
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica Magistrale

Experience Replay

in

Sparse Rewards Problems

using

Deep Reinforcement Techniques

Relatore:

Chiar.mo Prof.

ANDREA ASPERTI

Presentata da:

DAVIDE BERETTA

Sessione III

Anno Accademico 2017/2018

To Giancarlo, Lorella and Silvia

Introduction

Reinforcement learning (RL) [1] [2] is an area of machine learning that studies

how an agent should take actions in an environment maximizing some notion of

cumulative reward. It is different from other areas of machine learning because the

agent must learn to interact with the environment. The idea behind RL is not new

but in the last couple of years a lot of research has been done on this topic. With

modern computers and their increasing computational power, combined with re-

cent innovations on Deep Learning, RL has proved to be an interesting alternative

to other more famous approaches [3].

Deep Learning is a class of machine learning techniques that exploit many layers

of non-linear information processing for supervised or unsupervised feature extrac-

tion and transformation, and for pattern analysis and classification.

In 2013 Deepmind, an important RL research group, released DQN [4] which com-

bines RL and Deep Learning, this work represents an important milestone and

reached very interesting scores in many different problems.

The most impressive works and results that were released after DQN are Alpha-

Go [5] and Alpha-Go Zero [6] that defeated a professional player on the game Go,

which is famous for being difficult and having a large state space.

Reinforcement Learning is a general approach and can be used in a large variety

of fields; the ultimate goal is to realize a single agent capable of learning many

different tasks. Recent improvements go in this direction, trying to produce an

agent that learns many different games available for Atari 2600 consoles reaching

super-human skill levels [4].

i

ii INTRODUCTION

In this work we investigate how to change modern RL algorithms in order to

improve performances on different problems, in particular on sparse rewards prob-

lems. These are the most difficult to approach and many works have failed to solve

them in the past; only in the last years a few methods proved to work.

In order to improve the efficiency of the learning process some methods use Ex-

perience Replay [7]. This is a techique which allows to improve sample efficiency,

it uses a buffer where it stores the last samples. They are randomly selected and

replayed during training, this can lead to a consistent speed up in the learning

process. We start from a recent algorithm called ACER [8] that uses this tech-

nique and we investigate some possible modifications that allow to make better

use of the experience collected by the agent as well as the impact of other technical

choices.

In Chapter 1 we present an introduction to Reinforcement Learning, from basic

elements such as rewards to more specific ones such as models, concluding with a

brief summary of the most important applications.

In Chapter 2 we discuss in more detail the main approaches to RL and we intro-

duce some of the most important and influential works of the last years such as

DQN [3], A3C [9] and ACER [8].

In Chapter 3 we describe the OpenAI Gym [10] suite that is used in main works as

a benchmark. It includes several different games produced for Atari 2600 as well

as other interesting problems (robotics, continuous control and many others).

In order to prevent the agent from simply memorizing a sequence of actions, dif-

ferent techniques were presented. They are used to introduce some form of non-

determinism in the training and testing environments. In this chapter we inves-

tigate the two main concepts used to accomplish this task: no-op starts [3] and

sticky actions [11]; we also discuss how OpenAI Gym implements these techniques.

All the experiments in this work are focused on a single game called Montezuma’s

Revenge, it is known for its difficulty and it has been one of the few games that

have remained unbeaten until the last year. We chose this task because it’s one

of the most interesting ones but all the proposed modifications are designed to

perform well in general problems.

INTRODUCTION iii

In this chapter we describe the concept of sparse reward problem as well as Mon-

tezuma’s Revenge dynamics and reward system.

In order to compare the results obtained from the variants of ACER discussed in

this thesis, we present the progress through time of RL on this game.

In Chapter 4 we discuss some modifications and tests that have been made to im-

prove sample efficiency and speed up the learning process. In particular we report

the effects of using either episodic or non-episodic life and the impact of negative

rewards during training. We then present some modifications to the ACER algo-

rithm, one that directly affects the learning procedure and the others that alter the

memorization structure and the policy used for retrieving samples during replay.

We also present the results obtained on another game of the Gym suite: Space

Invaders. We chose this game because it is a dense reward problem that has been

widely used as a benchmark.

In the final chapter we draw conclusions and we discuss the results of this research

as well as possible improvement and additional tests.

Contents

Introduction i

List of Figures vii

List of Tables ix

1 Background 1

1.1 Reinforcement Learning . 1

1.2 Finite MDP . 4

1.3 Reward . 5

1.4 Episode . 6

1.5 Policy . 7

1.6 Value function . 8

1.7 Model . 11

1.8 Applications . 12

2 RL algorithms 13

2.1 Dynamic programming . 13

2.2 Monte Carlo . 15

2.3 Temporal-Difference . 17

2.3.1 Sarsa . 19

2.3.2 Q-learning . 20

2.3.3 DQN . 20

2.4 Policy gradient . 23

v

vi CONTENTS

2.4.1 REINFORCE . 24

2.4.2 A3C . 25

2.4.3 TRPO . 26

2.4.4 ACER . 27

3 ATARI 30

3.1 Montezuma’s Revenge . 31

3.2 OpenAI Gym . 34

4 3B-ACER 37

4.1 OpenAI Baselines . 37

4.2 Episodic Lifes . 41

4.3 Negative Rewards . 42

4.4 Best Replay . 43

4.5 Triple Buffer . 49

Conclusions 57

Appendix A Hyperparameters 59

Appendix B Scores 60

Bibliography 61

List of Figures

1.1 Agent-environment interaction in MDPs 3

1.2 Go and Backgammon games . 11

2.1 DQN neural network architecture 21

3.1 Examples of Atari 2600 games . 31

3.2 Montezuma’s Revenge . 32

4.1 Results for vanilla ACER . 39

4.2 Results for ACER with Episodic Game 42

4.3 Results for ACER with negative rewards 43

4.4 ACER with Best Replay buffers modification 44

4.5 Results for ACER with Best Replay and Value Fixing 47

4.6 Results for ACER with Best Replay 48

4.7 3B-ACER Buffer modification . 49

4.8 Results for 3B-ACER with Value Fixing 50

4.9 Results for 3B-ACER . 53

4.10 Results for 3B-ACER Half Replay 54

4.11 Summary results for 3B ACER . 55

vii

List of Tables

4.1 Value Fixing example . 46

A.1 ACER hyperparameters . 59

B.1 Best results on Montezuma’s Revenge 60

ix

Chapter 1

Background

Learning by interacting with our environment is probably the first idea to oc-

cur to us when we think about the nature of learning. When an infant moves

its arms during the first months it has no teacher but learns interacting with the

world using its own body. As we grow up interaction remains the major source

of information that can be used for learning. Whether we are learning to drive a

car or use a computer we seek to influence what happens through our behaviour

and we observe the result in order to learn the proper way of doing a specific task.

Learning from interaction is a foundational idea underlying nearly all theories of

learning and intelligence.

In this chapter we explore a computational approach, called Reinforcement Learn-

ing, that that is more focused on goal-directed learning from interaction than other

approaches to machine learning. We will first introduce the basic principles be-

hind this approach, then we will describe the main elements in a RL problem and

possible solutions, finally we will conclude with some examples.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do in an environment so as to max-

imize a numerical reward signal. The learner is not told which actions to take, but

instead must discover which actions yield the most reward by trying them.

1

2 1. Background

In the most interesting and challenging cases, actions may affect not only the imme-

diate reward but also the next environment state and, through that, all subsequent

rewards. These two characteristics, trial-and-error search and delayed reward, are

the two most important distinguishing features of this kind of learning.

Reinforcement learning is simultaneously a problem, a class of solution methods

that work well on the problem, and the field that studies this problem and its

solution methods.

In order to formalize a RL problem we use partially observable Markov Decision

Problems; the basic idea is simply to capture the most important aspects of the

real problem, facing a learning agent interacting over time with its environment to

achieve a goal. A learning agent must be able to sense the state of its environment

to some extent and must be able to take actions that affect the state. The agent

also must have one or more goals relating to the state of the environment. Markov

decision processes are intended to include just these three aspects: sensation, ac-

tion and goal. Any method that is well suited to solving such problems we consider

to be a reinforcement learning method.

Reinforcement learning is different from supervised learning : in interactive prob-

lems it is often impractical to obtain examples of desired behaviour that are both

correct and representative of all the situations in which the agent has to act. In

uncharted territory an agent must be able to learn from its own experience.

Reinforcement learning is also different from unsupervised learning, which is typi-

cally about finding structure hidden in collections of unlabeled data. Uncovering

structure in an agent’s experience can certainly be useful in reinforcement learning,

but by itself does not address the reinforcement learning problem of maximizing a

reward signal.

In a RL problem there is a strong challenge that is not present in other kind of

learning, this is the trade-off of exploration and exploitation. In order to obtain

reward an agent must exploit what it has tried in the past and found to be effective

but it needs also to explore and try action not selected before. This is necessary

to discover new actions that can be potentially better, the agent can use this new

knowledge in order to make better action selection in the future.

1.1 Reinforcement Learning 3

AgentEnvironment

Observation

Action

Reward

Figure 1.1: Agent-environment interaction in a Markov decision problem.

