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Introduction 

Introduction 

This thesis is an attempt to illustrate the distribution of micro hydro-power by means of 

investigations of many case studies. It introduces turbines type and design formulation, stage 

design of centrifugal pumps and quantification of uncertainties. Subsequently, the State-of-the-Art 

researches followed by theoretical, experimental and numerical analysis, have been carried out. 

Profound challenges concerning Pump working as Turbine (PAT), will be presented. The thesis 

tries to cover a variety of settings concerning PAT, such as design and locating, selection of a PAT, 

performance prediction and environmental impacts. It suggests new areas for further research to 

be developed.  

The most consequential challenge in micro hydro-power is the selection of an appropriate PAT. It 

has been a growing area of interest for many researchers. Lack of technical information provided 

by pump manufacturers for pumps working in reverse mode, in addition to absence of a definitive 

solution to assign a pump working as turbine are of many reasons to focus on in this study. Cutting-

edge researches are going to be reported and reviewed comprehensively in order to obtain a clear 

illustration of the topic. A numerical model to anticipate the performance of PAT will be 

propounded. The main inputs of the six Pumps, which can be used in “design mode” and in 

“geometry known mode”, will be modeled. Furthermore, the loss distribution at BEP in 

percentages in design mode will be reported and forecasting of their efficiency will be predicted 

with the Williams ellipse plane. Additionally, an interview followed by the KSB (lead pump and 

turbine manufacturer based in Germany) documentation will represent an overview of market 

obstacles, marketing problems, production limitations and complications for end users. 

Pressure control is one of the most important issues when it comes to optimizing the operation of 

networks. It is important to reduce leakage volume and avoid pipeline disruption. This shows why 

using pressure control reducing valves inside the water distribution network is vital. But the 

potential energy dissipated in high pressure segments can be regenerated by means of PAT 

substituting the pressure-reducing valve, which has been broadly presented as a case study in 

Brazil to discuss the performance of single or multi-stage MHP such as PAT. Three fictitious 

networks with respect to different scenarios, which have been supported by multi-stage 

computations, will be reported as well as numerical analysis offering an objective function will be 
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proposed. A Penalty Function that is to be developed by means of further research, will be 

introduced, so that more accurate results can be obtained subsequentially.  

Doubtlessly, green energy production is the main concern of miscellaneous scientific publications. 

Global warming, acidification potential, abiotic resource depletion, human toxicity and fossil 

resource depletion, among others, are many arguments to have a review on potential harm of hydro 

power generation, and the positive performance of PAT off or on grid of water distribution 

infrastructure in the form of case studies. 
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1 Hydropower Generation in Water Supply/Distribution Systems 

1.1 Introduction 

Hydroelectric power must be one of the oldest methods of generating power. No doubt, the first 

thinker human stuck some sturdy leaves on a pole and put it in a moving stream. The water would 

spin the pole that crushed grain to make their delicious, low-fat prehistoric bran muffins. People 

have used moving water to help them in their work throughout history, and modern people make 

great use of moving water to produce electricity [173]. 

1.2 Hydroelectric Power 

Hydro-electric power, using the potential energy of rivers, now supplies 17.5% of the world's 

electricity (2.1% in Africa, 1.7% in Middle east & North Africa, 13.2% in Latin America & The 

Caribbean, 16.1% in North America, 24.4% in Europe, 6% in South & central Asia, 31.6% East 

Asia and 4.8% South East Asia & Pacific) [174]. Apart from a few countries with an abundance 

of it, hydro capacity is normally applied to peak-load demand, because it is so readily stopped and 

started. It is not a major option for the future in the developed countries because most major sites 

in these countries having potential for harnessing gravity in this way are either being exploited 

already or are unavailable for other reasons such as environmental considerations. Until 2030, 

growth is expected mostly in China and Latin America [175]. 

Hydro energy is available in many forms, potential energy from high heads of water retained in 

dams, kinetic energy from current flow in rivers and tidal barrages, and kinetic energy also from 

the movement of waves on relatively static water masses. Many ingenious ways have been 

developed for harnessing this energy but most involve directing the water flow through a turbine 

to generate electricity. Those that don't usually involve using the movement of the water to drive 

some other form of hydraulic or pneumatic mechanism to perform the same task [175]. 



Hydropower Generation in Water Supply/Distribution Systems 

 

 

Figure 1-1 Hydro Electric Power Generation[175] 

1.3 Water Turbines 

Like steam turbines, water turbines may depend on the impulse of the working fluid on the turbine 

blades or the reaction between the working fluid and the blades to turn the turbine shaft which in 

turn drives the generator. Several different families of turbines have been developed to optimize 

performance for particular water supply conditions. In general, the turbine converts the kinetic 

energy of the working fluid, in this case water, into rotational motion of the turbine shaft [175]. 

 

Swiss mathematician Leonhard Euler showed in 1754 that the torque on the shaft is equal to the 

change in angular momentum of the water flow as it is deflected by the turbine blades and the 

power generated is equal to the torque on the shaft multiplied by the rotational speed of the shaft. 

See following diagram: Figure 1-2. 
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Figure 1-2 Euler Turbine Equation [175] 

 

This result does not depend on the turbine configuration or what happens inside the turbine. All 

that matters are the change in angular momentum of the fluid between the turbine's input and 

output[175].  

1.4 Definitions 

1.4.1 Water pressure 

"Water pressure": the force per unit area exerted by the weight of water. Each 10 meter of sea 

water exerts a pressure equivalent to one atmosphere, or 14.7 psi. 

1.4.2 Excess pressure 

High water pressure is the major cause of leaks, pipe damage, and wasted water. Symptoms of 

water pressure induced problems include leaks in multiple fixtures in the home, leaks that only 

appear intermittently - like at night, and toilets running occasionally without being used. The most 

common source of excessive water pressure is the municipal water supplier. The water company 

sets the pressure to meet their own needs, such as delivering water to fire hydrants, high elevation 

buildings (or tall ones), and for other reasons [176]. 
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1.4.3 Pressure reducing valves 

There are two types of water pressure reducing valves, direct acting and pilot operated. Both use 

globe or angle style bodies. Valves used on smaller piping diameter units are cast from brass; 

larger piping diameter units are made from ductile iron. Direct acting valves, the more popular 

type of a water pressure reducing valves, consist of globe-type bodies with a spring-loaded, heat-

resistant diaphragm connected to the outlet of the valve that acts upon a spring. This spring holds 

a pre-set tension on the valve seat installed with a pressure equalizing mechanism for precise water 

pressure control [177]. 

1.4.4 Residual pressure 

The pressure available at the fixture or water outlet after allowance is made for pressure drop due 

to friction loss, head, meter, and other losses in the system during maximum demand periods. 

1.4.5 water turbine 

It is a rotary machine that converts kinetic energy and potential energy of water into mechanical 

work. Water turbines were developed in the 19th century and were widely used for industrial power 

prior to electrical grids. Now they are mostly used for electric power generation. Water turbines 

are often found in dams to generate electric power from water kinetic energy [178]. Figure 1-3 

 
Figure 1-3 Turbine [178] 
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1.4.6 Cavitation 

The formation of steam bubbles when the system pressure drops below the vapor pressure of the 

fluid is called cavitation. 

1.5 Traditional turbines 

There are two main types of hydro turbines: Impulse and Reaction. The type of hydropower turbine 

selected for a project is based on the height of standing water—referred to as "head"—and the 

flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be 

set, efficiency, and cost [179]. 

1.5.1 Impulse Turbine 

The impulse turbine generally uses the velocity of the water to move the runner and discharges to 

atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the 

lower side of the turbine, and the water flows out the bottom of the turbine housing after hitting 

the runner. An impulse turbine is generally suitable for high head, low flow applications [180]. 

1.5.1.1 Water wheel 

A water wheel is a machine for converting the energy of flowing or falling water into useful forms 

of power, as in a watermill. A water wheel consists of a wheel (usually constructed from wood or 

metal), with a number of blades or buckets arranged on the outside rim forming the driving surface 

[181]. Most commonly, the wheel is mounted vertically on a horizontal axle, but can also be 

mounted horizontally on a vertical shaft, for example the tub or Norse. Vertical wheels can transmit 

power either through the axle or via a ring gear and typically drive belts or gears; horizontal wheels 

usually directly drive their load. Figure 1-4. 
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Figure 1-4 Water wheel 

 

 

1.5.1.2 Reverse overshot water-wheel 

Frequently used in mines and probably elsewhere (such as agricultural drainage), the reverse 

overshot water wheel was a Roman innovation to help remove water from the lowest levels of 

underground workings. It is described by Vitruvius in his work De Architectura published circa 

25 BCE. The remains of such systems found in Roman mines by later mining operations show that 

they were used in sequences so as to lift water a considerable height [182]. Figure 1-5 

 
Figure 1-5 Reverse overshot water-wheel 
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1.5.1.3 Pelton 

A Pelton wheel has one or more free jets discharging water into an aerated space and impinging 

on the buckets of a runner. Draft tubes are not required for impulse turbine since the runner must 

be located above the maximum tail water to permit operation at atmospheric pressure [183]. Figure 

1-6 

 
Figure 1-6 Pelton [183] 

 

 

1.5.1.4 Turgo 

The Turgo turbine (Figure 1-7) is an impulse water turbine designed for medium head applications. 

Operational Turgo Turbines achieve efficiencies of about 87%. In factory and lab tests Turgo 

Turbines perform with efficiencies of up to 90%. It works with net heads between 15 and 300 m. 

Developed in 1919 by Gilkes as a modification of the Pelton wheel, the Turgo has some advantages 

over Francis and Pelton designs for certain applications [184]. 
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Figure 1-7 Turgo [184] 

 

 

1.5.1.5 Cross-Flow 

A cross-flow turbine (Figure 1-8) is drum-shaped and uses an elongated, rectangular-section 

nozzle directed against curved vanes on a cylindrically shaped runner. It resembles a "squirrel 

cage" blower. The cross-flow turbine allows the water to flow through the blades twice. The first 

pass is when the water flows from the outside of the blades to the inside; the second pass is from 

the inside back out. A guide vane at the entrance to the turbine directs the flow to a limited portion 

of the runner. The cross-flow was developed to accommodate larger water flows and lower heads 

than the Pelton [185]. 

 
Figure 1-8 Cross-Flow[185] 

 

 

1.5.1.6 Jonval 

The Jonval turbine (Figure 1-9) is a water turbine design invented in France in 1843, in which 

water descends through fixed curved guide vanes which direct the flow sideways onto curved 

vanes on the runner. It is named after Feu Jonval, who invented it [186].  
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Figure 1-9 Jonval [186] 

 

 

 

1.5.1.7 Screw 

The screw turbine (Figure 1-10) is a water turbine which uses the principle of the Archimedean 

screw to convert the potential energy of water on an upstream level into work. It may be compared 

to the water wheel. The turbine consists of a rotor in the shape of an Archimedean screw which 

rotates in a semicircular trough. Water flows into the turbine and its weight presses down onto the 

blades of the turbine, which in turn forces the turbine to turn. Water flows freely off the end of the 

turbine into the river. The upper end of the screw is connected to a generator through a gearbox. 

[187].  

 

Figure 1-10 Screw [187] 
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1.5.2 Reaction Turbine 

A reaction turbine develops power from the combined action of pressure and moving water. The 

runner is placed directly in the water stream flowing over the blades rather than striking each 

individually. Reaction turbines are generally used for sites with lower head and higher flows than 

compared with the impulse turbines [188]. 

 

1.5.2.1 Propeller 

A propeller turbine generally has a runner with three to six blades in which the water contacts all 

of the blades constantly. Picture a boat propeller running in a pipe. Through the pipe, the pressure 

is constant; if it isn't, the runner would be out of balance. The pitch of the blades may be fixed or 

adjustable. The major components besides the runner are a scroll case, wicket gates, and a draft 

tube [188]. There are several different types of propeller turbines: 

1.5.2.1.1 Bulb turbine 

The turbine and generator are a sealed unit placed directly in the water stream. Figure 1-11 

 
Figure 1-11 Bulb turbine 

1.5.2.1.2 Straflo 

The generator is attached directly to the perimeter of the turbine. Figure 1-12 
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Figure 1-12 Straflo 

1.5.2.1.3 Tube turbine 

The penstock bends just before or after the runner, allowing a straight-line connection to the 

generator. Figure 1-13 

 
Figure 1-13 Tube turbine 

1.5.2.1.4 Kaplan 

Both the blades and the wicket gates are adjustable, allowing for a wider range of operation. Figure 

1-14 

 
Figure 1-14 Kaplan 

1.5.2.2 Francis (radial or mixed flow) 

A Francis turbine has a runner with fixed buckets (vanes), usually nine or more. Water is 

introduced just above the runner and all around it and then falls through, causing it to spin. Besides 
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the runner, the other major components are the scroll case, wicket gates, and draft tube [189]. 

Figure 1-15 

Figure 1-15 Francis Turbine 

1.6 Applications and performances 

Applications and performances of widely used turbines among both groups of above, impulse and 

reaction turbines, Francis Turbine (reaction turbine) will be shown as follows. Here are the 

constitutive elements: 

1.6.1 Wicket gates (or guide vanes) 

Vanes that guide water onto the runner, with appropriate velocity and direction [190]. 

1.6.2 Runner 

Connected to the rotating shaft, it extracts energy from the water flow that interacts with its blades 

[190]. 

1.6.3 Draft tube 

If water’s kinetic energy is still relatively high at the runner’s exit, a draft tube is used to recover 

part of this kinetic energy [190]. Figure 1-16  
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Figure 1-16 Draft Tube [190] 

1.6.4 Power and efficiencies: 

Hydraulic efficiency [190]: 

𝜂= 
௪ ௗ௩ௗ ௬ ௧ ௨

௪ ௩ ௧ ௧ ௧
 

Equation 1-1 

Mechanical Efficiency [191]: 

𝜂= 
௪ ௧ ௧ ௦௧  ௧ ௧௨

௪ ௗ௩ௗ ௬ ௧ ௨
 

 
Equation 1-2 

Volumetric efficiency [191]: 

 

𝜂௩= 
௨  ௪௧ ௦௧ ௧ ௨௧

௨  ௪௧ ௦௨ௗ ௧ ௧ ௧௨
 

 
Equation 1-3 

Overall turbine efficiency [191]: 

𝜂௧= 𝜂𝜂𝜂௩ 
 

Equation 1-4 

 

Draft tube 

Runner 

Wicket gates 

(guide vanes) 
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1.7 Design of a Francis Turbine 

The principal feature of a reaction turbine that distinguishes it from an impulse turbine is that only 

a part of the total head available at the inlet to the turbine is converted to velocity head, before the 

runner is reached. Also, in the reaction turbines the working fluid, instead of engaging only one or 

two blades, completely fills the passages in the runner. The pressure or static head of the fluid 

changes gradually as it passes through the runner along with the change in its kinetic energy based 

on absolute velocity due to the impulse action between the fluid and the runner. Therefore, the 

cross-sectional area of flow through the passages of the fluid. A reaction turbine is usually well 

suited for low heads. A radial flow hydraulic turbine of reaction type was first developed by an 

American Engineer, James B. Francis (1815-92) and is named after him as the Francis turbine 

[192]. The schematic diagram of a Francis turbine is shown in Figure 1-17: 

 

 
Figure 1-17 A Francis turbine [192] 

A Francis turbine comprises mainly of four components: 
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I. Spiral casing,

II. Guide on stay vanes,

III. Runner blades,

IV. Draft-tube

1.7.1 Spiral Casing 

Most of these machines have vertical shafts although some smaller machines of this type have 

horizontal shafts. The fluid enters from the penstock (pipeline leading to the turbine from the 

reservoir at high altitude) to a spiral casing which completely surrounds the runner. This casing is 

known as scroll casing or volute. The cross-sectional area of this casing decreases uniformly along 

the circumference to keep the fluid velocity constant in magnitude along its path towards the guide 

vane [192]. 

Figure 1-18 Spiral Casing [192] 

1.7.2 Guide or stay vane 

The basic purpose of the guide vanes or stay vanes is to convert a part of pressure energy of the 

fluid at its entrance to the kinetic energy and then to direct the fluid on to the runner blades at the 

angle appropriate for the design. Moreover, the guide vanes are pivoted and can be turned by a 

suitable governing mechanism to regulate the flow while the load changes. The guide vanes are 

also known as wicket gates. The guide vanes impart a tangential velocity and hence an angular 
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momentum to the water before its entry to the runner. The flow in the runner of a Francis turbine 

is not purely radial but a combination of radial and tangential. The flow is inward, i.e. from the 

periphery towards the center. The height of the runner depends on the specific speed. The height 

increases with the increases in the specific speed. The main direction of flow changes as water 

passes through the runner and is finally turned into the axial direction while entering the draft tube 

[192].   

Figure 1-19 Guide vane 

1.7.3 Draft Tube 

The draft tube is a conduit which connects the runner exit to the tail race where the water is being 

finally discharged from the turbine. The primary function of the draft tube is to reduce the velocity 

of the discharged water to minimize the loss of kinetic energy at the outlet. This permits the turbine 

to be set above the tail water without any appreciable drop of available head. A clear understanding 

of the function of the draft tube in any reaction turbine, in fact, is very important for the purpose 

of its design. The purpose of providing a draft tube will be better understood if we carefully study 

the net available head across a reaction turbine [192]. 

Figure 1-20 Draft tube 

Figure 1-21 Complete Assembly (Without draft tube) 
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Figure 1-22 Spiral casing 

The effective head across any turbine is the difference between the head at inlet to the machine 

and the head at outlet from it. A reaction turbine always runs completely filled with the working 

fluid. The tube that connects the end of the runner to the tail race is known as a draft tube and 

should completely be filled with the working fluid flowing through it. The kinetic energy of the 

fluid finally discharged into the tail race is wasted. A draft tube is made divergent so as to reduce 

the velocity at outlet to a minimum. Therefore, a draft tube is basically a diffuser and should be 

designed properly with the angle between the walls of the tube to be limited to about 8 degree so 

as to prevent the flow separation from the wall and to reduce accordingly the loss of energy in the 

tube. Figure 1-23 shows a flow diagram from the reservoir via a reaction turbine to the tail race 

[192]. 

The total head 𝐻ଵ at the entrance to the turbine can be found out by applying the Bernoulli's 

equation between the free surface of the reservoir and the inlet to the turbine as: 

𝐻 ൌ  
𝑃ଵ

𝜌𝑔 


𝑉ଵ
ଶ

2𝑔
 𝑧  ℎ 

Or 𝐻ଵ ൌ 𝐻 െ ℎ ൌ  
భ

ఘ 


భ
మ

ଶ
 𝑧 

Equation 1-5 

Where: 

ℎ= the head loss due to friction in the pipeline connecting the reservoir and the turbine. 

