
Alma Mater Studiorum · Università di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA
CAMPUS DI CESENA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

LOGIC-BASED COORDINATION:
A SEMANTIC APPROACH TO

SELF-COMPOSITION
OF SERVICES

Relatore:
Prof. Andrea Omicini

Correlatore:
Prof.ssa Giovanna Di Marzo
Serugendo

Dott. Giovanni Ciatto

Presentata da:
Ashley Caselli

Sessione III
Anno Accademico 2017/2018

Keywords

Multi-agent systems

Logic programming

Logic-based coordination

Self-composition of services

To my beloved family

Contents

Abstract i

Introduction iii

1 State of the art 1

1.1 Coordination models . 1

1.1.1 Logic-based coordination 3

1.1.2 TuCSoN . 4

1.2 Web services . 4

1.2.1 Syntactic description limitation 6

1.2.2 Semantic Web services 6

1.3 Composition of services . 7

1.3.1 Static composition . 8

1.3.2 Dynamic composition 8

1.4 Self-composition of services . 9

2 Formal model 11

2.1 Syntax . 12

2.1.1 Service descriptors . 12

2.1.2 Services . 13

2.1.3 Blackboard . 14

2.1.4 Requests . 15

2.1.5 Users . 16

2.1.6 System . 17

2.1.7 Labels . 18

3

4 CONTENTS

2.2 Operational semantics . 18

2.2.1 Rules . 19

2.2.2 Operators . 24

3 Prototype 33

3.1 Service agents . 33

3.1.1 Semantic definition . 34

3.1.2 From semantic to logic 36

3.2 User agents . 37

3.3 Blackboard . 38

3.3.1 Knowledge base . 39

3.4 Core operations . 40

4 Assessment 49

4.1 A generic scenario . 49

4.2 Basic scenario . 51

4.3 Composition scenario . 53

4.3.1 Single-input services 54

4.3.2 Multi-input services . 57

Conclusions 63

Bibliography 71

List of Figures

3.1 OWL-S Subontologies [36] . 34

3.2 Top-level structure of the OWL-S profile [38] 36

4.1 Generic datatype hierarchy . 51

4.2 Weather datatype hierarchy 53

4.3 Weather single services . 54

4.4 Weather services composed . 55

4.5 Book seeking services . 58

4.6 Book seeking datatype . 58

4.7 Book seeking service composition 59

5

Listings

3.1 Semantic description of a service 35

3.2 Logic description of a service agent 37

3.3 Logic description of a user agent 38

3.4 Example of a query and call request using a logic description . 38

3.5 Logic description of the ontology hierarchy 39

3.6 Operation [PUBLISH-SD]: publication of a service descriptor . 40

3.7 Operation [PUBLISH-CALL]: publication of a call request . . . 40

3.8 Operations [POS-PROVE] and [NEG-PROVE] implemented in

ReSpecTX . 41

3.9 Operations [SERVE-CALL] and [IN-CALL] implemented in ReSpecTX 42

3.10 Operation [SERVE-IN-CALL] implemented in ReSpecTX 42

3.11 Operation [LAST-IN-CALL] implemented in ReSpecTX 43

3.12 Operations [SERVE-CALL], [IN-CALL] and [COMPOSE]: dynamic

composition grounded on the run time approach 43

3.13 Operation [COMPOSE] implemented in ReSpecTX 44

3.14 Operation [DECAY] implemented in ReSpecTX 45

3.15 Signature of the typeof function 46

3.16 Signature of the ∼ operator 46

3.17 Signature of the
x∼ operator 46

3.18 Signature of the fringe function 46

3.19 The execute predicate . 46

3.20 Implementation of the semantic match predicate using tuProlog 47

7

Abstract

Logic-based approaches have always been at the core of research con-

cerning the coordination of multi-agent systems (MAS). Starting from the

Shared Prolog, logic-based coordination models have evolved into compre-

hensive approaches for nowadays complex and distributed systems, such as

IoT (e.g. ReSpecT) and self-organizing ones (e.g. Logic Fragment Coordina-

tion Model). Separately and in parallel to the emergence of MAS, research in

the Web field has been focusing on providing technologies in support of the

creation of Internet-based distributed systems in which automatic processes

such as service discovery, invocation and composition are feasible. Integrat-

ing MAS and Web paradigms will help enable new and advanced operational

and usage modalities of Web services, and vice versa. Those operational

modalities, such as self-adaptation and self-management, are fundamental

in today’s scenarios characterized by dynamism. It is therefore presented a

logic-based coordination model in which the self-composition of semantically

annotated services is highly promoted and supported. A possible imple-

mentation is also provided in the form of a basic prototype developed using

tuProlog, TuCSoN and ReSpecTX. Moreover, the assessment of the model is

illustrated through formally defined scenarios.

i

Introduction

Agent technology is a software paradigm that permits to implement large

and complex distributed applications [30], worldwide referred as multi-agent

systems (MAS). Agents, namely encapsulated computer systems situated in

some environment and capable of flexible and autonomous actions in that en-

vironment [1], require interaction to meet their stated objectives. Research

have mostly focused on the coordination mechanisms, specifically how to

rule the environment in which they are situated. Logic-based approaches

have always been at the core of those research concerning the coordination

of multi-agent systems (MAS). Starting from the Shared Prolog, logic-based

coordination models have evolved into comprehensive approaches for nowa-

days complex and heterogeneous distributed systems.

Separately and in parallel to the emergence of MAS, the Web field has

been focusing on providing technologies in support of the creation of Internet-

based distributed systems. Service-oriented programming has dramatically

changed the way software applications are developed [16]. Nowadays, in-

deed, service-oriented architectures (SOA) represent the standard approach

for distributed systems engineering [7].

At a glance, both MAS and SOA paradigm support the idea of distributed

autonomous entities [49]. However, unlike Web services which provide func-

tionality through simple executable methods, agents that act intelligently

use knowledge to react to and act on their environment autonomously and

proactively [32]. On one hand, Web service technologies enable automatic

processes such as service discovery, invocation and composition. On the other

hand, agents provide a unique capability in mediating user goals to deter-

mine service invocations [32]. Integrating Web services and software agents

iii

iv INTRODUCTION

might result in a fruitful match, taking advantages of their functionalities

one from the other. Furthermore, once this interconnection is established,

software agent concepts and technologies will help enable new and advanced

operational and usage modalities of Web services, and vice versa. [26].

With the dynamism that characterizes today’s systems, the user’s need

have to be met by exploiting available resources, even when an exact match

does not exist [31]. The run-time evolution of resource discovery must be sup-

ported and self-autonomous behaviors must be exploited to meet the users

requests. For instance, it is the case of the research in service composition ap-

proaches that have led to methods and technologies to obtain self-composable

services.

“A challenging problem is to compose services dynamically, on

demand.”[3]

An effective approach to address the quoted challenge turns out to be the

combination of the technologies provided by SOA and MAS fields. As a

matter of fact, in Web services environments with semantically annotated

services, software agents are important entities that facilitate user’s tasks in

a transparent manner. [32] To this aim, self-autonomous composition pro-

cesses might be obtained by borrowing tools from both fields. In particular,

leveraging on tools wherewith a service may be semantically annotated and

the autonomous reasoning capabilities each agent owns, in order to compute

semantic-based reasoning on which future decisions will rely.

This dissertation contributes with designing a novel coordination model

that promotes and supports spontaneous service composition within a multi-

agent systems (MAS) environment. The model is grounded on logic-based

computations, exploited to compute semantic relations that lead the match-

making among services.

The remainder of this dissertation is organized as follows. Chapter 1

provides an overview of the logic-based coordination and self-composition

current approaches. Chapter 2 presents the designed coordination model.

It is conveyed using a formal approach (i.e. process algebra) in order to

tackle the major problem of the typical approaches used to define service

INTRODUCTION v

compositions, namely the verification of processes’ correctness [52]. Chapter

3 contains a basic prototype which aims to provide a possible implementation

of the model. It only includes the core functionalities that are implemented

by using TuCSoN, tuProlog and the ReSpecTX language. Finally, in Chapter

4 the assessment of the model is argued through both generic and specific

scenarios. For each scenario the operations involved are argued by showing

the computational steps that lead to the shown solution, using a formal

representation.

Chapter 1

State of the art

This chapter summarizes the key points concerning coordination mod-

els and the approaches adopted to tackle the dynamic service composition

challenge. Regarding the coordination models, the focus is made on the logic-

based approaches that, starting from the Shared Prolog, have evolved into

comprehensive ones for complex systems (such as IoT, e.g. ReSpecT) and

self-organizing systems (e.g. Logic Fragment Coordination Model - LFCM

[14]). On the other hand, due to the dynamism and openness that charac-

terize modern scenarios, service composition approaches have gone towards

autonomous computations that give properties such as self-adaptation and

self-management to the system.

1.1 Coordination models

“Coordination models have proven useful for designing and implementing

distributed systems.” [19]. Distributed system in which heterogeneous enti-

ties coexist is a reality of our days. These entities must seamlessly integrate

and coordinate among each others to achieve the desired and expected goals.

To this purpose, starting from the interaction on shared variables, through

message passing, more recent approaches consisting of using higher-level pro-

gramming models and languages were coined; those are called coordination

models and languages. During the years several definitions have been pro-

1

2 1. State of the art

vided:

“A coordination model is the glue that binds separate activities into an

ensemble.”[13]

“A coordination model provides a framework in which the interaction of

active and independent entities called agents can be expressed.” [10]

to name a few.

The purpose is providing a means of integrating a number of components

together, “by interfacing with each component in such a way that the collec-

tive set forms a single application that can execute on and take advantage of

parallel and distributed systems” [48]. To this purpose, according to [10], the

issues to tackle are represented by managing the creation and destruction of

agents, communication among agents, and spatial distribution of agents, as

well as synchronization and distribution of their actions over time.

Identifying components of which the coordination models are built might

be a constructive approach to define them. A coordination model can be

thought as made of three elements [11]:

• Coordinables Entities whose interaction is ruled by the model, namely

the coordinated entities

• Coordination media Abstraction in which the coordination is made

possible. Examples might be simple media as semaphores, channels,

monitors, or more complex like blackboards, tuple spaces, etc. More-

over, it can be used to aggregate agents and manipulate them as a

whole

• Coordination laws A coordination model should define a finite set of

rules to describe how the coordination of the agents occurs through the

media. These are defined in terms of a communication and a coordina-

tion language that define respectively the syntax of the exchanged data

structures and the primitive used to interact (with their semantics)

1.1 Coordination models 3

Basically, a coordination model provides a framework where the interac-

tion of entities can be expressed. Entities are called agents and are active

and independent.

Coordination models can be classified using several dimensions. A useful

classification consists in discerning between the two major categories of co-

ordination programming, namely either data-driven or control-driven (also

called process- or task-oriented) [48]. Briefly, within data-driven coordina-

tion model the entities are in charge of both examining and manipulating

data as well as coordinating themselves and/or other entities by invoking

the coordination mechanism provided by the language. In fact, purely data-

driven coordination models do not clearly distinguish between coordination

and computational processes. The coordination media’s content might re-

sult in a combination of data and code. It is thus up to the programmer to

design their code in such a way that the two concerns are clearly separated,

even though the model does not provide this separation at the syntactical

level. On the other hand, control-driven coordination models present an

almost complete separation between computational and coordination pro-

cesses. Usually, the latter is achieved by exploiting an ad-hoc coordination

language and coordinated entities treated as black-boxes that provide a well-

defined input/output interface.