We cannot solve a RL problem using exclusively exploration or exploitation: the

agent must try many different actions and progressively favour those that appear

to be best. On a stochastic task each action must be tried many times to gain a

reliable estimate of its expected reward. The exploration vs exploitation problem

has been intensively studied but yet remains unresolved.

Another key feature of reinforcement learning is that it explicitly considers the

whole problem of a goal-directed agent interacting with an uncertain environ-

ment. A complete, interactive, goal-seeking RL agent can also be a component of

a larger behaving system. In this case the agent directly interacts with the rest of

the larger system and indirectly interacts with the larger system’s environment.

When planning is required it has to address the interplay between planning and

real-time action selection, as well as the question of how environment models are

acquired and improved. Many other approaches try instead to solve a specific

subproblems without addressing how they might fit into a larger picture.

One of the most interesting aspects of reinforcement learning is its interactions

with disciplines such as artificial intelligence, optimization and statistics.

It is also strongly connected to psychology and neuroscience; of all the forms of

machine learning, RL is the closest to the kind of learning that humans and other

animals do. Many of the core algorithms of reinforcement learning were indeed

originally inspired by biological learning systems.

4 1. Background

1.2 Finite MDP

Markov Decision Problems (MDP) are a classical formalization of sequential

decision making where actions influence not just immediate rewards, but also sub-

sequent states and through those future rewards. In order to solve a MDP the need

to tradeoff immediate and delayed reward must be considered. In this formaliza-

tion the learner that makes decisions is called agent while the thing it interacts

with, comprising everything outside the agent, is called the environment.

Agent and environment interact continually at discrete time steps t = 0, 1, 2, etc.

At each time step t the agent receive a representation of the state st ∈ S and,

observing that, it select an action at ∈ A(st) or simply at ∈ A. At the following

time step t + 1 the agent receive the representation of state st+1 and a numerical

reward rt+1 ∈ R ⊂ R.

In a finite MDP the sets A, S and R have a finite number of elements. In this

scenario random variables Rt and St have a well defined discrete probability dis-

tributions dependent only on the preceding state and action. We can then define

the probability of being in a state s′ ∈ St with reward r ∈ Rt after selecting action

a in state s at time step t− 1:

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s, At−1 = a}

for all s, s′ ∈ S, r ∈ R, a ∈ A(s). The function p is called the dynamics of

an MDP as it completely characterizes the environment’s dynamics. From this

follows that the probability of each possible value for St and Rt depends only

on the immediately preceding state and action St−1 and At−1 and not on earlier

states and actions. The state must include information about all aspects of the

past interaction between agent and environment that make a difference for the

future.

The agent-environment interaction is illustrated in Figure 1.1. From the dynamics

can be derived other useful probabilities and one can compute anything else one

might want to know about the environment.

MDPs are a very general framework: actions can be low-level controls or high-level

decisions, time steps can refer to arbitrary successive stages of decision making.

1.3 Reward 5

Similarly states can be completely determined by low-level sensations or they can

be more high-level and abstract. In general, actions can be any decisions we want

to learn how to make and the states can be anything we can know that might be

useful in making them.

In order to solve a particular task we must define the agent-environment boundary,

this change is based on the level of abstraction we need. In a complicated task many

agent may be operating at once, each with its own boundary. In general, anything

that cannot be changed arbitrarily by the agent is considered to be outside of it and

thus part of its environment. We do not assume that the environment is completely

unknown to the agent but reward computation is considered to be external to the

agent because it defines the task and thus must be beyond its ability to change

arbitrarily. The agent-environment boundary thus represents the limit of what the

agent can completely control, not of what it knows. It is determined once one has

selected particular states, actions, and rewards, and thus has identified a specific

task of interest.

With MDPs any problem of learning goal-directed behaviour can be reduced to

three signals: actions, states and rewards; it may not be sufficient to represent

all decision-learning problems usefully but it has proved to be widely useful and

applicable.

1.3 Reward

The goal of an agent is formalized using a signal called reward, this is simply a

number Rt ∈ R passed by the environment at each time step. Every RL agent tries

to maximize the total reward obtained during its lifetime, this means maximizing

not immediate reward but cumulative reward in the long run. Though it seems

limited it has proved to be flexible and widely applicable, it is used to define what

are the bad and good events for the agent. It can be thought as analogous to the

experience of pleasure and pain. In the case of a cleaning robot, for example, a

possible reward system could be -1 when it bumps into things or when somebody

yells at it, +1 when it cleans a small area and 0 otherwise.

6 1. Background

Rewards must be provided in such a way that in maximizing them the agent

will also achieve established goals. A common mistake is to give a reward upon

reaching subgoals, in this case the agent might find a way to achieve them without

achieving the real goal. Rewards are used to communicate what the agent must

achieve and not how to obtain it.

1.4 Episode

Previously we have said that an RL agent seeks to maximize the cumulative

reward it receive in the long run, more specifically it needs to maximize the ex-

pected return, where the return is a specific function of a reward sequence. In

general the most simple return is the sum of rewards between two time steps, a

start step and a final step. We define the expected return as:

Gt =
∑T

k=0Rt+k+1

This approach can be used when the interaction between agent and environment

can be broken naturally into independent subsequences called episodes. Each

episode ends in a special state called terminal state, it is followed by a reset to

a standard starting state or to a sample from a standard distribution of starting

states. In case of a board game like chess, for example, the terminal state could be

reached when a match ends. Tasks with episodes of this kind are called episodic

tasks. In many cases the agent-environment interaction does not break naturally

into identifiable episodes, but goes on continually without limit, we call these con-

tinuing tasks. In continuing tasks the definition of expected return is problematic

because the final step could be T = ∞, in order to obviate to this problem we

introduce the concept of discounting. In this case the agent selects an action and

seeks to maximize the expected discounted return that is defined as:

Gt =
∑T

k=0 γ
kRt+k+1

where γ ∈ [0, 1] is called the discount rate. If γ < 1 the infinite sum in the defini-

tion of Gt has a finite value as long as the reward sequence is bounded.

1.5 Policy 7

The discount rate is used to balance the importance that the agent gives to imme-

diate and future rewards. If γ is close to 0 the agent prefers immediate rewards, in

general acting to maximize immediate reward can reduce access to future rewards

so that the return is reduced. If γ is close to 1 the the agent takes future rewards

into account more strongly and it becomes more farsighted.

If we define Gt+1+T = 0, thus imposing a null expected return after T timesteps,

then for t < T we can relate returns at successive time steps as:

Gt = Rt+1 + γ(Rt+2 + γRt+3 + ...) = Rt+1 + γGt+1

This is a very important relation because it allows to express the discounted ex-

pected return as the sum of the immediate reward and the discounted expected

return at the next time step.

1.5 Policy

In order to define the agent’s way of behaving we introduce the concept of

policy. It can be thought as a mapping from perceived states to actions to be

taken when in those states; it corresponds to what in psychology would be called

a set of stimulus-response rules or associations. In some cases it could be a simple

function or lookup table, in many other cases it is a complex and expensive func-

tion. It alone determines the agent’s behaviour and in general may be stochastic,

specifying probabilities for each action.

Formally, a policy is a mapping from states to probabilities of selecting each pos-

sible action. If the agent is following policy π at time step t then:

π(a|s) = P{At = a|St = s}

for all a ∈ A(s) and s ∈ S; π defines a probability distribution over a ∈ A(s)

for each s ∈ S. Reinforcement learning methods specify how the agent’s policy is

changed as a result of its experience.

8 1. Background

The reward signal discussed before is mainly used to alter the policy, if an action

selection is followed by a low reward then the policy is modified in order to decrease

the probability of performing the same action selection again in the future. In

general reward signals are difficult to predict and may be stochastic functions of

the state of the environment and the actions taken.

1.6 Value function

The reward signal discussed before indicates what is the best immediate return,

in order to represent what is good in the long run we define the value function.

The value of a state is the amount of reward that the agent expects to accumulate

over time starting from that state. The agent must seek actions that lead to

states of higher values rather than highest rewards because these actions obtain

the greatest amount of reward for us over the long run. For example, a state

might always yield a low immediate reward but still have a high value because it

is regularly followed by other states that yield high rewards, the reverse could also

be true. While rewards are somewhat like pleasure and pain, values correspond to

a more farsighted judgement of how pleased or displeased it is for the agent to be

in a given state.

Rewards are given directly by the environment while values must be continuously

re-estimated from the observations that the agent makes over its lifetime, this

makes values estimation much harder than reward evaluation. The most important

component of all RL algorithm is typically a method for efficiently estimating

values.

Value functions are denoted as Vπ(s) and are defined with respect to particular

policy π with a state s as input. Formally it is defined as:

Vπ(s) = Eπ[Gt|St = s] = Eπ[
∑∞

k=0 γ
kRt+k+1|St = s]

for all s ∈ S where Eπ denotes the expected value of a random variable given that

the agent follows policy π, t is any time step. The value of a terminal state is 0,

this function is called the state-value function for policy π.

1.6 Value function 9

As discussed before a policy is continually modified considering the agent’s previous

experiences. In order to make a change we must be able to compare two policies

and decide which is the best. A policy π is defined to be better or equal to a policy

π′ if and only if Vπ(s) ≥ Vπ′(s) for all s ∈ S. There is always at least a policy

equal or better to all the other policies and is called the optimal policy, we denote

these by π∗. The value function is a good method that can be used to measure

the quality of a policy.