Since the draft tube is a part of the turbine, the net head across the turbine, for the conversion of 

mechanical work, is the difference of total head at inlet to the machine and the total head at 

discharge from the draft tube at tail race and is shown as H in Figure 1-23: 
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Figure 1-23 Head across a reaction turbine [192] 

Therefore, H = total head at inlet to machine (1) - total head at discharge (3) 

𝐻 ൌ  
𝑃ଵ

𝜌𝑔 


𝑉ଵ
ଶ

2𝑔
 𝑧 െ

𝑉ଷ
ଶ

2𝑔
ൌ 𝐻ଵ െ   

𝑉ଷ
ଶ

2𝑔
ൌ ൫𝐻 െ ℎ൯ െ

𝑉ଷ
ଶ

2𝑔
 

Equation 1-6 

The pressures are defined in terms of their values above the atmospheric pressure. Section 2 and 3 

in Figure 1-23 represent the exits from the runner and the draft tube, respectively. If the losses in 

the draft tube are neglected, then the total head at 2 becomes equal to that at 3. Therefore, the net 

head across the machine is either ሺ𝐻ଵ െ 𝐻ଷሻ or ሺ𝐻ଵ െ 𝐻ଶሻ [192]. Applying the Bernoulli’s 

equation between 2 and 3 in consideration of flow, without losses, through the draft tube, we can 

write: 

𝑃ଶ

𝜌𝑔 


𝑉ଶ
ଶ

2𝑔
 𝑧 ൌ 0   

𝑉ଷ
ଶ

2𝑔
 0 

 
𝑃ଶ

𝜌𝑔 
ൌ  െ ቆ𝑧 

𝑉ଶ
ଶ െ 𝑉ଷ

ଶ

2𝑔
ቇ 

Equation 1-7 

 

Since 𝑉ଵ ൏ 𝑉ଶ , both the terms in the bracket are positive and hence 𝑃ଶ ൏ 𝜌𝑔 is always negative, 

which implies that the static pressure at the outlet of the runner is always below the atmospheric 

pressure. Equation 1-7 also shows that the value of the suction pressure at runner outlet depends 
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on z, the height of the runner above the tail race and  
మ

మିయ
మ

ଶ
 the decrease in kinetic energy of the 

fluid in the draft tube. The value of this minimum pressure 𝑃ଶ should never fall below the vapor 

pressure of the liquid at its operating temperature to avoid the problem of cavitation. Therefore, 

we finde that the incorporation of a draft tube allows the turbine runner to be set above the tail race 

without any drop of available head by maintaining a vacuum pressure at the outlet of the runner 

[192]. 

1.7.4 Runner of the Francis turbine 

The shape of the blades of a Francis runner is complex. The exact shape depends on its specific 

speed. It is obvious from the equation of specific speed that higher specific speed means lower 

head. This requires that the runner should admit a comparatively large quantity of water for a given 

power output and at the same time the velocity of discharge at runner outlet should be small to 

avoid cavitation. In a purely radial flow runner, as developed by James B. Francis, the bulk flow 

is in the radial direction. To be clearer, the flow is tangential and radial at the inlet but is entirely 

radial with a negligible tangential component at the outlet. The flow, in this situation, has to make 

a 90o turn after passing through the rotor for its inlet to the draft tube. Since the flow area (area 

perpendicular to the radial direction) is small, there is a limit to the capacity of this type of runner 

in keeping a low exit velocity. This leads to the design of a mixed flow runner where water is 

turned from a radial to an axial direction in the rotor itself. At the outlet of this type of runner, the 

flow is mostly axial with negligible radial and tangential components. Because of a large discharge 

area (area perpendicular to the axial direction), this type of runner can pass a large amount of water 

with a low exit velocity from the runner. The blades for a reaction turbine are always shaped in a 

way that the tangential or whirling component of velocity at the outlet becomes zero ሺ 𝑉௪ଶ ൌ 0ሻ  . 

This is made to keep the kinetic energy at outlet a minimum.  

Figure 1-24 shows the velocity triangles at inlet and outlet of a typical blade of a Francis turbine. 

Usually the flow velocity (velocity perpendicular to the tangential direction) remains constant 

throughout, i.e. 𝑉ଵ ൌ 𝑉ଶ   and is equal to that at the inlet to the draft tube.  
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Figure 1-24 Velocity triangle for a Francis runner [192] 

The Euler's equation for turbine in this case reduces to: 

𝐸
𝑚

ൌ 𝑒 ൌ 𝑉௪ଵ 𝑈ଵ 
Equation 1-8 

where, e is the energy transfer to the rotor per unit mass of the fluid. From the inlet velocity triangle 

shown in Figure 1-24: 

𝑉௪ଵ ൌ 𝑉ଵ cot 𝛼ଵ 
Equation 1-9 

𝑈ଵ ൌ 𝑉ଵሺcot 𝛼ଵ  cot 𝛽ଵሻ 

Equation 1-10 

Substituting the values of 𝑉௪ଵ and 𝑈ଵfrom Equation 1-9 and Equation 1-10 respectively into 

Equation 1-8, we have: 

𝑒 ൌ 𝑉ଵ
ଶ  cot 𝛼ଵ  ሺcot 𝛼ଵ  cot 𝛽ଵሻ

Equation 1-11 

The loss of kinetic energy per unit mass becomes equal to 𝑉ଶ
ଶ /2 . Therefore, neglecting friction, 

the blade efficiency becomes: 

 ൌ  
𝑒

𝑒  ሺ
𝑉ଶ

ଶ

2 ሻ
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ൌ  
2𝑉ଵ

ଶ cot 𝛼ଵ  ሺcot 𝛼ଵ  cot 𝛽ଵሻ

𝑉ଶ
ଶ  2𝑉ଵ

ଶ  cot 𝛼ଵ  ሺcot 𝛼ଵ  cot 𝛽ଵሻ
 

Since        𝑉ଵ ൌ  𝑉ଶ  ∙           Can be written as 

 ൌ 1 െ  
1

1  2 cot 𝛼ଵ  ሺcot 𝛼ଵ  cot 𝛽ଵሻ
 

Equation 1-12 

The change in pressure energy of the fluid in the rotor can be found out by subtracting the change 

in its kinetic energy from the total energy released. Therefore, we can write for the degree of 

reaction: 

𝑅 ൌ
𝑒 െ

1
2 ൫𝑉ଵ

ଶ  𝑉ଶ
ଶ ൯

𝑒
ൌ 1 െ

1
2 𝑉ଵ

ଶ 𝑐𝑜𝑡ଶ𝛼ଵ

𝑒

[since 𝑉ଵ
ଶ െ  𝑉ଶ

ଶ ൌ  𝑉ଵ
ଶ െ 𝑉ଵ

ଶ ൌ  𝑉ଵ
ଶ  𝑐𝑜𝑡ଶ𝛼ଵ] 

Equation 1-13 

Using the expression of e from Equation 1-11, we have 

𝑅 ൌ 1 െ
cot 𝛼ଵ

2ሺcot 𝛼ଵ  cot 𝛽ଵሻ
 

Equation 1-14 

The inlet blade angle 𝛽ଵ of a Francis runner varies 45-120° and the guide vane angle  𝛼ଵ from 10-

40°. The ratio of blade width to the diameter of runner B/D, at blade inlet, depends on the required 

specific speed and varies from 1/20 to 2/3. 

Expression for specific speed. The dimensional specific speed of a turbine, can be written as: 

𝑁௦் ൌ  
𝑁𝑃ଵ ଶ⁄

𝐻ହ ସ⁄
Equation 1-15 [192] 

Power generated P for a turbine can be expressed in terms of available head H and hydraulic 

efficiency as: 
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𝑃 ൌ 𝜌𝑄𝑔𝐻 
Equation 1-16 

Hence, it becomes: 

𝑁௦் ൌ 𝑁൫𝜌𝑄𝑔൯
ଵ ଶ⁄

𝐻ିଷ ସ⁄

Equation 1-17 

Again,  𝑁 ൌ 𝑈ଵ/𝐷ଵ 

Substituting 𝑈ଵ from Equation 1-10 

𝑁 ൌ  
𝑉ଵሺcot 𝛼ଵ  cot 𝛽ଵሻ

𝜋𝐷ଵ
Equation 1-18 

Available head H equals the head delivered by the turbine plus the head lost at the exit. Thus, 

𝑔𝐻 ൌ 𝑒  ሺ
𝑉ଶ

ଶ

2
ሻ 

Since               𝑉ଵ=𝑉ଶ 

𝑔𝐻 ൌ 𝑒  ሺ𝑉ଵ
ଶ /2ሻ 

Equation 1-19 

with the help of Equation 1-11 it becomes 

𝑔𝐻 ൌ 𝑉ଵ
ଶ cot 𝛼ଵ ሺcot 𝛼ଵ  cot 𝛽ଵሻ 

𝑉ଵ
ଶ

2

𝐻 ൌ  
𝑉ଵ

ଶ

2𝑔
ሾ1  2ሺcot 𝛼ଵ  cot 𝛽ଵሻሿ 

Equation 1-20 

Substituting the values of H and N from Equation 1-20 and Equation 1-18 respectively into the 

expression 𝑁௦் given by Equation 1-17, we get: 
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𝑁௦் ൌ 2ଷ ସ⁄ 𝑔ହ ସ⁄ ሺ𝜌𝑄ሻଵ ଶ⁄  
𝑉𝑓1

െ1 2⁄

𝜋𝐷ଵ
ሺcot 𝛼ଵ  cot 𝛽ଵሻሾ1  2ሺcot 𝛼ଵ  cot 𝛽ଵሻሿെ3 4⁄  

Equation 1-21 

Flow velocity at inlet 𝑉ଵ can be substituted from the equation of continuity as 

𝑉ଵ ൌ  
𝑄

𝜋𝐷ଵ𝐵
Equation 1-22

where B is the width of the runner at its inlet. Finally, the expression for 𝑁௦் becomes: 

𝑁௦் ൌ  2ଷ ସ⁄ 𝑔ହ ସ⁄ ሺ𝜌ሻଵ ଶ⁄  ሺ
𝐵

𝜋𝐷ଵ
ሻଵ ଶ⁄ ሺcot 𝛼ଵ  cot 𝛽ଵሻ ሾ1  2ሺcot 𝛼ଵ  cot 𝛽ଵሻሿെ3 4⁄  

Equation 1-23 

For a Francis turbine, the variations of geometrical parameters like 𝛼ଵ , 𝛽ଵ, 𝐵 𝐷⁄  have been 

described earlier. These variations cover a range of specific speed between 50 and 400. Figure 1‐25 

shows an overview of a Francis Turbine. This figure is shown specifically in order to convey the 

size and relative dimensions of a typical Francis Turbine to the readers [192]. 

Figure 1‐25 instalation of a Francis turbine [192] 
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2 Characteristics of Centrifugal Pumps Working in Direct or Reverse 

Mode 

2.1 Centrifugal Pumps Working Principle 

One of the most common types of pumps used today is the centrifugal pump. This type of pumps 

uses one or more impellers to utilize the centrifugal force that pushes the process liquid through 

the pump. Where centrifugal force is the force that exists, when the object or material moves in a 

circular motion and pushes the object or material outward from the center of rotation [193]. In 

centrifugal pump what is moving outward is process liquid. They can be grouped into two basic 

categories: single stage pumps and multi stages pumps. 

The centrifugal pumps contain: Inlet, Casing and Outlet. Inside the casing is an impeller. It has a 

series of curved veins that extend outfit of center. The pump casing is designed so that the area 

around the impeller creates a gradually widening spiral channel. This widening channel is known 

as Volute. If we have one impeller and one volute it is called Single stage pump [193].  

During the operation a driver rotates the impeller, creating a centrifugal force that throws the liquid 

process outward into the volute. The outward movement of liquid causes two things to happen: 

First, it creates a reduced pressure area at the suction eye of the Impeller. There are of lower 

pressure, draw more liquid into the pump and provide a constant flow of liquid. Second, it causes 

the liquid to gain speed. This happens because as the liquid is forced to the outside of the rotating 

impeller, it must move faster to keep up with the impeller. As the liquid flows away from the 

impeller, it spreads out to fill the volute. The expansion in the volute causes the liquid to slow 

down and its pressure to increase. The increased pressure moves the liquid through the discharge 

of the pump and then on through the piping systems of the process one [193]. 

One way that centrifugal pumps can be categorized by, is how the liquid flows through them. Three 

common flow path classifications are Radial flows, Axial flows and Mixed flow. In centrifugal 

pumps that have radial flow design, the impeller causes the liquid to make a 90-degree turn and 

flow outward or radially from the suction eye to the tips of the veins. A radial flow pump takes 
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advantage of the maximum amount of centrifugal force that the impeller develops. Generally, 

radial flow pumps are capable of higher discharge pressure. But they do not move as much liquid 

as other types of centrifugal pumps [194]. 

In centrifugal pumps that have an axial flow design, the impeller moves the liquid through the 

pump along a path that is parallel to the pump shaft. In this type of pump, the liquid moves mainly 

by the propeller action of the impeller veins. This impeller uses only a small amount of centrifugal 

force to move the liquid. As a result, the discharge pressure of an axial flow pump tends to be 

lower than that of a radial flow pump. However, an axial flow pump may be able to move large 

quantities of liquid [193]. 

Mixed flow combines the characteristics of radial flow pumps and axial flow pumps. They use 

centrifugal force and the propeller action of the impeller veins to move the process liquid. For that 

reason, a mixed flow pump can develop a relatively high discharge pressure and still move a large 

quantity of liquid [195]. 

All centrifugal pumps work by creating a centrifugal force. This force moves the liquid through 

the pump and increases the liquid’s pressure.  In applications where large increases in pressure are 

needed Multistage centrifugal pumps are often being used. A multistage centrifugal pump contains 

two or more impeller and volutes in a single casing [195]. 

Figure 2‐1 Multi stage centrifugal pump[196]
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 Regardless of how the impellers on a centrifugal pump are arranged, or how many stages a pump 

has, the liquid’s pressure increases as it passes through each stage. This creates a Thrust across the 

impeller in each stage. This thrust known as Axial Thrust is caused by the difference in pressure 

between the suction eye and the volute. Because there is a difference across the impeller’s axial 

thrust is created and it tries to push the pump shaft toward the suction eyes. In order for the pumps 

to operate properly, the thrust must be offset. On some pumps the thrust is offset by using a thrust 

bearing or a device known as a balanced piston or balance drum. On other pumps the thrust is 

offset by the arrangement of the impellers [196].  

2.2 Centrifugal Pumps Design  

2.2.1 System analysis for pump selection 

Before a pump can be selected, the application must be clearly defined. The common requirement 

of all application is to move liquid from one point to another. As pump requirements must match 

system characteristics, analysis of the overall system is necessary to establish the pump condition.  

From the information given, the following will ultimately determine pump selection [3]. 

 Capacity range of liquid to be moved

 Differential head required

 NPSHA

 Shape of head capacity curve

 Pump speed

 Liquid characteristics

 Construction

2.2.2 Differential Head required 

The head to be generated by the pump is determined from the system head curve. This is graphical 

plot of the total static head and friction losses for various flow rates. For any desired flow rate, the 

head to be generated by the pump or pumps, can be read directly (Figure 2-22and Figure 2-33) [3]. 
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Figure 2-2 System head curve[3] 

 

 

 

Figure 2-3 The system head curve establishes pump conditions[3] 

2.2.3 NPSHA 

Net positive suction head available (NPSHA) is of extreme importance for reliable operation. It is 

the total suction head in feet of liquid absolute, determined at the suction nozzle and referred to 

datum, less the vapor pressure of the liquid in feet absolute[3]. 

2.2.4 Shape of Head Capacity Curve 

The desired shape of the head capacity (H-Q) curve is determined during analysis of the system. 

Most specifications call for a continuously rising curve (Figure 2-44) with the percentage rise from 

the best efficiency point (BEP) determined by system limits and mode of operation. Unstable or 

hooked curves (Figure 2-5) where the maximum developed head is at some flows greater than zero 
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are undesirable in applications where multiple pumps operate in parallel. In such applications, zero 

flow head may be less than system head, making it impossible to bring a second pump on line. It 

is also possible for pumps to deliver unequal flow rate from another. these legitimate reasons have 

resulted in many specifications forbidding the use of unstable curves for any application. This is 

most unfortunate as in many instances such curves are perfectly suitable. More importantly, pumps 

with unstable curves will develop more head and be more efficient than their continuously rising 

counterparts. It should be noted that this tendency of instability is normally confined to the lower 

range of specific speeds. As specific speed increases, the H-Q curve becomes more stable [3]. 

 

 

Figure 2-4 Continuously rising head capacity curve[3] 
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Figure 2-5 Unstable or hooked head capacity curve.[3] 

2.2.5 Pump Speed 

Pump speed may be suggested by the user to match electric frequency or available driver speed. 

However, the pump manufacturer has the ultimate responsibility and must confirm that the desired 

speed is compatible with NPSHA and satisfies optimum efficiency selection [3]. 

2.2.6 Liquid Characteristics 

To have responsible life expectancy, pump materials must be compatible with the liquid. Since 

liquids range from clear to those that contain gases, vapors, and solid materials, essential 

information includes temperature, specific gravity, pH level, solid content, amount of entrained air 

and/or dissolved gas, and weather the liquid is corrosive. In determining final material selection, 

the pump manufacturer must also consider operation stresses and effects of corrosion, erosion, and 

abrasion [3]. 

2.2.7 General Pump Design 

It is not a difficult task to design a centrifugal pump; however, designing the right pump for a 

specific application related to specific industry and service requires an extensive knowledge of 

hydraulics. Also, experience with industrial specifications, end users’ and contractors’ special 

requirements is necessary, as well as many years of practical experience in engineering and 

marketing [3]. 

The variables that exist for pump requirements are so numerous that the design of the right pump 

in the right service is a complex project. There is no such product as the “Universal pump” [3]. 

As an example, let us take a pump that is required to produce 500 GPM and 200-ft head, rotating 

at 2 or 4 pole speed. In all industries this hydraulic requirement exists; however, the mechanical 

specifications are entirely different for each and every industry.  For instance, the type of pumps 

used in publications and papers industry are entirely different from pumps used in the petroleum 

industry, petrochemical industry, or chemical industry [3]. Thus, the pump required to deliver 

500GPM and 200-ft head, will be different for each of the following applications: 

 Slurry 

 Boiler feed 
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 Pipeline 

 Nuclear 

 Municipal 

 Agricultural 

 Marine 

 Cargo 

Mechanical variables include [3]: 

 Open or closed or semi-open impellers. 

 Single-stage or multi-stage. 

 Vertical or horizontal. 

 With water jacket or without. 

 Overhung or two-bearings design. 

 Close-coupled or coupled units. 

 Stiff shaft or flexible shaft design. 

 Single volute, double volute, quad volute 

 Short elbow-type or turbine-type diffusers. 

 Mechanical seals or packing. 

 Stuffing boxes with bleed-offs or with clean flush injection. 

 Ball, sleeve, or Kingsbury-type bearing. 

 Oil rings, forced feed, oil mist, submerged or grease paycheck lubrication. 

It can be seen from the variables listed that it is a complex job for a pump designer to design the 

right pump for the right environment [3]. 

After complete hydraulic and mechanical specifications have been established, the designer should 

be ready for pump layout documents [3]. 

General pump design can be classified in the following categories: 

1. Design a new pump to satisfy basics engineering requirements such as shape of H-Q curve, 

NPSHA, efficiency, etc. 
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2. Design a new pump to satisfy special applications such as boiler-feed, nuclear coolant,

pipeline, large circulator, condensate, secondary recovery, etc.

3. Design a new pump, pulp and paper pumps, building trade pumps, boiler feed pumps, etc.

For pumps in any category, an overall performance chart should be prepared (if not available) as 

a first step in design study. This chart will establish the flow and head for each pump, establish the 

number and size of pumps required to satisfy the range chart, and avoid overlap or gaps between 

pump sizes. Even if only one pump is required, the range chart should be confronted to be sure 

that the new pump fits into the overall planning [3]. 

Figure 2-6 poorly planned performance chart [3] 

Many old pump lines have poorly planned range charts, resulting in similar pump overlaps and 

uncovered gaps between pump sizes, such as in the chart shown in Figure 2-66. Black dots show 

pumps that could be eliminated, permitting a substantial reduction in inventory without hurting 

overall hydraulic performance. This type of chart is not recommended. A suggested, properly laid 

out performance range chart is shown in Figure 2-77. Steps to develop this chart will now be 

described [3]. 

1. Establish BEP of lowest capacity and lowest head pump required. In this example,

this is 86 GPM, 150-ft head. Which is achieved by a 1-in. Pump, and a 7-in. Diameter

impeller.
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2. Extend BEP capacity coverage at a constant 150-ft head by multiplied of 1.75 Thus, 

second pump BEP = 86 GPM * 1.75 = 150 GPM. 

Third pump BEP = 150 GPM * 1.75 = 260 GPM, etc. 

 

In this manner, the base line BEP is established. 

 

3. Establish next size pump by multiplying each base line BEP by 

 GPM * 1.75 

 Head * 1.45 

 

4. For all additional pump BEPs, multiplying preceding pump flow by 1.75 and head by 

1.45. 