1.1.1 Logic-based coordination

Logic based approaches have always been at the core of research on co-

ordination, especially regarding multi-agent systems (MAS). When it comes

to formalize the coordination mechanisms and primitives, logic can play a

key role. For example, first-order logic and unification of unitary clauses

and ground terms represent a powerful mechanism of matching exploited by

tuple-based coordination models. In addition, different approaches such as

temporal logic and spatial logic can express further aspects of coordination,

especially in the verification of emergent global properties [15].

Known logic-based coordination models are PoliS [9], ACLT [17] and

TuCSoN [46, 43].

4 1. State of the art

PoliS extends the Linda approach [22] to parallel programming. It is

based on multi-set rewriting in which coordination rules produce and con-

sume multi-sets of tuples.

Within the ACLT model (Agents Communicating through Logic The-

ories), the tuple space is seen as container of logic theories. The access is

granted to logic agents in order to perform deduction processes. The match-

ing mechanism used is first-order logic and unification of unitary clauses and

ground atoms.

TuCSoN borrows ACLT concepts and defines a model for distributed pro-

cesses and agents, introducing the idea of tuple center as an engineered tuple

space whose behavior can be modeled using a reaction specification language.

1.1.2 TuCSoN

Taking inspiration from ACLT , TuCSoN (Tuple Centers Spread over the

Network) defines a model for distributed processes, as well as autonomous,

intelligent and mobile agents. Each node is associated to a tuple center that

is “a tuple space whose behavior can be defined by means of reactions to

communication events” [45]. In fact, tuple centers are tuple spaces enhanced

with the notion of behavior specification, thanks to the ReSpecT language

[45]. The latter is a reaction specification language, based on first-order logic

tuples. Such a language is used to link computational tasks with the basic

Linda-inspired coordination primitives: in, out, rd, inp and rdp [45]. An

important property of TuCSoN is the openness regarding to the programming

languages it supports. In fact, like other pure coordination models, TuCSoN

is not associated to any specific programming language, thereby it supports

agents written in several languages (e.g. Java, C).

1.2 Web services

“Web services are a consolidated reality of the modern Web with tremen-

dous, increasing impact on everyday computing tasks” [35]. According to

this statement, it is reasonable to think that the traditional Web has been

1.2 Web services 5

strongly affected and changed with the coming of Web services. Web service,

in fact, have deeply changed the Web, enhancing it by providing a new level

of functionality and turning it into the largest and most accepted distributed

computing platform ever.

“Nowadays, Web can be viewed not only as a distributed source of infor-

mation, but also as a distributed source of services” [36]. Nevertheless, their

full power of integrating into applications or composite services has not been

thoroughly used yet.

According to [6], a Web service is a software system designed to support

interoperable machine-to-machine interaction over a network and it has an

interface described in a machine-processable format. Beyond that, several

definitions have been provided during the years that can be summed up into

the following points. Any service that

• is available over the network

• uses a standardized messaging system

• is not tied to any programming language or operating system

• is self-describing

• is discoverable

might be defined as a Web service.

Basically, they enable communication among various applications by using

open standards, e.g. HTML, XML, SOAP, WSDL (SOA approach), URI

and HTTP (REST approach). Both of approaches allow to represent Web

services in a standardized fashion, in terms of their interfaces. For instance,

considering the SOA approach, WSDL is merely a standard language used to

describe the means of interacting with offered services. Likewise, by adopting

a REST approach, it is possible to represent a Web service as a resource

whose URI is well-known; thus once again it is being described the means of

interacting with it rather than other aspects, such as the service capabilities.

All the standards used to define a service work at a syntactic level. In fact,

they lack of expressiveness when it comes to define service’s capabilities and

requirements in an unambiguous and machine-readable manner.

6 1. State of the art

1.2.1 Syntactic description limitation

Considering WSDL, it only allows to describe the functional and syntactic

aspects of a service. It is used to describe a Web service by the parameters,

associated with abstract data types, and operations it supports. However,

the usage of this description brings limitations. For instance, assuming the

space in which services are published is populated by agents, namely any

piece of software that works autonomously and proactively [2]. Their au-

tonomous behavioral aspect is strongly limited on services, since they can

only see the parameters names and abstract data type and cannot deduct

what the service actually provides, as a human could.

Moreover, assuming the existence of two services that provide the same func-

tionalities with descriptions that syntactically differ. In this case, since any

agent can only reason about the syntactic definition provided, the two ser-

vices will never be considered as equivalent.

The description of a service by means of its syntactic parameters severely

limits the execution of automated tasks on services, such as discovery, invo-

cation and composition. To this purpose a machine-readable representation

of the service is required.

1.2.2 Semantic Web services

When introducing the Semantic Web Tim Berners Lee stated “The intro-

duction of ontologies can enhance the functioning of the web in many ways”

[5]. The birth of the semantic Web doubtlessly changed the way the Web can

be used, especially by such entities that are capable of autonomous computa-

tions. The semantic Web transformed the Web into a repository of computer

readable data [8], as a matter of fact. As years went by, the integration

among Web services and semantic Web tools had been increasing, leading

to the birth of the so-called Semantic Web services. The approach consists

of enriching the traditional Web services with rich formal descriptions [28].

The latter copes with the lack of expressiveness the traditional description

languages have. Usage of the semantic Web tools to represent a Web service

surely opens to the possibility of performing automated computations on

1.3 Composition of services 7

many aspects. Specifically, location, composition and mediation can become

a dynamic process.

For instance, to locate the best services that are able to solve a particular

problem or to automatically compose the relevant services to build applica-

tions dynamically [20].

The advent of Semantic Web services allows agents to perform automated

reasoning that is grounded on a semantic matching computation between the

published service description and the request. Following the same approach

could then be possible perform tasks such as the location and composition of

services on the fly. Three main approaches have been driving the development

of Semantic Web services frameworks are: IRS-II [42], WSMF [21] and OWL-

S [37, 39, 36].

1.3 Composition of services

Service composition is known as the mechanism of combining two or more

basic services into a possibly complex service [31]. Coupling together Web

services and semantic Web technologies might help to step forward toward an

improvement of the Web services composition exploiting rich and machine-

readable representation of service properties and capabilities. In addition,

always exploiting those technologies, it might be possible to perform a rea-

soning mechanism in order to select and aggregate services [40].

Semantic Web services have brought the chance to redesign Web ser-

vices, creating a more expressive representation under many standpoints.

Main approaches previously cited allow to express the service in terms of its

functional and non-functional parameters, giving the opportunity to perform

automated reasoning. Here, the focus is made on the automated composition

process, which is defined as the property of the system to locate and compose

services on the fly. The key aspects of the process reside in how the services

are selected and bonded. Hence, the composition process should be seen as

an outcome of two minor phases: selection and binding.

8 1. State of the art

Selection is the phase where a concrete service is sought and identified

to be used in a composition. It may occur in three different stages of the

composition lifecycle: design time, deployment time, and run time [35].

Binding is the phase where the services are actually connected, so as to

create the composite and more evolved ones. If it occurs at design time the

composition is called static composition; in both the other stages it is called

dynamic composition [35].

1.3.1 Static composition

Design time

The composition is built during the design time of the system by the

hand of the developer. They choose the services once for all and the selected

services are permanently connected unless they decide to modify the actual

configuration. Obviously, this kind of composition leads to correct composi-

tions but completely lacks of scalability since it requires human intervention

to adapt the system to changes.

1.3.2 Dynamic composition

Deployment time

During a deployment time composition process the binding occurs when-

ever a service shows up, claiming to be ready to provide its services. This

type of composition requires the system to compute all the possible composi-

tions among the available services and redesign them every time new services

enter the system.

Run time

A run time composition process doubtlessly requires less computational

resources since it only computes the composition when a request reaches

the system. It also improves the scalability of the system, coping with the

1.4 Self-composition of services 9

problem of being prone to changes. However although provides a better

scalability, it surely adds overhead in the request’s computation, that might

bother the final user.

1.4 Self-composition of services

Self-composition of services is a completely decentralized process, hence

favoring scalability, whereby services are able to compose with other services

autonomously. The process aims to create higher level functionalities within

the system by leveraging the available resources. It is highly scalable and

copes with dynamic appearance and disappearance of components within

the system [16]. Composition might be carried out either using a syntactic

approach, as in [16], or leveraging the tools and technologies provided by se-

mantic Web, as previously mentioned. The latter approach indeed overcomes

the syntactic one since it performs a reasoning process that takes into account

formal and more expressive data, such as ontologies. By means of the ontolo-

gies, in fact, it is possible to represent both functional and non-functional

aspects, as well as behavioral aspects that more accurately describe a service.

Automated reasoning is grounded on semantic matching among formal con-

cepts. To this purpose the matching policies play a key role in the process

and should be accurately designed.

Benefits brought in are automatic discovery, invocation, composition and

monitoring. On the other hand, the need of new computational processes that

support and implement those capabilities arises, as well as new problems to

tackle. Further development of frameworks (such as [53] and technologies

might mitigate and solve the open problems, and presumably lead to more

and more reliable automatic processes.

10 1. State of the art

Chapter 2

Formal model

Within the chapter a definition of the coordination model is argued. As

the title suggests, the model is conveyed using a formal approach (i.e. process

algebra) due to the benefits it brings.

The coordination model is composed of two main entities: a blackboard

and external entities, namely “agents”. The blackboard is considered as a

space exploited by the agents as coordination medium. Therefore, an agent

interacts with other agents in the system by means of the blackboard. Agents

are categorized in two basic groups according to their capabilities:

• A service agent provides services via the system

• A user agent exploits the services available in the system

Whenever an agent is willing to communicate with others, it leaves or con-

sumes a message on the blackboard. According to the category an agent

belongs, there exist predefined messages that it may leave or consume. For

instance, a user agent might want to prove if there is any service that is cur-

rently able to fulfill a request. A request message is left on the blackboard

and consumed by the service able to fulfill it. However, the latter statement

is not completely correct. Since within the model the self-composition of ser-

vices based on semantic is promoted, the request message might be fulfilled

either by a simple service or a composed one.

Note that it is implicitly assumed that only a single global blackboard

exists in the system, while in a typical modern scenario it is likely to have

11

12 2. Formal model

a network of blackboards. For simplicity, the model describes a node as a

component that only consists of one blackboard.

2.1 Syntax

Within the section the syntax of the model is provided in the form of

extended Backus-Naur form (EBNF) notation. The latter notation is one

of the notations that can be used to express a context-free grammar (CFG)

which is mostly used to make a formal description of a formal language (e.g.

a computer programming language).

Definition 2.1.1. An EBNF grammar consists of

• a finite set T of terminals

• a finite set N of non-terminals disjoint from T

• a start symbol S ∈ N

• a finite set of rules A ::= τ1 | . . . | τt, at most one for each non-terminal

A ∈ N , where each τk, 1 ≤ k ≤ t, is a base, bracketed or concatenated

regular expression over the set T ∪N

2.1.1 Service descriptors

A service agent is defined as the entity able to provide one or more ser-

vices via the blackboard. In order to better explain the defined syntax, just

one service agent will be considered.