We can define also a value function denoting the expected return starting from s,

taking the action a, and thereafter following policy π:

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∑∞

k=0 γ
kRt+k+1|St = s, At = a]

for all s ∈ S and a ∈ A(s), this function is called the action-value function for

policy π. The difference between action-value and state-value is the advantage

function and it is expressed as:

Aπ(s, a) = Qπ(s, a)− Vπ(s)

An agent can follow policy π and maintain an average, for each state encountered,

of the actual returns that have followed that state. The average will than converge

to the state’s value Vπ(s), as the number of times that state is encountered ap-

proaches infinity. If the agent keeps averages for each action taken in each state,

then these will similarly converge to the action values Qπ(s, a). These methods

are called Monte Carlo.

The fundamental relationships used throughout reinforcement learning and dy-

namic programming are Bellman equations, they express a relationship between

the value of a state and the values of its successor states. They are defined as

follows, for all a ∈ A and s ∈ S:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)]

Qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′
π(a′, s′)Qπ(s′, a′)]

Starting from state s the agent could take any of some set of actions based on its

policy π. From each of these the environment could respond with one of several

10 1. Background

next states s′ along with a reward r, depending on its dynamics. The Bellman

equations averages over all the possibilities, weighting each by its probability of

occurring. It states that the value of the start state must equal the (discounted)

value of the expected next state, plus the reward expected along the way.

All optimal policies share the same state-value functions V∗(s) and Q∗(s, a) called

optimal state-value function and optimal action-value function respectively. These

functions are defined as:

V∗(s) = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a)

for all s ∈ S and a ∈ A(s). V∗(s) and Q∗(s, a) must satisfy the self-consistency

conditions given by the Bellman equations for state values. The Bellman equation

for V∗, called Bellman optimality equation, expresses the fact that the value of a

state under an optimal policy must equal the expected return for the best action

from that state and is defined as follows:

V∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)]

We can also define the Bellman optimality equation for Q∗ as:

Q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s
′, a′)]

Finding V∗ allows to easily determine an optimal policy, any policy that is greedy

with respect to the optimal evaluation function V∗ is an optimal policy. Explicitly

solving the Bellman optimality equation in order to obtain an optimal state-value

function however is rarely possible. This solution is similar to an exhaustive search

and relies on at least three assumptions that are rarely true in practice:

• Knowledge of the environment’s dynamics

• Enough computational resources to complete the computation of the solution

• Markov property

1.7 Model 11

Figure 1.2: Classic board games Go (left) and Backgammon (right).

In reinforcement learning we typically have to settle for approximate solutions; in

many problems there may be many states that the agent faces with such a low

probability, that selecting suboptimal actions for them has little impact on the

amount of reward the agent receive. It is then possible to approximate optimal

policies in ways that put more effort into learning to make good decisions for

frequently encountered states, at the expense of less effort for infrequently encoun-

tered states. This is one central property that distinguish RL from other methods

to approximately solving MDPs.

1.7 Model

In some cases a model of the environment can be useful to improve learning

of an agent, it is basically something that emulates the environment and allows

inferences to be made about its future behaviour. Given a state and action the

model can predict the resulting state and reward. A model is used for planning:

the agent decides a course of actions considering possible future situations before

they are actually experienced.

Reinforcement learning algorithms that use a model for planning are called model-

based methods while less complex algorithms that learn explicitly by trial-and-error

are called model-free methods. There are also hybrid approaches where RL systems

simultaneously learn by trial-and-error, learn a model of the environment and use

the model for planning. Modern reinforcement learning spans the spectrum from

low-level, trial-and-error learning to high-level, deliberative planning.

12 1. Background

1.8 Applications

Reinforcement learning has a wide range of applications, games are excellent

testbeds for measuring an algorithm’s performances. Progress has been made

on perfect information games like Backgammon [12] and Go [13] as well as im-

perfect information games like Heads-up Limit Hold’em Poker [6]. Video games

represents another great challenge for RL algorithms, Atari 2600 [10] is the most

famous testbed but progress has been made on Doom [14], Starcraft [15] and many

other games.

Another classical area for reinforcement learning is robotics, common tasks include

object localization and manipulation, visual tracking as well as navigation.

NLP (Natural Language Processing) presents many issues that can be addressed

with RL algorithm; these are, for example, information extraction and retrieval,

summarization, sentiment analysis and many others. A lot of research has been

made in different NLP areas such as machine translation, dialogue systems and

text generation.

Reinforcement learning would be also an important ingredient in Computer Vision

in tasks like object segmentation, object dynamics learning and haptic property

estimation, object recognition or categorization, grasp planning and manipulation

skill learning.

Other areas which can be influenced by RL are business management, health-

care, finance, education, industry and even electricity management and intelligent

transportation systems.

Chapter 2

RL algorithms

In this chapter we discuss the main approaches to reinforcement learning, in

particular we will see the most important algorithms proposed in recent years such

as DQN [3], A3C [9] and ACER [8].

2.1 Dynamic programming

Dynamic programming (DP) are a collection of algorithms that can be used to

compute optimal policies given a perfect model of the environment as a Markov de-

cision process. They are of limited utility because the model is often unknown and

they are computationally expensive but they remain theoretically useful. While

DP ideas can be applied to problems with continuous state and action spaces ex-

act solutions are possible only in special cases. In order to obtain approximate

solutions for tasks with continuous states and actions, the state and action spaces

can be quantized and then finite-state DP methods are applied. Knowing environ-

ment’s dynamics we can start from Bellman equation for Vπ and define an iterative

method for computing the state-value function for an arbitrary policy π, we call

this problem policy evaluation.

In order to evaluate the state-value function an initial approximation V0 for all

states is chosen arbitrary except that the terminal state, if any, must be given

value 0.

13

14 2. RL algorithms

Each successive approximation is obtained using the following update rule:

Vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)]

for all s ∈ S. The algorithm applies iteratively the update rule until a fixed point

is reached. The existence and uniqueness of Vπ are guaranteed as long as either

γ < 1 or eventual termination is guaranteed from all states under the policy π;

these conditions ensure also that the sequence in general converges as k → ∞.

Policy evaluation can be used to find better policies, this process is called policy

improvement. Suppose that Vπ(s) has been computed using policy evaluation and

let π and π′ be any pair of deterministic policies such that:

Qπ(s, π′(s)) ≥ Vπ(s)

for all s ∈ S, then π′ must be as good as, or even better than, π. This result can

be used to understand if changing an action selection in a state for current policy

leads to an improvement. As a result Vπ′(s) ≥ Vπ(s) for all s ∈ S, if the first

inequality is strict at any state then the second inequality must be strict.

Using previous consideration a new policy π′ can be obtained from π using the

following update rule.

π′(s) = argmax
a

Qπ(s, a) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)]

Policy improvement thus result in a strictly better policy except when the original

policy is already optimal; these ideas are valid on both deterministic and stochastic

policies. Using policy improvement we can determine a policy π′, from this a new

state-value function Vπ′ can be derived using policy evaluation. The value function

can be employed to obtain a better policy π′′, this process is called policy iteration.

In Finite MDPs this process converges to an optimal policy and optimal value

function in a finite number of iterations. Below is illustrated the whole sequence

where
E−−−−−→ denotes evaluation and

I−−−−→ denotes improvement.

π0
E−−−−−→ Vπ0

I−−−−→ π1
E−−−−−→ ...

I−−−−→ π∗
E−−−−−→ V∗

2.2 Monte Carlo 15

The general idea behind policy iteration is called Generalized Policy Iteration

(GPI); in GPI there are two interacting processes, one process takes the policy

and performs some form of policy evaluation, changing the value function to be

more like the true one for the policy. The other process takes the value function and

performs some form of policy improvement, changing the policy to make it better,

assuming that the value function is its value function. This pair of processes work

together to find an optimal solution. In some cases, like those discussed before,

GPI can be proved to converge, in other cases convergence has not been proved.

An interesting property of DP methods is that they update estimates of the values

of states based on estimates of the values of successor states. They thus update

estimates on the basis of other estimates, this general idea is called bootstrapping

and is used also in Temporal-Difference Learning which we will discuss later.

2.2 Monte Carlo

Monte Carlo methods do not assume complete knowledge of the environment

and learning is made from experience without requiring prior knowledge of the

environment’s dynamics. These methods assume that experience is divided into

episodes, and that all episodes eventually terminate no matter what actions are

selected. The reason is that the episode has to terminate before any reward cal-

culation, policy updates are done after every episode. The idea behind MC is

simple: the value is the mean return of all sample trajectories for each state, sim-

ilar to Dynamic Programming there are two phases: policy evaluation and policy

improvement.

These methods needs to learn from complete episodes to compute the expected

discounted reward Gt =
∑T−t−1

k=0 γkRt+k+1, the empirical mean return for state s

is:

Vπ(s) = E[Gt|St = s] = 1
N

N∑
i=1

Gi
t,s

where Gi
t,s is the expected discounted reward for state s at time step t and episode

i, N is the number of episodes.

