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Were it so easy



Abstract

The course of Operating Systems is arguably one of the most crucial
part of a computer science course. While it is safe to say a small minority
of students will ever face the challenge to develop software below the OS
level, the understanding of its principles is paramount in the formation of a
proper computer scientist. The theory behind Operating Systems is not a
particularly complex topic. Ideas like process scheduling, execution levels and
resource semaphores are intuitively grasped by students; yet mastering these
notions through abstract study alone will prove tedious if not impossible.
Devising a practical - albeit simplified - implementation of said notions can go
a long way in helping students to really understand the underlying workflow
of the processor as a whole in all its nuances.

Developing a proof-of-concept OS, however, is not as simple as creating
software for an already existing one. The complexity of real-world hardware
goes way beyond what students are required to learn, which makes hard to
even find a proper machine architecture to run the project on.

This work is heavily inspired by µMPS2 (and µARM), a previous solution
to this problem: an emulator for the MPIS R3000 processor. By working on
a virtual and simplified version of the hardware many of the unnecessary
tangles are stripped away while still mantaining the core concepts of OS
development. Although inspired by a real architecture (MIPS), µMPS2 is
still an abstract environment; this allows the students’ work to be controlled
and directed, but might leave some of them with a feeling of detachment
from reality (as was the case for the author). What is argued in this thesis is
that a similar project can be developed on real hardware without becoming
too complicated. The designed architecture is ARMv8, more modern and
widespread, in the form of the Raspberry Pi education board.

The result of this work is dual: on one side there was a thorough study on
how to develop a basic OS on the Raspberry Pi 3, a knowledge that is as of
now not properly documented for those unprepared on the topic; using this
knowledge an hardware abstraction layer has been developed for initialization
and usage of various hardware peripherals, allowing users to buid a toy OS

i



on top of it. While the final product can be used without knowing how it
works internally (in a similar fashion to the µMPS2 emulator), all the code
was written trying to remain as simple and clear as possible to encourage a
deeper study as example.



Sommario

L’insegnamento di sistemi operativi è forse una delle componenti piú cru-
ciali di un corso di studi in informatica. Pur sapendo che solo una piccola
percentuale di studenti affronterà la sfida di sviluppare software al di sotto
del livello del sistema operativo, la comprensione dei suoi principi di fun-
zionamento è essenziale nella formazione di un informatico. In sé, la teoria
dietro ai sistemi operativi non è particolarmente complessa. Concetti come
scheduling, livelli di esecuzione e semafori di accesso alle risorse sono intu-
itivamente comprensibili per gli studenti; tuttavia appropriarsi pienamente
di queste nozioni soltanto tramite lo studio teorico è quasi impossibile. Al
contrario, progettarne un’implementazione pratica ma semplice può fare la
differenza nell’assimilazione dei meccanismi di gestione di un processore, in
tutti i loro dettagli.

Sviluppare un sistema operativo come progetto accademico, tuttavia, è
diversi ordini di grandezza piú difficile rispetto alla creazione di software
che si avvalga di un ambiente di lavoro giá esistente. La complessità ag-
giunta dell’hardware va spesso oltre a quello che ci si aspetta che gli studenti
conoscano, il che rende difficile anche soltanto la ricerca di una architettura
su cui eseguire suddetto progetto.

Questo studio è fortemente ispirato da precedenti soluzioni a questo prob-
lema, nella forma di µMPS2 ( e µARM), un emulatore per il processore
MIPS R3000. Lavorando su una virtualizzazione semplificata dell’hardware
gli studenti si possono concentrare sui concetti chiave dello sviluppo di un
SO senza essere rallentati da dettagli meno significativi. Anche se ispirato
a un’architettura reale (MIPS), µMPS2 rimane comunque un ambiente as-
tratto; pur permettendo di controllare e direzionare con precisione il lavoro,
nel corso dello studio non si può eliminare del tutto la sensazione di distacco
dalla realtà (come è stato per l’autore). In questo studio si sostiene che un
progetto simile possa essere sviluppato su hardware reale senza che questo
diventi troppo complicato. L’architettura scelta è ARMv8, più moderna e
diffusa rispetto a MIPS, nella forma della board educativa Raspberry Pi.

Il risultato del lavoro è duplice: da una parte è stato portato avanti
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uno studio dettagliato su come sviluppare un sistema operativo minimale sul
Raspberry Pi 3, un processo che al momento non è adeguatamente documen-
tato per chi non fosse già competente nel campo; forti di questa conoscenza
è stato sviluppato un layer di astrazione per l’hardware che si occupa di in-
izializzare e semplificare l’approccio per alcune periferiche, permettendo agli
utenti di costruirci sopra un sistema operativo giocattolo. Il prodotto finale
può essere utilizzato senza sapere nulla sulla sua struttura interna (come
l’emulatore µMPS2), e il codice interno è stato scritto con l’obbiettivo di
essere il piú semplice e chiaro possibile per non scoraggiare uno studio ap-
profondito in qualità di esempio.
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Chapter 1

Introduction

1.1 Background

An Operating System is, in a nutshell, a very complex and sophisticated
program that manages the resources of its host machine. Proper studying
on the topic should yield higher understanding on many fields of the likes
of parallel programming, concurrency, data structures, security and code
management in general.

As mentioned in the abstract, an Operating Systems course should ideally
include field work. This can be done through several different approaches,
which have already been covered by previous works like µARM and µMPS2
[4] [5]. To quickly recap the most notable mentions:

Study of an existing OS: the most theoretical approach, it involves read-
ing and analyzing the source code of an existing Operating System. There
is no short supply of such examples; historically Minix is cited [1], but a
quick research will reveal countless small kernels for embedded platforms
and emulators.
The biggest downside of this approach is that the esamination of the source
code may end up not having more educational value than a pseudocode
snippet found in the textbook. The fact that the example is indeed prac-
tical is lost in the lack of application by the student.

Modification of an existing OS: this approach can be seen as a slight re-
vision to the study-only policy. If the work under examination can indeed
be run in some environment, students might find themselves modifying
and testing small parts even if unprompted by the professor.

Construction from scratch: this is the idea behind projects µMPS, µMPS2,
µARM and the KayaOS specification [3]. Creating an entire OS will be
undoubtedly be the most formative experience as it leaves no room for
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2 1. Introduction

lack of preparation when implementing the studied solutions. Its biggest
downside is the risk of being too much for undergradates to handle, only
hurting their self confidence in the process.

It is argued that the last approach is the most interesting and valuable
for the students: if they are to study an existing Operating System at all, it
is either the case that said OS would be too complex or simple enough for
them to implement. In the first scenario the studying program must skip the
most cumbersome parts and only cover what is essential, in which case the
completeness of the example loses meaning. In the latter there is no reason
not to follow the constructionist route and let the disciples create their own
OS.

1.1.1 µMPS and Similar Emulators

Every learning project must find a balance between abstraction and con-
creteness. Developing a real world application with value outside of the
academic context brings the most satisfaction to the scholar; frequently, how-
ever, an entirely practical assignment would lose a lot of learning value due
to hindrances spanning outside of the course program.

In the frame of this work said hindrances would be the complexities tied
to hardware architecture of peripherals and CPU that, although interesting
in their own right, are unnecessary for the students’ formation process. The
µMPS emulator provides an environment fairly similar to real hardware while
still being approchable for an undergraduate student; it positions itself in a
sweet spot between abstraction and concreteness, allowing just enough of the
underlying hardware to pass through and keeping the focus on theoretical
topics like memory management, scheduling and concurrency.

After successfully concluding his or her work on µMPS the student has a
firm grasp on said topics and has grown significantly in the ability to manage
large and complex projects. There can be, however, a lingering confusion on
the attained result, which is limited to a relatively small niche. The software
itself may be compiled for a real architecture, but the final binary can only
run on the simplified emulator, making it a trial for its own sake.

To be fair, the final end of µMPS is, in fact, learning, so this is not really
a shortcoming. What is attemped with this work is to take a small step
towards concreteness in the aforementioned balance without falling into a
pit of unnecessary complexity. The occasion to do so is presented by the rise
of a widespread and relatively clean architecture: ARMv8, specifically using
the Raspberry Pi 3 educational board and the Qemu architecture emulator.
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1.1.2 ARMv8 and Raspberry Pi

The passage from MIPSEL to ARM is not new to the µMPS family of
emulators; the previous work of µARM was already pointed in this direction.
µARM had the goal to modernize the µMPS experience and still maintained
its emulator-only approach. In fact, when this work started the goal was to
create an hardware abstraction layer to be able to run an µARM project on
Raspberry Pi (which coincidentally has an ARMv7 core for the model 2).

In general, the MIPSEL architecture is losing more and more market
ground as time passes. Two of its main features were being a 64-bits ar-
chitecture and a faily simple one on top of that; the coming of ARMv8 su-
perseded both aspects. Although it made history with successful devices like
the original Playstation and Nintendo64 consoles, in the last decade MIPSEL
processors found few practical applications (with the notable exception of the
computer vision chip found on the Tesla Model S). Those considerations were
valid when µARM vas conceived and obviously still stand.

Moreover, the ARMv8 architecture choice fixes most of the problems that
previously arose while considering real hardware as an environment:

• Widespread use: the success of the ARM architecture in general
makes it an interesting candidate for an undergraduate project; specif-
ically, it is used by the whole Raspberry Pi family of educational boards
(which needs no introduction), but also by a vast and growing major-
ity of all mobile devices. Today, one can reasonably assume that an
undergraduate student will know what a Raspberry Pi is at least by
the end of his or her course of study.

• Simplicity: it will be argued over the dissertation that the 64-bits
ARMv8 architecture is fairly simple compared to its predecessors, thus
making it suitable even for a software-focused study.

• Future prospect: More and more devices are running on ARM. The
smartphone market is almost entirely dominated by the family of pro-
cessors, which is now expanding into notebooks and other handheld/
wearable/portable appliances. Having an experience - albeit small - in
the field can prove useful for some students.

Being able to run on a real device is an added satisfaction but is mostly a
nuisance during the development process, which is yet another problem that
had been solved by µMPS2. Recently however an official patch has been
added to the Qemu emulator that allows to emulate a Raspberry Pi 3 board
and debug the running software with GDB. Working with Qemu and GDB
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brings, in the author’s perspective, the important advantage of interacting
with comprehensive and popular tools instead of a niche academic emulator,
provided that said tools are sufficiently apt for the task.

1.1.3 Kaya

The end result is an hardware abstraction layer compiled for 64-bits
ARMv8 architecture which provides initialization and a partially virtualized
peripheral interface, to be linked with the student’s own code. It was devel-
oped around the Kaya Operating System Project [3], with the main influence
being the implementation of a virtual interface for emulated peripherals not
present in any Raspberry Pi board: the HDMI connected display is split into
four regions that act as printer devices, and the microSD card can contain
several image files interpreted as disks and tapes. The presence of those
emulated devices is important, as the Raspberry Pi boards are otherwise
missing any pedagodically meaningful peripheral (the only exception being
two UART serial interfaces).

1.1.4 Existing Work

Surprisingly, there is not much existing work on OS development for
Raspberry Pi boards and the Broadcom SoC which the board builds on is
shamefully undocumented. Obviously most existing Operating Systems for
the board are licensed as open source, but their sheer dimension make them
unsuitable for study. Therefore µMPS2, µARM, and the Kaya OS project
were the only references taken for theoretical composition and precepts. Some
of the few, closest available projects are:

• BakingPi: the only real academic effort in this direction. It is an
online course offered by the University of Cambridge [2], but is more
focused on assembly language and ARM programming than on real
Operating Systems topics: it explains how to boot, receive input and
present output on the Rapsberry Pi 1.

• Ultibo: Ultibo core is an embedded development environment for
Raspberry Pi [8]. It is not an operating system but provides many
of the same services as an OS, things like memory management, net-
working, filesystems and threading. It is very similar to the idea behind
this work as an hardware abstraction layer that alleviates the burden of
device management and initialization. Though not specifically created
for OS development it might have been a useful reference if it was not
written entirely in Free Pascal.
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• Circle: Similar to Ultibo, but with a less professional approach and
written in C++ [9]. In the same way it might be considered an already
existing version of the presented work: however the initial approach for
the user was judged too complicated and it was only used as a reference.

• Raspberry Pi OS: An online step-by-step tutorial on OS develop-
ment inspired by the Linux kernel [7]. In many ways it is very similar
to MaldOS, but has meaningful differences: it is incomplete and still
ongoing, it does not contemplate an emulator and references mainly
the Linux kernel, making it more complex to understand.

In particular, none of the existing work can be considered a complete and
detailed guide on how to develop an Operating System for Raspberry Pi, a
void that this project intends to fill.

In regard of the ARMv8 specification and AArch64 programming the
main resource is the “bare metal” section of the official Raspberry Pi fo-
rums and the thriving production of examples created by its users. Even
if the focus of that community is more shifted on embedded programming
than Operating Systems development, their effort in hacking and reverse
engineering the hardware proved an invaluable resource.

1.1.5 Organization of This Document

This chapter introduced the motives and the objective of this work. In the
following chapters an overview of all the components involved is presented.

Chapter 2 briefly explains the thought process that went from the initial
idea to the final realization, detaling the reasons behind the choice of the
environment.

Chapter 3 describes the functioning principles of the ARMv8 specification
and the Cortex-A53 implementing it. It is not meant to be an exhaustive
reference (as it would be impossible to condense the whole ARM reference
manual in this document), but it should clearly delineate the main founda-
tions needed to understand this work.

Chapter 4 is an extension of chapter 3 focused on the Memory Man-
agement Unit; virtual address translation plays a huge part in developing
Operating Systems, so it is believed it deserves a chapter of its own.

Chapter 5 gives an overview of the System-on-Chip the Raspberry Pi 3
is built upon, with attention to the peripheral devices reputed most useful
from an educational perspective. Register sets for said devices are briefly
listed for context.

Chapter 6 covers the “emulated peripherals”; those are the devices avail-
able in µMPS2 and µARM, absent in a real system such as the Raspberry
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Pi. The hardware abstraction layer uses the existing mailbox interface and
fast interrupts to seamlessly emulate said devices on top of other resources.
For the end user, the illusion to use a real peripheral is almost perfect.

Chapter 7 describes the project from an internal point of view, includ-
ing some topics already covered in previous sections with a more in-depth
explaination of the functioning principles.

Chapter 8 dwells on the interface that is presented to the end user like
ROM functions, special memory locations and mailboxes.

Chapter 9 mentions the base usage of this project. The actual product is
nothing but a few precompiled elf binaries and a linker script, to be used when
compiling to proof-of-concept OS, which can then be debugged step-by-step
using GDB under any of its forms.

Finally, in chapter 10 a recap is made about the success of this project
and directions for future works are listed.



Chapter 2

Discarded Options

Before settling for 64-bits ARMv8 on Raspberry Pi 3 several other options
were probed; what follows is a recap and explaination on why they were
discarded in favor of the latter. As mentioned before, the work began as
an attempt to silently port kernels compiled for the µARM emulator to real
hardware to provide students with a better sense of accomplishment.

2.1 Raspberry Pi 2 (ARM32)

The first SoC (System On Chip) to be experimented on was the Rasp-
berry pi 2 (model B). The initial idea was to replicate as closely as possible
the µARM experience, which runs on an emulated ARM7TDMI: although
the RPi2 board uses a quad-core Cortex-A7 ARM it is still fairly similar,
maintaining most of the registers and the 32-bits model.

As the first real approach to the problem, this was mainly a learning
experience for the author. After understanding the basics of the system it
became obvious that the differences between µARM and any Raspberry Pi
board were too great to consider a simple porting of the projects meant for
the emulator. This was evident especially for the emulated peripherals: like
µUMPS2, µARM offers to the user 5 types of peripheral devices (network
interface, terminal, printer, tape, disk) that find no immediate counterpart
on the British family of boards.

This prompted to reconsider the objective of the work from a simple port
to a different and autonomous educational trial. Thus, effort was bent into
searching for a better way to develop OSes on a Raspberry Pi board while
still using Kaya, µARM and µUMPS2 as reference.

With the new goal in mind there were two main issues with the Raspberry
Pi 2:

7
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1. Ease of development: if students are to develop software for a specific
board it should be cheap and easily obtainable if not for them at least
for the institution they study under. These characteristics are the
signature of success for the Raspberry Pi foundation; still, version 2 is
not the top product for either of those. Also, as will be described in
more detail, running a custom kernel on a the Broadcom SoC requires
copying the binary on a microSD card, inserting it and resetting the
board. This, together with the lack of readily available debugging
facilities lead to searching other options.

2. Popularity: the Raspberry Pi 2 was definitely superseded by the 3+
version in march 2018. It was assumed any work on it would have risked
lack of support in the following years (assumption that was somehow
confirmed with the new release, which follows the wake of version 3).

2.2 Raspberry Pi Zero (ARM32)

The model Zero was the second option to be considered for this work. It
is significantly cheaper (with prices as low as 5$ for the no-wireless version)
and compact. It runs on a single core ARM1176JZF-S, not too different from
version 2 or the µARM emulated processor.
What made this model especially interesting was the ability to load the kernel
image in memory through an USB connection, without using a microSD card
altogether. The board has USB On-The-Go capabilities, allowing it to appear
as a device if connected to an host; at that point it’s possible to load the
kernel using the official rpiboot utility.