Each service provided by a service agent is described using a service descrip-

tor. It is a notation that includes the functional parameters of the described

service, that are:

• the set of the inputs (I) it accepts

• the output (O) it provides

2.1 Syntax 13

A service is therefore modeled as a black-box element that accepts one or

more inputs and always provides one output.

SD ::= service(Q) | SD
N

argof SD service descriptor

I ::= ε | N : T | I, I input

O ::= ε | T output

N ::= n1 | n2 | n3 | . . . name

T ::= t1 | t2 | t3 | . . . type

Term SD is the service descriptor, which is expressed using Q in case it de-

scribes a simple service. As it will be defined in the following pages, the Q

term is nothing less than a composition of inputs I and output O.

Term I expresses the input parameters using a notation name:type, where

the name is given by any production of N and the type by any production of

T. Term N defines any plain string, whilst T represents the datatype. The

latter is meant to be mapped into a concept of an already existing ontology,

in order to be used in a semantic reasoning process.

Note that both terms I might be a sequence by means of the syntactic op-

erator “,”. Regarding the second production of the SD term, it is used to

represent a composition made of two (or more) service descriptors. To this

purpose, the argof operator plays as syntactic operator that connects two

services. Likewise, service operator is used for the mere sake of facilitating

the reading of the grammar.

2.1.2 Services

A service agent expresses its willingness to be involved in an interac-

tion publishing its services onto the blackboard. Therefore, an unpublished

service cannot be involved in any interaction within the system because it

cannot serve any possible request. The basic operations a service agent has

14 2. Formal model

at its disposal are the publish and the serve, syntactically defined as follow:

S ::= publish(SD) | serve(service(Q)) | S · S service

Simply, a service is able to perform two operations: publish and serve. The

publish(SD) production expresses the operation during which the service

agent leaves on the blackboard the service descriptor SD of each service it

holds, in order to be discovered as active services within the system. While

the serve(service(SD)) term represents the phase in which the specific

service descriptor SD is served (keep in mind that a service descriptor SD =

service(Q)).

Finally, the production S ·S is defined to express the case in which a service

agent performs two or more events consequently.

The publish and serve operators are mere syntactic sugar of the grammar.

The above grammar is subjects to the following axioms:

S · S ′ 6≡ S ′ · S (2.1)

S · (S ′ · S ′′) ≡ (S · S ′) · S ′′ (2.2)

Basically, the “·” operator is defined as not commutative and associative.

2.1.3 Blackboard

The blackboard is defined as the space used as coordination medium by

the agents. Each agent can perform basic read/write actions on the black-

board, thus leave or consume messages. It follows a righteous representation

of the blackboard might be as a set whose elements are the messages.

The following grammar describes its syntax:

B ::= ∅ | SD | call(C) | in call(C, SD) | B ∪B blackboard

Blackboard is defined as a set containing a service descriptor SD, a call(C)

or another blackboard B. Assuming that there exists only one blackboard

B within the system, then the latter assertion should be interpreted as if a

2.1 Syntax 15

blackboard is a set of messages posted on it over the time. The blackboard

could also be in the empty state which is denoted by the ∅ terminal symbol.

The “∪” operator is subject the following properties:

B ∪B′ ≡ B′ ∪B

B ∪ (B′ ∪B′′) ≡ (B ∪B′) ∪B′′

B ∪ ∅ ≡ B

Briefly, it is defined as a commutative and associative operator, with ∅ as the

identity value.

2.1.4 Requests

A request is a message left on the blackboard by an agent. The model

presents two different syntax to differentiate the requests: query and call. As

the names already suggest, they are slightly different and their difference has

to be searched into the purpose of each. A call represents an actual call that

will be left on the blackboard to be managed by one service or a composition

of them. Instead, a query represents an exploration that is a request used to

prove, at the time it is made, whether the system owns or not the capabilities

needed to fulfill it.

The existence of a request implies that eventually there will be a response.

According to the request’s type, the response could be either a plain or a

16 2. Formal model

boolean value.

Req ::= query(Q) | call(C) request

Q ::= I, O query

C ::= A, O call

A ::= ε | N : T (V) | A,A arguments

V ::= v1, v2 . . . vn terminal values

Res ::= res(Const) | res(V) response

Const ::= > | ⊥ boolean value

Term Req and Res represent respectively the request and the response.

As mentioned, a request could be a query or a call. In fact, term Q expresses

an exploratory request (query) and it is defined as the composition of inputs

I and output O ; where I and O are exactly the same as defined in subsection

2.1.1. Instead, term C represents a call request and it is expressed as a com-

position of arguments A and output O. The difference in the representation

among a query and a call foretells the fact that a query request just provides

datatype to the system; thus will work in an higher and abstract level. On

the other hand, a call request piggybacks the actual values with which the

services able to fulfill it will be fed in order to provide a response.

Finally, Res is the response and it is represented using a boolean constant

Const or a value V. The boolean constant represents the boolean truth or

falsity, which is the response that will be given to a query request. On the

contrary, the response given to a call request is described by the value V.

Note that query, call, and res are syntactic sugar.

2.1.5 Users

A user agent expresses its willingness to interact with other agents leaving

or consuming messages concerning a request from the blackboard. The user

agents are meant to be the request performer agents, therefore the syntax

allows to express the handling of the request and response. The operations

that a user agent performs simply are: leaving request messages on the black-

2.1 Syntax 17

board and consuming response messages from it.

U ::= Req | Res | U · U | halt user

The production Req expresses the operation with which the user leaves a

request message on the blackboard; while the Res expresses the one where

the user consumes the response message. Considering that a user agent could

perform two or more events consequently, as defined for the service agents,

the production U · U is used to describe the aforesaid situation.

At last, the production halt is used to handle the eventual termination event.

The “·” operator has already been defined in axioms 2.1 and 2.2.

2.1.6 System

As already mentioned, the system is composed by two entities, namely

the blackboard and the agents. Moreover, the agents are in turn categorized

into service agents and user agents. Therefore, the whole system may be de-

scribed as the composition of three elements that coexist in time: blackboard,

service agents and user agents.

The following grammar shows the syntax defined for the system:

Sys ::= B ‖ US ‖ SS main system

SS ::= S ‖ SS list of services

US ::= U | (U ‖ US) list of users

The whole system, expressed by means of the Sys term, is an aggregation of

three parallel entities: a blackboard B, a list of users US and a list of services

SS. These, in turn, are respectively an aggregation of user and service agents.

Conversely, the blackboard B is defined unique within the system.

The grammar presented above is subject to the following axioms:

S ‖ SS 6≡ SS ‖ S

B ‖ (US ‖ SS) ≡ (B ‖ US) ‖ SS

18 2. Formal model

Basically, the “‖” operator is defined as not commutative and associative.

2.1.7 Labels

The following grammar describes the set of labels that can be used in

the LTS (labeled transition system) exploited to describe the operational

semantics (see section 2.2). The definition of the label’s syntax gives the

freedom to easily extend the transition rules of the LTS, just adding new

labels to the provided grammar.

E ::= publish sd | publish call | serve call | in call | (2.3)

serve in call | last in call | prove | compose | τ

In order to ease their comprehension, the labels are mostly defined using

the same name of the transition rule they are involved in. Only exception

is made for τ , used in the silent transition defined as [DECAY] (see section

2.2.1.

2.2 Operational semantics

The operational semantics is given as a LTS (Labeled Transition System).

It is a tuple (S,→,Λ, s0), where

• S is a set of states

• → is a transition relation, → ⊆ (S × Λ× S)

• Λ is a set of labels

• s0 is the initial state, s0 ⊆ S

To increase the transitions readability the following notation will be used

from now on:

→ (s1, λ, s2)⇔ s1
λ−→ s2

2.2 Operational semantics 19

where

s1, s2 ∈ S

λ ∈ Λ

The latter notation expresses a transition from state s1 to state s2 with label

λ.

According to the previous definition of the model’s syntax, the LTS is subject

to the following properties:

S ≡ L(Sys)

Λ ≡ {τ} ∪ L(E)

with Sys defined in subsection 2.1.6, E defined in 2.3 and {τ} defined as the

silent transition (see more in subsection 2.2.1).

Definition 2.2.1. Let L be the set of all strings that can be derived from

a grammar G. It is called the language generated by G and formally defined

as follows:

L(G) = {W | W ∈ Σ∗, S
G−→ W},

where Σ∗ is the set of all strings that belong to the alphabet Σ.

2.2.1 Rules

Transition relations simply model the effect of executing an action on

the blackboard. As largely discussed the blackboard is used as coordination

medium by the agents, that actively leave or consume messages to interact

among them. The distinction between a service and a user agent also de-

notes the capabilities they have in terms of interaction. It comes naturally

that sometimes the messages left by one, rather than the other, might be

correlated in time because one cannot happen without another or vice versa.

For instance, a user’s request cannot be handled if a service that is able to

20 2. Formal model

fulfill it has not been published on the blackboard yet.

Briefly, the legal actions are

• publication of a service descriptor SD on the blackboard B

• publication of a call request call(C) on the blackboard B

• serve of a call request call(C)

• proof of an exploration request query(Q)

• composition of two or more services

• decay of service descriptor SD within the blackboard

In the following paragraphs, they will be shown and explained more in detail.

Service descriptor publication

Operation [PUBLISH-SD] plays the role of publishing a service descriptor

SD on the blackboard.

publish(SD) · S ‖ SS ‖ US ‖ B
publish sd−−−−−→ S ‖ SS ‖ US ‖ B ∪ SD [PUBLISH-SD]

It occurs without preconditions, hence it may be triggered anytime during

the system lifetime. It is performed by a service agent that is willing to

publish the offered services within the system. The execution of the operation

affects the blackboard state, enriching it with the service descriptor SD.

Call request publication

Operation [PUBLISH-CALL] denotes the action made by a user agent of

publishing a call request on the blackboard.

call(C) · U ‖ SS ‖ US ‖ B
publish call−−−−−−→ U ‖ SS ‖ US ‖ B ∪ call(C) [PUBLISH-CALL]

Likewise the publication of a service, it may occur without any precon-

dition. Execution of the operation affects the blackboard state, enriching it

with a new call request call(C).

2.2 Operational semantics 21

Serve

Within this section the operations concerning the serve of a call request

are given. In more details, the serve operation is split up into four operations:

[SERVE-CALL], [IN-CALL], [SERVE-IN-CALL] and [LAST-IN-CALL].

Operation [SERVE-CALL] is the operation that serves a call request that

can be served by a single service. Whilst, in case of a composed service CS

exists and it is the one capable of performing the computation, the execution

is split up into n+ 1 steps (with n = number of services that compose CS).

The n steps are the ones required to execute each single service involved in the

composition; whilst the additional one is a sort of syntax modeling step in or-

der to support the services computational chain. Operation [IN-CALL] starts

the chain of executions. It is followed by a sequence of [SERVE-IN-CALL]

operations which end by the [LAST-IN-CALL] operation that provides the

result to the user.