The constants 1.75 and 1.45 are recommended for a well-planned performance chart following 

a number of constant specific speed lines. There are no gaps between pumps. each performance 

block can be covered by normal impeller trim, and there are no overlaps. The chart is also 

helpful to the designer. In this example, only six small pumps have to be designed and test 

checked [3]. 

 
Figure 2-7 recommended performance chart [3] 

 

The other sizes that follow specific speed lines can be factored up and their performance 

accurately predicted. Designed and tested checked. After the hydraulic performance chart is 
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complete, the designer should check the mechanical requirements as outlined by the applicable 

industrial specifications [3]. 

If a complete line is being designed, the following mechanical features should be checked: 

 Shaft size  

 Bearing arrangements 

 Stuffing box design 

 Bolting for maximum pressures 

 Suction pressure 

 Pump axial and radial balance 

 Bed plates, motor support, etc. 

 Gasketing 

 Lubrication 

The standardization and the use of existing parts should be considered at this time; however, 

hydraulic performances should never be sacrificed for mechanical or cost reasons. If sacrifice 

becomes necessary, adjust pump hydraulics accordingly [3]. 

 

2.3 Energy efficiency optimization in water distribution systems 

2.3.1 Introduction 

The operation of Water Distribution Systems generally requires high amounts of energy, which 

vary in relation to the characteristics of the served area, but also in design and management choices. 

The assessment of energy efficiency in water distribution systems is strongly influenced by the 

nature site-dependent of the water-energy nexus in pressurized networks. Understanding this link 

requires a systematic energy analysis to evaluate separately the influence of pumping stations, 

network, and water loss. Such an analysis can allow to highlight inconsistencies in the design and 

management that are reflecting on both the resources, water and energy [29]. 
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2.3.2 Energy Efficiency Indicator for water networks 

The growing attention brought to the so-called water-energy nexus is certainly driven by the non-

negligible amount of energy required for operating water distribution systems. That is, energy-

related aspects arise in water network, when one or more electromechanical devices (pumps) are 

present. Needless to say, the interest towards energy involves environmental, but especially cost 

issues. This should be kept in mind, while trying to find the most appropriate way for assessing 

(or improving) the energy efficiency of a given water system, because on the one hand there is the 

actual energy consumed, on the other hand there is the way that energy is properly or improperly 

spent. Finally, both aspects always need to be considered in conjunction with the level of service 

provided [29]. 

The Unavoidable Minimum Energy required (UME) is computed at each device and involves the 

definition of a reference hydraulic head (𝐻) [29]. 

𝐻 is the minimum head to be granted at the downstream section of each pump, in order to satisfy 

the given level of service (namely, a minimum pressure value) throughout the network, during the 

whole day, considering that no leakages occur [29]. Therefore: 

𝑈𝑀𝐸 ൌ 𝛾 ∙ 𝑊 ∙ ሺ𝐻 െ 𝐻௨௦ሻ/3600000 

Equation 2-1 [29] 

where UME is the unavoidable minimum energy required at the pump (kWh);  is the specific 

gravity of water (N/𝑚ଷ); W is the total volume lifted by the pump (𝑚ଷ) over the considered period; 

𝐻 is the above defined reference head (m) at the downstream section of the pump; 𝐻௨௦ is the 

average hydraulic head at the upstream section of the pump (m) [29]. 

The ratio between UME and the energy actually consumed 𝐻௦, gives birth to the Energy 

Efficiency Indicator (EEI): 

𝐸𝐸𝐼 ൌ
𝑈𝑀𝐸
𝐸௦

Equation 2-2 [29] 
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The 𝐻 calculation has required the following steps: pump closed; downstream end of the pump 

replaced by a “virtual” reservoir; all the emitters’ coefficients set to zero; pipe leading to the tank 

closed. The 𝐻 value for the assigned network is found by decreasing the hydraulic head of the 

virtual reservoir iteratively, until the minimum pressure at the nodes is met [29]. 

The 𝐸௦ value is assessed on a daily basis: 

𝐸௦ ൌ  𝐸 െ Δ𝐸் ൌ  𝐸 െ  
ఊ ∙ ሺுି ுሻ

 ∙ଷ
Equation 2-3 [29]

where 𝐸 is the energy consumed by the pump, considering its electro-mechanical efficiency 

(kWh); A is the cross sectional area of the tank (m2); 𝐻 and 𝐻 are the hydraulic heads in the 

tank (m), respectively at time 0:00 and 24:00; HP and η are respectively the average pump head 

and the average efficiency of the pump [29]. 
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3 Micro-Hydro Generators using Pump as Turbine 

3.1 Introduction to Micro-Hydro Generators 

The basic principle of hydropower is that if water can be piped from a certain level to a lower 

level, then the resulting water pressure can be used to do work. If the water pressure is allowed to 

move a mechanical component, then that movement involves the conversion of the potential 

energy of the water into mechanical energy. Hydro turbines convert water pressure into mechanical 

shaft power, which can be used to drive an electricity generator, a grinding mill or some other 

useful device [197]. 

Hydropower is a very clean source of energy. It does not consume but only uses the water, after 

use it is available for other purposes (although on a lower horizontal level). The conversion of the 

potential energy of water into mechanical energy is a technology with a high efficiency (in most 

cases double that of conventional thermal power stations) [197].  

The use of hydropower can make a contribution to savings on exhaustible energy sources. Each 

600 kWh of electricity generated with a hydro plant is equivalent to 1 barrel of oil (assuming an 

efficiency of 38 % for the conversion of oil into electricity) [197].  

The main advantages of hydropower are:  

 power is usually continuously available on demand,

 given a reasonable head, it is a concentrated energy source,

 the energy available is predictable,

 no fuel and limited maintenance are required, so running costs are low (compared with

diesel power) and in many cases imports are displaced to the benefit of the local economy,

 it is a long-lasting and robust technology; systems can last for 50 years or more without

major new investments.

Against these, the main shortcomings are:  
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 it is a site-specific technology for sites that are well suited to the harnessing of water power 

and are also close to a location where the power can be economically exploited, which is 

not very common, 

 there is always a maximum useful power output available from a given hydropower site, 

which limits the level of expansion of activities which make use of the power, 

 river flows often vary considerably with the seasons, especially where there are monsoon-

type climates and this can limit the firm power output to quite a small fraction of the 

possible peak output, 

 lack of familiarity with the technology and how to apply it inhibits the exploitation of hydro 

resources in some areas. 

To know the power potential of water in a river it is necessary to know the flow in the river and 

the available head. The flow of the river is the amount of water (in 𝑚ଷ or liters) which passes in a 

certain amount of time a cross section of the river. Flows are normally given in cubic meters per 

second (𝑚ଷ/s) or in liters per second (l/s). Head is the vertical difference in level (in meters) the 

water falls down [198].  

 
Figure 3-1 [198] 

The theoretical power (P) available from a given head of water is in exact proportion to the head 

H and the flow Q [197].  

P=Q × H × c       c = constant 

Equation 3-1 The theoretical power 
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The constant c is the product of the density of water and the acceleration due to gravity (g). If P is 

measured in Watts, Q in m3/s and H in meters, the gross power of the flow of water is:  

P=1000 × 9.8 × Q × H 

Equation 3-2 the gross power of the flow of water [197] 

This available power will be converted by the hydro turbine in mechanical power. As a turbine has 

an efficiency lower than 1, the generated power will be a fraction of the available gross power 

[197]. 

Hydropower installations can be classified as follows (Table 3-1): 

Table 3-1 Hydropower installations [197] 

Name Description 

Large All installations with an installed capacity of more than 1000 kW (according to some 

definitions more than 10,000 kW). 

Small General term for installations smaller than 1000 kW (or < 10,000 kW). Also used for 

installations in the range between 500 and 1000 kW. 

Mini Capacity between 100 and 500 kW. 

Micro Hydropower installations with a power output less than 100 kW (or less than 1000 kW). 

Definitions of small, mini, and micro hydro plants found in literature (Table 3-2): 

Table 3-2 Source: Moreire, J.R. & Poole, A.D. (1993) Hydropower and its constraints. In: Johansson T.B.  et al, (1993) 
Renewable energy: sources for fuels and electricity (ISBN 1-85383-155-7) 

Country Micro (kilowatts) Mini (kilowatts) Small (megawatts) 

United States < 100 100 – 100 1 - 30 

China - < 500 0.5 – 25 

Russia < 100 - 0.1 – 30 

France 5-5000 - - 

India < 100 101 – 1000 1 – 15 

Brazil < 100 100 – 1000 1 – 30 

Norway < 100 100 – 1000 1 – 10 
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various < 100 < 1000 <10 

3.2 PATs (Pump as Turbine) 

Running pumps as turbines is a well-known concept in the water supply industry. It is seen as an 

efficient method of generating power as well as recovering energy and contributing to savings. 

The concept of running a centrifugal pump in reverse rotation mode has been recognized by pump 

manufacturers for many years and within the water supply industry this concept has been exploited 

to a limited degree as a means of generating power in locations where it is considered too expensive 

to purchase a hydro turbine. It has not gone unnoticed by water suppliers, operators of small 

hydropower plants and pump manufacturers that running pumps as turbines (PATs) is an efficient 

method of generating energy as well as recovering energy and contributing to energy savings. In 

the current economic climate, where reducing energy costs is becoming a high priority, it is not 

surprising that PATs are starting to create significant interest [199]. 

Using pump as turbine is an attractive and significant alternative. Pumps are relatively simple 

machines with no special designing and are readily available in most developing countries. 

Besides, their installation, commissioning and maintenance are easy and cheap. From the 

economical point of view, it is often stated that the capital payback period of PATs in the range of 

5–500 kW is two years or less [199]. 

3.3 PATs working principle 

In recent years, small and micro hydro power plants have become a possible new application area 

for PAT, which are aimed at replacing the more expensive conventional turbines. One way of 

overcoming the high-cost capital price of Micro/Pico hydropower stations is to use simple 

machines instead of more complex conventional turbines. Industrial pumps can be effectively 

operated as turbines. From the economic point of view, it is often stated that pumps working as 

turbines, in the range of 1–500 kW, allow capital payback periods of two years or less, a 

considerably shorter time than that of a conventional turbine [4]. 
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Several researchers have become interested in pumps operating as turbines for many types of small 

applications. Pump manufacturers do not normally provide turbine mode performance for their 

products. Therefore, in recent years, many prediction techniques have been developed e.g. Sharma 

[5] , Williams [6] , Alatorre-Frenk [7], and more recently Ramos and Borga [8], [9], Valadas and

Ramos [10], Singh [11], [12], Yang et al. [13], and Derakhshan and Nourbakhsh [14].

Due to the huge number of pumps on the market all possible sizes, appropriate machines, cheap 

and reliable, are readily available. Regarding maintenance, there are many advantages compared 

with custom-made turbines. 

As a result of the fixed geometric conditions within the casing and impeller, pumps as turbines 

have a low part-load performance. This characteristic address one of the most important challenges 

for a Micro-Hydro system based on a PAT. A pump operating as a turbine is very sensitive towards 

changing boundary parameters, namely head and discharge. Hence, a wrong pump selection or 

rotational speed will result in a shift of the operating point, delivering a non-desired output, and 

ultimately even causing a possible failure of the project [2]. 

Figure 3-2 Typical performance curves for PAT for various rotational speeds [2] 

Centrifugal pumps can be easily rotated as turbines in heads ranging from 15 to100 m and with 

flow rates ranging from 5 to 50 l/s (Figure 3-2). Figure 3-4 shows the application of different 

pumps working as turbines. Cross flow turbines can be replaced by centrifugal, mixed flow and 

double suction PATs. The ranges for mixed flow PATs are 5–15 m and 50–150 l/s for head and 

flow rates, respectively. For heads ranging from 15 to 100 m and flow rates ranging from 50 to 

1000 l/s, double suction pumps or multi centrifugal pumps in a parallel arrangement are suitable. 
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Pump manufacturers usually produce centrifugal and mixed flow pumps on a large scale, so these 

pumps are readily available on the market at a low price [4]. 

Figure 3-3 A centrifugal PAT-based pico hydropower station, installed in the West of Iran [4] 

Figure 3-4 Application of various pumps as turbines [4] 

Figure 3-5 An axial PAT based micro hydropower station, installed in the North of Iran [2] 

When a pump runs as a turbine, the high-pressure fluid enters the machine and then leaves after 

the conversion of the energy has occurred within the impeller. Since the flow direction and the 
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rotational speed are reverse, the velocity triangles of both modes change. Although only the shaft 

rotation and flow direction are opposite in pump and turbine modes, their velocity triangles are 

different [2]. 

Considerations show that the inlet flow angle to the impeller in a PAT is not exactly the same as 

the outlet flow angle of the impeller in the pump mode. This angle (av) is approximately equal to 

the volute angle. In fact, the volute operates as a guide channel in turbine mode. Assuming the 

outlet flow angle from the impeller in reverse operation is equal to the impeller inlet flow angle in 

direct operation (i.e. with no whirl at the impeller exit), the same Euler heads for both modes can 

be considered [2]. 

3.4 PAT Applications 

Nowadays, applications of PAT have been developed in villages, farms, irrigation systems, as 

pressure dropping valves and as small pump storage power stations. Since 1930, the main 

challenge in PAT usage was the selection of a proper PAT for a small hydro-site. Several case 

studies of applications of PAT will be reviewed in CHAPTER 4 and CHAPTER 5. 

3.5  Components of PATs 

Depending on the PAT type, the components of each machine are different. However, in general, 

PAT components are classified in two groups: rotary and stationary. The rotary group consists of 

the impeller and shaft. The stationary group includes the inlet parts (i.e., the inlet pipe and volute), 

outlet parts (i.e., the suction pipe and draft tube), and the casing and mechanical parts (i.e., rings, 

mechanical seals and bearings). However, the main hydraulic parts of a PAT are the impeller, 

volute and draft tube (Figure 3-6) [15]. 
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Figure 3-6 PAT components (www.processindustryforum.com) 

3.5.1 The Volute 

Although the volute of a PAT is designed to collect the water from the impeller of a pump, the 

design method for a pump is quite similar to a Francis turbine volute (i.e. a constant velocity 

method). Therefore, when the flow is reverse, the volute of a PAT will work properly as a 

distributor of the flow surrounding the impeller. However, the most important role of a volute is 

the balancing of radial pressure and forces. Figure 3-6 shows a typical volute of a PAT [200]. 

(Figure 3-7) 

Figure 3-7 Plan view of PAT [15] 
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3.5.2 The Impeller 

The impeller, the main component of a PAT, converts the hydraulic energy of the inlet flow to the 

mechanical shaft. Although the impeller has been designed to pressurize the liquid using the 

centrifugal force, it can also absorb the flow energy with a reasonable efficiency. The impeller 

usually has 5–8 blades, with a hydrofoil shape type [200]. An impeller and the details of a blade 

are presented in Figure 3-8. 

Figure 3-8 Impeller and details of a blade [15] 

3.5.3 The Draft Tube 

A small kinetic energy is required at the PAT outflow to minimize energy losses. Using a draft 

tube, the kinetic energy can be converted into potential energy. Therefore, a draft tube is designed 

based on the maximum conversion of velocity to pressure (according to the Bernoulli 

equation).Figure 3-9 shows a typical draft tube of a PAT [200]. 
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Figure 3-9 Draft tube of a PAT [15] 

 

3.6 A state-of-the-art review on PAT 

Hydropower is a renewable energy source based on the natural water cycle, and actually the most 

mature, reliable and cost-effective renewable power generation technology available [86]. It 

contributes to around 16% of the World electricity supply generated from about 20,053 TW h of 

installed capacity [87]. In many countries it is the main source of power generation e.g. Norway – 

99%, Brazil – 86%, Switzerland – 76% and Sweden – 50% [88].  

 

While large hydropower plants feed the national grid, typical off grid micro hydropower plant 

(MHP) is the most popular solution for electrification among rural communities, supplying the 

power in the range of 5–100 kW, usually using a run-of-the-river to divert some of the water from 

the river before dropping into a pressurized penstock [89]. 

 

However, in accordance with individual countries’ administrative purposes [90],[91], hydropower 

plants have been classified in terms of head or installed capacity, with different upper and lower 

limits for each category. Table 3-3 shows one of the used classifications as found in the literature. 
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Table 3-3 Hydropower scheme classification. [85] 

The mostly met problem in micro turbines is their higher price compared to full scale ones with 

respect to the whole project budget, owing to their expensive manufacturing price. For instance, 

it's very difficult, time-consuming, and costly to develop such site-specific turbines in accordance 

with the local ecology [91]. 

The cost of electro-mechanical components in large hydro-power plants is around 20% but in 

MHPs it is relatively high and varies from 35% to 40% of the total project cost which may rise 

even up to 60% or 70% of the total project cost in some typical cases [92] Figure 3-10. 

Figure 3-10 Cost distribution for large and micro hydropower plants.[92] 
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the first pump turbine had been set at a remote farm in the Yorkshire Dales of the North England 

in 1930. This scheme has been working for a five-year testing time, after which its reliability was 

confirmed before being transferred to other countries [93]. From then on, pump turbine has become 

a hot topic amongst researchers and field engineers, where indeed, it has been used at so many 

sites, mainly for electricity provision in remote hilly regions away from central grid reach (Table 

3-4).

Table 3-4 PAT installations [85] 

Different researchers; Williams [93], Orchard and Sander [94], Ramos and Borga [95], 

Derakhshan and Ahmad [21], and Arriaga [96] among others, have provided information about the 

applications and advantages of a pump working as a turbine, mainly basing their arguments on its 

two most important features: “cost-effectiveness” and “simplicity”.  Adding on the third one, 

“smallness”, which is also true in a way; However, owing to the philosophy behind the pump's 

functioning difference between conventional and reverse modes, pump turbines flow dynamics 

and operational characteristics have not been fully understood, thus requiring more research efforts 

in the same. As a matter of fact, many researchers have tried different PAT efficiency prediction 

methods but in vain, as the predicted results never got validated through experimentation, with 

errors of the order of ± 20% [97], and couldn’t cover a wide range of pump operating conditions 

in reverse mode. PAT's simple structural design would reflect its easily understandable operations. 

3.6.1 Pump-turbine selection 

Typical micro hydropower plants convert the falling water-contained energy to mechanical energy 

by turning the pump turbine, which converts the water pressure into mechanical shaft power to 
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drive an electric generator. The power available is proportional to the product of head and volume 

flow rate as the general formula for hydropower systems shows [98]: 

𝑃 ൌ  𝑔𝑄𝐻 

Equation 3-3 

where P is power output, η hydraulic efficiency, ρ fluid density, g gravitational acceleration, Q 

volumetric flowrate and H water head. As shown in Equation 3-3, the turbine selection process for 

a MHP of interest, should be based on the head and flowrate available at the site. The power output 

may also be related to the head to express the turbine specific speed. 

𝑁௦ ൌ
𝑛𝑃ଵ/ଶ

𝐻ହ/ସ
Equation 3-4 

where Ns is the turbine specific speed and n is the real rotation speed of turbine. This parameter 

characterizes the turbine runner, spiral casing, blade shape and other geometric design features, 

thus doesn’t depend on the size but the shape of the machine of concern [91]. For instance, two 

machines of similar shape and different size may have same specific speed. 

Different researchers; Orchard and Sander [94], Franc et al. [99], Chapallaz et al. [100], Fraenkel 

et al. [101] and Paish [98] among others, have so far provided head-flow charts depicting the range 

of application for different PATs (Figure 3-11). 

Figure 3-11 Head-flowrate selection chart [104] 
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PAT selection can also be carried out through a head-specific speed chart. Avellan [103] has 

presented a head-specific speed chart for Francis-type reversible pump turbines, where the PAT 

geometric design plays the key role in the classification process. PATs with narrow impeller 

channels at the runner inlet are characterized by high heads-low specific speeds, while PATs with 

wider impeller channels at the runner inlet are characterized by low heads-high specific speeds 

(Figure 3-12). 

