Engineering of University of Bologna (IT) sited in Forlì, in 

collaboration with the Department of Telecommunication Engineering of the University of Vigo (ES) 

and the MICOS Engineering GmbH of Dübendorf (CH), developed the DustCube mission concept 

(Figure i.5), one of the five proposals that were selected by ESA for further study, that has the 

objective to design a 3U CubeSat platform with the main goal to measure the size, shape and 

concentration of fine dust ejected in the aftermath of the collision and its evolution over time, 

acquiring speeds of dust particles. 

 

Figure i.5: DustCube CONOPS within Didymos system (Pérez, et al., 2018 (In Press)) 

Also, DustCube will help HERA to acquire data about physical characteristics, shape and quantity of 

the plume ejected during DART’s impact by exploiting two light scattering Nephelometer, the remote 

one (RNH) and the in-situ one (INH), and it will test in orbit a new technique of laser altimetry, using 

the RNH for time of flight (TOF) measurement (Pérez, et al., 2018 (In Press)). 

It will be released by HERA in August 2022 and since it will operate autonomously after the ejection, 

it will have to be independent for the navigation phases and for the acquisition of data ones, therefore 

an optical navigation system has been selected: a double IR camera configuration captures 
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simultaneous images of the two celestial bodies to perform triangulation and to determine the relative 

position of the S/C w.r.t. them. 

The objective of my work of thesis is to develop an optical navigation filter simulator for DustCube 

in MATLAB programming, starting from a proper propagation of its state. 

The thesis is organised as follows: 

- Chapter 1 gives a more in-depth overview of DustCube mission, mainly the features of Didymos 

asteroid and the implemented dynamic model, which considers several levels of disturbances 

acted on DustCube; 

- Chapter 2 presents the DustCube’s state propagator developed though MATLAB programming; 

- Chapter 3 describes the optical navigation technique, such as the link between optical 

measurements and the state/attitude of a S/C, the image acquiring and processing techniques and 

the selected concept for the optical navigation of DustCube; 

- Chapter 4 deepens the Kalman filtering technique, that will be the selected filter for DustCube 

because it is the most common in use for space navigation, since it is robust, reliable and it does 

not request great computational effort; 

- Chapter 5 describes the Kalman filter developed for DustCube mission. 
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 DUSTCUBE’S MAIN FEATURES 

DustCube will operate in Didymos binary asteroid system with the aim of an autonomous optical 

navigation system, i.e. a double IR camera configuration that will capture simultaneous images of 

Didymain and Didymoon. 

Its CONOPS (Figure i.5) is composed by five operational phases (Pérez, et al., 2018 (In Press)): 

1. Birthing phase: DustCube will be released by HERA on August 2022; 

2. Injection phase: DustCube will be inserted in a stable orbit at about 3-5 km from the CoM of the 

system, parking the S/C in a safe region for a time window of 7-14 days to permit early operations, 

such as the activation of the inter-satellite radio network link (ISL) with the mothership HERA; 

3. Pre-impact phase: after the injection phase, DustCube will be transferred to a parking stable orbit 

around the L4 or L5 Lagrange equilibrium point (see Figure A.6 in Appendix) of Didymos binary 

system, where the S/C will activate the payload operations and will analyse the natural 

composition and physical characteristics of Didymoon before its collision with DART; 

4. Impact phase: during and just after the impact of DART, DustCube will obtain data about the 

crater, the plume and dust generated by the collision, by using an In-situ Nephelometer (INH) and 

a Remote Nephelometer (RNH). 

The acquisition phase will continue for a maximum of 4 days.  

After that, DustCube will rendezvous with Didymoon from the parking orbit (L4 or L5) to the 

Distant Retrograde Orbit (DRO), an orbit at low altitude around Didymoon, where the S/C will 

remain for 24 days to acquire high-resolution images and measurements; 

5. Post-impact phase: DustCube will be transferred from the DRO to the parking orbit (L4 or L5) 

to accomplish post-impact operations until the end of the mission.  

To complete the mission, a detailed knowledge of the operational environment of DustCube and, 

therefore, of the forces acting on it is crucial, since the real-time dynamic filter requires a precise 

computation of the state (eq. (A.1) in Appendix) of DustCube. 

In this chapter will be presented the main features of DustCube mission.  

1.1 OPERATIONAL ENVIRONMENT: DIDYMOS SYSTEM 

As said before, the selected asteroid for AIDA mission is 65803 Didymos, a near-Earth binary asteroid 

discovered in 1996 by Spacewatch, a group of the University of Arizona’s Lunar and Planetary 
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Laboratory founded in 1980 with the purpose to explore the various populations of small bodies in 

the Solar System to study the statistics of asteroids and comets in order to investigate the dynamical 

evolution of the Solar System. 

The choice is not casual: it is more convenient to test the kinetic impact technique in a binary system 

instead of an individual asteroid, moreover Didymos will pass at the distance of just 11 million 

kilometers from Earth in 2022, facilitating the communications between HERA and Earth’s bases and 

the measurements carried out by Earth’s observatories. 

Didymos belongs to the Apollo asteroids family, which includes asteroids with semi-major axis 

greater than 1 AU and perihelion lower than 1.017 AU, such as the Apollo asteroid. 

In Table 1.1 are shown the major physical characteristics of the binary system. 

Official name of asteroid 65803 

Diameter of Didymain 780 m +/- 10% 

Diameter of Didymoon 163 m +/- 18 m 

Bulk density of Didymain and Didymoon (assumed equal) 2104 kg m-3 +/- 30% 

Approximated Didymoon dimensions as = 103 m |bs = 79 m |cs = 66m 

Distance from CoM of Didymain and CoM of Didymoon (𝑎𝑜𝑟𝑏) 1180 m +40/-20 m 

Total mass of system 5.278e11 kg +/- 0.54e11 kg 

Mass ratio Didymoon/Didymain 0.0093 +/- 0.0013 

Rotation period of the primary 2.26 h +/- 0.0001 h 

Heliocentric eccentricity e e = 0.383752501 +/- 7.7e-9 

Heliocentric semimajor axis 𝑎 1.6444327821 +/- 9.8e-9 AU 

Heliocentric inclination to the ecliptic 𝑖 3.4076499° +/- 2.4e-6° 

Table 1.1: Physical characteristics of Didymos binary asteroid 

An observation campaign performed by the Discovery Channel Telescope on 2015-04-13 favors the 

retrograde orbit solution, with a synchronous rotation of Didymoon around Didymain (Aguado, et al., 

2016, May 6), i.e. Didymoon rotational period is the same as Didymoon orbital period. 

It is possible to assume that Didymain spin pole is the same as orbital spin pole, although it is 

important to remark that observations indicate that 25% of near-Earth asteroid binaries have non-zero 

inclinations (Scheirich & Pravec, 2009). 

In Table 1.2 is shown the final proposed binary orbit solution, while in Figure 1.1 is possible to 

visualize the schematic representation of the Didymos system, where it is easy to recognize the 

rotation axis od Didymain and the motion of revolution of Didymoon around it. 
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Pole solution λ=310°, β=-84° 

Obliquity to the heliocentric orbit 171° +/- 9° 

Diameter ratio Didymain/Didymoon 0.21 +/- 0.01 

Didymoon orbital period  𝑻𝑜𝑟𝑏 11.920h +0.004/-0.006 

Didymoon orbital eccentricity 𝑒𝑜𝑟𝑏 0.03 

Didymoon orbital inclination 𝑖𝑜𝑟𝑏 (assumed) 0° 

Obliquity of the primary principal axis w.r.t. the mutual orbital 

plane (assumed) 
0° 

Obliquity of Didymoon principal axis with respect to the mutual 

orbital plane (assumed) 
0° 

Table 1.2: Final proposed binary orbit solution for Didymos system 

 

Figure 1.1: Didymos binary asteroid system (Yu, Michel, Schwartz, Naidu, & Benner, 2017) 

The masses and, consequently, the standard gravitational parameters of Didymain (D subscript) and 

Didymoon (d subscript) can be computed from their diameter ratio, their mass ratio and the total mass 

of the system, assuming same and homogeneous density (Zannoni, et al., 2018), i.e.:  

Mtot = 5.278 ×  1011 kg 

MD = 5.229 ×  10
11 kg 

(1.1)  
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Md = 4.866 × 109 kg 

𝜇D = GMD = 3.4903 × 101m3 s2⁄  

𝜇d = GMd = 3.23 × 10−1  m3 s2⁄  

Where G is the Universal Gravitation constant: G = 6,67 × 10−11 (N m2) kg2⁄ . 

Since the ratio between the masses of Didymoon and Didymain is equal to 0.93%, the CoM of the 

system is very close to the geometric center of Didymain, with an offset of about 10 meters. 

The Didymos heliocentric orbit has been uploaded in my software by exploiting the Small Body 

Database Browser of JPL, which contains the ephemerides of Didymos in a wide time window that 

covers the entire phase of AIDA mission. 

1.2 DUSTCUBE’S DYNAMICAL MODEL 

The dynamical model of DustCube determines the evolution in time of its state (eq.(A.1) in 

Appendix), which is a vector of six components representing the position vector 𝒓(t) and the velocity 

vector 𝒗(t) w.r.t. the CoM of the exploited RF. 

Since DustCube will be immersed in a binary system, it is possible to consider the estimation problem 

of the orbit of DustCube as a 3-Body Problem, i.e. the study of the behaviour of the dynamics of an 

isolated system composed by three punctual bodies of known masses moving due to the reciprocal 

gravitational attraction, perturbated by external forces that can be considered as disturbances for the 

isolated system. 

Therefore, the most suitable solution is represented by the Circular Restricted 3-Body Problem (see 

section A.2 The Circular Restricted 3-Body Problem (CR3BP) in Appendix), which simplifies the 

general 3-Body Problem by assuming that one of the three bodies, the S/C, has a negligible mass, that 

is the same to recreate the actual situation in which the satellite does not affect the motion of the 

primaries, which revolve on a Keplerian orbit around their common CoM, so that the study of the 

dynamics is reduced to the analysis of the motion of the third body, DustCube, moving in a system 

composed by two massive bodies, Didymain as primary and Didymoon as secondary, with supposed 

known states. 

This approximation is also valid for the masses of HERA, Mascot-2 and the other CubeSats, which 

can be considered as negligible w.r.t. the total mass of the system. 

Since the masses of Didymain and Didymoon are insufficient to hold an atmosphere and to create a 

magnetosphere, we can compute the state of DustCube by considering a basic dynamical model due 

to the central attractions of Didymain and Didymoon, expanding and refining the solution step by 

step through the addition of the following contributions: 
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• gravitational attraction acted by Didymain by considering its spherical harmonics; 

• gravitational attraction acted by Didymoon by considering its spherical harmonics; 

• force generated by the Solar Radiation Pressure (SRP); 

• gravitational disturbance of Sun. 

Obviously, specific reference frames must be defined for the computation of the state of DustCube. 

1.2.1 REFERENCE FRAMES 

It is important to define proper reference frames to consistently compute the state of DustCube: 

• ECLIPJ2000 (EC subscript): is an inertial RF centered in SSB, with the x-axis directed towards 

the vernal equinox (intersection between the Earth’s equatorial plane and the ecliptic one) at epoch 

J2000, that stands for 01/01/2000 at 12:00:00 TDB, the z-axis perpendicular to the mean ecliptic 

plane at epoch J2000 and the y-axis that completes the right-hand frame. 

In alternative to ECLIPJ2000, is possible to use the J2000 RF, an inertial RF centered in SSB, 

with the x-axis directed towards the vernal equinox at epoch J2000, the z-axis perpendicular to 

the Earth’s mean equatorial plane at epoch J2000 and the y-axis that completes the right-hand 

frame; 

• Didymos Reference Frame (DYD subscript): is the RF linked to the CoM of the binary system 

with a fixed orientation in space, i.e. it can be considered as a quasi-inertial RF for a steep time-

window, since it follows the CoM of the binary system w/o rotating w.r.t. the ECLIPJ2000 RF. 

The x-y plane coincides with the mean orbital plane of the mutual orbit of Didymain and 

Didymoon, with the x-axis parallel to the line of nodes and directed towards the ascending node 

(N-axis), the z-axis directed as the first integral of motion (h-axis) and the y-axis which completes 

the right-hand frame. 

• Didymain quasi-inertial Reference Frame: is the quasi-inertial RF linked to the Didymain’s CoM, 

that can be considered as coincident with its geometric center, with a constant orientation in space 

and in time, which can be indifferently choose like the ECLIPJ2000 RF’s one or like the Didymos 

RF’s one, so that this frame simply follows the CoM of Didymain w/o rotations; 

• Synodic Reference Frame (SYN subscript): is the Synodic RF (Figure A.6 in Appendix) related to 

Didymos, co-rotating with the binary system. It is centered in the CoM of Didymos, with the x-

axis directed as the line of conjunction from Didymain to Didymoon, the z-axis directed as the 

first integral of motion (h-axis) and the y-axis that completes the right-hand frame. 

This RF rotates w.r.t. to Didymos RF with an angular speed equal to the mean angular speed of 

the binary system.  
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(1.2)  

The x-y plane is the mean orbital plane of the mutual orbit of Didymain and Didymoon; 

• Didymain-fixed Reference Frame (DM subscript): is the body-fixed RF of Didymain, centered in 

its CoM, that coincides, for simplicity, with its geometric center. The x-y plane is parallel to one 

containing the mutual orbit of Didymain and Didymoon and the z-axis is directed as the first 

integral of motion (h-axis), since it can be considered as the rotation axis of Didymain too. 

This frame rotates around the z-axis with an angular speed equal to the mean rotating speed of the 

massive body. The x-axis is directed as the ECLIPJ2000’s x-axis at epoch J2000; 

• Didymoon-fixed Reference Frame (dm subscript): is the body-fixed RF of Didymoon, centered in 

its CoM, that is, for simplicity, its geometric center. The x-y plane is parallel to one containing 

the mutual orbit of Didymain and Didymoon and the z-axis is directed as the h-axis, since it can 

be considered as the rotation axis of Didymoon too. This frame rotates around z-axis with an 

angular speed equal to the mean rotating speed of the massive body, that is the mean orbiting 

speed of Didymoon around Didymain, since the binary system shows a synchronous rotation of 

Didymoon (Aguado, et al., 2016, May 6). The x-axis is directed as the ECLIPJ2000’s x-axis at 

epoch J2000. 

1.2.2 THE CIRCULAR RESTRICTED 3-BODY PROBLEM (CR3BP) FOR DUSTCUBE 

As said before, the first useful step is to compute the state of DustCube by exploiting the CR3BP (see 

section A.2 The Circular Restricted 3-Body Problem (CR3BP) in Appendix), i.e. by considering the 

mass of DustCube as negligible w.r.t. the masses of the primaries, which are approximated like 

punctual bodies with no shape. 

The most useful Reference Frame to visualize the orbit of DustCube is the Synodic one (Figure A.6), 

which admits five equilibrium points, the so-called Lagrange points L𝑖 (𝑖 = 1,… , 5), in which the 

velocity and the acceleration of the S/C are null if we consider only the gravitational attractions 

exerted by Didymain and Didymoon as point-masses. 

Therefore, referring to Didymos Reference Frame and defining 𝒓satDYD(t), 𝒓DDYD(t) and 𝒓dDYD(t) 

as the position vectors of DustCube, Didymain and Didymoon, respectively, w.r.t. the CoM of the 

binary system, we can compute the position vectors of the S/C w.r.t. Didymain and Didymoon: 

𝒓sat−D(t)|DYD ≝ 𝒓satDYD(t) − 𝒓DDYD(t) 

𝒓sat−d(t)|DYD ≝ 𝒓satDYD(t) − 𝒓dDYD(t) , 

so that, it is possible to express the gravitational acceleration acting on DustCube by exploiting the 

Newton's Law of Universal Gravitation, i.e. by using the equation (A.55):  
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(1.4)  

(1.3)  𝒂satDYD(t) = −
𝜇D

‖𝒓sat−D(t)|DYD‖3
𝒓sat−D(t)|DYD −

𝜇d
‖𝒓sat−d(t)|DYD‖3

𝒓sat−d(t)|DYD 

Indeed, as said before, the Didymos RF can be considered as quasi-inertial, so that the equation (1.3) 

can be thought as the absolute acceleration of DustCube in inertial coordinates.  

Once the solver has computed the state of DustCube in Didymos RF and has transformed it in synodic 

coordinates, he should obtain a result which satisfies the conditions of the Lagrange points of the 

Synodic RF (subscript SYN), i.e. 𝒗satSYN(t) = 𝒂satSYN(t) = 𝟎, that means the S/C would remain 

steady w.r.t. the Synodic RF if it was parked in one of the five equilibrium points. 

1.2.3 GRAVITATIONAL ATTRACTIONS ACTED BY DIDYMAIN AND DIDYMOON 

The main contributions for the total punctual acceleration of DustCube in terms of orders of 

magnitude are, obviously, the gravitational attractions caused by Didymain and Didymoon. 

In first approximation, is possible to simplify the primaries as point-masses, i.e. considering their 

masses as concentrated in their CoMs, to compute the DustCube’s acceleration, which brings to the 

CR3BP, that has been explained in the previous section. 

Proceeding with the refinement of the computed solutions, is necessary to account for the actual mass 

distributions, since the primaries are not punctual and have non-spherical shape. 

Therefore, defining the position vector of the satellite w.r.t. the CoM of Didymain or Didymoon in 

body-fixed RF (b subscript) like 𝒓sat(t)|b = (𝑥b(t), 𝑦b(t), 𝑧b(t)), the acceleration of DustCube due 

to gravitational attractions of the primaries is derived by its gravitational potential UsatG|b
, i.e.: 

𝒂satG(t)|b
=
𝑑2𝒓sat(t)

𝑑t2
|
b

= 𝛁[UsatG(𝒓sat(t))]b
=
𝜕UsatG(𝒓sat(t))

𝜕𝒓(t)
|
b

 

In case of the bodies are considered as point-masses, applying the relation (1.4) for both the primaries 

in their body-fixed RFs and summing up the two contributions, the computed DustCube’s 

acceleration simply becomes the already mentioned eq. (1.3), which represents the acceleration due 

to central attractions of the primaries. 

Developing the state propagator for more precise computations, we must redefine the gravitational 

potential by considering the actual shapes and mass distributions of the primaries. 
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Figure 1.2: The contribution of an infinitesimal element to the gravitational potential 

Indeed, starting from the Figure 1.2, we can visualize the gravitational influence of every infinitesimal 

mass 𝛿m of a generic massive body on the satellite motion. 

Defining 𝒑(t)|b as the position vector of 𝛿m w.r.t. the body-fixed RF centered in the CoM of the 

celestial body, the gravitational potential due to a single primary can be computed by integrating the 

infinitesimal contributions on the entire domain, which is the body mass M: 

UsatG(𝒓sat(t))|b
= G∫

𝛿m

‖𝒓sat(t)|b − 𝒑(t)|b‖
 , 

which requires an appropriate evaluation of the inverse of the distance for 𝑟sat(t) > 𝑝(t), i.e.: 

1

‖𝒓sat(t)|b − 𝒑(t)|b‖
=

1

 𝑟sat(t)
∑(

𝑝(t)

𝑟sat(t)
)
𝑙

P𝑙[cos(𝛾)]

∞

𝑙=0

 , 

where 𝛾 is the angle between 𝒓sat(t)|b and 𝒑(t)|b and P𝑙[cos(𝛾)] is the Legendre polynomial or 

function of degree 𝑙 for the specific function cos(𝛾). 

The generic Legendre polynomial P𝑙 of degree 𝑙 for a scalar function 𝑢 is defined like: 

(1.5)  

(1.6)  
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P𝑙[𝑢] ≝
1

2𝑙  𝑙!
 
𝑑𝑙

𝑑𝑢𝑙
(𝑢2 − 1)𝑙 , 

which can be used to obtain the associated Legendre polynomial P𝑙𝑚[𝑢] of degree 𝑙 and order 𝑚: 

P𝑙𝑚[𝑢] ≝ (1 − 𝑢2)
𝑚
2
𝑑𝑚

𝑑𝑢𝑚
P𝑙[𝑢] =

1

2𝑙  𝑙!
(1 − 𝑢2)

𝑚
2
𝑑𝑙+𝑚

𝑑𝑢𝑙+𝑚
(𝑢2 − 1)𝑙 

In Figure 1.3 are shown the general Legendre functions for 1 ≤ 𝑙 ≤ 6 and 0 ≤ 𝑚 ≤ 𝑙. 

 

Figure 1.3: General Legendre functions for 1 ≤ 𝑙 ≤ 6 and 0 ≤ 𝑚 ≤ 𝑙 

Introducing the planetocentric latitude and longitude of the satellite 𝜙sat(t) and 𝜆sat(t), respectively, 

we can expand the generic Legendre polynomial P𝑙[cos(𝛾)] of eq. (1.6) by using some important 

properties, to finally obtain the gravitational potential of the satellite due to a single massive body in 

body-fixed RF as a series of Legendre polynomials (Vallado & McClain, 2007, May 5), (Montenbruck 

& Gill, Satellite Orbits, 2000): 

UsatG|b
≝

GM

𝑟sat(t)
∑∑ (

Rp

𝑟sat(t)
)
𝑙

P𝑙,𝑚[sin(𝜙sat(t))]

𝑙

𝑚=0

∞

𝑙=0

[C𝑙,𝑚 cos(𝑚𝜆sat(t)) + S𝑙,𝑚 sin(𝑚𝜆sat(t))] , 

where: 

                                

 

     

     

     

 

    

    

    

    

     

     

 
  
  
 

                                   

(1.7)  

(1.8)  

(1.9)  



Chapter 1   

16 

• Rp is the mean equatorial radius of the massive body [m]; 

• C𝑙,𝑚 and S𝑙,𝑚 are unnormalized gravitational coefficients. 

The Legendre polynomials P𝑙,𝑚[sin(𝜙sat(t))] and the coefficients C𝑙,𝑚 and S𝑙,𝑚, which characterize 

the massive body, define the so-called spherical harmonics of degree 𝑙 and order 𝑚, that can be 

grouped in three main classes: 

• Zonal harmonics: 𝑚 = 0 and 𝑙 ≠ 0; 

• Sectorial harmonics: 𝑙 = 𝑚; 

• Tesseral harmonics: 𝑙 ≠ 𝑚, with 𝑙 ≠ 0 and 𝑚 ≠ 0. 

The Figure 1.4 displays some examples of spherical harmonics for a generic quasi-spherical massive 

body while the Figure 1.5 shows the Legendre functions for zonal harmonics, sectorial harmonics 

and tesseral harmonics, for a maximum degree 𝑙 = 6 and 𝑢 ∈ [−1,1]. 

 

Figure 1.4: Spherical harmonics with 𝑙 = 6 in lateral and prospective views 



  Chapter 1 

17 

 

 

 

Figure 1.5: Legendre functions for zonal (a), sectorial (b) and tesseral (c) harmonics 
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Finally, computing the gradient of the gravitational potential of eq. (1.9) in body-fixed coordinates, 

we obtain the acceleration of the S/C related to a single celestial body. 

A useful and quite easy implementation of the accelerations due to gravitational attraction of non-

spherical shaped celestial bodies is available in Montenbruck O., Gill E., Satellite Orbits, Springer, 

3rd edition, 2005 (Montenbruck & Gill, Satellite Orbits, 2000), which considers the three components 

of acceleration vector due to spherical harmonics as the sum of partial accelerations computed for 

every harmonic, namely: 

𝑥̈b(t) =∑𝑥̈𝑙,𝑚b(t)

𝑙,𝑚

             𝑦̈b(t) =∑𝑦̈𝑙,𝑚b(t)            𝑧̈b(t) = ∑𝑧̈𝑙,𝑚b(t)

𝑙,𝑚

 

𝑙,𝑚

 

Therefore, defining the useful scalar coefficients V𝑙,𝑚(t) and W𝑙,𝑚(t) as: 

V𝑙,𝑚(t)|b ≝ (
Rp

𝑟(t)
)
𝑙+1

P𝑙,𝑚[sin(𝜙𝑔𝑐sat(t))] cos(𝑚𝜆sat(t))   

W𝑙,𝑚(t)|b ≝ (
Rp

𝑟(t)
)
𝑙+1

P𝑙,𝑚[sin(𝜙𝑔𝑐sat(t))] sin(𝑚𝜆sat(t)) , 

is possible to simplify the gravitational potential of eq. (1.9):  

UsatG(t)|b
=
GM

Rp
∑∑ [C𝑙,𝑚 V𝑙,𝑚(t)|b+S𝑙,𝑚W𝑙,𝑚(t)|b]

𝑙

𝑚=0

∞

𝑙=0

 

The scalar coefficients V𝑙,𝑚(t) and W𝑙,𝑚(t) of eqs (1.11) can be seemed difficult to compute, but since 

they follow recurrence relations (Montenbruck & Gill, Satellite Orbits, 2000), i.e.: 

V𝑚,𝑚(t)|b =
(2𝑚 − 1) [

Rp 𝑥b(t)

𝑟(t)2
V𝑚−1,𝑚−1(t) −

Rp 𝑦b(t)

𝑟(t)2
W𝑚−1,𝑚−1(t)]      

W𝑚,𝑚(t)|b =
(2𝑚 − 1) [

Rp 𝑥b(t)

𝑟(t)2
W𝑚−1,𝑚−1(t) +

Rp 𝑦b(t)

𝑟(t)2
V𝑚−1,𝑚−1(t)]      

V𝑙,𝑚(t)|b = (
2𝑙 − 1

𝑙 − 𝑚
) 
Rp 𝑧b(t)

𝑟(t)2
V𝑙−1,𝑚(t) − (

𝑙 + 𝑚 − 1

𝑙 − 𝑚
)
Rp
2

𝑟(t)2
V𝑙−2,𝑚(t)       

W𝑙,𝑚(t)|b = (
2𝑙 − 1

𝑙 − 𝑚
) 
Rp 𝑧b(t)

𝑟(t)2
W𝑙−1,𝑚(t) − (

𝑙 + 𝑚 − 1

𝑙 − 𝑚
)
Rp
2

𝑟(t)2
W𝑙−2,𝑚(t) , 

they are easily computable with a recursive implementation, starting from the obvious values: 

(1.10)  

(1.11)  

(1.12)  

(1.13)  
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(1.15)  

V0,0(t) =
Rp

𝑟(t)
       ,      W0,0 = 0 

Finally, the partial accelerations in body-fixed coordinates become (omitting the time dependence 

and the body-fixed RF subscript of the scalar coefficients V𝑙,𝑚(t) and W𝑙,𝑚(t)): 

𝑥̈𝑙,0b =
GM

Rp2
(−C𝑙,0V𝑙+1,1) 

𝑦̈𝑙,0b =
GM

Rp2
(−C𝑙,0W𝑙+1,1) 

𝑥̈𝑙,𝑚b =
GM

2Rp2
[(−C𝑙,𝑚V𝑙+1,𝑚+1 − S𝑙,𝑚W𝑙+1,𝑚+1) +

(𝑙 − 𝑚 + 2)!

(𝑙 − 𝑚)!
(C𝑙,𝑚V𝑙+1,𝑚−1 + S𝑙,𝑚W𝑙+1,𝑚−1)] 

𝑦̈𝑙,𝑚b =
GM

2Rp2
[(−C𝑙,𝑚W𝑙+1,𝑚+1 + S𝑙,𝑚V𝑙+1,𝑚+1) +

(𝑙 − 𝑚 + 2)!

(𝑙 − 𝑚)!
(−C𝑙,𝑚W𝑙+1,𝑚−1 + S𝑙,𝑚V𝑙+1,𝑚−1)] 

𝑧̈𝑙,𝑚b =
GM

Rp2
[(𝑙 − 𝑚 + 1)(−C𝑙,𝑚V𝑙+1,𝑚 − S𝑙,𝑚W𝑙+1,𝑚)] 

As said before, these partial accelerations are computed in a body-fixed RF centered in the CoM of 

the celestial body, but the final acceleration must be written in an inertial RF. 

So, we must transform the acceleration vector from the body-fixed RF to the inertial one by exploiting 

the proper rotational matrix and, eventually, the drift between the two CoMs. 

For example, considering a S/C orbiting around the Earth, the partial accelerations are computed in 

ITRF, but the final acceleration vector must be transformed in ECI frame: 

𝒂ECI(t) = 𝑻(t)𝒂ITRF(t) , 

where 𝑻(t) is the transformation matrix between ITRF and ECI reference frames. 

Obviously, the C𝑙,𝑚 and S𝑙,𝑚 unnormalized gravitational coefficients related to spherical harmonics 

must be known a-priori, since their computation requires difficult techniques to map the masses 

distribution of every celestial body considered. 

Some publications prefer to adopt the normalized gravitational coefficients C̅𝑙,𝑚 and S̅𝑙,𝑚 instead of 

the unnormalized ones, since the first normally show lower changes in magnitude between a 

combination of degree 𝑙 and order 𝑚 and the subsequent one. 

It is possible to easily shift from the unnormalized coefficients to the normalized ones, and vice versa, 

by exploiting the following equations (Montenbruck & Gill, Satellite Orbits, 2000): 

(1.14)  

(1.16)  
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(1.17)  

(1.19)  

{
C̅𝑙,𝑚

S̅𝑙,𝑚
} = √

(𝑙 + 𝑚)!

(2 − 𝛿0𝑚)(2𝑙 − 1)(𝑙 − 𝑚)!
  {
C𝑙,𝑚
S𝑙,𝑚

} , 

where 𝛿0𝑚 is the Delta of Kronecker function. 

The normalized associated Legendre functions are obtainable from the unnormalized ones too, i.e.: 

P̅𝑙,𝑚 = √
(2 − 𝛿0𝑚)(2𝑙 − 1)(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
  P𝑙,𝑚 , 

so that, it is easy to rewrite the gravitational potential of eq. (1.9) by using the normalized coefficients 

and Legendre functions instead of the unnormalized ones: 

UsatG|b
≝

GM

𝑟sat(t)
∑∑ (

Rp

𝑟sat(t)
)
𝑙

P̅𝑙,𝑚[sin(𝜙sat(t))]

𝑙

𝑚=0

∞

𝑙=0

[C̅𝑙,𝑚 cos(𝑚𝜆sat(t)) + S̅𝑙,𝑚 sin(𝑚𝜆sat(t))] , 

Obviously, also the partial accelerations computed in eqs (1.15) must be rewritten by considering the 

normalized gravitational coefficients and Legendre functions. 

Although the Montenbruck technique is quite easy to implement and is suitable in terms of 

computational effort, there exists a better solution to compute the accelerations due to gravitational 

spherical harmonics, which is the built-in MATLAB function gravitysphericalharmonic, which 

requires a greater effort to the computational machine than the Montenbruck technique, but it allows 

more precise solutions. 

Since this function has been created to primarily extrapolate the accelerations due to well-known 

massive bodies in space, such as the Earth, the Moon and so on, for which there exists an excellent 

knowledge of their shapes and mass distributions, that are already contained inside MATLAB 

software, is possible to customize the computation process in case of particular celestial bodies by 

adding the main data available for the orbiting massive body. 

Therefore, the calls: 

• [ax, ay, az] = gravitysphericalharmonic(r_rot','custom',degree,{'Didymain.mat'@load},'None'); 

• [ax, ay, az] = gravitysphericalharmonic(r_rot','custom',degree,{'Didymoon.mat'@load},'None'), 

allow the user to compute the three components ax, ay, az of the gravitational accelerations due to 

spherical harmonics in the Planet-Centered Planet-Fixed reference frames by properly specifying the 

following fields: 

- r_rot is the position vector of DustCube w.r.t. Didymain or Didymoon in planet coordinates; 

(1.18)  
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- 'custom' suggests to MATLAB to consider the computation as personalized; 

- degree is the maximum value 𝑙 considered by the MATLAB function; 

- {'Didymain.mat'@load} and {'Didymoon.mat'@load} permit to upload the main data of the 

celestial bodies Didymain and Didymoon inside the MATLAB function, which are contained in 

the MATLAB files Didymain.mat and Didymoon.mat, respectively; 

- 'None' specifies the action in case of out of range input, which is not in our interest. 

The MATLAB files Didymain.mat and Didymoon.mat hold binary data in form of matrices and 

scalars, which are necessary to properly compute the gravitational acceleration due to the spherical 

harmonics of the primaries of Didymos. 

Every binary file contains the following data of a celestial body:  

• the mass parameter 𝜇 = GM in [𝑚3 𝑠2⁄ ]; 

• the mean equatorial radius Re in [𝑚]; 

• the maximum degree 𝑙𝑚𝑎𝑥 of the spherical harmonics available for the massive body; 

• the matrices C and L of dimensions (𝑙𝑚𝑎𝑥 + 1) × (𝑙𝑚𝑎𝑥 + 1) which hold the normalized exterior 

spherical harmonic coefficients C̅𝑙,𝑚 and S̅𝑙,𝑚 of the celestial body. 

The Didymain’s gravitational acceleration has been tested by using normalized coefficients up to 

degree 20 and order 20 computed for a homogeneous polyhedron of uniform density by Zannoni M., 

et al., Radio science investigations with the Asteroid impact mission, Adv. Space Res., 2018 (Zannoni, 

et al., 2018) and unnormalized exterior spherical harmonic coefficients up to degree 4 and order 4 

available from Takahashi Y., Gravity Field Characterization around Small Bodies, University of 

Colorado, 2013 (Takahashi, 2013), shown in Table 1.3. 