[SERVE-CALL] operation is an atomic operation that is triggered each time

the call request may be fulfilled by a single service, i.e. not composed. The

operation executes the selected service and provides the result to the user.

SD = service(I, O) ∧ typeof(call(C)) ∼ SD ∧ V = execute(serve(SD), call(C))

serve(SD) · S ‖ SS ‖ US ‖ B ∪ SD ∪ call(C)
serve call−−−−−→ S ‖ res(V) · U ‖ SS ‖ US ‖ B ∪ SD

[SERVE-CALL]

[IN-CALL] operation is in charge of redesigning the call request in order to

support the execution of the services involved in the composition. The op-

eration is indeed executed each time the sent call request can be fulfilled by

a composed service. During its execution, the blackboard state is modified

and enriched with a new call message in call that contains the service de-

scriptor SD of the first service to be executed in the composition, in addition

to the original call request call(C).

SD = SD′
N

argof SD′′ ∧ typeof(call(C)) ∼ SD

S ‖ SS ‖ US ‖ B ∪ SD ∪ call(C)
in call−−−→ S ‖ U ‖ SS ‖ US ‖ B ∪ SD ∪ in call(C, SD′)

[IN-CALL]

[SERVE-IN-CALL] operation is in charge of partially fulfilling the call, exe-

cuting the selected single service of the composition. However, the execution

22 2. Formal model

result is not provided to the user yet, but it is added as input parameter

to a new in call message that is afterwards published on the blackboard.

The new message is hence containing the service descriptor of the following

service to be executed in the composition and a call that is composed of:

• the computed result V in the form of an argument generated by the A

production; hence N : T (V)

• a call C ′ that contains all the arguments that have not been used into

the execution, hence useful for the next ones

SD = SD′
N

argof SD′′ ∧ typeof(call(C)) ∼ SD′ ∧ V = execute(serve(SD′), call(C))

serve(SD′) · S ‖ SS ‖ US ‖ B ∪ SD′ ∪ in call(C, SD′)
serve in call−−−−−−−→ S ‖ U ‖ SS ‖ US ‖ B ∪ SD′ ∪ in call(N : T (V), C ′, SD′′)

[SERVE-IN-CALL]

[LAST-IN-CALL] operation plays the role of finisher of the computational

chain. It is in fact the last operation to be executed.It is therefore in charge

of executing the last service involved in the composition and providing the

result to the user.

SD = SD′
N

argof SD′′ ∧ typeof(call(C)) ∼ SD′′ ∧ V = execute(serve(SD′′), call(C))

serve(SD′′) · S ‖ SS ‖ US ‖ B ∪ SD′′ ∪ in call(C, SD′′)
last in call−−−−−−→ S ‖ res(V) · U ‖ SS ‖ US ‖ B ∪ SD′′

[LAST-IN-CALL]

Prove

Operations [POS-PROVE] and [NEG-PROVE] are in charge of handling an

exploration request query. To be triggered it requires that the request has

previously been forwarded to the blackboard. They respectively show the

positive case in which there is a service (or a composition of them) residing

in the system that is able to fulfill it; and the negative one, where there is not.

service(Q) ∼ SD ∧ Const = prove(Q,SD)

query(Q) · U ‖ SS ‖ US ‖ B ∪ SD
prove−−−→ res(>) · U ‖ SS ‖ US ‖ B ∪ SD

[POS-PROVE]

@ SD ∈ B : service(Q) ∼ SD

query(Q) · U ‖ SS ‖ US ‖ B
prove−−−→ res(⊥) · U ‖ SS ‖ US ‖ B

[NEG-PROVE]

The first rule describes the positive case, whilst the second the negative one.

Preconditions show that to be in the positive case, there has to exist a ser-

vice descriptor SD in the blackboard that matches the query request. If not

2.2 Operational semantics 23

exists any service descriptor SD in the blackboard that matches the query

request, then the negative response will be provided.

The match among the query request and a service descriptor SD is computed

using the “∼” operator (see subsection 2.2.2 for the detailed definition).

Compose

Within the system, the composition of services is promoted and com-

puted by means of the [COMPOSE] operation. It allows composing services

through semantic reasoning on the service descriptors they provided on the

blackboard.

SD = service(I, O) ∧ ∃ (N : O) ∈ fringe(SD′) ∧ SD′′ = compose(SD, SD′)

SS ‖ US ‖ B ∪ SD ∪ SD′
compose−−−−→ SS ‖ US ‖ B ∪ SD ∪ SD′ ∪ SD′′

[COMPOSE]

Operation’s preconditions define that the operation is triggered only when

a simple service can be composed. The latter statement implicitly means that

a service’s output is included in the fringe of the one it will be composed with.

Moreover, the correct execution of the compose function is included in the

preconditions. The latter is simply a function that creates the actual match

among two or more matchable services whenever it is possible (see section

2.2.2 for the detailed definition). During the operation the blackboard’s state

changes, being enriched with a new service descriptor (denoted by SD′′ in

the rule definition) that represents the new service created as result of the

composition.

Decay

Finally, the operation [DECAY] is defined with the purpose of keeping the

blackboard clean over time.

B′ = B − compositions(B, SD)

SS ‖ U ‖ US ‖ B ∪ SD
τ−→ SS ‖ U ‖ US ‖ B′

[DECAY]

As shown above, it holds no precondition, thus could be executed anytime.

The existence of this operation grants the system the capability of cleaning

out the blackboard from obsolete messages.

24 2. Formal model

Label τ used for the operation describes a time related operation. Since

there is no chance to express the time using the process algebra, the only

way to express the operational semantic of [DECAY] is exploiting the concept

of silent transition. In fact, τ defines a silent transition that occurs in the

system and affects the state of the blackboard B. There is no specification

about the time it occurs, just that after its occurrence the new state will not

contain obsolete elements, that have been successfully removed during the

transition.

2.2.2 Operators

The typeof function

The function is defined to cope with the need of retrieving the datatype

of a call request. Retrieving the datatype allows to compare it with available

services and evaluate if there exists one or more services able to fulfill the

given request.

It is defined as follows:

typeof : L(C)→ L(SD)

It provides a service descriptor SD as output, starting from a call request

call(C) as input. Its semantic definition is:

typeof(call(X)) =


service(typeof(A), O) if X = call(a1 . . . an)

typeof(a1) . . . typeof(an) if X = a1 . . . an

n : t if X = n : t(v)

where

ai = ni : ti(vi)

Simply, the typeof function extracts the parameter’s datatype and name

and create a service descriptor SD that represents the request by means of

the extracted values. The generated service descriptor will then be used to

2.2 Operational semantics 25

seek for an available and matchable service.

The ∼ operator

Operator “∼” is in charge of evaluating if two service descriptors are

matchable. It is defined as a relation between two service descriptors:

∼ ⊆ L(SD)× L(SD)

Given two service descriptors, the operator evaluates if they are matchable

or not, reasoning about their functional aspects (namely, datatype they

present). The result is achieved exploiting the semantic match predicate

that embodies the semantic reasoning about datatype. However, it will not

be defined within the model because it is meant to be application dependent.

service(i1 . . . in, o) ∼ service(i′1 . . . i
′
n, o
′)⇔ ij ∼ i′j ∀j = 1 . . . n ∧ o ∼ o′

n : t ∼ n : t′ ⇔ n = n′ ∧ t ∼ t′

t ∼ t′ ⇔ semantic match(t, t′)

SD
N

argof SD′ ∼ SD′′ ⇔ SD′′ ∼ SD
N

argof SD′

service(i1 . . . in, o) ∼ service(i′1 . . . i
′
m, o

′)
N

argof SD ⇔ n ≥ m ∧ I = {i1 . . . in} ∧

I ′ = {i′1 . . . i′m} ∧

I ′′ = I ′ ∩ I ∧

I ≡ I ′ ≡ I ′′ ∧

∃o′′ service(N : o′, o′′)
o∼ SD

service(i1 . . . in, o) ∼ service(i′1 . . . i
′
m, o

′)
N

argof SD ⇔ n ≥ m ∧ I = {i1 . . . in} ∧

I ′ = {i′1 . . . i′m} ∧

I ′′ = I ′ ∩ I ∧

I − I ′′ 6= I ′′′ ∧

I ′′′ = {i′′ . . . i′′n−m} ∧ i0 = N : o′ ∧

∃o′′ service(i′′ . . . i′′n−m, i0, o
′′)

o∼ SD

26 2. Formal model

where

I ∩ I ′ = {i : i ∈ I ∧ ∃i′ ∈ I ′ : i ∼ i′}

i ∈ L(I)

o ∈ L(O) ≡ o ∈ L(T)

There could be two possible scenarios where the operator is used:

• both of the service descriptors are simple. By saying simple it is meant

that they do not describe a composition

• one service descriptor is not simple, thus represents a composed service

The scenario in which both of them are composed cannot exist because the

operator is meant to be used with a request (that is a simple service descriptor

by definition) and a service.

The computational steps of the operator are defined in order to cope

with both the scenarios. The basic scenario in which both service descriptors

are simple is defined within the first three rows. Within the other part of

the definition the rules in charge of computing the matching when the most

articulated scenario occurs are shown.

Briefly, in the luckiest case, the service descriptors match when the num-

ber of their input parameter is the same, each of them has the same name

and their datatype semantically match. In addition, the datatype of the re-

quest’s output must semantically match with the service output datatype.

On the other hand, during the most articulated scenario the matching oc-

curs between a simple service descriptor and a composed one. Note that

here it is supposed that the system is able to provide a correct composed

service. Within this scenario, the matching relation holds only when there

is a composed service whose input parameters set semantically match with

the requested ones. It is exploited the
x∼ operator in order to compute the

matching among the required output and the output of the composed service.

2.2 Operational semantics 27

The
x∼ operator

During the matching computation, the
x∼ is exploited in order to compute

the semantic matching among the output parameters. In particular, it is used

to explore the composed service syntax chain and compute the matching

among the requested output and the output of the composed service. As the

“∼” operator, it is defined as a relation between two service descriptors.

x∼ ⊆ L(SD)× L(SD)

where

x ∈ L(O)

As already mentioned the operator is used to test if the output of the com-

posed service semantically matches with the requested output. It navigates

the description of the composed service and test the aforesaid condition.

service(i1 . . . in, o)
x∼ service(i′1 . . . i

′
n, x

′)⇔ n ≥ 0 ∧ ij ∼ i′j ∀j = 1 . . . n ∧

x ∼ x′

SD
x∼ SD′

N
argof SD′′ ⇔ ∃SD′′′ : SD′′′ x∼ SD′′

The execute function

Function execute is as a partial function, thus does not provide an answer

for every possible input value that can be given. The execution of the function

aims to the fulfillment of a call request. Supposing there is an available

service that is able to fulfill a call request, this function is actually the subject

in charge of performing the computation, fulfilling the request and providing

an output value.

In the following lines are shown respectively the definition and the semantic

of the function.

execute : L(S)× L(Req)→ L(V)

28 2. Formal model

The function accepts as input a set that is the Cartesian product between

two elements, respectively belonging to the languages generated by the pro-

duction set S and Req. As output, an element that belongs to the language

generated by the production set V is provided.

execute(serve(SD), call(C)) =

res(V) if typeof(C) ∼ SD ∧ SD = service(I, O)

∅ otherwise

According to the above semantic, this partial function exists, and it is

able to provide an acceptable result, only when the first input matches with

serve(SD) and the second with call(C). For all the other inputs the func-

tion is not defined, therefore not able to provide any result. Recursion is

exploited to fulfill a request that can only be fulfilled by a composed service.