16 2. RL algorithms

We may average returns for every time s is visited in an episode (“every-visit”),

or average returns only for first time s is visited in an episode (“first-visit”). This

way of approximation can be easily extended to action-value functions by counting

(s, a) pairs:

Qπ(s, a) = E[Gt|St = s, At = a] = 1
N

N∑
i=1

Gi
t,s,a

where Gi
t,s,a is the expected discounted reward for state s and action a at time

step t and episode i. Normally it is convenient to convert the mean return into

an incremental update so that the mean can be updated with each episode and

we can understand the progress made with each episode. In order to learn the

optimal policy by Monte Carlo methods, a procedure similar to policy iteration

from previous section can be used:

• Improve the policy greedily with respect to the current action-value function

π(s) = argmax
a

Q(s, a).

• Generate a new episode with the new policy π.

• Estimate Q using the new episode as we have discussed earlier.

A policy obtained with the discussed method will always favour certain actions if

most of them are not explored properly. There are two possible solution to this

problem: exploring starts and ε-soft. In Monte Carlo methods with exploring starts

all the state-action pairs have non-zero probability of being the starting pair. This

will ensure that each episode which is played will take the agent to new states and

hence, there is more exploration of the environment. Exploring starts is not usable

in environment where there is a single start point, in this cases ε-soft methods can

be used. With this strategy all actions are tried with non-zero probability, with

probability 1 − ε the algorithm chooses the action which maximises the action

value function and with probability ε it selects an action at random.

One important distinction in RL is on-policy vs off-policy. In on-policy methods

the agent tries always to explore and attempts to find the best policy that still

explores.

2.3 Temporal-Difference 17

In off-policy methods the agent explores but learns a deterministic optimal policy

that may be unrelated to the policy followed. More formally off-policy prediction

refers to learning the value function of a target policy from data generated by a

different behaviour policy.

Off-policy Monte Carlo methods are a family of interesting methods, they are

based on some form of importance sampling ; this consists on weighting returns by

the ratio of the probabilities of taking the observed actions under the two policies,

thereby transforming their expectations from the behaviour policy to the target

policy.

Importance sampling can be ordinary and uses a simple average of the weighted

returns, weighted importance sampling instead uses a weighted average. Ordinary

importance sampling produces unbiased estimates but has larger, possibly infinite

variance, whereas weighted importance sampling always has finite variance and

is preferred in practice. These methods are conceptually simple but are still a

subject of ongoing research.

Monte Carlo and DP methods differ in two major ways. MC algorithms operate

on sample experience and thus can be used for direct learning without a model.

Secondly they do not bootstrap therefore they do not update their value estimates

on the basis of other value estimates.

2.3 Temporal-Difference

Temporal-Difference learning is a central and novel approach in RL and is a

combination of Monte Carlo and Dynamic Programming ideas. Like MC algo-

rithms they can learn directly from raw experience without a model of the envi-

ronment’s dynamics, and like DP algorithms they update estimates based in part

on other learned estimates, without waiting for a final outcome (bootstrap).

TD learning use some variation of generalized policy iteration (GPI); in particular

policy evaluation, or TD prediction, works like in Monte Carlo methods. Starting

from some experiences collected from policy π both methods update their estimate

of Vπ for the non-terminal states St occurring in those experiences.

18 2. RL algorithms

Monte Carlo methods must wait until the return Gt is known, then use that return

as a target for V (St). They must wait until the end of the episode to determine

the increment to V (St).

A simple every-visit Monte Carlo method suitable for non-stationary environments

can be written as:

V (St)← V (St) + α[Gt − V (St)]

where Gt is the actual return following time t, and α is a constant step-size pa-

rameter. Compared to MC methods TD algorithms need to wait only until the

next time step. At time t + 1 they immediately form a target and make a useful

update using the observed reward Rt+1 and the estimate V (St+1). The general

rule for update of V (St) is:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

Whereas target for Monte Carlo update is Gt in TD algorithms the target is

Rt+1 + γV (St+1), this method is called TD(0) or one-step TD and it is a special

case of more complex algorithms like TD(γ) and n-step TD. As said before TD

methods use bootstrapping and TD(0) is a perfect example: the update is based

in part on an existing estimate that is V (St+1).

The quantity in brackets in the update rule measures the difference between the

estimated value of St and the better estimate Rt+1+γV (St+1), it is called TD-error

and is a very common concept in reinforcement learning. It is commonly denoted

as δt and it is defined as:

δt = Rt+1 + γV (St+1)− V (St)

TD methods have an advantage over DP methods in that they do not require

a model of the environment and compared to Monte Carlo they don’t need to

wait until the end of an episode but only one step. This conditions make TD

algorithms usable in a larger range of applications. Moreover, tuning opportunely

the α parameter, for any policy π, TD(0) has been proven to converge to Vπ though

no one has been able to prove mathematically that TD learning methods converge

faster than MC ones.

2.3 Temporal-Difference 19

We have discussed of policy evaluation for TD learning, as before we follow the

pattern of GPI and present two major approach for policy improvement or TD

control : Sarsa and Q-learning.

2.3.1 Sarsa

In order to define this TD control algorithm we must define an update rule for

estimating action-value Qπ(s, a) for the current behavior policy π and for all states

s and actions a. This can be done using essentially the same method described

above for learning state-value function:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

Sarsa is an on-policy method because it estimates the value of a policy assuming the

current policy continues to be followed. As in all on-policy methods we continually

estimate Qπ for the behaviour policy π and, at the same time, change the policy

toward greediness with respect to Qπ. This update is done after every transition

from a non-terminal state St, if St+1 is terminal then Q(St+1, At+1) is defined as

zero. The algorithm proceeds as follows:

1. At time step t from state St select an action At accordingly to the current

policy derived from Q, in this case ε-soft or ε-greedy are commonly applied.

2. Observe reward Rt+1 and get the new state St+1.

3. Pick the next action At+1 from state St+1 in the same way as in (1).

4. Use the update rule in order to better approximate Q(St, At).

5. t = t+ 1 and repeat from (1).

The convergence of the Sarsa algorithm depend on the nature of the policy’s de-

pendence on Q, this can be changed for example using ε-greedy or ε-soft strategies.

The method converges to an optimal policy and action-value function as long as all

state-action pairs are visited an infinite number of times and the policy converges

in the limit to the greedy policy.

20 2. RL algorithms

2.3.2 Q-learning

The development of an off-policy TD control algorithm known as Q-learning

was a big breakout in the early days of reinforcement learning. In this case the

update rule used to approximate the action-value function is:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)]

In Q-learning the learned action-value function directly approximates Q∗ indepen-

dent of the policy being followed. The algorithm proceeds as follows:

1. At time step t from state St select an action At accordingly to Q, in this case

ε-soft or ε-greedy are commonly applied.

2. Observe reward Rt+1 and get the new state St+1.

3. Use the update rule in order to better approximate Q(St, At).

4. t = t+ 1 and repeat from (1).

The first two steps are same as in Sarsa. In step (3) Q-learning does not follow

the current policy to pick the second action but rather estimate Q∗ out of the

best Q values independently of the current policy. The analysis of Q-learning is

simpler, the policy still has an effect in that it determines which state-action pairs

are visited and updated. Q-learning has been shown to converge to Q∗ under the

assumption that all state-action pairs are visited and continue to be updated. In

order to ensure convergence determined conditions on the sequence of step-size

parameters must be observed.

2.3.3 DQN

Theoretically we can memorize action-value Q(s, a) for all state-action pairs in

Q-learning but for realistic problems this is not possible due to the large state and

action spaces. In order to approximate Q values, a function is used instead: this is

called function approximator. For example if a function with parameter θ is used

to approximate Q-values, we can label it as Q(s, a, θ).

2.3 Temporal-Difference 21

Input

84x84x4

Conv layer

+ReLU

32@8x8x4
64@4x4x2

Conv layer

+ReLU

64@3x3x1

Conv layer

+ReLU FC

layer

Output

512
18

Figure 2.1: DQN neural network architecture.

Q-learning may suffer from instability and divergence when combined with a

non-linear Q-value function approximation and bootstrapping. In order to over-

come this problem another algorithm has been introduced and is called Deep Q-

Network [4] [3]. This method combines Q-learning with a deep neural network

that is used as function approximator.

Deep neural networks are machine learning algorithms that use a cascade of multi-

ple layers of non-linear processing units for feature extraction and transformation.

Each successive layer uses the output from the previous layer as input; they learn

in supervised or unsupervised mode. Each level learns to transform its input data

into a slightly more abstract and composite representation. They can be trained

to solve many different tasks, from image recognition to automatic speech recog-

nition. Deep neural networks are used as a function approximator in DQN and in

many subsequent works.

As we have seen before training a deep neural network combined with Q-learning

is not guaranteed to converge and is in general unstable. DQN aims to greatly

improve and stabilize the training process introducing two major innovations:

• Experience Replay

Replaying consecutive samples with Q-learning can be inefficient and updates

suffer of high variance. With this technique all the episode steps are stored

in one replay memory that has a size of one million elements. During Q-

learning updates, 32 samples are drawn at random from the replay memory

and thus one sample could be used multiple times. This forms an input

dataset which is stable enough for training.