The final acceleration of DustCube due to Didymain’s gravitation has an order of magnitude of about 

10−5 ÷ 10−6 [m s2⁄ ], even if is important to remark that the major contribute comes from the central 

attraction C1,0, while the other partial accelerations have orders of magnitude much smaller than the 

central one. 
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(1.20)  

ORDER 

𝒍 

DEGREE 

𝒎 
𝐂𝒍,𝒎 𝐒𝒍,𝒎 

0 0 1.0 − 

    

1 0 0.0 − 

1 1 0 0 

2 0 − 6.3422 × 10−2 − 

2 1 0.0 0.0 

2 2 4.0949 × 10−3 0.0 

3 0 −1.5154 × 10−3 − 

3 1 2.8455 × 10−4 1.1578 × 10−4 

3 2 2.89891 × 10−5 −1.89599 × 10−5 

3 3 3.995 × 10−4 −1.293 × 10−4 

4 0 4.66049 × 10−2 − 

4 1 −2.65537 × 10−5 3.352119 × 10−5 

4 2 −9.588539 × 10−5 −1.28121 × 10−6 

4 3 −8.305724 × 10−6 −4.819896 × 10−6 

4 4 3.544874 × 10−5 −7.124178 × 10−6 

Table 1.3: Unnormalized exterior spherical harmonic coefficients of Didymain (Takahashi) 

The Didymoon’s gravitational acceleration has been computed by using the degree-2 spherical 

harmonics expansion of a homogeneous triaxial ellipsoid with these approximated dimensions: 

(ad, bd, cd) = (103 m, 79 m, 66 m) , 

by making use of the formulations available from Bills B.G. et al., Harmonic and statistical analyses 

of the gravity and topography of Vesta, ICARUS, 2014 (Bills, Asmar, Konopliv, Park, & Raymond, 

2014) to compute the unnormalized spherical harmonic coefficients J2 = −C2,0 and C2,2: 

J2 =
1

MdRd
2 (I𝑧 −

I𝑥 + I𝑦

2
) = −C2,0                 C2,2 =

1

MdRd
2 (
I𝑦 − I𝑥

4
) , 

where Rd is the mean equatorial radius and I𝑥, I𝑦, I𝑧 are the principal moments of inertia, namely: 

I𝑥 =
Md

5
(bd

2 + cd
2)              I𝑦 =

Md

5
(ad
2 + cd

2)           I𝑧 =
Md

5
(ad
2 + bd

2) 

The computed values of the Didymoon’s harmonic coefficients are available in Table 1.4. 

(1.22)  

(1.21)  
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ORDER 

𝒍 

DEGREE 

𝒎 
𝐂𝒍,𝒎 𝐒𝒍,𝒎 

0 0 1.0 − 

1 0 0.0 − 

1 1 0 0 

2 0 −9.8273 × 10−2 − 

2 1 0.0 0.0 

2 2 2.6374 × 10−2 0.0 

Table 1.4: Unnormalized exterior spherical harmonic coefficients of Didymoon 

The final acceleration of DustCube due to Didymoon’s gravitation has an order of magnitude of about 

10−7 [m s2⁄ ], where the central attraction stands for the major contribute. 

Obviously, the gravitational accelerations due to Didymain or Didymoon are computed in body-fixed 

coordinates and translated in quasi-inertial RF at every iteration. 

1.2.3 THE SOLAR RADIATION PRESSURE (SRP) 

The Solar Radiation Pressure (SRP) contribution must be taken into account, since the acceleration 

due to it is not negligible during the DustCube mission, when Didymos will pass at a distance of just 

0.11 AU from the Earth, as can be seen in Figure 1.6. 

 

Figure 1.6: Didymos and Earth orbits from 11/20/202 (Christian, 2015)1 to 02/20/2023 
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(1.23)  

Simplifying the geometry of the satellite, i.e. considering its shape as a flat plate, is possible to 

compute the force acting on DustCube due to SRP by exploiting the well-known behaviour of an 

opaque flat surface subjected to a flow of incoming luminous energy (Figure 1.7). 

 

Figure 1.7: Principles of an illuminated flat plate in prospective view and in top one 

Indeed, since the luminous energy that reaches an opaque surface is divided in absorbed, specularly 

reflected and diffusively reflected, the force acting on a flat plate due to SRP is computable as: 

𝒇SRP(t) = −P(t) {(1 − C𝑠𝑝𝑒𝑐)𝒔̂(t) + 2 [C𝑠𝑝𝑒𝑐 cos(θ(t)) +
1

3
C𝑑𝑖𝑓𝑓] 𝒏̂(t)} cos(θ(t))Atot , 

where: 

• P(t) is the momentum flux regard the solar pressure [N/m2]; 

• C𝑠𝑝𝑒𝑐 is the coefficient of the specular radiation emitted by the illuminated surface;  

• C𝑑𝑖𝑓𝑓 is the coefficient of the diffusive radiation emitted by the illuminated surface; 

• 𝒔̂(t) is the unit vector directed from the surface towards the light source; 

• 𝒏̂(t) is the unit vector perpendicular to the illuminated surface; 

• θ(t) is the angle between 𝒔̂ and 𝒏̂, which is always included between 0° and 90°; 

• Atot is the approximated area of the illuminated surface [m2]. 

In our case, since the light source is the Sun and the DustCube’s camera will point towards Didymoon 

to acquire images during the DART’s impact, the unit vector 𝒔̂(t) will be directed towards the Sun 

and the versor 𝒏̂(t) towards Didymoon or in the opposite direction, depending on which will be the 

illuminated surface.  

The momentum flux P(t) is a measure of the pressure exerted by the incoming light, therefore it 

depends on the luminous energy source, the distance from it and the light propagation medium. 
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(1.24)  

The last feature affects the speed of movement of the electromagnetic waves while the first two ones 

are kept in consideration by employing the solar flux Φ(t) [W/m2], which measures the luminous 

energy that impinges on the surface per unit time and per unit area, namely: 

Φ(t) ≝
Ls

4𝜋‖𝒔(t)‖2
 , 

where Ls = 3.9 × 1026 [W] is the luminosity of the Sun and ‖𝒔(t)‖ is the distance from the energy 

source in [m], i.e. the distance between DustCube and the Sun, since 𝒔(t) is defined as the position 

vector of the last one, considered as a point in space, w.r.t. DustCube’s CoM. 

The evolution in time of the solar flux impinging on DustCube during its motion inside Didymos 

binary system is shown in Figure 1.8, for a time window that spans from midnight of June 20, 2022 

to midnight of November 20, 2022, covering five months entirely. 

 

Figure 1.8: Solar flux impinging on DustCube from 2022-06-20 to 2022-11-20 

Finally, since Didymos has no atmosphere and no ionosphere, the electromagnetic waves propagate 

in the vacuum, so that the momentum flux P(t) for DustCube mission (sat subscript) depends on the 

solar flux (eq. (1.24)) and on the speed of light 𝑐 = 2,99792458 × 108 m/s: 
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(1.25)  Psat(t) ≝
Φ(t)

𝑐
=

Ls
4𝜋𝑐‖𝒔(t)‖2

 

The adimensional coefficients C𝑠𝑝𝑒𝑐, C𝑑𝑖𝑓𝑓 and C𝑎𝑏𝑠 are due to the considered material and are defined 

as energy ratios, namely: 

C𝑠𝑝𝑒𝑐 ≝
E𝑠𝑝𝑒𝑐

Etot
   ;    C𝑑𝑖𝑓𝑓 ≝

E𝑑𝑖𝑓𝑓

Etot
   ;    C𝑎𝑏𝑠 ≝

E𝑎𝑏𝑠
Etot

 

where Etot is the total luminous energy that reaches the opaque surface measured in [J], while E𝑠𝑝𝑒𝑐, 

E𝑑𝑖𝑓𝑓 and E𝑎𝑏𝑠 are the portions of the total energy that are specularly reflected, diffusively reflected 

and absorbed, respectively, so that every coefficient is lower than 1. 

Therefore, since Etot = E𝑠𝑝𝑒𝑐 + E𝑑𝑖𝑓𝑓 + E𝑎𝑏𝑠, it is enough to know just two coefficients, because the 

third one can be easily computed by exploiting the obvious relation:  

C𝑎𝑏𝑠 + C𝑠𝑝𝑒𝑐 + C𝑑𝑖𝑓𝑓 = 1 

Approximating DustCube as a flat plate with no thickness and considering the constrains about 

materials and payload, we can account for the following rough data: 

• msat = 4.365 kg; 

• Atotsat = 0.09 m2; 

• C𝑠𝑝𝑒𝑐sat = 0.08; 

• C𝑑𝑖𝑓𝑓sat
= 0.45. 

Finally, using the equation (1.23) and the previous data, it is possible to compute the force acting on 

DustCube due to SRP and the relative acceleration 𝒂satSRP(t) = 𝒇satSRP(t) msat⁄ . 

It is important to remark the relation (1.23) does not consider any attenuation factor, but since 

DustCube will orbit in a binary system, it is needed to take into account the shadows of the two 

massive bodies: Didymain and Didymoon. 

Indeed, making geometric considerations, it is possible to understand the influence of a celestial body 

on an orbiting S/C in terms of shadow conditions (Figure 1.9).  

(1.26)  

(1.27)  
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(1.28)  

 

Figure 1.9: Conical shadow model (Montenbruck & Gill, Satellite Orbits, 2000) 

Therefore, to refine the equation (1.23), is useful to introduce an adimensional factor, the so-called 

shadow function 𝜈𝑠𝑓, which allows to take into account an attenuation of the force due to SRP when 

the S/C is subjected to partial illumination conditions. 

Since the shadow function must tune the SRP’s influence, that is maximum when the celestial bodies 

do not occult the sunlight, for which we can exploit the equation (1.23), the actual force vector acting 

on a flat surface due to SRP in presence of one occulting body can be computed as (Montenbruck & 

Gill, Satellite Orbits, 2000): 

𝒇SRP(t) ≝ −𝜈𝑠𝑓(t)P(t) {(1 − C𝑠𝑝𝑒𝑐)𝒔̂(t) + 2 [C𝑠𝑝𝑒𝑐 cos(θ(t)) +
1

3
C𝑑𝑖𝑓𝑓] 𝒏̂(t)} cos(θ(t)) Atot , 

so that 𝜈𝑠𝑓(t) assumes several values lower or equal to the unit related to the illumination conditions 

of the S/C, i.e.: 

1. 𝜈𝑠𝑓 = 1 when the satellite is in sunlight; 

2. 𝜈𝑠𝑓 = 0 when the satellite is in umbra; 

3. 0 < 𝜈𝑠𝑓 < 1 when the satellite is in penumbra. 

Montenbruck & Gill (Montenbruck & Gill, Satellite Orbits, 2000) propose a computation of the 

shadow function which neglects the oblateness of the occulting body. 

Indeed, simplifying the shapes of the three bodies (Sun, occulting body and S/C), i.e. considering the 

satellite like a flat plate and the Sun and the other celestial body as quasi-spherical, the degree of the 
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Sun’s occultation can be obtained from the angular separation and diameters of the respective bodies 

by exploiting the concepts of apparent radius and apparent separation. 

Therefore, referring to the Figure 1.10, we can define the apparent radii as the angles a and b and the 

apparent separation as the angle c. 

 

Figure 1.10: Illustration of apparent radii and apparent separation 

Indeed, since Didymos is far away from the Sun, the apparent diameter of the last one is quite small 

to model the occultation by overlapping circular disks (Figure 1.11), where the occulted area of the 

Sun’s disk is represented by the turquoise one. 

 

Figure 1.11: Occultation of the solar disk caused by a spherical body 
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(1.31)  

(1.30)  

(1.32)  

(1.33)  

Therefore, making use of a quasi-inertial RF centered in the CoM of the system and considering the 

geometric illustrations of Figure 1.10 and Figure 1.11, we can define: 

• 𝒓s(t) as the position vector of the Sun; 

• 𝒓occ(t) as the position vector of the occulting body; 

• 𝒓sat(t) as the position vector of the S/C; 

• Rs as the mean radius of the Sun; 

• Rocc as the mean radius of the occulting body, 

so that it is possible to compute the apparent separation between the geometric centers of the Sun and 

the occulting body (c) and they apparent radii (a and b) as: 

a(t) ≝ sin−1 [
Rs

‖𝒓s(t) − 𝒓sat(t)‖
] 

b(t) ≝ sin−1 [
Rocc

‖𝒓occ(t) − 𝒓sat(t)‖
] 

c(t) ≝ cos−1 [
(𝒓occ(t) − 𝒓sat(t)) ∙ (𝒓s(t) − 𝒓sat(t))

‖𝒓occ(t) − 𝒓(t)‖‖𝒓s(t) − 𝒓sat(t)‖
] , 

which allows the computation of the occulted area of the apparent solar disk (𝐴𝑜𝑐𝑐), which is the 

turquoise one depicted in Figure 1.11: 

Aocc(t) = a(t)2 cos−1 [
x(t)

a(t)
] + b(t)2 cos−1 [

c(t) − y(t)

b(t)
] − c(t) y(t) , 

where x(t) and y(t) are two coefficients defined as: 

x(t) ≝
c(t)2 + a(t)2 − b(t)2

2c(t)
 

y(t) ≝ √a(t)2 − x(t)2 

It is important to remark that the eq. (1.30) is exploitable iff the following condition is verified: 

|a(t) − b(t)| < c(t) < a(t) + b(t) 

Once 𝐴𝑜𝑐𝑐(t) is defined, the computation of the shadow function 𝜈𝑠𝑓(t) becomes simply: 

𝜈𝑠𝑓(t) = 1 −
Aocc(t)

𝜋a(t)2
 

(1.29)  



Chapter 1   

30 

Obviously, the different values of 𝜈𝑠𝑓(t) are linked to the occulting conditions, i.e.: 

1. total occultation when: b(t) − a(t) > c(t), i.e. 𝜈𝑠𝑓(t) = 0; 

2. partial but maximum occultation when: a(t) − b(t) > c(t), i.e. 𝜈𝑠𝑓(t) = 1 − [b(t)
2 a(t)2⁄ ]; 

3. partial occultation when the condition (1.32) is verified, i.e. 𝜈𝑠𝑓(t) is computed from (1.33); 

4. there is no occultation when: a(t) + b(t) < c(t), i.e. 𝜈𝑠𝑓(t) = 1. 

The condition 1. brings to a null influence of the SRP on the S/C (Aocc = 𝜋a
2), while the condition 

4. implies the S/C is totally in sunlight, i.e. 𝒇satSRP(t) is maximum (Aocc = 0). 

In our case, since DustCube will operate in a binary system, we must consider the occultations of the 

primaries (Didymain and Didymoon), therefore the illuminating conditions of DustCube are 

influenced by two massive bodies with different shapes: a quasi-spherical body for Didymain and a 

quasi-ellipsoidal one for Didymoon. 

Although the last one has not a quasi-spherical shape, it is useful to maintain the concept of 

Montenbruck & Gill to compute the Didymoon’s shadow function, considering the mean of its 

dimensions (1.20), w/o making big errors.  

Thus, the final solution of the force 𝒇satSRP(t) acting on DustCube, attenuated by the occultation of 

the sunlight due to the presence of the primaries, can be obtained by computing the two shadow 

functions separately, using two simplified quasi-spherical bodies (Figure 1.12). 

 

Figure 1.12: Occultation of the Sun caused by two spherical bodies 
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(1.34)  

(1.35)  

Since Didymoon has a quasi-ellipsoidal shape, the implementation of this solution is not optimal and 

a deeper study of the overlapping situations in case of two massive bodies with different shapes should 

be faced up in the future, although the method adopted in this work of thesis to compute 𝒇satSRP(t) 

allows the user to reach a good compromise between precision of the solution and computational cost, 

to such an extent that the adopted method can be considered as the optimal one. 

Finally, the SRP contribution on DustCube’s motion is important, since the acceleration of the satellite 

has an order of magnitude of about 10−8 ÷ 10−9 [m s2⁄ ]. 

1.2.5 SUN’S GRAVITATIONAL ATTRACTION 

The gravitational disturbance acted by Sun must be considered for the state’s propagation of 

DustCube, since the 99.8% of the Solar System mass is contained in its unique star.  

Since the Sun is far away from Didymos system, is suitable to simplify its gravitational influence as 

a central attraction, i.e. by considering it like a point-mass which contains its total mass. 

Obviously, the Sun’s gravitational influence acts on DustCube and on Didymos system too, so that, 

expressing the state of S/C in Didymos RF, which is centered in the CoM of the binary system, the 

final expression of the acceleration of DustCube due to Sun’s gravitational disturbance must consider 

the positive solar central attraction ,which directly acts on the S/C, and the negative contribution due 

to the same attraction working on Didymos barycenter (Montenbruck & Gill, Satellite Orbits, 2000). 

Therefore, approximating the solar mass and, consequently, the gravitational parameter as: 

Msun = 1.98847 × 1030 kg , 

𝜇sun = GMsun = 1.3271 × 10
20m3 s2⁄  , 

and referring again to Figure 1.10, which has been used for the explanation of the SRP’s influence, 

the DustCube’s acceleration due to Sun’s gravitation can be finally expressed as: 

𝒂satGsun
(t) ≝ 𝜇sun [

𝒓s(t) − 𝒓sat(t)

‖𝒓s(t) − 𝒓sat(t)‖3
−

𝒓s(t)

‖𝒓s(t)‖3
] = 𝜇sun [

𝒔(t)

‖𝒔(t)‖3
−

𝒓s(t)

‖𝒓s(t)‖3
] , 

remembering that 𝒔(t) and 𝒓s(t) are the Sun’s position vectors w.r.t. DustCube and the Didymos’ 

CoM, respectively. Finally, the Sun’s gravitational acceleration acting on the S/C has an order of 

magnitude around 10−11 [m s2]⁄ , which is much lower than the other ones. 

With the same reasoning, we can compute the accelerations of DustCube due to other solar bodies, 

such as Jupiter, which has a mass of about 1027 [kg], but their orders of magnitude are so small that 

we can omit them w/o making relevant errors. 
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To compute the state of DustCube, is important to remark that we can indifferently choose to exploit 

the Didymos Reference Frame, centered in the CoM of the binary system, or the Didymain quasi-

inertial Reference Frame, linked to the CoM of Didymain. 

Therefore, in case of the selected RF is the second one, the propagator must consider not only the 

solar gravitational attraction acting on the CoM, but also the Didymoon’s gravitational influence that 

works on the RF’s CoM. 
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(2.1)  

(2.3)  

(2.2)  

 DUSTCUBE’S ORBIT PROPAGATOR 

In section 1.2 DustCube’s dynamical model of the previous chapter have been described the set of 

dynamic forces to which DustCube is subjected and the fundamental reference frames to describe its 

motion inside Didymos system. 

Now, since the objective of the Kalman filter is to compute the evaluation of the satellite’s state in 

real-time onboard DustCube, it has been important to implement an orbit propagator to simulate 

several S/C’s orbits to finally test the Kalman filtering step by step, i.e. discretizing the time window 

with a constant time step, which has to be selected in a proper way with a compromise between 

precision of the computed solution and computational cost. 

Therefore, an orbit propagator has been created in MATLAB exploiting the Runge-Kutta 4th order 

method, which is one of the most useful mathematical technique to approximate the solutions of ODE 

systems, and the SPICE Toolkit, an useful information system created by NAIF at JPL to assist NASA 

scientists in planning and interpreting scientific observations from space-borne instruments and to 

help NASA engineers involved in modelling, planning and executing activities needed to conduct 

planetary exploration missions (Jet Propulsion Laboratory (JPL), NASA). 

2.1 THE CAUCHY PROBLEM FOR DUSTCUBE’S PROPAGATOR 

Since the goal is to propagate the state of DustCube in a discretized time window, the problem is to 

evaluate a vector function  𝐬sat(t) for a specific time-window, knowing its evolution in time, i.e. its 

first derivative 𝒇(t, 𝐬sat(t)), and the initial value  𝐬sat(t0), considering a quasi-inertial reference 

frame centered in CoM of the binary system, which is the Didymos Reference Frame (DYD subscript) 

described in the first chapter. 

Therefore, it’s easy to recognize the classical Cauchy problem or initial value problem (IVP), as 

reported in section A.3 General Cauchy problem, eq. (A.70), in Appendix: 

𝐒𝐓𝐀𝐓𝐄 𝐕𝐄𝐂𝐓𝐎𝐑:                     𝐬satDYD(t) = [
𝒓sat(t)

𝒗sat(t)
]
DYD

 

𝐄𝐕𝐎𝐋𝐔𝐓𝐈𝐎𝐍 𝐈𝐍 𝐓𝐈𝐌𝐄:          𝐬̇satDYD(t) = 𝒇 (t, 𝐬satDYD(t)) = [
𝒓̇sat(t)

𝒗̇sat(t)
]
DYD

= [
𝒗sat(t)

𝒂sat(t)
]
DYD

 

𝐈𝐍𝐈𝐓𝐈𝐀𝐋 𝐕𝐀𝐋𝐔𝐄 𝐕𝐄𝐂𝐓𝐎𝐑:   𝐬satDYD(t0) = [
𝒓sat(t0)

𝒗sat(t0)
]
DYD

= [
𝒓sat0
𝒗sat0

]
DYD

 , 
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(2.4)  

(2.5)  

where 𝒓satDYD(t), 𝒗satDYD(t) and 𝒂satDYD(t) are the position, the velocity and the acceleration 

vectors of DustCube w.r.t. the CoM of Didymos. 

Finally, the objective is to solve a system of ODEs with known initial values, where the acceleration 

is a sum of the elementary contributions acting on DustCube, as it has been described in section 1.2 

DustCube's dynamical model of chapter 1. 

For instance, if we only consider the central attractions acted by Didymain and Didymoon and the 

SRP w/o shadow function contribution, the expression of the derivative of the state vector becomes: 

 𝐬̇satDYD(t) = [
𝒗sat(t)

−
𝜇D

‖𝒓sat−D(t)‖3
𝒓sat−D(t) −

𝜇d
‖𝒓sat−d(t)‖3

𝒓sat−d(t) + 𝒂satSRP(t)
]

DYD

 , 

which can be expanded in components: 

 𝐬̇satDYD(t) =

[
 
 
 
 
 
 
 
 
 

𝑣𝑥sat(t)

𝑣𝑦sat
(t)

𝑣𝑧sat(t)

−
𝜇D

‖𝒓sat−D(t)‖3
𝑥sat−D(t) −

𝜇d
‖𝒓sat−d(t)‖3

𝑥sat−d(t) + 𝑎𝑥satSRP
(t)

−
𝜇D

‖𝒓sat−D(t)‖
3
𝑦sat−D(t) −

𝜇d
‖𝒓sat−d(t)‖

3
𝑦sat−d(t) + 𝑎𝑦satSRP

(t)

−
𝜇D

‖𝒓sat−D(t)‖3
𝑧sat−D(t) −

𝜇d
‖𝒓sat−d(t)‖3

𝑧sat−d(t) + 𝑎𝑧satSRP
(t)
]
 
 
 
 
 
 
 
 
 

DYD

 

Since the equations of the dynamic of the system are not linear, is not possible to compute an exact 

solution of the state vector in the selected time window, thus it must be approximated by exploiting a 

suited numerical method, that is an ODE solver, by discretizing the time window ΔT with a constant 

time-step h. 

Therefore, the problem becomes to compute a discretized solution of the continuous function  𝐬sat(t), 

i.e. 𝐬sat(t𝑘) with t𝑘 ∈ ΔT and 𝑘 = 0, … , 𝑛, i.e. t𝑘 = t0 + 𝑘h, by knowing a-priori 𝐬satDYD(t0) and 

𝒇 (t, 𝐬satDYD(t)), which require to select an appropriate time-step h and to choose the best numerical 

method in terms of compromise between precision of the solution and computational cost. 

There exists a lot of ODE solvers in MATLAB, such as ode23t.m, ode23s.m, ode45.m and so on, but 

I decided to implement an independent ODE solver exploiting the Runge-Kutta 4th order method to 

have more flexibility, since it allows flexibility in the choice of the time-step h, because it is a robust 

numerical method, and to easily access to the data of the problem at every instant of time of the 

propagation. 
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2.2 THE RUNGE-KUTTA 4TH
 ORDER METHOD 

The Runge-Kutta 4th order method is a useful numerical explicit method to approximate the solutions 

of ordinary differential equations (ODEs), especially for initial values problems (IVPs). 

Its name derives from the German mathematicians Carl David Tolmé Runge and Martin Wilhelm 

Kutta, which developed the Runge-Kutta methods around 1900 and published their work in 1901. 

The RK4 method is an accurate and precise one-step method that allows to properly select the time-

step of the integration, so that it is possible to try different time-steps with the goal to reach a 

compromise between local errors and computational costs. 

Since it can be easily extended to ODEs systems and does not require a big computational effort, it is 

the most exploited method in spacecraft computations. 

Considering the continuous Cauchy problem of eqs (2.1)÷ (2.3) and discretizing the time window 

with a constant time step h as described before, i.e. ΔT = (t0, … , t𝑘, … , t𝑛) with 0 ≤ 𝑘 ≤ 𝑛, the 

general formulation of RK4 for a system of ODEs makes sure that the vector function is approximated 

at every time-step h as: 

𝒖𝑘 = 𝒖𝑘−1 +
h

6
(𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4) , 

where 𝒖𝑘 and 𝒖𝑘−1 are the computations of the function at the instants of time 𝑘 and 𝑘 − 1, 

respectively, and 𝒌1, 𝒌2, 𝒌3, 𝒌4 are the evaluations of the temporal derivative of the function 𝒖 at 

different instants of time, so that they are defined as: 

𝒌1 = 𝐟𝑘−1 = 𝐟(t𝑘−1 , 𝒖𝑘−1)         

𝒌2 = 𝐟 (t𝑘−1 +
h

2
 , 𝒖𝑘−1 +

h

2
𝒌1) 

𝒌3 = 𝐟 (t𝑘−1 +
h

2
 , 𝒖𝑘−1 +

h

2
𝒌2) 

𝒌4 = 𝐟(t𝑘−1 + h , 𝒖𝑘−1 + h𝒌3)   

The computational cost depends on the width of the time window ΔT and the selected time step h. 

Indeed, for the same time window, a smaller time step allows the user to reach a better accuracy, while 

a bigger one permits to achieve a lower computational cost. 

(2.6)  

(2.7)  
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2.3 THE SPICE TOOLKIT 

The SPICE Toolkit (Jet Propulsion Laboratory (JPL), NASA, 2017) is based on kernels, that are 

binary or text files containing important data such as ephemeris of celestial bodies, quaternions or 

Euler angles of reference frames, shape models of celestial bodies and so on. 

There are several types of kernels that contain different data: 

• CK: orientation information, called the "C-matrix," between S/Cs and their scientific instruments; 

• DSK: digital shape model info, that offer the possibility of making use of higher fidelity shape 

models w.r.t. some data insert in PCK kernels. Obviously, they are available just for those solar 

bodies for which scientists have calculated detailed shapes, such as Earth, Moon, Mars and the 

most important asteroids and comets; 

• EK: events information that summarize mission activities (rarely exploited); 

• FK: info of a specific reference frame that is used for space missions; 

• IK: instrument information, such as field-of-view size, shape and orientation parameters; 

• LSK: leap-seconds info, that must be used together with SCLK kernels; 

• PCK: physical, dynamical and cartographic constants for target bodies, such as size, shape, 

orientation of the spin axis and so on; 

• SCLK: spacecraft clock info, that must be used together with LSK kernels to convert time tags 

between various time measurement systems; 

• SPK: planets, satellites, comets, asteroid and spacecraft ephemeris given as a function of time. 

NAIF/JPL offers the possibility to download a lot of kernels from its website at the link 

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/, even if some kernels must be created by the user 

to properly exploit the potentialities of the SPICE Toolkit. 

Once the useful kernels for the mission have been defined, the Toolkit allows the user to manage the 

data contained in these files by permitting the dialogue with the software packages C, Fortran, IDL, 

MATLAB. 

The dialogue with MATLAB is guaranteed by the MICE library, that contains a lot of MATLAB 

functions and routines generated by NAIF/JPL that permit to exploit the loaded kernels and to access 

their data. The MICE library can be downloaded from NAIF website at the link 

https://naif.jpl.nasa.gov/naif/toolkit_MATLAB.html. 

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/
https://naif.jpl.nasa.gov/naif/toolkit_MATLAB.html
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Also, the MICE library allows the user to exploit other utilities, such as execution programmes, useful 

to easily dialogue with SPICE kernels. 

Since the usage of SPICE kernels and MICE library is not easy, NAIF website contains a database of 

tutorials and lessons in pdf extension to allows the user to properly manage the potentialities of the 

SPICE Toolkit at the link https://naif.jpl.nasa.gov/naif/tutorials.html (Jet Propulsion Laboratory 

(JPL), NASA, 2018). 

2.3.1 SPICE KERNELS FOR DUSTCUBE’S ORBIT PROPAGATOR 

The SPICE Toolkit has been used to recreate the environment in which DustCube will be immersed. 

To do this, some kernels have been uploaded from NAIF website: 

• naif0012.tls.pc, an LSK kernel which contains leap seconds to adjust time, released by NAIF/JPL 

on 14th July 2016; 

• de432s.bsp, an SPK binary file which contains planetary and lunar ephemeris of the Solar System, 

released by NAIF/JPL on 1st May 2014; 

• pck00010.tpc, a PCK kernel which contains orientation and shape data of several Solar System’s 

celestial bodies. 

Also, I’ve created other kernels to properly study the orbit of DustCube: 

• 2065803.bsp: is an SPK binary file which contains the ephemeris of Didymos from 1st January 

1990 to 1st January 2050. This file was created by making use of the Horizons SPK file generator 

(Jet Propulsion Laboratory (JPL), NASA, 2018), offered by the JPL website at the link 

https://ssd.jpl.nasa.gov/x/spk.html; 

• didymosinertial.tf: is an FK text file which contains the Didymos inertial reference frame linked 

to SSB, presented in section 1.2.1 Reference Frames, with the x-y plane parallel to the plane 

containing the mean mutual orbit of Didymain and Didymoon; 

• didymosframe.tf: is an FK text file which contains the pseudo-inertial reference frame linked to 

CoM of Didymos, presented in section 1.2.1 Reference Frames. This frame does not rotate, but it 

simply follows the CoM of Didymos system, with the x-y plane that is the mean orbital plane of 

the mutual orbit of Didymain and Didymoon; 

• IAU_Didymos.tf: is an FK text file created by PHD student Riccardo Lasagni Manghi of 

University of Bologna (Lasagni Manghi, Modenini, Zannoni, & Tortora, 2018) which contains 

the main features of the body-fixed reference frames of Didymain and Didymoon; 

• Didymos_constants.pck: is a PCK text file that contains the main features of the primaries. 

https://naif.jpl.nasa.gov/naif/tutorials.html
https://ssd.jpl.nasa.gov/x/spk.html
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2.3.2 SPICE’S USEFUL ROUTINES 

The MICE library contains a lot of routines for space analysis. Obviously, just a small set of this 

library is useful for the DustCube orbit propagator. 

Here below is possible to visualize the most exploited functions with some example calls: 

• cspice_furnsh.m: this function is useful to upload kernels inside MATLAB environment. 

For instance, the call cspice_furnsh({'naif0012.tls.pc','de432s.bsp','2065803.bsp'}) uploads 

naif0012.tls.pc, de432s.bsp, 2065803.bsp kernels; 

• cspice_str2et.m: this routine is employed to insert dates inside MATLAB environment. Once the 

user has written dates in strings, this function converts these dates in ET.  

For instance, the call cspice_str2et({'2022 AUG 08 00:00:00.0', '2022 AUG 20 00:00:00.0'}) is 

useful to insert the initial time and the final time for the orbit’s propagation; 

• cspice_spkpos.m: this function is used to obtain the position vector of a target point in space, 

starting from an observation point in space, in rectangular coordinates, w.r.t. a specific reference 

frame and a precise time window. 

For instance, the command cspice_spkpos('Sun',epochs,'eclipJ2000','NONE’,'2065803') is used 

to compute the position of the CoM of Sun w.r.t. CoM of Didymos ('2065803') in ecliptic frame 

('eclipJ2000') for the time window 'epochs', without aberration corrections (‘NONE’); 

• cspice_spkezr.m: this routine is useful to obtain the state of a target point in space, in rectangular 

coordinates, w.r.t. an observation point in space., for. a specific reference frame and a precise time 

window. 

For instance, the call cspice_spkezr('2065803',epochs,'eclipJ2000','LT+S','0') allows user to 

compute the state of the CoM of Didymos w.r.t. Solar System Barycenter ('0'), in ecliptic frame, 

during the time window 'epochs' and corrected for one-way light time (LT) and stellar (S) 

aberration using a Newtonian formulation. The result is the apparent position of the target; 

• cspice_pxform.m, this routine is useful to compute the rotation matrix between frames for a 

specified time window. 

For instance, the command cspice_pxform('eclipJ2000','didymosframe',t0) generates the rotation 

matrix between the ecliptic frame and the Didymos frame at epoch 't0'. 

Finally, by making use of these routines and the previous kernels, it is possible to reconstruct the 

dynamical model of DustCube and, consequently, to compute its state. 
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2.4 IMPLEMENTATION OF THE ORBIT PROPAGATOR 

Once defined the numerical method to exploit and the necessary kernels and SPICE routines, it is 

useful to decompose the problem in different integration steps. 

Since the MATLAB propagator had to be tested step by step, the adopted solution for the purpose of 

this thesis was to split the acceleration of DustCube in its main contributions, each of which has a 

proper MATLAB routine created specifically for this mission. 

Obviously, the computational complexity of the propagator increases together with the growth of the 

number of accelerations considered. 

The states of DustCube are obtained in discretized form in Didymos Reference Frame, which can be 

thought as quasi-inertial for steep time windows, then transformed in Synodic Reference Frame, 

which represents the better RF to show the orbit of DustCube by exploiting its properties, such as the 

Lagrange equilibrium points (see Figure A.6 in Appendix). 

Therefore, the first step was computing the Synodic features for Didymos system, the second one 

integrating the DustCube’s orbit in Didymos RF, the third one transforming the states of DustCube 

in synodic coordinates. 

However, the user can autonomously decide to obtain the propagation of the motion of DustCube in 

discretized form Didymain quasi-inertial Reference Frame instead of in Didymos RF, as it will be 

clearer in section 2.4.3 The orbital propagator’s scripts. 

The propagator has been developed by creating the MATLAB script DustCube_Main.m. 

2.4.1 THE DIDYMOS’ SYNODIC PLANE 

The most important features of Didymos’ Synodic Plane can be obtained through the specifically 

created MATLAB function Libration_Points.m, which computes separately the collinear equilibrium 

points L1, L2, L3 and the triangular ones L4, L5. 

To exploit the computations shown in A.2 The Circular Restricted 3-Body Problem (CR3BP) in 

Appendix, is necessary to initially define the mass parameter ηdidy related to Didymos (eq. (A.55)) 

through the data (1.1), namely: 

ηdidy =
Md

MD +Md
=
Md

Mtot
= 0.0092 

Subsequently, considering the Lagrange quintic equation (A.64), which is a non-linear 5th order 

equation that asymptotically converges to three real values iff the initial ones 𝑢10, 𝑢20 and 𝑢30 are 

properly selected, as in the eqs (A.66), we can solve it by exploiting the well-known Newton-Raphson 

(2.8)  
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numerical method (Quarteroni, Sacco, Saleri, & Gervasio, 2014) to obtain three real solutions 𝑢1, 𝑢2 

and 𝑢3, which allow to achieve the collinear equilibrium points L1, L2, L3 by using the eq. (A.63): 

L1 = 𝑢1 + 1 −  η  
L2 = 𝑢2 + 1 −  η  
L3 = 𝑢3 + 1 −  η ,

 

while the triangular equilibrium points L4 and L5 are directly computable through the eqs. (A.68). 