In an ideal scenario, the user would compile his or her OS, connect the
board via USB to the host PC, load it with rpiboot and then interact with
a serial output from the same USB connection. Unfortunately the last step
would have required a massive amount of work to write a bare metal OTG
USB driver and have the Raspberry Pi Zero appear as a serial console. With-
out it the only way to receive actual output was to have a second USB to
serial converter connected to the GPIOs, which is no less cumbersome than
with other models.

This, along with the lack of usable debugging tools, led yet again to look
for a better option.
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2.3 Raspberry Pi 3 (ARM64)

The final choice was the Raspberry Pi 3 (any model, in theory). Although
it shares some of the shortcomings of previously considered alternatives like
lack of peripherals and a difficult development cycle, it offered a significant
advantage: the availability of an emulator in the form of Qemu 1. The
support of the raspi3 machine on Qemu came only recently (version 2.12.1,
August 2018) and the opportunity was seized immediately. Qemu support
means kernels meant for the board can be more easily tested on the emulator
and debugged with GDB. This allows to keep the advantages of a virtual
environment like in µMPS2 and µARM while at the same time taking a step
further towards practical usage when the kernel is run seamlessly on real
hardware too.

Qemu has some limitations that can be overlooked. It supports only some
of the hardware peripherals of the Raspberry Pi 3, with notable exclusions
being the System Timer and the USB controller (that manages Network
peripherals as well). Of those two limitations only the USB controller cannot
be overcome, as the System Timer can be replaced by the internal ARM
Timer. USB and Network Interfaces are missing from this project.

Lastly, with Raspberry Pi 3 came also the change to the architecture, from
32 to 64-bits. The Cortex A-53 running on the board follows the ARMv8
specification, which adds 64-bits support while still keeping backward com-
patibility for 32-bits applications. In theory, the student developed kernel
could still use a 32-bits architecture; however, after studying thorughly the
new AArch64 it was decided to switch to it. The main reasons for this deci-
sion are two: first, the Kaya OS project (and other similar projects as well)
does not have any particular reference to the width of a word on the host ar-
chitecture; provided they have to manage different registers, the underlying
architecture is transparent to students. Second, it is the author’s belief that
the new ARMv8 specification for AArch64 is significantly simpler than its
predecessors. As an example, it has only four execution levels (out of which
two are used in this work), opposed to the nine execution-state division of
ARMv7.

1Qemu has since supported Raspberry Pi 2 as well, but by the time the author realized
it version 3 was already the designated board. It still retains many advantages over 2.





Chapter 3

Overview of the ARMv8
Architecture

What follows is a description of the ARMv8 architecture at a detail level
deemed sufficient to understand the entirety of this project. The main ref-
erences are of course the Programmer’s Guide [13] and the Arm Reference
Manual [14].

ARMv8 is the latest generation of ARM architectures, following ARMv7.
It brings an enourmous list of changes from its predecessors, finally adding a
64-bits option to the family; still, it does so while still keeping backward com-
patibility towards 32-bits code and applications. The execution state in which
an ARMv8 processor runs 64-bits code is called AArch64, while AArch32
identifies the compatibility state for 32-bits applications. The AArch32 is
very similar to the previous ARMv7 specification; in fact, when the scope
of this project was still moving from the Raspberry Pi 2 (ARMv7) to the
Raspberry Pi 3 (ARMv8) the source code and toolchain used were initially
unchanged. Being the first attempt for the ARM consortium at 64-bits ma-
chines it takes advantage of a fresh start, removing many elements of com-
plexity found in past entries while copying positive qualities from competitors
that came before them (like 64-bits MIPS).

3.1 Exception Levels

When executing in AArch32 state the registers and system configuration
is almost identical to ARMv7, separated in no less than 9 encoded processor
modes with one of 3 possible privilege level. AArch64 significantly simplifies
this model with just 4 exception levels, ranging from EL0 to EL3. Com-
patibility is achieved with non-injective, surjective mapping from processor

11



12 3. Overview of the ARMv8 Architecture

Figure 3.1: ARMv8 Exception levels and their main purpose

modes to exception levels.
We describe briefly the function of each exception level:

• EL0 is the lowest exception level, often referred to as “unprivileged” in
opposition to every other, “privileged”, level. It has severe limitation
in accessing system registers and failure to respect them is met with
a synchronous abort exception. It is meant to run user applications,
processes below the kernel.

• EL1 is the first privileged level. It is where most interrupts end up and
is meant for the OS kernel.

• EL2 is the Hypervisor level; here resides hardware support for virtu-
alization, a level meant to supervise virtual machines. For example,
KVM is an in-kernel virtualization running at level EL2 and supervis-
ing the virtual kernel at EL1.

• EL3 is used to separate the system into secure partitions with the
hardware TrustZone support.

3.1.1 Changing Exception Level

A change in the current exception level can be either caused by a willing
decision of a higher privilege EL to a lower privilege EL or following an
exception. Moreover, an exception cannot be taken to a lower exception
level (e.g. if the core is currently at EL2 and an interrupt line that should
be handled at EL1 is asserted it will be ignored as long as the exception
level is not lowered, regardless of interrupt enabling). To access a lower
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exception level an eret instruction is required: eret loads the state stored
in SPSR ELn (see 3.2.2), where ELn is the current exception level, as the
new system status (exception level included). Since no exception is ever
handled at EL0, EL0 is only reachable through eret instructions.

Exceptions are normally taken to EL1 but can be set to run in EL2
or even EL3 by configuring corresponding system registers HCR EL2 and
SCR EL3, called Hypervisor Configuration Register and Secure Configura-
tion Register respectively.

It is also possible to change execution state (i.e. AArch64 or AArch32)
during runtime but that is irrelevant for the scope of this work, as it lies
entirely in AArch64.

3.2 Registers

3.2.1 General Purpose Registers

One of the immediate benefits of a 64-bits architecture is a larger register
pool: ARMv8 uses 31 64-bits wide general purpose registers, more than dou-
bling from ARMv7. The registers are numbered from x0 to x30. Although
they are freely accessible the developer should be mindful of their secondary
purpose for function calling convention (both C and Assembler):

• x0 to x7 are used to hold both arguments and return value (only x0)
of a C function.

• x8 is used to pass an indirect result value (e.g. a returned structure,
in which case x8 holds the address to a properly set memory location).

• x9 to x18 are used to hold local variables in a routine call. They are
caller-saved, which means that it is the caller responsibility to preserve
their content before issuing a C function call.

• x19 to x28 are similar temporary registers, but for the callee to restore
before returning; they are referred as callee-saved.

• x29 is the frame pointer.

• x30 is the link register.

Every general purpose register also has a 32 bit alias obtained replacing “x”
with “w” in the register’s name (from w0 to w30) that permits access to
the lower (i.e. least significant) 32 bits of the register; the upper 32 bits are
ignored.
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Figure 3.2: 64 bit register with “x” and “w” access

3.2.2 Special Registers

There are 5 special registers:

Zero Register: xzr and wzr provide access (as 64 and 32 bits register
respectively) to a special register that ignores write attempts and always
read as zero.

Program Counter (pc): up until ARMv7 the program counter was a gen-
eral purpose register held in r15. In ARMv8 it has a very limited access,
being read only and only implicitly used in certain instructions. This is
one of the biggest differences with previous architecture and caused a lot
of initial confusion; its restrictiveness results nonetheless in a much clearer
and less error prone program flow.

Exception Link Register (elr): without free access to the program counter
the system must provide an alternative way to restore a process’ execution
point. The exception link register holds the exception return address: it
is automatically filled when one is fired and can be overwritten. Upon ex-
ecuting an eret instruction the value in elr is set as the program counter.

Saved Process Status Register (spsr): similarly to elr, this register is
automatically initialized with various status informations upon taking an
exception, and is restored (after eventual modification) with an eret in-
struction.

Stack Pointer (sp): The current stack pointer. It is freely accessible both
in read and write operations.

As depicted in figure 3.3 some special registers have different versions for
different exception levels: there is a separated stack pointer for all four of
them and EL0 is the only level missing spsr and elr (owing to the fact that
they are exception related registers, and EL0 never deals with exceptions or
eret instructions).

Access to a special register from a different exception level is permitted if
said register belongs to a lower level: for example EL3 can set all the other
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Figure 3.3: AArch64 Special Registers

stack pointers (including its own), but EL1 trying to do the same will trigger
an abort for sp el2 and sp el3.

3.2.3 System Registers

Another significant turn from ARMv7 is the absence of a coprocessor
interface. A coprocessor is an auxiliary core used to supplement the functions
of the primary processor; ARMv7 specified a generic coprocessor interface
to connect up to 15 assisting cores, one of which was reserved for system
registers management. While coprocessors had to be controlled via specific
instructions ARMv8 system registers are directly accessed in Assembler with
the mrs and msr instructions as per any other register. This is a welcome
change that simplifies the developer’s approach to system configuration.

Similarly to special registers many system registers have different, banked
versions for some or all exception levels (usually not EL0), each with the
suffix ELn to indicate the corresponding level. These registers are usually
32 bits wide. What follows is a list of system registers considered most
important for the purpose of this work; for a detailed description of the
various bit fields refer to the ARM reference manual [14].

Exception Syndrome Register: ESR ELn , for each exception level holds
the information regarding the last occurred exception (only for synchronous
and SError, not for IRQs and FIQs. See 3.3 for more on exceptions). It
is necessary to distinguish between exception classes and to find details
specific to the cause of disruption in normal program flow.

Fault Address Register: FAR ELn , it is used in pair with ESR ELn
to find which address caused a Data or Instruction synchronous abort.
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Hypervisor Configuration Register: HCR EL2, controls virtualization
settings and trapping of exceptions to EL2.

Memory Attribute Indirection Register: MAIR ELn , stores the user-
provided memory attribute encodings corresponding to the possible values
in a MMU translation table entry for translations at level n.

Multiprocessor Affinity Register: MPIDR EL1 is the executing core
id, used mainly to distinguish on which core the code is running on.

Secure Configuration Register: SCR EL3 controls Secure state and trap-
ping of exceptions to EL3.

System Control Register: SCTLR ELn controls architectural features,
for example the MMU, caches and alignment checking.

Translation Table Base Register 0: TTBR0 ELn , holds the address
to the MMU translation table used normally at each exception level.

Translation Table Base Register 1: TTBR1 EL1, holds the address to
the a special translation table used to separate application and kernel
space. See section 4 for more.

Vector Based Address Register: VBAR ELn is a pointer to the ex-
ception vector table for level n.

3.2.4 PSTATE

A reader with experience in ARM architecture will surely notice the lack
of a current program status register holding informations like the current
exception level, aritmetic flags, interrupt mask and so on. The AArch64 ver-
sion of said register is implicitly present and not directly accessible. Instead,
the single fields are supplied to read and write independently; this collection
of “fake registers” is globally called PSTATE; the single fields and their
meaning are listed in table 3.2.4. Curiously, querying for the CPSR register
in a GDB debugger will correctly display the PSTATE components as a
whole, although no such register can be loaded from or stored to even with
Assembler instructions.

3.3 Exception Handling

In ARM architecture exceptions are conditions or system events that re-
quire some action by privileged software to ensure smooth functioning of
the system; said condition is taken care of immediately by interrupting the
normal flow of software execution and starting another routine (the excep-
tion handler). There are several classes of exceptions; every class can branch
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Field name Register handle Description
N None Negative condition flag
Z None Zero condition flag
C None Carry condition flag
V None Overflow condition flag
D daifset and daifclr Debug mask bit
A daifset and daifclr SError mask bit
I daifset and daifclr Interrupt mask bit
F daifset and daifclr Fast interrupt mask bit
SS None Software Step bit
EL CurrentEl Current exception level

nRW None
Current execution state
(AArch32 or AArch64)

SP None Stack pointer selector

Table 3.1: PSTATE fields definitions

in different kinds, and every exception can be either synchronous or asyn-
chronous (see figure 3.4).

The code to run when an exception is fired is specified by the developer
in an exception vector table. The pointer to the exception vector table is
written to the VBAR ELn register, with n ranging from level 1 to 3, so
every exception level has its own table (nothing prevents multiple levels to
point to the same table however). For exceptions fired while at EL0 the
table for EL1 is referenced.

The exception table can be anywhere in memory but must be 128 bytes
aligned and must have the format specified in table 3.2. Each entry in the
table is 16 instructions long, allowing for some control logic to be present in
the top level handler as well before branching to a more complex routine.
The table can be divided in four sections:

1. handlers to be used when the exception does not change neither the
current exception level nor the stack pointer.

2. handlers to be used when the exception does not change the current
exception level but should use a specific stack pointer.

3. handlers to be used when the exception elevates the privilege level and
the execution state is in AArch64.

4. handlers to be used when the exception elevates the privilege level and
the execution state is in AArch32.
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Address Exception type Context
VBAR ELn + 0x00 Synchronous
VBAR ELn + 0x80 IRQ/vIRQ
VBAR ELn + 0x100 FIQ/vFIQ
VBAR ELn + 0x180 SError/vSError

Current EL
with SP0

VBAR ELn + 0x200 Synchronous
VBAR ELn + 0x280 IRQ/vIRQ
VBAR ELn + 0x300 FIQ/vFIQ
VBAR ELn + 0x380 SError/vSError

Current EL
with SPx

VBAR ELn + 0x400 Synchronous
VBAR ELn + 0x480 IRQ/vIRQ
VBAR ELn + 0x500 FIQ/vFIQ
VBAR ELn + 0x580 SError/vSError

Lower EL
using AArch64

VBAR ELn + 0x600 Synchronous
VBAR ELn + 0x680 IRQ/vIRQ
VBAR ELn + 0x700 FIQ/vFIQ
VBAR ELn + 0x780 SError/vSError

Lower EL
using AArch32

Table 3.2: Exception table format.

Each section has four different handlers for synchronous exceptions, IRQ,
FIQ and SError. The Stack Pointer to be loaded is chosen by the stack
pointer selector field in the current state register (see table 3.2.4); it can
either be the current stack pointer or a memory address banked for the
destination level.

3.3.1 Interrupts

Interrupts can be fast interrupts (FIQ) or normal interrupts (IRQ). Aside
from the fact that FIQ have higher priority these two types of exception are
virtually identical, and fast interrupts are considered a vestige from past
architectures.
Usually it is the developer’s responsibility to route an interrupt source to
IRQ or FIQ. Interrupts are tipically associated with external hardware and
connected via input pins to the processor; The connection can be direct or,
more commonly, pass through an external device called interrupt controller
that elaborates interrupt priorities and organization (see section 5.4).

Because the occurrence of interrupts is not directly related to the instruc-
tion cycle being executed by the core at any given time, they are classified
as asynchronous exceptions.
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Figure 3.4: Tree of exception classes.

3.3.2 Aborts

Abort exceptions, also called system errors (SError), occur every time
an abnormal condition is met during a memory access. Instruction Aborts
result from an error during an instruction fetch cycle, while Data Aborts
follow failed data access.

Despite the names depicting error conditions, aborts can work in perfectly
normal and predictable flows. This is the case of MMU faults, generated by
the Memory Management Unit on occasions like access to dirty page entries.
The severity of conditions that set off abort exceptions can be configured to
some extent with system registers; for example, a TLB miss can be ignored or
fire an exception, and memory accesses can pass through address alignment
and permission checks which may or may not interrupt the process.

Aborts can be both synchronous and asynchronous: MMU faults and
alignment induced aborts are always synchronous, while data aborts can be
asynchronous in certain situations.

3.3.3 Reset

Reset is a special exception, fired on power up of the processor. Its handler
is implementation-specific and presumably located at address 0x80000, the
starting point for the loaded kernel, in the case of BCM2837.
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3.3.4 Exception Generating Instructions

We have seen that a core can lower its exception level with eret, but can
only increase it through an exception. For this purpose there are Assembler
instructions that induce an exception to a higher execution level, usually to
require a service paired with a higher privilege. The most obvious example
of this behaviour are system calls.

• SVC: the supervisor call instruction fires an exception handled at EL1.
Used by user programs to require kernel services.

• HVC: the hypervisor call instruction fires an exception handled at
EL2. Used by the guest OS to require hypervisor services.

• SMC: the secure monitor call instruction fires an exception handled
at EL3. Used to require secure world context switch.

Since those exceptions follow an instruction execution they are by definition
synchronous.

3.4 Caches

A cache is a block of memory with faster access than the memory normally
used. Whenever the RAM is read the resulting value can be stored in this
intermediate, efficient ephimeral storage unit; future references can then be
extracted from the cache instead (provided the original memory location
was not modified) for a significant increase in performance. Since slower is
normally cheaper, adding a small amount of high quality memory can speed
up the whole system without having to use an expensive replacement.

The ARMv8 specification defines three different cache levels; the proces-
sor can then implement an arbitrary number of them. The cache levels are
distinguished based on their position on the route from the single core to the
external memory.

In figure 3.5 we can see the disposition of the levels. The distance from
the core issuing a memory access is also an important factor in performance.
When a core requires a memory location, the address is first searched for in
the level 1 cache, which is core specific and not shared. If nothing is found the
lookup continues hierarchically to the level 2 cache, which is shared among
cores but internal to the processor. Another miss results in the third cache
level, which is eventually external to the processor.