22 2. RL algorithms

The idea behind Experience Replay is not new [7] but, combined with Q-

learning, improves data efficiency, removes correlations in the observation

sequences and smooths over changes in the data distribution.

• Periodically Updated Target

In TD error calculation, target function is changed frequently with DNN

and unstable target function makes training difficult. Using this technique

Q-values are optimized towards target values that are only periodically up-

dated. The Q network is cloned and kept frozen as the optimization target

every C steps, where C is an hyperparameter. This modification makes the

training more stable as it overcomes the short-term oscillations.

Other two innovation introduced in this work are Frame Skipping and Reward

Clipping. Using Frame Skipping DQN calculates Q values every m frames (typi-

cally m = 4): the agent doesn’t need to calculate Q values every frame and people

don’t take actions so frequently. Once an action selection is made that action

is executed for 4 subsequent frame, this reduces computational cost and gathers

experiences more quickly.

In different problems rewards can vary from high points for important achieve-

ments to low points for less important ones. This difference can make training

unstable, using Clipping Rewards scores are clipped and all positive rewards are

set to +1 and all negative rewards are set to -1, this can help stabilizing training.

In the original works DQN has been tested on the Atari 2600 emulator [10] which

we will present in the next chapter. Atari frames are 210x160 pixel images with a

128 color palette, an input so large can be computationally demanding so images

are preprocessed by first converting their RGB representation to gray-scale and

down-sampling it to a 84x84 image that roughly captures the playing area.

In order to encode a single frame is taken the maximum value for each pixel color

value over current and previous frame. This is necessary to remove flickering that

is present in games where some objects appear only in even frames while other

objects appear only in odd frames. The neural network input are the last 4 frames

that are preprocessed and stacked, the input to the neural network consists in an

84x84x4 image that is fed to a dedicated layer.

2.4 Policy gradient 23

The network architecture is reported in Figure 2.1, the first hidden layer is a con-

volutional layer of 32 8x8 filters with stride 4 followed by a rectifier nonlinearity.

The second hidden layer is a convolutional layer of 64 4x4 filters with stride 2 again

followed by a rectifier nonlinearity. After that there is a third convolutional layer

of 64 3x3 filters with stride 1 followed by a rectifier. The final hidden layer is fully-

connected and consists of 512 rectifier units. The output layer is fully-connected

with a single output for every possible action.

The outputs correspond to the predicted Q-values of the action for the input state.

The main advantage of this type of architecture is the ability to compute Q-values

for all possible actions in a given state with only a single forward pass through the

network. There are many extensions of DQN that improve the original design, such

as Double DQN [16], Dueling DQN [17] and Prioritized Experience Replay [18].

2.4 Policy gradient

All the methods we have discussed before try to learn the state-action value

function and then to select actions accordingly, Policy Gradient methods instead

learn the policy directly with a parameterized function respect to θ: π(a|s, θ). In

order to approximate the expected return we must define a reward function J(·),
the value of the reward function depends on policy π and then various algorithms

can be applied to optimize θ for the best reward. The reward function in discrete

spaces is defined as:

J(θ) = Vπθ(S1)

where S1 is the initial state. For continuous spaces the function is defined as:

J(θ) =
∑
s∈S

dπθ(s)Vπθ(s) =
∑
s∈S

(dπθ(s)
∑
a∈A

πθ(a|s, θ)Qπ(s, a))

where dπθ = limt→∞ P (st = s|s0, πθ) is the probability of reaching state st when

starting from s0 and following policy πθ. Policy-based methods are more useful in

continuous space problems, in this tasks an algorithm has to estimate the value of

an infinite number of states and actions thus value-based approaches are way too

24 2. RL algorithms

computationally expensive. Using gradient ascent this methods move θ toward the

direction suggested by the gradient ∇θJ(θ) to find the best θ for πθ that produces

the highest return.

Computing the gradient ∇θJ(θ) is difficult because it depends on both the action

selection and the stationary distribution of states dπθ(·). The problem is that

gradient depends on two factors directly or indirectly dependent on πθ. Given

that the environment is generally unknown, it is difficult to estimate the effect on

the state distribution by a policy update. Luckily there is a theorem, called Policy

Gradient Theorem, that simplify the computation of the reward function that can

be rewritten as:

J(θ) ∝ Eπθ [∇θ ln π(a|s, θ)Qπθ(s, a)]

This is a theoretical foundation for various Policy Gradient algorithms, this allows

a policy gradient update with no bias but high variance. Various algorithms were

proposed to reduce the variance while keeping the bias unchanged.

2.4.1 REINFORCE

REINFORCE [19] is a combination of Policy Gradient and Monte Carlo, it

relies on an estimated return calculated using episode samples and it use that

return to update the policy parameter θ. In Policy Gradient methods ∇θJ(θ)

is calculated using expected return Qπθ(s, a), since Qπθ(s, a) = Eπθ [Gt|St, At] the

reward function can be rewritten as:

J(θ) ∝ Eπθ [∇θ ln π(a|s, θ)Gt]

As any other Monte Carlo method REINFORCE relies on a full trajectory, Gt is

indeed measured from real sample trajectories and used to update policy gradient

∇θJ(θ). A common and widely used variant of this algorithm uses the advantage

function Aπθ(s, a) = Qπθ(s, a) − Vπθ(s) in the gradient ascend update. In this

variant a baseline value (the state-value function) is subtracted from the return

Gt that represent the action-value function, this allows to reduce the variance of

the updates while keeping the bias unchanged. Thus the resulting training should

be more stable.

2.4 Policy gradient 25

2.4.2 A3C

Asynchronous Advantage Actor-Critic [9], or simply A3C, is a policy gradient

method with a special focus on parallel training and it is part of the actor-critic

algorithms family. In actor-critic methods there are two components: policy model

and value function. Unlike traditional policy gradient algorithms actor-critic tries

to learn both policy and value function, in fact it is useful to learn the value

function because it can be used to assist the policy update by reducing gradient

variance.

Actor-critic methods consist of two components, which may optionally share pa-

rameters:

• Critic

The value function, that depending on the algorithm can be Qw(s, a) or

Vw(s), is parameterized by w; the critic updates this parameter in order to

learn the function.

• Actor

Updates the policy parameters θ for πθ(a, s) in the direction suggested by

the critic.

This algorithm is designed to work well for parallel training; in A3C the critics

learn the value function while multiple actors are trained in parallel and get synced

with global parameters from time to time.

Using state-value function as an example, the loss function to be minimized for

value function approximation is the mean squared error Jv(w) = (Gt − Vw(s))2,

gradient descent can be applied to find the optimal w.

The value function is used as the baseline in the policy gradient update, gradients

with respect to w and θ are accumulated, this step can be considered as a paral-

lelized reformulation of minibatch-based stochastic gradient update. The values

of w and θ get corrected by a little bit in the direction of each training thread

independently, every environment gives a contribution to the final gradients.

A3C uses a deep neural network as a function approximator like DQN [4], the base

26 2. RL algorithms

network architectures are very similar except that in A3C there are two output

layers: one outputs a softmax policy and the other outputs the value of the current

state V (s).

2.4.3 TRPO

Both A3C and REINFORCE are on-policy methods because samples are col-

lected using the policy that is currently being optimized. Off-policy methods have

however several advantages: they don’t require full trajectories and can reuse any

past episodes for better sample efficiency, moreover they use a behaviour policy

different from the target policy, bringing better exploration. We define the be-

haviour policy, which is used to collect the samples, as µ(a|s).
It’s not possible to use the same gradient as in on-policy methods because samples

were collected with a different policy respect to the current target. The gradient

is thus rewritten as:

∇θJ(θ) = Eµ[πθ(a|s)
µθ(a|s)

Qπθ(s, a)∇θ ln πθ(a|s)]

where πθ(a|s)
µθ(a|s)

is the importance weight, we write πθ(a|s) instead of π(a|s, θ) as a

more compact notation. This is an approximated gradient but it still guarantee

the policy improvement and eventually achieve the true local minimum.

Trust region policy optimization (TRPO) [20] is an algorithm that is available both

on-policy and off-policy, we will now see only the off-policy version. The idea be-

hind this method is that, in order to improve training stability, parameter updates

can’t change too much the policy in a single step. This method aims to maximize

the objective function J(θ) subject to a constraint (trust region constraint) which

enforces the distance between old and new policies to be within a parameter δ.

In order to measure the distance of the two policies is used KL-divergence that

measures how one probability distribution p diverges from a second expected prob-

ability distribution q and is defined as DKL(p‖q). DKL is asymmetric and achieves

the minimum zero when p(x) = q(x) everywhere.

If off-policy the objective function J(θ) measures the total advantage over the

2.4 Policy gradient 27

state visitation distribution and actions while following a different behaviour pol-

icy µ(a|s):

J(θ) = Es∼ρπθold ,a∼µ[πθ(a|s)
µ(a|s) Âθold(s, a)]

where θold is the policy parameters before the update, ρπθold is the state visita-

tion distribution and Âθold(s, a) is the estimated advantage. The KL-divergence

constraint can be expressed as:

Es∼ρπθold [DKL(πθold(·, s)‖πθ(·, s))] ≤ δ

This can guarantee that old and new policies wouldn’t differ too much and it leads

to a monotonic policy improvement over time.