The previous computations allow to obtain the Lagrange equilibrium points in adimensional form, 

but since the objective is to reconstruct the Didymos’ Synodic Plane to use it for DustCube’s orbital 

representations, is useful to transform L1, L2, L3, L4 and L5 in dimensional coordinates by multiplying 

them with the mean distance between primaries, which is d𝐷𝑑 = 1180 m. 

Finally, in Table 2.1 are shown the resulting Libration points for Didymos binary system. 

COLLINEAR EQUILIBRIUM POINTS 

L1 = (1005.91, 0, 0) m 

L2 = (1349.17, 0, 0) m 

L3 = (−1184.53, 0, 0) m 

TRIANGULAR EQUILIBRIUM POINTS 
L4 = (579.12, 1021.91, 0) m 

L5 = (579.12,−1021.91, 0) m 

Table 2.1: The computed Lagrange equilibrium points of Didymos binary system 

 

Figure 2.1: Didymos’ Synodic Plane 

                     

     

     

    

    

    

    

 

   

   

   

   

    

 
  
 
 

  

  

  

  

        

        

                     

  

(2.9)  
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(2.11)  

In Figure 2.1 is shown the Didymos’ Synodic Plane in dimensional form with the computed Libration 

points of Table 2.1 and the shapes and positions of Didymain and Didymoon. 

2.4.2 THE TRANSFORMATION IN SYNODIC COORDINATES 

Since it is convenient to evaluate the orbit of DustCube in the Synodic Plane, the MATLAB function 

synodic_state.m has been developed to transform the state of DustCube, which is computed in 

discretized form, from the Didymos RF to the Synodic one, which can be eased by exploiting the 

quasi-circularity of the orbit of Didymoon around Didymain, that means the module of the 

instantaneous angular velocity of Didymoon remains very close to its mean value. 

Hence, considering the discretized Didymoon’s state in DYD coordinates, namely: 

𝐬dDYD(t𝑘) = [
𝒓d(t𝑘)
𝒗d(t𝑘)

]
DYD

= [
𝒓dDYD(t𝑘)

𝒗dDYD(t𝑘)
] , 

is possible to compute the transformation matrix from DYD to SYN coordinates by exploiting the 

canonical base resulting from the vector triad composed by: 

• the position vector of Didymoon: 𝒓dDYD(t𝑘); 

•  the first integral of motion of Didymoon’s orbit: 𝒉dDYD = 𝒓dDYD(t𝑘) × 𝒗dDYD(t𝑘); 

• the vector which completes the right-hand frame: 𝜽dDYD(t𝑘) = 𝒉dDYD × 𝒓dDYD(t𝑘), 

Indeed, the unit vectors which form the canonical base (𝒓̂dDYD(t𝑘), 𝜽̂dDYD(t𝑘), 𝒉̂dDYD), namely: 

𝒓̂dDYD(t𝑘) =
𝒓dDYD(t𝑘)

‖𝒓dDYD(t𝑘)‖
        𝜽̂dDYD(t𝑘) =

𝜽dDYD(t𝑘)

‖𝜽dDYD(t𝑘)‖
        𝒉̂dDYD =

𝒉dDYD
‖𝒉dDYD‖

 , 

can be used to compute the rotation matrix from DYD to SYN coordinates, i.e.: 

𝑻DYD−SYN(t𝑘) = [𝒓̂dDYD(t𝑘)      𝜽̂dDYD(t𝑘)      𝒉̂dDYD]
𝑇
= [

𝒓̂dDYD(t𝑘)
𝑇

 𝜽̂dDYD(t𝑘) 
𝑇

𝒉̂dDYD
𝑇

] 

Also, to compute the DustCube’s velocity in SYN coordinates, we need to obtain the instantaneous 

angular velocity of Didymoon w.r.t. the CoM of Didymos 𝝎dDYD
(t𝑘), namely: 

𝝎dDYD
(t𝑘) =

𝒉dDYD

‖𝒓dDYD(t𝑘)‖
𝟐 

(2.13)  

(2.12)  

(2.10)  
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Once obtained the matrix 𝑻DYD−SYN(t𝑘) and the vector 𝝎dDYD
(t𝑘), the state of DustCube in SYN 

coordinates can be computed by exploiting the classical relations useful to transform position and 

velocity vectors from an inertial reference frame to a rotating frame with the same CoM (see eqs 

(A.37) and (A.13) in Appendix): 

𝒓satSYN(t𝑘) = 𝑻DYD−SYN(t𝑘) ∗ 𝒓satDYD(t𝑘) 

𝒗satSYN(t𝑘) = 𝑻DYD−SYN(t𝑘) ∗ 𝒗satDYD(t𝑘) − 𝛚dDYD
(t𝑘) × 𝒓satDYD(t𝑘) 

The choice to use the vector 𝝎dDYD
(t𝑘) comes from its easier computation than the first derivative 

of the rotation matrix 𝑻̇DYD−SYN(t𝑘). 

It is important to remark that the actual equations to transform the DustCube’s state from DYD to 

SYN coordinates require a constant rotation matrix and a constant angular velocity, which are defined 

as the mean values of the instantaneous rotation matrix 𝑻DYD−SYN(t𝑘) and the instantaneous angular 

velocity 𝝎dDYD
(t𝑘), so that: 

𝒓satSYN(t𝑘) = 𝑻mean ∗ 𝒓satDYD(t𝑘) 

𝒗satSYN(t𝑘) = 𝑻mean ∗ 𝒗satDYD(t𝑘) − 𝝎mean × 𝒓satSYN(t𝑘) 

However, since the orbit of Didymoon around the CoM of Didymos is quasi-circular, i.e. its 

eccentricity is close to zero (𝑒orb = 0.03), is useful to compute the transformation of the DustCube’s 

state from DYD to SYN coordinates by exploiting the eqs (2.14), which allows the user to obtain a 

final solution w/o large absolute errors, because the instantaneous angular velocity of Didymoon 

differs slightly from the rotation speed of the Synodic RF w.r.t. the Didymos one. 

2.4.3 THE ORBITAL PROPAGATOR’S SCRIPTS 

As said before, the state of DustCube is achieved by exploiting the already mentioned Cauchy 

problem (eqs (2.1)÷ (2.3)) with a growing complexity due to a step by step addition of acceleration 

contributions (see 1.2 DustCube’s dynamical model for more details). 

Therefore, several MATLAB functions have been created to propagate the DustCube’s state, each of 

which employs the RK4 numerical method explained in section 2.2 The Runge-Kutta 4th order 

method, starting from an initial state defined a-priori: 

1. The scripts RK_3bodies.m propagates the DustCube’s state by just considering the central 

attractions of Didymain and Didymoon, that regards to consider the primaries as two punctual 

massive bodies w/o shape. Therefore, the evolution in time of the state vector can be easily 

(2.14)  

(2.15)  
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visualized by erasing the SRP contribution from eq. (2.5) and  by switching from the continuous 

form to the discretized one. 

The accelerations due to the central attractions of Didymain and Didymoon, 𝒂satGD
(t𝑘) and 

𝒂satGd
(t𝑘), respectively, are computed by exploiting the specifically designed MATLAB function 

central_attraction.m, which uses the triangulation principle between the position vector of the 

primary w.r.t. CoM of the system and the position vector of the satellite w.r.t. the same CoM, as 

shown in Figure A.4 in Appendix, to obtain the gravitational forces acting on DustCube at every 

instant of the discretized time window. 

Since the CR3BP (see A.2 The Circular Restricted 3-Body Problem (CR3BP) in Appendix) is 

based on the concept to consider the celestial bodies of a binary system as point-masses and the 

satellite’s influence on the motion of the primaries as null (eq. (A.54)), if the user is going to park 

DustCube in one of the five Lagrange equilibrium points, he will obtain a solution of the state of 

DustCube as expressed in Didymos RF such that, extrapolating the position vector and 

transforming it in synodic coordinates, will demonstrate the validity of the computation, i.e. the 

S/C will not move from the equilibrium point w.r.t. the Synodic RF. 

2. The script RK_3bodies_SRP.m propagates the state of DustCube by exploiting the central 

attractions of the primaries and the SRP contribution as shown in the eq. (2.5), where the force 

acting on DustCube due to SRP can be obtained by omitting the shadow function (eq. (1.23)) or 

by considering it (eq. (1.28)) and by switching from the continuous form to the discretized one.  

This script exploits the already mentioned central_attraction.m function to achieve the 

gravitational accelerations of the primaries, 𝒂satGD
(t𝑘) and 𝒂satGd

(t𝑘) respectively, and the 

specifically created one SRP_Montenbruck_complete.m to compute the acceleration of 

DustCube due to SRP 𝒂satSRP(t𝑘) at every instant of the discretized time window.  

Thus, this script estimates the shadow functions related to Didymain and Didymoon, 𝜈𝑠𝑓D
(t𝑘) 

and 𝜈𝑠𝑓d
(t𝑘) respectively, and thus the force acting on DustCube 𝒇satSRP(t𝑘) from eq. (1.28) at 

every instant of time, which is possible by exploiting the specifically designed script SRP_data.m, 

that continuously computes the unit vectors 𝒔̂(t𝑘) and 𝒏̂(t𝑘) of Figure 1.7, the corresponding 

trigonometric function cos(θ(t𝑘)) and the solar flux Φ(t𝑘) defined in the equation (1.24). 

For example, considering a time window of 120 hours spans from 2022-08-20 to 2022-08-25 and 

a parking orbit in L5, the user can obtain the evolution of the DustCube’s state for the discretized 

time window in DYD coordinates and transform it in SYN ones to evaluate the deviation of 

DustCube from the L5 equilibrium point due to SRP, as shown in Figure 2.2. 
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Figure 2.2: DustCube’s parking orbit in L5 from 2022-08-20 to 2022-08-25, considering Didymain and 

Didymoon as point masses and the SRP contribution 

The script also computes the solar flux that impinges on DustCube during its motion inside 

Didymos system, which is shown in Figure 2.3, where the reader can evaluate the shadow periods, 

that are the time segments in which the solar flux is zero due to the occultation of the sunlight 

acted by the primaries, and the shadow function values of Didymain and Didymoon for the same 

discretized time window, that are shown in Figure 2.4. 

From the last image, the user can separately assess the influences of Didymain and Didymoon on 

the occultation of the sunlight during the DustCube’s parking orbit in L5 and he can easily infer 

that just Didymain can conceal the Sun for the considered DustCube’s orbit and time window, 

since the Didymoon’s shadow function constantly remains at its maximum value, i.e.: 

𝜈𝑠𝑓𝑑
(t) = 1 ∀ t ∈ [2022 08⁄ 20⁄ : 2022 08⁄ 25⁄ ] 

                     

     

     

    

 

   

    

 
  
 
 

                       

                          

    

  

  

  

        

        

                          

     

                     

(2.16)  
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Figure 2.3: The solar flux which impinges on DustCube from 2022-08-20 to 2022-08-25 

 

Figure 2.4: Shadow functions of Didymain and Didymoon from 2022-08-20 to 2022-08-25 
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3. The script RK_3bodies_1harmonic.m propagates the state of DustCube by separately computing 

the gravitational accelerations due to Didymain and Didymoon, 𝒂satGD
(t𝑘) and 𝒂satGd

(t𝑘), at 

every instant of the discretized time window, where the primary body is considered as volumetric 

with an actual distribution of its mass, while the secondary one as a punctual mass. 

Therefore, the acceleration due to Didymoon is directly computed in DYD coordinates by 

exploiting the already cited central_attraction.m function, whereas the one due to Didymain is 

obtained by using the specifically created Spherical_Harmonics.m script, which allows the user 

to choose the method through which to calculate the gravitational acceleration, as it has been 

explained in section 1.2.3 Gravitational attractions acted by Didymain and Didymoon, namely:  

• the Montenbruck method, that computes the partial accelerations due to spherical harmonics 

in the Didymain-fixed Reference Frame (DM subscript) by exploiting the eqs (1.10) and 

summing the partial accelerations of eqs (1.15), that is possible through the computation of 

the coefficients V𝑙,𝑚 and W𝑙,𝑚 of eqs (1.11) and through the knowledge of the unnormalized 

exterior spherical harmonic coefficients C𝑙,𝑚 and S𝑙,𝑚 of Didymain. 

The coefficients C𝑙,𝑚 and S𝑙,𝑚 can be uploaded in MATLAB by reading the text file 

Didymos_spherical_harmonics.txt, which contains the unnormalized spherical harmonic 

coefficients up to degree 𝑙𝑚𝑎𝑥 = 4 and order 𝑚𝑚𝑎𝑥 = 4 available from Table 1.3 (Takahashi, 

2013), so that the user can select the maximum value of 𝑙 and 𝑚 he wants to exploit, obviously 

with 𝑙𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥. 

Alternatively, instead of the Didymain’s unnormalized coefficients C𝑙,𝑚 and S𝑙,𝑚 of Table 1.3, 

is possible to exploit the normalized exterior spherical harmonic coefficients C̅𝑙,𝑚 and S̅𝑙,𝑚 as 

computed by Zannoni M. et al. (Zannoni, et al., 2018) up to degree 20 and order 20, by 

previously unnormalizing them through the inverse of eqs (1.21), even if is important to 

remark that this choice increases the computational cost a lot, due to the greater number of 

coefficients V𝑙,𝑚 and W𝑙,𝑚 of eqs (1.11) to be calculated. 

The normalized coefficients can be uploaded in MATLAB by reading the text file 

Didymos_spherical_harmonics_main.txt, which allows the user to select the maximum value 

of degree and order to exploit; 

• the built-in MATLAB function gravitysphericalharmonic.m, which computes the three 

components of the gravitational acceleration in the Didymain-fixed Reference Frame (DM 

subscript) by uploading the binary data-file Didymain.mat, that contains the normalized 

spherical harmonic coefficients up to degree 20 and order 20 (Zannoni, et al., 2018), in 

addition to the main info about Didymain’s shape, or by uploading the binary data-file 
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Didymain_Taka.mat, that holds the normalization of the unnormalized coefficients of Table 

1.3, that is possible by exploiting the eqs (1.21), and the main info about Didymain’s shape. 

As said in section 1.2.3 Gravitational attractions acted by Didymain and Didymoon, this 

method requires a greater computational effort to the machine than the Montenbruck one, but 

it is also more precise. 

In both cases, since the final gravitational acceleration must be written in DYD coordinates, while 

the computation in Spherical_Harmonics.m is achieved in DM ones, the user must obtain the 

transformation matrix from one RF to the other to commute the position vector from DYD to DM 

coordinates and to obtain the final acceleration as done in eq. (1.16) in chapter 1, where we 

considered a S/C orbiting around the Earth, so that the partial accelerations were computed in 

ITRF, but the final acceleration vector would be transformed in ECI frame. 

It is important to remark that, since the Didymos RF is centered in the CoM of the system and the 

Didymain-fixed RF in the CoM of Didymain, the Spherical_Harmonics.m script must also take 

into account the drift of the CoMs of the two reference frames (see section A.1.5 Transformations 

in non-inertial coordinates by using rotation matrices in Appendix). 

4. The script RK_3bodies_2harmonics.m propagates the state of DustCube through separate 

computations of the gravitational accelerations due to Didymain and Didymoon, 𝒂satGD
(t𝑘) and 

𝒂satGd
(t𝑘), at every instant of the discretized time window, by considering these bodies as 

volumetric with an actual distribution of their masses, i.e. by using the already cited 

Spherical_Harmonics.m script. 

The concept for Didymain has been already explained in the previous point, while for Didymoon 

we only consider the harmonic coefficients C0,0, C2,0 and C2,2, whose computations are possible 

by previously estimates the principal moments of inertia about the three principal axis of the 

volumetric body (eqs (1.22)) and then inserts these values in the eqs (1.21), finally obtaining the 

coefficients of Table 1.4. 

Therefore, the user can choose to exploit the Montenbruck method, which uses the specifically 

developed script J2_C22_Moon.m, or the built-in MATLAB function gravitysphericalharmonic, 

which exploits the script J2_C22_Moon_normalized.m, that uses the normalization of the 

coefficients C0,0, C2,0 and C2,2. 

Obviously, as said before, the accelerations are computed in body-fixed RFs centered in the CoMs 

of the two massive bodies, but the final results must be written in DYD coordinates; thus, the 

script requires the knowledge of the transformation matrices from Didymos RF to Didymain-

fixed RF and from Didymos RF to Didymoon-fixed RF. 
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5. The script RK_3bodies_2harmonics_SRP.m, propagates the state of DustCube by separately 

computing the gravitational accelerations due to Didymain and Didymoon, 𝒂satGD
(t𝑘) and 

𝒂satGd
(t𝑘), considering these bodies as volumetric with an actual distribution of their masses, and 

by adding the acceleration due to SRP 𝒂satSRP(t𝑘). 

As said before, the first two are obtained by using the function Spherical_Harmonics.m, while 

the last one is computed through the script SRP_Montenbruck_complete.m, with or w/o shadow 

functions related to Didymain and Didymoon. 

6. The specifically created scripts RK_4bodies.m, RK_4bodies_SRP.m, RK_4bodies_1harmonic.m, 

RK_4bodies_2harmonics.m and RK_4bodies_2harmonics_SRP.m propagate the state of 

DustCube as the similar functions presented in the previous points 1÷5 by adding a further 

contribution, which is the disturbance of the solar gravity, that has been explained in section 1.2.5 

Sun’s gravitational attraction. 

Therefore, these scripts also include the gravitational acceleration due to Sun’s presence 

𝒂satGsun
(t𝑘), which can be computed at every instant of the discretized time window by 

exploiting the specially created MATLAB function body_disturbance.m, that follows the 

equation (1.35). 

7. The script RK_complete.m propagates the state of DustCube by considering every contribution 

presented in the previous points, i.e. the gravitational accelerations due to the primaries 

𝒂satGD
(t𝑘) and 𝒂satGd

(t𝑘), computed including the spherical harmonics, the acceleration due to 

SRP 𝒂satSRP(t𝑘), obtained incorporating the shadow functions 𝜈𝑠𝑓D
(t𝑘) and 𝜈𝑠𝑓d

(t𝑘), the 

gravitational acceleration due to the Sun’s presence 𝒂satGsun
(t𝑘), and adding the gravitational 

accelerations due to other celestial bodies, such as the Jupiter’s one 𝒂satGjup
(t𝑘), which has an 

order of magnitude of about 10−18 [m s2⁄ ] and can be easily computable by exploiting the 

equation (1.35), with 𝜇jup and 𝒓jup that substitute 𝜇sun and 𝒓s, respectively. 

Obviously, the scripts used by this implementation are the already cited Spherical_Harmonics.m, 

SRP_Montenbruck_complete.m and body_disturbance.m, where the last one can be exploited to 

compute the gravitational disturbances of every important celestial body different from the 

primaries. 

The MATLAB script DustCube_Main.m allows the user to compute the state of DustCube through 

an interactive approach, i.e. requesting several info to the utilizer by showing different dialogue 

boxes, so that it can be easily usable from inexperienced consumers too. 
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Also, is possible to complete the same orbit propagations of the previous points 1÷7 by exploiting the 

Didymain quasi-inertial Reference Frame, presented in section 1.2.1 Reference Frames, which is 

centered in the CoM of Didymain, that coincides with its geometric center. 

Obviously, since Didymain is subjected to the gravitational attraction of Didymoon, the orbit 

propagator considers the influence of the secondary body as a disturbance like the solar gravity one, 

so that its contribute on the satellite motion is computable from the equation (1.35) presented in 

section 1.2.5 Sun’s gravitational attraction. 

Since the distance between Didymain and Didymoon is quite small, the influence of the secondary 

body’s gravitational attraction on the CoM of Didymain is easy until we consider the primaries as 

punctual, vice versa is necessary to consider also the partial accelerations due to the spherical 

harmonics of Didymoon. 

Therefore, the user can autonomously choose to actuate the propagation of DustCube through the 

scripts described in the previous points 1÷7 or through the properly created MATLAB functions 

related to the Didymain quasi-inertial Reference Frame, which are, in particular: 

RK_4bodies_Didymain.m, RK_4bodies_SRP_Didymain.m, RK_4bodies_1harmonic_Didymain.m, 

RK_4bodies_2harmonics_Didymain.m, RK_4bodies_2harmonics_SRP_Didymain.m and 

RK_complete_Didymain.m. 

The results, translated in Didymos Reference Frame, will be the same computed through the 

MATLAB functions of the points 1÷7. 

2.4.4 THE ORBITAL PROPAGATOR’S TESTING 

The orbital propagator’s functionality has been tested by comparing its results with the ones obtained 

with Monte Python’s propagation by PhD student Riccardo Lasagni Manghi of the University of 

Bologna, Department of Industrial Engineering, Forlì (IT) (Lasagni Manghi, Modenini, Zannoni, & 

Tortora, 2018). Monte Python is a highly accurate software developed by the Jet Propulsion 

Laboratory (JPL) for modelling the dynamic of objects moving within the Solar System, so that it is 

routinely used for navigating NASA deep space probes. 

The tests have been carried on through the MATLAB script DustCube_orbit_evaluation.m, which 

analyses step by step the error budget between DustCube’s states, i.e. by considering the state 

computed with MATLAB propagator (MAT subscript) as the measured state and the the one obtained 

with Monte Python (monte subscript) as the exact state, namely: 

• Trend of the absolute norm errors among the two position and velocity vectors in [m], i.e.: 

EposABS
(t𝑘) ≝ ‖𝒓satMAT(t𝑘) − 𝒓satmonte(t𝑘)‖ 

EvelABS(t𝑘) ≝ ‖𝒗satMAT(t𝑘) − 𝒗satmonte(t𝑘)‖ 

(2.17)  
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• Trend of the absolute errors among the position and velocity vectors’ components in [m], i.e.: 

e𝑥ABS(t𝑘) ≝ |𝑥satMAT(t𝑘) − 𝑥satmonte(t𝑘)| 

e𝑦ABS
(t𝑘) ≝ |𝑦satMAT(t𝑘) − 𝑦satmonte(t𝑘)| 

e𝑧ABS(t𝑘) ≝ |𝑧satMAT(t𝑘) − 𝑧satmonte(t𝑘)| 

e𝑣𝑥ABS
(t𝑘) ≝ |𝑥̇satMAT(t𝑘) − 𝑥̇satmonte(t𝑘)| 

e𝑣𝑦ABS
(t𝑘) ≝ |𝑦̇satMAT(t𝑘) − 𝑦̇satmonte(t𝑘)| 

e𝑣𝑧ABS
(t𝑘) ≝ |𝑧̇satMAT(t𝑘) − 𝑧̇satmonte(t𝑘)| 

• Trend of the relative errors and, therefore, the relative percentage errors between the two position 

and velocity vectors, i.e.: 

EposREL
(t𝑘) ≝

EposABS
(t𝑘)

‖𝒓satmonte(t𝑘)‖
 

EvelREL(t𝑘) ≝
EvelABS(t𝑘)

‖𝒗satmonte(t𝑘)‖
 

EposREL%
(t𝑘) ≝ EposREL

(t𝑘) ∗ 100 

EvelREL%(t𝑘) ≝ EvelREL(t𝑘) ∗ 100 

• Maximum absolute errors in [m], maximum relative errors and maximum relative percentage 

errors in a single propagation, i.e.:  

EposMAX−ABS
≝ max

1≤𝑘≤𝑛
(EposABS

(t𝑘)) 

EvelMAX−ABS ≝ max
1≤𝑘≤𝑛

(EvelABS(t𝑘)) 

EposMAX−REL
≝ max

1≤𝑘≤𝑛
(EposREL

(t𝑘)) 

EvelMAX−REL ≝ max
1≤𝑘≤𝑛

(EvelREL(t𝑘)) 

EposMAX−REL%
≝ max

1≤𝑘≤𝑛
(EposREL%

(t𝑘)) 

EvelMAX−REL% ≝ max
1≤𝑘≤𝑛

(EvelREL%(t𝑘)) 

For instance, we can consider a DustCube’s parking orbit in L5, a time window which spans from 

2022-08-24 to 2022-08-28, the same initial state for the MATLAB’s propagator and the Monte 

Python’s one and two orbital evaluations depending on different contributions: 

1. DustCube’s motion driven by the central attractions of the primaries and the solar gravity; 

(2.18)  

(2.19)  

(2.20)  
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2. DustCube’s motion driven by the central attractions of the primaries, the solar gravity and the 

SRP w/o sunlight occultations. 

Therefore, we can numerically compare the two computed states (measured and exact) between them 

in terms of trends of absolute and relative errors and graphically evaluate the shifts of the two orbits 

in synodic coordinates by exploiting the DustCube_orbit_evaluation.m script. 

Here below, I will show the main results of the two evaluations: 

1. Parking orbit in L5 influenced by the central attractions of the primaries and solar gravity: 

Just considering the central attractions of the primaries and the solar gravity, it is easy to verify the 

validity of the implemented MATLAB propagator. 

Indeed, visualizing the Figure 2.5, the reader can observe that the orbit achieved through it (blue line) 

is similar to one obtained by the Monte Python propagator (red line) and that the designed orbits 

comply with the theory which is at the base of the Lagrange equilibrium points (see section A.2 The 

Circular Restricted 3-Body Problem (CR3BP) in Appendix), since the two lines remain always close 

to the L5 libration point. 

Also, the reader can observe the absolute errors trends and relative percentage error trends related to 

position and velocity inertial computations from Figure 2.6 and Figure 2.7. 

 

Figure 2.5: Plot of two similar parking orbits in L5 obtained through the MATLAB propagator (blue line) 

and the Monte Python one (red line), both subjected to central attractions of the primaries and solar gravity 
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Figure 2.6: Absolute error trends for the two orbits of Figure 2.5 

 

Figure 2.7: Relative percentage error trends for the two orbits of Figure 2.5 
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From the first image, it is easy to verify that, even if the absolute errors grow in time, they remain 

very small, i.e. in the order of about 10−5 [m] for the DustCube’s position and 10−9 [m s⁄ ] for the 

DustCube’s velocity in Didymos RF, so that it can be finally concluded that the two computed states 

practically coincide, which proves the reliability and the accuracy of the MATLAB propagator. 

From the second figure, it is possible to see that the orders of magnitude of the relative percentage 

errors are of about 10−6 % for both DustCube’s position and velocity, so that they confirm the 

accuracy of the MATLAB propagator. 

Finally, the MATLAB script creates the Excel file Errors.xlsx, which contains the most important 

features of the propagation accomplished and the maximum absolute, relative and relative percentage 

errors, which are useful to evaluate the quality of the propagator. 

Therefore, the Excel folder for the considered parking orbit in L5 of Figure 2.5, with a time window 

which spans from 2022-08-24 to 2022-08-28 and the same initial state for the MATLAB’s propagator 

and the Monte Python’s one, is shown in Figure 2.8. 

 

Figure 2.8: Max absolute, relative and relative percentage errors for the orbits of Figure 2.5 

2. Parking orbit in L5 influenced by the central attractions of the primaries, solar gravity and SRP 

w/o sunlight occultations: 

Since the Solar Radiation Pressure causes a DustCube’s acceleration in the order of magnitude of 

about 10−8 ÷ 10−9 [m s2⁄ ], the absolute and relative errors are a little bigger than ones obtained with 

the only accelerations due to central attractions of the primaries and solar gravity. 

The Figure 2.9 allows the reader to observe that the orbit achieved through the MATLAB propagator 

(blue line) is very similar to one obtained by the Monte Python one (red line), to such an extent that 
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the two orbits appear as overlapped, which again proves the reliability and the accuracy of the 

MATLAB propagator. 

 

Figure 2.9: Plot of two similar parking orbits in L5, obtained by the MATLAB propagator (blue) and the 

Monte-Python one (red ), due to central attractions of the primaries, solar gravity and SRP w/o sunlight 

occultations 

Finally, the MATLAB script creates the Excel file Errors.xlsx, which contains the new maximum 

absolute, relative and relative percentage errors of the considered parking orbit in L5 of Figure 2.9, 

with a time window which spans from 2022-08-24 to 2022-08-28 and the same initial state for the 

MATLAB’s propagator and the Monte Python’s one, which is shown in Figure 2.10. 

It is important to remark that the approximated shape of the satellite, i.e. the flat plate, even if it is 

useful to easily compute the force due to SRP, creates some problems when the angle θ between 𝒏̂ 

and 𝒔̂ (see Figure 1.7 and eq. (1.23) in chapter 1) approaches the right angle, i.e. when the illuminated 

area almost vanishes, so that it increases the absolute errors, which, however, remain very small, as 

can be observed from Figure 2.10, which states that the orders of magnitude settle around 10−3 [m] 

for the position evaluation and 10−5 [m s⁄ ] for the velocity one. 
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Figure 2.10: Max absolute, relative and relative percentage errors for the orbits of Figure 2.9 
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 OPTICAL NAVIGATION 

The optical navigation is the navigation technique selected for the mission. 

The goal of the optical navigation prediction process is to determine the expected coordinates of the 

image of some sort of target within a picture taken by a camera. A target can be anything. In traditional 

optical navigation, targets typically are the coordinate centers of nearby Solar System objects: 

planetary satellites, asteroids, comets, and occasionally the planets themselves. Targets may also 

include features or landmarks. on the surface of a body, even another spacecraft. Stars are also 

considered targets, because it is important to measure their images too. 

The first goal is to compute the inertial direction of the S/C with respect to a target, while the second 

goal is to evaluate the attitude of the camera, and so the attitude of the S/C. 

3.1 INERTIAL DIRECTION EVALUATION: LINES OF SIGHT (LOS) 

As it is described in Polle B., et al., Autonomous Navigation for Interplanetary Missions Performance 

Achievements Based on Real and Flight Images, presented in the 6th International ESA Conference 

on Guidance, Navigation and Control Systems, held 17th – 20th October 2005 in Loutraki, Greece 

(Polle, et al., 2005, October 17-20): 

“Interplanetary vision-based navigation relies on observation of the line of sight (LOS) of close 

objects with known position to infer the vehicle position.” 

The Line of Sight is the inertial (I subscript) geometric relative position 𝒓M−sat(t)|I between the 

camera mounted on S/C and the target, that can be evaluated as: 

𝒓M−sat(t)|I = 𝒓M(t)|I − 𝒓sat(t)|I 

Where 𝒓M(t)|I and𝒓sat(t)|I are the inertial positions of the target and the S/C, respectively, w.r.t. the 

barycentre of the planetary system. 

For a more realistic representation of the vector 𝒓M−sat(t)|I, we must consider the light time 𝜏, which 

is defined as the time required for light to travel from the target to the camera. 

Therefore, the true position of the target 𝒓M−sat
′(t) can be computed as (omitting the RF): 

 𝒓M−sat
′(t) = 𝒓M(t − 𝜏) − 𝒓sat(t) 

The light time is an important datum when the distances between the targets and the S/C are 

considerable. Since DustCube will be immersed in a binary system with relative positions in the order 

(3.1)  

(3.2)  
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of 102 − 103 meters, it is possible to adopt the choice of neglecting the light time term in the next 

computations. 

There is another effect that has to be considered, which is the stellar aberration, that shifts the direction 

toward the velocity apex of the camera and, therefore, brings to compute the apparent position 

 𝒓M−sat
′′(t) of the target with respect to the S/C by taking into account the velocity of the camera 

𝒗cam(t): 

      𝒓M−sat
′′(t) =  𝒓M−sat

′(t) + ‖ 𝒓M−sat
′(t)‖

𝒗cam(t)

𝑐
=

= [𝒓M(t − 𝜏) − 𝒓sat(t)] + ‖𝒓M(t − 𝜏) − 𝒓sat(t)‖
𝒗cam(t)

𝑐
 , 

where c is the speed of light. 

This equation represents the Newtonian formulation for the inertial relative position of the target with 

respect to the camera and is commonly exploited in optical navigation missions. 

Since for DustCube mission the light time can be omitted, the final expression of  𝒓M−sat
′′(t) is: 

 𝒓M−sat
′′(t) = [𝒓M(t) − 𝒓sat(t)] + ‖𝒓M(t) − 𝒓sat(t)‖

𝒗cam(t)

𝑐
 

Also, in first approximation for DustCube mission it is possible to omit the second term of the 

previous formula, since its value is in the order of 10−7. 

Therefore, the inertial relative positions of Didymain and Didymoon with respect to DustCube can 

be finally considered as the simple relations: 

𝒓D−sat(t)|I = 𝒓D(t)|I − 𝒓sat(t)| I 

𝒓d−sat(t)|I = 𝒓d(t)|I − 𝒓sat(t)|I 

Since for DustCube mission the Didymos RF can be considered as quasi-inertial, the eqs (3.5) become 

the opposite vectors of the eqs (1.2) of chapter 1 by substituting the subscript I with DYD one in eqs 

(3.5), so that we have demonstrated the validity of the approximations considered in chapter 1, where 

we had omitted the stellar aberration. 

In general, the relative position vectors 𝒓D−sat(t)|DYD and 𝒓d−sat(t)|DYD can be affected by errors 

which have to be considered for the real-time evaluation of the images (Figure 3.1). 

(3.3)  

(3.4)  

(3.5)  
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Figure 3.1: Principle of 3D localization using two beacons LOS measurement (Polle, et al.) 

3.2 ATTITUDE EVALUATION 

The second goal of the optical navigation is to compute the attitude of the camera and, consequently, 

the attitude of the S/C. 

The transformation from inertial coordinates to camera coordinates is computed by a rotation matrix 

that is related to a right-handed coordinate system produced by M, N and L axes (Figure 3.2), where 

it is represented the simple schematization of the optical process for acquiring images of an ideal 

pinhole camera.  

 

Figure 3.2: Principles of ideal pinhole camera. 𝐚̂ is the gnomonic projection for a star (Owen, Methods of 

Optical Navigation, 2011, February 14) 

The objective is to find a relation that expressed the attitude of the camera with respect to the inertial 

tracking. 
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Considering the unit vector 𝒂̂ pointed towards the star, that is a fixed point in space, it is possible to 

transform this unit vector from Inertial Coordinates (I) to Camera Coordinates (C): 

𝒂̂C = 𝑪 𝒂̂I  , 

where 𝑪 is a rotation matrix which can be defined in the simplest way as a classical 3-1-3 sequence 

of elementary rotations, i.e.: 

𝑪 = 𝑹3(𝜑)𝑹1 (
𝜋

2
− 𝛿)𝑹3 (

𝜋

2
+ 𝛼) , 

where: 

• 𝛼 is the right ascension of the optical axis L; 

• 𝛿 is the declination of the optical axis L; 

• 𝜑 is a generic angle of rotation. 