Figure 3-12 Head-Specific speed selection chart [104] 

Kaunda et al. [90] has presented the systematic process of selecting the optimum turbine according 

to the site conditions, where both the importance of head-volumetric flowrate chart and the turbine 

specific speed were recognized (Figure 3-13), and different factors which can assist in pump 

selection decision making, viz. investment cost of the turbine, turbine design complexity, unit 

power generation cost, and the turbine performance, were discussed as well. 

Figure 3-13 Turbine selection flow chart for micro hydropower schemes [90] 
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3.6.2 Pump-turbine performance prediction 

due to the fact that the pump manufacturers do not offer performance curves of their pumps in 

turbine mode; the selection of a suitable pump turbine to run under site-specific operation 

conditions has become a big challenge [91]. A large number of theoretical and experimental studies 

have been done for performance prediction of reverse running centrifugal pumps [105]. 

Many researchers, e.g., Stepanoff [106], Childs [107], Sharma [5], among others, have developed 

PAT performance prediction relations based on pump best efficiency point (BEP) whereas others 

such as Gopalakrishnan [108], Diederich [109], and Grover [110] have developed their relations 

basing on the pump specific speed. However, theoretical prediction methods have not provided a 

completely reliable solution to the problem as their results were way erroneous as compared to 

field test results. Therefore, they may only be used to get a rough picture of the required PAT 

characteristics, which need validation adjustment by experimental methods. Selected PAT 

performance studies and their respective findings have been chronologically presented by Jain et 

al. [91] as shown in Table 3-5. 

Table 3-5 Performance prediction methods for pump-turbines. [85] 

Barbarelli et al. [23], after discussing weaknesses as found in many published PAT performance 

predictions methods [20],[111],[112],[113], came to a conclusion that the PAT performance 

prediction model universality can only be achieved if, through direct PAT geometry identification 

without disassembly, the PAT performance curves could be developed. 
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More intensive theoretical, experimental and computational studies have so far been carried out 

on the PAT performance prediction, which eventually resulted in a big literature about PAT 

performance prediction, as described in the following sections. 

3.6.2.1 Theoretical studies 

Nourbakhsh and Derakhshan [114] carried out an investigation on PAT performance in small 

hydrous by theoretical and experimental methods. Different existing empirical PAT performance 

prediction methods were compared, to finally come out with a favorable choice which can be used 

in general cases. From experimental results as performed on a complete laboratory model of a mini 

hydropower plant built in Tehran University, it was found that, the discharge, head and efficiency 

were higher in turbine than pump mode. the turbine power output was higher than pump input 

power, and finally, the slight impeller modification could result in a considerable efficiency 

increase, where the pump with higher specific speed was surely expected to exhibit higher turbine 

mode efficiency. However, no universally reliable PAT performance prediction formula or 

theoretical method was found. [112] 

Hossain et al. [115] carried out a comparative study between two mostly used theoretical PAT 

performance prediction methods (Chapallaz et al. [100] and Sharma [5] methods) to get an idea 

which is better than the others. The study, through a comparative scheme, concluded that Sharma 

method could only predict the PAT BEP and power whereas Chapallaz et al. method gave a wide 

range of operating points from minimum to maximum deviation, thus providing the access to the 

information about PAT operation at and away from BEP. 

Yang et al. [112] carried out a PAT performance prediction study in which three methods, viz. 

theoretical, numerical, and experimental methods, were used. The theoretical and CFD methods 

were more accurate than the other two methods (Sharma [5] and Stepanoff [106] methods), as 

shown in Figure 3-14 and Table 3-6. 
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Figure 3-14 Comparison between Pump (a) and PAT (b) experimental and numerical results. [85] 

Table 3-6 BEP predictions by various methods.[85] 

Williams [116] carried out a comparative study of eight different prediction methods on 35 pumps 

with specific speeds ranging from 12.7 to 183.3, where the main research focus was the impact of 

performance prediction methods errors (deviation between predicted and actual BEP values) on 

PAT operations. 
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Fernandez et al. [117] has, by applying experiments-derived pump hydraulic characteristics in both 

modes, modified the Euler's head equation to finally come up with a newly developed PAT 

performance prediction equation. It had been noticed that all PAT performance prediction methods 

were either, based on pump BEP characteristics similarity between both modes, or algebraic 

relations as a function of efficiency; where most importantly, the rotational speed was considered 

equal in both modes; which in fact was opposed in this study by considering different rotational 

speeds in both modes. 

Carravetta et al. [118] proposed the turbomachinery affinity laws modification scheme to eliminate 

the big discrepancy between PAT performance theoretical and experimental prediction methods. 

In order to obtain the PAT BEP characteristics at a speed 𝑁ூூ (𝑁ூூ≠𝑁ெ), the usual 

turbomachinery affinity laws were transformed to functions of the ratio (𝑁ூூ/𝑁ெ), as follows: 

Equation 3-5

Functions 𝑓ଵ, 𝑓ଶ, 𝑓ଷ and 𝑓ସ were obtained from experimental results on several submersible pumps 

operated at different speeds. Using Suter parameters in conjunction with the obtained modified 

affinity laws, the decrease of scatter between the calculated and measured values was achieved. 

Ramos and Borga [95] carried out a Suter parameters-based steady and transient flow regimes 

study aiming at proving the pump physical, economic and technical reliability not only in industrial 

processes but also in power generation sector. It was confirmed that using PATs is a good 

alternative to dissipation of excess flow energy that, normally would be lost. 
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Singh et al. [119] carried out a PAT performance prediction study at a 10 kW MHP site in Kinko, 

Tanzania; where the theoretically found results were compared to field performance 

characteristics. Deviation between the two methods outputs were noticed, where on-site 

characteristics at full load were slightly scattered from predicted ones with 4%, 2%, and 3% 

deviations for discharge, head, and electric power output respectively. 

3.6.2.2 Experimental studies 

Raman et al. [120] carried out an experimental study aiming at a better understanding of PAT 

characteristics. A centrifugal pump with 15.36, 22 m, and 8.31 l/s as specific speed, head, and flow 

rate respectively, was tested in a test rig as installed in the Mechanical Engineering Laboratory of 

the Universiti Tenaga Nasional. The pump selection process was performed following a 

reconnaissance technic as presented by Raman and Hussein [121]; 

Prasad et al. [92] carried out an experimental research to assess the PAT performance and 

cavitation characteristics. Two Kirloskar Brothers Limited (KBL) mixed flow pumps, namely 

pump A and B, having different specific speeds, were tested on a Maulana Azad National Institute 

of Technology-based test rig, at different rotational speeds, flow rates and heads. The experimental 

results were then compared to Chapallaz et al. [100] theoretical method ones, where different 

conclusions were drawn. It was found that, as usual, the heads and flows for turbine mode are 

always higher than in direct mode. However, the efficiency could be less or more irrespective of 

the pump specific speed. 

Daniela et al. [122] studied the PAT characteristics to get an idea of the PAT benefits as compared 

to normal turbines. The experimental data were collected from a medium size river-based plant 

which recently got upgraded from normal turbine to PAT-based site. The measured PAT 

parameters were then used, through basic turbomachines calculations, to get the complete PAT 

performance curves. It was found that PAT worked at higher flow rates and heads, whereas the 
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efficiencies were almost the same for both operating modes. PAT was found to work in turbine 

mode without any mechanical complications. 

Suarda et al. [123] presented an experimentally comparative research between two small pumps 

in their turbine operational modes, one of volute, another of diffuser type. Experimental findings 

showed the volute type performance more attractive than the diffuser type. 

Singh et al. [124] studied the effect of casing eye ribs on the pump turbine hydraulics and 

performance characteristics. Two pump models, casing rib absent (CRA) and casing rib present 

(CRP), were both numerically and experimentally studied; where commercially available 

software, CFX, for which the K-ℇ turbulence model was selected, was used for simulations. The 

PAT flow experimental and numerical analysis was comparatively carried out for two operating 

modes, CRA and CRP, at six operating points, namely, A (51% 𝑄)), B (70% 𝑄), C (88% 

𝑄)), D (100% 𝑄)), and E (116% 𝑄)), constituting the part, full, and over loads. The study 

results from both methods showed that CRA had higher efficiency and greater performance for the 

part load and overload operations as compared to CRP. A satisfactory similitude was noticed 

between experimental and numerical results, where the PAT exhibited good performance with 

82% as the highest attained efficiency. 

Nautiyal et al. [105] carried out an experimental study on PAT performance characteristics in the 

hope to come out with a more accurate prediction method. The test results on a pump of 18 (m, 

m3/s) as specific speed, running at 1500 rpm, confirmed that, as it had been demonstrated by many 

other researchers, the centrifugal pump can surely be used as turbine under various operating 

conditions, where the turbine operating mode is always characterized by higher flow rates and 

heads but with comparatively lower efficiencies. 

Derakhshan and Nourbakhsh [20], based on experimental results as performed on a mini-

hydropower test rig at the University of Tehran, has developed new correlation equations for PAT 

BEP prediction. Four centrifugal pumps in specific speeds range from 14.6 to 55.6 (m, m3/s) were 
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tested, where centrifugal pumps were again found to fit the turbine operating conditions with 

comparatively higher heads and flows and approximately equal efficiencies. 

Singh and Franz [125] developed a new consolidated model from experimental results on many 

pumps of different shapes (20–80 rpm), mainly targeting its parsimony on PAT performance 

prediction, selection, and evaluation, which are its three main segments; in order to find a lasting 

solution for PATs modelling and establish a new basis of evaluating uncertainties, based on 

fundamental theory of turbomachines. The prediction segment required the pump shape and size 

to come out with complete PAT performance characteristics. The selection segment required only 

the site head and flow data to determine the suitable pumps for specific sites. And finally, the 

evaluation segment compared the selected pumps and their characteristics to decide the most 

suitable PAT for specific operating conditions. 

Yang et al. [126] studied the influence of rotational speed to the PAT performance. In this paper, 

a rotational speed-based theoretical PAT performance prediction method was first developed 

where new correlation equations for flow rate, head, and shaft power; were developed as shown: 

Equation 3-6 

where the subscripts 1 and 2 stand for first and next operating conditions in terms of speed. 

Experiments were carried out on a Jiangsu University based-test rig at different rotational speeds, 

viz. 1000 rpm, 1200 rpm, 1500 rpm, and 1800 rpm. And finally, the PAT model was numerically 

analyzed. The numerical study was performed by a CFD commercial code Ansys CFX, where the 

k-ℇ turbulence model was adopted, and static pressure inlet and mass flow rate outlet were selected 

as inlet and outlet boundary conditions respectively. Test, numerical, and theoretical results were 

in a quite acceptable agreement. However numerically predicted efficiency, head, shaft power 
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values tended to be slightly higher than test ones by 4.85%, 2.31%, 5.39% respectively. 

Nevertheless, theoretical results were higher than the two first, where wider deviation was found 

in Shaft power predictions. The developed theoretical method was found reliable but needing some 

perfections to get even better results. 

3.6.2.3 Numerical studies 

Many researchers have shown that CFD analysis is a reliable tool to predict the behavior of a pump 

machine operating as a turbine and to estimate the performance curves of the turbomachinery 

[127]. With CFD, complex fluid flow behaviors inside the PAT can be virtually previewed, which 

can substantially reduce both the design time and cost. A big number of studies have been carried 

out aiming at PAT flow characteristics understanding and performance prediction. 

Ismail et al. [128] tested an end suction centrifugal pump by means of CFD simulations to 

determine its performance characteristics in both direct and reverse modes. The CFD modelling 

and simulations were performed by Ansys CFX14.0, where the K-ℇ was selected for flow 

turbulence modelling in a pump of 70 units (Euroflo EU50-20) as specific speed and working at a 

rotational speed of 1450 rpm. The computational domain was divided into three parts, viz. volute, 

impeller and draft tube; where inlet and outlet boundary conditions were set to mass flow rate inlet 

and static pressure out respectively. However, the reverse mode simulations had to be run at 1550 

rpm in accordance with the used induction generator's speed. The flow simulations were then run 

at flows varying from 0.7 to 1.3 QBEP. After comparing both modes CFD predicted results to 

pump manufacture-provided ones, it was observed that BEP was attained at higher flows and heads 

in turbine than pump mode. However, efficiency was found higher in pump mode (72.63% against 

71.62%). Numerical simulation method was confirmed viable for PAT performance prediction.  

Fernandez et al. [129] presented a 3D flow simulation study on a pump as turbine aiming at 

validating the experimental results as previously presented in [117], using the sliding mesh 

technique to capture the interactions between the impeller and the volute tongue. The PAT flow 

numerical simulation was performed through a CFD commercial code Fluent at a rotational speed 
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of 1750 rpm under five different flow regimes viz 50, 65, 80, 100, and 120 m3/h. The pressure 

velocity coupling was achieved by SIMPLE algorithm and Standard k-ℇ model was selected for 

turbulence modelling. Numerical simulation and experimental results showed a neat agreement, 

especially for head and Power predictions (Figure 3-15). 

Figure 3-15 Performance characteristics for pump and reverse modes [111] 

Páscoa et al. [130] carried out a numerical study on a centrifugal pump to check the validity of 

three randomly selected theoretical correlation methods, viz. Stepanoff, Sharma, and Viana 

methods. In this study, through a CFD commercial code Ansys Fluent, the flow in a NNJ125-250 

pump was modelled, where Reynolds Averaged Navier Stokes (RANS) equations were solved 

through Spalart-Allmaras turbulence model. PISO algorithm was used for pressure-velocity 

coupling and stagnation pressure in and static pressure out were chosen for inlet and outlet 

boundary conditions respectively. Theoretical results were compared to computational ones, where 

an acceptable agreement was finally noticed between both. A new approach for PAT power plant 

design was also developed; where at each constant head, it was now possible and easy to know the 

most efficient PAT rotational speed. All computational results in this paper were achieved through 

a frozen rotor approach. 

Peter and Varchola [130] carried out a numerical study on two mixed flow pumps, one with mixed-

flow diffuser, and the other with an axial-flow diffuser, in both direct and reverse modes; aiming 

at examining the optimal operational parameters in both modes through a comparative scheme. A 

good agreement was noticed between Computational and experimental results. 
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Nautiyal et al. [132] presented a review of some already published works on PAT performance 

prediction through CFD. It was shown that CFD usage in the area of turbomachines has seen 

extensive growth in recent decades. Generally, manufacturers don’t provide performance and flow 

characteristics of their pumps in turbine mode; so CFD has been a recent attempt for PAT 

performance prediction. It was mentioned that CFD made it possible to identify losses in different 

parts of PAT. However, there have been discrepancies between numerical and experimental 

predictions mainly from geometry simplification in computational studies, as reported in this 

paper. Nevertheless, it was pointed out that, numerical predictions accuracy would also depend on 

grid quality and numerical methods and used turbulence models. CFD was generally 

acknowledged as an effective design tool for PAT performance prediction. 

Rawal and Kshirsagar [133] carried out a study through both numerical and experimental methods 

on a mixed flow pump with the objective of analyzing the accuracy of computational tools for 

PAT studies. The PAT flow was first numerically studied at five different flows, viz. 60%, 80%, 

100%, 120%, and 140% of the BEP flow at a rotational speed of 1450 rpm. The k-ℇ turbulence 

model was adopted, where the chosen inlet and outlet boundary conditions were total pressure in 

and flow rate out, respectively. The experimental part was run at a test facility based at a major 

University in Karlsruhe, German (Figure 3-16). The single stage mixed flow pump with four mixed 

flow vanes was tested at three different speeds, viz. 800 rpm, 900 rpm, and 1000 rpm, under flows 

ranging from no load to maximum load. The agreement between computational and test results 

has been satisfactory. The numerical approach served in the identification of losses in PAT's 

different parts, and it was suggested that the use of finer mesh, better numerical methods and 

turbulence models, could improve on the numerical results accuracy. 
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Figure 3-16 Karlsruhe University-based testing facility [96]. 

Baburaj et al. [134] presented a literature about the usage of computational methods for PAT flow 

studies, performance prediction playing a core role. As an example, a computational study was 

carried out on a single stage centrifugal pump at 2880 rpm. The CFD commercial code Ansys CFX 

was used where total pressure and mass flow rate were chosen for in and outlet boundary 

conditions, with the mass flow rate continually varied to come up with a complete PAT 

performance curve. The CFD usage for PAT flow studies was confirmed reliable. 

Jovanović et al. [135] presented a comparative study between numerical and experimental results 

on a centrifugal pump running in both reverse and direct modes. In this paper, different PAT usages 

and performance prediction methods were discussed. From its different advantages over other 

mostly used methods, namely theoretical and experimental methods, CFD method was confirmed 

very effective for PAT flow studies. An example computational case-study was run through Ansys 

CFX commercial code, together with K-ℇ turbulence model for both modes, where extracted 

results were compared to collected experimental ones. Different frequently met problems in 

computational method usage were pointed out as well as their respective way outs. There was a 

good agreement between test and numerical results with comparatively small errors (less than4%). 
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Milan et al. [136] simulated the flow in the middle stage of a radial flow multistage PAT to get the 

flow pattern information for efficiency improvement through geometrical modifications if by any 

means needed. CFD commercial code Ansys CFX was used to solve the fully unsteady three-

dimensional RANS equations together with the shear stress transport (SST) turbulence model. The 

studied flow domain consisted of a six blades impeller with two different diameters (full and 

reduced) and an eight channels stator, where the selected boundary conditions were the flow rate 

and average static pressure for inlet and outlet boundary conditions respectively, for the turbine 

operational mode. Six interfaces, three rotor-stator and three stator-rotor interfaces, were used 

between rotor and stator, and the analysis was carried out at different rotational speeds and flow 

rates. The numerical results were in good agreement with experimental ones with an error of about 

13% from the neglected loss estimations in the numerical study. Full diameter impeller version 

showed a comparatively better performance, and it was found that the multistage pump doesn’t 

need any modification to become more efficient as it could get sufficiently higher efficiencies, 

unmodified. 

3.6.3 Pump-turbines stability aspects 

The general system stability aspect was defined by Greitzer [137] as the ability of the system to 

recover its initial state after a certain perturbation, where the system can either exhibit static or 

dynamic stability. The criterion for stability of the pump turbine is called dynamic when the shaft 

is disconnected from the generator and the speed of rotation varies with the unbalanced torque; On 

the other hand, when the pump turbine is connected to the generator with a frequency proportional 

to the electric grid frequency a static stability criterion applies [138]. In their everyday operations, 

pump turbines go through frequent switching between pump and turbine modes, thus sometimes 

working under off-design conditions. The fact that these machines can rotate and deliver the flow 

in two opposite directions, confer them the so called “four quadrants” operational characteristics 

at specific guide vane openings, allowing them to operate under five defined regimes, viz. turbine, 

turbine brake, pump, pump brake, and reverse pump (see Figure 3-17). Each regime characteristics 

and working conditions were presented by Amblard et al. [139]. 
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Figure 3-17 Four quadrant characteristics of a reversible pump turbine a) Flow-speed curve [139] 

A pump turbine is basically a compromise between the pump and turbine but the geometry is more 

like the pump. Pump turbines are generally known to have steeper speed-flow characteristics than 

Francis turbines of same specific speeds, which under certain operating conditions, may be the 

source of stability problems within the machine. The pump turbine stability aspect can thus be 

assessed through the slope of its characteristics curves for both pumping and turbine modes 

through head-flow and flow-speed curves [85]. 

Because the pump mode of operation is known to be very sensible to decelerated flow field, which 

results in flow separation and related hydraulic losses as well as possible self-excited vibrations; 

the design of pump turbines has to be carried out with a big emphasis on the pump operating mode 

characteristics. [85]. 

Pérez-Diaz et al. [140] have classified the pump turbines instability features into two types; the 

first occurring at low load off-design operating conditions closer to the runaway (zero torque) in 
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turbine mode, otherwise called the “s-shaped” characteristics (Figure 3-18), and the second 

occurring at part-load in pumping mode, generally called the “saddle-type” characteristics or hump 

characteristics. 