2.4.4 ACER

Actor-Critic with Experience Replay [8], or simply ACER, is an off-policy actor-

critic algorithm using Experience Replay. It is built on A3C and it is its off-policy

counterpart. This method uses the same network architecture as DQN [3] except

that there are two output layers: one outputs a softmax policy πθ(a|s) and the

other outputs the action values Qθv(s, a). ACER uses also the same pre-processing

technique as well as Frame Skipping and Reward Clipping.

It aims to greatly increase the sample efficiency and decrease the data correlation,

in order to control the stability of the off-policy estimator it uses three main

innovations:

• Retrace Q-value estimation

• Importance weights truncation with bias correction

• Efficient TRPO

Retrace

Retrace(λ) [21] is an off-policy multi-step value-based algorithm that guaran-

tees good data efficiency. It is part of the TD learning family and, similarly to

28 2. RL algorithms

Q-learning, it is sample efficient because it allows Experience Replay. It also en-

courages exploration because the sample collection follows a behaviour policy dif-

ferent from the target policy. Unlike Q-learning it uses multi-step, the advantages

are that rewards are propagated rapidly and bias introduced by bootstrapping is

reduced. Since it is a TD learning algorithm we can express TD error that, in this

case, is defined as:

δt = Rt+1 + γV (St+1)−Q(St, At)

The Q-values update is of the formQ(St, At)← Q(St, At)+αδt or simply ∆Q(St, At) =

αδt. We want to use δt to estimate Qπθ for an entire sample trajectory (it is a

multi-step algorithm) but this method is off-policy so we must use importance

sampling, the update becomes:

∆Q(St, At) = γt(
∏

1≤τ≤t

π(Aτ |Sτ)
µ(Aτ |Sτ))δt

The problem with this update form is that the variance is not bounded, this

product thus can be very large and even explode. In order to overcome this

problem in Retrace the update expression is modified as:

∆Q(St, At) = γt(
∏

1≤τ≤t
λmin{1, π(Aτ |Sτ)

µ(Aτ |Sτ)})δt

This guarantees that variance is bounded and assures convergence for any pair

of policies π, µ. ACER uses Retrace to estimate Qπθ(St, At); given a trajectory

generated under the behaviour policy µ, the action-value approximation can be

expressed recursively as:

Qret(St, At) = Rt+1 + γmin{c, π(At|St)
µ(At|St)}[Q

ret(St, At)−Qθv(St, At)] + γV (St+1)

where Qθv is the current estimate of Qπθ . In order to learn the critic Qθv ACER

uses Qret as a target in a mean squared error loss and update the action-value

function with the following gradient:

(Qret(St, At)−Qθv(St, At))∇θvQθv(St, At)

2.4 Policy gradient 29

Importance weight truncation

Truncating the importance weight reduces variance but introduces bias, in

order to overcome this problem ACER adds a correction term. The policy gradient

at time step t can thus be written as:

ĝacer = ρ̄t(Q
ret(St, At)− Vθv(St))∇θ ln πθ(At|St)+

Ea∼π[max{0, ρt(a)−c
ρt(a)

}∇θ log πθ(a|St)(Qθv(St, a)− Vθv(St))]

where ρ̄t = min{c, π(At|St)
µ(At|St)}. The first term contains the clipped important weight,

the second term makes a correction to achieve unbiased estimation while reducing

update variance.

Efficient TRPO

ACER uses TRPO but, rather than measuring the KL divergence between

policies before and after one update, it maintains a running average of past policies

and forces the updated policy to not deviate far from this average. This is more

computationally efficient and allows a more stable learning process.

As A3C multiple threads collect samples in parallel but ACER also uses Experience

Replay, the default implementation define a buffer of 50000 elements for each

thread. This algorithm uses an hybrid approach: it makes one on-policy call that

works like A3C and a fixed number of off-policy calls, called replay ratio. With a

replay ratio of 4 ACER can obtain similar results respect to Prioritized DQN or

A3C but is more sample efficient; this means that the learning process is faster,

especially towards its on-policy counterpart A3C.

ACER has been used to tackle different problems, it performs well on a large variety

of tasks and it has been used to solve even hard exploration problems [22].

Chapter 3

ATARI

In order to measure performances of RL algorithms, various environments have

been used; the most famous problems that have been addressed in last years are

Atari 2600 games. Atari 2600 is a game console produced by Atari in 1977, it has

many available games, some very famous like Space Invaders or Pong. It repre-

sents a very challenging framework due to the variety of the playable games: it

goes from the more immediate Enduro to other games which requires some form

of planning like Gravitar.

Reinforcement learning problems can be divided in two categories: sparse rewards

problems and dense rewards problems. In dense rewards problems the agent can

easily obtain rewards even playing randomly, in these games learning is typically

faster and easier. On the contrary sparse rewards problems represents a very hard

challenge, in these tasks the agent is required to make a long sequence of proper

actions in order to obtain a single reward. Playing randomly in this case rarely

leads to a good result so it’s required to use efficiently the few positive experiences

made.

In 2013 DQN [4] first obtained very good results on these games, reaching super-

human skill levels in some of them; since then they have been used as the main

benchmark for the other proposed algorithms. The only one game in which DQN

obtained 0 points was Montezuma’s Revenge, it has become famous for its diffi-

culty and it is considered one of the hardest games of this suite.

30

3.1 Montezuma’s Revenge 31

Figure 3.1: Four Atari 2600 games, from left to right: Space Invaders, Pong,

Breakout and Pitfall.

In this work we use Montezuma’s Revenge as a testbed for various ideas. Per-

forming well in a notoriously difficult problem like this can be a significant result

though it doesn’t mean being effective in real world problems. In this chapter

we will present a description of MR dynamics and reward system, we will also

introduce OpenAI Gym [10], an interesting suite of RL tasks which has been used

in all experiments.

3.1 Montezuma’s Revenge

Montezuma’s Revenge, or simply MR, is a video game published in 1984 for

various platforms, in this title the player controls a character called Panama Joe.

The character can be moved from room to room in a labyrinthine underground

pyramid filled with enemies, obstacles, traps, and dangers. The game is very puni-

tive and the player has a significant number of ways to die; it has six lives and,

once the life counter goes to 0, the game ends. In MR there are 9 levels, they are

all similar but as the player advances some things change, for example the position

of items or the number of enemies and obstacles. A level is composed of 24 rooms

structured as a pyramid, the last two rooms are special and contains only coins:

they represent the treasures. The repetitive structure of the game implies that,

if an agent learn to solve an entire level, probably it can solve the entire game

supposing that it is able to generalize enough.

32 3. ATARI

Figure 3.2: The first room of Montezuma’s Revenge.

The problem is that most of the algorithms proposed are not able to pass even

the first room. In order to increase the score players must collect different objects;

there are keys, doors, coins, weapons and many others. It is possible to increase

the score even defeating enemies using weapons. The doors can only be opened us-

ing a compatible key, which then disappears. Players must thereby collect enough

of them in order to continue. Touching an enemy without a weapon results in a

life loss, in the first level once an enemy is touched it disappears. Every opponent

has its own look and behaviour, there are skulls that bounce or roll in the rooms,

lasers and bridges that periodically disappear and spiders that continuously move

horizontally. There are some dark rooms that become visible only if the player

has the torch object. In order to move across the game there are special objects

like ladders and ropes. The player can make different actions, it can move in the

eight main directions, it can do nothing or jump in any direction it wants.

Exiting the first room is already an achievement. Looking at Figure 3.2 the agent

must first obtain the key (100 points), then it must go downstairs and jump on

the yellow rope. After this it must go down a second time, avoid the skull and go

upstairs. Once it has taken the key it must come back to the starting point either

dying or following the reverse path, then it must touch one of the two doors (300

points each). The door on the left leads to a more difficult path full of lasers while

the other door leads to a longer but easier path.

Since DQN has been published many other algorithms were proposed, Table B

3.1 Montezuma’s Revenge 33

summarizes all major results on Montezuma’s Revenge. A3C and ACER perform

as badly as DQN; the first works that achieve a score similar to the average human

one on this game were two agent that combined intrinsic rewards with A3C and

DQN respectively [23], they are called DDQN-CTS and A3C-CTS. After those

another interesting work was DQN-PixelCNN [24] that further improved the pre-

vious algorithm without however increasing the score on MR. Other algorithms

that reached significant scores are The Reactor [25], Feature-EB [26], UBE [27],

Ape-X [28]. Another interesting work that uses intrinsic rewards is Curiosity-

driven learning [29] that obtains approximately 400 points (it exits the first room)

without using external rewards and more than 2500 points with a combination of

intrinsic and extrinsic rewards.

Recently two new algorithms have been released, they significantly outperform

the state of the art and are called RND [30] and Go-Explore [31]. Both of them

achieve a higher score than the average human using a novel and more difficult

testing procedure which we will see later. RND achieves 11347 points and uses

intrinsic rewards while Go-explore reaches 43763 points but it relies on strong

assumptions: for example the test they have made exploits the fact that the envi-

ronment is resettable to a particular state.