The expression (3.7) is useful iff the three angles are measurable and/or controllable. 

There are other useful formulations to feature the matrix 𝑪, which, in any case, expresses the attitude 

of the camera and, consequently, the attitude of S/C. 

3.3 IMAGE ACQUIRING PROCESS 

An ideal pinhole camera acts as the camera aperture was a point (Figure 3.2), that is also the centre 

of the coordinate frame (𝑀,𝑁, 𝐿). 

The light rays coming from the target, such as a star, enter in the aperture and keep on until they 

encounter the detector, suited in a focal plane at a distance 𝑓 from the aperture, called focal length. 

An inverted image of the target appears on the detector (det subscript) in coordinates (𝑥det, 𝑦det). 

Since 𝒂̂C is the apparent position unit vector of the target, which components are (𝑎C
1 , 𝑎C

2, 𝑎C
3), the 

gnomonic projection of this one is: 

[
𝑥det
𝑦det

] =
𝑓

𝑎C
3 [
𝑎C
1

𝑎C
2] , 

where (𝑥det, 𝑦det) and 𝑓 are in units of length. 

The real cameras differ from ideal ones, since several aberrations must be considered. 

For the errors in position location of the images, the most important aberrations are radial distortions 

and tip and tilt misalignments (Owen, Methods of Optical Navigation, 2011, February 14), which 

must be taken into account by the corrected image coordinates, i.e.: 

(3.7)  

(3.6)  

(3.8)  
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[
𝑥det′

𝑦det′
] = [

𝑥det
𝑦det

] + [
∆𝑥det
∆𝑦det

] = [
𝑥det
𝑦det

] + [
𝑥det𝑟det

2 𝑥det𝑦det 𝑥det
2

𝑦det𝑟det
2 𝑦det

2 𝑥det𝑦det
] [

𝜀1
𝜀2
𝜀3
] , 

where 𝑟det
2 = 𝑥det

2 + 𝑦det
2 and 𝜺 = (𝜀1, 𝜀2, 𝜀3) is the error vector which comprises radial distortions 

and tip and tilt misalignments; the other aberrations are not considered, since they affect the shape 

but not the position of the image. 

The data used by optical navigation are digital pictures, independently by the camera exploited. 

A digital picture is an array of data numbers or DN values and every DN measures the amount of 

light falling on a specific region of a detector (a pixel, acronyms of “picture element”) at the focal 

plane of a camera (Owen, Methods of Optical Navigation, 2011, February 14). 

The images are captured by the camera in pixel coordinates 𝑠𝑝 and 𝑙𝑝, where 𝑠𝑝 is the “sample” and 

𝑙𝑝 is the “line” of the pixels’ plane, therefore the image processing consists of extracting the (𝑠𝑝, 𝑙𝑝) 

coordinates of an image of a target within a picture. 

In other words, the samples are the columns and the lines are the rows of the digital picture, where 

the first column is displayed at the left side of the picture and the first line is displayed at the top or 

at the bottom, differing from one device to the other. 

The first pixel differs in representation between systems too, so it has coordinates (0,0) or (1,1). 

The images are translated in units of length making use of the coordinates (𝑥det′, 𝑦det′), that are 

usually measured in millimetres. 

The transformation in pixel coordinates is possible by exploiting a simple formula, i.e.: 

[
𝑠𝑝
𝑙𝑝
] = 𝚯 [

𝑥det′

𝑦det′
] + [

𝑠𝑝0
𝑙𝑝0
] = [

Θ11 Θ12
Θ21 Θ22

] [
𝑥det′

𝑦det′
] + [

𝑠𝑝0
𝑙𝑝0
] , 

where 𝚯 is a square matrix that links the pixel dimensions with the length dimensions and its 

components are measured in pixels/mm, (𝑠𝑝0 , 𝑙𝑝0) are the coordinates of the optical axes 𝐿, that 

has coordinates (𝑥det, 𝑦det) = (0,0) by definition. 

Iff the ideal detector has perfectly square pixels, the matrix 𝚯 is diagonal with Θ11 = Θ22. 

The measured data are the pixel scales in radians/pixel, which, ignoring the distortions, can be 

featured like: 

S𝑠𝑝 =
Θ11
𝑓

 

S𝑙𝑝 =
Θ22
𝑓

 

(3.9)  

(3.10)  

(3.11)  
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Obviously, it is important to know the measured size of a single pixel for the camera in use. 

Finally, we must pay attention for the rotations, since a rotated image could depend on the proper 

attitude of the camera (matrix 𝑪) or on the construction of it (matrix 𝚯). 

However, what is actually gauged by the detector is the incident intensity of the incoming light, 

that is defined, in general, as a measure of the luminous energy which reaches the pixels. 

Figure 3.3: Principles of emission and detection of light 

Considering the Figure 3.3, we can define the infinitesimal energy dE1 which leaves the emitter, 

depicted by the point P1, and the infinitesimal one dE2 that reaches the detector, represented by 

the point P2, like, respectively: 

dE1 ≝  𝐼 (cos(θ1), 𝜈, t) cos(θ1) dA1dΩ1d𝜈dt 

dE2 ≝  𝐼(cos(θ2), 𝜈, t) cos(θ2) dA2dΩ2d𝜈dt 

where: 

• 𝐼 is the specific or radiative intensity of the light [
J

m2∗sr∗Hz∗s
] ; 

• θ1 is the angle between 𝐧̂1 and 𝒓, while θ2 is the one between 𝐧̂2 and 𝒓 [rad]; 

• dA1  and dA2 are, respectively, the infinitesimal areas that contain P1 and P2; 

• dΩ1 and dΩ2 are the infinitesimal solid angles, measured in steradians [sr]; 

• d𝜈 is the infinitesimal frequency [Hz]; 

• dt is the infinitesimal time [s]. 

(3.12)  
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Finally, the principle of the invariance says that, if there is no matter between the emitter and the 

detector, such as in vacuum, the specific intensity 𝐼 is the same for the emitter area and the detector 

one, so that dE2 becomes: 

dE2 =  𝐼(cos(θ1), 𝜈, t) cos(θ2) dA2dΩ2d𝜈dt 

In general, the specific intensity 𝐼 is a function of the frequency, the time and the cosine of the 

angle θ, or, more in general, the position of the emitter, so that 𝐼 = 𝐼(𝛼, 𝛿, 𝜈, t), where 𝛼 and 𝛿 are 

the right ascension and the declination of the inertial target position (the emitter P2).  

Also, the camera introduces an attenuation function 𝜖(𝜈), mainly caused by the filter, and the 

modern detectors convert some fraction of the incident photons in photoelectrons, called quantum 

efficiency 𝑞(𝜈). 

The incident intensity of the incoming light is modulated by the camera and captured by the 

detector in the focal plane, so that, by using the aperture of the camera Ap, the signal measured 

by a single pixel in number of photoelectrons can be expressed as (Owen, Methods of Optical 

Navigation, 2011, February 14): 

𝑌(𝑠𝑝, 𝑙𝑝) = Ap∭𝐼(𝛼, 𝛿, 𝜈, t) 𝜖(𝜈)𝑞(𝜈)d𝜈dΩdt , 

Finally, the digital number (DN) value is directly dependent on the incident intensity, i.e.: 

DN(𝑠𝑝, 𝑙𝑝) =
𝑌(𝑠𝑝, 𝑙𝑝)

g
+ 𝑏 , 

where g is a gain measured in [electrons/DN] related to the analog-to-digital converter and 𝑏 is 

a bias which is usually constant, useful to avoid negative voltages emanating from the detector. 

Obviously, the DN values are subjected to various sources of noises, which treatment goes beyond 

the topics of this work of thesis. 

3.4 IMAGE PROCESSING TECHNIQUES 

Since the goal of the optical navigation is to compute the inertial position and the attitude of the 

camera mounted on a S/C, it is important to select the proper image processing techniques for the 

mission features. 

Usually, two phases of the vehicle’s trajectory are distinguished: 

(3.13)  

(3.14)  

(3.15)  



  Chapter 3 

63 

- Cruise Phase: S/C is far away from massive bodies and the camera can observe several distant 

targets with a quite good separation angle. In this case the main issue is to perform accurate LOS 

measurements to compensate the large S/C-beacon distance separation, so it's preferable to 

compute the LOS with respect to the background stars simultaneously, since they can be 

considered as fixed in space; 

- Encounter Phase: the beacons are generally bright, so it cannot possible to measure LOS and 

background stars at the same time. In this case, stars are measured by Star trackers and LOS can 

easily be measured by small instruments. 

Obviously, the phase at which the S/C operates determines the best image processing technique, 

together with the mission purposes. The image processing consists of extracting the pixel 

coordinates (𝑠𝑝, 𝑙𝑝) of the image of the target within a picture. 

The most important techniques used in space missions are (Owen, Methods of Optical Navigation, 

2011, February 14), (Polle, et al., 2005, October 17-20): 

1. Punctual direction by MTI: in case of the target is so far that the beacon is punctual and 

very weak, such as its brightness is lower than the stars in the background, so that it is difficult 

to detect the target in a single image with an exposure time similar to one useful for tracking 

of stars in the background, Multiple Time Integration (MTI) technique is exploited, acquiring 

multiple images of several successive frames and obtaining the LOS measurement in post-

integration (Figure 3.4). 

 

Figure 3.4: LOS measurement acquisition using MTI 
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2. Punctual direction using star technique: in case of the target is far so that the beacon is 

punctual, but its brightness is similar to one of the stars in the background, the LOS 

measurement is obtained in the same way of acquisition of the picture for the stars in the 

background (Figure 3.5). 

 

Figure 3.5: LOS measurement like stars in the background 

3. Center-finding by Correlation: when the target is contained in a few pixels of the digital 

picture (Figure 3.6), the target image contained within a picture is defined by computing the 

Center of Brightness (CoB) with phase effect compensation using a model, that is correlating 

the actual image of the target with the digital model picture and reconstructing the brightness 

of the target, thus determining the LOS measurement directed towards the target body. 

Considering an observed amount of DN values (an array of DN values) included in a portion 

of the picture that contains the image of the target and a predicted amount of DN values, where 

the predicted image is known a-priori by construction, the goal is to correlate the brightness 

sample in the second one within the first one; 

 

Figure 3.6: CoM achievement using CoB determination technique 
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4. Center-finding by Analytic Function Fitting: it consists to recover the Center of Mass 

(CoM) position of the target body (Figure 3.7). This technique is useful when the beacon is 

extended, but the image of the target is completely content in camera FoV (Field of View). 

The recovery of the CoM is achieved fitting an ellipse on the limb contour and comparing the 

image with a planet model, so that the shape of the planet must be known a-priori. 

The idea is to fit an analytic brightness function to the DN array, where each DN value is an 

observation. Then a least-squares solution determines the values of the parameters of the 

fitting function. Since the fitting function is not linear, the process is iterative; 

 

Figure 3.7: CoM achievement using analytic function fitting technique 

5. Limb Scanning: it consists to determine the limb of a body target, that is the set of points that 

form the boundary of that body when it is projected into an image, comparing the image with 

models previously uploaded (Figure 3.8). 

 

Figure 3.8: Limb measurement principle (Polle, et al., 2005, October 17-20) 
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This technique is useful when the image is extended and is not content in camera FoV. 

If we consider the target as a triaxial ellipsoid (Figure 3.9) with principal dimensions (a, b, c) 

and a body-fixed RF (b subscript) oriented as its three principal axes, the equation of the 

triaxial ellipsoid is:  

        
𝑥b
2

a2
+
𝑦b
2

b2
+
𝑧b
2

c2
= 1 

 

Figure 3.9: Target viewed as an ellipsoid 

Defining the diagonal matrix 𝚪 ≝ diag (
1

a2
,
1

b2
,
1

c2
) and q as a generic surface point of the 

triaxial ellipsoid, such that 𝒒 is a generic vector from the center of the body to q, the equation 

(3.16) becomes: 

𝑥b
2

a2
+
𝑦b
2

b2
+
𝑧b
2

c2
= 𝒒𝑇𝚪𝒒 = 1 

Therefore, it is possible to define the points on the surface of the ellipsoid by using the scalar 

equation (3.17). 

Also, the camera’s direction is perpendicular to the superficial normal. 

Indeed, the limb is the set of the points that form the boundary of the projection of the body 

into an image, so that, since the camera’s direction is perpendicular to the superficial normal, 

called 𝒏, considering 𝒖 as the vector from the camera to the center of the body, we can define 

the limb as the set of points satisfying the following equation: 

(3.16)  

(3.17)  
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(𝒖 + 𝒒)𝑇 𝒏 =  0 , 

which is a scalar product that represents the equation of a plane. 

Therefore, since it is possible to demonstrate that 𝐧 = 𝚪𝒒, so that 𝒒𝑇𝒏 = 1 from eq. (3.17), 

the relation (3.18) becomes: 

𝒖𝑇𝐧 = 𝒖𝑇𝚪𝒒 = −𝒒𝑇𝒏 = −1 

Also, considering the image of the target as captured by the detector (Figure 3.10), there is a 

scan vector 𝒎̂ that starts from the center of the image 𝐜0 = (𝑥0, 𝑦0, 𝑓) in camera coordinates 

so that the limb points satisfies: 

(𝐜0 × 𝒎̂)
𝑇(𝒖 + 𝒒) = 0 

Where 𝒎̂ = (cos(θ) , sin(θ) , 0), with θ that is defined as the scan angle. 

 

Figure 3.10: Scanning process 

Finally, the limb points, represented by the vector 𝒒, satisfy the three scalar equations (3.17), 

(3.19) and (3.20), thus defining a system of three scalar equations:  

{

𝒒𝑇𝚪𝒒 = 1                       

𝒖𝑇𝚪𝒒 =  −1                   

(𝐜0 × 𝒎̂)
𝑇(𝒖 + 𝒒) = 0

 

(3.18)  

(3.19)  

(3.20)  

(3.21)  
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3.5 OPTICAL NAVIGATION CONCEPT FOR DUSTCUBE MISSION 

Since the selected approach for DustCube navigation concept must consider the strong constraint 

in terms of mass, volume and available computing power, the choice for the image processing 

technique falls into the center-finding by analytic function one (4) to acquire LOS measurements, 

complemented by limb scanning one (5) when unfavourable geometric configurations occur 

(Lasagni Manghi, Zannoni, Modenini, & Tortora, 2016, February 2). 

Obviously, LOS measurement alone does not give information about the distance from the 

reference body, therefore the ranges from Didymain and Didymoon must be computed by 

exploiting the binary nature of Didymos system, i.e. by continuously taking images of these 

bodies and by correlating the size of the target within the image with the known size of the 

corresponding celestial body (Christian, 2015). 

The accuracy of this procedure is dependent on several factors: the ability to determine the exact 

CoB, the resolution of the cameras, the distance of Didymain and Didymoon and the knowledge 

of the heliocentric orbit of Didymos. 

Since the configuration of the binary system does not create so many problems in terms of 

brightness of the detecting objects, the center-finding technique can be implemented in 

cooperation with stars background evaluation, that allows to acquire the LOS measurements with 

good precision, because the positions of the stars can be considered as fixed in space and in time. 

The heliocentric orbit of the binary system and the relative positions of Didymain and Didymoon 

are known, thus the LOS measurements can be computed at the same time by making use of two 

cameras mounted onboard DustCube. Since Didymain and Didymoon will be subjected to wide 

time-windows without lighting of sunlight, two IR cameras are needed. 

The evaluation of simultaneous LOS measurements and of the ranges at the same time brings to 

the knowledge of the S/C’s position and velocity in Didymos system. 

Indeed, since the boresight of the IR cameras w.r.t. the S/C are known a-priori, the inertial pointing 

direction of every camera can be easily computed by comparing the image of the detected body 

with the stars in the background and the a-priori knowledge of the body’s shape, which is also 

useful to determine the range from the target body, because every target body will be completely 

content in the image captured by the camera for almost the entire mission phase. 

Individual and independent LOS measurements are acquired over some interval of time together 

with ranges computations. 

Therefore, the data are processed using a Kalman filter to determine the DustCube's state.
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 KALMAN FILTERING 

The Kalman filtering technique takes the name from professor Rudolf Emil Kalman, since it was 

investigated and published by Kalman in 1960 and together professor Richard Snowden Bucy in 1961 

starting from the concept of the least-squares estimations of dynamic systems, although Thorvald 

Nicolai Thiele and Peter Swerling developed a similar algorithm earlier. 

The first implementation of the algorithm of the Kalman filter was created by Stanley F. Schmidt, a 

NASA engineer and researcher that exploited the Kalman idea for the Apollo missions in the early 60 

years. Schmidt made use of this technique to track and evaluate the trajectories of launch vehicles in 

real-time. 

Kalman filtering is also known as linear quadratic estimator (LQE) (Grewal & Andrews, 2001), 

since it results from the theory of the linear quadratic regulator (LQR) used in the optimal control of 

linear dynamic systems, where the system’s state is stabilized by minimizing a cost or loss function. 

Following from this theory, the Kalman filter can be considered as an efficient recursive one that 

evaluates the state of a dynamic system in an optimal way starting from a series of measurements 

affected by noises, minimizing a loss function that coincides with the trace of the covariance matrix 

of the a-posteriori error of the state (see section A.4 Statistics for random vectors.in Appendix for 

more details). 

The Kalman filtering technique has been exploited in different technological fields for the following 

years after his development, especially for guidance, navigation and control of vehicles, such as 

aircrafts and spacecrafts. 

In this chapter, we will analyze the working processes of the optimal controls and filters, showing the 

main demonstrations and operation principles, to finally reach the concept of the Extended Kalman 

Filter, which is suitable for non-linear systems, such as the equations that govern the motion of a 

spacecraft. 

4.1 OPTIMAL CONTROLLING AND FILTERING OF DYNAMIC SYSTEMS 

Considering a generic linear continuous time-variant (LTV) dynamic system in finite time, we 

can represent the dynamic evolution of the state as: 
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CONTINUOUS LTV DYNAMIC SYSTEM: 

𝑑𝒙(t)

𝑑t
= 𝑭(t)𝒙(t) + 𝑩(t)𝒖(t) 

𝒛(t) = 𝑯(t)𝒙(t) + 𝑫(t)𝒖(t) 

𝒙(t0) = 𝒙0 

𝒙(t𝑓) = 𝒙𝑓 

where: 

• 𝒙(t) is a nx1 vector stands for the state of the system, for example a single vector composed by 

position vector and velocity vector of a spacecraft with respect to a generic inertial or non-inertial 

reference frame; 

• t is the time; 

• 𝒖(t) is a rx1 vector stands for the input vector; 

• 𝑭(t) is the nxn state-matrix; 

• 𝑩(t) is the nxr input-matrix; 

• 𝒛(t) is the measurement mx1 vector, that comprises every single measurement available from the 

sensors of the dynamic system, for example a radial distance from an object; 

• 𝑯(t) is the mxn observation matrix; 

• 𝑫(t) is the mxr matrix that related the measurement vector with the input vector, that can be 

considered null in this treatment; 

• 𝒙0 is the state vector in the initial instant of time; 

• 𝒙𝑓 is the state vector in the final instant of time. 

As said before, the optimal control of linear dynamic systems can be achieved by making us of the 

linear quadratic regulator (LQR), where the cost or loss function 𝐽 that must be minimized is a scalar 

positive quadratic function (Castaldi, AA 2015-2016): 

𝐽 = 𝒙𝑓
𝑇𝑺𝑓𝒙𝑓 +∫ (𝒙(t)𝑇𝑸(t)𝒙(t) + 𝒖(t)𝑇𝑹(t)𝒖(t))𝑑t

t𝑓

t0

 , 

where: 

• 𝑺𝑓 is a semi-positive definite matrix, such that the quadratic function 𝒙𝑓
𝑇𝑺𝑓𝒙𝑓 ≥ 0; 

• 𝑸(t) is a semi-positive definite matrix, such that the quadratic function 𝒙(t)𝑇𝑸(t)𝒙(t) ≥ 0; 

• 𝑹(t) is a definite positive matrix, such that the quadratic function 𝒙(t)𝑇𝑹(t)𝒙(t) > 0.  

(4.1)  

(4.2)  
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Therefore, 𝑸(t) penalizes the state of the system and 𝑹(t) penalizes the input control. 

It is possible to demonstrate (Grewal & Andrews, 2001) that the solution of the linear quadratic 

optimal control problem can be achieved by solving the Differential Riccati Equation (DRE), that 

contains every information of the Euler-Lagrange (EL) solution: 

DRE:      𝑺̇(t) + 𝑺(t)𝑭(t) + 𝑭(t)𝑇𝑺(t) − 𝑺(t)𝑩(t)𝑹(t)−1𝑩(t)𝑇𝑺(t) + 𝑸(t) = 𝟎 , 

where 𝑺(t) is a semi-positive definite matrix and 𝑺(t0) = 𝑺0. 

If the quadratic loss function 𝐽 penalizes the outputs of the system instead of the state, i.e.: 

𝐽 =
1

2
𝒙𝑓
𝑇𝑺𝑓𝒙𝑓 +

1

2
∫ (𝒛(t)𝑇𝑸𝑧(t)𝒛(t) + 𝒖(t)

𝑇𝑹(t)𝒖(t))𝑑t
t𝑓

t0

 , 

the DRE becomes: 

DRE:  𝑺̇(t) + 𝑺(t)𝑭(t) + 𝑭(t)𝑇𝑺(t) − 𝑺(t)𝑩(t)𝑹(t)−1𝑩(t)𝑇𝑺(t) + 𝑯(t)𝑇𝑸𝑧(t)𝑯(t) = 𝟎 

It is possible to demonstrate (Grewal & Andrews, 2001) that the optimal control gain that satisfies the 

DRE and stabilizes the system around a control point is: 

𝑲(t) ≝ −𝑹(t)−1𝑩(t)𝑇𝑺(t) , 

such that the optimal control input is defined as: 

𝒖(t) ≝ 𝑲(t)𝒙(t) = −𝑹(t)−1𝑩(t)𝑇𝑺(t)𝒙(t) 

Therefore, the dynamic of the system becomes: 

𝒙̇(t) = 𝑭(t)𝒙(t) + 𝑩(t)𝒖(t) = [𝑭(t) + 𝑲(t)]𝒙(t) , 

which means the system turns into an autonomous one with state matrix 𝑭(t) + 𝑲(t), such that the 

control gain asymptotically stabilizes the system making the eigenvalues of the original state matrix 

completely negative, if they were positive, or more negative with respect to the previous ones. 

(4.3)  

(4.4)  

(4.5)  

(4.6)  

(4.7)  

(4.8)  
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Figure 4.1: Schematic representation of LQR 

In case of the system is a generic linear continuous time-invariant (LTI) dynamic system in finite 

time, i.e.: 

CONTINUOUS LTI DYNAMIC SYSTEM: 

𝑑𝒙(t)

𝑑t
= 𝑭𝒙(t) + 𝑩𝒖(t) 

𝒛(t) = 𝑯𝒙(t) + 𝑫𝒖(t) 

𝒙(t0) = 𝒙0 

𝒙(t𝑓) = 𝒙𝑓 

with the quadratic loss function 𝐽 that becomes:  

𝐽 = 𝒙𝑓
𝑇𝑺𝑓𝒙𝑓 +∫ (𝒛(t)𝑇𝑸𝑧𝒛(t) + 𝒖(t)

𝑇𝑹𝒖(t))𝑑t
t𝑓

t0

 , 

the optimal control gain remains time-variant, since 𝑺 = 𝑺(t): 

𝑲(t) = −𝑹−1𝑩𝑇𝑺(t) 

Vice versa, if the final instant of time tends to infinite, the loss function can be defined as:  

𝐽 = ∫ (𝒛(t)𝑇𝑸𝑧𝒛(t) + 𝒖(t)
𝑇𝑹𝒖(t))𝑑t

∞

t0

 ; 

(4.10)  

(4.11)  

(4.9)  

(4.12)  

𝑲(t) = −𝑹(t)−1𝑩(t)𝑇𝑺(t) 

𝒙(t) 𝒖(t) 

𝒙̇(t) = 𝑭(t)𝒙(t) + 𝑩(t)𝒖(t) 

𝒙(t0) = 𝒙0 
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(4.15)  

in this case, if the system is completely controllable and completely observable, i.e. the couple (𝑭,𝑩) 

is stabilizable and the couple (𝑭,𝑯) is revealable, the regulator becomes stationary (Grewal & 

Andrews, 2001), while the Differential Riccati Equation turns into an Algebraic one (ARE) since 𝑺 =

𝑺∞ = 𝑪𝑶𝑵𝑺𝑻, i.e.: 

ARE:      𝑺∞𝑭 + 𝑭
𝑇𝑺∞ − 𝑺∞𝑩𝑹

−1𝑩𝑇𝑺∞ +𝑯
𝑇𝑸𝑧𝑯 = 𝟎 , 

such that, the optimal control gain is constant, and the optimal control input becomes: 

𝒖(t) = 𝑲∞𝒙(t) = −𝑹
−1𝑩𝑇𝑺∞𝒙(t) 

As said before, the Kalman filter can be considered as a linear quadratic estimator (LQE), since its 

goal is to evaluate the state of the system minimizing a loss function 𝐽, defined in appropriate way, 

i.e. it is an optimal filter, such as the least-squares estimator. 

Therefore, we can presume to know just an estimation of the state 𝒙̃(t) and we consider an estimator 

of the system in closed loop (Castaldi, AA 2015-2016), so that the dynamic equation of the estimation 

becomes: 

𝑑𝒙(t)

𝑑t
= 𝑭(t)𝒙̃(t) + 𝑩(t)𝒖(t) + 𝑳(t)[𝒛(t) − 𝒛̃(t)] , 

so that, it is easy to define the evolution of the error vector: 

𝒆̇(t) = 𝒙̇(t) − 𝒙̇(t) =  𝑭(t)𝒙(t) + 𝑩(t)𝒖(t) −  𝑭(t)𝒙̃(t) − 𝑩(t)𝒖(t) − 𝑳(t)(𝒛(t) − 𝒛̃(t)) = 

         = 𝑭(t)[𝒙(t) − 𝒙̃(t)] − 𝑳(t)𝑯(t)[𝒙(t) − 𝒙̃(t)] = [𝑭(t) − 𝑳(t)𝑯(t)]𝒆(t) , 

which is a new dynamic autonomous system that features the estimator, i.e.: 

{
𝒆̇(t) = [𝑭(t) − 𝑳(t)𝑯(t)]𝒆(t)

𝒆(t0) = 𝒆0                                   
 

Finally, it is possible to obtain the evolution in time of the error vector by solving the system (4.17): 

𝒆(t) = 𝑒[𝑭(t)−𝑳(t)𝑯(t)]t𝒆(t0) 

As for the optimal regulator, 𝑳(t) is the necessary gain matrix of the optimal estimator to minimize a 

scalar function 𝐽 defined in appropriate way, i.e. to stabilize the estimation of the state.  

The cost function 𝐽 is usually defined through the weighted mean-squared errors (see eq. (A.72) in 

Appendix), i.e.: 

(4.13)  

(4.14)  

(4.16)  

(4.17)  

(4.18)  
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𝐽 ≝ 𝐸 [(𝒙(t) − 𝒙(t))
𝑇
𝑴(𝒙(t) − 𝒙̂(t))] = 𝐸[𝒆(t)𝑇𝑴𝒆(t)] , 

where 𝑴 is a semi-positive or positive definite weighting matrix. 

For example, if we consider a white gaussian with zero mean mx1 noise vector 𝒗(t) as the 

measurement error, the measurement vector related to the estimation of the system becomes: 

𝒛̃(t) = 𝑯(t)𝒙̃(t) + 𝒗(t) , 

so that, is possible to exploit the LEAST-SQUARES METHOD to obtain the optimal estimation of 

the state, minimizing a scalar cost function 𝐽 that represents the inner product of the error vector: 

𝐽 = 𝒗(t)𝑇𝒗(t) = [𝒛(t) − 𝑯(t)𝒙̃(t)]𝑇[𝒛(t) − 𝑯(t)𝒙̃(t)] 

To minimize the cost function, we compute the gradient of 𝐽 w.r.t. 𝒙̃(t) and pose it equal to zero: 

𝜕𝐽

𝜕𝒙̃(t)
= 2𝑯(t)𝑇𝑯(t)𝒙̃(t) − 2𝑯(t)𝑇𝒛(t) = 𝟎 

so that, iff 𝑯(t)𝑇𝑯(t) is a non-singular matrix, the optimal estimation of the state becomes: 

𝒙(t) = [𝑯(t)𝑇𝑯(t)]−1𝑯(t)𝑇𝒛(t) 

Therefore, exploiting the eq. (4.23), is possible to estimate the state of the system at every iteration. 

Starting from this theory, Rudolph Kalman and his colleagues developed the concepts of the Kalman 

filtering, as it will be clearer later. 

4.2 KALMAN FILTERING FOR LINEAR CONTINUOUS DYNAMIC SYSTEMS 

It is possible to generalize the operation of the Kalman filtering for a generic continuous linear time-

variant (LTV) dynamic system in finite time affected by noises, which is defined as: 

CONTINUOUS LTV DYNAMIC SYSTEM with noises: 

𝑑𝒙(t)

𝑑t
= 𝑭(t)𝒙(t) + 𝑩(t)𝒖(t) + 𝒘(t) 

𝒛(t) = 𝑯(t)𝒙(t) + 𝑫(t)𝒖(t) + 𝒗(t) 

𝒙(t0) = 𝒙0 

𝒙(t𝑓) = 𝒙𝑓 

(4.19)  

(4.20)  

(4.21)  

(4.22)  

(4.23)  

(4.24)  
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where, as said before, 𝑫(t) is usually null and 𝒘(t) and 𝒗(t) are the process and the measurement 

noises, respectively, which have null means and, therefore, well-defined covariance matrices (see eq. 

(A.73) in Appendix) 𝑸𝑤(t) and 𝑹𝑣(t), namely 

𝐸[𝒘(t)] = 𝐸[𝒗(t)] = 𝟎 , 

𝑸𝑤(t) ≝ 𝑐𝑜𝑣(𝒘(t),𝒘(t)) = 𝐸[𝒘(t)𝒘(t)𝑇] = 𝑐𝑜𝑟𝑟(𝒘(t)) 

𝑹𝑣(t) ≝ 𝑐𝑜𝑣(𝒗(t), 𝒗(t)) = 𝐸[𝒗(t)𝒗(t)𝑇] = 𝑐𝑜𝑟𝑟(𝒗(t))    

Indeed, the covariance matrix of a vector signal 𝒂 is defined as (Luise & Vitetta, 2009, June 1): 

𝑐𝑜𝑣(𝒂, 𝒂) ≝  𝐸[(𝒂 − 𝐸[𝒂])(𝒂 − 𝐸[𝒂])𝑇] =  𝐸[𝒂𝒂𝑇]      iff  𝐸[𝒂] = 𝟎  

𝐸[𝒂𝒂𝑇] = 𝑐𝑜𝑟𝑟(𝒂)  by definition 

Also, 𝑸𝑤(t) and 𝑹𝑣(t) are diagonal positive definite matrices, namely: 

𝑸𝑤(t) = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑛

2)    𝑤𝑖𝑡ℎ 𝜎𝑖
2 = 𝑣𝑎𝑟(𝑤𝑖) 

𝑹𝑣(t) = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑚

2 )    𝑤𝑖𝑡ℎ 𝜎𝑖
2 = 𝑣𝑎𝑟(𝑣𝑖) , 

which means that: 

𝑐𝑜𝑣(𝑤𝑖, 𝑤𝑗) = 0    ∀ 𝑖, 𝑗 = 1,… , n  with  𝑖 ≠ 𝑗 

𝑐𝑜𝑣(𝑣𝑖 , 𝑣𝑗) = 0    ∀ 𝑖, 𝑗 = 1,… ,m  with  𝑖 ≠ 𝑗 

Therefore, we can finally conclude that the components of every noise vector are uncorrelated each 

other, since 𝐸[𝑤𝑖] = 𝐸[𝑣𝑖] = 0, so that 𝒘(t) and 𝒗(t) are white Gaussian with zero mean noises and 

can be represented by the following common notations: 

𝒘(t) ~ 𝒩(𝟎,𝑸𝑤(t)) 

𝒗(t) ~ 𝒩(𝟎, 𝑹𝑣(t)) 

Since 𝒘(t) and 𝒗(t) are stochastic processes, 𝒙(t) and 𝒛(t) are vector random variables too. 

Exploiting the cross-correlation matrices (see eq. (A.78) in Appendix), it is possible to show that the 

noises 𝒘(t) and 𝒗(t) are uncorrelated each other and are uncorrelated with the same noises at different 

instants of time: 

𝑐𝑜𝑟𝑟(𝒘(t), 𝒗(t)) = 𝑐𝑜𝑟𝑟(𝒗(t), 𝒘(t)) = 𝟎 

𝑐𝑜𝑟𝑟(𝒘(t𝑘),𝒘(tℎ)) = 𝐸[𝒘(t𝑘)𝒘(tℎ)
𝑇] = 𝟎     ∀ 𝑘, ℎ  with  𝑘 ≠ ℎ 

(4.25)  

(4.28)  

(4.26)  

(4.27)  

(4.29)  

(4.30)  
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𝑐𝑜𝑟𝑟(𝒗(t𝑘), 𝒗(tℎ)) = 𝐸[𝒗(t𝑘)𝒗(tℎ)
𝑇] = 𝟎     ∀ 𝑘, ℎ  with  𝑘 ≠ ℎ 

Now, recalling the dynamic equation of the estimation in closed loop (4.15) and the cost or loss 

function 𝐽 as defined in eq. (4.19) with 𝑴 = 𝑰,it is possible to demonstrate (Grewal & Andrews, 2001) 

that 𝐽 becomes: 

𝐽 = 𝐸[𝒆(t)𝑇𝒆(t)] = 𝑡𝑟𝑎𝑐𝑒(𝒆(t)) 

If the system is completely controllable and completely observable, i.e. the couple (𝑭(t), 𝑩(t)) is 

stabilizable and the couple (𝑭(t),𝑯(t)) is revealable, the estimator in closed loop can be stationary 

and optimal if the estimator gain is selected as: 

𝑳(t) = −𝑹𝑣(t)
−1𝑯(t)𝑇𝑷(t) , 

where 𝑷(t) is the solution of the Cauchy problem composed by the DRE and the initial value 𝑷0: 

{
𝑷̇(t) = 𝑷(t)𝑭(t) + 𝑭(t)𝑇𝑷(t) − 𝑷(t)𝑯(t)𝑹𝑣(t)

−1𝑯(t)𝑇𝑷(t) + 𝑸𝑤(t)

𝑷(t0) = 𝑷0                                                                                                            
 

Vice versa, if we consider a generic continuous linear time-invariant (LTI) dynamic system in 

infinite time affected by noises with constant covariance matrices 𝑸𝑤 and 𝑹𝑣, namely: 

CONTINUOUS LTI DYNAMIC SYSTEM with noises: 

𝑑𝒙(t)

𝑑t
= 𝑭𝒙(t) + 𝑩𝒖(t) + 𝒘(t) 

𝒛(t) = 𝑯𝒙(t) + 𝑫𝒖(t) + 𝒗(t) 

𝒙(t0) = 𝒙0 

if the system is completely controllable and completely observable, it is possible to project an optimal 

and stationary LQR, minimizing the loss function 𝐽𝐿𝑄𝑅 as defined in eq. (4.12), by selecting the 

following constant control gain 𝑲𝐿𝑄𝑅: 

𝑲𝐿𝑄𝑅 ≝ −𝑹−1𝑩𝑇𝑺∞ , 

where 𝑺∞ is the solution of the ARE (4.13), and, at the same time, to develop an independent optimal 

and stationary LQE, minimizing the loss function 𝐽𝐿𝑄𝐸 as defined in eq. (4.19) with 𝑴 = 𝑰, by 

selecting the following constant estimator gain 𝑲𝐿𝑄𝐸: 

(4.31)  

(4.32)  

(4.33)  

(4.35)  

(4.34)  
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𝑲𝐿𝑄𝐸 = −𝑹𝑣
−1𝑯𝑇𝑷∞ , 

where 𝑷∞ is the solution of the following ARE: 

ARE:      𝑷∞𝑭 + 𝑭
𝑇𝑷∞ − 𝑷∞𝑯𝑹𝑣

−1𝑯𝑇𝑷∞ +𝑸𝑤 = 𝟎 

Therefore, projecting an optimal LQR and an optimal LQE for a generic LTI dynamic system, we 

have developed the so called linear quadratic Gaussian control (LQG). 