The prove function

Function prove is defined to perform the evaluation of an exploration

query query(Q). By means of using it, it is possible to evaluate whether a

query(Q) can be fulfilled or not.

prove : L(Req)× L(SD)→ L(Const)

Function’s semantic is defined as follows:

prove(query(Q), SD) =

> if service(Q) ∼ SD

⊥ otherwise

It only computes when the input is an exploration query query(Q). The

result expresses the capability of the system to fulfill or not the given request

at that time. Note that the evaluation of the query is related to the state of

the system at the time it occurs.

The fringe function

Function fringe is in charge of computing the fringe of a service descriptor.

The fringe of a service descriptor SD is defined as the set whose elements are

2.2 Operational semantics 29

the inputs of SD.

fringe : L(SD)→ L(I)

The function is exploited in the service composition phase. During the latter,

the fringe evaluation is necessary to reason about the composability of two

services. In brief, a service S1 can be composed with a service S2 if and only

S1’s output semantically matches with an element that is contained in the

fringe of S2.

fringe(SD) =



{i1 . . . in} if SD = service(I, O) ∧

I = (i1 . . . in)

fringe(SD′) ∪ fringe(SD′′)− {N : O} if SD = SD′
N

argof SD′′ ∧

SD′ = service(I, O)

The function performs a recursive computation. If the given input is a

simple service descriptor, then the output is the set of its inputs. Instead, in

case in which the given input is a composed service, the output is computed

as the set that is the union of the fringes of the two services and from which

it is removed the parameter on which the services composed.

The compose function

Self-composition of services is highly promoted within the system. Func-

tion compose encloses the composition policies and designs the bonding, cre-

ating a network of virtual services starting from the existing ones. It takes

two service descriptors as input and provides a new service descriptor that

is the composition of them.

compose : L(SD)× L(SD)→ L(SD)

As previously mentioned, the “compose” phase exploits the fringe function

to compute the feasibility of the composition. When the composition is

performed a new service descriptor is provided.

30 2. Formal model

compose(SD, SD′) =


SD

N
argof SD′ if SD = service(I, O) ∧

∃(N : O) ∈ fringe(SD′)

∅ otherwise

With abuse of notation, it is used

∃(N : O) ∈ fringe(SD′)

to express that ∃ef ∈ fringe(SD′) for which the relation

O ∼ ef

holds true.

Function compose is grounded on the fringe function to perform the com-

positions. Basically, it creates a new composition among services S1 and S2

only when the output of S1 semantically matches with an element that is

member of the fringe set of S2. The new composed service will be available

on the blackboard, represented by a composed service descriptor of the form

SD1

N
argof SD2

with SD1 and SD2 defined as the service descriptors of S1 and S2 respectively.

The compositions function

As already mentioned within the blackboard a decay process is always

ongoing, removing service descriptors considered obsoletes. However, there

exists also a compose process that is trying to compose services whenever it is

possible. The coexistence of the processes might lead the blackboard to have

an inconsistent state. In fact, if a process is decaying, all the composition it

is involved in should decay and consequently removed from the blackboard.

Function compositions aims to identify all the composition in which a service

2.2 Operational semantics 31

descriptor SD is involved.

compositions : L(B)× L(SD)→ L(SD)

compositions(B, SD) =


SD′ if SD′ = . . . SD . . . ∧

SD = service(I, O)

∅ otherwise

where the notation

SD′ = . . . SD . . .

stands for

exists at least a SD′, either simple or composed, in which SD is contained

32 2. Formal model

Chapter 3

Prototype

Within this chapter a basic prototype that only includes the core func-

tionalities of the model is given. It has been developed using a Java-based

light-weight Prolog implementation, namely tuProlog [18], TuCSoN [43, 46]

and the ReSpecTX [12] language, built upon ReSpecT [44].

3.1 Service agents

As largely mentioned a service agent is an active entity that provides

services in the system. It exploits the blackboard as coordination medium,

publishing its services on it and consuming request messages in order to fulfill

them.

Provided services’ description is required to be meaningful for machines,

therefore, a semantic definition should be provided. A semantic definition

could be made by describing the service’s functional aspects in terms of on-

tology’s concepts. In fact, by means of using the concepts defined in an

ontology it is possible to create a machine-readable representation and lever-

age it in order to perform semantic reasoning computations. However, since

the ontologies are domain specific, finding which one (or ones) better fits to

the cause is necessary. In case an ontology with exploitable concepts does

not exist yet, an ad-hoc one must be coined.

33

34 3. Prototype

3.1.1 Semantic definition

A service must be semantically defined, providing a machine-readable de-

scription of itself. In this case, a functional description such as input/output

parameters is enough to be used within the model. Recalling the defined

syntax, the term in which machine-readable data are stored is the service

descriptor SD.

Figure 3.1: OWL-S Subontologies [36]

Regarding the description of a service using an ontology, it is exploited

the OWL-S ontology (see figure 3.1. It defines an ontology wherewith is

possible to semantically define a service, in all respects. To the aim of this

work only the sub-ontology ServiceProfile is considered. However, further

works shall not exclude the usage of the ServiceModel, since it is helpful to

express behavioral aspects of the service that may lead to new reasoning

processes and even more reliable service compositions. In the figure 3.2 it is

shown in more detail the sub-ontology ServiceProfile.

A service is therefore defined in terms of its functional aspects by using

the OWL-S ontology, as shown in the listing 3.1.

3.1 Service agents 35

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.daml.org/

services/owl-s/1.2/Profile.owl#hasInput"/>

<owl:someValuesFrom rdf:resource="http://localhost/Book

"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.daml.org/

services/owl-s/1.2/Profile.owl#hasInput"/>

<owl:someValuesFrom rdf:resource="http://localhost/

Writer"/>

</owl:Restriction>

</rdf:type>

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.daml.org/

services/owl-s/1.2/Profile.owl#hasOutput"/>

<owl:someValuesFrom rdf:resource="http://localhost/ISBN

"/>

</owl:Restriction>

</rdf:type>

Listing 3.1: Semantic description of a service

36 3. Prototype

Figure 3.2: Top-level structure of the OWL-S profile [38]

3.1.2 From semantic to logic

The coordination model is grounded on logic-based computation. Due

to this choice it is necessary to perform a conversion process, that provides

a representation in the tuProlog syntax of the semantically defined service.

However, within the prototype the component that performs the required

conversion is missing. It is just assumed that a component with such capa-

bilities exists and provides a representation as the one showed by listing 3.2.

Briefly, agent name corresponds to the identifier of the service (that is meant

to be unique within the system), input to the accepted inputs and output

to the provided output. Parameters names are chosen by the component in a

functional manner. It can be observed that the logic representation is almost

equivalent to the syntax defined by the model for a service descriptor SD.

The latter may indeed defined as a composition of the input and output.

Note that the predicate id gen(-Id) provides a universal id based on the

3.2 User agents 37

init :- agent_name(N),

node_address(A),

node_port(P),

acquire_acc(N, A, P),

publish_sd,

service_loop.

service_loop :- input(A),

output(O),

in(serve(call(Id, A, O))),

execute(call(Id, A, O), V),

out(res(Id, V)),

service_loop.

agent_name(Id) :- id_gen(Id).

input([(title, book, T), (writer, writer, W)]).

output(isbn).

Listing 3.2: Logic description of a service agent

current timestamp.

3.2 User agents

It is expected that the user agents encapsulate within the request mes-

sages the metadata, namely semantic annotations, regarding the parameters.

As defined in the previous chapter the requests are categorized in two classes:

query and call. Note that by using a logic programming language, such as

Prolog, the syntax defined in the formal model is almost directly usable

within the implementation’s code (as shown in listing 3.4).

A logic description of the user agent is shown in listing 3.3. As already

mentioned the predicate id gen(-Id) provides a universal id based on the

current timestamp.

38 3. Prototype

init :- agent_name(N),

node_address(A),

node_port(P),

acquire_acc(N, A, P),

agent_name(Id) :- id_gen(Id).

Listing 3.3: Logic description of a user agent

% query(+Id, +Input, +Output)

input([(name, city)]).

output(kelvin).

% call(+Id, +Params, +Output)

parameters([(name, city, "Cesena")]).

output(kelvin).

Listing 3.4: Example of a query and call request using a logic description

3.3 Blackboard

The entity in charge of providing a coordination medium to the system

is the blackboard B. It is also in charge of supporting the matching phase

between a request and the available services and promoting self-composition

among them. It is thus convenient to develop the blackboard as a tuple

center. The latter shows all the properties requires by the described black-

board. To this purpose, TuCSoN and ReSpecTX are exploited, providing an

engineered tuple space in which the core operations defined by the model are

contained and accordingly triggered.

Moreover, the blackboard acts as container for the knowledge base regarding

the ontologies. Since the computation grounds on the semantic reasoning

among the concepts and it is performed using a logic approach, a logic rep-

resentation of the ontology is required. Semantic reasoning processes are

performed within the blackboard, therefore the presence of the knowledge

allows computations to take place locally that may surely lead to more per-

forming reasoning processes.

3.3 Blackboard 39

class(thing).

class(isbn).

class(city).

class(book).

class(person).

class(writer).

subclass(writer, person).

class(distance).

class(km).

class(miles).

subclass(km, distance).

subclass(miles, distance).

class(location).

class(coordGPS).

subclass(coordGPS, location).

class(library).

Listing 3.5: Logic description of the ontology hierarchy

3.3.1 Knowledge base

The knowledge base embodies the ontology hierarchy, hence the concepts

defined by it. It aims to provide a logic representation of the hierarchy in

order to be exploited during reasoning processes. Once again, within this

prototype, the component capable of converting the hierarchy into a logic

language is not provided due to its marginal role within the work. It is then

assumed that, starting from a hierarchy such as the one shown in figure 4.6,

the component is capable of providing a representation in a logic language

such as 3.5. In [27, 34] such integration is argued. Note that in the above

listing the subclass relation among all the concepts and the class(thing)

is left out to shorten it.

40 3. Prototype

3.4 Core operations

Core operations are developed by means of tuProlog predicates, exploited

within reactions rules defined using the ReSpecTX language. For the sake of

brevity, only the signatures of the predicates are shown. Their full imple-

mentation can be found at 1.

Service descriptor and request publication

Following listings show the operations performed during the publication

phase of both a service descriptor (listing 3.6) and a call request (listing 3.7).

publish_sd :-

agent_name(Id),

input(I),

output(O),

out(service(Id, I, O)).

Listing 3.6: Operation [PUBLISH-SD]: publication of a service descriptor

publish_call :-

agent_name(Id),

parameters(A),

output(O),

id_gen(CallId),

out(call(CallId, A, O)).

Listing 3.7: Operation [PUBLISH-CALL]: publication of a call request

Prove

Operations [POS-PROVE] and [NEG-PROVE] are implemented as reaction

rules, shown in listing 3.8. It is defined the predicate prove(+SDquery) as

the one in charge of computing the prove of the given exploration query.