A specialized device, the cache controller, ensures this search/update
mechanism works smoothly. Care must be taken to avoid problematic co-
herency situations, where the content of caches and main memory differ.
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Figure 3.5: Position of different cache levels in the system.

Since the objective of this work is to build an educational experience
performance is not a relevant factor; therefore, caches are simply disabled
altogether. Yet a generic understanding of caching is required to correctly
setup memory attributes when configuring the MMU.

3.5 Multiprocessor

Although not mandatory, the ARMv8 architecture is specifically struc-
tured to host systems with more than one core, like the Cortex-A53 CPU. In
a multicore environment each core has both personal and shared resources:
the registers (general purpose and system) are tipically duplicated and have
a localized effect, while the main memory is shared by all cores at all times.
As seen in the previous section the same applies to caches, with memory
banks closer to the core itself being personal while others are shared.

Each core has its own execution thread, identical or different from the
others. The A-53 processor has a single clock input, so every core runs at
the same frequency.

At a shallow level, the only register one should be concerned with when
dealing with parallelism is MPIDR ELn . It contains the identifying num-
ber for both cluster and core that is currently executing, so reading it yields
different results depending of who is doing it. On the A-53 there is only one
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cluster and four cores (indexed from 0 to 3).
When the reset interrupt is fired execution starts only for the first core;

the remaning three are held in a waiting state (as if by executing a WFE

instruction). They can be woken up by executing a SEV (send event) instruc-
tion, at which point execution starts at address 0x80000 for everyone else.
The most immediate way to split execution into different threads is to check
MPIDR and follow up with a conditional branch. From there each core
should be parked in a spinlock, waiting to be released and directed towards
the code it should execute.

3.6 ARM Timer

The Cortex A-53 implements a generic ARM timer interface that can
be used for interrupts and time scheduling. Despite its apparently simple
purpose this is a very convoluted internal device used to virtualize timers for
guest OSes as well. Given such functions are not needed in this work, the
explaination will focus on the physical counter and interrupt setting registers.

First of all, the timer must be initialized. It has a fixed running frequency
of 62.5 MHz that increments a 64-bits counter on each tick, but by default
the timer registers cannot be accessed at lower exception levels. Setting the
proper bits of CNTHCTL EL2 and CNTKCTL EL1 signal clearance of
access from EL2 and EL1 to lower levels, respectively.

From there, every exception level (and each core) but EL0 have its own
timer to configure and use freely. Additionally, EL1 and EL2 can benefit
from a virtual timer with a counter value equal to the physical one minus
a specified offset (register CNTVOFF), for a total of five channels. Each
timer is controlled through four classes of registers:

• Control: 32-bits registers named CNTt CTL ELn , where t repre-
sents the kind of timer (e.g. P for physical, V for virtual, H for hyper-
visor) and n is the exception level. They only use 3 bits to determine
whether the timer is enabled, if the interrupt should be masked and if
the condition has been met (i.e. the time alarm has been reached).

• Counter: the ever growing 64-bits counter register, named CNTtCT ELn .

• Compare Value: CNTt CVAL ELn , holds the compare value of
the corresponding timer. The condition for the timer is met when
Counter − CompareV alue >= 0.

• Timer Value: CNTt TVAL ELn , is a convenience 32-bits register



3.6 ARM Timer 23

for setting the next timer interrupt. On write, the compare value is set
to the current timer plus the written timer value.

The memory mapped generic interrupt controller can be used to decide
which kind of interrupt (IRQ or FIQ, if any) is fired on condition met. Then,
an appropriate value can be loaded onto the timer value register, and even-
tually an exception will be fired. Timer interrupt lines are de-asserted either
by setting a new timer in the future or by disabling the counter altogether.
Even at the same exception level, physical and virtual timers have separate
interrupt lines. In this project both are used at EL1 by the abstraction
layer: the physical line is routed to normal interrupts while the virtual one
is managed by a FIQ.





Chapter 4

The Memory Management Unit

The Memory Management Unit is a device found in most CPUs tasked
with the objective of translating from virtual memory addressing to physical
addressing. The Cortex-A53 is no exception and has an advanced internal
MMU. It is such an important component of the system and of any Oper-
ating System that even if it’s technically part of the ARMv8 specification it
deserves a chapter on its own.

The main purpose of address translation is to allow each process to have
its own virtual address space that has nothing to do with how much memory
is available (and where this memory is located) on the system, with hardware
MMIO and other processes hidden from its view. If the memory management
unit is active any address referenced by a process is first elaborated and
translated: different sections of the 64-bits address (starting from the most
significant) are used to index different levels of a tree containing translation
entries. While translating there can also be additional checks on whether
the current exception level has the proper permissions to access the resulting
physical memory. For example memory blocks where the kernel is loaded
should not be accessed in any way by EL0 code; in a similar way memory
that is writable at EL0 cannot be allowed to execute at higher permission
levels. The latter constriction is built in the specification by default; the
former should instead be enforced by the developer via MMU configuration.
Only after translation and permission checks are done the actual memory
access is performed; however, most of the process is handled by the hardware
and can be almost entirely ignored by the programmer after the initial setup.

25
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4.1 Address Translation

As briefly mentioned in the introduction, when the MMU is active every
address is treated as an array of indexes for the translation table. The trans-
lation table is a tree of translation entries that maps a section of RAM: each
level of the tree has entries covering a certain number of elements in the next
level until the last, that corresponds directly to memory.

The example that follows considers a tree where each entry before last
level points to 512 more entries and depicts a trivial “identity” mapping:
every virtual address is translated in the same physical address. The bottom
level covers a 4KiB block of memory directly (the reason for these numbers
will be explained in section 4.1.1). There are four levels in the tree, level 0
to 3. Presume we want to translate a 64-bits address:

• the 16 most significant bits are reserved for kernel space virtualization
(more on this topic in section 4.4).

• bits 47:39 are the level 0 table and reference a level 1 entry. Each level
0 entry spans a 512 GiB memory range (239).

• bits 38:30 are the level 1 table and reference a level 2 entry. Each level
1 entry spans a 1GiB memory range (230 or 512GiB/512).

• bits 29:21 are the level 2 table and reference a level 3 entry. Each level
2 entry spans 2 MiB memory range, similarly to previous levels.

• bits 20:12 are the level 3 table and reference the last level, made of
direct memory blocks. Each memory block is 4KiB wide.

• bits 12:0 are the offset for the last memory block and index the actual
word referenced.

In this mundane example it is evident how the translation process is
arbitrary; every level can simply be cut off and the resulting address be
obtained by adding the intermediate indexes and the remaining bits (to be
considered as the final offset).
This is not possible anymore if the translation function is not an identity, in
which case the translation function is codified by the pointers in the table
entries; the table entry marks the beginning of the next level of tables and
the corresponding piece of virtual address indexes the chosen entry.

4.1.1 Granule Size

With granule size we refer to the smallest possible block of memory that
can be indexed by the MMU tables; in the previous example, 4KiB. The
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Figure 4.1: Example of the address translation process .

ARMv8 specification allows for three different granule sizes: 4KiB, 16KiB
and 64KiB. The actual ARM processor abiding to the standard can in turn
implement those granules only partially, and fortunately the Cortex-A53 im-
plements them all. The granule size is a global setting, affecting the entirety
of the page table. Different granule size dictate how many levels is possible
to have and how many entries are in each table (for example, a granule of
64 KiB allow only 3 levels and a granule of 16KiB will result in 10-bits wide
address sections).

A small granule size will result in more control but also in a bigger table;
to divide a 2GiB RAM into 4KiB blocks an Operating System will need
524288 64-bits wide table entries, for a total of 4MiB of allocated memory.
Choosing a fine grained control does not mean commiting to it, however.
If there are large sections of memory with the same memory attributes and
virtual addressing (e.g. MMIO memory that should generally not be accessed
by user processes) the developer can “cut early” the page table tree and use
any intermediate memory range. In the above example we could arbitrarily
stop at level 2 and create a part of the table with direct entries spanning 2
MiB each, situation photographed in figure 4.2.
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Figure 4.2: Here the last 21 bits are used as a bigger offset for a 2 MiB
block of memory

4.2 Table Descriptor Format

When in AArch64 there is a single accepted format for table entries.
We will now consider the configuration consequential to a 4 KiB granule
size; other choices differ sligtly in translation indexes width and position,
but maintain the same core concepts. The table descriptor is 64-bits wide,
separated in differently sized fields.

Any table entry is one of two types:

1. A table descriptor that points to another table entry in the next
level.

2. A block entry that resolves directly into a memory range of variable
size, depending on the level.

The entry type is defined by the two least significant bits in the descriptor,
as depicted in table 4.2; an invalid entry leads to an MMU fault exception.
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Entry Type
field

Meaning

00 Invalid
01 Block Entry
10 Invalid
11 Table Descriptor

Table 4.1: Page entry types.

Note that not every level can host a block entry; with a granule size of 4
KiB, level 0 does not admit that kind of descriptor.

4.2.1 Table Descriptors

Table descriptors point to a table entry in the next level. Bit fields have
the following meaning:

• [0] marks the validity of the entry; 1 is valid, 0 is invalid.

• [1] is the entry type. It is 1 for table next level descriptors.

• [2:11] are ignored/reserved bits.

• [121:47] is the address of the next level table. It is codified as if it
started from the least significant bit, with [112:0] bits assumed as 0.
Because of this all page tables must be 4096 (212) bytes aligned.

• [48:58] are ignored/reserved bits.

• [59] PXNTable field: private execute never bit for subsequent levels of
lookup; if set the memory range covered by this and following entries
cannot be executed by code at level EL0.

• [60] XNTable field: execute never bit for subsequent levels of lookup;
if set the memory range covered by this and following entries cannot
be executed.

• [61:62] APTable field: access permission bits for subsequent levels of
lookup; this field enforces permission rules for the memory range in-
dexed by this and following entries, combined in a hierarchical fashion
(see table 4.2.1). Subsequent table entries can further restrict the per-
mission rules but cannot loosen them; failure to heed said rules will
result in an appropriate abort exception.

1 This value can be different for granule sizes other than 4KiB
2see footnote 1
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• [63] NSTable field: when in secure state this bit specifies the security
state for subsequent levels of lookup. When not in secure state it is
ignored.

APTable[1:0] Restriction
00 No effect on subsequent levels of lookup

01
Any access to this memory range from EL0
is forbidden.

10 Memory is read-only.

11
Any access to this memory range from EL0
is forbidden, while it is read-only for
higher privilege levels.

Table 4.2: Access Permission Table bit fiels. The two bits can be separated
and seen as read-only bit ([0]) and EL0 access ([1])

4.2.2 Block Descriptors

Block descriptors represent direct access to a block of memory; when one
is reached, it is the last stage of the translation process. They contain the
following bit fields:

• [0] marks the validity of the entry; 1 is valid, 0 is invalid.

• [1] is the entry type. It is 0 for block descriptors.

• [2:4] memory attributes index field. The value found here indexes a
memory address configuration defined in corresponding the MAIR ELn
register (see section 4.3).

• [5] is the non-secure bit. For memory accesses from secure state spec-
ifies whether the output address is in the secure or non-secure address
map. For accesses from non-secure state this bit is ignored.

• [6:7] are data access permission bits. Similar to APTable bits, they
are referred to the immediate block of memory (and can be further
restricted by previous APTable settings). For possible values see table
4.3.

• [8:9] sets the shareability of the memory block, configuring caching
capabilities.
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AP[2:1] Access from privileged EL Access from EL0
00 Read and write Forbidden
01 Read and write Read and write
10 Read-only Forbidden
11 Read-only Read-only

Table 4.3: Access Permission Bits values. similarly to 4.2.1, the two bits 1
and 0 can be interpreted separately as write restriction for higher exception
level and access for EL0, respectively.

• [10] is the access flag (AF). If it is not set it means the selected entry
is accessed for the first time, in which case an MMU abort will be fired.
The exception handler should take care of the initialization, set the
access flag to 1 and attempt again the memory access.

• [11] is the not global bit (nG). If a lookup using this descriptor is
cached in a TLB, determines whether the TLB entry applies to all
ASID values or only to the current ASID value (see section 4.5 for
more).

• [12:47] is the address to the memory block that is pointed by the
descriptor. It is aligned similarly to the address in a table descriptor,
but it contains actual memory instead of a next level page table.

• [48:50] are ignored/reserved bits.

• [51] is the Dirty Bit Modifier (DBM); it is used to keep track of dif-
ferences between caches and real memory. If it is set, caches should
be checked for stale entries. It can be managed either via hardware or
software.

• [52] is the Contigous bit, a hint bit indicating that the translation table
entry is one of a contiguous set or entries and may be be cached in a
single TLB entry.

• [53] PXN bit: privileged execute never bit. If set, the memory block’s
execution at unprivileged exception levels (EL0) is forbidden.

• [54] XN bit: execute never bit. If set, the memory block’s execution is
forbidden.

• [55:63] are ignored/reserved bits.
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4.3 Memory Types and Attributes

As previously mentioned the block and table descriptors contain infor-
mation about what kind of memory they point to. Every memory address
is one of two possible types: normal or device. Normal memory is the one
used for most memory regions and where there can be the most invasive op-
timizations. Normal memory can be heavily cached and is considered to be
weakly ordered: the actual number, time and order of access can differ from
the logical flow of the program without causing semantic errors.

Device memory is used instead for memory mapped peripherals. When
the subject is a device register the order of operations and even repeating
the same instruction might yield unexpected side effects; caching must be
disabled too, as the content of a device bus is often non deterministic.
Other than the memory type there are fine tuned attributes to distinguish
what levels of caching and optimization are allowed.

4.3.1 Shareability

In a multiprocessor system the main memory is obviously shared among
all the cores. This can lead to coherency problems in caches external to the
individual core (level 2 and level 3, see section 3.4). Hinting who is going
to use a certain memory block can greatly help the system when managing
caches, improving performance and energy cost. There are three possible
shareability options:

Non-Shareable: memory marked as non shareable is assumed to belong to
a single actor, thus synchronization of access from different cores is not
needed.

Inner Shareable: this memory can be shared inside the processor (i.e. be-
tween the cores) but not outside of it (i.e. in the rest of the system).

Outer Shareable: an outer shareable domain is publicly available for every
actor in the system and needs to be synchronized on each access.

The shareability attribute is found in the specific field of the block entry
descriptor (see section 4.2.2)
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4.3.2 Cache policies

When a cache search misses and the entry is not found, the respective
cache entry is updated with the value found on RAM. When the search is
successful and the operation is a write, deciding what location to update is
not trivial.
Regarding normal memory, the OS developer can specify cache policies as
any combination of the following three classes:

1. Cacheability: Non-Cacheable, Inner Cacheable or Outer Cacheable.

2. Update policy: Write Back or Write Through.

3. Transient: Transient or Non-Transient

Different cacheability options refer to which fast memory block should
be used - internal to the core, internal to the cluster or external - and were
described in section 3.4.
When write back memory locations are updated only the cache entry is mod-
ified and marked as dirty; corresponding main memory locations are updated
only when the cache line is evicted or explicitly cleaned. Write through is
instead a safer (but slower) approach, where an update changes both the
cache and the system memory.
Transience is an hint to the cache controller about how long an address
should be kept in cache for. This behaviour is implementation defined, not
configurable by the developer.

Device memory is treated differently, and thus possesses its own set of
attributes:

1. Gathering: this property determines whether multiple accesses can
be merged into a single bus transaction for this memory region. If the
address is marked as gathering the processor can, for example, merge
two byte writes into a single-word half write.

2. Reordering: attribute defining whether accesses to the same device
can be re-ordered with respect to each other. If the address is marked
as non Re-ordering then accesses within the same block always appear
on the bus in the order specified by the code, while Re-ordering ranges
of memory will be subject to read and write chains optimization.

3. Early Write Acknowledgement: identified as E or nE, declares if
an intermediate write buffer between the processor and the slave device
being accessed is allowed to send an acknowledgement of a write com-
pletion. It is only used for closely intertwined operation with special
peripherals.
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Refer to the Architectural Reference Manual [14] for the exact values and
codes of the memory attributes combinations.

4.3.3 MAIR Configuration

Due to the high number of possible combinations (many of which are
problably scarcely used), the memory attributes configuration procedure fol-
lows a peculiar and somewhat unconventional approach. Instead of having
separate fields in the already filled block descriptor format, the programmer
defines up to eight memory attribute combinations codified with 8 bits each
which are then pushed into the MAIR ELn register as if in an array. The
block descriptor in turn has a 3-bits field, the memory attribute index, that
indexes which configuration to use in said array, in a two step process.

In the image example, the MAIR register is populated with two options
for cached and non-cached normal memory in the first two bytes. Page table
entries will then select a combination using the memory attribute index. Note
that any combination can be placed anywhere in the register and it does not
need to be correctly initialized in all the eight bytes, as long as only correct
entries are indexed by the page table.

Figure 4.3: MAIR register configuration and indexing by the page table
entries.
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4.4 Kernel Space Virtualization

In a tipical OS environment multiple processes run concurrently and use
dynamically allocated memory and resources. The memory management
unit serves to this purpose: every process has its own set of translation
tables managed by the kernel and sees a contiguous range of memory at its
disposal while in truth it is loaded somewhere in main memory - maybe not
even adjacent or complete.
In this multitude of actors we can consider the kernel as a process in its
own right - albeit of a superior kind - and because it has no peers and often
uses a static memory space the translation mechanism is meaningless, if not
cumbersome.