4.3 KALMAN FILTERING FOR LINEAR DISCRETE DYNAMIC SYSTEMS 

A generic linear discrete dynamic system in finite time affected by noises can be represented by 

the discrete (or discretized) equations of the state and the measurement vectors: 

LINEAR DISCRETE DYNAMIC SYSTEM: 

𝒙𝑘+1 = 𝚽𝑘𝒙𝑘 + 𝑩𝑘𝒖𝑘 +𝒘𝑘 

𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝑫𝑘𝒖𝑘 + 𝒗𝑘 

𝒙(t0) = 𝒙0 

𝒙(t𝑓) = 𝒙𝑓 

where: 

• 𝒙𝑘+1 is the nx1 state vector at time t𝑘+1; 

• 𝒙𝑘 is the nx1 state vector at time t𝑘 

• 𝒛𝑘 is the mx1 measurement vector at time t𝑘; 

• 𝒖𝑘 is the rx1 input vector at time t𝑘; 

• 𝚽𝑘 is the nxn state transition matrix, which is defined as: 𝚽𝑘 =
𝜕𝒙𝑘+1

𝜕𝒙𝑘
; 

• 𝑩𝑘 is the nxr control matrix at time t𝑘; 

• 𝑯𝑘 is the mxn observation matrix at time t𝑘; 

• 𝑫𝑘 is the mxr matrix that relates the measurement vector with the control one; 

• 𝒙0 is the state vector in the initial time instant; 

• 𝒙𝑓 is the state vector in the final time instant; 

• 𝒘𝑘 is the process noise; 

• 𝒗𝑘 is the measurement noise. 

As said before, 𝒘𝑘 and 𝒗𝑘 are white Gaussian with zero mean noise vectors, namely: 

(4.37)  

(4.36)  

(4.38)  
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𝒘𝑘 ~ 𝒩(𝟎,𝑸𝑘) 

𝒗𝑘 ~ 𝒩(𝟎,𝑹𝑘) , 

which leads to the conclusion that also 𝒙𝑘, 𝒛𝑘 and 𝒙𝑘+1 are vector random variables. 

Usually, in astronautical applications 𝒖𝑘 is a null vector, since the Kalman filter is exploited to 

determine the trajectories and the attitudes of the spacecrafts w/o controlling inputs. 

Therefore, at every iteration we have a measurement vector and a state vector affected by errors, 

which have covariance matrices 𝑸𝑘 and 𝑹𝑘, namely: 

𝑸𝑘 ≝ 𝑐𝑜𝑣(𝒘𝑘, 𝒘𝑘) = 𝐸[𝒘𝑘𝒘𝑘
𝑇] = 𝑐𝑜𝑟𝑟(𝒘𝑘) = 𝑑𝑖𝑎𝑔(𝜎1

2, … , 𝜎𝑛
2)    with 𝜎𝑖

2 = 𝑣𝑎𝑟(𝑤𝑘
𝑖 ) 

𝑹𝑘 ≝ 𝑐𝑜𝑣(𝒗𝑘, 𝒗𝑘) =  𝐸[𝒗𝑘𝒗𝑘
𝑇] = 𝑐𝑜𝑟𝑟(𝒗𝑘) = 𝑑𝑖𝑎𝑔(𝜎1

2, … , 𝜎𝑚
2 )    with 𝜎𝑖

2 = 𝑣𝑎𝑟(𝑣𝑘
𝑖 ) , 

which means that the components of every noise vector are uncorrelated each other and the 

measurement and the process noises are uncorrelated considering different instants of time, i.e.: 

𝑐𝑜𝑣(𝑣𝑘
𝑖 , 𝑣𝑘

𝑗
) = 0    ∀ 𝑖, 𝑗 = 1,… ,𝑚  with  𝑖 ≠ 𝑗   

𝑐𝑜𝑣(𝑤𝑘
𝑖 , 𝑤𝑘

𝑗
) = 0    ∀ 𝑖, 𝑗 = 1,… , 𝑛  with  𝑖 ≠ 𝑗 , 

𝑐𝑜𝑟𝑟(𝒗𝑘, 𝒗ℎ) = 𝐸[𝒗𝑘𝒗ℎ
𝑇] = 𝐸[𝒗ℎ𝒗𝑘

𝑇] = 𝟎     

𝑐𝑜𝑟𝑟(𝒘𝑘, 𝒘ℎ) = 𝐸[𝒘𝑘𝒘ℎ
𝑇] = 𝐸[𝒘ℎ𝒘𝑘

𝑇] = 𝟎 

Therefore, we can consider an a-priori estimation of the state 𝒙̃𝑘
− and an a-posteriori one 𝒙̃𝑘

+, which 

both have 𝒙𝑘 as mean value and the following a-priori and a-posteriori errors, respectively: 

𝒆𝑘
− ≝ 𝒙̃𝑘

− − 𝒙𝑘  

𝒆𝑘
+ ≝ 𝒙̃𝑘

+ − 𝒙𝑘 

The a-priori and a-posteriori errors have both null means and covariance matrices 𝑷𝑘
− and 𝑷𝑘

+, 

respectively, i.e.: 

𝐸[𝒆𝑘
−] = 𝐸[𝒆𝑘

+] = 𝟎 

𝑷𝑘
− ≝ 𝑐𝑜𝑣(𝒆𝑘

−, 𝒆𝑘
−) = 𝐸 [𝒆𝑘

−𝒆𝑘
−𝑇] 

𝑷𝑘
+ ≝ 𝑐𝑜𝑣(𝒆𝑘

+, 𝒆𝑘
+) = 𝐸 [𝒆𝑘

+𝒆𝑘
+𝑇] 

Also, the a-priori and a-posteriori estimations of the state have the same covariance matrices of the 

a-priori and a-posteriori errors, respectively, indeed: 

(4.39)  

(4.40)  

(4.41)  

(4.42)  

(4.43)  
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𝑐𝑜𝑣(𝒙̃𝑘
−, 𝒙̃𝑘

−) = 𝐸[(𝒙𝑘
− − 𝐸[𝒙̃𝑘

−])(𝒙̃𝑘
− − 𝐸[𝒙̃𝑘

−])𝑇] =  𝐸[(𝒙̃𝑘
− − 𝒙𝑘)(𝒙̃𝑘

− − 𝒙𝑘)
𝑇] = 𝑷𝑘

− 

𝑐𝑜𝑣(𝒙̃𝑘
+, 𝒙̃𝑘

+) = 𝐸[(𝒙𝑘
+ − 𝐸[𝒙̃𝑘

+])(𝒙̃𝑘
+ − 𝐸[𝒙̃𝑘

+])𝑇] =  𝐸[(𝒙̃𝑘
+ − 𝒙𝑘)(𝒙̃𝑘

+ − 𝒙𝑘)
𝑇] = 𝑷𝑘

+ 

Since the mean values of the errors are null (1st eq. of (4.43)), the Kalman filter is an unbiased filter. 

Also, the a-priori and a-posteriori errors and the measurement and process noises are uncorrelated 

each other, i.e. the cross-correlation matrices are null: 

𝑐𝑜𝑟𝑟(𝒘𝑘, 𝒗𝑘) = 𝐸[𝒘𝑘𝒗𝑘
𝑇] = 𝐸[𝒗𝑘𝒘𝑘

𝑇] = 𝟎 

𝑐𝑜𝑟𝑟(𝒆𝑘, 𝒘𝑘) = 𝐸[𝒆𝑘𝒘𝑘
𝑇] = 𝐸[𝒘𝑘𝒆𝑘

𝑇] = 𝟎 

𝑐𝑜𝑟𝑟(𝒆𝑘, 𝒗𝑘) = 𝐸[𝒆𝑘𝒗𝑘
𝑇] = 𝐸[𝒗𝑘𝒆𝑘

𝑇] = 𝟎 

Therefore, the recursive scheme relates the a-posteriori estimation of the state with the a-priori one 

and the measurement vector (Tortora & Modenini, AA 2014-2015), namely: 

𝒙̃𝑘
+ ≝ 𝑨𝑘𝒙̃𝑘

− + 𝑩𝑘𝒛𝑘 , 

where 𝑨𝑘 and 𝑩𝑘 are two matrices of dimensions nxn and nxm, respectively. 

Since the filter is unbiased, it is possible to demonstrate that (Grewal & Andrews, 2001): 

𝑨𝑘 = 𝑰 − 𝑩𝑘𝑯𝑘 , 

which brings to a new definition of the a-posteriori error 𝒙̃𝑘
+ starting from the eq. (4.46): 

𝒙̃𝑘
+ = 𝑨𝑘𝒙̃𝑘

− + 𝑩𝑘𝒛𝑘 = (𝑰 − 𝑩𝑘𝑯𝑘)𝒙𝑘
− + 𝑩𝑘𝒛𝑘 = 𝒙̃𝑘

− + 𝑩𝑘[𝒛𝑘 −𝐻𝑘𝒙̃𝑘
−] = 𝒙̃𝑘

− + 𝑩𝑘𝒊𝑘 , 

where 𝒊𝑘 is defined as the innovation of the recursive scheme. 

Therefore, the a-posteriori error covariance matrix is: 

𝑷𝑘
+ = 𝐸 [𝒆𝑘

+𝒆𝑘
+𝑇] = 𝐸{[(𝑰 − 𝑩𝑘𝑯𝑘) 𝒆𝑘

− + 𝑩𝑘𝒗𝑘][(𝑰 − 𝑩𝑘𝑯𝑘) 𝒆𝑘
− + 𝑩𝑘𝒗𝑘]

𝑇} , 

which, after some manipulations, becomes: 

𝑷𝑘
+ = (𝑰 − 𝑩𝑘𝑯𝑘) 𝑷𝑘

−(𝑰 − 𝑩𝑘𝑯𝑘)
𝑇 + 𝑩𝑘𝑹𝑘𝑩𝑘

𝑇 

It can be shown that minimizing the mean quadratic value of the a-posteriori error is like to minimize 

the trace of the a-posteriori error covariance matrix (Grewal & Andrews, 2001). 

Indeed, the classical expression of the loss function 𝐽 of eq. (4.19) with 𝑴 = 𝑰 can be redefined as: 

𝐽 = 𝑡𝑟𝑎𝑐𝑒(𝑷𝑘
+) = 𝑡𝑟𝑎𝑐𝑒(𝑷𝑘

− + 𝑩𝑘𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇𝑩𝑘
𝑇 − 𝑩𝑘𝑯𝑘𝑷𝑘

− − 𝑷𝑘
−𝑯𝑘

𝑇𝑩𝑘
𝑇) + 𝑡𝑟𝑎𝑐𝑒(𝑩𝑘𝑹𝑘𝑩𝑘

𝑇) , 

(4.44)  

(4.45)  

(4.46)  

(4.47)  

(4.48)  

(4.49)  

(4.50)  

(4.51)  
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so that, minimizing it w.r.t. 𝑩𝑘, i.e.: 

𝜕𝐽

𝜕𝑩𝑘
=
𝜕𝑡𝑟𝑎𝑐𝑒(𝑷𝑘

+)

𝜕𝑩𝑘
= 2(𝑩𝑘𝑯𝑘 − 𝑰) 𝑷𝑘

−𝑯𝑘
𝑇 + 2𝑩𝑘𝑹𝑘 = 𝟎 , 

and substituting 𝑩𝑘 with 𝑲𝒌, it is possible to obtain the optimal gain of the filter: 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1 

Also, we can redefine the a-posteriori error covariance matrix, exploiting the optimal gain, and we 

must propagate the a-priori error covariance matrix, namely: 

𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘) 𝑷𝑘

− 

𝑷𝑘+1
− = 𝐸 [𝒆𝑘+1

− 𝒆𝑘+1
−𝑇 ] = 𝐸[(𝚽𝑘𝒆𝑘

+ −𝐰𝑘)(𝚽𝑘𝒆𝑘
+ −𝐰𝑘)

𝑇] = 𝚽𝑘𝑷𝑘
+𝚽𝑘

𝑇 + 𝑸𝑘 

Since the a-priori error covariance matrix is computed through the second one of eqs (4.54), the initial 

a-priori error covariance matrix 𝑷0
− can be chosen as equal to the process noise covariance matrix of 

the initial state, i.e. 𝑸0 

In Figure 4.2 is shown the Kalman Filter’s block diagram, while in Table 4.1 the recursive scheme of 

the classical Kalman Filter algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Kalman Filter’s block diagram 

(4.52)  

(4.53)  

(4.54)  

KNOWNS: 

𝒛𝑘    𝑹𝑘  𝑸𝑘 𝑯𝑘 

 

PREDICTION PHASE: 

𝒙̃𝑘
− , 𝑷𝑘

− 

 

CORRECTION PHASE: 

𝑲𝑘 , 𝒙̃𝑘
+ , 𝑷𝑘

+ 

 

KNOWN: 𝚽𝑘 
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Initial conditions: 

𝒙̃0 , 𝑷0 

Knowns: 

𝒛𝑘   𝑯𝑘  𝑹𝑘  𝑸𝑘 𝚽𝑘 

Initialization: 

𝒙̃𝑘
− , 𝑷𝑘

− 

Recursive scheme:  

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1 

𝒙𝑘
+ = 𝒙̃𝑘

− +𝑲𝑘 [𝒛𝑘 −𝑯𝑘𝒙̃𝑘
−] 

𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘) 𝑷𝑘

− 

Project ahead: 

𝒙̃𝑘+1
− = 𝚽𝑘𝒙̃𝑘

+ 

𝑷𝑘+1
− = 𝚽𝑘𝑷𝑘

+𝚽𝑘
𝑇 + 𝑸𝑘 

Table 4.1: Kalman Filter algorithm 

4.4 LINEARIZED KALMAN FILTER (LKF) 

As said before, the Kalman filter is optimal in the sense that minimizes the trace of the a-posteriori 

error covariance matrix (Grewal & Andrews, 2001), while the least-squares method technique 

minimizes the loss function 𝐽 represented by the inner product of the error vector 𝒗 (eq. (4.21)). 

It is possible to demonstrate that the Kalman filter minimizes the same loss function 𝐽 of eq. (4.21), 

so that it can be regarded as an extension of the concept of the least-squares technique. 

Indeed, considering non-linear discretized equations for measurements, namely: 

𝒛𝑘 = 𝒉𝑘(𝒙𝑘) + 𝒗𝑘 , 

we can linearize the measurement function 𝒉(𝒙) by exploiting the Taylor’s method: 

𝒉𝑘(𝒙̃𝑘
−) = 𝒉𝑘(𝒙𝑘

𝑟𝑒𝑓
+ ∆𝒙𝑘

−) ≈ 𝒉𝑘(𝒙𝑘
𝑟𝑒𝑓
) + 𝑯𝑘(𝒙̃𝒌

− − 𝒙𝑘
𝑟𝑒𝑓
) , 

where 𝒙𝑘
𝑟𝑒𝑓

 is the reference state at the 𝑘𝑡ℎ iteration and 𝑯𝑘 is the Jacobian matrix in numerator layout 

representation, i.e.: 

(4.55)  

(4.56)  
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(4.58)  

𝑯𝑘 =
𝜕𝒉𝑘
𝜕𝒙𝑘

|
(𝒙𝑘=𝒙̂𝑘

−)

=

[
 
 
 
 
 
𝜕ℎ1𝑘
𝜕𝑥1𝑘

⋯
𝜕ℎ1𝑘
𝜕𝑥𝑛𝑘

⋮ ⋱ ⋮
𝜕ℎ𝑚𝑘

𝜕𝑥1𝑘
⋯

𝜕ℎ𝑚𝑘

𝜕𝑥𝑛𝑘 ]
 
 
 
 
 

(𝒙𝑘=𝒙̂𝑘
−)

 

Therefore, considering the term ∆𝒛𝑘 = 𝒛𝑘 − 𝒉𝑘(𝒙𝑘
𝑟𝑒𝑓
), the Kalman gain matrix 𝑲𝑘 and recalling that 

𝑷𝑘
− = 𝑐𝑜𝑣(𝒙̃𝒌

−, 𝒙̃𝒌
−) = 𝐸 [𝒆𝑘

−𝒆𝑘
−𝑇], the objective of the Linearized Kalman Filter is to minimize the 

loss function 𝐽, which can be defined as: 

𝐽 ≝ [∆𝒛𝑘 −𝑯𝑘(𝒙𝒌
− − 𝒙𝑘

𝑟𝑒𝑓
)]𝑇[∆𝒛𝑘 −𝑯𝑘(𝒙̃𝒌

− − 𝒙𝑘
𝑟𝑒𝑓
)] + [𝒙𝑘 − 𝒙̃𝒌

−]𝑇(𝑷𝑘
−)−1[𝒙𝑘 − 𝒙̃𝒌

−] , 

so that, we finally reach the a-posteriori evaluation of the state: 

𝒙̃𝒌
+ = 𝒙̃𝒌

− + 𝑷𝑘
+𝑯𝑘

𝑇 𝑹𝑘
−1[∆𝒛𝑘 −𝑯𝑘(𝒙̃𝒌

− − 𝒙𝑘
𝑟𝑒𝑓
)] = 𝒙̃𝒌

− +𝑲𝑘[∆𝒛𝑘 −𝑯𝑘(𝒙̃𝒌
− − 𝒙𝑘

𝑟𝑒𝑓
)] 

Now, exploiting the following relation: 

𝑷𝑘
+ = [(𝑷𝑘

−)−1 +𝑯𝑘
𝑇𝑹𝑘

−1𝑯𝑘]
−1 , 

after some manipulations, we obtain the expression of the Kalman gain matrix 𝑲𝑘 as the eq. (4.53): 

Manipulating the a-priori error covariance matrix 𝑷𝑘
− too, since 𝑲𝑘 = 𝑷𝑘

+𝑯𝑘
𝑇𝑹𝑘

−1, we find out: 

𝑷𝑘
− = 𝑷𝑘

+(𝑷𝑘
+)−1𝑷𝑘

− = 𝑷𝑘
+[(𝑷𝑘

−)−1 +𝑯𝑘
𝑇𝑹𝑘

−1𝑯𝑘]𝑷𝑘
− = 𝑷𝑘

+(𝑰 + 𝑯𝑘
𝑇𝑹𝑘

−1𝑯𝑘𝑷𝑘
−)

= 𝑷𝑘
+ + (𝑷𝑘

+𝑯𝑘
𝑇𝑹𝑘

−1)𝑯𝑘𝑷𝑘
− = 𝑷𝑘

+ +𝑲𝑘𝑯𝑘𝑷𝑘
− , 

which brings to the expression of the a-posteriori error covariance matrix 𝑷𝑘
+ as the eq. (4.54). 

Once again, is easy to conclude that minimizing the trace of Pk
+ is like to minimize the loss function 

J, since they are the same functions expressed in different ways. 

In this case, we define the state transition matrix as the Jacobian one, namely: 

𝚽𝑘 ≝
𝜕𝒙𝑘+1

𝑟𝑒𝑓

𝜕𝒙𝑘𝑟𝑒𝑓
 

In Figure 4.3 is shown the step by step estimated trajectory of an orbiting S/C by using an LKF, while 

in Table 4.2 the recursive scheme of the Linearized Kalman Filter (LKF) algorithm.  

(4.57)  

(4.59)  

(4.60)  

(4.61)  

(4.62)  
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Figure 4.3: Estimated trajectory of a S/C by using an LKF (Montenbruck & Gill, Satellite Orbits) 

Initial conditions: 

𝒙̃0  ,   𝑷0 

Knowns: 

𝒛𝑘     𝑹𝑘  𝑸𝑘  𝒉𝑘(𝒙𝑘
𝑟𝑒𝑓
)  𝒙𝑘

𝑟𝑒𝑓 

Initialization: 

𝒙̃𝑘
− , 𝑷𝑘

− 

Recursive scheme:  

𝑯𝑘 =
𝜕𝒉𝑘(𝒙𝑘)

𝜕𝒙𝑘
|
(𝒙𝑘=𝒙̃𝑘

−)

 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1 

𝒙𝑘
+ = 𝒙𝑘

− +𝑲𝑘 [𝒛𝑘 − 𝒉𝑘(𝒙𝑘
𝑟𝑒𝑓
) − 𝑯𝑘(𝒙̃𝑘

− − 𝒙𝑘
𝑟𝑒𝑓
)] 

𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

− 

Project ahead: 

𝚽𝑘 =
𝜕𝒙𝑘+1

𝑟𝑒𝑓

𝜕𝒙𝑘𝑟𝑒𝑓
 

𝒙̃𝑘+1
− = 𝒙𝑘+1

𝑟𝑒𝑓 +𝚽𝑘(𝒙̃𝑘
+ − 𝒙𝑘

𝑟𝑒𝑓) 

𝑷𝑘+1
− = 𝚽𝑘𝑷𝑘

+𝚽𝑘
𝑇 + 𝑸𝑘 

Table 4.2: Linearized Kalman Filter algorithm 

 

 

Reference trajectory 

𝒙0
𝑟𝑒𝑓

𝑃0 

𝒙1
𝑟𝑒𝑓

𝑃1
− 

𝒙2
𝑟𝑒𝑓

𝒙3
𝑟𝑒𝑓

𝒙4
𝑟𝑒𝑓𝒙1

+ 𝑃1
+ 

𝒛1     
𝒙2
− 𝑃2

− 

𝒙2
+ 𝑃2

+ 𝒛2     

Estimated trajectory 
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4.5 EXTENDED KALMAN FILTER (EKF) 

Usually, in astronautic navigation the discretized equations are non-linear, but is preferable to use 

the Extended Kalman Filter (EKF) algorithm instead of the linearized one, since is not necessary 

to have a reference trajectory, thanks to the replacement of 𝒙𝑘
𝑟𝑒𝑓 with 𝒙̂𝑘

+ at every iteration. 

Thus, considering a generic non-linear discrete dynamic system in finite time affected by noises: 

NON-LINEAR DISCRETE DYNAMIC SYSTEM: 

𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘, 𝒖𝑘) + 𝒘𝑘 

𝒛𝑘 = 𝒉𝑘(𝒙𝑘) + 𝒗𝑘 

recalling the definitions (4.40), (4.42), the 2nd and the 3rd of (4.43),the (4.57) one and the main features 

of noise and errors vectors (4.39) and the 1st of (4.43), which continue to remain valid also for the 

EKF algorithm, and defining the new state transition matrix 𝑭𝑘 as the Jacobian one in numerator 

layout representation, i.e.: 

𝑭𝑘 ≝
𝜕𝒇𝑘(𝒙𝑘)

𝜕𝒙𝑘
|
(𝒙𝑘=𝒙̂𝑘

+)

=

[
 
 
 
 
 
𝜕𝑓1𝑘
𝜕𝑥1𝑘

⋯
𝜕𝑓1𝑘
𝜕𝑥𝑛𝑘

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑘
𝜕𝑥1𝑘

⋯
𝜕𝑓𝑛𝑘
𝜕𝑥𝑛𝑘]

 
 
 
 
 

(𝒙𝑘=𝒙̂𝑘
+)

, 

we can obtain the classical recursive scheme of the EKF algorithm. 

In Figure 4.4 is shown the Extended Kalman Filter’s block diagram, while in Figure 4.5 the step by 

step estimated trajectory of an orbiting S/C by using an EKF. 

The Table 4.3 resumes the main features of the EKF algorithm. 

 

 

(4.63)  

(4.64)  
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Figure 4.4: Extended Kalman Filter’s block diagram 

 

 

 

 

 

 

 

 

 

Figure 4.5: Estimated trajectory of a S/C by using EKF (Montenbruck & Gill, Satellite Orbits) 

KNOWNS: 

𝒛𝑘    𝑹𝑘  𝑸𝑘 𝒉𝑘 

 

PREDICTION PHASE: 

𝑭𝑘 , 𝒙̂𝑘
− , 𝑷𝑘

− 

 

CORRECTION PHASE: 

𝑯𝑘 , 𝑲𝑘 , 𝒙̂𝑘
+ , 𝑷𝑘

+ 

 

KNOWN: 𝒇𝑘 

 

𝒙0
𝑟𝑒𝑓

𝑃0 

𝒙1
𝑟𝑒𝑓

𝑃1
− 

𝒙1
+ 𝑃1

+ 

𝒛1     
𝒙2
− 𝑃2

− 

𝒙2
+ 𝑃2

+ 𝒛2     

Estimated trajectory 
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Initial conditions: 

𝒙̃0  ,   𝑷0 

Knowns: 

𝒛𝑘    𝑹𝑘  𝑸𝑘  𝒉𝑘(𝒙𝑘)  𝒇𝑘(𝒙𝑘) 

Initialization: 

𝒙̃𝑘
− , 𝑷𝑘

− 

Recursive scheme:  

𝑯𝑘 =
𝜕𝒉𝑘(𝒙𝑘)

𝜕𝒙𝑘
|
(𝒙𝑘=𝒙̃𝑘

−)

 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1 

𝒙𝑘
+ = 𝒙̃𝑘

− +𝑲𝑘 [𝒛𝑘 − 𝒉𝑘(𝒙̃𝑘
−)] 

𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

− 

𝑭𝑘 =
𝜕𝒇𝑘(𝒙𝑘)

𝜕𝒙𝑘
|
(𝒙𝑘=𝒙̃𝑘

+)

 

Project ahead: 

𝒙̃𝑘+1
− = 𝒇𝑘(𝒙̃𝑘

+) 

𝑷𝑘+1
− = 𝑭𝑘𝑷𝑘

+𝑭𝑘
𝑇 + 𝑸𝑘 

Table 4.3: Extended Kalman Filter algorithm 
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 DUSTCUBE’S FILTER 

The created DustCube’s filter is an Extended Kalman Filter, since the equations that govern the 

motion of satellites are non-linear. 

Even if there exists the built-in MATLAB function extendedKalmanfilter.m which creates an EKF 

object for a continuous dynamic system through the definitions of the state function 𝒇(𝒙), the 

measurement function 𝒉(𝒙) and the initial state 𝒙0, useful to predict and correct the estimation of the 

state of a system affected by noises, it has been more convenient to write an autonomous and 

independent EKF to appropriately control the ephemerides of the bodies which affect the motion of 

DustCube during the computation of the discretized estimated states 𝒙̃sat𝑘
+

. 

Therefore, the EKF has been created by adopting the classical Kalman Filter algorithm in extended 

version shown in Table 4.3. 

The main concepts of the filter will be explained in the following sections. 

5.1 THE NON-LINEAR DYNAMIC SYSTEM OF DUSTCUBE 

The first important aspect is to define the non-linear discretized dynamic system which characterizes 

the evolution in time of the state of DustCube, as has been described in (4.63). 

The objective is to project a filter which can predict and correct the state of a satellite affected by 

process and measurement noises for an optical navigation concept, hence it has been decided to 

control the DustCube’s motion as it was just affected by the central attractions of the primaries, by 

the gravitational disturbance of the Sun and by the Solar Radiation Pressure. 

Since is necessary to select an appropriate reference frame to compute the estimation of the state, the 

user can choose to use the built-in ECLIPJ2000 RF or the Didymos quasi-inertial RF. 

Therefore, the discretized dynamic of the system (4.63) has been defined by considering a simpler 

model w.r.t. the Runge-Kutta 4th order method adopted to compute the exact solutions, since the EKF 

requires the expression of the Jacobian matrix 𝑭sat𝑘 of the discretized state vector function 

𝒇sat𝑘(𝒙sat𝑘), which could become too complicated if 𝒇(𝒙) is not defined in a suitable way. 

Subsequently, is important to choose an appropriate measurement vector function 𝒉sat𝑘(𝒙sat𝑘), 

which brings to the computation of the Jacobian matrix 𝑯sat𝑘
. 

Indeed, remembering the EKF algorithm, which is shown in Table 4.3, is easy to note that the matrix 

𝑯sat𝑘
 directly affects the Kalman gain matrix 𝑲sat𝑘, while 𝑭sat𝑘 influences it through the a-priori 

error covariance matrix 𝑷sat𝑘
−. 



Chapter 5   

88 

The other contributions on the dynamic system of DustCube come from the measurement noise vector 

𝒗sat𝑘 and the process noise vector 𝒘sat𝑘
, since the covariance matrix of the first one 𝑹sat𝑘 directly 

affects the Kalman gain matrix 𝑲sat𝑘, while the covariance matrix of the second one 𝑸sat𝑘 influences 

𝑲sat𝑘 through the a-priori error covariance matrix 𝑷sat𝑘
−. 

To keep the same writing notation of the equations of chapter 2, the DYD coordinates system and the 

uniformly spaced time window ΔT = (t0, … , t𝑘, … , t𝑛) with 0 ≤ 𝑘 ≤ 𝑛 will be adopted in the 

following sections, i.e. with a time-step h, defined in seconds, which is maintained constant during 

the computation, so that: 

t𝑘+1 = t𝑘 + h   ∀ t𝑘 ∈ ΔT, 𝑘 = 0,… , N 

Hence, in the next pages we will define every term which is present in the non-linear discretized 

dynamic system (4.63) of DustCube, by taking into account the Didymos quasi-inertial RF and the 

time-window ΔT. 

5.1.1 THE STATE VECTOR FUNCTION AND ITS JACOBIAN MATRIX 

As said before, we proceed to define the state vector function 𝒇sat𝑘(𝒙sat𝑘) in DYD coordinates by 

considering a simpler dynamic model than the previously exploited RK4 method for the exact 

propagation of the satellite’s motion, i.e. by using a single time-step propagator, which is the so-called 

Explicit Euler method (Quarteroni, Sacco, Saleri, & Gervasio, 2014), which allows to obtain the 

evolution in time of the state vector function as: 

𝒇sat𝑘(𝒙sat𝑘)|DYD
=

[
 
 
 
 
 
 
𝑥sat𝑘
𝑦sat𝑘
𝑧sat𝑘
𝑥̇sat𝑘
𝑦̇sat𝑘
𝑧̇sat𝑘]

 
 
 
 
 
 

DYD

+   h 

[
 
 
 
 
 
 
𝑥̇sat𝑘
𝑦̇sat𝑘
𝑧̇sat𝑘
𝑥̈sat𝑘
𝑦̈sat𝑘
𝑧̈sat𝑘]

 
 
 
 
 
 

DYD

=

[
 
 
 
 
 
 
𝑥sat𝑘
𝑦sat𝑘
𝑧sat𝑘
𝑥̇sat𝑘
𝑦̇sat𝑘
𝑧̇sat𝑘]

 
 
 
 
 
 

DYD

+   h 

[
 
 
 
 
 
 
𝑥̇sat𝑘
𝑦̇sat𝑘
𝑧̇sat𝑘
𝑎𝑥sat𝑘
𝑎𝑦sat𝑘
𝑎𝑧sat𝑘]

 
 
 
 
 
 

DYD

 

The set of the accelerations acting on DustCube that influences acceleration contributions 𝑎𝑥sat𝑘
, 

𝑎𝑦sat𝑘
 and 𝑎𝑧sat𝑘

 of equation (5.2) are computable by summing up the single accelerations due to 

central attractions of the primaries, to solar gravity disturbance and to SRP. 

This issue has been already faced up in points 2 and 6 of the section 2.4.3 The orbital propagator’s 

scripts of chapter 2, so that the accelerations acting on DustCube, which are 𝒂satGD
(t𝑘) and 

𝒂satGd
(t𝑘) for Didymain and Didymoon, respectively, 𝒂satGsun

(t𝑘) for the Sun and 𝒂satSRP(t𝑘), with 

or w/o considering the shadow functions of the primaries, for the SRP, are computed by exploiting 

(5.2)  

(5.1)  
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the already mentioned MATLAB scripts central_attraction.m, body_disturbance.m, 

SRP_Montenbruck_complete.m and SRP_data.m. 

The final expression of the acceleration 𝒂sat𝑘 ≡ 𝒂sat(t𝑘) is (omitting DYD subscript): 

𝒂sat𝑘 = 𝒂satGD
(t𝑘) + 𝒂satGd

(t𝑘) + 𝒂satSRP(t𝑘) + 𝒂satGsun
(t𝑘) , 

where the single contributions have been defined in the previous chapters as (omitting DYD): 

𝒂satGD
(t𝑘) = −

𝜇D
‖𝒓sat−D(t)‖3

𝒓sat−D(t) 

𝒂satGd
(t𝑘) = −

𝜇d
‖𝒓sat−d(t)‖3

𝒓sat−d(t) 

𝒂satGsun
(t𝑘) = 𝜇sun [

𝒔(t𝑘)

‖𝒔(t𝑘)‖3
−

𝒓s(t𝑘)

‖𝒓s(t𝑘)‖3
] 

𝒂satSRP(t𝑘) =
𝒇satSRP(t𝑘)

msat
 , 

where 𝒓sat−D(t) and 𝒓sat−d(t) have been shown in eqs (1.2), 𝒔(t) and 𝒓s(t) have been clarified in eq. 