It exploits two more predicates, prove(+SDquery, +SimpleService) and

1https://bitbucket.org/ashleycaselli/lbc-semantic-self-composition

https://bitbucket.org/ashleycaselli/lbc-semantic-self-composition

3.4 Core operations 41

reaction to out query(Id, I, O) : completion, from_agent {

in(query(Id, I, O)),

if prove(service(Id, I, O)) then {

out(res(Id, true))

} else {

out(res(Id, false))

}

}

Listing 3.8: Operations [POS-PROVE] and [NEG-PROVE] implemented in
ReSpecTX

prove(+SDquery, +ComposedService), that accept a second parameter whom

represents a service descriptor, respectively simple and composed. The result

of the computation is provided as a tuple in the form of res(Id, Const),

with Const defined as a boolean value.

Serve

Within this section the reaction rules involved in the serve of a call request

are shown. It is here assumed that by the time a request call reaches the

tuple center, all the possible compositions among services have already been

computed, hence using a dynamic deployment time approach for the service

composition.

The listing 3.9 shows the implementation of the reaction rule that em-

bodies the operations [SERVE-CALL] and [IN-CALL]. Consequently, in case

the call request cannot be fulfilled by a simple service, the actual call is

redesigned using the in call syntax as new call request message. The han-

dling of the calls is then performed through the [SERVE-IN-CALL] operation,

shown in listing 3.10. The latter is triggered each time a in call message

reaches the tuple center and the service in charge of executing the actual

call is not the last one in the composition chain, i.e. it is the header. The

result of the service execution will be then modeled as a new parameter for

the next in call message, by means of the predicate input set(+I, +Res,

-NewSet), and attached to the it.

42 3. Prototype

reaction to out call(Id, A, O) : completion, from_agent {

typeof(call(Id, A, O), SDcall),

if match(SDcall, service(Sname, I2, O2)) then {

inp(call(Id, A, O)),

out(serve(Sname, call(Id, A, O)))

} else if match(SDcall, Scomp) {

inp(call(Id, A, O)),

out(in_call(call(Id, A, O), Scomp))

} else {

fail

}

}

Listing 3.9: Operations [SERVE-CALL] and [IN-CALL] implemented in
ReSpecTX

reaction to out in_call(call(Id, A, O), Scomp) : completion,

internal {

Scomp = [Sname, [argof, N]|T],

rd(in_call(call(Id, A, O), Scomp)),

out(serve(Sname, call(Id, A, O)))

}

reaction to out res(Id, V) : completion, from_agent {

inp(res(Id, V)),

Scomp = [_, [argof, _]|T].

if inp(in_call(call(Id, A, O), Scomp)) then {

input_set(A, res(V), NewSet),

out(in_call(call(Id, NewSet, O), T))

} else {

out(res(Id, V))

}

}

Listing 3.10: Operation [SERVE-IN-CALL] implemented in ReSpecTX

3.4 Core operations 43

Once the service in charge of fulfilling the call is the last one in the

composition chain, the operation [LAST-IN-CALL] is triggered and the result

res(V) of the execution is given.

reaction to out in_call(call(Id, A, O), [Sname]) : completion,

internal {

inp(in_call(InId, call(Id, A, O), [Sname])),

out(serve(Sname, call(Id, A, O)))

}

Listing 3.11: Operation [LAST-IN-CALL] implemented in ReSpecTX

Adopting a dynamic run time composition approach, the rules regarding

the [SERVE-CALL] and [IN-CALL] operations would change as follows:

reaction to out call(Id, A, O) : completion, from_agent {

typeof(call(Id, A, O), SDcall),

if match(SDcall, service(Sname, I2, O2)) then {

inp(call(Id, A, O)),

out(serve(Sname, call(Id, A, O))),

} else if match(SDcall, Scomp) {

compose(service(S3, I3, O3), service(S4, I4, O4), Scomp),

inp(call(Id, A, O)),

out(in_call(call(Id, A, O), Scomp)).

} else {

fail

}

}

Listing 3.12: Operations [SERVE-CALL], [IN-CALL] and [COMPOSE]:

dynamic composition grounded on the run time approach

Compose

Within this section the service composition is argued. Both dynamic

approaches are taken into account, namely deployment time and run time.

44 3. Prototype

The composition operation [COMPOSE], shown in the listing 3.13, performs

a dynamic composition at deployment time. The rule is therefore triggered

each time a service is published in the tuple center. This solution is not

suitable in those cases in which there exists an high number of services, since

all the possible combinations of composition must be computed.

reaction to out service(Sname, I, O) : completion, from_agent {

rd_all(service(Sname, I, O)) returns List,

length(List, N),

N > 2,

compose(service(Sname, I, O), service(Sname2, I2, O2),

SDcomp),

out(SDcomp)

}

Conversely, the run time composition approach is more flexible and scal-

able. However, it introduces delays in the execution process, since the com-

positions are searched and made only when a request is received. Since it is

executed during the serve of a call, the related code is shown in listing 3.12.

The predicate compose(+SD1, +SD2, -SD12) takes as input two service

descriptors and provides a new service descriptor that is the composition of

them. It is defined as a recursive predicate, thus is looking for all the possible

compositions. The new composed services are then stored in the tuple center,

in order to be available to the users.

Decay

Decay operation is developed as a periodic activity. The module to

achieve the periodic behavior is already provided within the ReSpecTX Stan-

dard Library 2. When each service is being published, a timestamp argument

is attached to it. The periodic routine looks for those that have been pub-

2https://bitbucket.org/gciatto/respectx-standard-library/src

https://bitbucket.org/gciatto/respectx-standard-library/src

3.4 Core operations 45

reaction to out decay(DT) {

inp(decay(DT)),

in_all(service(Id, I, O)),

current_time(T),

T - Id > DT,

decay_compositions(Sid)

}

Listing 3.14: Operation [DECAY] implemented in ReSpecTX

lished at a timestamp t where

| t− currentT ime |> ∆t (3.1)

(with ∆t properly tuned).

If there is any, it is identified as obsolete and removed from the blackboard.

The service who wish to continue providing its functionalities must perform

another publish operation. Remember that not only the target service/s will

be removed from the blackboard but also all the composed services in which

it is/they are involved will be removed.

The execution of the periodic is performed as follows: (i) the tuple center

emits the start periodic(Period, decay(DeltaT)) tuple to trigger the

periodic emission of the decay(DeltaT) tuple; (ii) the tuple represents the

activity to be performed once every Period milliseconds; (iii) the tuple cen-

ter reacts by removing the services, according to the rule shown in listing

3.1, and with thsose all the compositions in which they are involved. In

particular, the predicate current time(-T) is used to retrieve the current

time, expressed in milliseconds. Furthermore, all the composed services in

which the decaying service is involved are identified by means of the pred-

icate compositions(+Sid, -List). It provides a list that contains all the

composed services in which the service identified by Sid is involved. It is

internally exploited by the predicate decay compositions(+Sid) that is the

one in charge of actually remove all the composed services from the black-

board, i.e. tuple center.

The remainder functions and predicates used within the rules are shown

46 3. Prototype

in the following listings. For the sake of brevity only their signatures are

shown.

typeof(+Call, -SD).

Listing 3.15: Signature of the typeof function

match(+SDreq, +SDserv).

Listing 3.16: Signature of the ∼ operator

x_match(+SimpleSD, +SD, +X).

Listing 3.17: Signature of the
x∼ operator

fringe(+SD, -Fringe).

Listing 3.18: Signature of the fringe function

execute(+Call, -Res).

Listing 3.19: The execute predicate

The matchmaking is performed by means of the semantic match(?T1,

?T2, ?Dist) predicate. It is the predicate on which almost all the previous

ones are grounded. The implementation used in this prototype is shown in

the listing 3.20. It solely computes the semantic distance among two given

concepts.

3.4 Core operations 47

semantic_match(T, T1, D) :- semantic_match(T, T1, D, 0).

semantic_match(T, T, D, D2) :- exists(T), D is D2.

semantic_match(T, T1, D, D2) :- is_subclass(X, T),

D3 is D2+1,

semantic_match(X, T1, D, D3).

exists(A) :- class(A).

is_subclass(Class, Super) :- exists(Class),

exists(Super),

subclass(Class, Super).

Listing 3.20: Implementation of the semantic match predicate using tuProlog

48 3. Prototype

Chapter 4

Assessment

Within the chapter, the assessment of the model is argued. Several ex-

amples will be provided in order to prove the correctness and highlight the

usefulness and the benefits of the designed model. Since the model aims to

promote self-composition of services, examples mostly concerning the com-

position of services will be shown. Throughout the chapter holds the as-

sumption that there exists a unique blackboard B that is always reachable

by any agent connected to the node where B is situated.

In addition, it is assumed that used semantic matching relation is a predicate

that is able to compute the semantic distance between two concepts and it

is valid only when their distance d ≤ 1 (in order to ease the examples). The

relation among two concepts is therefore valid only when they are equivalent

concept or the second subsumes the first one [47].

Note that the distance parameter d is an internal configuration of the

blackboard, thus cannot be tuned by any external agent. The semantic

matching relation is defined as semantic match(t, t′) and its computational

process is abstracted away here.

4.1 A generic scenario

A generic scenario is given with the purpose of helping the reader to

acquire the necessary confidence to clearly understand the used notation.

49

50 4. Assessment

Reader that already feels confident with syntax’s reading can skip the fol-

lowing pages and go to the section 4.2.

Let S1 be a service that is represented by the service descriptor SD1.

Assume now that a [PUBLISH-SD] operation occurs, with B = ∅. Right

after the execution the blackboard’s state is changed to:

B = {SD1}

Let SD1 be defined as:

SD1 = service(param : typeA, typeB)

where typeA and typeB are datatype mapped to concepts of an existing

ontology (e.g. the one shown in the figure 4.1. S1 is thus defined as a single

service that accepts as input a typeA parameter and provides a typeB output.

Let Req be an exploration request (query) defined as follows:

Req = query(Q) = query(param : typeA, typeB)

Assume now that a user agent forwards the latter request to the system. In

this case, the [POS-PROVE] operation will be triggered because the following

relation is positively evaluated.

service(param : typeA, typeB)︸ ︷︷ ︸
service(Q)

∼ service(param : typeA, typeB)︸ ︷︷ ︸
SD1

Briefly, the relation holds true because:

• the number of the parameters is equivalent; and

• the semantic relation semantic match holds true by definition on both

their input and output datatype (since they present the same datatype)

Suppose now that a hierarchy of datatype is defined as in figure 4.1. Let Req

be an exploration request defined as follows:

Req = query(param : typeC, typeB)

4.2 Basic scenario 51

TypeA TypeB

TypeC TypeD TypeE

Thing

Figure 4.1: Generic datatype hierarchy

The relation

service(param : typeC, typeB)︸ ︷︷ ︸
service(Q)

∼ service(param : typeA, typeB)︸ ︷︷ ︸
SD1

will be once again positively evaluated because:

• the number of input parameters is equivalent

• semantic match(typeB, typeB) holds true by definition

• semantic match(typeA, typeC) holds true because typeA is the parent

node of typeC, with distance d = 1

Therefore, the user request will positively evaluated by proving that the

system holds the required capabilities to fulfill such a query. In particular,

that the service capable to perform it is represented by the service descriptor

SD1.