Figure 3-18 S-shape characteristics of a pump turbine [140]. 

According to Gentner et al. [141], the flow instability occurs in turbine mode when the head-flow 

and speed-flow curves have negative and positive slopes respectively (dQ/dH<0 and 

d𝑄ா/d𝑛ா>0), whereas for pump mode instability, the head-flow curve presents a positive slope 

(dQ/dH>0) (see Figure 3-19).  

Figure 3-19 turbine instability conditions for both reverse (b, c) and conventional (a) modes [141]. 

Another necessary but not sufficient instability criterion for pump-turbine generating mode was 

derived by Martin [142], and state that the slope of Torque-Speed characteristic (𝑇ா-𝑛ா) must 

be positive. However, with this slope being slightly positive, the system can still present stable 

characteristics depending on the fluid or the slope of flow-speed characteristics (𝑄ா െ 𝑛ா). The 

discharge, speed and Torque factors (𝑄ா, 𝑛ா and 𝑇ா) are expressed as: 
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Equation 3-7 

3.6.3.1 S-shaped characteristics 

The S-shape induced instabilities are associated with fluctuations in flow rate, torque, speed, and 

head that have negative effects on the pump turbine start up, synchronization with the grid, and 

load rejection processes. For pump-turbines operating in the S-shaped operating characteristics 

region, some speeds correspond to three different flow conditions with a positive slope along the 

operating line which results in both positive and negative torques which can easily damage the 

pump-turbine components [143],[144]. At the start up, the machine works at no-load conditions 

where the acquired hydraulic energy is totally dissipated in form of energy losses. The developed 

flow instability at these areas is characterized by torque fluctuations and can, at a certain point, 

affect the machine operating mode as well as inflicting significant fluctuations of head and flow 

with possible self-excited vibrations and noise [102]. For runners, it has been generally found that, 

in terms of operational damage, one start-up operation is equivalent to years of operation under 

normal operating conditions [145],[146]. 

 
Many researchers such as: Seidel et al. [147], Hasmatuchi et al. [148], Gentner et al. [141], 

Houdeline et al. [149], Wang et al. [150], Sun et al. [151], Sun et al. [144], Li et al. [152], Cavazzini 

et al. [153], Yin et al. [154], Guggenberger et al. [155], Zhang et al. [156] Casartelli et al. [157], 

Billdal and Wedmark [158], Chen et al. [159], Edinger et al. [160], Gong et al. [161], Stens and 

Stefan [162], Liu et al. [163],  have tried to explain the S-shape instabilities occurrence reasons 

and related flow dynamics, and the progress so far is of a substantial value. It was generally found 

that the S-shape induced instabilities are due to the head increase at part load, which is, in turn, 

associated to the blockage of some impeller channels by a developed rotating stall. 
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3.6.3.2 Saddle-type or Hump characteristics 

The saddle-type pump instability is undoubtedly the most challenging problem to face in order to 

significantly increase the operating range of pump-turbines in pumping mode, even in case of 

variable speed pump-turbine. The operation stability for a pump turbine operating in pumping 

mode is only attained when the difference of head between steady state characteristics of the water 

conduit and the pump, increases with increasing flow [164]. Any slight deviation from the system 

stability characteristics will result in system flow unsteadiness- induced abnormalities. 

 

Hump characteristics are a main feature of unstable behavior in pump turbines, which happen in 

pump mode under small discharge operation conditions [141], where strong noise can be heard 

during the starting period and the start time is prolonged [165]. Many more studies such as: Ješe 

et al. [166], Yao et al. [167], Li et al. [168], Liu et al. [169], Li et al. [170], Braun et al. [171], Liu 

et al. [172], have been carried out aiming at investigating, and by the way understanding the pump 

turbine instability under pump mode operating conditions.  

Many other objectives that can be found in literature all has been considered by many researchers, 

where the highlights can be listed as follow: 

Flow instability-related hydraulic phenomena 

a) Rotating stall 

b) Cavitation 

c) Rotor-stator interactions (RSI) 

Pump-turbine stability improvement attempts 

a) Misaligned guide vanes (MGV) 

b) Inlet valve throttling  

c) Case-sensitive attempts  
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4 Selection of PATs  

4.1 Methodology 

Various researchers have theoretically and practically presented relations to select a proper PAT 

for known hydraulic data. Figure 4-1 and Figure 4-2 show some data reported for the centrifugal 

PAT head ratio (h) and discharge ratio (q) based on the pump head and discharge respectively [21] 

[22]: 

Figure 4-1 Head ratios of the tested PATs with various pump specific speeds [20] 

Figure 4-2 Discharge ratios of the tested PATs with various pump specific speeds [21] 

The equations correspondent to the both Figure 4-1 and Figure 4-2 are: 
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Equation 4-1 

In these figures, the h and q of the PATs are shown in relation to the pump specific speed and 

maximum efficiency. The definition of the specific speed of the pump is: 

 

𝑁௦ ൌ  𝑁  
𝑄

.ହ

𝐻
.ହ 

 
Equation 4-2 

 
 It can be observed that two pumps with the same specific speeds could have a different h and q.  

For 𝑁௦ < 50, a higher specific speed leads to a higher efficiency for the fixed head drop. However, 

for 𝑁௦ > 50, it is the reverse. From Figure 4-1 and Figure 4-2, it is clear that the lowest h and q 

are related to 𝑁௦ > 50. 

 

A recent study developed by Novara et al. [25, 26] shows a set of PATs where the HBEP and 

QBEP have been plotted on the logarithmic H-Q space as in Figure 4-3, highlighting with different 

colors the maximum efficiency of each machine for the radial PAT range presented by Chapallaz 

[27]. 
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Figure 4-3 PAT maximum efficiency ranges against the H-Q space [25,26] 

References [25] , [26] have developed analyses based on several PATs and proposed a three-

dimensional representation of PAT efficiency (where Ns corresponds to 𝑁௦). 

 

 These selected machine PAT plus generator units are shown in Figure 4-4, while a two-

dimensional contour chart similar to the one proposed for pumps by [27] is presented in Figure 

4-5.  

 
 

 

 
 
 

Figure 4-4 Proposed 3D representation for PAT efficiency estimation against the real efficiency of selected machines [28] 

 
 According to Figure 4-5, PATs with higher capacity and medium specific speeds of 50 have a 

better efficiency: to obtain the maximum efficiency in a pump working in reverse mode, devices 
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with lower rotational speeds and higher capacities are recommended for specific speeds less than 

50. 

 
 
Figure 4-5 2D contours of the proposed function for PAT efficiency plotted against the nominal flow rate and specific speed of 

selected machines [28] 

 
 

Figure 4-6 Head ratios of tested PATs with various pump maximum efficiencies [20] 

 

 
 

Figure 4-7 Discharge ratios of tested PATs with various pump maximum efficiencies [20] 

Based on PAT theory [20], pumps with a higher efficiency work in lower h and q in turbine modes. 

From Figure 4-6 and Figure 4-7, the following relations can be found: 

ℎ ൌ  
1.2


ଵ.ଵ 
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Equation 4-3 

 

𝑞 ൌ  
1.2


.ହହ 

 
Equation 4-4 

 
From Figure 4-8, the pump specific speed can be selected using the turbine specific speed with the 

following estimated relation: 

𝑁௦ ൌ 1.125 𝑁௦௧  1.73 
 

Equation 4-5 

 

 
 

Figure 4-8 Turbine specific speed versus pump specific speed [20] 

where: 

𝑁௦௧ ൌ  𝑁௧
𝑄௧

.ହ

𝐻௧
.ହ 

 
Equation 4-6 

 
 

It is useful to mention that a pump in inverse mode operates at its BEP always with a flow rate and 

head drop larger than in direct mode. Therefore, energy dissipations connected with the flux of 

water in the machinery are also greater in reverse mode. 

There are various methods available in literature to select h and q, based on theoretical and 

practical issues presented by certain researchers. However, none of the methods presented can 



Selection of PATs 

 

predict the PAT behavior perfectly. The most commonly used methods to obtain values of h and 

q are summarized in Table 4-1. 

In Figure 4-9and Figure 4-10, the results of the design methods of Equation 4-3 and Equation 4-4 

are compared with the results of the methods presented by Stepanoff and Sharma. 

 

 

 
Table 4-1 Review of methods to determine non-dimensional head and flow parameters (adapted from [30]) 

 

 
 

Figure 4-9 h of the tested PATs with various pump maximum efficiencies [20] 
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Figure 4-10 q of the tested PATs with various pump maximum efficiencies [20] 

4.2 Estimation of Characteristic Curves 

Although a PAT may work at off-design conditions, most prediction methods have only predicted 

the BEP of the PAT. Therefore, estimating the complete characteristic curve of a PAT based on 

its BEP would be very expedient. Experimental data have shown that the dimensionless 

characteristic curves of centrifugal PATs based on their BEP are approximately the same. The 

above-mentioned dimensionless head and power curves of a PAT can be estimated as below, using 

second and third order polynomials, respectively [31] and [32]: 

𝐻௧

𝐻௧
ൌ 1.0283 ቆ

𝑄௧

𝑄௧
ቇ

ଶ

െ 0.5468 ቆ
𝑄௧

𝑄௧
ቇ  0.5314 

Equation 4-7 

𝑃௧

𝑃௧
ൌ െ0.3092 ቆ

𝑄௧

𝑄௧
ቇ

ଷ

 2.1474 ቆ
𝑄௧

𝑄௧
ቇ

ଶ

െ 0.8865 ቆ
𝑄௧

𝑄௧
ቇ  0.0452 

Equation 4-8 

To predict the operation of a PAT outside the BEP, other experimental reports are obtained from 

tests carried out on seven types of pumps, supplied by Caprari, with 𝑁௦ between 14 and 16 (m, 𝑚ଷ 

/ s) (Artina, Bragalli, Liserra, Marchi, & Naldi, 2010) The efficiency curve can be obtained for 

each point by: 
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Equation 4‐9 
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Equation 4‐10 
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Equation 4-11 

However, it must be noted that this method can only provide an approximate view of the 

characteristic curves of a PAT. 

 

In a recent study [33] a large data set relative to the behavior of 17 different pumps operating as 

turbines has been analyzed, as shown in Table 4-2. The following considerations were possible by 

means of the comparison of the classic affinity law with experimental data: 

 

 the agreement between the experimental and the calculated curves is worse when the 

difference between the rotational speed of the prototype and that of the simulated machine 

increases; 

 the entity of the discrepancies is not dependent on the machine type; 

 when the characteristic curves are calculated by means of the affinity law and Suter 

parameters with a 20% difference in rotational speed compared to the prototype, the error 

in the evaluation of the head drop is lower than 3%; 

 out of the above-mentioned range of differences in rotational speed compared to the 

prototype, the error in the evaluation of the head drop could be as large as 12%, and the 

mean error in the whole range of rotational speed is 4.8%; 
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 the error in the evaluation of η is less than 15%, if the difference in rotational velocity with 

the prototype ranges between −40% and + 50%; 

 out of the above-mentioned range of differences in rotational speed compared to the 

prototype, the error in the evaluation of η could be even larger than 40%, and the mean 

error in the whole range of rotational speed is 7.1%. 

 
 
Table 4-2 Machine data set 

 

 
 

To overcome these problems, a new model (Relaxation of the Affinity Equations—RAE) for the 

estimation of the performance of semi-axial PATs has recently been proposed, based on the 

following experimental evidence: 

 the efficiency at the BEP attains its maximum value 
ெ  for a specific rotational speed 

Nmax, and Nmax depends on some geometrical parameters of the machine; 
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 the position of the BEP at a certain value of speed (N) depends on the ratio (N/𝑁ெ);

 generalized dimensionless performance curves h = h(q), p = p(q) and e = e(q) can be

defined for a given pump type, based on experimental results (instead of Suter parameters),

where:

𝑞 ൌ  
ொ

ொಳ
      hൌ  

ு

ுಳ
     Pൌ  



ಳ
     eൌ  


ಳ

 
Equation 4-12 

In Figure 4-11 the geometrical parameters of a semi-axial PAT useful for the identification of 

𝑁ெ are shown: D is the diameter of the runner, u the diameter of the PAT body and F the length 

of the PAT stage. The following relation was found to be representative of the experimental results: 

𝑁௫ ൌ  𝛼𝐷𝐹 

Equation 4-13 

Figure 4-11 Geometrical parameters of a semi-axial PAT [34]. 

The new generalized characteristic and efficiency curves determined by a calibration with the 

experimental data set of the Submersible Semi-axial Single-stage pumps of Table 4-2 Machine 

data set are plotted in Figure 4-11. By the use of RAE, the error in the evaluation of the head drop 

has been reduced to 3.9%, and the error in the evaluation of η has been reduced to 2.5%, compared 

with a 4.8 and 7.1% error, respectively, relating to the classic affinity law (Figure 4-12). 
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Figure 4-12 Generalized characteristic and efficiency curves by RAE [34] 

Even if no such an in-depth analysis has been performed for other pump types, some 

recommendation can be derived in the use of the affinity law for all pump types and in the design 

of mini and micro hydro power plants using industrial PATs. The potential discrepancies in terms 

of pressure drop and efficiency between the real PAT behavior and the theoretical prediction are 

small for small differences in rotational speed compared to the test conditions (± 20%). Even in 

the presence of large differences in the rotational speed the error in terms of pressure drop is 

contained, but the difference in terms of efficiency could become huge. As a consequence, in the 

absence of any experimental data coming from industrial tests, the main problem in power plant 

design could be an overestimation of the PAT production. 



Selection of PATs 

 

 

4.3 Performance, Stability and suitable Machinery 

4.3.1 Introduction 

The main challenge related to PAT field application is that pump manufacturers do not usually 

provide the performance curves of pumps running in reverse mode. The designer therefore lacks 

data, which negatively affects the choice of the most suitable machine. Therefore, establishing a 

correlation that enables the transformation from pump performance curves to turbine performance 

curves is crucial. Many researchers have presented some theoretical and empirical relationships 

for predicting the Best Efficiency Point (BEP) of a PAT. 

 

Derakhshan and Nourbakhsh tested several centrifugal pumps while running as turbines and 

derived some relationships to predict the respective best efficiency points based on pump hydraulic 

characteristics. Two equations were also presented to estimate the complete characteristic curves 

based on their best efficiency point [20]. 

 

 The same authors predicted the best efficiency point of an industrial centrifugal pump running as 

a turbine by using a theoretical analysis and also simulated the pump in direct and reverse modes 

by using a three-dimensional computational fluid dynamic model [21]. More recently, Derakhshan 

and Kasaeian have further investigated the use of computational fluid dynamic tools to optimize 

the geometry of the blades of an axial pump used as a propeller turbine, to achieve maximum 

hydraulic efficiency [22]. 

 

Barbarelli et al. [23] presented a one-dimensional numerical code, with the aim of identifying the 

geometry and performance of a generic PAT based on passage sections and losses in each section 

of the machine. Starting from catalogue information and using design techniques, the one-

dimensional numerical code computes a virtual geometry and then calculates fluid dynamic losses 

to estimate the geometrical parameters involved in the simulation. The method was validated by 

using laboratory test data for six PATs. 
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Barbarelli et al. [24] also presented the results of an experimental and theoretical activity regarding 

PATs. The experimental activity dealt with twelve pumps measured both on a test rig and during 

normal operation. A statistical method involving polynomials was implemented, thus allowing the 

determination of performance curves. 

 

 

4.3.2 Model Description  

The knowledge of the geometrical parameters of a generic PAT is fundamental both for calculating 

the hydraulic losses and the characteristic curves. The proposed idea consists of the reconstruction 

of a geometric model or prototype to refer to the application of hydraulic correlations of habitual 

use. This prototype has to be similar to the machine studied but simpler. 

 

Figure 4-13 shows the geometrical shape taken as a reference. The geometric model presents a 

straight conical suction and a volute with a rectangular section with linearly variable height. The 

final diffuser has a truncated pyramid shape. 

 
 

Figure 4-13 Reference geometry. [23] 

All useful geometrical parameters are computed as Lobanoff [3] suggests. The sizing procedure of 

the reference prototype needs the knowledge of 6 parameters available in the manufacturers 

catalogues: head (𝐻) and flow rates (𝑄) at BEP of the pump, maximum power 𝑄𝑃, head (𝐻) 
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at the shut off, impeller diameter (𝐷ଶ) and size of the pump (𝑌). It also makes use of other 

secondary parameters like surface roughness, blade thickness, clearances, materials employed and 

so on, which do not change significantly from pump to pump. They are estimated by experience 

and directly implemented in the model. 

 

In Figure 4-14 a flow chart, which summarizes the fundamental steps related to the geometry 

calculus, is illustrated. All the above-described inputs are highlighted in the orange boxes (in the 

web version) while the outputs are set in the blue boxes (in the web version). 

 

The main input visible in Figure 4-14 is the specific speed ns of the PAT defined as: 

𝑛௦ ൌ 𝑛
ඥ𝑄

𝐻
.ହ 

Equation 4-14 

This parameter is the input of the 4 blocks (design charts) stacked on the left of the figure: 
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Figure 4-14 Flow chart of the geometry modelling. [23] 

From the first block (D1/D2 vs 𝑛௦) it is possible to get the impeller eye diameter (D1); this 

parameter allows calculating the impeller width (𝑏ଵ) at section 1 as: 

𝑏ଵ ൌ  
𝐷ଵ െ 𝐷ଵு

2
 

1
cosሺሻ

Equation 4-15 
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The  angle represents the inclination of the blade with respect to the radial direction. For all the 

pumps measured at the hydraulic laboratory of the DIMEG this parameter is about 40. The hub 

diameter 𝐷ଵு present in Equation 4-15 is calculated once the shaft diameter 𝐷௦  is defined by 

means of the maximum power 𝑃 of the pump as: 

𝐷௦  ൌ  ∛ሺ16𝑃_𝑒ሻ/ 

Equation 4-16 

The formula is applied by referring to iron usually employed for these applications with a torsional 

stress  of 7.5 MPa on average [35]. The hub diameter 𝐷ଵு is then calculated as: 

𝐷ଵு ൌ  𝑘ଷ𝐷௦  

Equation 4-17 

From measurements taken on the sample pumps it results that the coefficient 𝑘ଷ is about 1.5. 

From the second block (𝐻/𝐻 vs 𝑛௦) the number of blades z and the vane angle (ଶ) can be 

obtained. 

From the third block ( vs 𝑛௦) the impeller width (𝑏ଶ) at section 2 can be determined as follows: 

𝑏ଶ ൌ  
𝑄

ሺ𝐷ଶ െ  
𝑧ଶ

sin ቀଶቁ
ሻ

Equation 4-18 

The thickness 𝑡ଶ to which the model refers is set to 0.002 m. From the fourth block (𝐾௩ vs 𝑛௦) the 

exit volute Area 𝐴ସ can be determined as: 

𝐴ସ ൌ  
𝑄

𝐾ඥ2𝑔𝐻
Equation 4-19 
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Figure 4-15 Geometry of the sector j [23]. 

Volute width (𝑏ସ) is constant and equal to the maximum value between the square root of A4 and 

a recommended value related to the impeller width𝑏ଶ. Volute height is, on the contrary, variable 

along the angular position, with linear law, from zero to ℎସ = 𝑏ସ. In the next sections, the two 

parameters ℎସ, 𝑏ସ are also identified as 𝑏௩ and ℎ௩ (throat section of the volute). 

Finally, the final diffuser length 𝑙ௗ is derived from the pump height 𝑦: this data available in the 

catalogue represents the distance between the center of the impeller and the diffuser exit. By 

considering that the diffuser is designed as a truncated pyramid with an inclination angle 𝛼ௗ, the 

final size of this component, set as a square section, is obtained as: 

ℎହ ൌ  𝑏ହ ൌ  𝑏ସ  2
𝑙ௗ

cos 𝛼ௗ
Equation 4-20 
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Figure 4-16 Outline of the volute geometry. [23] 

The angle 𝛼ௗ to which the model refers, is set to 3.5 

Table 4-3 Hydraulic losses. [23] 

4.3.3 Calculation of the losses model 

The losses model is strictly referred to that exposed in [36] with in addition the evaluation of the 

losses in the diffusion region between the volute and the impeller due to vortex motions which 

happen mainly due to low flow rates [37]. 