(1.35) and 𝒇satSRP(t) has been demonstrated in eq. (1.23). 

Therefore, renaming the state of the satellite as: 

𝒙sat𝑘 = (𝑥sat𝑘 , 𝑦sat𝑘 , 𝑧sat𝑘 , 𝑥̇sat𝑘 , 𝑦̇sat𝑘 , 𝑧̇sat𝑘)
𝑇 = (𝑥1𝒌 , 𝑥2𝒌 , 𝑥3𝒌 , 𝑥4𝒌 , 𝑥5𝒌 , 𝑥6𝒌)

𝑇 , 

the Jacobian 𝑭sat𝑘 (eq. (4.64)) is easily computable for the first three components of the state vector 

function 𝒇sat𝑘(𝒙sat𝑘), while is useful to separate the last three components of 𝒇sat𝑘(𝒙sat𝑘) in their 

fundamental contributions. 

Finally, the Jacobian 𝑭sat𝑘 is a 6x6 matrix composed by four 3x3 “blocks”, namely (omitting DYD): 

𝑭sat𝑘 =
𝜕𝒇sat𝑘(𝒙sat𝑘)

𝜕𝒙sat𝑘
|
(𝒙sat𝑘=𝒙̃𝑘

+)

=

[
 
 
 
 
 
 
 
 

1 0 0
0 1 0
0 0 1

h 0 0
0 h 0
0 0 h

𝜕𝑓4𝑘
𝜕𝑥1𝑘

…
𝜕𝑓4𝑘
𝜕𝑥3𝑘

⋮ ⋱ ⋮
𝜕𝑓6𝑘
𝜕𝑥1𝑘

…
𝜕𝑓6𝑘
𝜕𝑥3𝑘

1 0 0
0 1 0
0 0 1

]
 
 
 
 
 
 
 
 

(𝒙sat𝑘=𝒙̃𝑘
+)

 

The components of 𝑭sat𝑘(4:6;1:3) consist of the partial derivatives of the accelerations previously 

shown in eqs (5.4). 

(5.3)  

(5.4)  

(5.5)  

(5.6)  
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The formulations of the state vector function and of its Jacobian matrix 𝑭𝑘 have been implemented 

in the MATLAB script statetransition_4bodies_SRP.m. 

The partial derivatives of 𝒂satGD
, 𝒂satGd

 and 𝒂satGsun
 are straightforward to compute, while the ones 

of 𝒂satSRP require the usage of the Symbolic Tool of MATLAB, due especially to the presence of the 

terms cos(θ(t𝑘)) and cos2(θ(t𝑘)) in equation (1.23). 

5.1.2 THE MEASUREMENT VECTOR FUNCTION AND ITS JACOBIAN MATRIX 

Once defined the state vector function 𝒇sat𝑘(𝒙sat𝑘) and its Jacobian matrix 𝑭sat𝑘, we proceed to state 

the measurement vector function 𝒉sat𝑘(𝒙sat𝑘) and its Jacobian matrix 𝑯sat𝑘
. 

The measurement vectors 𝒛sat𝑘 are strictly connected to the considered navigation concept. 

Since DustCube will operate inside Didymos binary system by using the optical measurements from 

the images captured by the cameras, the measurement vector function 𝒉sat𝑘(𝒙sat𝑘) must consider the 

LOS vectors (see section 3.1 Inertial direction evaluation: Lines of sight (LOS) for more details), 

which are the vectors directed from DustCube towards the target bodies (Figure 5.1). 

Therefore, the adopted dynamic system is based on measurements in terms of range from the target 

body, i.e. the distance from the target, and in terms of inertial direction, i.e. the unit vector directed 

from the S/C to the target body (Lasagni Manghi, Zannoni, Modenini, & Tortora, 2016, February 2), 

so that these measurements are coherent with the image processing techniques adopted for the 

mission, as described in section 3.5 Optical Navigation concept for DustCube mission. 

In particular, since DustCube will acquire images through two infrared cameras pointed towards the 

primaries, the most exploited technique will be the Center-finding by Analytic Function Fitting 

(Figure 3.7), because the pictures of the two target bodies will always be content in the cameras’ 

FoVs, which allows to compute the LOS inertial direction measurements and the ranges of the 

observations too, since is always possible to correlate the size of every target body within the image 

with the known size of the corresponding celestial body (Christian, 2015). 
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Figure 5.1: Tracking and ranging measurements of a target body 

Therefore, since DustCube will navigate in a binary system, it will carry on at least two cameras 

mounted onboard: 

• one camera pointed towards Didymain; 

• one camera pointed towards Didymoon. 

Hence, the measurements will be: 

• the norm of the vector directed from DustCube towards Didymain; 

• the norm of the vector directed from DustCube towards Didymoon; 

• the three components of the unit vector directed towards Didymain; 

• the three components of the unit vector directed towards Didymoon. 

Decomposing the position vectors of DustCube, Didymain and Didymoon w.r.t. the CoM of Didymos 

in DYD coordinates as (omitting DYD subscript and the time dependence): 

𝒓sat = (𝑥sat1, 𝑥sat2, 𝑥sat3)
𝑇 

𝒓D = (𝑥D1, 𝑥D2, 𝑥D3)
𝑇 

𝒓d = (𝑥d1, 𝑥d2, 𝑥d3)
𝑇 , 

is possible to obtain the LOS unit vectors directed towards the primaries of Didymos system by 

considering the opposite of 𝒓sat−D and 𝒓sat−d described in eqs (1.2), namely: 

(5.7)  
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𝐋𝐎𝐒̂D =
𝒓D−sat
‖𝒓D−sat‖

=
𝒓D − 𝒓sat
‖𝒓D − 𝒓sat‖

 

𝐋𝐎𝐒̂d =
𝒓d−sat
‖𝒓d−sat‖

=  
𝒓d − 𝒓sat
‖𝒓d − 𝒓sat‖

, 

Since every LOS direction is determined through the unit vector directed from the camera towards 

the target body, which has three components that are not mutually independent, is not convenient to 

operate with 8 measurements. 

This problem is easily avoidable by switching from the Cartesian coordinate system to the spherical 

one, i.e. by reasoning in terms of range ρ, longitude λ and latitude ϕ. 

Indeed, the pseudo-range, which would be the norm of the LOS vector, represents the distance from 

the target body, while the angles λ and ϕ determine the direction of the LOS unit vector. 

Since the built-in MATLAB function acosd computes an angle that spans from 0° to 180°, is useful 

to switch from the latitude angle ϕ to the colatitude one δ (Figure 5.2). 

 

Figure 5.2: Representation of the longitude λ and the colatitude δ of a generic position vector 𝒓  

Finally, the considered measurement vector 𝒛𝑘 is featured by 6 components, which are the spherical 

coordinates of the two position vectors 𝒓D−sat and 𝒓d−sat of eqs (5.8). 

(5.8)  
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The passage from the Cartesian coordinate system to the spherical one is possible by exploiting the 

inverse of the following classical transformation equations: 

{

𝑥 =  𝜌 sin(𝛿) cos(𝜆)
𝑦 = 𝜌 sin(𝛿) sin(𝜆) 

𝑧 =  𝜌 cos(𝛿)           ,
 

and the well-known Euclidean distance, which bring to the following definitions for the range ρ, the 

longitude λ and the colatitude δ: 

{
 
 

 
 𝜌 = √𝑥2 + 𝑦2 + 𝑧2    

𝜆 = tan−1 (
𝑦

𝑥
)             

𝛿 = cos−1 (
𝑧

𝜌
)           

with    {

𝜌 > 0                      

𝜆 ∈ [−180°, 180°]

𝛿 ∈ [0°, 180°]       
 

Operating in degrees, since the built-in MATLAB functions atand and acosd compute angles included 

in the intervals [-90°,90°] and [0°,180°] respectively, the colatitude δ can be directly calculated w/o 

restrictions, since 𝜌 > 0, while the longitude λ requires an appropriate definition of the conditions on 

x and y to compute the actual longitude of the position vector, which are: 

{
 
 
 
 

 
 
 
 𝜆 = tan

−1 (
𝑦

𝑥
)                     iff x > 0                    

𝜆 =  tan−1 (
𝑦

𝑥
) + 180°      iff x < 0 and y > 0

𝜆 =  tan−1 (
𝑦

𝑥
) − 180°      iff x < 0 and y < 0

𝜆 =  90°                                 iff x = 0 and y > 0
𝜆 =  −90°                              iff x = 0 and y < 0
𝜆 =  indefined                      iff x = y = 0            

 

Finally, considering the two LOS vectors, the measurement function 𝒉sat𝑘(𝒙sat𝑘) is defined as: 

𝒉sat𝑘(𝒙sat𝑘)|DYD
=

[
 
 
 
 
 
 
‖𝒓D−sat𝑘‖

𝜆D−sat𝑘
𝛿D−sat𝑘
‖𝒓d−sat𝑘‖

𝜆d−sat𝑘
𝛿d−sat𝑘 ]

 
 
 
 
 
 

DYD

  

(5.9)  

(5.10)  

(5.11)  

(5.12)  
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Therefore, the Jacobian matrix 𝑯sat𝑘
 becomes a 6x6 matrix which can be obtained by computing the 

single partial derivatives shown in equation (4.57), which has been implemented in the MATLAB 

script jacobian_H_thesis.m. 

5.1.3 THE USEFUL REFERENCE FRAMES FOR THE MEASUREMENTS 

To maintain a coherent LOS errors computation, it is convenient to define other three non-inertial 

reference frames, which are the satellite body-fixed RF and the two cameras tracking-fixed RFs: 

1. DustCube body-fixed reference frame (SAT subscript): is the body-fixed reference frame of 

DustCube, which is centered in the CoM of the satellite. Since its main objective will be to 

examine the DART impact, is convenient to adopt an orientation of DustCube which is coherent 

with this specific constrain. Therefore, the body-axes of the satellite are defined like the final 

concept approved by the technical report DustCube Technical Note 2: Mission Concept and 

Preliminary Assessmet (Aguado, et al., 2016, May 6), which is shown in Figure 5.3. 

 

Figure 5.3: Body Reference Frame for DustCube (Aguado, et al., 2016, May 6) 

Therefore, the axes of the Reference Frame are (Aguado, et al., 2016, May 6): 

▪ +X axis: from the CoM to the face of the RNH directed towards Didymoon; 

▪ +Z axis: from the CoM to the INH Sample Bay Inlet; 

▪ +Y axis:  it completes the right-handed RF. 
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Furthermore, the six faces of the DustCube S/C have been named adopting this RF. 

As said before, since DustCube will analyze the DART impact with Didymoon and it will always 

move inside Didymos system remaining in the mean plane of the mutual orbit of the primaries, 

its adopted orientation is defined by maintaining the +X axis pointing towards Didymoon, the +Y 

axis directed as the cross product between the position vectors of Didymain and Didymoon w.r.t. 

the satellite frame and the +Z axis completes the right-handed orientation frame. 

The MATLAB script sat_RF.m defines the body-fixed RF of DustCube and continuously 

computes the rotation matrix between this frame and the adopted inertial reference frame (see 

section A.1.5 Transformations in non-inertial coordinates by using rotation matrices for more 

details). 

2. Didymain and Didymoon tracking cameras RFs (DCAM e dCAM subscripts, respectively): are 

the camera-fixed RFs related to the two tracking cameras mounted onboard DustCube, pointing 

towards Didymain and Didymoon and centered in the respective geometric centers of the cameras’ 

lens. Since DustCube will acquire images of Didymoon after the collision of DART and will track 

the two primaries as target bodies for navigation purposes, the solution adopted for the 

configuration of the two cameras onboard DustCube is the final concept approved by the technical 

report DustCube Technical Note 2: Mission Concept and Preliminary Assessmet (Aguado, et al., 

2016, May 6), which is shown in Figure 5.4. 

 

Figure 5.4: Proposed cameras’ configuration (Aguado, et al., 2016, May 6) 

Therefore, every camera mounted onboard DustCube has a fixed RF defined as: 
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▪ +X axis: is the pointing direction, ideally directed towards the target body’s CoM; 

▪ -Y axis: perpendicular to the main symmetry axis; 

▪ +Z axis:  it completes the right-handed RF. 

As said before, since DustCube will track the primaries to satisfy the navigations purposes, the 

adopted orientation of every camera defined by maintaining every pointing axis +X axis of the 

two cameras directed towards the target body. 

The MATLAB scripts cam_RF_main.m.and cam_RF_moon.m define the relative cameras’ 

RFs of DustCube and continuously compute the rotation matrices between the cameras’ frames 

and the adopted DustCube’s body fixed RF. 

5.1.4 THE PROCESS AND THE MEASUREMENT ERRORS 

After the definition of the state vector function 𝒇sat𝑘(𝒙sat𝑘) and of the measurement vector function 

𝒉sat𝑘(𝒙sat𝑘), with their relative Jacobian matrices 𝑭sat𝑘 and 𝑯sat𝑘
, is important to define a suitable 

set of process error vectors 𝒘sat𝑘
 and measurement ones 𝒗sat𝑘 for the considered mission. 

As said before, since the objective of this work of thesis is to implement a navigation filter simulation, 

it has been decided to consider the state of DustCube as it was subjected to the influence of the central 

attractions of the primaries, Didymain and Didymoon, to the solar gravitational disturbance and to 

the Solar Radiation Pressure, so that the acceleration vectors which arise from the addition of the 

spherical harmonics due to the non-spherical shape of the primaries in the computation of the 

gravitational attractions can be considered as the process noise vectors. 

Therefore, considering the evaluation of the state vector of DustCube obtained through the simplified 

state’s dynamic, i.e. by exploiting the Explicit Euler method for the propagation of the state, its 

evolution in time becomes (see 1st equation of (4.63) w/o input vector): 

𝒙sat𝑘+1 =

[
 
 
 
 
 
 
 
𝑥sat𝑘 + h 𝑥̇sat𝑘
𝑦sat𝑘 + h 𝑦̇sat𝑘
𝑧sat𝑘 + h 𝑧̇sat𝑘
𝑥̇sat𝑘 + h 𝑎𝑥sat𝑘
𝑦̇sat𝑘 + h 𝑎𝑦sat𝑘
𝑧̇sat𝑘 + h 𝑎𝑧sat𝑘 ]

 
 
 
 
 
 
 

DYD

+  

[
 
 
 
 
 
 
𝑤𝑥sat𝑘
𝑤𝑦sat𝑘
𝑤𝑧sat𝑘
𝑤𝑥̇sat𝑘
𝑤𝑦̇sat𝑘
𝑤𝑧̇sat𝑘]

 
 
 
 
 
 

DYD

, 

where the first term comes from the eq (5.2), while the second one is the process error vector 𝒘𝑘, 

which must be linked to the augmented set of accelerations acting on DustCube due to spherical 

harmonic coefficients. 

(5.13)  
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Considering a simplified second-order model in continuous time for the evaluation of the position 

and the velocity of a point mass in 1D, which is the so-called accelerated rectilinear motion, where 

p(t) is the position, v(t) = ṗ(t) is the velocity and w(t) = p̈(t) is the acceleration, the dynamic of 

the state 𝐱(t) = [p(t), ṗ(t)]𝑇  w/o process errors simply becomes (Shimkin, 2009): 

𝐱̇(t) = [
0 1
0 0

] 𝐱(t) + [
0
1
]w(t) , 

where w(t) can be considered as the input term. 

Since is more convenient to operate in a discretized time-window for a computational point of view, 

discretizing the equation (5.14) through the well-known forward finite difference formula 

(Quarteroni, Sacco, Saleri, & Gervasio, 2014), we obtain the Explicit Euler method in 1D: 

x𝑘+1 = [
p𝑘+1
v𝑘+1

] = [
1 h
0 1

] [
p𝑘
v𝑘
] + [

0
h
]w𝑘 

Now we can suppose that there exists a non-avoidable scalar small random acceleration ∆a𝑘, which 

is a white gaussian noise with zero mean term, that acts on the point mass during its motion, corrupting 

the dynamic of the system and therefore inhibiting the exact evaluation of the point mass’ state 

(Shimkin, 2009). 

We also suppose that this small acceleration remains constant during the passage from the kth instant 

of time to the (k+1)th one, which always occurs with a constant time step h. 

Under these assumptions, the random small acceleration ∆a𝑘 produces an error vector which directly 

modifies the velocity evolution of the system and therefore its position too. 

This error vector can be easily obtained as: 

[
∆p𝑘
∆v𝑘

] = [h
2 2⁄
h
] ∆a𝑘 

Starting from this simple example in 1D, is possible to extend the reasoning to our 3D case, which 

brings to the definition of the process error vector 𝒘sat𝑘
 for DustCube mission: 

𝒘sat𝑘
 =

[
 
 
 
 
 
 
 
 
h2 2⁄  ∆𝑎𝑥sat𝑘
h2 2⁄  ∆𝑎𝑦sat𝑘
h2 2⁄  ∆𝑎𝑧sat𝑘
h ∆𝑎𝑥sat𝑘
h ∆𝑎𝑦sat𝑘
h ∆𝑎𝑧sat𝑘 ]

 
 
 
 
 
 
 
 

 , 

(5.14)  

(5.15)  

(5.16)  

(5.17)  
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so that, the final dynamic of the state of DustCube, starting from the equation (5.19), becomes 

(omitting DYD subscript): 

𝒙sat𝑘+1 =

[
 
 
 
 
 
 
 
𝑥sat𝑘 + h 𝑥̇sat𝑘
𝑦sat𝑘 + h 𝑦̇sat𝑘
𝑧sat𝑘 + h 𝑧̇sat𝑘
𝑥̇sat𝑘 + h 𝑎𝑥sat𝑘
𝑦̇sat𝑘 + h 𝑎𝑦sat𝑘
𝑧̇sat𝑘 + h 𝑎𝑧sat𝑘 ]

 
 
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 
 
h2 2⁄  ∆𝑎𝑥sat𝑘
h2 2⁄  ∆𝑎𝑦sat𝑘
h2 2⁄  ∆𝑎𝑧sat𝑘
h ∆𝑎𝑥sat𝑘
h ∆𝑎𝑦sat𝑘
h ∆𝑎𝑧sat𝑘 ]

 
 
 
 
 
 
 
 

 , 

where the last term represents the so-called process error vector 𝒗sat𝑘, which can be properly 

evaluated to compute the process covariance matrix 𝑸sat𝑘, which has an important influence on the 

behavior of the dynamic filter. 

The measurement errors 𝒗sat𝑘  are strictly linked to the typology of the measurements. 

Since the measurement vector 𝒛sat𝑘 is characterized by 6 components which are the ranges of 

DustCube from Didymain and Didymoon and the LOS directions of the two cameras pointed towards 

the primaries, which are summarized by the longitude λ and the colatitude δ (Figure 5.2) of the unit 

vectors 𝒓̂D−sat and 𝒓̂d−sat, we have to consider possible random errors in the computation of the 

measurements of the ranges from the CoMs of the primaries and in the tracking of the position of the 

CoMs of the primaries. 

Therefore, the possible measurement errors should be due to the tracking errors of the CoMs of 

Didymain and Didymoon and to the fitting errors of the bodies’ shapes (Figure 5.1), so that they are 

strictly linked to the camera’s FoVs. 

Since the ranges 𝜌D and 𝜌d between DustCube and the CoMs of the primaries are the norms of the 

two vectors 𝒓D−sat and 𝒓d−sat, they are independent by the RF used to achieve them, so that they can 

be easily obtained by computing the norms of the two vectors as defined in Didymos coordinates. 

Therefore, it can be suitable to consider norm errors which are 1% of the ideal measured ranges and 

which can be positive or negative, that is easy to implement by multiplying the two ranging errors 

with a scalar factor k = ±1 that varies randomly during the computation: 

∆𝜌D(t𝑘) = k 
𝜌D𝑖𝑑𝑒𝑎𝑙(t𝑘)

100
  ⟹  𝜌D𝑡𝑟𝑢𝑒(t𝑘) = 𝜌D𝑖𝑑𝑒𝑎𝑙(t𝑘) + ∆𝜌D(t𝑘) 

∆𝜌d(t𝑘) = k 
𝜌d𝑖𝑑𝑒𝑎𝑙(t𝑘)

100
  ⟹  𝜌d𝑡𝑟𝑢𝑒(t𝑘) = 𝜌d𝑖𝑑𝑒𝑎𝑙(t𝑘) + ∆𝜌d(t𝑘) 

(5.18)  

(5.19)  
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Regarding the LOS direction errors, the unit vectors 𝐋𝐎𝐒̂D𝑖𝑑𝑒𝑎𝑙 and 𝐋𝐎𝐒̂d𝑖𝑑𝑒𝑎𝑙 have been corrupted 

by considering small deviation angles, that are suitably computed through the definition of small 

deviations from the ideal pointing in camera’s RFs. 

Considering a target picture captured by one camera as in Figure 5.5, is easy to visualize the random 

small deviations 𝐞p from the ideal pointing directed towards the CoM of the target body, which have 

a norm that is maintained between 0.5% - 1% of the ideal measured range. 

 

Figure 5.5: Small deviation errors from the CoM’s pointing of the target body 

Defining the vector directed from the satellite towards the target body’s CoM with 𝒓𝑖𝑑𝑒𝑎𝑙, which is 

aligned with the unit vector 𝒊̂CAM, and the corrupted one with 𝒓𝑡𝑟𝑢𝑒, is easy to understand how to 

compute the corrupted direction measurement 𝒓̂𝑡𝑟𝑢𝑒 by visualizing the Figure 5.6, where the reader 

can also observe the camera RF, identified with the canonical basis (𝒊̂CAM , 𝒋̂CAM , 𝒌̂CAM). 

Hence, considering the ideal LOS directions of the two cameras mounted onboard DustCube, 

𝐋𝐎𝐒̂D𝑖𝑑𝑒𝑎𝑙 and 𝐋𝐎𝐒̂d𝑖𝑑𝑒𝑎𝑙, is possible to obtain the corrupted directions 𝐋𝐎𝐒̂D𝑡𝑟𝑢𝑒 and 𝐋𝐎𝐒̂d𝑡𝑟𝑢𝑒 

through the computation of the small deviations 𝐞pD
 and 𝐞pd

 related to the two targets bodies. 

Obviously, since the objective is to simulate the actual behaviour of DustCube, the two small 

deviations are calculated in the cameras’ RFs, so that the corrupted LOS measurements are computed 

in the cameras’ RFs too. 
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Figure 5.6: Corrupted target pointing of a camera mounted onboard a satellite 

Hence, starting from the two ideal ranges 𝜌D𝑖𝑑𝑒𝑎𝑙 and 𝜌d𝑖𝑑𝑒𝑎𝑙, we can fix the two following norms: 

‖𝐞pD
|
CAM

(t𝑘)‖ =
𝜌D𝑖𝑑𝑒𝑎𝑙(t𝑘)

ℂ
      ℂ = 100, 200 

‖𝐞pd
|
CAM

(t𝑘)‖ =
𝜌d𝑖𝑑𝑒𝑎𝑙(t𝑘)

ℂ
      ℂ = 100, 200, 

where ℂ determines if the software must consider two deviation errors of 1% or 0.5% of the two 

norms 𝜌D𝑖𝑑𝑒𝑎𝑙 and 𝜌d𝑖𝑑𝑒𝑎𝑙, that means the deviation angle α is equal to approximately 0.56° or 0.28° 

respectively, which represent almost 2% and 1% of the general FoV., that can be regarded as similar 

to the actual deviation angles  

Obviously, the two small deviations 𝐞pD
 and 𝐞pd

 are ideally contained in the cameras’ planes, upon 

which lay the unit vectors (𝒋̂CAMD , 𝒌̂CAMD) and (𝒋̂CAMd , 𝒌̂CAMd), therefore, since we want to obtain 

random errors in terms of direction, is possible to rotate the unit vectors 𝒌̂CAMD and  𝒌̂CAMd (or 𝒋̂CAMD 

and 𝒋̂CAMd, which is the same) around the versors  𝒊̂CAMD and 𝒊̂CAMd, respectively, of casual angles 

𝛾D and 𝛾d, which are computed as: 

𝛾D = cDkDπ       with cD ∈ [0,1] and kD = 1,2,3, … ,∞  

𝛾d = cdkdπ       with cd ∈ [0,1] and kd = 1,2,3, … ,∞ , 

(5.20)  

(5.21)  



  Chapter 5 

101 

where the fortuity on the choice of 𝛾D and 𝛾d is achieved in MATLAB through the call rand(1), which 

is exploited to obtain the two random values cD and cd, and the call randi(intmax), which is used to 

compute the two random integer values kD and kd, that are comprises from 1 to intmax, that is the 

maximum integer value storable by MATLAB. 

Once the unit vectors 𝒌̂CAMD and  𝒌̂CAMd have been randomly rotated, we have obtained the unit 

vectors 𝐞̂pD
 and 𝐞̂pD

, that are necessary to finally achieve the expressions of the two small vectors 

𝐞pD
 and 𝐞pd

, namely: 

𝐞pD
|
CAM

(t𝑘) =
𝜌D𝑖𝑑𝑒𝑎𝑙(t𝑘)

200
 𝐞̂pD

|
CAM

(t𝑘) 

𝐞pd
|
CAM

(t𝑘) =
𝜌d𝑖𝑑𝑒𝑎𝑙(t𝑘)

200
 𝐞̂pd

|
CAM

(t𝑘) , 

which bring to the following definitions of the two corrupted LOS vectors: 

𝐋𝐎𝐒D𝑡𝑟𝑢𝑒|CAM
(t𝑘) = 𝐋𝐎𝐒D𝑖𝑑𝑒𝑎𝑙|CAM

(t𝑘) + 𝐞pD
|
CAM

(t𝑘) 

𝐋𝐎𝐒d𝑡𝑟𝑢𝑒|CAM
(t𝑘) = 𝐋𝐎𝐒d𝑖𝑑𝑒𝑎𝑙|CAM

(t𝑘) + 𝐞pd
|
CAM

(t𝑘) 

The consequent unit vectors 𝐋𝐎𝐒̂D𝑡𝑟𝑢𝑒  and 𝐋𝐎𝐒̂d𝑡𝑟𝑢𝑒  must be transformed in Didymos coordinates 

through their proper rotation matrices, namely: 

𝐋𝐎𝐒̂D𝑡𝑟𝑢𝑒|DYD
(t𝑘) = [𝑻DYD−SAT(t𝑘)]

𝑇  [𝑻SAT−DCAM(t𝑘)]
𝑇 𝐋𝐎𝐒̂D𝑡𝑟𝑢𝑒|CAM

(t𝑘)  

𝐋𝐎𝐒̂d𝑡𝑟𝑢𝑒|DYD
(t𝑘) = [𝑻DYD−SAT(t𝑘)]

𝑇  [𝑻SAT−dCAM(t𝑘)]
𝑇 𝐋𝐎𝐒̂d𝑡𝑟𝑢𝑒|CAM

(t𝑘) , 

Once obtained the true unit vectors in Didymos coordinates, they must be compared to the ideal unit 

vectors 𝐋𝐎𝐒̂D𝑖𝑑𝑒𝑎𝑙 and 𝐋𝐎𝐒̂d𝑖𝑑𝑒𝑎𝑙, always defined in Didymos coordinates, in terms of longitude λ and 

colatitude δ (see eqs (5.10)), which brings to the definition of the measurement errors ∆𝜆D, ∆𝜆d, ∆𝛿D 

and ∆𝛿D, that finally compose the measurement error vector 𝒗sat𝑘: 

𝒗sat𝑘 =

[
 
 
 
 
 
 
∆𝜌D𝑘
∆𝜆D𝑘
∆𝛿D𝑘
∆𝜌d𝑘
∆𝜆d𝑘
∆𝛿d𝑘 ]

 
 
 
 
 
 

 , 

(5.22)  

(5.23)  

(5.24)  

(5.25)  
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which determines the covariance measurement error matrix 𝑹sat𝑘, that will be explained in the 

following section.  

The error vector 𝒗sat𝑘 is obtained, for every iterative computation, through the MATLAB scripts 

measurement_error_thesis_cam_main.m and measurement_error_thesis_cam_main.m. 

5.1.5 THE COVARIANCE ERROR MATRICES 𝑸𝐬𝐚𝐭 AND 𝑹𝐬𝐚𝐭 

The covariance error matrices 𝑸𝑘 and 𝑹𝑘, which have been presented in the eqs (4.40) of Chapter 4, 

are determined starting from the process and the measurement error vectors 𝒘𝑘 and 𝒗𝑘. 

It is important to remark that the rigorous definition of the matrices 𝑸𝑘 and 𝑹𝑘 states that they are 

two diagonal matrices, where the principal diagonal is composed by the variances of the single 

components of the two random vectors 𝒘𝑘 and 𝒗𝑘 i.e.: 

𝑸𝑘 = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑛

2)        with 𝜎𝑖
2 = 𝑣𝑎𝑟(𝑤𝑘

𝑖 )  

𝑹𝑘 = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑚

2 )        with 𝜎𝑖
2 = 𝑣𝑎𝑟(𝑣𝑘

𝑖 ) , 

while in the case of DustCube the error vectors 𝒘sat𝑘
 and 𝒗sat𝑘 are not strictly random, which brings 

to the conclusion that the out-of-diagonal elements of 𝑸sat𝑘 and 𝑹sat𝑘 are not null, that means single 

components of 𝒘sat𝑘
 and 𝒗sat𝑘 are not strictly uncorrelated each other. 

However, even if the process and the measurement error vectors are slightly deterministic, the 

Extended Kalman Filter remains valid to evaluate the state of DustCube, despite the control method 

is not optimal. Therefore, the matrices 𝑸sat𝑘 and 𝑹sat𝑘 must be defined starting from the error vectors 

and considering some useful techniques. 

Since the simplified dynamic of the state has been defined through the forward finite difference 

formula, obtaining the Explicit Euler method in 3D as done in the equation (5.18), is necessary to 

define a process error covariance matrix 𝑸sat𝑘 that properly considers the influence of the single 

components of the acceleration error, which are ∆𝑎𝑥sat𝑘
, ∆𝑎𝑦sat𝑘

 and ∆𝑎𝑧sat𝑘
, on the estimations of 

the position and the velocity of DustCube. 

Visualizing the state equation (5.18), is easy to observe that these errors is linked to the squared of 

the time-step h for the position evaluation and to the single time-step h for the velocity evaluation. 

Without losing consistency, it is predictable that the principal diagonal of the matrix 𝑸sat𝑘 is 

composed by the squares of the errors occurred for every component of the state vector 𝒙sat𝑘, while 

the out-of-diagonal elements of 𝑸sat𝑘 are related to the crossing influences between the components 

of the same state vector 𝒙sat𝑘  

(5.26)  
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Also, since the errors are slightly deterministic, is useful to maintain the matrix constant during the 

computation and equal to a matrix 𝑸sat, that allows to reduce the computational cost a lot with a good 

approximation of the matrix 𝑸sat𝑘 at every iteration. 

Therefore, the matrix 𝑸sat, which remains a symmetric matrix, can be computed by exploiting the 

acceleration error vector at the first instant of time ∆𝒂sat0, or the mean of the acceleration error vectors 

∆𝒂sat𝑘, and considering the simplified discretization model of the Lecture Notes of professor Nahum 

Shimkin, Estimation and Identification in Dynamical Systems, Technion - Israel Institute of 

Technology, Department of Electrical Engineering, Haifa (IL), 2009 (Shimkin, 2009), which brings 

to the following assumption: 

𝑸sat = 𝒘sat0
 𝒘sat0

𝑇 , 

that is coherent with the definition of 𝑸𝑘 in case of pure random vectors (1st of eqs (4.40), i.e.: 

𝑸𝑘 = 𝐸[𝒘𝑘𝒘𝑘
𝑇] 

Hence, the process error matrix 𝑸sat becomes (omitting the subscripts sat and DYD): 

𝑸 =

[
 
 
 
 
 
 
 
 
 
 
 
 
h2

4
(∆𝑎𝑥0)

2 h2

4
∆𝑎𝑥0∆𝑎𝑦0

h2

4
∆𝑎𝑥0∆𝑎𝑧0

h2

4
∆𝑎𝑥0∆𝑎𝑦0

h2

4
(∆𝑎𝑦0)

2 h2

4
∆𝑎𝑦0∆𝑎𝑧0

h2

4
∆𝑎𝑥0∆𝑎𝑧0

h2

4
∆𝑎𝑦0∆𝑎𝑧0

h2

4
(∆𝑎𝑧0)

2

h3

2
(∆𝑎𝑥0)

2 h3

2
∆𝑎𝑥0∆𝑎𝑦0

h3

2
∆𝑎𝑥0∆𝑎𝑧0

h3

2
∆𝑎𝑥0∆𝑎𝑦0

h3

2
(∆𝑎𝑦0)

2 h3

2
∆𝑎𝑦0∆𝑎𝑧0

h3

2
∆𝑎𝑥0∆𝑎𝑧0

h3

2
∆𝑎𝑦0∆𝑎𝑧0

h3

2
(∆𝑎𝑧0)

2

h3

2
(∆𝑎𝑥0)

2 h3

2
∆𝑎𝑥0∆𝑎𝑦0

h3

2
∆𝑎𝑥0∆𝑎𝑧0

h3

2
∆𝑎𝑥0∆𝑎𝑦0

h3

2
(∆𝑎𝑦0)

2 h3

2
∆𝑎𝑦0∆𝑎𝑧0

h3

2
∆𝑎𝑥0∆𝑎𝑧0

h3

2
∆𝑎𝑦0∆𝑎𝑧0

h3

2
(∆𝑎𝑧0)

2

h2(∆𝑎𝑥0)
2

h2∆𝑎𝑥0∆𝑎𝑦0 h2∆𝑎𝑥0∆𝑎𝑧0

h2∆𝑎𝑥0∆𝑎𝑦0 h2 (∆𝑎𝑦0)
2

h2∆𝑎𝑦0∆𝑎𝑧0

h2∆𝑎𝑥0∆𝑎𝑧0 h2∆𝑎𝑦0∆𝑎𝑧0 h2(∆𝑎𝑧0)
2

]
 
 
 
 
 
 
 
 
 
 
 
 

 

Even if the measurement error vector 𝒗sat𝑘 is slightly deterministic too, is preferable to maintain the 

measurement error matrix 𝑹sat𝑘 as diagonal one, which allows to obtain a good simulation for the 

DustCube’s online process to take tracking measurements of the target bodies. 