In the RND’s paper are also discussed results for PPO [32], another algorithm

recently presented that performs well on a large variety of tasks. The paper re-

ports a score for PPO of 2500 points; we will consider this and The Reactor as the

best results that don’t rely on strong assumptions on the environment and don’t

involve intrinsic rewards. These are indeed specifically thought for problems where

exploration is important.

Most of the methods proposed in the last years are trained for 50 million steps (or

200 million of frames with Frame Skipping of 4). We consider this as a standard,

this is the reason why we do not take into consideration algorithms like UBE and

Ape-X. In fact in the original paper of UBE, for example, the score reported is

achieved after 500 million of frames (with 200 million of frames it reaches only 500

points).

34 3. ATARI

3.2 OpenAI Gym

In order to provide a common test suite OpenAI, one of the most important

team in reinforcement learning development, developed Gym [10]. It is a set of

games and tasks specifically built for testing RL algorithms.

Gym is written in Python3 and provides different kind of tests and training envi-

ronments:

• Computation learning

• Simple toy text environment

• Atari 2600 games

• Classic control theory problems

• Continuous control tasks using 3D environment and a physics simulator

• Simulated goal-based tasks using 3D robots

RL has been massively developed only in the last couple of years thus initially

there wasn’t a common evaluation technique. In last years various methods were

proposed in order to accomplish this task, the most used are no-op starts [3],

human starts [33] and sticky actions [11].

In no-op starts every time the environment is resetted due to the end of a game

a random number between 0 and a maximum of no-op actions (“do nothing”) are

executed. This can introduce some variability in the environment, for example

the initial position of enemies in a game change, so the agent should be able to

generalize with respect to a specific state.

The second method, human starts, makes tasks even more variable. In this case

every time an episode ends the environment’s state is resetted to a random one,

selected among a set of initial states achieved by human players.

The last method, sticky actions, has been introduced recently in order to prevent

the agent from memorizing a specific action sequence. With a certain probability

(typically 25%), instead of executing the action specified by the agent, it is applied

3.2 OpenAI Gym 35

the one executed in the previous step. This is the most difficult method of training

and testing because the environment is quite unpredictable.

All the works we have discussed in the previous section except PPO, RND and Go-

Explore are tested only with no-op or human starts. The other three papers report

benchmarks made with sticky actions, we trained and tested our modifications on

both the environments in order to compare our results with the existing ones.

As we have seen before, DQN introduced the idea of Frame Skipping in order

to speed up training and, using the maximum of the last two frames, it removes

flickering artifacts in Atari games. OpenAI Gym implements many original titles

of Atari 2600 consoles and for every game several versions are implemented. The

name of the environments contains informations on implementation details such

Frame Skipping and sticky actions. Every name is composed as: “Name-vX” where

Name is the game’s name, for example “MontezumaRevenge”, and vX represents

whether or not sticky actions are used. Typically it is “v4” for normal environments

or “v0” if sticky actions are used. It is possible to use Frame Skipping and three

different versions are available, for example for Montezuma’s Revenge:

• MontezumaRevenge-vX: it uses a variable Frame Skipping, each action

is repeatedly performed for a duration of k frames, where k is uniformly

sampled from {2, 3, 4}.

• MontezumaRevengeDeterministic-vX: it uses a fixed Frame Skipping,

each action is repeatedly performed for a duration of k = 4 frames.

• MontezumaRevengeNoFrameskip-vX: in this version Frame Skipping

is disabled.

Standard environments at every step take an action from the agent as input and

returns four outputs: observation, reward, info and done. The observation can

vary from task to task, typically it is the image of the screen for the next state

but it can also be the RAM content of the emulator. In order to change the in-

put type we must specify “-ram” string in the environment’s name (for example

“MontezumaRevenge-ram-v0”). The second output, reward, is a float number rep-

resenting rewards obtained in the last step.

36 3. ATARI

The third output, info, is a dictionary reporting various information about the

game that can be used for debugging; done is a boolean that signals the end of

the episode (or more generally an environment’s reset event).

In order to play a game an action must be specified, the total number of actions

is 18. They represents various combination of the four directional keys and a fire

button. Not all actions are available in games, every title has its unique subset of

commands. If no-op starts or human starts are required they must be implemented

by the algorithm on top of Gym.

It is a general toolkit, it makes no assumptions about the structure of the agent and

it is compatible with any numerical computation library such as TensorFlow [34].

Gym is a large and varied collection of interesting RL environments and it nearly

represents a standard in training and evaluation of different methods.

In our work all important benchmarks are made training for 200 million frames

with both no-op start or sticky actions, no-op starts is used to compare the mod-

ifications with previous works and sticky actions is used to test a method in

the most difficult conditions. As we will see in the next chapter Frame Skip-

ping is directly implemented by the ACER implementation so we used the envi-

ronment MontezumaRevengeNoFrameskip for all the experiments. In particular

we used MontezumaRevengeNoFrameskip-v4 for training with no-op starts and

MontezumaRevengeNoFrameskip-v0 for experiments with sticky actions.

Chapter 4

3B-ACER

In this chapter we present different modifications to the base algorithm ACER

[8] and we will evaluate their performance. In the first part we will describe OpenAI

Baselines [35], an open-source implementation of different RL methods, followed

by descriptions of the tested ideas.

In the first part of this study we tested ACER modifications for 10 million steps

(40 million frames) with no-op starts environments in order to quickly evaluate

results. In the second part we trained the algorithms for 50 million steps (200

million frames) with both no-op starts (which we will simply call V4) and sticky

actions (which we will simply call V0) environments. This has been made to test

the algorithms in the same conditions as most of the other works (no-op starts) but

also in the hardest possible ones simulating a real world problem (sticky actions).

We will conclude this chapter with some summary results obtained on two games:

Montezuma’s Revenge and Space Invaders.

4.1 OpenAI Baselines

Writing RL algorithms can be very difficult due to the complicated math ex-

pressions that are necessary, moreover libraries like Tensorflow [34] can often be

tricky to use. In order to overcome this problem OpenAI released a Python library

called Baselines [35].

37

38 4. 3B-ACER

It is a collection of RL methods which can be configured and trained to solve

different kind of tasks. Currently many algorithms are implemented: A2C [9],

ACER [8], PPO [32], ACKTR [36], DDPG [37], DQN [3], GAIL [38], HER [39]

and TRPO [20].

Both Baselines and Gym can simply be installed using the pip command integrated

in Python, all modules needed as dependencies should be installed automatically.

Baselines allows to easily compare different algorithms on the same task, it includes

a logger that can output in three main formats: stdout, tensorboard and csv. The

first output, stdout, print training information directly on standard output, it is

useful to monitor the learning progress. The other two formats are more specific,

tensorboard can be used by a dedicated library [34] to visualize in a readable way

the output data while csv is a more raw format that can be used to extract and

manually plot informations. During tests we enabled all three output formats and

we used csv output to produce plots.

Baselines is structured in a modular way, there is a common part that handles envi-

ronment creation and algorithm initialization, a logging module and many others.

Another interesting feature of this library is the plotting module that is based on

Matplotlib [40] and allows to easily decode csv files to render customizable plots.

Every algorithm has its own dedicated directory that contains all relevant files;

in particular there is a file called default.py that contains the method’s specific

default parameters.

As mentioned before Gym implements Frame Skipping but, in order to reproduce

the architecture introduced by DQN and used also by ACER, Baselines has a

built-in implementation of that technique. The environment created by Gym is

wrapped with specific Python classes that implement the same interface but alter

the internal behaviour. Wrapping with multiple classes allows to add different

features in a modular way: if another functionality is required it is only necessary

to wrap the environment object with another class. In case of Atari games the

environment is wrapped with six main classes:

• NoopResetEnv : implements no-op starts, when the environment is resetted

a random number of no-op actions between 1 and a maximum is performed.

4.1 OpenAI Baselines 39

Figure 4.1: Raw results (left) and smoothed results (right) for vanilla ACER.

• MaxAndSkipEnv : implements Frame Skipping, it repeats actions, sums re-

wards and performs the max over last two observations.

• EpisodicLifeEnv : makes end-of-life equal to end-of-episode but it only reset

on true game over. This was first done by DeepMind for DQN [3] since it

should help value estimation and improve training results.

• FireResetEnv : takes action on reset for environments that are fixed until

firing.

• WarpFrame: implements pre-processing, frames are warped to 84x84 as done

in the DQN paper [4] and later work.

• ClipRewardEnv : implements Reward Clipping, it clips negative rewards to

-1 and positive rewards to +1.

All the modifications proposed in this work are based on ACER; it has been chosen

because it is relatively new, it uses Experience Replay, thus allowing more sophisti-

cated strategies, and it doesn’t have strict requirements in terms of computational

resources.

Trainings have been made on a quad-core computer with 16Gb of RAM and a

NVIDIA GTX 960 GPU with 4Gb of VRAM.

40 4. 3B-ACER

The operating system installed is a Linux distribution with official NVIDIA drivers

and CUDA as well as Python3 and all modules needed to install Gym and Base-

lines (including Tensorflow library).