The calculation model is applied to the various sections of the above-developed geometric 

prototype and shown in Figure 4-13. The losses evaluation is divided into: inlet (Section 5), volute 

(Section 4), diffusion region (Section 3), impeller (Section 2) and discharge (Section 1). 
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The velocity triangles are determined at Sections 1 and 2 of the impellers. In the diffusion region, 

between impeller and volute, velocities are determined assuming a free vortex motion (cur = 

const). In order to obtain velocities along the volute, it was ideally divided into N sectors (see 

Figure 4-15 and Figure 4-16). 

 

 
 

Figure 4-17 Head calculus flow chart. [23] 

Velocities are expressed through the conservation of mass ሺ𝑄 ൌ   𝑐 𝐴ሻ into the final diffuser. 

Two kinds of losses are distinguished: friction losses and dynamic losses, both determined by the 

velocities, according to following formulas: 

ℎ ൌ  
𝑐ଶ

2𝑔
൬

1
𝐷

൰ 

 
Equation 4-21 
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ℎௗ ൌ  
𝑐ଶ

2𝑔
 

Equation 4-22 

 

 
 

Figure 4-18 Leakage path. [23] 

Now it is necessary to obtain the hydraulic diameters [38] and coefficients of both dynamic (z) 

and friction (l) losses. Generally, the l coefficient is obtained from Colebrook's formula but 

paying attention to the vanes camber (RB) when the calculus is referred to the impeller [39] and 

[40]. 

 

Regarding the losses evaluated in the diffusion region (Section 3 of Figure 4-13), a further loss is 

computed at low flow rate because of vortices in this region which reduce their dimension when 

the flow increases [37]. The loss is computed as: 

 

ℎ௪௪ ൌ 𝑘 ሺ𝑄 െ 𝑄ாிሻଶ 
 

Equation 4-23 

The coefficient k is estimated by [24] by means of the following statistic correlation set up on the 

pumps sample tested at hydraulic test rig [35]: 
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𝑘 ൌ  
1

53.67  0.0077 . 𝑛௦
ଷ.ସସ 

Equation 4-24 

where ns is the specific speed of the PAT. 
 

Finally, the distributed losses into the impeller have been estimated by introducing an average 

diameter as Neumann suggests [38]. 

 

4.3.4 Result 

 

For validating the model, six centrifugal pumps measured at the DIMEG of the University of 

Calabria, at the CNPM in Milan and at the University of Trento, have been used. In the next 

table (Table 4-4). 

 
Table 4-4 Main parameters of the six pumps. [23] 

 
 

the main inputs of the six Pumps, useful for applying the sizing procedure, are reported.  All 

these pumps have specific speeds between 9 and 65 [rpm 𝑚ଷ/ସ𝑠ିଵ/ଶ]. 

 

The model can be used in: 

 “design mode”: the design step is performed and the unknown geometry is then 

reproduced. 

 “geometry known mode”: the geometrical parameters are known. 

 “mixed mode”: some geometrical parameters are known; the others are calculated by the 

model. 
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The following figures (from Figure 4-19 to Figure 4-30) show a comparison of the calculated 

curves with the experimental ones, for the six PATs when the model operates in “design mode” 

(from Figure 4-19 to Figure 4-24) and when it operates in “geometry known mode” (from Figure 

4-25 to Figure 4-30). 

 

 
 

Figure 4-19 Head (a) and efficiency (b) for the PAT 40-335 (𝑛௦ = 9.1) - design mode. [23] 

 
 

Figure 4-20 Head (a) and efficiency (b) for the PAT 40-250 (𝑛௦ = 12.5) – design mode. [23] 
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Figure 4-21 Head (a) and efficiency (b) for the PAT 50-160 (𝑛௦ = 28.7) – design mode. [23] 

 
 

Figure 4-22 Head (a) and efficiency (b) for the PAT 80-220 (𝑛௦= 30.3) – design mode. [23] 

 
 

Figure 4-23Head (a) and efficiency (b) for the PAT 80-200 (𝑛௦= 34.1) – design mode. [23] 
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Figure 4-24 Head (a) and efficiency (b) for the PAT 100-160 (𝑛௦ ൌ 64) e design mode. [23] 

 
 

Figure 4-25 Head (a) and efficiency (b) for the PAT 40-335𝑛௦ ൌ  (9.1) e geometry known mode. [23] 

 
 

Figure 4-26 Head (a) and efficiency (b) for the PAT at 40-250 (𝑛௦ ൌ 12.5) e geometry known mode. [23] 
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Figure 4-27 Head (a) and efficiency (b) for the PAT 50-160 (𝑛௦ ൌ 28.7) e geometry known mode. [23] 

 
 

Figure 4-28 Head (a) and efficiency (b) for the PAT 80-220 (𝑛௦ ൌ 30.3) e geometry known mode. [23] 

 
 

Figure 4-29 Head (a) and efficiency (b) for the PAT 80-200 (𝑛௦ ൌ 34.1) e geometry known mode. [23] 
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Figure 4-30 Head (a) and efficiency (b) for the PAT 100-160 (𝑛௦ ൌ 64) e geometry known mode. [23] 

 
Figure 4-31 Comparison, for the PATs 40e250 (left side) and 50e160 (right side), between experimental data and numerical 

simulations (new model e dashed line e and old model [23] 

Each figure shows the characteristic curves (a) and the efficiencies (b) for turbine behavior. The 

plots of both computed and measured data are shown. In all the figures a band of 5% is added to 

the measured head and to the measured efficiency. In some cases, for the PAT 100-160 operating 

both in design mode and in geometry known mode (Figure 4-19 and Figure 4-30) and for the PAT 

80-220 operating in design mode (Figure 4-28) the band has the wide of 10%. 

 

The from Figure 4-19 to Figure 4-30 show that the model is able to predict the performances of 

different PATs the geometry of which changes significantly, according to the specific speed. The 

results are obviously better if the model works in geometry known mode, i.e. the geometry is 

known, as Figure 4-25, Figure 4-30 illustrate. The worst prediction is made for the head of the 
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PAT 80-220 (Figure 4-28) and of the PAT 100-160 (Figure 4-24): it improves when the model is 

applied in geometry known mode. 

 

At low flow rates, the model is often unable to predict the trend of the head giving errors up to 

25%. As it is a one-dimensional model, it cannot take into account vortex or reverse flows that 

modify the velocity field significantly, particularly when the flow rate is low and, with the same 

cross-section areas, the patterns are less regular [37]. If the vortex distribution were known it would 

be possible to calculate the root-mean-square velocity which is greater than the mean velocity. 

Furthermore, the flow rate reduction could give an increase of friction loss coefficient, as in small 

machines the Reynolds number is in the transient region. For all these reasons at low flow rates 

the errors in losses calculation can increase. 

 

Nevertheless, through the evaluation of the new loss ℎ௪௪ the model improves its prediction 

with respect to that presented in Ref. [36]. Figure 4-31 shows a comparison between the heads 

evaluated without the loss ℎ௪௪ [36] and the heads evaluated by considering what is shown for 

the PAT 40-250 and for the PAT 50-160. Figure 4-31 shows how the new loss introduced in this 

work compensates the difference between the calculated head and measured one in the field of the 

low flows, leaving them unchanged at increasing flows. 

 

When the flow rates Q are close to the BEP (see Figure 4-19 - Figure 4-30), the predicted curve 

lies closer to the real one, within a range of ±5%. The calculated curves related to the efficiency, 

although their trends agree with the real ones, are higher than the latter. From a comparison of the 

above-illustrated figures an overestimation of the efficiency in the range of 5 ÷ 15% results. 

 

This aspect can indicate an underestimation of some loss, but at the moment the measurement 

strategies adopted do not allow the entity of the single losses and their weight to be distinguished 

in relation to the total efficiency. So, with respect to each single loss, it is impossible to assess 

between theoretical and experimental data and consequently it is impossible to understand what 

loss has been underestimated. In the next from 20 to 25, the loss distribution at BEP in percentages 

for the six PATs, ordered with 𝑛௦ increasing when the model operates in “design mode”, is anyway 

reported. 
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Figure 4-32 Losses distribution at BEP e PAT 40-335 𝑛௦  = 9.08. [23] 

 

Figure 4-33 Losses distribution at BEP e PAT 40-250 𝑛௦  = 12.80. [23] 

 

 

Figure 4-34 Losses distribution at BEP e PAT 50-160 𝑛௦  = 28.70. [23] 
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Figure 4-35 Losses distribution at BEP e PAT 80-220 𝑛௦ ൌ 30.31. [23] 

Figure 4-36 Losses distribution at BEP e PAT 80-200 𝑛௦ ൌ  34.11. [23] 

Figure 4-37 Losses distribution at BEP e PAT 100-160 𝑛௦ ൌ 64.07. [23] 

The figures shown above demonstrate that generally the rotor losses increase while the stator losses 

decrease with 𝑛௦. This is anyway only an indicative trend, because of the peculiarity related to 

each single PAT and it points out the difficulty of predicting the BEP localization by the simple 

correlations based only on 𝑛௦ [41] and [42]. 
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On the other hand, this is an important result that gives indications on the experimental activities. 

In the next research steps [23] tried to measure the losses in the stator because it is easier to insert 

probes in the stator than in the rotor. 

 

Differently from the simple correlations found in the literature [41] and [42], the BEP prediction 

of the proposed model is more satisfactory. In Table 4-5and Table 4-6 head and capacity at BEP, 

carried out by the model both when it operates in design mode (Table 4-5) and in geometry 

known mode (Table 4-6), are reported. In these tables the calculated values (_calc) and the 

measured values (_meas) are reported, as well as their relative errors. The PATs 80-220 and 80-

200 totalize the worst predictions in design mode: the errors on the Head are about 20%. 

 

Table 4-5 Head and flow rate data at BEP: computed by model (_calc) and experimental (_meas) e model operating in “design 
mode”. The highest errors are highlighted with gray shade. [23] 

 

 

Table 4-6 Head and flow rate data at BEP: experimental (_meas) and computed by model (_calc) e model operating in 
“geometry known mode”. The highest errors are highlighted with gray shade. [23] 

 

 

 

In the last column of the two tables, the prediction indicator C, proposed by Williams [43], is also 

reported. This indicator, expressed by the following formula, has the meaning of a weighted 

“distance”, in a normalized H-Q plane, between the foreseen BEP and the real one. 
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Equation 4-25 

In the plane H-Q, a curve defined by C = const is an ellipse. The prediction is acceptable if C <1. 

When C = 1, the maximum allowed variations of H and Q with respect to BEP are 21% following 

the major axis of the ellipse and 7% following the minor axis. In the next from Figure 4-37 to 

Figure 4-41, the Williams Ellipses corresponding to values of C from 0.25 to 1.75 are reported. In 

these figures the forecasts of Childs [41], Hancock [44], Stepanoff [45] , Sharma [46], Alatorre 

[47], Schmield [48], Hergt [42], Grover [50], together with the prediction of the model when it 

operates in “design mode” and in “geometry known mode”, are also reported. In all the cases 

shown, the prediction of the model is inside the ellipse corresponding to C = 1. 

 
Figure 4-38 Predictions comparison in the Williams plane for the PAT 40-335. [23] 
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Figure 4-39 Predictions comparison in the Williams plane for the PAT 40-250. [23] 

 
Figure 4-40 Predictions comparison in the Williams plane for the PAT 50-160. [23] 
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Figure 4-41 Predictions comparison in the Williams plane for the PAT 80-220. [23] 

 
Figure 4-42 Predictions comparison in the Williams plane for the PAT 80-200. [23] 

The prediction performed by the model operating in design mode (Unical Des) is quite good (C _ 

0.7). Sharma's method, in second place according to William's criterion, has also C _ 1, but for the 

50-160 pump, C is near to 1. The model, by using geometry known mode (Unical Geom), obtains 

even better results but, of course, this change is not useful at PAT selection time. 
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Finally, in the next tables (Table 4-7and Table 4-8) a comparison between the efficiency calculated 

at BEP by the model and the efficiency measured at BEP is shown both when the model operates 

in design mode and in geometry known mode.  

 

Table 4-7 Efficiency at BEP: computed by model (_calc) and experimental (_meas) e model operating in “design mode”. The 
highest errors are highlighted with gray shade. 

 

 

Table 4-8 Efficiency at BEP: experimental (_meas) and computed by model (_calc) e model operating in “geometry known 
mode”. The highest errors are highlighted with gray shade. 

 

The model improves its prediction when it works in geometry known mode for the PATs 40-335, 

40-250 and 50-160. While for the PATs 80-220 and 80-200, although the predictions of the 

efficiency at BEP are worse, the predicted trends are better if the model operates in geometry 

known mode. The PAT 100-160 exhibits the maximum errors of the order of 21% in both modi 

operandi.  
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Anyway, the data shown in the above tables indicate that the global efficiency predicted is always 

greater than the global efficiency measured except for the pump 40-315 with a mean 

overestimation of 6%. Nevertheless, the graphs shown in Figure 4-19 to Figure 4-30 indicate that 

the efficiency curves trend agrees with the experimental one. 

 

4.3.5 Conclusion 

A numerical model, to foresee the performances of centrifugal pumps used as turbines, has been 

proposed. The main characteristic of the model is its capability to operate only with input coming 

from pumps’ catalogues. It performs a standard design of the pump, in order to take into account 

geometrical parameters, without the burden of measuring them.  

 

Using the experimental test on 6 centrifugal pumps with specific speed between 9 and 65 the model 

has been validated by comparing the head and efficiency foreseen with the measured ones. 

Differences noticed are in some cases wide but the BEP localization is instead satisfactory. The 

computed head-capacity curves show a trend similar to the measured ones with the highest relative 

error at BEP of 21.4% in Head prediction of KSB 80-200. 

 

When actual detailed geometrical parameters are given, the error is reduced to 7.2%. As further 

expedient to validate the goodness of the model, the Williams's indicators of the model predictions 

are better than the ones carried out by correlation formulas proposed by 8 different authors. 

 

The errors of the model are lower when the real geometrical data (the measured ones) are known: 

this means that the first part of the proposed model, which performs the pump sizing, has, 

obviously, influence on the final results and it can be improved.  

 

Finally, the model gives a good trend of the performances curves which generally agree with the 

real ones although the predicted efficiency is slightly higher than the real one. The overestimation 

of the efficiency can be due to an underestimation of some loss, but at the moment it is impossible 

to establish what. To be certain of the real value of the losses as well as of other parameters 

involved in the model such as, fluid dynamic angles, friction coefficients, vortex distribution and 

so on, experimental strategies and separated measurements are necessary. However, any similar 
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comparison is a hard challenge because of the difficulties involved in inserting probes into the 

machines while they are working. The next step of this research is to find the best measurement 

strategies for improving the model estimations and its reliability despite the good level achieved 

so far. [23] 

 

 

 

4.4 Market Obstacles (Interview) 

4.4.1 Interview 

 

Interviewee: Mr. Ing Holger Winter 
 

 

KSB SE & Co. KGaA, Verkauf Installed Base 
Address: Vertriebshaus Hamburg Carl-Zeiss-Straße 4-6, 21465 Reinbek 
Mobil: +49 172 625 1353 Festnetz: +49 40 69447-229 Fax: +49 40 69447-255 
Mail: holger.winter@ksb.com 
Website: https://ksb.com 
 

Regarding to an interview with Mr. Ing Holger Winter, a mechanical engineer as an advisor of the 

Hamburg region of KSB, one of the leading companies in centrifugal pumps industry. During his 

professional career, he was part of the main team of the PAT production line in the KSB. Author 

asked him about the certainty in the PAT market, he developed his answer as below: 

 

Since in the northern part of Germany there are not many hills, obviously this contact with the PAT 

technology can be rare somehow. All over a year maybe 10 times being in touch with customers 

who are interested in PAT. By considering significant Advantages of PAT like almost maintenance 

free technology, very low emission rate, Simple technology... still the market of the PAT is very 

uncertain. One reason for that could be the topography of the region. Specially in Hamburg, 

Germany is a very flat area in compare of other part of the Europe. Another problem is that not so 

many people are aware of using this technology as a simple alternative for Hydro-generating. 

Another point to be consider is for big producing company such as KSB, the small demand for this 
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technology is another big issue. Where those companies try to produce hundreds of thousands 

pump per year, and in compare of a very small market demand such as 20 Pump as Turbine per 

year, is not a high number for them. 

For few years KSB had a special department for PAT. also the company itself pushed the product 

into the market. advertising and promoting it worldwide. But for a few numbers of project potential 

customers showed interest. For example, between 20 interests we received 5 orders. That was not 

enough to establish this department for longer time. KSB can still deliver PAT in northern Germany 

but not proactively. 

Since this technology is mainly base on physical properties of the project in areas with more 

topological properties, there are many smaller companies which can produce PAT with better focus 

rather than KSB. 

But For instance, A customer in Hamburg area such as HamburgWasser. The project is not based 

on the geographical height differences. The customer has a water reservoir, which is filled out with 

pressurized water system during the night. And during the day when the customer needs to take 

out water from the system through the distribution network, the water supplier (Hamburg Wasser) 

with centrifugal pump will deliver the water to the network. But as it seems to be clear in the 

pressurize system, they are not using from that energy dissipating through network, so that is the 

point we are trying to convince the customer to use PAT when in the night 5000m3 water going 

into the reservoir, with the pressure of 5 bar, by dissipating the energy during the vane. and by 

replacing PAT in the system it will be possible to reserve the energy during the night and use that 

energy during the day to pump the water inside the network. 

It is also necessary to mention in many cases it happens that the reservoir system is already existed 

for many years and in order to imply the new application over the reservoir customer needs to 

make many changes such as pipeline, electrical control system, concrete chamber if it is needed, 

and so on and so forth, which basically means from the first place there will exist a big resistance 

against this even if it can bring some benefit for the customer. 
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Another problem will be the complication of the electrical control system, which are not very easy 

to calculate the generated energy from the system, so that many customers after being interested, 

still have big problem with realization of it. Except for having a reference in the region that you 

can refer to them, then is much easier to convince them. 

 

Author followed the question with asking about the average range of electrical regeneration form 

this system in northern Germany: 

 

the average for the northern Germany will be between 10 to 50 kW as a typical size. This 

technology is all benefit for customer who are user of centrifugal pumps. But I also would like to 

summarize it experimentally that when the regeneration of energy is about 15 kW or 2000 working 

hours per year approximately then we can say the cost-Benefit correlation will be positive for the 

customer. 

 

To conclude the discussion, it is important to know, that this technology of PAT is not really new, 

and the system is somehow well-known, but not by the end users. Also, as it comes later there are 

an example of planning document for PAT from KSB which can help to have a closer look to the 

main frame. 

4.4.2 Application-Oriented Planning Documents for Pumps as Turbine by KSB [16] 

4.4.2.1 Generation of Planning Documents 

For more than 35 years now, KSB has been receiving queries about and order for, revers-running 

pumps. According to a recent market study, policy decision like Kyoto Protocol, in combination 

with the increasing cost of energy, are generating increasing demands for alternative, renewable 

sources of energy in all market segments. In Germany alone, there is posited potential for pumps 

as turbines (PATs) on the order of 100 – 250 MW installed electric generating capacity. Most of 

that potential is still being wasted in water handling systems and industrial facilities equipped 

with throttling elements, even though it would be very easy and extremely economical to harness 

that potential with PATs 

What makes PATs so worthwhile? 
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 Short payback period thanks to: 

o Series production and accordingly minimal initial investment costs. 

o Very good optimum point efficiency and, hence, revenues from the power yield. 

 Low life cycle maintenance and repair costs 

o Very low maintenance and repair costs. 