Without losing consistency, is useful to maintain the matrix 𝑹sat𝑘 constant during the computation 

and equal to a diagonal matrix 𝑹sat which has the principal diagonal composed by the squares of the 

measurement errors at the first instance of time, so that it remains coherent to the definition of the 

measurement error covariance matrix in case of pure random vectors (2nd of eqs (4.40)), i.e.: 

(5.29)  

(5.27)  

(5.28)  
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𝑹𝑘 = 𝐸[𝒗𝑘𝒗𝑘
𝑇] , 

also maintaining the principle of the mutual uncorrelation of the measurement errors. 

Finally, the measurement error matrix 𝑹sat becomes (omitting DYD subscript): 

𝑹sat =

[
 
 
 
 
 
 
 
 (∆𝜌D0)

2

(∆𝜆D0)
2

(∆𝛿D0)
2

(∆𝜌d0)
2

(∆𝜆d0)
2

(∆𝛿d0)
2
]
 
 
 
 
 
 
 
 

 

5.2 THE EXTENDED KALMAN FILTER IMPLEMENTATION 

As said in Chapter 4, since the dynamic system of DustCube is non-linear, is necessary to implement 

the extended version of the Kalman Filter (EKF). 

The working of the filter has been treated in section 4.5 Extended Kalman Filter (EKF), while its 

general structure has been summarised in Table 4.3. 

In the previous sections of this Chapter we have obtained the simplified dynamic system of the filter 

of DustCube, which exploits the Explicit Euler method, the process and the measurement errors and 

the relative matrices 𝑸sat and 𝑹sat. 

Therefore, the necessary a-priori knowledge of the data 𝒛sat𝑘, 𝒉sat𝑘(𝒙sat𝑘), 𝒇sat𝑘(𝒙sat𝑘), 𝑸sat and 

𝑹sat has been already accomplished in the previous sections. 

Another important datum to previously define is the time-step h, which must be quite small to obtain 

a good convergence, but coherent with the actual measurement process of DustCube. 

Hence, it is established to consider the time-step as comprised between 10 and 30 seconds. 

Also, the implementation of the filter requires the knowledge of the estimation of the initial state 

vector, i.e. the estimation of the state of the orbital propagation of DustCube at t0. 

Remembering the general structure of the EKF shown in Table 4.3, once defined the necessary vectors 

and matrices that must be known to implement the filter, the formulation proceeds with its 

initialization phase, which requires the computation of the a-priori estimate of the state vector and its 

relative error covariance matrix at the second instant of time t1 = t0 + h. 

Therefore, the initialization of the filter requires to select the error on the state vector at t0 and its 

corresponding covariance matrix, i.e. to define the estimate of the initial state vector 𝒙̃sat𝟎 and the 

covariance matrix 𝑷sat0. 

(5.31)  

(5.30)  
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Once defined the selected estimate of the initial state 𝒙̃sat𝟎, the error matrix 𝑷sat0 can be 

approximated by simply considering it as diagonal and formed by the square of the components of 

the initial error vector 𝒆0. 

Several estimates of the initial state have been tested to verify the qualities of the Kalman filter. 

Indeed, the selected initial state 𝒙̃sat𝟎 with its computed error matrix 𝑷sat0, together with the process 

error matrix 𝑸sat and the measurement error one 𝑹sat, influences the computation of the corrected 

state vectors 𝒙̃sat𝑘
+

 in terms of convergence speed and convergence behaviour. 

The formulation of the DustCube’s filter continues with the implementation of the iterative procedure, 

which is accomplished by the MATLAB script EKF_thesis.m, where a FOR CYCLE has been exploited 

to continuously compute the prediction and the correction of the state vector, i.e. 𝒙̃sat𝑘
−

 and 𝒙̃sat𝑘
+

. 

The initialization of every iteration requires the computation of the a-priori estimation of the state 

𝒙̃sat𝑘
−

 and of the a-priori error covariance matrix 𝑷sat𝑘
−, which are defined as: 

𝒙̃sat𝑘+1
− = 𝒇sat𝑘(𝒙̃sat𝑘

+)  

𝑷sat𝑘+1
− = 𝑭sat𝑘 𝑷sat𝑘

+ 𝑭sat
𝑇

𝑘
+𝑸sat , 

where 𝑭sat𝑘 is the Jacobian matrix of the vector 𝒇sat𝑘(𝒙̃sat𝑘
+) and is computed at every iteration as it 

has been explained in the equation (5.6), while the computation of the evolution𝒇sat𝑘(𝒙̃sat𝑘
+) of the 

state vector is accomplished through the eqs (5.2), (5.3) and (5.4). 

As said before, 𝒇sat𝑘(𝒙̃sat𝑘
+) and 𝑭sat𝑘 are computed by exploiting the specially created MATLAB 

script statetransition_4bodies_SRP.m. 

Therefore, the script proceeds with the classical iteration of the EKF, like has been explained in 

section 4.5 Extended Kalman Filter (EKF) and is summarised here below for completeness: 

𝑯sat𝑘
=
𝜕𝒉sat𝑘(𝒙sat𝑘)

𝜕𝒙sat𝑘
|
(𝒙sat𝑘=𝒙̃sat𝑘

−)

 

𝑲sat𝑘 = 𝑷sat𝑘
− 𝑯sat

𝑇
𝑘
(𝑯sat𝑘

 𝑷sat𝑘
− 𝑯sat

𝑇
𝑘
+ 𝑹sat)

−1 

𝒙̃sat𝑘
+ = 𝒙̃sat𝑘

− +𝑲sat𝑘 [𝒛sat𝑘 − 𝒉sat𝑘(𝒙̃sat𝑘
−)] 

𝑷sat𝑘
+ = (𝑰 − 𝑲sat𝑘 𝑯sat𝑘

) 𝑷sat𝑘
− 

𝑭sat𝑘 =
𝜕𝒇sat𝑘(𝒙sat𝑘)

𝜕𝒙sat𝑘
|
(𝒙sat𝑘=𝒙̃sat𝑘

+)

 , 

where 𝑲sat𝑘 represents the Kalman gain matrix at the kth iteration and 𝑷sat𝑘
+ the a-posteriori error 

covariance matrix at the kth iteration. 

(5.32)  

(5.33)  
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The measurement function 𝒉sat𝑘(𝒙sat𝑘) has been obtained as shown in the equation (5.12), while the 

general form of its Jacobian matrix 𝑯sat𝑘
 has been achieved by computing the single partial 

derivatives shown in equation (4.57), which has been implemented in the MATLAB script 

jacobian_H_thesis.m, as said before. 

The results obtained by the DustCube’s filter will be discussed in the next sections. 

5.3 INITIAL VALIDATION OF THE DUSTCUBE’S FILTER 

After the implementation of the Extended Kalman Filter of DustCube, is necessary to tune the filter, 

which must converge to the actual state vectors of DustCube for a wide range of initial states 𝒙̃sat𝟎. 

Therefore, the adopted solution to preliminarily validate the filter implemented was to test a perfect 

matching between the "true" dynamic used to generate the measurements, and the filter implemented 

dynamic. In other words, the true state was computed through a simplified orbit propagator that 

exploits the Explicit Euler method and takes into account the same force sources acting on DustCube 

as the filter’s state function 𝒇sat𝑘(𝒙sat𝑘), namely the central attractions of the primaries, the Solar 

Radiation Pressure and the solar gravitational disturbance. 

This means the dynamic of the orbital propagator has been equalized to the filter’s dynamic. 

This method allows to compute a process error matrix 𝑸sat that is almost a null 6x6 matrix. 

Also, the estimate of the initial state vector 𝒙̃sat𝟎 has been varied may times to test the convergence 

of the filter, which finally proved to be very satisfactory. 

For example, exploiting the specially created MATLAB script tuning.m, we can consider a time 

window spanning from August 24th, 2022 to August 31st, 2022, a time-step h = 10 seconds and an 

initial estimate of state vector 𝒙sat0|DYD
 defined as: 

𝒙sat𝟎|DYD
= 𝒙sat0|DYD

+ 𝒆0|DYD = 𝒙sat0|DYD
+

[
 
 
 
 
 
−22.978 𝑚   
9.592 𝑚

−1.9069 𝑚   
    0.0015 𝑚/𝑠
−0.0029 𝑚/𝑠
−0.0002 𝑚/𝑠]

 
 
 
 
 

DYD

 , 

so that, the considered scenario represents an extreme situation, since every element of the error 

vector 𝒆0|DYD is between 2% and 10% of the reciprocal component of the exact state 𝒙sat0|DYD
. 

The error vector 𝒆0 of the previous equation shows non-uniform errors in the components of the 

position and in the one of the velocity. Indeed, since we are interested to set up a more realistic 

scenario, this error has been selected by considering the orbital plane of DustCube and by taking 

into account the position of the Lagrange point L5 w.r.t. the Didymos’ synodic plane. 

(5.34)  
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Therefore, remembering the definition of the a-posteriori estimation error 𝒆𝑘
+, i.e. the 2nd equation of 

(4.42), and filtering the state of DustCube of this awful set-up, is possible to really appreciate the 

convergence of the corrected solution obtained by the implemented EKF through the visualization of 

the behaviour of every component of the a-posteriori estimation error, namely: 

• the Figure 5.7, the Figure 5.8 and the Figure 5.9 show the convergence of the corrected position 

of the S/C as divided in its components, starting from the exaggerated initial error 𝒆𝟎|DYD. 

Observing every plot, it is possible to appreciate the good performance of the estimation process: 

the absolute value of the initial error in x coordinate evolves from 23 meters to just 2.7 

centimetres, the absolute value of the initial error in y coordinate from 9 meters to just 2.8 

centimetres, the absolute value of the initial error in z coordinate from 1.9 meters to 7.9 

centimeters; 

• the Figure 5.10, the Figure 5.11 and the Figure 5.12 show the convergence of the corrected 

velocity of the S/C as divided in its components, starting from the exaggerated initial error 𝒆𝟎|DYD. 

From these plots, it is possible to evaluate the good performance of the estimation process: the 

absolute value of the initial error in ẋ decreases from 1.5 × 10−3 [m/s] to just 5.3 × 10−6 [m/s], 

the absolute value of the initial error in ẏ from 2.9 × 10−3 [m/s] to just 4.1 × 10−6 [m/s], the 

absolute value of the initial error in ż from 1 × 10−4 [m/s] to just 1.3 × 10−6 [m/s]. 

Obviously, the same tuning operation could be performed by exploiting other initial errors 𝒆𝟎|DYD, 

which would show similar convergences. 

The results obtained through the tuning scenario allow to validate the DustCube’s filter, which is now 

ready to filter actual situations in which we will consider the process error matrix 𝑸sat too. 



Chapter 5   

108 

 

Figure 5.7: Estimated state’s error on x 

 

Figure 5.8: Estimated state’s error on y 
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Figure 5.9: Estimated state’s error on z 

 

Figure 5.10: Estimated state’s error on Vx 
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Figure 5.11: Estimated state’s error on Vy 

 

Figure 5.12: Estimated state’s error on Vz 
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5.4 THE FILTERING OF THE CORRUPTED STATE OF DUSTCUBE 

The filtering of the corrupted state of DustCube is obtained by initializing the EKF with an estimated 

initial state vector 𝒙̃sat𝟎. 

The measurements are taken, as said before, from the actual states of DustCube. 

Also, a process error 𝒘𝑘 is considered to simulate possible noises acting on the system, which 

involves the existence of the process error matrix 𝑸sat. 

To compute the matrix 𝑸sat, we suppose to consider the acceleration due to Didymain and Didymoon 

which includes their exterior spherical harmonics as the processed one and we consider the eq. (5.29).  

Therefore, since we are interest to represent the scenario as realistic as possible, we take into account 

the normalized exterior spherical harmonic coefficients up to degree 20 and order 20 (Zannoni, et al., 

2018), which have been explained in section 1.2.3 Gravitational attractions acted by Didymain and 

Didymoon of Chapter 1, and we consider a deviation angle of 1% for the LOS measurements. 

As said before, several estimations of initial state vector have been tested to properly evaluate the 

dynamic behaviour of the filtering process. 

For example, considering a time window spanning from August 24th, 2022 to August 28th, 2022, a 

time-step h = 10 s and starting from the following estimate of the initial state vector 𝒙̃sat𝟎|DYD
: 

𝒙̃sat𝟎|DYD
= 𝒙sat0|DYD

+ 𝒆𝟎|DYD = 𝒙sat0|DYD
+

[
 
 
 
 
 

5 𝑚   
15 𝑚
1 𝑚

    0.001 𝑚/𝑠
    0.001 𝑚/𝑠
    0.001 𝑚/𝑠]

 
 
 
 
 

DYD

 , 

the filter can efficiently estimate the state of DustCube. 

The error vector 𝒆0 of the previous equation shows, as in the previous section, non-uniform errors 

in the components of the position. Again, since we are interested to set up a more realistic scenario, 

this error has been selected by considering the orbital plane of DustCube, which is, in this case, 

always coincident with the orbital plane of the mutual orbit of the primaries and by taking into 

account the position of the Lagrange point L5 w.r.t. the Didymos’ synodic plane. 

The figures from Figure 5.13 to Figure 5.18 show that every component of the corrected state vector 

𝒙̃sat𝑘
+|
DYD

 converges to the actual state of DustCube, since the a-posteriori error’s components 

decreases from the initial error. 

The Figure 5.19 shows the convergence of the DustCube’s estimated orbit to the exact solution, as 

can be easier to visualize in the zoomed section of Figure 5.20. 

(5.35)  
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In general, we can observe that the errors in the in-plane components (x-y) are greater than the errors 

in the out-of-plane component (z). Furthermore, the errors show a clear deterministic periodic pattern, 

which is a direct consequence of the reduced dynamic modelling implemented in the filter, that can 

be only partially compensated by the process noise matrix. 

 

Figure 5.13: Final estimated state’s error on x 
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Figure 5.14: Final estimated state’s error on y 

 

Figure 5.15: Final estimated state’s error on z 
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Figure 5.16: Final estimated state’s error on Vx 

 

Figure 5.17: Final estimated state’s error on Vy 
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Figure 5.18: Final estimated state’s error on Vz 

 

 

Figure 5.19: Exact solution vs. filtered one in synodic coordinates 
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Figure 5.20: Exact solution vs. filtered one in synodic coordinates (zoom)
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CONCLUSIONS 

The thesis discussed in the previous chapters summarizes all the work done by the candidate, namely: 

1.  the implementation of a discrete orbital propagator in MATLAB environment, which is able to 

compute the state of the artificial satellite DustCube, which should operate in the gravitational 

field of the Didymos asteroid, a binary system composed by tow massive bodies, called Didymain 

and Didymoon, starting from a known initial state and taking into account the main disturbances 

that would influence the total acceleration of DustCube; 

2. the development, always in MATLAB environment, of a discrete optical navigation filter 

simulator, which can estimate the DustCube’s state starting from some direction and range 

measurements w.r.t. the two celestial bodies that form the asteroid Didymos, obtained through 

two infrared cameras that constitute a preponderant part of the satellite payload. 

The main part of the thesis concerns the phase 2, which necessarily depends on the phase 1, since the 

discretized state and the measurements obtained in real-time are subject to Gaussian noises with zero 

mean that heavily influence the dynamics of the filter, which requires a precise knowledge of the 

evolution of the state of DustCube. 

The orbital propagator developed through the use of the Runge Kutta 4th (RK4) order method proved 

to be able to compute the satellite’s state with an excellent numerical stability, which allows to vary 

the integration time-step with a wide range, reducing the computational cost and maintaining the 

accuracy of the final solution at the same time, and an excellent numerical precision, demonstrated 

by comparison with the solutions obtained through the Monte Python software. 

These features of the developed orbital propagator allow to consider it as a valid MATLAB 

programming base for other space missions engaged on small celestial bodies. 

Since the state dynamics of DustCube are governed by non-linear equations and the optical 

measurements are non-linear too, the navigation filter selected for DustCube mission is the Extended 

Kalman Filter (EKF) one, implemented in MATLAB programming too. 

The navigation filter has been tested by exploiting range and direction measurements in terms of 

norms, colatitudes and longitudes of the position vectors directed from DustCube towards the 

primaries, which represents a realistic concept for actual optical measurements in space. 

The results obtained by the Kalman filtering proved to be stable and coherent, widely satisfying the 

minimal requirements for DustCube mission with accuracies in the estimation of the spacecraft 

position in the order of 1 ÷ 2 meters if we consider a wide error in the first estimated position, which 
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correspond to an error of about 0.1% ÷ 0.2% of the nominal position of DustCube, and 0.5 ÷ 0.1 

meters if we consider an acceptable error in the first estimated position, which correspond to an error 

of about 0.05% ÷ 0.1% of the nominal position of the S/C. 

Possible future developments could concern a sensitivity analysis of the filter performance as a 

function of different magnitudes of measurement noise and level of detail of the implemented filter 

dynamic and a Monte Carlo analysis which for providing more statistically meaningful measures of 

the expected filter accuracy. 
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APPENDIX 

A.1 EQUATIONS OF MOTIONS 

The state 𝒔(t) of a body in space is a time-dependent vector of six components that comprises the 

position vector 𝒓(t) and the velocity vector 𝒗(t) of its CoM: 

𝒔(t) = [
𝒓(t)

𝒗(t)
] 

Obviously, the position and the velocity vectors depend on the Reference Frame, which can be inertial 

or non-inertial, centered in a specific point in space, that is usually the CoM of the considered system. 

Since the state of a body is referred to its CoM, we can consider the S/C as a point-mass and evaluate 

its trajectory without taking into account its shape. 

A.1.1 INERTIAL REFERENCE FRAME 

Considering an Inertial RF (I subscript) with axes (XI, YI, ZI), centered in the CoM of the system, and 

a point-mass m in space, the expression of the position vector 𝒓(t) is possible by making use of the 

canonical basis (𝒊̂, 𝒋̂, 𝒌̂), which is composed by the unit vectors 𝒊̂, 𝒋̂ and 𝒌̂ that are fixed in space, so 

constant in time (Figure A.1): 

𝒓(t)|I ≝ [

𝑥I
𝑦I
𝑧I
] = 𝑥I𝒊̂ + 𝑦I𝒋̂ + 𝑧I𝒌̂ 

Differentiating the position vector 𝒓(t)|I by the time we obtain the so-called absolute (or inertial) 

velocity, which is the velocity the point-mass holds w.r.t. the CoM of the Inertial RF, that can be 

considered as fixed in space and in time, while differentiating 𝒓(t)|I twice we compute the so-called 

absolute (or inertial) acceleration, that is the acceleration the point-mass holds w.r.t. the CoM of the 

Inertial RF: 

𝒗A(t) ≝
𝑑𝒓(t)|I
𝑑t

|
I

= [
𝑥̇I
𝑦̇I
𝑧̇I

] = 𝑥̇I𝒊̂ + 𝑦̇I𝒋̂ + 𝑧̇I𝒌̂ 

𝒂A(t) ≝
𝑑2𝒓(t)|I
𝑑t2

|
I

=
𝑑𝒗A(t)|I
𝑑t

|
I

= [
𝑥̈I
𝑦̈I
𝑧̈I

] = 𝑥̈I𝒊̂ + 𝑦̈I𝒋̂ + 𝑧̈I𝒌̂ 

(A.1)  

(A.2)  

(A.3)  

(A.4)  
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Figure A.1: The position vector 𝒓 in an Inertial Reference Frame 

Therefore, the knowledge of the evolution in time of the inertial vectors 𝒓(t)|I, 𝒗A(t) and 𝒂A(t) 

allows to reconstruct the trajectory of the point-mass w.r.t. the Inertial RF. 

A.1.2 ROTATING REFERENCE FRAME 

Considering a Non-inertial RF (N subscript) with axes (XN, YN, ZN), centered in the same CoM of the 

previous Inertial RF and rotating w.r.t. it with angular velocity 𝝎(t), we can express the position 

vector 𝒓(t) by exploiting the canonical basis (𝝃̂, 𝝀̂, 𝜻̂) = (𝝃̂(t), 𝝀̂(t), 𝜻̂(t)), which is composed by the 

unit vectors 𝝃̂, 𝝀̂ and 𝜻̂ that are not constant in time w.r.t. the Inertial RF (Figure A.2), since their 

direction varies continuously. 

Omitting the time dependence of 𝝃̂, 𝝀̂ and 𝜻̂ for convenience, the position vector 𝒓(t)|N can be defined 

as: 

𝒓(t)|N = [

𝑥N
𝑦N
𝑧N
] = 𝑥N𝝃̂ + 𝑦N𝝀̂ + 𝑧N𝜻̂ 

(A.5)  
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Figure A.2: The position vector 𝒓 w.r.t. an Inertial RF and a rotating RF 

Also, the non-inertial triad (𝝃̂, 𝝀̂, 𝜻̂) rotates w.r.t. to the inertial one (𝒊̂, 𝒋̂, 𝒌̂) by the angular velocity 

𝝎(t), which can be expressed in inertial coordinates or in non-inertial ones like the position vector: 

𝝎(t)|I = [

Ω𝑥
Ω𝑦
Ω𝑧

] = Ω𝑥 𝒊̂ + Ω𝑦𝒋̂ + Ω𝑧𝒌̂ 

𝝎(t)|N = [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = 𝜔𝑥𝝃̂ + 𝜔𝑦𝝀̂ + 𝜔𝑧𝜻̂ 

Differentiating the position vector 𝒓(t)|N by the time in non-inertial coordinates, for which the unit 

vectors 𝝃̂, 𝝀̂, 𝜻̂ are constant in time, we obtain the so-called relative velocity, which is the velocity the 

point-mass holds w.r.t. the CoM of the Non-inertial RF, while differentiating 𝒓(t)|N twice in non-

inertial coordinates we compute the so-called relative acceleration, that is the acceleration the point-

mass holds w.r.t. the CoM of the Non-inertial RF: 

𝒗R(t) =
𝑑𝒓(t)|N
𝑑t

|
N

= [

𝑥̇N
𝑦̇N
𝑧̇N

] = 𝑥̇N𝝃̂ + 𝑦̇N𝝀̂ + 𝑧̇N𝜻̂ 

𝒂R(t) =
𝑑2𝒓(t)|N
𝑑t2

|
N

= [

𝑥̈N
𝑦̈N
𝑧̈N

] = 𝑥̈N𝝃̂ + 𝑦̈N𝝀̂ + 𝑧̈N𝜻̂ 

(A.8)  

(A.9)  

(A.6)  

(A.7)  
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(A.12)  

(A.15)  

The knowledge of the evolution in time of the non-inertial vectors 𝒓(t)|N, 𝒗R(t) and 𝒂R(t) allows to 

reconstruct the trajectory of the point-mass w.r.t. the Non-inertial RF. 

Since the objective is to link the state of the S/C between reference frames, we can obtain the absolute 

velocity 𝒗A(t) by differentiating 𝒓(t)|N w.r.t. the Inertial RF, for which the unit vectors 𝝃̂, 𝝀̂, 𝜻̂ are 

time-dependent: 

𝒗A(t) =
𝑑𝒓(t)|N
𝑑t

|
I

= 𝑥̇N𝝃̂|I + 𝑦̇N𝝀̂|I + 𝑧̇N𝜻̂|I + 𝑥N
𝑑𝝃̂

𝑑t
|
I

+ 𝑦N
𝑑𝝀̂

𝑑t
|
I

+ 𝑧N
𝑑𝜻̂

𝑑t
|
I

 

Now, omitting the RF’s subscripts, the derivatives of the unit vectors can be computed by exploiting 

the well-known Poisson’s relation  

𝑑𝝃̂

𝑑t
= 𝝎(t) × 𝝃̂                

𝑑𝝀̂

𝑑t
= 𝝎(t) × 𝝀̂               

𝑑𝜻̂

𝑑t
= 𝝎(t) × 𝜻̂ , 

so that, the absolute velocity can be expressed as: 

𝒗A(t) = 𝒗R(t) + 𝑥N𝝎(t) × 𝝃̂ + 𝑦N𝝎(t) × 𝝀̂ + 𝑧N𝝎(t) × 𝜻̂ = 𝒗R(t) + 𝝎(t) × (𝑥N𝝃̂ + 𝑦N𝝀̂ + 𝑧N𝜻̂) 

Finally, we have obtained the absolute velocity 𝒗A(t) as a sum of two contributions: 

𝒗A(t) = 𝒗R(t) + 𝝎(t) × 𝒓(t) = 𝒗R(t) + 𝒗T(t) , 

where 𝒗T(t) ≝ 𝝎(t) × 𝒓(t) is the tangential velocity. 

Differentiating twice the position vector 𝒓(t)|N w.r.t the Inertial RF, we obtain the absolute 

acceleration 𝒂A(t): 

𝒂A(t) =
𝑑2𝒓(t)|N
𝑑t2

|
I

= 

= 𝑥̈N𝝃̂|I + 𝑦̈N𝝀̂|I + 𝑧̈N𝜻̂|I + 2(𝑥̇N
𝑑𝝃̂

𝑑t
|
I

+ 𝑦̇N
𝑑𝝀̂

𝑑t
|
I

+ 𝑧̇N
𝑑𝜻̂

𝑑t
|
I

) + 𝑥N
𝑑2𝝃̂

𝑑t2
|
I

+ 𝑦N
𝑑2𝝀̂

𝑑t2
|
I

+ 𝑧N
𝑑2𝜻̂

𝑑t2
|
I

= 

= 𝒂R(t) + 2 𝝎(t) × (𝑥̇N𝝃̂|I + 𝑦̇N𝝀̂|I + 𝑧̇N𝜻̂|I) + 𝑥N
𝑑2𝝃̂

𝑑t2
|
I

+ 𝑦N
𝑑2𝝀̂

𝑑t2
|
I

+ 𝑧N
𝑑2𝜻̂

𝑑t2
|
I

 

Omitting the RF’s subscripts and using the Poisson’s relation, we can reduce the previous terms as: 

2(𝑥̇N
𝑑𝝃̂

𝑑t
+ 𝑦̇N

𝑑𝝀̂

𝑑t
+ 𝑧̇N

𝑑𝜻̂

𝑑t
) = 2 𝝎(t) × (𝑥̇N𝝃̂ + 𝑦̇N𝝀̂ + 𝑧̇N𝜻̂) = 2 𝝎(t) × 𝒗R(t) 

(A.10)  

(A.11)  

(A.13)  

(A.14)  
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(A.16)  

(A.17)  

𝑥N
𝑑2𝝃̂

𝑑t2
= 𝑥N

𝑑

𝑑t
(𝝎(t) × 𝝃̂) = 𝝎̇(t) × 𝑥N𝝃̂ +  𝝎(t) ×  𝝎(t) × 𝑥N𝝃̂ 

𝑦N
𝑑2𝝀̂

𝑑t2
= 𝑦N

𝑑

𝑑t
(𝝎(t) × 𝝀̂) = 𝝎̇(t) × 𝑦N𝝀̂ +  𝝎(t) ×  𝝎(t) × 𝑦N𝝀̂ 

𝑧N
𝑑2𝜻̂

𝑑t2
= 𝑧N

𝑑

𝑑t
(𝝎(t) × 𝜻̂) = 𝝎̇(t) × 𝑧N𝜻̂ +  𝝎(t) ×  𝝎(t) × 𝑧N𝜻̂ 

Summing up the computed terms, the absolute acceleration 𝒂A(t) can be expressed as: 

𝒂A(t) = 𝒂R(t) + 2 𝝎(t) × 𝒗R(t) + 𝝎̇(t) × 𝒓(t) +  𝝎(t) ×  𝝎(t) × 𝒓(t) 

The last three terms of the previous equation are defined as: 

• 𝒂COR(t) = 2 𝝎(t) × 𝒗R(t) is the Coriolis acceleration; 

• 𝒂T(t) = 𝝎̇(t) × 𝒓(t) is the tangential acceleration; 

• 𝒂F(t) = 𝝎(t) ×  𝝎(t) × 𝒓(t) is the centrifugal or centripetal acceleration. 

Finally, the absolute acceleration becomes: 

𝒂A(t) = 𝒂R(t) + 𝒂COR(t) + 𝒂T(t) + 𝒂F(t) 

In case of the angular velocity  𝝎(t) is constant in time, the tangential acceleration 𝒂T(t) is null. 

Exploiting the equations (A.13) and (A.20), it is possible to switch from an Inertial RF to Non-inertial 

one centered in the same CoM, and vice versa, simply knowing their relative angular velocity and its 

derivative w.r.t. the time 𝝎̇(t). 

A.1.3 TRANSLATING AND ROTATING REFERENCE FRAME 

The general case relating to coordinate systems is a Non-inertial RF (N subscript), with axes 

(XN, YN, ZN), translating and rotating (roto-translation) w.r.t. an Inertial one (I subscript), with axes 

(XI, YI, ZI), so that they have different CoMs, canonical bases (𝝃̂, 𝝀̂, 𝜻̂) and (𝒊̂, 𝒋̂, 𝒌̂), respectively, and 

relative angular velocity 𝝎(t) (Figure A.3). 

(A.19)  

(A.18)  

(A.20)  
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(A.23)  

 

Figure A.3: The position vector 𝒓 w.r.t. an Inertial RF and a roto-translating RF 

Now, the position vector 𝒓(t) can be formulated as a sum of two contributions: the translation vector 

between the RFs 𝒕(t) and the position vector 𝒓N(t) w.r.t. the Non-inertial RF’s CoM: 

𝒓(t) = 𝒕(t) + 𝒓N(t) , 

which can be expanded by exploiting the canonical bases (𝒊̂, 𝒋̂, 𝒌̂) and (𝝃̂, 𝝀̂, 𝜻̂): 

𝑥I𝒊̂ + 𝑦I𝒋̂ + 𝑧I𝒌̂ = 𝑥O𝒊̂ + 𝑦O𝒋̂ + 𝑧O𝒌̂ + 𝑥N𝝃̂ + 𝑦N𝝀̂ + 𝑧N𝜻̂ , 

where 𝒕(𝑡) has been defined as the vector [𝑥O, 𝑦O, 𝑧O]
𝑇. 

Obviously, the equation (A.22) can be expressed in inertial coordinates or in non-inertial ones, but 

since we are searching for the formulation of the absolute velocity 𝒗A(t) w.r.t. the Inertial RF, we 

hold this frame as the reference one and we derive the equation (A.22) w.r.t. the time: 

𝑥̇I𝒊̂ + 𝑦̇I𝒋̂ + 𝑧̇I𝒌̂ = 𝑥̇O𝒊̂ + 𝑦̇O𝒋̂ + 𝑧̇O𝒌̂ + 𝑥̇N𝝃̂|I + 𝑦̇N𝝀̂|I + 𝑧̇N𝜻̂|I + 𝑥N
𝑑𝝃̂

𝑑t
|
I

+ 𝑦N
𝑑𝝀̂

𝑑t
|
I

+ 𝑧N
𝑑𝜻̂

𝑑t
|
I

 

(A.21)  

(A.22)  
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(A.24)  

(A.25)  

(A.26)  

(A.27)  

(A.28)  

The equation (A.23) represents the augmented expression of the formulation of the absolute velocity 

in a rotating frame (eq. (A.10)), with the addiction of the translation velocity 𝒗O(t) of the CoM of the 

Non-inertial RF w.r.t. the Inertial one: 

𝒗O(t)|I = 𝑥̇O𝒊̂ + 𝑦̇O𝒋̂ + 𝑧̇O𝒌̂ , 

so that, omitting the RF’s subscripts, the final expression of the absolute velocity becomes: 

𝒗A(t) = 𝒗O(t) + 𝒗R(t) + 𝝎(t) × 𝒓N(t) 

Also, differentiating the eq. (A.23) maintaining the Inertial RF as reference system, we obtain: 

𝑥̈I𝒊̂ + 𝑦̈I𝒋̂ + 𝑧̈I𝒌̂ = 𝑥̈O𝒊̂ + 𝑦̈O𝒋̂ + 𝑧̈O𝒌̂ + 𝑥̈N𝝃̂|I + 𝑦̈N𝝀̂|I + 𝑧̈N𝜻̂|I + 2(𝑥̇N
𝑑𝝃̂

𝑑t
|
I

+ 𝑦̇N
𝑑𝝀̂

𝑑t
|
I

+ 𝑧̇N
𝑑𝜻̂

𝑑t
|
I

) + 

+𝑥N
𝑑2𝝃̂

𝑑t2
|
I

+ 𝑦N
𝑑2𝝀̂

𝑑t2
|
I

+ 𝑧N
𝑑2𝜻̂

𝑑t2
|
I

, 

where is possible to recognize the expression (A.14). 

Defining the translation acceleration 𝒂O(t) of the CoM of the Non-inertial RF w.r.t. the Inertial one: 

𝒂O(t)|I = 𝑥̈O𝒊̂ + 𝑦̈O𝒋̂ + 𝑧̈O𝒌̂ , 

recalling the equations (A.15) ÷ (A.20) and omitting the RF’s subscripts, the final expression of the 

absolute acceleration becomes: 

𝒂A(t) = 𝒂O(t) + 𝒂R(t) + 𝒂COR(t)+𝒂T(t) + 𝒂F(t) 

Exploiting the equations (A.25) and (A.28), it is possible to switch from an Inertial RF to a Non-

inertial one with different CoM, and vice versa, simply knowing their relative angular velocity 𝝎(t), 

its derivative w.r.t. the time 𝝎̇(t), the vectors 𝒕(𝑡) and 𝒓N(t) and their first and second derivatives 

w.r.t. time 𝒗O(t), 𝒂O(t), 𝒗R(t), 𝒂R(t). 

A.1.4 ROTATION MATRICES 

Since often the eqs (A.13), (A.20), (A.25) and (A.28) are not easily manageable, it is possible to use 

similar relations which exploit the rotation matrices. 

Indeed, starting from the rotating RF (Figure A.2) and knowing the expressions of the position vector 

𝒓(t) in inertial and in non-inertial coordinates (eqs. (A.2) and (A.5)), it is possible to reformulate the 

equation (A.5) by linking the canonical basis (𝝃̂, 𝝀̂, 𝜻̂) with the inertial one: 
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(A.29)  

(A.30)  

(A.31)  

(A.32)  

(A.33)  

𝝃̂|
I
= (𝝃̂ ∙ 𝒊̂)𝒊̂ + (𝝃̂ ∙ 𝒋̂)𝒋̂ + (𝝃̂ ∙ 𝒌̂)𝒌̂ = 𝜉𝑥 𝒊̂ + 𝜉𝑦𝒋̂ + 𝜉𝑧𝒌̂ ; 

𝝀̂|
I
= (𝝀̂ ∙ 𝒊̂)𝒊̂ + (𝝀̂ ∙ 𝒋̂)𝒋̂ + (𝝀̂ ∙ 𝒌̂)𝒌̂ = 𝜆𝑥 𝒊̂ + 𝜆𝑦𝒋̂ + 𝜆𝑧𝒌̂ ; 

𝜻̂|
I
= (𝜻̂ ∙ 𝒊̂)𝒊̂ + (𝜻̂ ∙ 𝒋̂)𝒋̂ + (𝜻̂ ∙ 𝒌̂)𝒌̂ = 𝜁𝑥 𝒊̂ + 𝜁𝑦𝒋̂ + 𝜁𝑧𝒌̂ , 

where the nine scalar products 𝝃̂ ∙ 𝒊̂, … , 𝜻̂ ∙ 𝒌̂ are the direction cosines that the unit vectors 𝝃̂, 𝝀̂ and 𝜻̂ 

form with the inertial axes (XI, YI, ZI), or, more simply, the components of these unit vectors in inertial 

coordinates 𝜉𝑥, … , 𝜁𝑧, i.e. the projections of 𝝃̂, 𝝀̂ and 𝜻̂ on the inertial axes. 