To fix this situation the ARMv8 provides a number of features. One
may intuitively imagine different page table references for each Exception
Level, but this is only partially the case. EL0 and EL1, the main levels
of operation for user processes and kernel, share in fact the same two page
table registers: the one assigned to “normal” operation, TTBR0 EL1, and
the register actually in charge to properly divide user and kernel pages, The
former is used to translate addresses in the vast majority of the immense 64-
bits addressing space, holding the base address of the page table constructed
by the developer; TTBR1 EL1, the latter, works in the same way but is
only selected when the 16 most significant bits of the address under scrutiny
are set to 1, forming a location absurdely far away for any memory bank
designed in the foreseeable future.

The kernel can then operate in this mock memory range with a personal
page table (possibly as an identity transformation) while normal processes
live in lower scope of virtual memory. To accomodate the kernel in this in-
existent range the addresses in its code must be set properly. This would
require either a linker script instructing to compile for memory starting at
0xFFFF00000000000000 (in which case the MMU must be configured and
enabled immediately) or compiling the code for relative branch instructions
only. The latter approach is considered easier as it works even if the MMU
is disabled and only requires the kernel entry point (the exception table) to
be tweaked when address translation is eventually turned on.

As a side note, the condition to select the TTBR1 EL1 register can be
limited to the second most significant byte of the address set to 0xFF; the first
byte can then be freely used by the kernel software for personal purposes.

An example use case might be in support of object-oriented programming
languages: as well as having a pointer to an object, it might be necessary to
keep a reference count that keeps track of the number of references, pointers
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Figure 4.4: In this image kernel and user spaces are positioned at the oppo-
sites of the address range but both are mapped in the same physical area.

or handles that refer to the object, for example, so that automatic garbage
collection code can deallocate objects that are no longer referenced. This
reference count can be stored as part of the tagged address rather than in a
separate table, speeding up the process of creating and destroying objects.

4.4.1 EL2 and EL3 Translation Process

Virtualization and secure exception levels have their own page tables.
Since they act as overlay for one or more guest operating systems when
enabled there are two translation stages: the first one is performed by the OS,
using TTBRn EL1 as already explained; the result from this stage is then
fed to a second stage, with tables found in TTBR0 EL2 and TTBR0 EL3.

Such complex tools are out of the scope of this work.
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4.5 Translation Lookaside Buffer

The Translation Lookaside Buffer (or TLB) is simply cached memory for
address translation results: when a virtual address is to be translated the
TLB is checked first; if the address is found (TLB hit) then the cached value
is used. If not (TLB miss) a page table walk is performed and the result is
stored in the TLB. Alternately, an MMU fault can be configured to fire.

The TLB and MMU intertwined operation works very differently in ARM
compared to MIPSEL architecture and with an arguably easier approach
for a novice. The TLB component activity is almost invisible to the OS
developer not caring for particular performance optimizations, so it can be
safely ignored. The only essential part is the configuration of proper page
tables for each process.

4.5.1 Trivial Approach

Once the MMU is activated and page tables are initialized the kernel
must make sure every process can only see its virtual memory share during
its designated time slice. This can be achieved by creating a different page
table per process and simply substituting it completely every time there is a
context switch. A problem presents when a process asks for the same virtual
address, that should however be translated in a different physical address, of
one of its peers; we shall call them process a and b. If the entry relative to
a is found in the TLB by b its value will be returned without performing a
page table walk, and will result in the wrong memory being accessed.

Without delving too deeply into MMU operation, a simple solution will
be to flush the TLB cache every time there is a context switch. This will
effectively deny most of the optimization brought by the cache, but will also
prevent incorrect translations.

4.5.2 ASID Approach

A more elegant and efficient solution consists in using an Address Space
ID (ASID) to keep track of process property in TLB entries. The ASID is
arbitrarily assigned to processes by the kernel and stored in the two most
significant bytes of either TTBR0 EL1 or TTBR1 EL1 When the non-
global (nG) field of a block entry in the page table is set the current ASID
is saved alongside the address in a TLB entry. Subsequent lookups for that
address in the TLB cache only match if both the address and the saved ASID
correspond to present values.





Chapter 5

Overview of the BCM2837

The BCM2837 is the System-on-Chip produced by Broadcom that is used
for most of the Raspberry Pi family of boards, and for the third version specif-
ically. Some of them are built with variants like BCM2836 (for the Raspberry
Pi 2) and BCM2835 (the first used, for the Raspberry Pi 1): the scarce doc-
umentation is only available for BCM2835 [10] (and partially for BCM2836
[11]) allegedly because nothing changes from the developer perspective; the
actual differences have been figured out mostly through reverse engineering
from the source code of various Linux distributions.

The BCM2837 contains the following peripherals, accessible by the on-
board ARM CPU:

• A system timer.

• Two interrupt controllers.

• A set of GPIOs.

• An USB controller.

• Two UART serial interfaces.

• An external mass media controller (the microSD interface).

• Other minor peripherals (I2C, SPI,. . . ).

5.1 Boot Process

As is the case for many similar boards the ARM CPU is not the main
actor, but actually more of a coprocessor for the Videocore IV GPU installed
alongside it.

On reset the first code to run is stored in a preprogrammed ROM chip
read by the GPU, called the first-stage bootloader. This first bootloader

39
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Figure 5.1: Explanatory diagram on BMC2837 boot sequence

looks for the first partition on the microSD card (which has to be formatted
as FAT32), mounts it and loads (if present) a file called bootcode.bin from
the partition. This binary is part of the Broadcom proprietary firmware
package, and is considered the second-stage bootloader.
At this point of the boot sequence the main memory is still not initialized, so
the second-stage bootloader is run from the L2 memory cache. This firmware
initializes the RAM and in turn loads on it another file from the microSD
card, start.elf.
Another firmware for the Videocore, start.elf has the responsibility to
split the RAM in two parts for the GPU and the CPU; after that it reads
the config.txt file (if present) and loads its parameters starting at address
0x100. Finally it does the same with the kernel image and passes control to
the ARM CPU.
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Every step up until the loading of the kernel image in memory is handled
by the GPU and can be safely ignored after an initial setup.

5.1.1 MicroSD Contents

The microSD must have its first partition formatted as FAT32; there are
no further restrictions on following partitions. The absolute bare minimum
contents are just four files:

1. bootcode.bin: second-stage bootloader, necessary for the GPU to
load the third-stage bootloader.

2. start.elf : third-stage bootloader, necessary for the GPU to load the
kernel image into main memory.

3. fixup.dat: a file containing relocation data to be referenced by start.elf

when loading into RAM; this allows for the same firmware to be used for
all versions of the Raspberry Pi, which range in memory from 256MB
to 1GB. If not included the board might still boot, but it will likely
only report a total of 256MB regardless of the actual installed memory
banks.

4. kernel8.img: kernel binary for the ARM CPU.

Of those four files only the kernel image is user provided; the remaining
firmware is distributed and updated in compiled form by the Raspberry Pi
foundation with proprietary licensing from Broadcom.

5.1.2 Configuration

It is possible to configure in different ways the boot process by combining
different firmware binaries and config.txt options, but MaldOS always uses
the default with no extra steps needed; this is to ensure the usage is kept as
simple as possible and because the base behaviour never presented any issue.
Of all the available options, only the following two were ever considered (but
still never implemented).

Architecture

The Cortex A-53 can run both ARM32 and ARM64 code. The choice
is dictated by the name of the kernel image: kernel8.img makes the CPU
start in AArch64 mode, while kernel7.img would start in AArch32. The
latter option is preferred.
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Kernel Loading Address

The GPU loads the kernel image starting at address 0x80000 in RAM
for the Raspberry Pi 3. By adding a config.txt file to the microSD card
and using the kernel address parameter the image file will be loaded at the
specified starting point. Similarly, by setting the kernel old parameter to
1 the binary will be loaded at the beginning of the main memory, at address
0x0. This alias is present for compatibility reasons.

Although these options can bring a more clean memory disposition, it
was decided the advantages were not worth adding an additional file to the
necessary setup. Additionally, while the Raspberry Pi hardware correctly
interprets these commands the Qemu emulated machine is not entirely loyal
to reality and actively resists any attempt to move the kernel to locations
other than 0x80000 (more details can be found in section 9.3).

Memory Split

As previously mentioned the two main actors on the BCM2837, the quad-
code Cortex-A53 ARM and the Videocore IV GPU, share the same 1GiB
RAM space. When not instructed otherwise the start.elf bootloader fixes
the separation at address 0x3C000000, keeping 64MiB to himself and leaving
the rest to the CPU.

This split can be increased in favor of the GPU or minimized even further
using specific config.txt parameters. The only graphical feat required by
this work is the display of a simple framebuffer to present textual output;
therefore a reserved memory partition of 64MiB is more than sufficient. It
could be in fact reduced further to 16MiB, but as for the kernel load address
adding the config.txt file was judged unneded effort on the user’s side.

5.2 Videocore IV

After the control is passed to the ARM CPU it is never returned to
the GPU. The graphical processor however still has responsibility over some
peripherals and can carry on work under specific requests. The mean of
communication between the two processing units is the shared RAM memory
(and part of the interrupt controller), specifically under the Mailbox interface.

5.2.1 Mailboxes

Mailboxes are the primary means of communication between the ARM
and the Videocore firmware running on the GPU. A mailbox is nothing but a
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memory address with special access modes tied to an interrupt signal for the
receiving end. Mailboxes consist of one or more 32-bits registers providing
status information, read and write access. If a value is written on the right
memory location and the mailbox is ready to accept data, an interrupt will
be fired and the receiver will have the chance to read the message and act
accordingly. The data is usually another memory location, whose pointer
has been written into the actual mailbox, containing arbitrarily long and
elaborate parameters. ARM cores can interrupt each other by using single
register mailboxes for inter processor communication while the relative extra
cluster transmission mean have as many as 9 registers each, although the
function of most of them is unknown.

Register Name Function

read
register to be read for command responses.

The 4 least significant bits are the mailbox channel
reserved
reserved
reserved

peek
like the read register but does not remove the

value from the message FIFO
sender information about the sender

status
status register, carrying information about the mailbox

state (e.g. the message FIFO is empty or full)
config unknown function

write
register where to write a pointer to the command structure.

Adds the message to the GPU’s FIFO.

Table 5.1: CPU-to-GPU mailbox registers list.

Regarding the CPU-to-GPU mailbox, additional care must be taken to check
whether the mailbox is full or empty by inspecting the two most significant
bits of the status register. After the command has been executed the status
register should be polled again for change and the memory structure passed to
the other core will contain the requested information (if any). The Videocore
accepts lists of multiple commands as messages and organizes responses in
an ordered FIFO that is emptied by reading the mailbox until the status
register signals there is no more mail.

The data address to be written on the mailbox must be 16 bytes aligned in
memory, as the lowest 4 bits must be overwritten with the so called mailbox
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channel number, a parameter detailing the nature of the request. As of time
of writing only two channels are defined: channel 8 for requests from ARM
to the Videocore and channel 9 for requests from the Videocore to the ARM.
Apparently, channel 9 exists but has no definied behaviour.

The buffer whose address is written on the mailbox must contain properly
structured data for specific requests. Some of the possible commands from
the ARM CPU to the Videocore include:

• Get Broadcom firmware revision number.

• Get board model and revision number.

• Get board MAC address.

• Get current CPU-GPU memory split.

• Get or set power state for all the devices on the board.

• Get or set clock state for all the devices on the board.

• Get on board temperature readings.

• Control special GPIOs, like the on board activity led.

• Execute code on the Videocore.

• Require and manage a framebuffer to be displayed over the HDMI.

Command structure

The memory pointed by mailbox messages is interpreted by the GPU in
a specific and mostly homogeneous format (see table 5.2): there is an header
and a tail enclosing a list of tags (or commands) that can have a slightly
variating structure but are generally regular.

Field Size Meaning
32 bits buffer size in bytes (including the header values, end tag and padding)

32 bits
holds request/response code; success or failure and number of bytes

returned
variable list of concatenated tags
32 bits 0x00000000 to signal message end
variable
(if any)

padding to 16 bytes aligned address

Table 5.2: Mailbox message format; tag structure is specified in table 5.3.
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Field Size Meaning
32 bits tag identifier (specific 4-bytes code)
32 bits value buffer size in bytes

32 bits
request or response code (the most significant

bit selects which one)
variable value buffer for parameters and data
variable
(if any)

padding to 4 bytes aligned address

Table 5.3: Mailbox tag structure.

Framebuffer

The HDMI controller is managed entirely by the GPU, and the ARM
core has no way to interact with it directly. Instead, it can ask through
the mailbox property channel for the Videocore to set up a framebuffer in
its own memory share and directly access it, configuring screen resolution
in the process. The Videocore will then proceed to continously flush the
framebuffer’s contents on the screen. This is a very convenient design choice,
removing a great deal of effor from the OS developer to see output displayed
on screen.

5.3 Peripherals

What follows is a list of all the peripherals used in the project with the
core functioning (registers and command codes) explained for each of them.
Device peripherals are connected to the ARM CPU through memory mapped
I/O (MMIO); their registers and buses are mapped in RAM starting from
address 0x3F000000, as if the main memory of the system extended beyond
1GiB. Only the peripherals that find a purpose in MaldOS will be explored
here.

5.3.1 GPIO

The Raspberry Pi 3 board contains 54 General Purpose Input Output
pins, out of which only 26 are directly present in the 40 pin strip on the
board. The ones that are missing serve either internal purposes (see section
5.3.2) or are not used altogether.

Such a simple and low level peripheral is unlikely to be included into an
Operating System oriented project; nonetheless a simple yet effective library
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was created when first approaching the hardware (blinking a light is a close
second to the obligatory “Hello World” example) and is still necessary to set
up some other devices like the EMMC and UARTs. A brief description of
the device’s memory map is included for completeness.
There are 13 different kinds or 32-bits register in this peripheral. To ac-
comodate for 54 GPIOs each register class can repeat a number of times,
depending on how many bits are dedicated to the individual pin (i.e. 3 bits
per GPIO result into 6 registers; a single bit each can be covered by just two
32-bits registers). The GPIO memory map starts at address 0x3F200000

Function Select: GPIOs can have 8 possible functions: input, output and
“alternate function n”, with n spanning from 0 to 4. Alternate functions
are relative to specific peripherals (see sections 5.3.2 and 5.3.3). The
function is codified using 3 bits adequately positioned in the register (e.g.
bits [0:2] of the first register refer to GPIO 0)

Output Set: when GPIO n is configured as an output the nth bit of this
register class can be set to pull high the corresponding latch circuit. Writ-
ing 0 has no effect.

Output Clear: when GPIO n is configured as an output the nth bit of
this register class can be set to drive low the corresponding latch circuit.
Writing 0 has no effect.

Pin Level: read only register that yields a bitmap with the actual voltage
level registered in every pin.

Event Detect Status: bits in this register are set whenever an event is
detected. Events are configured by the following six registers.

Rising Edge Detect Enable: setting the nth bit in this register will result
in the event detect status register being updated on a rising edge (i.e. a
transition from low to high voltage) for GPIO n.

Falling Edge Detect Enable: setting the nth bit in this register will result
in the event detect status register being updated on a falling edge (i.e. a
transition from high to low voltage) for GPIO n.

High Detect Enable: this register ties a registered high level in a GPIO
to a value of 1 in the corresponding bit of the event detect status register.

Low Detect Enable: this register ties a registered low level in a GPIO to
a value of 1 in the corresponding bit of the event detect status register.

Asynchronous Rising Edge Detect Enable: akin to the rising edge de-
tect register but works asynchronously with respect to the system clock,
allowing to register faster transitions.

Asynchronous Falling Edge Detect Enable: akin to the falling edge de-
tect register but works asynchronously with respect to the system clock,
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Pull Up/Down: internal pull up or down register. Once a value is written
the actuation must be finalized with the next register.

Pull Up/Down Clock: after writing to the pull up/down register the cor-
responding bit in this register must be swapped to “clock in” the change.

5.3.2 External Mass Media Controller

The MultiMediaCard (MMC for short) is the open memory card standard
the vast majority of producers turn to when adding considerable amounts
of storage to size-restricted solutions. The BCM2837 includes an MMC
standard-abiding controller provided by Arasan to access microSD cards,
called External Mass Media Controller (EMMC) in the peripheral datasheet
[10].

The peripheral operates with a fair degree of autonomy from both the
CPU and the GPU. It has a configurable clock separated from the board and
is accessed through a set of memory mapped registers. The command set
accepted by the controller has a direct reference to the MMC standard but
the device also manages independently the most mundane operations (i.e.
calculating cyclic redundancy checksum for command payloads).

The creation of a driver library for this kind of device is no trivial task;
it was kept as simple as possible and only made possible by existing ex-
amples in turn extracted from a reverse engineering effort of professional
software (i.e. Raspbian and various RTOSes for Raspberry Pi). This is
also due to the fact that the detailed description of the peripheral should
be found, according to Broadcom’s documentation, in an elusive datasheet
(“SD3.0 Host AHB eMMC4.4 Usersguide ver5.9 jan11 10.pdf”) that instead
is not publicly distributed by Arasan outside of their direct collaborators (and
thus should not have been mentioned by Broadcom in the first place). Con-
sequently the author has only a vague understanding of how the controller
actually works.