Obviously, a growing sense of ecological responsibility and the fact that this kind of power 

generation can be very profitable have helped enkindle a waxing general interest in renewable 

energy. 

4.4.2.2 Economic Efficiency 

The following, very simplified equation is useful for estimating how much power (P in kW) can 

be captured with the aid of a PAT system: 

 

𝑃 ൎ 7 . 𝑄 . 𝐻  With: P[kW] power 

    Q [𝑚ଷ/𝑠ሿ flow rate 

    H [H]  head 

 

                                               Process efficiency (approx. 70%), gravitational  

    acceleration and density are already factored in. 

 

The power yield can either be used to reduce the internal consumption of expensive grid electricity, 

hence distinctly reducing expenditures for purchased line power, or it can be fed into the local grid 

in return for feed-in compensation. To calculate the achievable annual revenues, the specific output 

merely has to be multiplied by the number of annual operating hours and the feed-in tariff: 

Annual revenues ൌ 𝑝 . 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 . 𝑓𝑒𝑒𝑑 െ 𝑖𝑛 𝑡𝑎𝑟𝑖𝑓𝑓 

    With:  annual revenues [€/𝑎ሿ 

     P [kW] power 

     Operating hours [h/a] 

     Feed-in tariff [€/kWh] 
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Owing to the low initial investment costs and high energy prices, it takes only few years 

for PAT system, to pay for itself. 

 

 

4.4.2.3 Planning a PAT System 

 

Figure 4-43 Conceptual sketch of PAT system 

 

 

 

Before the planning for PAT system like that sketched out begins, both the temporal distribution 

of flow and the head should be known. With those data, the most effective, most economical size 

of PAT system can be found. The following pointers should be adhered to for PAT system 

planning: 

 Layout of the PAT by your contract partner. 

 Elaboration of plant concept (electric/electronic and mechanical system). 

 Electronic and mechanical integration of the PAT into the plant concept. 

4.4.2.4 Products 

Considering the nearly seamless spectrum of pumps to be found for practically all conceivable 

pumping situations and types of installation, an optimal type of set can also be found for turbine 
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service operation in most power generation applications. To help narrow down the choice, presents 

a pump-as-turbine range chart: 

 

 

Figure 4-44 Pump-as-turbine range chart [16] 

 

4.4.2.5 Safety relevance 

Care must be taken to ensure that the PAT system always remains safely within  its reliable 

range of operation. To ensure this, the chosen pump must be certain to withstand the elevated 

turbine service stress levels, and all rotating parts must be reversible. In case of load rejection (e.g., 

power outage during mains operation), the "turbine" would accelerate to runaway speed. It is 

therefore important that appropriate safety measures be taken to ensure that such systems are not 

exposed to excessive loads. Other plant-specific factors such as resistance to pressure surge (water 

hammer) and susceptibility to cavitation also must be clarified in advance. A system pressure surge 

must always be anticipated, when the conditions of flow are altered, for instance by closure of a 

valve or when the impeller/rotor accelerates due to a power outage. We therefore recommend that 

the pressure surge susceptibility be calculated in advance. While cavitation rarely occurs in PAT 

systems, it is nevertheless important to investigate the system pressure conditions in order to 
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completely rule out any chance of cavitation. Such aspects as the chemical composition and 

temperature of the medium are important both in that connection and for the selection of a PAT. 

4.4.2.6 PAT System Control 

With a view to making a PAT system as economical as possible for any and all combinations and 

fluctuations of flow rate and head, there are three ways to adjust the PAT to its duty point. First, 

however, it must be clear whether the PAT system will be operating on a mains mode or an island 

mode. In the mains mode, the generated power is fed into an existing power grid, while the 

electricity generated on the island mode must be directly available to consumers at a frequency of 

50 or 60 Hz. 

 

4.4.2.6.1 Constant speed 

If constant-speed operation is assumed, the PAT can only be designed for one particular volumetric 

flow rate and one particular head. All other conditions have to be accommodated by means of 

throttling elements and/or a bypass (Figure 4-45). This, of course, causes part of the energy 

potential to be lost. 

 
Figure 4-45 Hydraulic diagram of a PAT system [16] 
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Table 4-9 lists the components required for PAT system: 

Flow measurement Inductive flow meter 

Ultrasonic flow meter 

Control valve Annular piston valve, diaphragm valve 

Quick-operating control valve Annular piston valve, diaphragm valve 

Shut-off valve Annular piston valve, diaphragm valve 

Start/stop valve Butterfly valve, ball valve, gate valve 

Pressure measurement Pressure pickup 

Table 4-9 Required PAT system component [16] 

 

On the other hand, such systems are technically uncomplicated, easily controllable and, above all, 

very inexpensive. The speed is maintained by way of the existing power grid, so this option is 

unsuitable for island operation. Figure 4-45 shows the system's hydraulic arrangement, and Figure 

4-46 illustrates its electrical layout - both for a postulated constant speed. It is also possible to use 

a synchronous generator in place of an asynchronous motor, depending on the outcome of a cost 

efficiency analysis. For island operation, the use of a synchronous generator is frequently more 

expedient. 
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Figure 4-46 system diagram of a constant-speed PAT [16] 

4.4.2.6.2 Variable Speed 

The basic idea behind the variable speed approach is to exploit, if possible, the entire available 

energy potential with no further throttling. The following options are available: 

 

 Negative- feedback frequency converter 

One possible is to install a negative-feedback frequency converter. In combination with 

standard three-phase motors, this cost-effective solution enables the user of other speed 

ranges for the PAT and the plant. It should be noted that frequency converter cannot be 

operated on an island mode. 

 

 Variable speed gear 

Speed adjustment can also be enabling by a variable speed gear – an option that calls for 

an advanced cost efficiency analysis. 
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4.4.2.6.3 Control with several constant-speed PATs in parallel 

one good way to make optimal use of the energy potentials affected by pronouncedly fluctuating 

flow rates is to split the volumetric flow among several PATs. As in the cascade arrangement 

Figure 4-47: 

 

 
Figure 4-47 Four of eight parallel PATs in service at the water utility authority (Zweckverband Landeswasserversorgung, 

Stittgart, Germany) [16] 

4.4.2.6.4 Direct coupling with a machine 

If the idea is to either drive a machine directly or disburden its prime mover, a PAT can be 

connected up to the machine by means of a continuous shaft or gearing. Finally, hybrid forms of 

the aforementioned configuration can be employed to achieve the targeted results (Figure 4-48). 
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Figure 4-48 Direct coupling[16] 

 

Finally, Hybrid forms of the aforementioned configuration can be employed to achieve the targeted 

result.  

4.4.2.7 Subsidies 

4.4.2.7.1 Germany 

At the end of 2008 Germany’s Bundestag (Parliament) enacted the Renewable Energy Sources 

Act (EEG) 2009, which entered into force on 1 January 2009. According to that directive, new 

facilities commissioned from 2009 onwards are entitled to the guaranteed feed-in tariffs, in 

cent/kWh, shown in Table 4-10. The extent to which the potential yield satisfies the renewable 

energy criteria established in the EEG must be determined on a case-by-case basis. 

 

Power share EEG 2009 (Bundestag Resolution, 

6 June 2008) [cent/kWh 

<500 kW 12.67 

500 kW – 2MW 8.65 

2 MW – 5 MW 7.65 

Table 4-10 Feed-in tariffs for new facilities up to 5 MW [16] 

A full comparison of EEG feed-in compensation instruments for 2009 (in German only) can be  
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found at:  

http://www.umweltministerium.de/files/pdfs/allgemein/application/pdf/eeg_verguetungsregelung

en.pdf 

 

For more information on the Renewable Energy Sources Act, please consult the website of the 

German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety at: 

  

http://www.umweltministerium.d 

 

4.4.2.7.2 Austria 

In Austria, the feed-in tariff is determined by way of the 2009 Ökostromverordnung(∼green 

electricity regulation) according to which, since 1 January 2009, new or revitalized facilities in 

which the average annual output has been increased by more than 50 % are eligible for the feed-

in tariffs listed in Table 4-11, below.  

 Tariff [cent/kWh] 

For the 1st GWh 6.23 

For the next 4 GWh 4.99 

For the next 10 GWh 4.15 

For the next 10 GWh 3.92 

For any quantity of exceeding 25 GWh 3.76 

Table 4-11 Feed-in   tariffs   acc.   to   the   2009   green   electricity   regulation 50%. [16] 

For revitalized facilities in which the average annual output is increased by at least 15 %, the 2009  

Ökostromverordnung describes the somewhat lower tariffs listed in Table 4-12 below: 

 

 Tariff [cent/kWh] 

For the 1st GWh 5.94 

For the next 4 GWh 4.56 

For the next 10 GWh 3.79 

For the next 10 GWh 3.42 

For any quantity of exceeding 25 GWh 3.29 

Table 4-12 tariffs   acc.   to   the   2009   green   electricity   regulation 15%. [16] 
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According to the Ökostromverordnung, these tariffs are subject to the condition that the facility be  

commissioned on or before 31 December 2009, and that the increase in average annual output be  

documented by the expert's opinion of a certified engineer. 

  

For more information on the Austrian provisions, please go to:  

 

http://www.oem-ag.a 

 

4.4.2.7.3 Switzerland 

Switzerland's revised Energy Act includes a package of measures for promoting renewable energy 

sources and electric efficiency. The main pillar of that act is the break-even feed-in tariffs table for 

electricity generated from renewable energy sources. Constructed according to the Swiss Federal 

Council's energy regulation (EnV), the anticipated feed-in tariffs will basically consist of three 

elements. For information beyond that contained in the following brief overview, please consult 

the quoted sources. 

 

Base rate: The applicable output for determining the feed-in tariff is the equivalent output, i.e., 

the quotient of the amount of electricity, in kWh, measured at the feed-in point in the course of 

the year in question, divided by the total number of hours of the year in question less the number 

of elapsed hours prior to the facility's commissioning and/or subsequent to its shutdown. The 

equivalent-output-dependent base rate is calculated proportionally for the power classes listed in 

Table 4-13:  

Power class [kW] Hydraulic engineering bonus 

[Rp./kWh] 

< 10 26.0 

< 50 20.0 

< 300 14.5 

< 1 MW 11.0 

< 10 MW 7.5 

Table 4-13 se-rate feed-in tariff in Switzerland acc. to power class [16] 
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Pressure class bonus: The pressure class bonus is prorated according to the gross head of the system 

relative to the head categories shown in Table 4-14 below: 

 

Power class [kW] Hydraulic engineering bonus 

[Rp. /kWh] 

< 5 4.5 

< 10 2.7 

< 20 2.0 

< 50 1.5 

> 50 1.0 

Table 4-14 pressure class bonus in Switzerland acc. to head category [16] 

Hydraulic engineering bonus: If the implemented, state-of-the-art hydraulic engineering (incl. 

discharge lines) accounts for less than 20 % of the overall first cost of the project, no hydraulic 

engineering bonus is granted. For shares in access of 50 %, the full bonus is granted. Shares ranging 

from 20 % to 50 % are linearly interpolated. The bonus is prorated according to the facility's 

equivalent output in line with the power classes listed in Table 4-15. Dotierwasserkraftwerke” 

(“remuneration” hydropower stations) are excluded from this bonus.  

 

Power class [kW] Hydraulic engineering bonus 

[Rp. /kWh] 

< 10 5.5 

< 50 4.0 

< 300 3.0 

> 300 2.5 

Table 4-15 Hydraulic engineering bonus in Switzerland acc. to power class 

The source of the above information and additional data can be found at:  

Energy Act: http://www.admin.ch/ch/d/sr/c730_0.html 

Energy Regulation: http://www.admin.ch/ch/d/sr/c730_01.html 

General information: http://www.admin.c 
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5  Review of Two PAT Case Studies  

5.1 Pumps as Turbines substituting pressure reducing valves 

5.1.1 Selection and location of Pumps as Turbines substituting pressure reducing valves 

Rational use of natural resources is increasingly important, for both economic and environmental 

reasons. Water supply system efficiency is critical to sustainable development of a city, since 

suboptimal operations can elevate energy consumption in pump stations and increase leakage in 

the network. Climatic, social, and political factors influence consumption, and consequently the 

operations of water supply systems. In this context, the concept of smart water networks arises, 

which, through field measurements and mathematical modeling, allow decisions to be made 

quickly, ensuring optimized, high quality operations. [52]. 

Pressure control is one of the most important issues in optimizing the operation of networks. It is 

important to reduce leakage volume and avoid pipeline disruption. The topography and topology 

of the system define high- and low-pressure zones. Technical standards establish the maximum 

and minimum values accepted for operation. 

In low pressure areas, boosters with frequency inverters can be installed to maintain proper 

pressure on the network. For high-pressure zones, it is common to use Pressure Reducing Valves 

(PRVs) to maintain sufficient pressure in the entrance sector, maintaining the desired minimum 

pressure in the critical node. Several studies explore optimized PRV operation and its location, 

minimizing leakage losses [53], [54]. 

However, from the energy viewpoint, PRV dissipates pressure energy, adding a localized head 

loss to the system. This energy loss opposes modern principles of rational use of resources. In our 

new paradigm, energy pressure could be used to actuate a turbine coupled to a generator, producing 

electricity and maintaining the pressure reduction commitment in the sector. Due to the low power 

found at such sites, use of conventional turbines is not feasible [55] [56], [57]. 
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However, these turbines are not manufactured at large scale yet, making their immediate 

application difficult. An alternative is to use PATs, which have low cost and good efficiency [58]. 

show a similar behavior between PAT and PRV, indicating the viability of this solution. 

However [59], [60] carry out simulations over an extensive period and observe that during periods 

of low consumption, PAT is not able to insert a sufficient head loss to reduce pressure to acceptable 

standards, [61] finds a similar response between PAT and PRV in a system in Iran, where demand 

change throughout the day is not very significant.  

The method to be used for PAT selection and location in water supply network operations, is based 

on maximizing the benefit represented by the produced energy and the leakage volume reduced. 

As an operating constraint, the method requires that the PAT should be able to maintain the 

pressure on each node of the network within the established limits. The BEP of the machine and 

its location are set through an optimization process based on Particle Swarm Optimization (PSO). 

From these values, the specific speed of the machine is obtained, selecting the nearest curve 

available. To accomplish this, a set of complete characteristic curves of pumps found in Ref. [62] 

and represented in the Suter plan is used. In the final stage, the network is simulated with the 

selected machine to calculate the energy produced and the node pressures. The method is applied 

to three fictitious networks, available in Refs. [63] , [64], and the results are compared with the 

PRV operation. 

5.1.2 Pump as turbine modeling 

5.1.2.1 “Pipe + PAT” boundary 

Several methods can be used to perform a hydraulic simulation of water supply networks notably 

the gradient method, now widely used. In this study, the steady-state problem is solved through 

transient flow equations, using the Method of Characteristics (MOC), as proposed by Refs. 

[66][67] 
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Applying the continuity law to a generic node, as shown in Figure 5-1, and using the MOC positive 

line to calculate flow at convergent pipes, and the negative line for divergent pipes, the node 

general equation is obtained (Equation 5-1). 

 
 

Figure 5-1Connections in a generic node. [65] 
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Equation 5-1 

where: 

CA [m], BA [s/m2] - coefficients of positive line of MOC; 

CB [m], BB [s/m2] - coefficients of negative line of MOC; 

CP [dimensionless] - number of convergent pipes connected to the node; 

DP [dimensionless] - number of divergent pipes connected to the node; 

HN [m] - node head; 

𝑄 [m3/s] - flow through a non-pipe element. 

 

To obtain the best location for PAT installation, a non-tube element called “Pipe þ PAT” is created. 

This element considers the existence of a PAT immediately after the pipe upstream node. A 

fictitious node is created to connect PAT with pipe, as shown in Figure 5-2. Thus, the optimization 

algorithm searches the pipe identification number with best conditions for PAT installation and 

replaces the pipe with this element. The algorithm also considers the possibility of inversion 

between downstream and upstream nodes. If the flow occurs in the opposite direction, the element 

is disconnected from the network, maintaining the original condition only with the pipe. This 

procedure simulates a bypass, which can be used in periods in which PAT operation is not feasible. 
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Figure 5-2 Non-pipe element “Pipe þ PAT00. [65] 

Using the nodes general equation for 𝑁ଵ and 𝑁, the general equation for non-pipe elements is 

obtained (Equation 5-2). With three variables to be determined (𝐻𝑁ଵ, 𝐻𝑁, and 𝑄), boundary 

conditions are necessary to solve this equation. In this case, pump characteristic curves of head 

and flow are used. 
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െ  
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𝐵𝑁ଵ

െ  
1

𝐵𝑁
ቇ ∙  𝑄 

Equation 5-2 

5.1.2.2 Pump characteristic curves 

Characterization of hydraulic machines is made through curves relating head, flow, torque, and 

speed. Alternation of the signs of these parameters defines eight distinct operational areas, which 

can be represented by the Suter plan [68]. 

Figure 5-3a show an example of the 14 curves available in Ref. [62]. The empty markers show the 

operating zone as a turbine. For each of the available curves, this operational area is identified, and 

considering nominal rotational speed, new curves relating the dimensionless coefficients of flow, 

q, and head, h, are obtained, as shown in Figure 5-3b. This new representation allows adjustment 

of a power curve (Equation 5-3). Therefore, with the BEP machine only, its characteristic curve in 

turbine mode can be obtained, using the available dimensionless curve with the nearest specific 

rotation. 
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Figure 5-3 a) Head and torque curves in Suter plan; b) Dimensionless curves in turbine mode.[65]

ℎ ൌ 𝑎 ∙ 𝑞 
Equation 5-3

where: 

a, b [dimensionless] - curve adjustment coefficients; 

h [dimensionless] - head coefficient; 

q [dimensionless] - flow coefficient. 

5.1.3 PAT selection and location procedure 

PAT selection and location are made simultaneously, based on maximizing the benefit, defined by 

the energy produced and leakage volume reduced. Thus, considering the energy and water tariffs, 

the objective function is written as follows: 

𝐹𝑂 ൌ  ∑ ቂ𝑡
ఊொு

ଵ
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Equation 5-4 

Where: 

FO [$] - objective function to be maximized; 

𝑡 [$/kWh] - energy tariff; 

g [N/m3] - water specific weight; 

𝑄 [m3/s] - PAT flow in time i; 

𝐻 [m] - PAT head in time i; 

 [dimensionless] - PAT efficiency in time i; 

n [dimensionless] - nodes affected by PAT operation; 

𝑡 [$/m3] - water tariff; 

K [l/s∙m1/2] - leakage coefficient; 

𝑃ଵ [m] - node j pressure in time i before PAT installation; 

𝑃ଶ [m] - node j pressure in time i after PAT installation; 

Pen [$] - penalty function. 

The penalty function is based on problem constraints. In this case, all nodes must maintain a 

minimum pressure through a 24-h period. Therefore, the penalty function can be calculated using 

Equation 5-5. The penalty coefficient is very important to achieving accurate results with bio-

inspired algorithms. According to [69], the penalty function can be neither too hard, so as to avoid 

a wide search across the space, nor too soft, leading to unfeasible solutions. Therefore, the value 

of 100,000 was adopted as the penalty coefficient. 

𝑃𝑒𝑛 ൌ    𝛼
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Equation 5-5 

where: 

𝛼 [$/m] - penalty coefficient (a value of 100,000 is adopted); 

𝑃 [m] - node j pressure in time i; 

𝑃, [m] - minimum pressure established. 
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5.1.4 Results and discussion 

To evaluate the proposed method, three fictitious networks, presented by Refs. [63] ,[64], are 

studied. These networks are studied to achieve the best District Metering Area (DMA) 

configuration and PRV location, minimizing water losses, making them a good example for which 

to compare PAT location results. 