Thus, the position vector 𝒓(t) as expressed in non-inertial coordinates can be transformed in inertial 

ones thanks to the relations (A.29): 

𝒓(t)|N = 𝑥N𝝃̂ + 𝑦N𝝀̂ + 𝑧N𝜻̂ = 

= 𝑥N(𝜉𝑥 𝒊̂ + 𝜉𝑦𝒋̂ + 𝜉𝑧𝒌̂) + 𝑦N(𝜆𝑥 𝒊̂ + 𝜆𝑦𝒋̂ + 𝜆𝑧𝒌̂) + 𝑧N(𝜁𝑥 𝒊̂ + 𝜁𝑦𝒋̂ + 𝜁𝑧𝒌̂) =                    

  = (𝑥N𝜉𝑥 + 𝑦N𝜆𝑥 + 𝑧N𝜁𝑥)𝒊̂ + (𝑥N𝜉𝑦 + 𝑦N𝜆𝑦 + 𝑧N𝜁𝑦)𝒋̂ + (𝑥N𝜉𝑧 + 𝑦N𝜆𝑧 + 𝑧N𝜁𝑧)𝒌̂ =     

              = 𝑥I𝒊̂ + 𝑦I𝒋̂ + 𝑧I𝒌̂ = 𝒓(t)|I 

Therefore, the expression (A.30) represents the transformation of the position vector 𝒓(t) from the 

Non-inertial RF to the Inertial one, which consists in a rotation of 𝒓(t): 

𝒓(t)|I = [

𝑥I
𝑦I
𝑧I
] = [

𝑥N𝜉𝑥 + 𝑦N𝜆𝑥 + 𝑧N𝜁𝑥
𝑥N𝜉𝑦 + 𝑦N𝜆𝑦 + 𝑧N𝜁𝑦
𝑥N𝜉𝑧 + 𝑦N𝜆𝑧 + 𝑧N𝜁𝑧

] 

Omitting the time dependence of the unit vectors 𝝃̂, 𝝀̂ and 𝜻̂, we can define the rotation matrix 𝑻(t) 

as the matrix composed by the direction cosines that the unit vectors 𝝃̂, 𝝀̂ and 𝜻̂ form with the inertial 

axes (XI, YI, ZI): 

𝑻(t) ≝ [

𝝃̂ ∙ 𝒊̂ 𝝃̂ ∙ 𝒋̂ 𝝃̂ ∙ 𝒌̂

𝝀̂ ∙ 𝒊̂ 𝝀̂ ∙ 𝒋̂ 𝝀̂ ∙ 𝒌̂

𝜻̂ ∙ 𝒊̂ 𝜻̂ ∙ 𝒋̂ 𝜻̂ ∙ 𝒌̂

] = [

𝜉𝑥 𝜉𝑦 𝜉𝑧
𝜆𝑥 𝜆𝑦 𝜆𝑧
𝜁𝑥 𝜁𝑦 𝜁𝑧

] , 

therefore, the computation of the position vector 𝒓(t) in inertial coordinates starting from the non-

inertial ones can be obtained as a matrix-vector product looking to the equation (A.31): 

𝒓(t)|I = [

𝑥I
𝑦I
𝑧I
] = [

𝜉𝑥 𝜆𝑥 𝜁𝑥
𝜉𝑦 𝜆𝑦 𝜁𝑦
𝜉𝑧 𝜆𝑧 𝜁𝑧

] [

𝑥N
𝑦N
𝑧N
] = 𝑻(t)𝑇 𝒓(t)|N 
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(A.34)  

(A.35)  

(A.36)  

(A.37)  

(A.38)  

(A.39)  

The rotation matrices are orthogonal, i.e.: 

𝑻(t) 𝑻(t)𝑇 = 𝑻(t)𝑇𝑻(t) = 𝑰3×3  ⟹   𝑻(t)𝑇 = 𝑻(t)−1 

Since the determinant for two generic matrices 𝑩 and 𝑪 has the following properties: 

1. det(𝑩𝑇) = det(𝑩) ; 

2. det(𝑩−1) = 1 det(𝑩)⁄ ; 

3. det(𝑩𝑪) = det(𝑩) det(𝑪) , 

it is possible to obtain the determinant of a generic rotation matrix by using the property (A.34): 

det[𝑻(t)] = det[𝑻(t)𝑇] = det[𝑻(t)−1] = 1 det[𝑻(t)]⁄  , 

from which follows that every rotation matrix has a determinant with unitary value. 

Coming back to the relation (A.33) and using the property (A.34), it is easy to obtain the opposite 

rotation, i.e. the position vector 𝒓(t) in non-inertial coordinates starting from the knowledge of the 

same vector as expressed in inertial ones: 

𝒓(t)|N = 𝑻(t) 𝒓(t)|I 

With the same reasoning that brings to the expression (A.30) and to the definition of the rotation 

matrix 𝑻(t) (A.32), it is possible to obtain the equation (A.37) by projecting the inertial canonical 

basis on the non-inertial axes (XN, YN, ZN): 

𝒊̂|N = (𝒊̂ ∙ 𝝃̂)𝝃̂ + (𝒊̂ ∙ 𝝀̂)𝝀̂ + (𝒊̂ ∙ 𝜻̂)𝜻̂ = 𝑖𝜉𝝃̂ + 𝑖𝜆𝝀̂ + 𝑖𝜁𝜻̂ ; 

𝒋̂|N = (𝒋̂ ∙ 𝝃̂)𝝃̂ + (𝒋̂ ∙ 𝝀̂)𝝀̂ + (𝒋̂ ∙ 𝜻̂)𝜻̂ = 𝑗𝜉𝝃̂ + 𝑗𝜆𝝀̂ + 𝑗𝜁𝜻̂ ; 

𝒌̂|
N
= (𝒌̂ ∙ 𝝃̂)𝝃̂ + (𝒌̂ ∙ 𝝀̂)𝝀̂ + (𝒌̂ ∙ 𝜻̂)𝜻̂ = 𝑘𝜉𝝃̂ + 𝑘𝜆𝝀̂ + 𝑘𝜁𝜻̂ , 

where the nine scalar products 𝒊̂ ∙ 𝝃̂, … , 𝒌̂ ∙ 𝜻̂ are the direction cosines which the inertial unit vectors 

𝒊̂, 𝒋̂ and 𝒌̂ form with the non-inertial axes (XN, YN, ZN). 

Therefore, the position vector 𝒓(t) as expressed in inertial coordinates can be transformed in non-

inertial ones thanks to the relations (A.38): 

𝒓(t)|I = 𝑥I𝒊̂ + 𝑦I𝒋̂ + 𝑧I𝒌̂ = 

= 𝑥I(𝑖𝜉𝝃̂ + 𝑖𝜆𝝀̂ + 𝑖𝜁𝜻̂) + 𝑦I(𝑗𝜉𝝃̂ + 𝑗𝜆𝝀̂ + 𝑗𝜁𝜻̂) + 𝑧I(𝑘𝜉𝝃̂ + 𝑘𝜆𝝀̂ + 𝑘𝜁𝜻̂ ) =                          

  = (𝑥I𝑖𝜉 + 𝑦I𝑗𝜉 + 𝑧I𝑘𝜉)𝝃̂ + (𝑥I𝑖𝜆 + 𝑦I𝑗𝜆 + 𝑧I𝑘𝜆)𝝀̂ + (𝑥I𝑖𝜁 + 𝑦I𝑗𝜁 + 𝑧I𝑘𝜁)𝜻̂ =                      
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(A.40)  

(A.41)  

(A.42)  

(A.43)  

(A.44)  

            = 𝑥N𝝃̂ + 𝑦N𝝀̂ + 𝑧N𝜻̂ = 𝒓(t)|N , 

which can be shown in matrix form: 

𝒓(t)|N = [

𝑥N
𝑦N
𝑧N
] = [

𝑥I𝑖𝜉 + 𝑦I𝑗𝜉 + 𝑧I𝑘𝜉
𝑥I𝑖𝜆 + 𝑦I𝑗𝜆 + 𝑧I𝑘𝜆
𝑥I𝑖𝜁 + 𝑦I𝑗𝜁 + 𝑧I𝑘𝜁

] 

Now, it is easy to note the connection between the eqs (A.30) and (A.39). 

Indeed, recalling the definition of the matrix 𝑻(t), we can show its alternative expression: 

𝑻(t) ≝ [

𝝃̂ ∙ 𝒊̂ 𝝃̂ ∙ 𝒋̂ 𝝃̂ ∙ 𝒌̂

𝝀̂ ∙ 𝒊̂ 𝝀̂ ∙ 𝒋̂ 𝝀̂ ∙ 𝒌̂

𝜻̂ ∙ 𝒊̂ 𝜻̂ ∙ 𝒋̂ 𝜻̂ ∙ 𝒌̂

] = [

𝑖𝜉 𝑗𝜉 𝑘𝜉
𝑖𝜆 𝑗𝜆 𝑘𝜆
𝑖𝜁 𝑗𝜁 𝑘𝜁

] , 

so that, the computation of the position vector 𝒓(t) in non-inertial coordinates can be obtained as: 

𝒓(t)|N = [

𝑥N
𝑦N
𝑧N
] = [

𝑖𝜉 𝑗𝜉 𝑘𝜉
𝑖𝜆 𝑗𝜆 𝑘𝜆
𝑖𝜁 𝑗𝜁 𝑘𝜁

] [

𝑥I
𝑦I
𝑧I
] = 𝑻(t) 𝒓(t)|I , 

which is obviously like the equation (A.37).  

Finally, the goal is to define the rotation matrix 𝑻(t); once it has been defined, we can compute the 

absolute velocity and the absolute acceleration of the eqs (A.13), (A.20),(A.25) and (A.28) by 

operating with matrix products instead of vector one. 

A.1.5 TRANSFORMATIONS IN NON-INERTIAL COORDINATES BY USING ROTATION MATRICES 

Starting from the rotating frame of Figure A.2 explained in section A.1.2 Rotating Reference Frame 

and recalling the eqs (A.33) and (A.37), it is possible to obtain the absolute velocity by differentiating 

in time the position vector 𝒓(t), expressed in non-inertial coordinates, w.r.t. the Inertial RF: 

𝒗A(t) =
𝑑𝒓(t)|N
𝑑t

|
I

= 𝑻(t) 𝒓̇(t)|I + 𝑻̇(t) 𝒓(t)|I = 𝑻(t) 𝒓̇(t)|I + 𝑻̇(t) 𝑻(t)
𝑇𝒓(t)|N 

Obviously, the equation (A.43) must be coincident with the (A.13) one, i.e.: 

𝑻(t) 𝒓̇(t)|I + 𝑻̇(t) 𝑻(t)
𝑇𝒓(t)|N = 𝒗R(t) + 𝝎(t) × 𝒓(t)|N , 

which brings to the following equations: 
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(A.46)  

(A.45)  

(A.47)  

(A.48)  

(A.49)  

(A.50)  

𝑻(t) 𝒓̇(t)|I = 𝒗R(t) 

𝑻̇(t) 𝑻(t)𝑇𝒓(t)|N = 𝝎(t) × 𝒓(t)|N 

therefore, we can define the operation of the vector product 𝝎(t) × as the skew-symmetric matrix 

[𝝎(t)]⊗, i.e.: 

[𝝎(t)]⊗ ≝ 𝑻̇(t) 𝑻(t)𝑇 , 

With the same reasoning, it is possible to obtain the expression of the absolute acceleration of the S/C 

as a sum of four contributions, like the equation (A.20), by computing the second derivative w.r.t. the 

time of 𝒓(t)|N w.r.t. the Inertial RF, i.e. differentiating the equation (A.43): 

𝒂A(t) =
𝑑2𝒓(t)|N
𝑑t2

|
I

= 𝑻(t) 𝒓̈(t)|I + 𝑻̇(t) 𝒓̇(t)|I + 𝑻̇(t) 𝒓̇(t)|I + 𝑻̈(t) 𝒓(t)|I =

= 𝑻(t) 𝒓̈(t)|I + 2 𝑻̇(t) 𝒓̇(t)|I + 𝑻̈(t) 𝑻(t)
𝑇𝒓(t)|N 

Obviously, the equation (A.47) must be coincident with the (A.19) one, i.e.: 

𝑻(t) 𝒓̈(t)|I = 𝒂R(t) 

2 𝑻̇(t) 𝒓̇(t)|I = 2 𝝎(t) × 𝒗R(t) = 𝒂COR(t) 

𝑻̈(t) 𝑻(t)𝑇𝒓(t)|N = 𝝎(t) ×  𝝎(t) × 𝒓(t)|N + 𝝎̇(t) × 𝒓(t)|N = 𝒂F(t) + 𝒂T(t) 

Once determined the absolute velocity and the absolute acceleration of a rotating frame centered in 

the same CoM of the Inertial RF, it is possible to extend the reasoning to the roto-translating RF of 

Figure A.3, where the position vector 𝒓(t) can be obtained from the equation (A.21) by making use 

of the rotation matrix 𝑻(t), that is defined in the same way of (A.32) regardless the translation of the 

Non-inertial RF. 

Indeed, 𝒓N(t) can be transformed from a RF to another by exploiting 𝑻(t): 

𝒓N(t)|N = 𝑻(t) 𝒓N(t)|I , 

thus, computing the derivative w.r.t. the time of the equation (A.21), we obtain: 

𝒗A(t) =
𝑑𝒓(t)

𝑑t
|
I

=
𝑑𝒕(t)

𝑑t
|
I

+
𝑑𝒓N(t)|N

𝑑t
|
I

= 𝒕̇(t) + 𝑻(t) 𝒓̇N(t)|I + 𝑻̇(t) 𝒓N(t)|I =    

= 𝒕̇(t) + 𝑻(t) 𝒓̇N(t)|I + 𝑻̇(t) 𝑻(t)
𝑇𝒓N(t)|N , 

which must be coincident with the equation (A.25), i.e.: 
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(A.52)  

(A.51)  

(A.53)  

𝒕̇(t) = 𝒗O(t) 

𝑻(t) 𝒓̇N(t)|I = 𝒗R(t) 

𝑻̇(t) 𝑻(t)𝑇𝒓N(t)|N = 𝝎(t) × 𝒓N(t)|N 

With the same reasoning, it is possible to obtain the expression of the absolute acceleration for the 

roto-translating RF like the equation (A.28) by differentiating the relation (A.50) w.r.t. the time: 

𝒂A(t) =
𝑑2𝒓(t)

𝑑t2
|
I

= 𝒕̈(t) + 𝑻(t) 𝒓̈N(t)|I + 𝑻̇(t) 𝒓̇N(t)|I + 𝑻̇(t) 𝒓̇N(t)|I + 𝑻̈(t) 𝒓N(t)|I =

= 𝒕̈(t) + 𝑻(t) 𝒓̈N(t)|I + 2 𝑻̇(t) 𝒓̇N(t)|I + 𝑻̈(t) 𝒓N(t)|I , 

which must be coincident with the equation (A.28), i.e.: 

𝒕̈(t) = 𝒂O(t) 

𝑻(t) 𝒓̈N(t)|I = 𝒂R(t) 

2 𝑻̇(t)𝒓̇N(t)|I = 2 𝝎(t) × 𝒗R(t) = 𝒂COR(t) 

𝑻̈(t) 𝒓N(t)|I = 𝑻̈(t) 𝑻(t)𝑇𝒓N(t)|N = 𝝎(t) ×  𝝎(t) × 𝒓N(t)|N + 𝝎̇(t) × 𝒓N(t)|N = 𝒂F(t) + 𝒂T(t) 

Finally, the transformations of 𝒗A(t) and 𝒂A(t) from the Non-inertial RF to the Inertial one and vice 

versa are possible by exploiting the eqs (A.13), (A.20),(A.25) and (A.28), which require the 

knowledge of the angular speed 𝝎(t), or, similarly, by using the eqs (A.43), (A.47), (A.50) and 

(A.52), which involve the acquaintance of the rotation matrix 𝑻(t). 

Usually, the relations in matrix form are easier manageable than the ones in vector form. 

A.2 THE CIRCULAR RESTRICTED 3-BODY PROBLEM (CR3BP) 

Considering a binary system in space, such as the Earth-Moon one, and a S/C immersed in it, the 

general 3-Body Problem is the study of the behaviour of the dynamics of this system as it was 

composed by three punctual massive bodies of known masses moving due to the reciprocal 

gravitational attraction, perturbated by external forces that can be considered as disturbances for the 

isolated system. 

The CR3BP simplifies the general 3-Body Problem by assuming that one of the three bodies, the S/C, 

has a negligible mass, i.e. imposing the satellite does not exert any force on the other two punctual 

massive bodies, which have known masses M and m (M > m) (Figure A.4). 
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(A.54)  

 

Figure A.4: The generic 3-Body Problem (3BP) 

Considering a Reference Frame centered in the CoM of the isolated system, with the x-y plane 

coincident with the mean one of the mutual orbit of the two massive bodies, which just follows the 

CoM of the system w/o rotating, so that it can be minded as quasi-inertial, and referring to the Figure 

A.4, the first approximation needed to compute the state of the S/C is to take into account only the 

gravitational attractions exerted by M and m exploiting the well-known Newton's Law of Universal 

Gravitation, i.e. expressing the acceleration acting on the S/C like: 

𝒂sat(t) = −
GM

‖𝒓sat(t) − 𝒓M(t)‖3
[𝒓sat(t) − 𝒓M(t)] −

Gm

‖𝒓sat(t) − 𝒓m(t)‖3
[𝒓sat(t) − 𝒓m(t)] =       

= −
𝜇M

‖𝒓1(t)‖3
𝒓1(t) −

𝜇m
‖𝒓2(t)‖3

𝒓2(t) , 

where 𝜇M and 𝜇m are the gravitational parameters of the massive bodies M and m, respectively, and 

where we have abbreviated the vectors 𝒓sat(t) − 𝒓M(t) and 𝒓sat(t) − 𝒓m(t) with 𝒓1(t) and 𝒓2(t). 

Since M and m orbit around the same CoM, the most suitable RF to show and study the trajectory of 

the SAT is the Synodic one, which is co-rotating with the binary system, i.e. rotating w.r.t. the quasi-

inertial RF with angular velocity 𝝎(t), which, conventionally, is considered as constant in time and 

equal to the mean angular velocity of the mass m around M. 

Indeed, it is centered in the CoM of the system, with the x-axis always directed as the line of 
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(A.55)  

(A.56)  

conjunction M-m, from M to m, the z-axis directed as the first integral of motion (h-axis) and the y-

axis that completes the right-hand frame. 

Now, considering the equation (A.54), we take advantage, for convention, of non-dimensional units, 

i.e. the total mass of the system, the distance between the primaries and the modulus of the angular 

velocity are supposed unitary: M𝑡𝑜𝑡 = M+m = 1, d = 1, ‖𝝎‖ = 1. 

These assumptions constrain to a unitary universal gravitational constant (G = 1). 

To proceed in this analysis, it is useful to define the so-called mass parameter η < 0.5 such that: 

η ≝
m

M+m
                1 − η =

M

M+m
 

Also, the massive bodies M and m are posed at distance, respectively, (−η) and (1 − η) along the x-

axis (Figure A.5), so that we can redefine the distances 𝑟1(t) and 𝑟2(t) like: 

𝑟1(t) = √(𝑥(t) + η)2 + y(t)2 + z(t)2 

𝑟2(t) = √(𝑥(t) − 1 + η)2 + y(t)2 + z(t)2 

 

Figure A.5: The Circular Restricted 3-Body Problem (CR3BP) 

Once the previous simplifications have been made, we can proceed to compute the equation of motion 

in vector form for the massless S/C. 
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(A.57)  

(A.58)  

(A.59)  

(A.60)  

(A.61)  

(A.62)  

Since the Synodic RF is non-inertial and has the same CoM of the quasi-inertial one, we can express 

it by exploiting the relation (A.19), recalling that 𝝎 is constant: 

𝑑2𝒓sat(t)

𝑑t2
= 𝒂R(t) + 2 𝝎 × 𝒗Rsat(t) + 𝝎 ×  𝝎 × 𝒓sat(t) 

Also, the equation of motion can be computed by using its classical expression in vector form for a 

generic RF, namely: 

𝑑2𝒓sat(t)

𝑑t2
= 𝛁U(𝒓sat(t)) =

𝜕U(𝒓sat(t))

𝜕𝒓sat(t)
 

Comparing the eqs (A.57) and (A.58) among them, we can define the effective potential U can be as 

the sum of the gravitational one UG with the centrifugal one UC, i.e.: 

U(𝒓sat(t)) ≝ UG(𝒓sat(t)) + UC(𝒓sat(t)) =  
1 − η

𝑟1(t)
+

η

𝑟2(t)
+
1

2
 [𝝎 × 𝒓sat(t)] ∙ [𝝎 × 𝒓sat(t)] 

Finally, substituting the effective potential in the equation (A.58), expanding the equations of motion 

in the three coordinates and omitting the time dependence, we obtain:  

{
  
 

  
 𝑥̈sat − 2𝑦̇sat = 𝑥sat −

(1 − η)

𝑟1𝟑
(𝑥sat + η) −

η

𝑟2𝟑
(𝑥sat − 1 + η)

𝑦̈sat + 2𝑥̇sat = 𝑦sat −
(1 − η)

𝑟1𝟑
𝑦sat −

η

𝑟2𝟑
𝑦sat                               

𝑧̈sat = −
(1 − η)

𝑟1𝟑
𝑧sat −

η

𝑟2𝟑
𝑧sat                         

 

We are interesting to compute the points of the Synodic RF in which the velocity and the acceleration 

are null. To do this, we impose the following condition: 

(𝑥̈sat, 𝑦̈sat, 𝑧̈sat) = (𝑥̇sat, 𝑦̇sat, 𝑧̇sat) = (0,0,0) , 

so that, the equations of motion (A.60) simply become: 

{
  
 

  
 𝑥sat −

(1 − η)

𝑟1𝟑
(𝑥sat + η) −

η

𝑟2𝟑
(𝑥sat − 1 + η) = 0

𝑦sat −
(1 − η)

𝑟1𝟑
𝑦sat −

η

𝑟2𝟑
𝑦sat = 0                               

−
(1 − η)

𝑟1𝟑
𝑧sat −

η

𝑟2𝟑
𝑧sat = 0                                        
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(A.63)  

Trying to solve the eqs (A.62), we can make some considerations: 

• the third eq. places all equilibrium points on the x-y plane, since it’s verified only for 𝑧sat = 0; 

• the second eq. allows just two solutions: 𝑦sat = 0 or 1 −
(1−η)

𝑟1𝟑
−

η

𝑟2𝟑
= 0; 

• the first eq. provides the last coordinate, having solved the last two eqs before. 

Finally, omitting the complete resolution of the eqs (A.62),the solver obtains just five equilibrium 

points, the so-called Lagrange points (Figure A.6): 

1. L1, L2 and L3 are the collinear equilibrium points, since they lie on the x-axis, where 𝑦sat = 0; 

2. L4 and L5 are the triangular equilibrium points, since 𝑦sat ≠ 0 and 1 −
(1−η)

𝑟1𝟑
−

η

𝑟2𝟑
= 0 

 

Figure A.6: Lagrange points in the Synodic Reference Frame 

Indeed, starting from the condition 𝑦sat = 0 and defining the parameter 𝑢 as: 

𝑢 = 𝑥sat − 1 +  η , 
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(A.64)  

(A.65)  

(A.66)  

(A.67)  

(A.68)  

it is possible to simplify the eqs (A.62), obtaining the well-known Lagrange quintic equation, which 

is an algebraic equation of degree 5 in 𝑢: 

𝑢2(1 − 𝑠1 + 3𝑢 + 3𝑢
2 + 𝑢3) = η[𝑠0 + 2𝑠0𝑢 + (1 + 𝑠0 − 𝑠1)𝑢

2 + 2𝑢3 + 𝑢4] , 

where 𝑠0 = 𝑠𝑖𝑔𝑛(𝑢) and 𝑠1 = 𝑠𝑖𝑔𝑛(𝑢 + 1). 

The equation can be solved by suitable iterative methods, where the convergence of the solution is 

guaranteed only for a proper choice of the initial values, finally obtaining just three real solutions, 

which are, as said before, the collinear equilibrium points L1, L2, L3. 

The experience suggests that the initial values of 𝑢1, 𝑢2 and 𝑢3 must be selected by exploiting three 

adimensional parameters α, υ and β, which are defined as: 

α ≝ [
η

3(1 − η)
]

1
3
    ,      υ ≝

7

12
 η     ,     β ≝ η (1 +

23

84
η2) , 

so that, the initial values become: 

𝑢10 ≝ α(1 −
α

3
−
α2

9
) 

𝑢20 ≝ α(1 +
α

3
−
α2

9
) 

𝑢30 ≝ β − 2 

The triangular equilibrium points L4 and L5 are computed considering the other condition on the 

second equation of the system (A.62), i.e. solving the following couple of equations: 

{
 
 

 
 𝑥sat −

(1 − η)

𝑟1𝟑
(𝑥sat + η) −

η

𝑟2𝟑
(𝑥sat − 1 + η) = 0

1 −
(1 − η)

𝑟1𝟑
−
η

𝑟2𝟑
= 0 ,                                                  

 

which brings to the exact values: 

L4 = (
1

2
− η ,

√3

2
 , 0)

𝑇

 

L5 = (
1

2
− η , −

√3

2
 , 0)

𝑇
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(A.72)  

(A.71)  

(A.69)  

(A.70)  

A.3 GENERAL CAUCHY PROBLEM 

The Cauchy problem, also known as Initial Value Problem (IVP), associated to one ODE of the first 

order requests to find a function 𝑦 ∈ 𝐶1(𝐼)  such that: 

{
𝑦̇(t) = 𝑓(t, 𝑦(t))     t ∈ 𝐼

𝑦(t0) = 𝑦0               t0 ∈ 𝐼,
 

where 𝑓(t, 𝑦) is a function assigned in the strip 𝑆 = 𝐼 x (−∞,+∞), composed by real values and 

continuous w.r.t. both variables, which represents the first derivative of 𝑦(t). 

In case of a system of ODEs of the first order, the goal is to find a vector function 𝒚 ∈ ℝ𝑙  composed 

by 𝑙 functions 𝑦1 ∈ 𝐶1(𝐼), … , 𝑦𝑙 ∈ 𝐶1(𝐼) such that: 

{
𝒚̇(t) = 𝒇(t, 𝒚(t))     t ∈ 𝐼

 𝒚(t0) = 𝒚0               t0 ∈ 𝐼,
 

where 𝒇(t, 𝒚) is a vector function which represents the first derivative of 𝒚(t), with 𝑓1, … , 𝑓𝑙 assigned 

in the strip 𝑆 = 𝐼 x (−∞,+∞), composed by real values and continuous w.r.t. both variables. 

A.4 STATISTICS FOR RANDOM VECTORS 

Considering two random vector signals 𝑿 in ℝ𝑛 and 𝒀 in ℝ𝑚, these are defined as two vectors 

composed by n and m random variables, respectively, which can be continuous or discrete, i.e.: 

𝑿 = [𝑋1 … 𝑋𝑛]
𝑇  

𝒀 = [𝑌1 … 𝑌𝑚]
𝑇 , 

we can make use of several operators in signal theory (Luise & Vitetta, 2009, June 1), which are 

useful to describe the main features of vector signals. 

Here below, will be presented the most important statistics for the optimal controlling and filtering, 

omitting the theory of the statistics for the scalar random variables. 

A.4.1 EXPECTED VALUE: 

The expected or mean value of a random vector signal 𝑿 in ℝ𝑛 is: 

𝜼𝑿 = 𝐸[𝑿] ≝ [𝐸[𝑋1] … 𝐸[𝑋𝑛]]
𝑇 = [𝜂𝑋𝟏 … 𝜂𝑋𝒏]𝑇 , 

where 𝜂𝑋𝟏 , … , 𝜂𝑋𝒏 are the mean values of the random variables 𝑋1, … , 𝑋𝑛. 
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A.4.2 COVARIANCE MATRIX: 

The covariance matrix of a random vector signal 𝑿 in ℝ𝑛is an n x n symmetric matrix defined as: 

𝑪𝑿 = 𝑐𝑜𝑣(𝑿, 𝑿) ≝ 𝐸[(𝑿 − 𝜼𝑿)(𝑿 − 𝜼𝑿)
𝑇] = [

𝑐𝑜𝑣(𝑋1, 𝑋1) ⋯ 𝑐𝑜𝑣(𝑋1, 𝑋𝑛)
⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑋𝑛, 𝑋1) ⋯ 𝑐𝑜𝑣(𝑋𝑛, 𝑋𝑛)
] , 

which is the matrix of the covariances of the random variables 𝑋1, … , 𝑋𝑛, that are defined through the 

following well-known relations: 

𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) ≝  𝐸[(𝑋𝑖 − 𝜂𝑋𝑖)(𝑋𝑗 − 𝜂𝑋𝑗)] 

𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑖) =  𝐸[(𝑋𝑖 − 𝜂𝑋𝑖)
𝟐] ≝ 𝑣𝑎𝑟(𝑋𝑖) = 𝜎𝑋𝑖

2  , 

where 𝑣𝑎𝑟(𝑋𝑖) is the variance of the scalar random variable 𝑋𝑖, which is the squared value of the 

standard deviation 𝜎𝑋𝑖 = 𝑠𝑡𝑑(𝑋𝑖). 

A.4.3 CORRELATION MATRIX: 

The correlation matrix of a random vector signal 𝑿 in ℝ𝑛is an n x n symmetric matrix defined as: 

𝑹𝑿 = 𝑐𝑜𝑟𝑟(𝑿) ≝ 𝐸[𝑿𝑿𝑇] = [
𝑐𝑜𝑟𝑟(𝑋1, 𝑋1) ⋯ 𝑐𝑜𝑟𝑟(𝑋1, 𝑋𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑟𝑟(𝑋𝑛, 𝑋1) ⋯ 𝑐𝑜𝑟𝑟(𝑋𝑛, 𝑋𝑛)

] , 

which is the matrix of the correlations of the random variables 𝑋1, … , 𝑋𝑛, that are defined through the 

following well-known relations: 

𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) ≝  
𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝜎𝑋𝑖𝜎𝑋𝑗
 

𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑖) =
𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑖)

𝜎𝑋𝑖𝜎𝑋𝑖
= 1 , 

so that, the covariance matrix 𝑪𝑿 of eq. (A.73) can be rewritten as: 

𝑪𝑿 = 𝑹𝑿 − 𝜼𝑿𝜼𝑿
𝑇 

A.4.4 CROSS-CORRELATION MATRIX: 

The cross-correlation matrix of two random vector signals 𝑿 in ℝ𝑛 and 𝒀 in ℝ𝑚 is as n x m matrix, 

which is defined as: 

(A.74)  

(A.77)  

(A.76)  

(A.73)  

(A.75)  
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𝑹𝑿𝒀 = 𝑐𝑜𝑟𝑟(𝑿, 𝒀) ≝ 𝐸[𝑿𝒀𝑇] = [
𝑐𝑜𝑟𝑟(𝑋1, 𝑌1) ⋯ 𝑐𝑜𝑟𝑟(𝑋1, 𝑌𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑟𝑟(𝑋𝑛, 𝑌1) ⋯ 𝑐𝑜𝑟𝑟(𝑋𝑛, 𝑌𝑛)

] 

As in scalar theory, the random vectors 𝑿 in ℝ𝑛 and 𝒀 in ℝ𝑚 are said to be uncorrelated iff the 

following relation is verified: 

𝑐𝑜𝑟𝑟(𝑿, 𝒀) = 𝟎 

A.4.5 CROSS-COVARIANCE MATRIX: 

The cross-covariance matrix of two random vector signals 𝑿 in ℝ𝑛 and 𝒀 in ℝ𝑚 is as n x m matrix, 

that is defined as: 

𝑪𝑿𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) ≝ 𝐸[(𝑿 − 𝜼𝑿)(𝒀 − 𝜼𝒀)
𝑇] = [

𝑐𝑜𝑣(𝑋1, 𝑌1) ⋯ 𝑐𝑜𝑣(𝑋1, 𝑌𝑚)
⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑋𝑛, 𝑌1) ⋯ 𝑐𝑜𝑣(𝑋𝑛, 𝑌𝑚)
] =

= 𝐸[𝑿𝒀𝑇] − 𝜼𝑿𝜼𝒀
𝑇 = 𝑹𝑿𝒀 − 𝜼𝑿𝜼𝒀

𝑇 

A.4.6 GAUSSIAN VECTORS: 

A random vector 𝑿 in ℝ𝑛 is a Gaussian vector iff is composed by Gaussian random variables, i.e. 

every random variable has a probability density function (pdf) defined as: 

𝑓𝑋𝑖(𝑥𝑖) =
1

√2𝜋𝜎𝑋
2
𝑒
−
(𝑥−𝜂𝑋)

2

2𝜎𝑋
2
 , 

so that, it is possible to represent every random variable through a simplified notation: 

𝑋𝑖 ~ 𝒩(𝜂𝑋 , 𝜎𝑋
2) 

In the case of the Gaussian random variable have zero mean, the plot of the probability density 

function is symmetric w.r.t. the y-axis (Figure A.7). 

(A.80)  

(A.79)  

(A.82)  

(A.81)  

(A.78)  
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Figure A.7: Probability density function of a Gaussian random variable with zero mean 

Adopting the same notation of the scalar random variables, a Gaussian vector can be represented as: 

𝑿 ~ 𝒩(𝜂𝑋 , 𝜎𝑋
2), 

which owns a covariance matrix 𝑪𝑿 in diagonal form, since the random variables of a random vector 

are independent each other, namely: 

𝑪𝑿 = [

𝜎𝑋1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑋𝑛

2
] 

 

 

 

 

  

          

       

 

    

   

    

   

    

   

    

   

  
  
 

                                                

(A.84)  

(A.83)  
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