For this reason rather than listing the registers and their function the
explaination for this peripheral will follow the initialization and read/write
procedures of the MMC. It is by no means complete and should not be used
as reference.

Initialization

First and foremost, the pins that are physically connected to the MMC
interface must be properly set up; GPIOs 47 to 53 are set to alternate func-
tion number 3 with an internal pull up attached. Those seven lines make up
the serial interface to the media: one to distinguish between commands and
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data, one is the clock feed, one is used to detect whether a card is actually
plugged in and the remaining four form up a nibble-sized parallel bus. On
the controller side it is good practice to read as soon as possible the spec-
ification version of the controller, which can have significant differences in
the command protocol from one version to the next. Once the GPIOs are
ready the controller should be reset and the clock speed initialized. After
that there is a fixed sequence of commands to boot up the controller and
have it ready to receive directives.

In no particular order during this process interrupts should be enabled
to avoid heuristic delays when waiting for a response. The device signals
interrupt lines through a couple of dedicated registers that can be polled for
activity but it is unclear whether those same interrupts can be routed to the
ARM handlers: to the best of the author’s efforts it was not understood (and
ultimately unnecessary for proper functioning of the system, given that the
abstraction layer does not expose direct access the the EMMC).

SD Commands

Sending a specific command to the controller is a complex routine in itself.
First, a status register should be inspected to check if the command line is
still being used by a previous order; then the command code and arguments
can be passed to the corresponding registers. Finally the interrupt register
must be polled to know precisely when the controller has finished elaborating
and the response registers (16 bytes in total) can be read to know the result.

Reading or Writing a Block

The microSD card is both read and written in 512 bytes long memory
blocks. After checking if the data line is free via the status register the
controller should be notified of the block size (512 bytes) and number that
compose the data transfer.

Different commands can be given to the controller depending whether
the operation is a read or write and if it is comprised of one or multiple
blocks; regardless, starting block index should be passed as argument. When
everything is ready the data register can be read or written and each access
will push the seek index forward by 8 bytes (the size of the register). A final
specific command code will instruct the transfer to cease.
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Figure 5.2: Highlight of UART reserved GPIOs

5.3.3 UART Serial Interface

There are two UART serial peripherals on board of the BCM2837: UART0
and UART1. They can both be connected to the same group of six GPIOs
to relocate the transmit and receive line; however, of those six pins only two
(GPIO 14 and 15) are externally accessible on the Raspberry Pi. This means
that, at any time, either of those pins can be connected and work for only
one of the two serial interfaces. Even if this is undoubtedly a limitation it
can pose an interesting concurrent programming challenge for a student, as
both can run successfully if hardware settings are properly alternated.

Those devices bear a strong similarity to µMPS2’s terminal devices, both
having similar registers to check the current status and read or write a char-
acter on the interface. For this reason, except for the initialization of the
peripheral which is done entirely by the hardware abstraction layer, they
are left essentially untouched to be managed by students approaching the
project. In comparison to the emulated devices the only real difficulty lies in
a less organized register format, having about four registers scattered over a
larger memory area instead of a compact structure. After providing a focused
and complete documentation of said registers, this complication should be
easily overcome.

UART0

The UART0 is a fully fledged asynchronous serial interface, abiding to
the PL011 ARM specification [12]. To properly run on real hardware, the
corresponding pins must be configured to use the alternate function number
0 with no internal pull up or down. Its register are located starting at the
address 0x3F201000, each of them is 32 bits wide and they are organized as
follows (some unimportant ones are omitted for brevity):
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Data: this register contains the first character present in the receive FIFO
and can be written to send an outgoing character to the transmit FIFO.
Addidionally, it presents an error report of the ongoing connection, with
a specific bit for every condition (overrun, break, parity, framing).

RSRECR: a redundant register for error conditions.

Flag: contains various flags on the current state of the UART, like state
(full or empty) of the transmit and receive FIFOs and whether the UART
device is busy or idle.

IBRD: integer part of the baudrate divisor: when configuring the device the
baudrate is established as a floating point divisor prescaling the system
clock. This is the integer part.

FBRD: Floating point part of the baudrate divisor.

Line control: this register manages configuration options like parity, num-
ber of stop bits, word length and FIFO abilitation.

Control: this register controls the actual peripheral; mainly used for en-
abling and disabling the whole device.

IFLS: interrupt FIFO level selection register. It is used to establish at which
percentage each FIFO (transmit or receive) triggers the corresponding
interrupt. Possible values range from 1/8 to 7/8.

Interrupt mask: allows to mask specific interrupts tied to the peripheral,
such as those fired on reception and transmission of a character

Raw interrupt: read only register updated with currently pending inter-
rupts, regardless of the mask settings.

Masked interrupt: same as the raw interrupt register but with the masked
interrupt lines excluded.

Interrupt clear: register to be written to clear pending interrupts.

Of all those registers, the only ones a student should really care about
are data, flag, interrupt mask, masked interrupt and interrupt clear. All the
others are used for the initialization of the peripheral, which is handled by
the hardware abstraction layer and should not be changed.

The serial interface is configured as 8 bit wide, no parity bit and with a
baudrate of 115200. The FIFOs are disabled for simplicity, so they act like
a 1-character deep buffer.
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UART1 or Mini UART

The UART1 is part of the group of auxiliary peripherals, together with
two SPI interfaces. In comparison with UART0 it has much more restricted
functionality, but still enough for a simple educational project. For example,
it does not provide framing error detection or parity bit management, features
that are either disabled or ignored even in its more complete counterpart. To
properly run on real hardware, the corresponding pins must be set to use the
alternate function number 5 with no internal pull up or down. Its registers
are located starting at the address 0x3F215040, each of them is-32 bits wide
and they are organized as follows (some unimportant ones are omitted for
brevity):

IO: reading from this register yields the first character present in the receive
FIFO, while writing it inserts the data into the write FIFO.

IIR: register for enabling receive and transmit interrupts. If the first bit is
set an interrupt line is asserted whenever the transmission FIFO is empty;
if the second bit is set an interrupt line is asserted whenever the reception
FIFO is not empty.

IER: register holding information about which interrupt is pending (if any).

LCR: controls whether the Mini UART works in 8 bit or 7 bit mode.

LSR: line control status; used to determine if the device is ready to accept
new data or if there are received characters to be read.

CNTL: control register to enable (in a separate fashion if so desired) the
receive and trasmit lines.

BAUD: 16 bit baudrate counter, to be set directly to the desired value.

Again, since the abstraction layer takes care of the initialization procedure
the user should really care about four registers: IO, IIR, IER and LSR. The
serial configuration is the same as the UART0.
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5.4 Interrupt Controller

The BCM2837 SoC has at least two devices acting as interrupt controllers.
One of them is clearly defined in the peripheral datasheet [10], while the other
is not clearly identified but hinted at thorugh register definition in a later re-
vision [11]. Those are here arbitrarily named Base Interrupt Controller (BIC)
and Generic Interrupt Controller (GIC). These two interrupt controllers are
cascaded, meaning that 64 interrupt lines are wired to the BIC which in turn
compresses them into 2 interrupt lines for the GIC controller; additionally,
the GIC also receives some interrupt lines from mailboxes and USB.

Figure 5.3: BCM2837 interrupt controllers configuration

From a practical standpoint there are often several redundant registers in-
dicating which interrupt line is being asserted at any given moment. There is
no apparent drawback in ignoring most of them and just reading each device-
specific register to discern which source fired the exception, as the general
interrupt organization is very confused and obscure. Interrupt functionality
was achieved mainly through examples and reverse engineering regarding the
specific device taken in consideration at the time. What follows is a brief
listing of interrupt related configuration for the devices used in this work.

UART Both UART devices are cascated through the two interrupt con-
trollers; although they can be checked via registers in both controllers, it
is suggested to only read the Masked IRQ and IIR registers of the respec-
tive peripheral.
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ARM timer Being this an interrupt internal to the ARM processor its
status has only been checked against the innermost interrupt controller
(GIC). It is not clear whether it is present in the BIC as well.

Inter processor mailboxes Possibly the sole source clearly depicted from
the documentation, its presence can be understood from the corresponding
register in the Generic Interrupt Controller (as indicated by 5.3).

EMMC Its interrupt lines are asserted by a device-specific register and
seemingly nowhere else.

5.4.1 Inter Processor Interrupt (IPI)

In a multicore system such as the Raspberry Pi 3 the need arises for a
privileged communication channel between each core. The ARM Cortex-A53
does not provide an explicit method to do so, and it is left to the Generic
Interrupt Controller to provide. Similarly to the interface between ARM and
Videocore there are mailboxes between the four cores of the CPU as well.

The operation of those inter core mailboxes is much more straightforward
than the CPU-GPU counterpart. There are four mailboxes for each core and
for each one the GIC exposes three classes of control registers, for a total of
36 registers 1.

Mailbox Control four registers of this type in total, one for each core and
covering its four mailboxes. They enable an interrupt or fast interrupt
line for each mailbox.

Mailbox Write-Set four registers for each mailbox in every core, so sixteen
of them in total. They are write only and are used to put the actual data
in the mailbox. Upon write the corresponding enabled exception (if any)
is fired for the selected core.

Mailbox Read and Write-Clear one register for each corresponding Write-
Set register. They can be read to receive the data sent by writing in the
Write-Set register, and have to be written to disarm the interrupt line.
Each bit of the register is independent in firing the interrupt, so to com-
pletely clear it the same content that was read from the register must be
written back on it.

1Note: the first kind of register covers all four mailboxes for each core





Chapter 6

Emulated peripherals

The Raspberry Pi 3 (or any other version or model) does not have many
peripheral devices to toy with. In part this is due to its heritage of low re-
source board, and in part to extensibility through four generic USB ports
and 40-pin header, allowing for a wide range of HAT (Hardware Attached on
Top) extensions and external USB devices. In the perspective of an educa-
tional project however this is a severe limitation. While µMPS2 and µARM
can each bring five device types with eight possible instances per type, the
Raspberry Pi has only two really usable devices: the two serial interfaces
(that strongly resemble µMPS2 terminals).

Other options cannot be considered for multiple reasons:

• The screen is simple and usable, but lacks educational value. It is
nothing more than a buffer to write on; the GPU then manages actually
sending the data to the screen.

• The EMMC interface is far too complex to be used by students. The
professor would need either to spend a great deal of time and effort to
explain how it works or provide a library to access it, in contrast with
the philosophy of this work.

• The USB controller suffers a even worse degree of complexity, to the
point where developing a support library would be a monumental task
in itself. Last but not least, it is not supported by Qemu.

• The network interface is unfortunately not directly connected to the
ARM but instead managed by the USB controller.

• Other auxiliary peripherals like the two SPI interfaces would be perfect
for the task: although arguably too low level, many modern mother-
boards include SPI or I2C controlled peripherals, making it an inter-
sting addition to the program. However, those are not supported by
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Qemu.

To mitigate this problem, three classes of new devices have been imple-
mented as emulated peripherals in the hardware abstraction layer. Using
µMPS2 as a reference, these classes are tapes, disks and printers.

While building an entire emulator would give full control over the device
interface, in this work the emulation is carried on to the best level permitted
by a bare metal environment, leaking some imperfections on the exposed
controls.

6.1 Emulated Device Interface

Initially emulated devices were made accessible via fake registers: simple
pre-established memory locations that were frequently polled (once every 100
µs) by the abstraction layer. Though most similar to the µMPS2 approach,
this idea had significant flaws.

• fake registers had no read or write limitations; location that should
logically have been read only could be modified without limit, leaving
the device in an incoherent state.

• polling was a frail mechanism, prone to error and race conditions. A
real device starts working the moment its registers are written, while
in this scenario the user had to wait for the contents to be read by
the abstraction layer. This leads to an unintuitive programming path,
requiring the user to either poll for changes in turn or use an swi

assembly instruction to wait for the polling interrupt.

• generally speaking, it is good practice to avoid polling when possible.

A solution was found that strays from the previous work’s approach but
better fits the new environment and allows for a cleaner emulation: using
mailboxes.

Some of the peripherals on the BCM2837 board are already managed by
the GPU through mailboxes, like the HDMI controller or the on-board ac-
tivity led. In a very similar way, the abstraction layer is notified of a new
command for printers, tapes or disks by a write to the inter core communi-
cation mailbox. Specifically, the mailbox 0 of the first core is reserved for
emulated devices control. This behaviour is transparent to the user because
it raises a FIQ instead of a normal interrupt, and thus it can be received at
any moment.

A command to a emulated device is then issued by writing some value to
the mailbox 0 write-set register of the first core, found at memory address
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0x40000080. The value must have the following format: the two least sig-
nificant bits are the device number and the two following bits are the device
class. The upper 28 most significant bits should point to a 16-byte aligned
address containing a register structure for the selected device.

Figure 6.1: Mailbox structure

This should remind the reader of the mailbox communication protocol
used by ARM to talk with the Videocore, with the channel number encoded
in the 4 least significant bits. Since it is a mechanism already present in the
system it fits naturally in the development process.

The “register” structure that should be pointed by the mailbox address
is nearly identical to the device register layout in µMPS2 and µARM.

Field # Address Field name Size
0 base+0x0 STATUS 32 bits
1 base+0x4 COMMAND 32 bits
2 base+0x8 DATA0 32 bits
3 base+0xC DATA1 32 bits
4 base+0x10 MAILBOX 32 bits

Table 6.1: Device registers layout

Every device can have special functions for each register; what follows is
a general description.

STATUS contains the device state.

COMMAND contains the command code to be executed.

DATA0 & DATA1 carry additional arguments for the command.

MAILBOX is written by the system to notify the command has been car-
ried on.

Since this structure is nothing but a user memory location, fields like
STATUS and MAILBOX are uninitialized at first; only COMMAND,
DATA0 and DATA1 must contain proper data. Once the abstraction layer
has received the fast interrupt and parsed the registers it copies the internal
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state of the device onto the provided memory location, populating all of its
fields.

After receiving the mailbox the abstraction layer sets the MAILBOX
field to 1. This however does not mean the operation has been finished
successfully, because real world devices take time to operate; as such, there
are fabricated delays between commands and execution. Both the initial
interrupt and the subsequent delay are handled at EL1 by fast interrupts.

Once the execution is complete an interrupt is asserted. Interrupt lines
for emulated devices are emulated as well with a memory location allocated
for the task, at base address 0x0007F020.

Interrupt line # Address Device class Size
0 base+0x0 Timer 8 bits
1 base+0x1 Disk 8 bits
2 base+0x2 Tape 8 bits
3 base+0x3 Printer 8 bits

Table 6.2: emulated interrupt lines.

Interrupt lines for emulated devices are nothing more than an array at
a specific memory address that is kept updated by the abstraction layer.
Whenever an operation terminates a bit is set for the user to clear; until that
happens interrupts will keep being raised in the form of a zero-delay timer
(i.e. until there is an emulated interrupt line asserted the abstraction layer
sets a timer for 0 microseconds in the future, ensuring the kernel responsi-
bility to clear it).

The next sections are dedicated to the specific device classes. The inter-
face and operating rules were copied almost identically from µMPS2, so the
interested reader is redirected to its documentation for the details [6]; here
are listed some general informations and implementation peculiarities.

In addition to the commands defined in µMPS2 there is another recurring
instruction, the READ REGISTERS, an alias for the value codified as 2.
This command is instantaneous in every case and simply copies the device
registers into the structure specified in the mailbox. It substitutes reading
the system registers without causing any effect on the peripheral.

The next chapter covers in greater detail the inner mechanisms of the
emulated devices.
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6.2 Printers

MaldOS supports up to four parallel printer interfaces able to transmit
a single byte of data at a time. Characters sent to a printer are displayed
on the HDMI connected display in the printer’s section. The data structure
expected by the abstraction layer is the same as every other device (see table
6.2) despite the DATA1 field not being used.
When the device writes receives a mailbox message and copies its state into
the register structure STATUS is updated with the current state of the
device (busy, ready, under error condition). Even an unrecognized or impos-
sible command will result in this update, albeit followed by the proper error
condition.
The COMMAND fields accepts directives to reset, acknowledge, print a
character or read the current registers. Commands issued while the periph-
eral is busy will be ignored.
The printer’s interface maximum throughput is 125 KB/sec.

6.3 Disks

MaldOS supports up to four readable and writable disk devices. The disk
current position is indexed by a combination of head, cilinder and sector to
select 4KiB blocks of persistent storage memory. Reading DATA1 always
returns the geometry of the installed disk: maximum number of cylinders,
heads and sectors.
When reading or writing a block the register structure should specify a
pointer to an adequately spaced memory range in DATA0. Disks are DMA
operated, so the abstraction layer will take care of moving requested infor-
mation to or from the medium.
Whenever a command is issued the COMMAND field should be filled with
additional arguments, like the cylinder to reach or sector and head to read
from.

The disk write and read speed are dependant on the (emulated) hardware
and can be configured for each device before installing it.