4.2 Basic scenario

A practical example is shown to prove the correctness of the generic one.

It exploits the hierarchy defined in figure 4.2 for the datatype definition.

52 4. Assessment

Weather service

Imagine a user would like to know if exists a basic weather service, within

the system, that given a city as input provides its current temperature. Since

the user does not care about the unit of measure the temperature will be

given, they do not provide any specification about it. The system is equipped

with a service that is able to provide a temperature, measured in Celsius de-

grees in a given city. Intuitively, the request of the user may be fulfilled by

the service even tough they offer different outputs.

Let define the service S1 by means of the following service descriptor:

SD1 = service(name : City, Celsius)

It is here assumed that S1 has already been published on the blackboard B,

thus:

B = B′ ∪ {SD1}

where B′ represents the state of the blackboard B just before the publication

of the service descriptor SD1.

Let Req be a user exploration request, defined as follows:

Req = query(name : City, Temperature)

By the time the request is sent, the prove computation will be triggered. The

computational process will seek for a service descriptor SDx, within B, for

which the relation

service(name : City, Temperature) ∼ SDx

holds true.

In this case, the relation holds true when SDx ≡ SD1 because:

• the number of input parameters is equivalent

• semantic match(City, City) holds true by definition

4.3 Composition scenario 53

Celsius Kelvin

Temperature City

Thing

Figure 4.2: Weather datatype hierarchy

• semantic match(Temperature, Celsius) holds true because the first

term is the parent of the second one, with distance d = 1

Therefore the user’s request will be positively evaluated, proving that the

system is able to fulfill the given query. Indeed, if the user’s request had

been a call request with actual values as inputs, e.g.

call(name : City(Cesena), T emperature)

the system would have been able to fulfill it, exploiting the service S1 since

the following relation holds true.

typeof(call(name : City(Cesena), T emperature)) ∼ SD1

4.3 Composition scenario

In this section examples concerning the self-composition of services are

provided. In order to ease the reader’s reading and the examples presentation

and explanation, the user’s requests are always provided in the form of an

exploration query.

54 4. Assessment

4.3.1 Single-input services

Weather service

Following example is grounded on the previous weather service example

(presented in the section 4.2).

Consider a user would like to know if there exists within the system a service

that is able to provide the current temperature, expressed in Kelvin degrees,

of a given city. The user request Req can be formally defined as:

Req = query(name : City,Kelvin)

The system is currently equipped with services S1 and S2 (see figure 4.3). If

S1
City Celsius

S2
Celsius Kelvin

Figure 4.3: Weather single services

taken singularly, they are not able to wholly fulfill the request Req.

They are described by means of the following service descriptors:

SD1 = service(name : City, Celsius)

SD2 = service(temp : Celsius,Kelvin)

Blackboard B state is thereby:

B = B′ ∪ {SD1, SD2}

The blackboard notices that there are two services that might be composed in

order to provide a new service with more functionalities. Since the following

4.3 Composition scenario 55

preconditions are valid:

SD1 = service(name : City, Celsius) is simple ∧

fringe(SD2) = {temp : Celsius} ∧

∃(temp : Celsius) ∈ fringe(SD2)

a [COMPOSE] operation will be triggered. Accordingly, the blackboard’s state

will be enriched with the new composed service descriptor SD12 that repre-

sents the virtual composed service S12 (see figure 4.4).

B = B′ ∪ {SD1, SD2, SD12}

with

SD12 = SD1

temp

argof SD2 =

service(name : City, Celsius)
temp

argof service(temp : Celsius,Kelvin)

The system capabilities have just been enhanced by creating a bonding

S12

S1
City Celsius S2

Kelvin

S12
City Kelvin

Figure 4.4: Weather services composed

among the available services S1 and S2.

By the time the request Req (previously defined) is sent, a prove computation

56 4. Assessment

will be triggered. Since there is no simple service which makes the relation

service(name : City,Kelvin) ∼ SDx

to be valid, the matchable SDx has to be sought among the composed ser-

vices. Computational steps of the “∼” operator follow:

service(name : City,Kelvin) ∼
SD1︷ ︸︸ ︷

service(name : City, Celsius)
N

argof SDy

m

n = 1 ≥ m = 1 ∧

I = {name : City} ∧

I ′ = {name : City} ∧

I ′′ = I ′ ∩ I ∧

I ≡ I ′ ≡ I ′′ ∧

∃o′′service(N : Celsius, o′′)
Kelvin∼ SDy

service(N : Celsius, o′′)
Kelvin∼

SDy︷ ︸︸ ︷
service(i1 . . . in, Kelvin)

≡

service(N : Celsius,Kelvin)
Kelvin∼ service(temp : Celsius,Kelvin)︸ ︷︷ ︸

SDy

m

Celsius ∼ Celsius ∧Kelvin ∼ Kelvin

Computational steps prove that exists a service, denoted as SDy, that sat-

isfies the relation. In this case, it can also be observed that SDy = SD2,

thereby the user’s request may be fulfilled. In fact, it is proved that it is

exactly the composition of S1 and S2 that produces a new service S12 that

owns the needed capabilities to fulfill the request.

4.3 Composition scenario 57

4.3.2 Multi-input services

In the following scenario it is shown how the composition process among

multi-input services occurs. However, single input services are also involved

in the composition process to facilitate the formal proving. The composition

process will lead to the creation of new services that might be exploited to

fulfill a user agent request. To this purpose, it is shown how a composed

service is selected by the blackboard as the one in charge of fulfilling a user

request.

Book seeking

Scenario involves a user agent that would like to know if there is a library

in a given radius far away from a city in which a specified book is available.

User’s request Req is defined as:

Req = query(title : Book, name : Person,

city : City, radius : Distance, Library)

Let the blackboard B be:

B = B′ ∪ {SD1, SD2, SD3}

where SD1, SD2 and SD3 describe three services, respectively S1, S2 and S3

(see figure 4.5). Service descriptors’ definition is the following:

SD1 = service(title : Book, writer : Writer, ISBN)

SD2 = service(name : City, CoordGPS)

SD3 = service(code : ISBN, location : CoordGPS, distance : Km,Library)

The aforementioned services exploit the concepts hierarchy shown in figure

4.6 to express their input/output datatype.

In this case, a [COMPOSE] operation is triggered, trying to compose the

services previously described. In fact, it can be seen from the figure 4.5 that

they share parameters on which a composition may occur. The composition

58 4. Assessment

Writer

ISBNS1

Book

CoordGPS S3

ISBN

CoordGPSCity
S2

Km

Library

Figure 4.5: Book seeking services

Person

Writer

BookISBN City

Km

Distance

Library

Location

CoordGPS

Miles

Thing

Figure 4.6: Book seeking datatype

process will end creating a new composed service, namely S123, through the

following computational steps:

SD2 = service(city : City, CoordGPS) is simple ∧

fringe(SD3) = {code : ISBN, location : CoordGPS, distance : Km} ∧

∃(location : CoordGPS) ∈ fringe(SD3)

⇓

4.3 Composition scenario 59

SD23 = SD2

location
argof SD3

SD1 = service(title : Book, writer : Writer, ISBN) is simple ∧

fringe(SD23) = {city : City, code : ISBN, distance : Km) ∧

∃(code : ISBN) ∈ fringe(SD23)

⇓

SD123 = SD1

code
argof SD2

location
argof SD3

A graphical representation of the composed service S123 is shown in figure

4.7. At the end of the [COMPOSE] operation computation, the blackboard

will be enriched with the new composed service descriptor SD123, becoming:

B = B′ ∪ {SD1, SD2, SD3, SD123}

S123

Writer
S1

Book

S3

ISBN

CoordGPS

City
S2 Km

Km

Library

Figure 4.7: Book seeking service composition

It is here assumed that by the time the request Req is sent, the composed

service S123 is already existing within the blackboard B. Due to this, a prove

process will be immediately started, proving that the new composed service

60 4. Assessment

SD123 is the proper candidate to fulfill the request by the following steps:

Q = title : Book, name : Person, city : City,

radius : Distance, Library

service(Q) ∼ SDx

service(Q) ∼ service(title : Book, writer : Writer, ISBN)
N

argof SDy

m

n = 4 ≥ m = 2 ∧

I = {title : Book, name : Person, city : City, radius : Distance} ∧

I ′ = {title : Book, writer : Writer} ∧

I ′′ = I ′ ∩ I ∧

I − I ′′ 6= I ′′′ ∧

I ′′′ = {city : City, radius : Distance} ∧

i0 = code : ISBN ∧

∃o′′service(city : City, radius : Distance, code : ISBN, o′′)
Library∼ SDy

service(city : City, radius : Distance,

code : ISBN, o′′)
Library∼ SD′

N
argof SD′′

m

service(city : City, radius : Distance, code : ISBN, o′′)︸ ︷︷ ︸
SDz

Library∼ SD23

According to the defined rules, it can be observed that the service descriptor

4.3 Composition scenario 61

that makes the relation to be true is

SDy = SD23

since

• the service descriptor SD23 of composite service S23 has the same num-

ber of the parameters of SDz, and

• for each input/output the semantic match relation holds true

Conclusions

In this dissertation a semantic approach to self-composition of services

situated in a multi-agent systems (MAS) environment has been provided.

The approach presents a new coordination model grounded on logic-based

coordination ones, which promotes and supports self-composition of services.

The model has been conveyed using a formal approach, exploiting the ex-

tended Backus-Naur form (EBNF) notation for its syntax and a labeled tran-

sition system (LTS) for the operational semantics. A prototype containing

the core operations has also been implemented using tuProlog, a Java-based

lightweight implementation of Prolog, TuCSoN and the ReSpecTX language.

The work presented in this dissertation has a strong relation to the field

of automatic service composition [4, 41, 29]. While approaches to automatic

composition are mostly syntactic, other techniques have been devised to deal

with semantics [33] and dynamic scenarios such as pervasive systems [31].

Future developments might be performed in many directions. Regarding

the model, it may be extended in order to support the description of the

services under several aspects, such as non-functional and behavioral. The

latter would be an high valuable asset for the matchmaking process, leading

it to the creation of more accurate matches. The composition process will

also be able to reason about service’s behaviors defined in a formal fashion,

therefore leading to more reliable compositions. Further works might lead

towards the adoption of NLP techniques to automatically annotate the user’s

requests with ontologies [50], thus not requiring the user to be in possess of

the semantic knowledge to be attached to the request. Moreover, within the

model there is a lack of primitives wherewith manage quality of service (QoS)

aspects, especially concerning the matchmaking policies.

63

64 CONCLUSIONS

Future works might also involve the coordination among multiple black-

board and/or nodes, the merging of the different knowledge bases (KB) us-

ing semantic matching approaches (such as [23, 24, 25]) in order to support

cross-domain ontologies and adopting alternative algorithms to improve the

computation on which the service composition processes rely (i.e. [51]).

Bibliography

[1] A. Abuarafah, H. Mohammed, and O. Khozium. Agent Vs Object with

an in-depth insight to Multi-Agent Systems. International Journal of

Engineering Science, vol.4, 2013.