According to [70], leakage modeling in pressurized pipes is similar to an orifice, and can be 

generalized by Equation 5-6. The exponent N depends on the leakage orifice area. In this work, 

leakage behavior is considered equal to an orifice, with N equal to 0.5. The K value is adjusted for 

each case study to maintain water loss to around 30%, a common value observed in Brazilian water 

supply networks [72]. Thus, in addition to demand, a leakage contribution is added in each node, 

calculated by Equation 5-6. This procedure allows comparison of PAT performance in leakage 

control with a PRV. In this case, the minimum pressure for the critical node is 10 m, as established 

by ABNT [71]. 

𝑄ଵ ൌ 𝐾 ∙ 𝑃
ே 

Equation 5-6 

where: 

𝑄ଵ [l/s] - leakage flow; 
K [l/s.m1/2] - leakage coefficient; 
N [dimensionless] - leakage exponent; 
𝑃

ே [m] - node pressure. 

a) Example 1
The first network created by Ref. [63] has 12 pipes and 10 nodes, supplied by a reservoir, as shown 

in Figure 5-4. Defining PAT location is straightforward, since maximum power is obtained by 

installing the machine just after the reservoir, which also ensures the best pressure control, since 

all nodes are at the same elevation. Nevertheless, the proposed method is applied, identifying the 

first pipe as the ideal site for PAT installation, as shown in Figure 5-4. 
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Figure 5-4 Layout of network 1 and PAT location. [65] 

Using the same location found for PAT installation, a new simulation is made with a PRV with 

constant outlet pressure, adjusted for 33 m, which supplies critical node during the maximum 

consumption period. Table 5-1 shows the results obtained in each case. Note that PAT is selected 

to operate during higher consumption periods (7-24 h), when more energy is available. 

Table 5-1Results of PAT selection and location for Example 1[65] 

 
 

During this period, PAT behavior is similar to a PRV, However, when consumption declines, there 

is no energy production and the pressure remains high. Thus, the PAT performance in leakage 

reduction represents only 39.94% of PRV results. 
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To improve PAT pressure control, a second machine is selected to operate in parallel during the 

period of 1-6 h. Although energy production and leakage control improve, PRV continues to show 

better pressure control. 

Figure 5-5 compares critical node pressure for each case studied, where the problem described for 

low consumption periods can be observed in detail. 

Figure 5-5 Critical node pressure for Example 1. [65] 

b) Example 2

The second network presented by Ref. [64] is composed of 24 pipes and 17 nodes, with a reservoir 

as water source (Figure 5-6). At first, only one machine is selected to perform pressure control. 

The pipe just after the reservoir is selected for PAT installation, since this location allows pressure 

reduction in the whole network and uses maximum flow in energy production. 

two sectors with slightly different pressures can be identified: the first with 17.2 m of mean 

pressure and the second with 21.6 m, indicating the possibility of the use of an additional machine. 

Therefore, a new selection is made considering the use of two machines, obtaining the 

configuration shown in Figure 5-6. In this scenario, the network is divided into two DMAs, since 

the flow through nodes 4 and 9 has little influence on the pressure of the second DMA. This 

configuration improves energy production and leakage reduction. It is also the same configuration 

proposed by Ref. [64], who also recommends the closure of pipe between nodes 4 and 9. 
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Figure 5-6 Layout of network 2 and PAT location. [65]

Table 5-2 shows the results for PAT selection and location, considering one and two PATs. Note 

that the leakage reduction improves more than the energy production. This fact can be explained 

due to the reduced head of PAT 1, which has the higher potential. PAT 2 uses only a part of total 

inflow, contributing less energy. As observed in Example 1, the operating point of the machines 

is selected considering the maximum consumption period, when energy production and leakage 

reduction are higher. Note the high number of particles in the PSO optimization algorithm to avoid 

premature convergence in local minimums. 
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Table 5-2 Results of PAT selection and location for Example 2.[65] 

 
 

 

Figure 5-7 shows that addition of a second machine results in a pressure reduction throughout the 

24 h simulation only for the second sector, which contains node 17. For comparison, the two 

scenarios are simulated considering the use of PRV with 16 m and 20 m constant outlet pressure, 

respectively. 
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Figure 5-7 Critical nodes pressure for Example 2: a) Node 8; b) Node 17. [65] 

For maximum consumption, PAT and PRV performance in pressure control are identical. 

However, with consumption variations over 24 h, the low consumption problem observed in 

Example 1 continues, and PRV performance remains better resulting in major leakage reduction. 

c) Example 3

The last network proposed by Ref. [63] is the biggest, with 83 pipes and 76 nodes, also supplied 

by one reservoir, as shown in Figure 5-8. Considering the use of just one PAT for pressure control, 

the pipe just after the reservoir is selected to install the machine, as observed in Examples 1 and 2. 
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Figure 5-8 Layout of network 3 and PAT location. [65] 

Evaluating pressure zones shown in Figure 5-9, a low-pressure zone can be observed in the right-

most part of network. The other part has a similar pressure over the area, which indicates no need 

for a second machine. Nevertheless, a second machine is selected, creating two DMAs (Figure 

5-8).

Figure 5-9 Pressure zones of network 3 for maximum consumption. [65] 
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As shown in Table 5-3, in this scenario, the addition of a second machine reduces the benefits. 

This occurs because PAT 1 reduces energy production, since its head reduces to allow the insertion 

of a second machine. 

Table 5-3 Results of PAT selection and location for Example 3. [65] 

Although the second sector shows a small pressure reduction, as shown in Figure 5-9, DMA 1 is 

bigger and contributes more for total leakage volume. Observing specific nodes, as shown in 

Figure 5-10a, the effects of an additional PAT are observed for each sector. Figure 5-10b shows a 

node inside sector 1, where the pressure using 1 PAT is slightly lower than using 2 PATs. In 

contrast, Figure 5-9 shows a node of DMA 2, where the additional PAT slightly improves pressure 

control during high consumption periods. Using PRV with constant outlet pressure adjusted to 26 

m and 10 m, respectively, a small improvement is observed, since the second sector shows a 

significant pressure reduction. 
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Figure 5-10 Critical node pressure for Example 3: a) Node 11; b) Node 53. [65] 

5.1.5  Conclusion 

An innovative method for PAT selection was presented, considering the dynamic operation of 

water supply networks and establishing the best location for its installation at the same time. The 

method shows that the maximum consumption period is used to define the BEP of the machine. 

Despite the reduced pressure drop during this period, the high flow maximizes energy production 

and leakage reduction. In addition, the method could identify the best location for installation of 

multiple PATs, optimizing the combined operation. However, Examples 2 and 3 show that the 

addition of a small PAT is not always a good strategy, since such PATs can affect the operation of 

the principal machines, reducing the benefits of energy production and leakage reduction. 
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Due to the complexity of the problem, a high number of particles in the PSO optimization 

algorithm must be used to avoid premature convergence in local minimums. This characteristic 

confirms that PSO is well suited to this problem, since the results obtained are good responses to 

the problem. PSO according its original purpose cannot manage the constraints of the problem, 

requiring the use of a penalty function, which distorts the search space and makes the search 

process more difficult. Future research should study penalty functions and methodologies to 

address the constraints, to improve the efficiency of the method. 

 

Considering the maximum consumption period, PAT and PRV show similar performance. 

However, during low consumption periods, PAT cannot maintain adequate outlet pressure, 

yielding high leakage rates. Thus, control mechanisms should be developed to solve this problem. 

Attractiveness of the investment will depend on the local electricity tariff, which should be higher 

than water production costs, enabling the micro central installations described herein. However, it 

is necessary to highlight the uncertainties of the proposed method. The characteristic curves used 

are estimated, based on available dimensionless curves, which can differ from real PAT 

performance curves. Therefore, performance tests are highly recommended when possible. 

Another source of uncertainty is leakage modeling, which cannot represent the real scenario, due 

to its dynamic behavior and undefined location. The optimization procedure also carries 

uncertainty, since bio-inspired algorithms cannot guarantee achievement of the best solution. 

Finally, the hydraulic models also carry uncertainty in their results, since their stopping criteria is 

based on an acceptable error, which is very small, contributing to the total uncertainty.  

nevertheless, the method presented is fundamental to obtaining the best solution in exercising 

pressure control and generating electricity in a water supply network [65]. 

 
 
 

5.2 Environmental impacts of electricity generation  

5.2.1 Introduction 

The water industry is the 4th largest energy intensive sector in both the UK and Ireland [73]. Most 

of the electricity used to treat and supply water is sourced from fossil fuels, with an average carbon 

footprint of 483 g CO2 equivalent per kWh (g CO2 eq./kWh) consumed [74], Overall, the UK 

water industry is responsible for 5 million tons of CO2 emissions annually [74], and reducing the 
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demand for fossil-based electricity is a key sustainability objective in terms of economics, resource 

efficiency and environmental responsibility. 

Water companies often have to respond to government regulations that state that utility suppliers 

must monitor and reduce greenhouse gas (GHG) emissions [75]. For example, [76] are targeting a 

25% reduction of their GHG emissions by 2015, and 50% by 2035. Renewable energy can provide 

one solution to help water companies meet their GHG emission targets and provide long-term 

sources of energy for water treatment and supply. In Europe, hydropower is considered the most 

suitable technology for the water sector to adopt for generating electricity. 

Micro-hydropower (MHP) installations have recently been identified as an area of growing interest 

for water companies as they consider energy recovery from within water infrastructure [77].  These 

sites are located throughout the water infrastructure where excess pressure exists and sites can 

generate between 5 and 300 kW. Life cycle assessment (LCA) has previously been used to assess 

the environmental impacts of renewable energy systems [78]. 

5.2.2 Methods 

a) Goal and scope definitions

The objective of this study is to calculate the life cycle environmental balance of electricity 

generated by three micro hydropower installations in the water supply infrastructure. Five relevant 

environmental impact categories were selected from CML [80].  

Table 5-4 Life cycle assessment impact categories selected to compare micro-hydropower projects with marginal UK grid 
electricity generation, descriptions provided [79]. 

Table 5-4, These categories were chosen as they represent the direct environmental impacts 

(human health, ecosystem quality and resources) associated with the hydro projects and have been 

previously presented in literature for renewable projects and water infrastructure projects. 
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The functional unit was 1 kWh of electricity generated, for comparison with marginal UK grid 

electricity generation via a natural gas combined cycle turbine (NG-CCT) power station [81]. The 

system boundaries included raw material extraction, processing, transport and all installation 

operations, followed by electricity generation over the lifetime of the turbines Figure 5-11 

 

 
 

 
Figure 5-11 Primary materials and processes considered within the system boundaries for MHP. [79] 

 

 
b) Case study descriptions 

Details relating to the three case studies examined in this paper are outlined in Table 5-5. The three 

MHP projects selected represent a broad range of typical installations that can take place in water 

infrastructure: a 15-kW installation to control water flow into a new water treatment works, a 90-

kW new build installation to replace a dated turbine at a water treatment works, and a 140-kW 

installation as part of a new water treatment works project.   
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Table 5-5 Description of MHP case studies for LCA [79] 

A conservative nominal turbine and generator lifespan of 30 years was applied. Turbine lifespan 

values cited in the literature vary considerably, from 20 to 100 years [78]. 

A number of assumptions were made during the LCA study in order to define comparable system 

boundaries and account for all important contributory processes. These included aspects related to 

materials used, products, manufacturing processes, transportation contributions, 

operations/maintenance and decommissioning, Table 5-6. 

Table 5-6 Assumptions made for LCA of MHP Projects. [79] 
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c) Inventory for LCA case studies 

To undertake a detailed LCA of the three case studies, data were collected from water suppliers 

and/or turbine manufacturers [79]. The data included the size and capacity of the turbine and 

generator units, the materials and construction details, including information of on-site plant and 

machinery. This information was extracted from a combination of sources for the purpose of the 

LCA, project reports, quantities spreadsheets and project design drawings. This study followed 

ISO 14040 standards for LCA, and as such accounted for at least 95% of the total mass and 90% 

of the total energy inputs for each MHP project [85]. 

 
d) Reference system and carbon payback time 

NG-CCT power stations operating at 50% conversion efficiency represent marginal electricity 

generation in the UK that is avoided by energy saving and renewable energy measures. Therefore, 

1 kWh of NG-CCT-generated electricity was taken as the reference system for comparison with 1 

kWh MHP-generated electricity. The carbon payback time was calculated as the operational time 

required for the MHP to offset a quantity of marginal grid electricity GHG emissions equivalent 

to GHG emissions arising over the life cycle of MHP system manufacture, installation and 

operation. However, [83] outlined how LCA results may not truly reflect the environmental 

balance of a product over its lifetime, owing to temporal trends in the environmental burdens of 

contributory or counterfactual processes. A dynamic analysis was therefore applied to forecast the 

potential cumulative GHG mitigation potential of MHP installations based on future emission 

projections for marginal grid electricity generation. 

 

e) Interpretation and sensitivity analysis 

To enable a comparison of relative contributions to the five environmental burdens considered at 

the European scale, EU25 annual loading data for those impact categories were taken from [80]. 

and expressed per capita, assuming a population of 465 million people. Environmental burdens 

per kWh were then divided by per capita loading, enabling a visual comparison of impact category 

contributions. Sensitivity analyses were undertaken in relation to manufacturing and transport for 

each MHP installation, as the most substantial level of uncertainty was noted for these project 

components. The following scenarios were assessed in which the environmental burdens 

attributable to uncertain components were varied by ±50%. 
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 Scenario 1 Manufacturing of turbine/generator 

 Scenario 2 Manufacturing of pipework 

 Scenario 3 Manufacturing & construction of housing 

 Scenario 4 Transportation of materials 

5.2.3 Results & discussion 

The results of the LCA are presented in Table 5-7 as the total environmental burdens per kWh of 

electricity generated over the 30-year lifespan by the three MHP turbines. The table also shows 

the carbon payback time in relation to offset grid electricity generation. 

 
Table 5-7 Total environmental impacts of MHP projects for different impact categories and carbon payback time (expressed per 
kWh generated over project 30-year lifespan). [79] 

 
 
The total GWP impact associated with the three MHP installations over the lifespan of the project 

ranged from 2.14 to 4.36 g CO2 eq./kWh. These results are comparable to previous results from 

LCA studies of hydropower projects: 5.6 g CO2 eq./kWh for a 116MW project [84] , a 

conservative 15 g CO2 eq./kWh by [74], and a range from 0.3 to 13 g CO2 eq./kWh for 11 run-

of-river hydro projects [84]. 

 

Figure 5-12 displays the contribution of major components towards the environmental burdens per 

kWh of electricity generated for each of the turbines. The figure displays the core components 

(turbine/generator and pipework) and variable components (ancillary metals, concrete and other) 

as block and hatched sections, respectively. 
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Figure 5-12 Breakdown of environmental impacts of MHP case studies expressed per kWh generated over project 30-year 
lifespan (solid blocks represents core components and hatched blocks represent variable components). [J. Gallagher et al. / 

Journal of Cleaner Production 99 (2015) 152e159 

The turbine/generator and pipework (solid blocks) are considered as the only two core components 

across each of the three projects. Turbine housing and ancillaries varied significantly between the 

projects. Examining all five impact categories in Figure 5-12 shows an incremental pattern for the 

turbine/generator, as a reduction in the capacity of the turbine related to an increase in the 

environmental impact of each category. 

The three projects examined in this study have been constructed, yet there is the potential for a 

large number of additional MHP installations in the water infrastructure. The power generated 

from the MHP installations can reduce GHG emissions from electricity and offset the carbon 

footprint of the water industry, but this carbon offset potential will decline over time as the carbon 

intensity of marginal grid electricity declines, as projected by. Table 5-8 summarizes the evolution 

of cumulative GHG mitigation for the three case studies up to 2050, making the assumption that 

the MHP projects are all constructed in 2014 and GHG emissions are offset from 2015. The 
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calculations account for a reduction in the GHG emissions through offsetting electricity generated 

from a gas power plant. 

 
Table 5-8 Mitigation forecasting for total GHG emissions offset by MHP installations between 2015 and 2050 (displacements of 
CO2 emissions associated with gas power plant). [79] 

 

5.2.4 Conclusion 

Micro-hydropower is a growing area of interest to water companies as potential energy recovery 

sites can capture excess energy within water infrastructure and can generate between 5 and 300 

kW. This study quantifies the environmental impacts of electricity generation from three MHP 

case studies in the water industry, using a life cycle assessment approach. 

 

Sites may present different technical challenges to other MHP sites. Environmental burdens were 

therefore calculated per kWh electricity generated over nominal turbine operational lifespans. 

Compared with marginal UK grid electricity generation in combined cycle turbine natural gas 

power plants, normalized life cycle environmental burdens for MHP electricity were reduced by: 

>99% for global warming potential (GWP); >98% for fossil resource depletion potential; >93% 

for acidification potential; >50-62% for human toxicity potential. However, the burden for abiotic 

resource depletion potential was 251-353% higher for MHP than marginal grid-electricity. 

 

Different quantities of raw materials and installation practices led to a range in GWP burdens from 

2.14 to 4.36 g CO2 eq./kWh. One case benefitted from very low site preparation requirements 

while others required substantial excavation works and material quantities. Carbon payback times 



Review of Two PAT Case Studies 

 

ranged from 0.16 to 0.31 years, extending to 0.19-0.40 years for worst-case scenarios examined as 

part of a sensitivity analysis. 

 

The carbon payback period for future MHP installations was estimated to increase by 1% annually, 

as the carbon intensity of marginal grid electricity is predicted to decline. This study demonstrates 

that MHP installations in the water industry have a strongly positive environmental balance [79]. 
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Conclusion 

The substantial portion of this study consists of an investigation of renewable energy generation 

regarding to micro hydro-power technology and selection of a pump working as turbine.  

Very general observation has been provided in the early stage of this study to illustrate a better 

understanding of the functioning of turbines and pumps. The multi-stage design of a Francis 

turbine has been proposed. The system analysis with common requirements of all applications for 

centrifugal pumps has been developed. Energy efficiency indicator, in respect to the growing 

attention to water-energy nexus, has been presented. A State-of-the-Art review of PAT, where 

pump-turbine performance prediction, theoretical studies, experimental studies, numerical studies 

and pump-turbines stability aspects have been broadly discussed. Other features such as flow 

instability-related hydraulic phenomena, rotating stall, cavitation, rotor-stator interactions (RSI), 

pump-turbine improvement attempts, misaligned guide vanes (MGV), case-sensitive attempts and 

inlet valve throttling have been suggested to be carried out through further researches. 

The most challenging criteria of PAT, which is selecting the appropriate machinery, has been 

investigated subsequently. Various researchers have theoretically and practically presented 

solutions to select a proper PAT for known hydraulic data. Corresponding with previous studies, 

an estimation of the characteristic curve in regard to dimensionless head and the power curve of 

PAT has been shown. To predict the operation of a PAT outside the BEP, other experimental 

reports have been obtained from tests carried out on the seven types of pumps. For evaluating the 

performance, stability and suitable machinery, six centrifugal pumps measured at the DIMEG of 

the University of Calabria, at the CNPM in Milan and at the University of Trento, have been further 

examined. A numerical model, to foresee the performances of centrifugal pumps used as turbines, 

has been proposed. Using the experimental test on six centrifugal pumps with specific speed 

between nine and sixty-five, the model has been validated by comparing the head and efficiency 

foreseen with the measured ones. The next step of this research would be to find the best 

measurement strategies for improving the model estimations and its reliability despite the good 

level achieved so far. 

Using PAT substituting PRV as an interesting PAT application has been reviewed. Selecting and 

locating the PAT based on maximizing the benefit has been considered. An objective function, 
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together with three different scenarios provided a proper range of certainty.  The penalty function, 

which distorts the search space and makes the search process more difficult, is to be developed by 

means of further research to achieving accurate result with bio-inspired algorithm.  Three fictitious 

case studies demonstrated that considering the maximum consumption period, PAT and PRV show 

similar performance. However, during low consumption periods, PAT cannot maintain adequate 

outlet pressure. 

Three micro hydro-power installations in the water supply infrastructure in the UK have been 

reviewed. The life-cycle environmental balance of electricity generation has been observed and it 

has been demonstrated that MHP installation in the water industry have a strongly positive 

environmental balance. 



Conclusion 
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