6.4 Tapes

Tape devices are very similar to disks, with the two major differences
being they are read only and are accessed in a sequential fashion. They are
organized in 4KiB blocks as well, with each block terminating in a 4-bytes
marker that is copied into DATA1. After a reset it reads TAPE START
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and changes after reading a block or otherwise moving the head.
Possible values for markers are END OF BLOCK, END OF FILE and END
OF TAPE. They are used to navigate among the files that have been assem-
bled together when creating the tape.
Like disks they are DMA-operated and DATA0 should contain a pointer to
the memory block to populate.



Chapter 7

Project Internals

In this chapter we describe in reasonable detail the source code of the
project. The discussion will tipically hover at a structural level, depicting
the design choices and code organization. This part will be most interesting
for those with the intent of maintaining or modifying the work, or to study
ARM bare metal development.

The size of the project is comparatively small, only reaching about 5000
lines of code. The real weight of this work does not lie in the actual software
that was written but in the idea and study of the environment, pioneering
the possibility of developing a proof-of-concept OS on real hardware instead
of an emulator.

7.1 Design Principles and Overall Structure

Besides creating a convenient abstraction layer, the whole code base is
written with the goal of being an understandable example of bare metal de-
velopment. Particular care is taken in making sure that every function is
readable and understandable with a single glance even out of context and
in using descriptive, self-explanatory names. Where deemed necessary, com-
ments help to further clarify what is happening.

Source files can be grouped in three main categories. First, the core of
the abstraction layer is comprised basically of the assembler entry point, the
C entry point and the interrupt handling routines. Second, a small library
used internally to access hardware peripherals; logging routines, microSD
card reading and writing, timer management. The third category contains
the modules of the emulated devices like tapes and printers, leaning on the
previous utilities to create the illusion of physical peripherals.
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7.1.1 Implementation Language

The choice of language is severely limited by the bare environment and
fell unsurprisingly on C and Assembly. Such basic programming languages
contribute to the overall simplicity, as there are no particular patterns or
constructs used beside raw memory management.

The Assembler compoment was kept to a minimum for ease of under-
standing; from the moment the C stack is available there is no real reason
not to jump into C code (unless the goal was to exercise Assembly program-
ming, which is not our case).

Thus, there are only three Assembly source files: init.S is the absolute
first entry point and provides initialization for system registers, bss section
and multicore functionality; asmlib.S contains utility functions that make
heavy use of general and specific purpose registers that would have required
inline Assembly instructions anyway if implemented in C; vectors.S declares
interrupt handlers.

7.1.2 Build Tools

Contrarily to the µMPS family of emulators, this work does not use the
Autotool suite of building tools (GNU Automake and Autoconf) to man-
age source compilation and package installation. Not having a newly created
graphical interface means there are no library dependencies such as Qt, weak-
ening the need for strict dependency check. This, together with a smaller
overall codebase prompted the author to search for a simpler and more mod-
ern build tool, and the final choice fell on Scons.

Scons has the advantage of being much more flexible and easy to use when
compared to older tools. Instead of leaning on a brand new (and potentially
cumbersome) language to configure the build process it relies on an already
existing one, well received and praised for its approachable syntax: Python.

In fact, Scons can be assimilated to a Python library for declaring build
dependency trees. Its philosophy is similar to Make but brings a much cleaner
syntax and flexible user control over the process.

7.1.3 Linker Script

The linker script is an essential piece when compiling for the Raspberry Pi
3. It has to specify 0x80000 as the loading address for compatibility reasons
with Qemu and it ensures the initialization code is at the very beginning of
the kernel image. It also allocates some memory as stack to be used by the
abstraction layer interrupt routines.
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7.2 Initialization

After loading all necessary components, the on-board GPU launches ARM
execution at address 0x80000. There, we can find the compiled code from
the init.S Assembly file. The first operations are:

1. Enabling access at EL0 and EL1 to the internal ARM timer registers.

2. Setting a separate stack for each core for internal interrupt handling.

3. Enabling AArch64 execution state.

4. Moving the execution level to EL1 1.

5. Setting up interrupt handling routines.

6. Preparing execution for all cores: while the first core jumps to C code,
the remaining ones are parked in a waiting loop, ready to be fired.

7. The bss section (uninitialized data) is zeroed and the first core jumps
to the bios main function.

From there control is passed to C, with another series of initialization
routines:

1. The memory locations dedicated to device emulation and user inter-
rupts are cleared.

2. Every real device is initialized: GPIOs, UARTs, EMMC, display.

3. Every emulated device is initialized, building on the real hardware.

4. Cores 1, 2 and 3 are unlocked from their parked state and set to run
an infinite wait loop.

5. The user provided main function is called.

7.3 Interrupt Management

The core of the abstraction layer lies in the interrupt handling routines.
We refer to the handlers predefined in the abstraction layer as internal in-
terrupt handlers; the students should define their own handlers, from now
on referred to as user defined handlers. There are 4 possible (and real) IRQ
sources:

1. ARM timer

2. UART0

1The Raspberry Pi 3 starts in EL2, while Qemu initially runs at EL3
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3. UART1

4. Mailboxes

The main function is assumed to never return; inside it the user should
prepare an appropriate time slice and then start executing the first process.
The time slice is set using the setTIMER() function. Note that setTIMER()

does not interacts with the ARM timer directly but through an internal
delay system; since the physical ARM timer interrupt is also used to ensure
interrupts are fired on emulated interrupt lines sometimes a 0 µs delay is set.
To avoid losing the user requested timer a simple array holds the next delay
for every core and is restored when no more virtual lines are pending.

Once the time slice is over the internal interrupt handler is called. It
checks for real or emulated pending interrupt lines and immediately passes
control to the user defined interrupt handler.

Figure 7.1: Interrupt handling schematic

Other exception handlers, like the synchronous exception handler, are
even simpler, reduced to passing control to the user defined routine if present.

The abstraction layer does mainly two things before passing control to
the user:
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1. setting the stack pointer to a specified value for each core.

2. setting TTBR0 to the kernel page table, giving the illusion of different
page tables for different exception levels, which simplifies significantly
the whole virtual memory system.

This meddling has a relatively negligible drawback: the interrupt routine is
forced to corrupt two general purpose registers. The conscribed registers are
X27 and X28, and they should not be used for other purposes.

7.4 Emulated Devices

The idea behind emulated peripherals and their fabricated interface has
already beed described in Chapter 6. Here we give a more detailed presen-
tation about the principles under which they work.

A command to an emulated device is issued through a mailbox. For
coherency reasons interrupts are however disabled at execution level EL1
(the execution level of user defined interrupts). To maintain this precaution
and still allow user code running at EL1 to be properly served when sending
a command, the special mailbox used for emulated peripherals fires a fast
interrupt request (FIQ) instead. Fast interrupts are kept obfuscated to the
user and managed only internally (in fact, for this single purpose). IRQs and
FIQs are separated for historical reasons, so the abstraction layer can disable
the former and enable the latter.

Some commands require a two-step management to more closely resemble
a real peripheral. The first step is the fast interrupt, and is present for every
command. For longer operations a virtual timer (different from the physical
timer used through the setTIMER() function) is set to be executed by another
FIQ interrupt after a certain amount of time.

7.4.1 Tapes and Disks

Tapes and Disks are very similar in their underlying functionality. While
tapes are read-only and are accessed in a sequential fashion, disks can be
written and read at random. Their content is transferred as queried through
a DMA system.
The tape can be viewed as a sequential list of 4KiB blocks, each block followed
by a marking 4 bytes delimiter denoting the nature of its content (last block
of a file, last block of the tape or neither of those). The disk on the other
hand has blocks organized with a three dimensional indexing that reproduces
a head-cylinder-sector disposition.
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Figure 7.2: The user provided kernel might realize there are some “gray
zones” in its execution time when the SD card is accessed. Proportions in
the figure are exaggerated.

When a command is issued to the disk or tape device a FIQ for the first
core is immediately fired. Depending on the command it might be evaded
immediately or set a timer for later to emulate hardware delay; commands
such as RESET and ACK finish on the spot, while operations like moving
the device and reading/writing a block are postponed for a few milliseconds.

The actual content of both tapes and disks is saved as a file on the SD
card. When the system boots it looks for files named TAPEn and DISKn(where
n is an index from 0 to 3) and considers them as installed. The file format
for tapes and disks is identical to the one used by µMPS2:

• Tapes have a 4-bytes identifier right at the beginning, then a list of 4
KiB blocks paired with yet another 4 bytes of ending marker.

• Disks have different identifiers at the start, then six 4-bytes configura-
tion words describing the number of cylinders, heads and sectors plus
the rotation speed, the seek speed and the data occupation ratio.

In fact, such files can be created and added to the microSD card using the
same tool distributed with µMPS2, umps2-mkdev.

Thanks to the mailbox interface the illusion of a real hardware peripheral
receiving orders and reporting with interrupts is almost perfect. The only
real discrepancy is the Direct Memory Access function: from the student’s
perspective the device is writing or reading to or from the specified address; a
scrupulous observer however may notice how the memory transfer operation
is carried on instantaneously, and that there are comparatively big time gaps
in kernel control when it happens, as depicted in figure 7.2. This is because
the emulation layer takes place on the same execution thread of the kernel,
forcing to share time and resources when the command is carried on 2.

2It should be noted that this inconsistency is only true for the first core.
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Overall, this should not be a major concern for a novice approaching OS
development.

7.4.2 Printers

Printer devices are little more than an adaptation of the HDMI display
port. The Videocore IV manages almost everything: it holds a block of
memory designated as framebuffer to display on screen in its own memory
space and allows the ARM CPU to modify it freely. A binary font is included
in the .elf file to print textual information and the screen is divided in four
sections for different printer instances.

Printing a character merely writes it on screen, left to right and top
to bottom. This is somewhat different from µMPS2, where printers more
faithfully output their results to text files. To the author this approach
seemed a little confusing, because it is not possible to view the output in
real time and since other media devices are just files on the host filesystem
they often felt like simplified tapes. Moreover, having them on the microSD
filesystem would increase the need for a more immediate access since the
latter needs to be mounted before reading the output file.

It would be indeed possible to flush printers on PRINTERn files just like
tapes and disks, but doing so would significantly complicate the small FAT32
library included in the project. Disk and tapes are arbitrarily big but have
a statically allocated size: printers need to grow indefinitely, demanding a
function to allocate more blocks on the file system.

7.4.3 Timer Queue

The second step of some device commands is scheduled for execution after
a while; since there is only one virtual timer at EL1 to fire scheduled inter-
rupts, this would eventually overwrite other pending timers. The physical
timer is already allocated to schedule time slices, and two interrupts would
not be enough anyway. To prevent this MaldOS uses a set of queue manag-
ing functions to schedule multiple virtual timers at once. The ROM function
setTIMER() does not interact with the queue, but uses the physical timers
instead.
The queue is kept ordered from the first timer that will occur to the last.
When an interrupt is fired all the timers that were scheduled before the cur-
rent time are popped out of the queue, and the first remaining element (if
any) is scheduled again.

When a virtual timer for an emulated device is served it is likely that the
corresponding interrupt line will be asserted following command completion.
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For this purpose a phony “0 microseconds” physical timer is scheduled to
ensure that the line is serviced as soon as the FIQ terminates.

Interestingly, the implementation of this module is heavily inspired by
the list managing routines found in a past solution to phase 1 of the KayaOS
project, covering process and semaphore queues.

7.5 Hardware Library

Modules under the source/hal/ subdirectory contain functions to con-
veniently access and use hardware peripherals. They serve a purpose mainly
for usage internal to the project, as the abstraction layer does not normally
expose those functions (e.g. reading and writing the microSD card to emu-
late disk and tape devices). They could however be seen as one of the many
educational examples about bare metal programming for the BCM2837 and
ARM processors in general.

Notably, since disk and tape devices are “plugged” into MaldOS as files
onto the microSD, a small FAT32 file system library was necessary over the
EMMC controller integration. The system expects a master boot record sig-
naling a first FAT32 partition. There, root entries (directory navigation is
not supported) are listed and searched for the necessary DISKn and TAPEn
files. Since both those device classes have a fixed size the library does not
support file growth or shrinking, only read and write with eventual modi-
fications. Partitions of any size permitted by FAT32 are accepted: the file
allocation table is only partially loaded in main memory as a cache of cluster
pointers.

7.6 Memory Management Unit

Using the MMU can be considered a higher level of complexity in its
own right. One of the improvements brought by µMPS2 over µMPS was
the possibility of having it disabled for the first phases of the project, since
the real MIPSEL architecture had the virtual memory translation constantly
active. In truth, there is little reason in practice to turn off such a feature:
a microprocessor is born to run an Operating System, and every Operating
System worthy of its name virtualizes memory for its processes. A smoother
learning curve is quickly sacrified for the sake of efficiency.
Possibily because ARM lives in a world closer to embedded, low power, low
resources, time constrained applications, its MMU devices are usually acti-
vated on demand, which is why the first phases of Kaya are still possible
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on the Raspberry Pi without having to worry about page tables. When ac-
tivated, however, the MMU leaves little to no room for anything else: it
expects, from the very beginning of execution, the kernel to be loaded start-
ing from a special address to use a separate page table from normal processes.
This proved hard to integrate with an abstraction layer that provides a great
deal of initialization code without knowing whether virtual memory will be
used.

The solution is to move only the entry points of the user kernel, which
are two: the interrupt address found in the VBAR register and the first
LDST() function call to launch the first user process. On the interrupt table
side the initMMU() function initializes system registers, disabling every
cache and setting up for full range, 4KiB blocks page tables (using a simple
identical mapping for the first translation function) and moves VBAR over
to 0xFFFF000000000000, making sure that TTBR1 is used when jumping
to the kernel. If the handler is reached through that jump for all intents
and purposes the kernel believes to be running at the far end of the main
memory. As for the first process context switch, it is a tricky situation:
after enabling the MMU but before loading the process state the kernel is
still using TTBR0 because its entry point did not pass through the “rigged”
VBAR register; therefore the TLB cache will contain entries from the kernel
page table. The very last instruction before using eret to switch to EL0
loads the new TTBR0. Even so, the eret instruction will fetch the new,
user level page entry while still running as the kernel and cause an instruction
abort for security reasons. To avoid this, one must make sure to call LDST()
through TTBR1, which can be achieved by jumping to the address of LDST
plus the most significant two bytes of the 64-bits register. In this way the
kernel tables will be used until the user process is actually running.
Note that this problem should not present itself if the process’ code is loaded
in a different memory block. Nevertheless it is a theoretical inconsistency
and should be considered.

The only other alternative would be to pretend to load the entire binary
at that address by specifying it in the linker script, and then setting up the
MMU at boot, before even jumping to C code. For reasons already listed,
this was not acceptable.
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7.6.1 Design Choices

While constructing the virtual memory environment the author came
across design crossroads where the decision was not driven by technical con-
siderations, but rather educational ones. For example, the abstraction layer
can let students avoid ASID management by simply flushing the TLB cache
every time there is a context switch; if not, failure to setup proper process
IDs will result in abort exceptions. Ultimately the latter approach was taken,
leaving to the user to write a new ASID to TTBR0 every time a new pro-
cess is launched. Again, user-defined handlers are written to special memory
locations as addresses to jump to; if the MMU is active said addresses must
be changed in order to have the CPU refer to TTBR1 instead of TTBR0
when calling those functions. This nuisance can be handled automatically
by the abstraction layer (and indeed it is in the final implementation), but
one could instruct students to change the handler’s address after enabling
the MMU.

Those choices are subjective and could be easily changed.

7.7 Exception Levels and Virtualization

The ARMv8 specifications counts a great deal of features for virtual-
ization purposes. One of the four exception levels, EL2, is defined as the
hypervisor level and has responsibilities revolving around multiple guest OS
management, abstraction of system registers, nested virtualization of page
tables (virtualized virtual memory, so to speak) and device emulation. Some
functions at EL3 are connected to those concepts, but it is a level mainly
focused on TrustZone technology and security.
Many of the ideas enumerated in this description are at the base of this
project, so one would naturally expect said features to be exploited to some
extent. Although the possibility is not ruled out by the author, up until
the time of writing the route of EL2 has been deemed unattractive for the
development of MaldOS.

After a thorough analysis, this should not come as a surprise. The hy-
pervisor component that ARM refers to is for a complete Operating System
to be taken advantage of in the context of multiple virtual guest OS host-
ing; while intuitively an abstraction layer emulating multiple device classes
and a simpler develoment environment has many common points to such a
scenario, it is also significantly different. Therefore, many configuration op-
tions offered by the hypervisor that could bring improvements to this work
ultimately fail to fit into it. The following sections portray the most notable
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ones.