[2] G. Antoniou and F. VanHarmelen. A Semantic Web Primer. MIT Press,

Cambridge, MA, USA, 2004.

[3] B. Benatallah, M. Dumas, M.-C. Fauvet, and F. A. Rabhi. Towards

Patterns of Web Services Composition, pages 265–296. Springer London,

London, 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella.

Automatic Composition of Transition-based Semantic Web Services with

Messaging. In Proceedings of the 31st International Conference on Very

Large Data Bases, VLDB ’05, pages 613–624. VLDB Endowment, 2005.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, may 2001.

[6] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,

and D. Orchard. Web Services Architecture. World Wide Web Consor-

tium, Note NOTE-ws-arch-20040211, 2004.

[7] R. Calegari, E. Denti, S. Mariani, and A. Omicini. Logic Programming

as a Service. Theory and Practice of Logic Programming, 18(5-6):846–

873, jun 2018.

65

66 BIBLIOGRAPHY

[8] Y. Charif and N. Sabouret. An Overview of Semantic Web Services Com-

position Approaches. Electronic Notes in Theoretical Computer Science,

146(1):33–41, jan 2006.

[9] P. Ciancarini. Distributed programming with Logic Tuple Spaces. New

Generation Computing, 12(3):251–283, jun 1994.

[10] P. Ciancarini. Coordination Models and Languages as Software Integra-

tors. ACM Computing Surveys, 28(2):300–302, jun 1996.

[11] P. Ciancarini, A. Omicini, and F. Zambonelli. Multiagent System En-

gineering: the Coordination Viewpoint. In Intelligent Agents VI. Agent

Theories, Architectures, and Languages, pages 250–259, 2000.

[12] G. Ciatto, S. Mariani, and A. Omicini. Programming the Interaction

Space Effectively with $$\texttt {ReSpecT}\mathbb {X}$$, pages 89–

101. Springer International Publishing, Cham, 2018.

[13] G. David and C. Naicholas. Coordination languages and their signifi-

cance. Communications of the ACM, 35(2):97 – 107, feb 1992.

[14] F. L. De Angelis and G. Di Marzo Serugendo. Logic fragments: Coordi-

nating entities with logic programs. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9952 LNCS:589–604, 2016.

[15] F. L. De Angelis, G. Di Marzo Serugendo, D. Buchs, M. Massink, and

A. Omicini. Centre Universitaire d’Informatique Doctoral Program in

Information Systems A Logic-Based Coordination Middleware for Self-

Organising Systems: distributed reasoning based on many-valued logics.

PhD thesis.

[16] F. L. De Angelis, J. L. Fernandez-Marquez, and G. Di Marzo Serugendo.

Self-composition of Services in Pervasive Systems: A Chemical-Inspired

Approach. In G. Jezic, M. Kusek, I. Lovrek, R. J. Howlett, and L. C.

Jain, editors, Agent and Multi-Agent Systems: Technologies and Appli-

cations, pages 37–46, Cham, 2014. Springer International Publishing.

BIBLIOGRAPHY 67

[17] E. Denti, A. Natali, A. Omicini, and M. Venuti. Logic Tuple Spaces

for the Coordination of Heterogenous Agents, pages 235–248. Springer

Netherlands, Dordrecht, 1996.

[18] E. Denti, A. Omicini, and A. Ricci. tuProlog: A Light-Weight Prolog

for Internet Applications and Infrastructures. In Practical Aspects of

Declarative Languages. 3rd International Symposium (PADL 2001), Las

Vegas, Nevada, March 11–12, 2001 Proceedings, volume 1990, pages

184–198. Springer-Verlag, 2001.

[19] G. Di Marzo Serugendo, N. Abdennadher, H. Ben Mahfoudh, F. L. De

Angelis, and R. Tomaylla. Spatial edge services. In 2017 Global Internet

of Things Summit (GIoTS), pages 1–6. IEEE, jun 2017.

[20] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III:

A platform and infrastructure for creating WSMO-based semantic web

services. 2004.

[21] D. Fensel and C. Bussler. The Web Service Modeling Framework

WSMF. Electronic Commerce Research and Applications, 1(2):113–137,

jun 2002.

[22] D. Gelernter. Generative communication in Linda. ACM Transactions

on Programming Languages and Systems, 7(1):80–112, jan 1985.

[23] F. Giunchiglia and P. Shvaiko. Semantic matching. Knowledge Engi-

neering Review, 18(3):265–280, 2003.

[24] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic Schema Match-

ing. In R. Meersman and Z. Tari, editors, On the Move to Meaningful

Internet Systems 2005: CoopIS, DOA, and ODBASE, pages 347–365,

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[25] F. Giunchiglia, M. Yatskevich, and P. Shvaiko. Semantic Matching:

Algorithms and Implementation. In S. Spaccapietra, P. Atzeni, F. Fages,

M.-S. Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J. Trujillo,

68 BIBLIOGRAPHY

and I. Zaihrayeu, editors, Journal on Data Semantics IX, pages 1–38,

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[26] D. Greenwood and M. Calisti. Engineering web service - agent inte-

gration. In 2004 IEEE International Conference on Systems, Man and

Cybernetics (IEEE Cat. No.04CH37583), volume 2, pages 1918–1925.

IEEE, 2004.

[27] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-

grams. In Proceedings of the twelfth international conference on World

Wide Web - WWW ’03, page 48, New York, New York, USA, 2003.

ACM Press.

[28] F. Hakimpour, T. Payne, L. Cabral, J. Domingue, and E. Motta. Ap-

proaches to Semantic Web Services: an Overview and Comparisons.

pages 225–239. 2010.

[29] S. Hu, V. Muthusamy, G. Li, and H.-A. Jacobsen. Distributed automatic

service composition in large-scale systems. In Proceedings of the second

international conference on Distributed event-based systems - DEBS ’08,

page 233, New York, New York, USA, 2008. ACM Press.

[30] D. Isern, D. Sánchez, and A. Moreno. Organizational structures sup-

ported by agent-oriented methodologies. Journal of Systems and Soft-

ware, 84(2):169–184, feb 2011.

[31] S. Kalasapur, M. Kumar, and B. A. Shirazi. Dynamic Service Com-

position in Pervasive Computing. IEEE Transactions on Parallel and

Distributed Systems, 18(7):907–918, jul 2007.

[32] M. Ketel. Integration of Software Agent Technologies and Web Services.

2, 2009.

[33] S. Kona, A. Bansal, and G. Gupta. Automatic Composition of Seman-

ticWeb Services. In IEEE International Conference on Web Services

(ICWS 2007), pages 150–158. IEEE, jul 2007.

BIBLIOGRAPHY 69

[34] L. Laera, V. Tamma, T. Bench-Capon, and G. Semeraro. SweetProlog:

A System to Integrate Ontologies and Rules. In G. Antoniou and H. Bo-

ley, editors, Rules and Rule Markup Languages for the Semantic Web,

pages 188–193, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[35] A. L. Lemos, F. Daniel, and B. Benatallah. Web Service Composition: A

Survey of Techniques and Tools. ACM Computing Surveys, 48(3):1–41,

dec 2015.

[36] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcil-

raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-

vasan, and K. Sycara. OWL-S: Semantic markup for Web services. W3C

Memb. Submiss., 22, 2004.

[37] D. Martin, M. Burstein, O. Lassila, M. Paolucci, T. Payne, and S. Mcil-

raith. Describing web services using OWL-S and WSDL. 2003.

[38] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci,

K. Sycara, D. L. McGuinness, E. Sirin, and N. Srinivasan. Bringing Se-

mantics to Web Services with OWL-S. In World Wide Web, volume 10,

pages 243–277, aug 2007.

[39] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, and D. Bringing

Semantics to Web Services: The OWL-S Approach. First International,

3387:26 – 42, 2004.

[40] S. McIlraith, T. Son, and Honglei Zeng. Semantic Web services. IEEE

Intelligent Systems, 16(2):46–53, mar 2001.

[41] N. Milanovic and M. Malek. Current solutions for Web service compo-

sition. IEEE Internet Computing, 8(6):51–59, nov 2004.

[42] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS–II: A Frame-

work and Infrastructure for Semantic Web Services. In D. Fensel,

K. Sycara, and J. Mylopoulos, editors, The Semantic Web - ISWC 2003,

pages 306–318, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

70 BIBLIOGRAPHY

[43] A. Omicini. On the semantics of tuple-based coordination models. In

Proceedings of the 1999 ACM symposium on Applied computing - SAC

’99, pages 175–182, New York, New York, USA, 1999. ACM Press.

[44] A. Omicini. Formal ReSpecT in the A&A Perspective. Electronic Notes

in Theoretical Computer Science, 175(2):97–117, jun 2007.

[45] A. Omicini and E. Denti. From tuple spaces to tuple centres. Science

of Computer Programming, 41(3):277–294, nov 2001.

[46] A. Omicini and F. Zambonelli. Tuple Centres for the Coordination

of Internet Agents. In 1999 ACM Symposium on Applied Computing

(SAC’99), pages 183–190, New York, New York, USA, 1999. ACM Press.

[47] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic

Matching of Web Services Capabilities. In Proceedings of the First In-

ternational Semantic Web Conference on The Semantic Web, ISWC ’02,

pages 333–347, Berlin, Heidelberg, 2002. Springer-Verlag.

[48] G. A. Papadopoulos and F. Arbab. Coordination Models and Languages.

Advances in Computers, 46(C):329–400, 1998.

[49] L. Ribeiro, J. Barata, and A. Colombo. MAS and SOA: A Case Study

Exploring Principles and Technologies to Support Self-Properties in As-

sembly Systems. In 2008 Second IEEE International Conference on

Self-Adaptive and Self-Organizing Systems Workshops, pages 192–197.

IEEE, oct 2008.

[50] J. Saias and P. Quaresma. A methodology to create legal ontologies in

a logic programming information retrieval system. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics), volume 3369 LNAI, pages

185–200, 2005.

[51] G. Shu, O. F. Rana, N. J. Avis, and C. Dingfang. Ontology-based

semantic matchmaking approach. Advances in Engineering Software,

38(1):59–67, jan 2007.

BIBLIOGRAPHY 71

[52] M. ter Beek, A. Bucchiarone, and S. Gnesi. Formal methods for service

composition. Annals of Mathematics, Computing & Teleinformatics,

1:1–10, 2007.

[53] M. Viroli and M. Casadei. Chemical-inspired self-composition of com-

peting services. In Proceedings of the 2010 ACM Symposium on Applied

Computing - SAC ’10, SAC ’10, page 2029, New York, New York, USA,

2010. ACM Press.

Acknowledgments

This thesis is the result of a joint project between the University of

Bologna (Italy) and the University of Geneva (Switzerland), where I spent

three months as a visiting researcher.

Firstly, I would like to express my sincere gratitude to Andrea Omicini,

who supervised me in the past six months, and to Giovanni Ciatto, for his

continuous support while working on the dissertation. Special thanks to

Giovanna Di Marzo Serugendo, who supervised me during the time I spent

at the University of Geneva, and to all the people I have met there that

helped me and contributed to this dissertation.

Besides, I would like to thank my fellow students for the time we have

spent together in these years.

I am deeply grateful to my family, especially to my parents and siblings,

for supporting me throughout my life.