Trap General Exceptions

EL2 configuration is controlled by HCR EL2, a 64-bits long register
with many choices in the matter of virtualization. The number of available
fields actually vary depending on the implemeted version of the specification:
the last ARMv8.3 uses 44 bits, but the Cortex A-53 processor was created
when version 8.0 was being defined, thus having only 33 usable bits. Out
of those fields the most prominent one is TGE, short for Trap General Ex-
ceptions. When the TGE bit is set all exceptions that would normally be
executed at EL1 are routed to EL2 instead.
This option has the potential to greatly simplify the actuation of an ab-
straction layer. Executing at the same level of the assisted code weakens
it, forcing some tradeoffs with emulation fidelity: for example, having two
separate exception levels could mean that the abstraction layer never needs
to worry about virtual memory as MMU settings are banked between levels,
avoiding the register juggling uncovered in section 7.6. Unfortunately this
result is not achievable, as an active TGE apparently means EL1 is not ac-
cessible altogether. eret instructions that would lower the exception level to
1 are treated as illegal exception returns and maintain EL2 privilege instead
(carrying on execution from where the return should have started). If the
abstraction layer is unable to return to EL1 when leaving the user code in
control there is no point in working at EL2 in the first place.
Considering this behaviour it is unclear what purpose the TGE bit is sup-
posed to serve, especially since another field (E2H) seems to lead to the
exact same scenario where the host Operating System lives in EL2 instead
of EL1 3.

AArch32

Section 2.3 hints at the 32-bits compatibility interface of ARMv8, an
essential property of all 64-bits architectures to allow execution of legacy
software. The RW bit of the HCR EL2 register controls the execution state
of lower exception levels. In the scope of an educational project the 32-bits
architecture could be seen as more historically interesting and appropriate
as a first approach to the field; for this work however more value was given
to clean structure and modern perspective, and AArch64 was chosen.

3It should be noted that the E2H is only available from version 8.1 of the specification.
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Trap System Registers Accesses

Among the different variations that HCR EL2 allows for there is the
option to trap several memory accesses, both read and write, or certain
instructions (like TLB maintainance) to EL2 with the intent of hijacking
the result. This possibility was not found to be useful in the context of this
work.

Partial Exception Routing and Virtual Exceptions

In opposition to the TGE complete superseding of EL1 by EL2 there
are also separate fields in HCR EL2 that allow for single exception classes
to be routed to a different level (AMO, IMO, FMO fields, corresponding
to serrors, interrupts and fast interrupts respectively).
Those fields share some of the advantages listed about general exceptions
routing while still retaining the possibility to return at EL1. Moreover,
when the corresponding routing bit is enabled another field permits the hy-
pervisor to set a virtual exception that lower levels will see pending and that
could be used to more properly emulate µMPS2 devices.

Unfortunately this situation is not perfect either. First, not all interrupt
classes are subject to this configuration, leaving out synchronous exceptions
caused by instructions like SVC, used by system calls. While it is still possible
to implement the SYSCALL() function as an HVC call (routed to the hypervisor
at EL2), the difference in exception management is somewhat disorienting.
As for virtual interrupts, they still have to be taken and handled directly by
EL1. By committing to this choice the abstraction layer would find itself in
an uncomfortable position with overhead handlers for both EL1 and EL2
instead of routing everything to EL2 and then gracefully returning to EL1
for user-defined routines, adding the complexity of the hypervisor without
solving completely EL1 related problems (i.e. MMU register switching).

Overall, these options seem to be tailored around different objectives, so
they all fail to fix this project’s main flaws or make other problems emerge.



Chapter 8

Student’s Perspective

This chapter describes what MaldOS exposes to a student to develop a
toy OS: provided ROM functions and mapped memory addresses that were
decided and defined taking inspiration from Kaya and µMPS2. Barring some
minor details, the illusion of touching an ARM system directly should be
perfect for a novice. That being said, “jailbreaking” out of MaldOS is fairly
easy; the abstraction layer relies on a good willed user to be used at most
efficiency.
As a first, general rule, direct interaction with system registers is unnecessary
(if not implicitly forbidden). Students can use a series of functions exposed
by the abstraction layer to perform configuration and management.

8.1 ROM Functions

Strictly speaking, there is no Read Only Memory on the BCM2837 (or
rather, not a freely accessible one). This section is dubbed “ROM Functions”
in reference to the precompiled routines provided as object files by µUMPS2
and similar emulators. Those functions include:

HALT() : terminates the calling core execution, stopping in an endless
loop.

PANIC() : similar to HALT(), prints a kernel panic message before stop-
ping.

WAIT() : pauses execution until an interrupt occurs. Normally this is
achieved by the wfi Assembly instruction; under MaldOS however mul-
tiple interrupts (FIQ) are fired without the user knowing, so the single
instruction would be unreliable. The WAIT() function works because it
checks on a spinlock opened by the abstraction layer when a real interrupt
is reached.
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LDST(void *addr) : Load State function call. Reads the address to load
a system state: general purpose and system registers to resume execution
of a saved process. Used by the kernel to context switch to a process.

STST(void *addr) : Store State function call. Writes the current execu-
tion state to the specified address; used by the kernel to save the inter-
rupted process and resume it later. The saved state format is a structure
(see 8.1).

getCORE() : returns the id of the core currently executing the function.
Its implementation simply reads the MPIDR register.

getTOD() : get Time of Day function. Returns the number of microseconds
elapsed since reset, reading it from the internal ARM timer registers. Since
the architecture is 64 bit, the returned value is a complete 64 bit unsigned
long, as opposed to the split getTODLO() and getTODHI() found in
µMPS2’s ROM.

setTIMER(unsigned long us) : a routine to set the next timer interrupt
to be fired us microseconds in the future.

initMMU(unsigned long *table) : function to initialize the memory man-
agement unit. Its argument is the initial page table to set to both TTBR0
and TTBR1; the kernel page table, so to speak.

isMMUACTIVE() : function returning either 1 or 0, depending whether
the MMU for the current core has been activated or not.

SYSCALL(unsigned int, unsigned int, unsigned int, unsigned int)
: function used to invoke a system call interrupt. In truth, nothing more
than the svc #0 Assembler directive.

These functions are linked in the .elf of the abstraction layer, thus can
be simply referenced in the code after proper inclusion. When compiling
separately a standalone executable to be loaded in RAM for the most ad-
vanced phases of Kaya this is not contemplated, as it would link the whole
HAL to every binary. In this case it is left to the student to implement ROM
functions: in reality, only SYSCALL is needed for a normal process, and it
has a one line implementation.
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Listing 8.1: Process state format

typedef struct s t a t e t {
u i n t 6 4 t g e n e r a l p u r p o s e r e g i s t e r s [ 2 9 ] ;
u i n t 6 4 t f r ame po in t e r ;
u i n t 6 4 t l i n k r e g i s t e r ;
u i n t 6 4 t s t a c k p o i n t e r ;
u i n t 6 4 t e x c e p t i o n l i n k r e g i s t e r ;
u i n t 6 4 t TTBR0;
u i n t 3 2 t s t a t u s r e g i s t e r ;

} s t a t e t ;

8.2 System Initialization

The student’s kernel entry point is the main function. The first task of
the Operating System should be populating the custom interrupt routines:
contrarily to µMPS2 interrupt handlers are not specified with a full pro-
cess state, but condensed into just the function and the stack pointer. The
function pointer must be loaded into the HANDLER locations, while the stack
pointer is higher up and there is one for each core. There are no separate
stack pointer for different exceptions: if an exception is fired from the kernel
handler, the stack pointer is kept the same. An example of initialization
sequence could be

∗ ( ( u i n t 6 4 t ∗)INTERRUPT HANDLER) = ( u i n t 6 4 t )& i n t e r r u p t ;
∗ ( ( u i n t 6 4 t ∗)SYNCHRONOUS HANDLER) = ( u i n t 6 4 t )&synchronous ;
∗ ( ( u i n t 6 4 t ∗)KERNEL CORE0 SP) = ( u i n t 6 4 t )0 x1000000 ;
∗ ( ( u i n t 6 4 t ∗)KERNEL CORE1 SP) = ( u i n t 6 4 t )0 x1002000 ;
∗ ( ( u i n t 6 4 t ∗)KERNEL CORE2 SP) = ( u i n t 6 4 t )0 x1004000 ;
∗ ( ( u i n t 6 4 t ∗)KERNEL CORE3 SP) = ( u i n t 6 4 t )0 x1006000 ;

After this, the first process should be created and loaded with a proper
time slice set as timer interrupt. The memory address from where processes
can use stack starts where the kernel ends; said value is provided for conve-
nience by the kernel memory end, defined in the linker script.
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8.3 Exceptions

By default, exceptions are handled at EL1. Control is given to the speci-
fied handler with normal interrupts disabled but fast IRQs enabled; the user
is not supposed to change this settings, and doing so might result in untested
behaviour. Thus, nested interrupts are not present. Interrupt exceptions are
fired for the student’s kernel if a physical device requires it (UART) or if an
emulated device is asserting its line; while an interrupt line (real or emulated)
is pending and not masked, the interrupt handler will be called repeatedly
until it is properly acknowledged. Since interrupt lines for emulated devices
are nothing more than RAM locations it is possible to forcibly deassert them
by simply writing 0 instead of using the provided ACK command. This
should not be done and can lead to unpredictable outcomes.

Synchronous exceptions (namely, system calls) are very simple; on SVC

instruction the provided handler is called, and parameters can be passed
using general purpose registers. In fact, to properly return a value from a
system call the state saved in the corresponding old area must be loaded with
a modified X0 register.

Abort exceptions work similarly. Note however that unlike µMPS2, where
TLB faults were part of the normal workflow, MaldOS does not contemplate
recoverable aborts. The abort handler is however generic, and the possibility
is not ruled out.

Whenever an exception is fired, the handler is loaded using the specified
stack pointer for EL1 and the executing core; if an exception condition hap-
pens while at EL1 (e.g. an abort or a system call, even if it does not make
sense to invoke one when at kernel level) the stack pointer is kept the same
and grows from where it was left.

8.4 Multicore

MaldOS approach to multicore functionality is very simple. Exception
handlers are shared among all cores, leaving to the user the responsibility to
separate routines based on the executing actor. Old areas where states are
saved and stack pointers on the other hand are defined in a per-core basis.
Every core can have its exceptions and handle them accordingly.

After reset and initialization cores 1, 2 and 3 are left stuck in a wait
loop and should be moved from there using core mailboxes to trigger inter-
rupt handlers. Inter Processor Interrupts (IPI) are completely transparent
and work as defined by the ARMv8 specification. The only exception is the
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first mailbox of the first core, reserved for emulated peripheral management.
Data written to this mailbox is interpreted as a pointer to a device registers-
holding structure and is not controlled by the student provided kernel. Other
mailboxes on the other hand will immediately cause an interrupt in the cor-
responding core. Mailbox interrupts must be cleared by writing the same
data in the write-clear register.

8.5 Devices

The student can use two classes of devices on MaldOS: emulated or real
peripherals.

8.5.1 Real Peripherals

The only real peripherals accessible from the abstraction layer are the
two built in serial interfaces, UART0 and UART1. Section 5.3.3 describes in
greater detail the register configuration for said devices. Although clearly
more complex and convoluted when compared to the clean interface for
µMPS2 emulated devices, it is believed the handful of registers needed to
use UART1 and UART0 is still well within reach for a computer science
undergraduate student. Similarly to flying a plane, the hardest part is tak-
ing off, and device initialization is already prepared by the abstraction layer
when the user kernel gains control.
Interrupt handling is self contained in specific device registers; once enabled
the exception routine will behave as expected, continously being called until
the specific acknowledgement is delivered.

8.5.2 Emulated Peripherals

The emulated peripherals interface is kept almost identical to the µMPS2
approach, and is detailed in sections 6 and 7.4. As mentioned before the
commands are passed to the emulation layer with a memory structure shared
through the first core’s first mailbox (unavailable for other purposes). The
memory address must be 16-bytes aligned, as the 4 least significant bits are
used to index the device the command is meant for.

8.6 Memory Management Unit

The MMU operation is described in depth in chapter 4. It is a complex
device, unsuitable for undergradates. This complexity is, in the author’s
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opinion, very much intrinsic in the nature of virtual memory management,
and little can be done to ease it; even if possible it would not make sense to
further simplify it as it would lose most of its educational value. Therefore,
the MMU interface has been left mostly untouched by the abstraction layer.
The sole real interference is copying TTBR1 into TTBR0 when handling
an exception to make sure the memory can be accessed without trouble even
at EL1. If this was not the case the kernel could end up receiving entry
results of the process that was paused.
This passage is made essential by the fact that the MMU should be easily
turned on and off without changing too much of the original code. Real OSes
like Linux simply enable virtual addresses from the beginning and load the
kernel code at the far end of memory, where TTBR1 is referenced for page
tables. Moreover, Qemu does not allow for loading addresses other than the
default 0x80000.

Other than that, the MMU is entirely managed by the user, even if reg-
isters should not be directly accessed and instead modified only through
initMMU() and isMMUACTIVE() ROM functions. Just like µMPS2, how far
one should go into implementing virtual memory policies is up to the profes-
sor or course using this tool. For example:

• Page tables support a Dirty Bit Modifier field; when an entry is found
(either in the TLB cache or after a table walk) that has the DBM bit
cleared an MMU fault is raised expecting the software to handle the
situation and re-try the same memory request. This is usually used
to only load memory blocks in memory when they are accessed, thus
allocating less physical memory for each process.

• To avoid confusion where multiple processes find the same cached en-
tries in the TLB each one of them should be paired with an ASID copied
to the TTBR0 register. If page entries are then marked as non-global
using the nG bit a TLB search hits only if the current ASID is equal
to the one saved with the entry.

• In an exaggerated simplification the TLB cache can be flushed every
time a context switch occurs. In this situation no ASID is needed as
the stale entries are just wiped before they can cause issues.

Note that the memory management unit configuration is set on a per-core
basis: there can be cores where virtual memory is enabled and active, and
others where normal physical memory is used.
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Figure 8.1: Memory locations for interrupt old areas, handlers and stack
pointers





Chapter 9

Usage and Debugging

9.1 Final Result

The final result of this work consists, from the user perspective, solely
of two files: hal.elf and hal.ld. The first is the the hardware abstraction
layer compiled for an ARM64 target, containing system initialization and
emulated devices management; the second is its linker script, to be used to
link an application to the hal.

The hal performs all the necessary routines and then calls a main func-
tion. There is a weak-defined main included with the hal that just echoes
every character received on UART0 that is supposed to be overwritten by a
new main. symbol. From there, the user provided code is expected to write
specific memory addresses to define new exception handlers and control em-
ulated devices.

One of the objectives of this work was to avoid creating ad hoc software
and relying as much as possible on widespread tools. Because of this, there
is no custom package like the µMPS2 emulator to install; instead the user
needs a proper cross compile toolchain for ARM64 (or an ARM64 device,
like the Raspberry Pi itself) and eventually Qemu.

9.2 Compiling

MaldOS provides a single .elf file containing initialization code, abstrac-
tion layer and some functions; given that, there are several ways to compile
it into a project. Here an example is shown, where a single module contaning
the main function is linked to the HAL.

$ aarch64−l inux−gnu−gcc −o main . o −c −Wall −f f r e e s t a n d i n g \\
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−n o s t d l i b −n o s t a r t f i l e s −O0 −g −march=armv8−a \\
−mtune=cortex−a53 −fPIE −f f i x e d−x27 −f f i x e d−x28 \\
−I i n c l u d e /app main . c

$ aarch64−l inux−gnu−ld −o app . e l f −r main . o$

Each command option has its own meaning:

-Wall requires to print all warnings during compilation. Not Strictly neces-
sary, but good practice.

-ffreestanding assert that compilation targets a freestanding environment,
one in which the standard library may not exist and program startup may
not necessarily be at main.

-nostdlib instructs not to use the standard system startup files or libraries
when linking.

-nostartfiles commands not to use the standard system startup files when
linking.

-O0 is the optimization level; here it is 0, with no optimization at all. One
might specify other levels, but in a project where the focus is on the
learning experience and not in performance compiler meddling should be
kept to a minimum.

-g includes debugging symbols into the executable.

-march=aromv8-a specifies the target architecture.

-mtune=cortex-a53 specifies the target processor.

-fPIE generates position independent code; it is necessary for when the
executable will be linked with the abstraction layer in the next step.

-ffixed-x27 -ffixed-x28 instucts the Assembler generator to avoid using
general purpose registers X27 and X28. As described in section 7.3 those
are corrupted during context switch, and thus are not available.

Unless otherwise specified, all options are strictly necessary for a working
result. The absence of some flags might not create immediate issues but are
nevertheless to be considered a mistake (e.g. registers X27 and X28 are
rarely used).

Given a compiled elf with the user’s code called app.elf and assuming
to use aarch64-elf-gcc as a cross compiler, the process to create a kernel
image would be

aarch64−e l f−ld −n o s t d l i b −n o s t a r t f i l e s −Thal . ld \
−ooutput . e l f ha l . e l f app . e l f

aarch64−e l f−objcopy output . e l f −O binary ke rne l 8 . img

The resulting binary can then be placed on a microSD card and run on a
Raspberry Pi 3 or on Qemu.
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9.3 Qemu

Since version 2.12 Qemu supports a Raspberry Pi 3 emulated machine.
The official version for the Linux distro of choice may be less recent, in which
case the user needs to compile the package from source. Particular care was
taken in assuring the same code runs with no discernible difference on the
emulator and the device, which was not a difficult task. Usually, in the rare
situations where virtual and real boards differ in their behaviour the real
hardware is in the right (as one would expect). Some examples found along
the way are:

• Uninitialized memory location will inevitably contain null values if run-
ning under Qemu; the real world RAM is not so clement, and will live
up to the tale of having its content randomized after a reset.

• The MMU memory configuration includes distinguishing between de-
vice and normal memory: while the latter ban be subject to caching to
increase performance, the former will not be optimized. Device memory
is meant for memory mapped areas that are connected to peripherals,
as their volatile nature would mix with caching for incoherent results.
Failing to set the device area as device memory will be forgiven on
Qemu as there are no real peripherals; instead, the Raspberry Pi board
will most likely not behave as expected.

• Similarly to the previous example, while to operate both serial inter-
faces on real hardware one must switch GPIO configuration as they
both use the same pins, Qemu will allow the two consoles to print and
read as if on separate lines without swapping between hardware setup.

• Qemu is whimsical about the memory address where to load the kernel
image. The emulator’s boot sequence is different from the real device as
the kernel8.img file is not read from the microSD card but passed from
the command line. Qemu invariably starts the execution by jumping at
0x80000; if that is not the same address referenced by the linker script
the kernel will fail to run.

Note that, beside those immediate idiosyncrasy, emulator and hardware
can behave differently while still being both correct. Quoting a Qemu devel-
oper,

“QEMU only promises to run architecturally correct code the way
the architecture says it should run. It doesn’t guarantee to run
incorrect code in the same way the hardware happens to run it.
QEMU aims to be an architecturally valid implementation, not an
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implementation that matches the real hardware CPU. (That is,
we are free to behave differently for things which the architecture
manual defines as IMPLEMENTATION DEFINED or UNPRE-
DICTABLE.)”

One brilliant example of this situation can be found in TLB behaviour.
A cached page table entry can live inside the TLB for an arbitrary amount of
time, extremities included: it is architecturally correct to both immediately
discard it or keep it forever. In an early test of virtual memory translation,
a single process was made to run at EL0 after being launched by the kernel
from EL1. Kernel and process code were part of the same executable, and
thus shared the same memory block. Two page tables were set up for the
kernel and the process; they had to be different to allow correct execution
permissions: the processes’ entries had the AP field set to no limit, while
the kernel ones restricted EL0 access 1. At first no ASID was used, and the
same binary image was running fine on Qemu but not on real hardware. The
reason for the hardware fault was found in the presence of stale entries in the
TLB: initially kernel entries were cached; when the process was launched it
tried to fetch the same memory block as the kernel, hitting a cached version
that forbade EL0 access, thus resulting in an instruction abort. On the other
hand, Qemu was running fine because it does not faithfully emulate the TLB.
When any TTBR register changes the entire TLB cache is flushed behind
the scenes, immediately deleting any stale entry. The code was wrong, but
it happened to run anyway on the emulator.

To fix the example ASIDs were used, setting a different ID for kernel and
process tables. This time however the parts were inverted: the real Rasp-
berry Pi 3 board started working while Qemu was constantly stuck into abort
exceptions. Again, the bug was due to the same TLB difference: between
swapping TTBR0 with EL0 process tables and actually switching the con-
text there were some instructions at EL1. For those, fetching a virtual page
entry yielded a TLB miss because the ASID had changed, so a new entry from
the process’ table was returned, leading to yet another permission fault. On
the Raspberry Pi 3 the same code still ran fine, probably because the change
in TTBR0 had yet to be registered before the context switch and the kernel
was still hitting the correct TLB cached entries. The final solution was to
run the kernel code at address 0xFFFF000000000000 to make sure TTBR1
was always selected.

1Note that, by default, a memory block that is not restricted for EL0 write access
cannot be executed by higher exception levels due to obvious security concerns.
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Qemu requires a kernel image and a microSD card image to be passed as
command line arguments. An example command to run the emulator is:

qemu−system−aarch64 −M r a s p i 3 −ke rne l ke rne l 8 . img \
−dr iv e f i l e=dr ive . dd , i f=sd , format=raw \
− s e r i a l vc − s e r i a l vc

Where the command line options have the following meaning:

-M raspi3 specifies the machine to emulate.

-kernel kernel8.img specifies the kernel image to run.

-drive file=drive.dd,if=sd,format=raw attaches the microSD card, here
using an image file. Note that a real device can be used in the same way,
for example using file=/dev/mmcblk0, allowing to run both on the board
and the emulator with the same exact drive.

-serial vc each serial option accounts for a UART interface (UART0 and
UART1, in this order). vc stands for “virtual console” and will open a
tab in the Qemu window. Another possible value is stdio, which will
conveniently pipe the serial output of the chosen interface on the shell
(obviously available for only one of the two UARTs).

9.3.1 Create a Disk Image

As is indicated in previous command examples Qemu accepts a block
device to be plugged into the raspi3 machine as if by a microSD card slot.
The specified path can either be real, as in a physical disk installed in the
host system, or fake, in the form of a binary file representing an abstracted
file system.
In the first scenario it is sufficent to pass the device file path through the
file argument of the -device command line option: for all intents and
purposes the emulated machine will communicate with the drive using an
EMMC controller. Unless specific rules are present into /etc/fstab that
allow normal users to access disk drives, root permissions will be necessary
for this route; as always, special care should be taken lest risking corruption of
a vital drive due to a bug in the emulated OS. For this and other convenience
reasons, using a virtual disk file is usually preferable. A virtual disk file can
be created by various means; here is brought an example using the Gparted
tool.

The file itself must be already present in the file system before running
Gparted. A conventient way to create it is using the dd utility:

$ dd i f =/dev/ zero o f=dr iv e . dd bs=1M count=50
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Figure 9.1: How to create a new partition table in Gparted.

The following procedure is slightly complicated by the fact that the final
result is not a simple FAT32 partition encoded in an image file, but an
entire disk complete with partition table. A suitable way to handle such a
requirement consists in pointing Gparted to a loopback device mapped to
the file; this is achieved with the command:

$ sudo l o s e tup −fP dr ive . dd
$ l o s e tup −j d r i v e . dd

The second of the two commands prints the loopback device that was
mapped to drive.dd. After this, the disk configuration can be accessed in
Gparted by running sudo gparted /dev/loop0 (provided that loop0 was
the mapped block device). The first step is to create a new partition table
via Device > Create Partition Table; the table type msdos should be selected
and written to the file, as in figure 9.1.

After this the actual partitions can be written. Despite the microSD
emulation, Qemu does not follow the same boot process as a real Raspberry
Pi 3; therefore, the disposition of partitions on disk and the presence of
an actual kernel8.img binary on the first FAT32 partition is irrelevant.
Nonetheless, MaldOS mimics the hardware restrictions and expects a single
FAT32 partition. This configuration step is depicted in figure 9.2.

Once everything is set the image file can be mounted and accessed again
through a loopback device. Note that, let /dev/loop0 be the associated
loopback device, the actual partition to be mounted is different, probably
in the form /dev/loop0p1. All files copied into the image will be available
for the emulated machine; tape and disk devices are added to MaldOS this
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Figure 9.2: How to create a new FAT32 partition in Gparted.

way, as files name TAPEn and DISKn (with n ranging from 0 to 3), respectively.

Another, perhaps faster method for achieving a suitable disk image con-
sists in simply cloning a real disk (possibly a Raspberry Pi-ready microSD
card) to a binary file with the dd tool, similarly to how the initial drive.dd
was created:

$ dd i f =/dev/mmcblk0 o f=dr ive . dd bs=1M

Where /dev/mmcblk0 is the disk device to be cloned.

9.4 Debugging

The debug of the compiled kernel can be carried over Qemu with GDB.
Using the -gdb tcp:1234 parameter Qemu opens a debugging tcp port for a
GDB client to connect to (another port can be specified). The -s command
line flag brings the same result in a shorter format, and by adding -S as well
the emulator will not start the execution, allowing the developer to connect.

Once the emulator is ready, a GDB client can connect to it. A client for
ARM64 should be present within the toolchain used to compile the kernel.
A simple command line client may attach using the following commands
(assuming the aarch64-elf-gcc toolchain is installed)

$ aarch64−e l f−gdb
( gdb ) f i l e output . e l f
( gdb ) t a r g e t remote l o c a l h o s t :1234
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This GDB initial configuration can be added to a .gdbinit file for con-
venience to get automatically executed every time the debugger is run.

Emulators like µMPS2 have the prominent advantage of a specifically
designed running and debugging interface; nonetheless, a GDB server is a
complete and advanced debugging suite. The command line debugger may
seem a scarce alternative, but there are plenty of richer options; the author
recommends gdbgui, a browser-based Python GDB client. Gdbgui can be in-
stalled via pip or as an official package, depending on the Linux distribution.
It must be launched with the --gdb (or -g) command line option to specify
a proper GDB client (i.e. the one found within the ARM64 toochain); it acts
as a web server reachable at the default port 5000 with any browser, and
provides an intuitive interface fitted with step-by-step debugging, memory
inspection, threaded view and so on. A .gdbinit becomes especially useful
when using Gdbgui as it is read even when the debugger is executed through
the Python wrapper.

9.4.1 Memory Management Unit

Special care should be taken when debugging with the MMU enabled. To
accomodate virtual memory with ease of usage, the kernel image is loaded
in physical address space and virtualized only later. As has already been ex-
plained, this is a somewhat uncharacteristic behaviour for a kernel, so support
is not perfect. When MMU is enabled the entry point for interrupt handlers
in the form of the VBAR register is shifted at address 0xFFFF000000000000;
the rest of the kernel only uses relative references, so everything works. How-
ever if the user is debugging the kernel he or she will become unable to break
execution on kernel code; logically, having moved all addresses 16 ExbiBytes
forward GDB will have a hard time finding symbols. To fix references again
one must load the elf symbol table with the same offset, using the following
GDB command:

( gdb ) add−symbol− f i l e output . e l f 0 x f f f f 000000000000

Note that this directive too can be added to .gdbinit. There is no
obvious drawback to loading the symbol table at two separate offsets (the
first one being 0x0); this way breakpoints will work regardless of the MMU
state.
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Figure 9.3: gdbgui browser interface





Chapter 10

Conclusions and Future Work

This chapter enumerates possible directions in which MaldOS could could
grow. As a general note improvement is always possible; for example, the
hypervisor path described in section 7.7 has not been dismissed entirely.
Other than that there are also more specific branches to be followed both in
the near and distant future.

10.1 Extending Qemu

The recently added Raspberry Pi machine configuration for Qemu only
supports a few capabilities of the original board: the two serial interfaces,
the framebuffer display and the microSD card EMMC. The biggest missing
part is of course the USB controller (bringing around the Network interface
as well); the base complexity of the USB protocol, however, would probably
make it an unsuitable choice for learning projects anyway.

Peripherals of less practical value in an emulator would perhaps end up
being most interesting in the scope of OS study. SPI and I2C are relatively
easy low level serial protocols that could make an interesting addition to
the learning program; same goes for the PCM audio interface and the whole
GPIO header in general. Qemu is a fairly flexible emulator, and a future
improvement could focus on enriching the virtual environment with more
device options.

There is another consideration which has been ignored for the purposes
of this work: Qemu exists to virtualize generic machines for any architecture.
The Raspberry Pi is a premium choice when the objective is learning, but
an entirely new and ad-hoc virtual machine could be created and run on the
emulator just like µMPS2 does, only with the advantage of a widespread and
general purpose tool as backend. One could implement printers, terminals,
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disks, tapes and even network interfaces not just as peripherals emulated by
the abstraction layer (which is somewhat redundant in a virtualized machine)
but by the Qemu emulator itself.
Moving away from ad-hoc tools in favor of Qemu is still an improvement
in the author’s perspective, even though this obviously drops the advantage
of running on real hardware as well. However, on a more ambitious and
visionary note, would it really? FPGA technology has become more and
more affordable in recent years, and with a stretch of imagination the near
future could harbor a FPGA board popularized like the Raspberry Pi and
capable of being programmed as an ARMv8 (or other, like RISC V) core.
In this scenario the acts of building a new virtual Qemu machine and a real
FPGA-hosted SoC would overlap, allowing for a completely controlled real
and virtual learning environment.
This is an arguably possible but very wild speculation.

10.2 Debugging with GDB

Being a off-the-shelf software GDB is flexible enough to be extended with
a specifically tailored client. GDB provides a machine interpreter that rec-
ognizes machine readable commands for the purpose of creating higher level
interfaces.

If the generic approach of Gdbgui was deemed too complex for inex-
perienced graduate students one could implement a µMPS2-like debugging
interface that connects to the Qemu GDB server. Following a more common
approach for debuggers, a GDB compliant environment could be created in-
side a widely spread, extensible IDE like Atom or Visual Studio Code.
Indeed, by using generic GDB interface extensions it is already possible to
debug Qemu from VS Code. To improve on this it would suffice to add
debugging widgets with specific register and device views.

10.3 Other ARM64 SoC

Although it is now firmly seated in the Olympus of open source edu-
cational boards, the Raspberry Pi family is build on awfully obscured and
undocumented hardware. Broadcom follows the market trend of not releas-
ing any information on its products like other manufacturers.

There are many Raspberry Pi-like boards that base themselves on similar
hardware (namely, a powerful ARM CPU assisted by a graphical processing
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unit). In principle, the work that has been done for the British board could
be easily ported to a wide number of similar devices. For example Pine64,
an open source family of products taking heavy inspiration from the Rasp-
berry Pi inheritance, has recently marketed a laptop powered by one of their
compute modules and is planning on a smartphone and tablet with the same
characteristics. Running a toy OS on a real-world mobile device could be
both a more academically interesting exploit and an higher highlight for an
undergraduate (or even graduate) student.

10.4 Other Programming Languages

Traditionally, Operating System kernels are written in C with critical
parts coded in Assembler, with some alternative higher level components
using C-derived languages like C++ (Windows and Android) and Objective-
C (IOS). In the introduction some notable exceptions were mentioned: the
Ultibo project [8] is a Raspberry Pi hardware abstraction layer written en-
tirely in Pascal; Circle64 [9] is a similar library where C++ is used instead;
when performance and resources are limited, one can find kernels written
entirely in Assembler (like KolibriOS).

Different programming languages obviously bring advantages and disad-
vantages, but in the scope of educational work the choice falls unambigously
on pure C. It is the standard in Operating System development, and for
good reasons: simplicity, ease of carrying on low level memory operations,
low portability dependencies, huge community and learning reference, perfect
balance between abstraction and hardware fidelity.

Even beyond an academic objective, C is by far the dominant choice when
it comes to kernel development and has been for decades. There is, however,
a contender that is recently emerging and gaining purchase thanks to its
qualities like performance, reliability and security: Rust.
Unlike the multitude of newly created programming languages of our time,
Rust has quickly managed to carve a spot in embedded development. As of
now, it is already possible (and fairly easy) to run Rust code in various bare
metal ARM environment, Raspberry Pi included.

The main drawback lies in its inherent complexity: concepts like owner-
ship and parallelism take a great deal of effort before mastery, and that would
contrast with the focus on OS development of this work. Nevertheless, Rust
is considered to be the closest second to C when it comes to the choice of
programming language and if it was included as an additional topic of study
in future Computer Science courses the opportunity should be considered
seriously.
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10.5 Emulation Layer on Videocore IV

Through the mailbox interface it is possible to ask the Broadcom GPU to
directly execute code: this is what happens with graphical firmware routines
in fully fledged Operating Systems like Raspbian.
In the early years code for the GPU was released only in binary form as
proprietary software; only in 2012 Broadcom gave in and documented open
source firmware for graphical processing. To this day a small component of
proprietary binaries is still necessary to boot the Raspberry Pi (for example,
bootcode.bin), although there are timid attempts at reverse engineering
that as well [16].

If the Videocore IV was freely available for the developer like the ARM
CPU, part (if not the entirety) of the abstraction layer that is implemented
as some kind of interrupt-in-the-middle could be moved there. The interface
to access abstraction capabilities would not be much more convenient for the
user, as the communication media would still be mailboxes; it would however
provide a more detailed emulation of hardware devices, for examble by acting
as a real DMA peripheral when reading and writing to emulated disks and
tapes. Students could write completely from scratch their Operating System,
relying on GPU firmware to assist them in more complex tasks like device
communication and boot process.
It should be noted that this approach would probably break Qemu emula-
tion, because the general purpose tool virtualizes the architecture, not the
hardware. There is no Videocore in the raspi3 machine: the kernel image
is loading by Qemu and it is unclear to what degree mailboxes to the GPU
respond correctly.

10.6 Course Organization

MaldOS was developed to be of assistance for students. The focus is on
an Operating Systems course, so effort was put into shaving off low level
hardware interfacing and initialization: the objective is to learn how an OS
works, not the AArch64 Assembler instruction set and registers, or how to
operate the Arasan EMMC controller.
This approach however could be radically different depending on the subject
under scrutiny. Low level Assembler programming and the ARM64 archi-
tecture are interesting topics for a course in System Architectures. Given
enough time, will and coordination, the Kaya OS project could be build
bottom-up by students in its entirety over four semesters and two different
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courses: System Architectures for initialization and peripheral interfacing
and Operating Systems for the kernel and process management.

In that scenario, MaldOS is not a support for students anymore, but
a mere example and study on how to develop such an abstraction layer.
Some sections would probably end up identical even when created by other
developers (there are few alterations that can be made to the boot code, for
example), but the interrupt handling in particular would become much less
arbitrarily complicated.

Overall, it would certainly be an extremely formative experience.
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