In order to test Baselines and all remaining software we trained ACER with V0

and V4 environments on Space Invaders for 10 millions steps and we compared

results with those declared in the official papers [32] and online benchmarks. The

scores obtained were in line with official and unofficial ones, this proved the relia-

bility of the base implementation which has been used for all the subsequent tests.

We then tested vanilla ACER on Montezuma’s Revenge for 10 millions steps ob-

taining the results reported in Figure 4.1. In the figure are reported raw and

smoothed results, the least are obtained applying symmetric EMA smoothing di-

rectly implemented in Baselines. On this game the base implementation doesn’t

learn and reaches a positive reward randomly only a few times. In order to prove

that learning doesn’t start with more training time we tried to run ACER for 100

millions steps obtaining the same results.

Inspired by the work of Dubey et al. [41] we investigated on providing knowledge

for the neural network, in particular it is interesting to know if incorporating ob-

ject detection capabilities would improve the learning process. The cited work

investigates on the impact of human prior knowledge on the learning process. In

particular, when looking at an observation, artificial agents see only a bunch of

pixels and they are only able to search for recurrent patterns. Human agents can

natively recognize different objects and they can use this valuable informations

to make more high level planning. It is interesting to note that, when an human

agent cannot distinguish objects, its performance get worse while the behaviour of

an artificial agent remains the same even altering deeply the visual representation

of the states.

Object detection can be very difficult and unreliable in real world problems and

the only simple strategy that can be used is Template Matching; this technique is

implemented in different Computer Vision libraries [42]. It is however very lim-

ited, in fact changing size or other visual features of the objects can easily fool the

recognizer. Due to the limitations of the recognizing algorithm and the magnitude

4.2 Episodic Lifes 41

of the required study, the use of additional knowledge is left to future research. For

all the tests we present from now on we used the default ACER parameters and we

started every training using 16 parallel actors. We changed only the behaviour of

the algorithm as well as the size of the allocated memory and the code that rules

when start to replay. We wanted to maintain all defaults parameters because tun-

ing ACER on a specific problem like Montezuma’s Revenge was out of the scope

of this work. In table A.1 is reported the complete list of fixed hyperparameters

for all the experiments.

ACER makes one on-policy call and a number of off-policy calls dependent on the

replay-ratio number, this is fixed to 4 as in the original paper [8] and it proved to

be the best for Atari games. During an on-policy call ACER collects a batch of

subsequent transitions for each thread, the default size is 20 which is also used in

this work. Each thread stores its batch in its replay buffer and updates the net-

work using it. When an off-policy call is made each thread retrieves a batch from

its replay buffer and uses it to learn. Experiences are fetched independently for

each thread but ACER always stores and retrieves the same amount of transitions

at every call (on-policy and off-policy).

One important thing of this ACER implementation is the replay buffer manage-

ment, it is implemented as a circular buffer where batches are stored sequentially.

Each thread has its own dedicated area in the replay buffer; it is similar to a FIFO

queue so, if an insertion is made and the buffer is full, the oldest batches are over-

written. If a thread inserts two different batches in its buffer these will be stored

sequentially.

4.2 Episodic Lifes

In the original DQN paper [3], in games where there is a life counter, the

number of lives left in the game sent by Atari emulator is then used to mark the

end of an episode during training. This is made to improve the final performance

because it seems to accelerate training speed.

Since results with the original ACER implementation were very poor we wanted

42 4. 3B-ACER

Figure 4.2: Raw results (left) and smoothed results (right) for ACER with Episodic

Game.

to investigate if marking the end of an episode using the end-of-game signal can

improve training. We modified ACER implementation signalling the end of an

episode when the current game ends and the six available lives are lost; we denote

this modification as Episodic Game.

In Figure 4.2 are shown the results of the training with Episodic Game on V4

environment. The outcomes are similar to those we have seen for vanilla ACER

and the agent continues to play randomly after 10 millions steps. In this case,

where rewards are sparse and the agent doesn’t learn anything, changing when the

episode ends doesn’t improve training results.

4.3 Negative Rewards

Another interesting aspect of this game, as well as other games where multi-

ple lives are available, is the use of negative rewards. Since the original work of

DQN [4] almost no study uses negative rewards. Instead, as we have seen before,

on a life loss they end the current episode.

In order to check the impact of negative rewards on training we have modified

ACER and assigned a negative reward of -1 every time that a life is lost, in this

4.4 Best Replay 43

Figure 4.3: Raw results (left) and smoothed results (right) for ACER with negative

rewards.

case we also ended the episode as in the original version of the algorithm. Results

are reported in Figure 4.3, the final agent doesn’t behaves randomly but it tries to

survive. The length of an episode grows during training and the resulting agent,

after selecting a large number of unnecessary actions, reaches the first reward (the

key) and occasionally the second one (one of the doors).

Overall it performs better than the original ACER agent, probably because the

path in the first room of the game is fixed and learning to not die leads indi-

rectly to rewards. Negative rewards, despite performing better, leads to unwanted

behaviours such as long sequences of useless and repeated actions so they don’t

represent an interesting improvement. A further test was made combining nega-

tive rewards and Episodic Game but it led to the same results that we have just

discussed.

4.4 Best Replay

In a game like Montezuma’s Revenge there are only a few episodes that con-

tains one or more positive rewards. When an episode like this is inserted in the

replay buffer, it is quickly overwritten by other less meaningful samples.

44 4. 3B-ACER

Br

rcr = 1

Be

rce = 2

Be

rce = 0

rcr = 2

Br

Figure 4.4: Buffers state before (left) and after (right) an episode replacement in

ACER with Best Replay. Coloured boxes are sample trajectories and gray boxes

represent the unused space in a buffer.

One way to preserve the rare good experiences is to use a dedicated replay buffer.

The first modification that implements this idea is what we call Best Replay. We

have modified ACER so that it uses two buffer instead of one. In the first buffer,

which is a sort of short memory, samples are collected for all threads until the

current episode ends. We denote the short memory buffer as Be. The other buffer,

which we call Br, is the only one used for replay and contains the best episode

experienced. For each thread i we denote Bei as its dedicated short memory buffer

and Bri as its dedicated replay buffer. We also denote len(B) as the number of

elements contained in a generic buffer B. Each buffer maintains a reward counter

for the stored episode, we denote these as rcei and rcri respectively. Once the

episode ends the amount of rewards rcei is compared to rcri . If rcei > rcri then

the replay buffer is overwritten with the content of short memory buffer while if

rcei < rcri the content of Bei is simply discarded.

What if the rewards counters are equal? In this case if rcei ≥ 0 and len(Bei) <

len(Bri) the replay buffer is overwritten because generally a trajectory that leads

to the same amount of positive rewards in a smaller number of steps is better.

The replay buffer is overwritten even if rcei < 0 and len(Bei) > len(Bri) because a

longer trajectory means that the agent dies less frequently. Once the comparison

ends the short memory buffer is cleared. Figure 4.4 illustrates the content replace-

ment of Br.

The original ACER buffer contains 50000 elements for each thread, we wanted to

4.4 Best Replay 45

maintain a similar amount of allocated memory so we made the two buffers of size

30000 elements for each thread.

Replay starts when there is at least one element in the replay buffer for each paral-

lel actor. Every time a replay is performed a random batch from the replay buffer

of each thread is selected. In vanilla ACER replay starts when there are at least a

minimum number of elements in any thread buffer. In fact there is only one buffer

and batches are inserted at the same time for all threads, thus len(Bri) is equal for

any thread i after performing a training step. In Best Replay every thread buffer

can grow independently from the others so we had to heavily change the original

implementation. We changed the replay start policy because with the original one

replay would never start. In fact, if only the best episode is maintained, only a

small number of batches are stored in the buffer and the length of the memorized

sequence could change in time.

In ACER, as we have already seen before, for each update a fixed number of sam-

ples are used, typically a batch of 20 samples for each thread, for a total batch

size of 320 in case of 16 parallel actors. In order to speed up the learning process

we made another modification to ACER: for each batch we modified rewards and

end-of-episode signal. The idea is to fix the value of the last transition contained

in the most important batches (the ones that leads to a positive reward in the cur-

rent episode), it is then propagated using the Retrace algorithm without directly

modifying rewards of the intermediate experiences. In order to better understand

the principle behind this we report a piece of the original pseudo-code of ACER:

Qret ←

{
0 for terminal xk∑

aQθ′v(xk, a)f(a|φθv(xk)) otherwise

}
...

Qret ← ri + γQret

This piece of pseudo-code calculates the initial Qret value for the first transition of

each thread in the batch, this is used to recursively obtain approximatedQret values

for all the others state-action pairs in the batch. Since we store the best episode

experienced we have enough informations about the value of all the transitions that

46 4. 3B-ACER

Reward End-of-episode

0 False

0 True

0 False

1 False

0 False

0 False

0 False

1 False

0 False

0 False

0 False

0 False

Reward End-of-episode

0 False

0 True

0 False

1 False

0 False

0 False

0.9702 True

1 False

0 False

0.9801 True

0 False

0 False

Table 4.1: An example of Value Fixing applied on four consecutive batches (each

batch here is composed of 3 steps). In this case the values 0.9801 and 0.9702 are

obtained applying the discount factor γ = 0.99 three and two times respectively.

are part of it. Before replacing the content of Bri with the one contained in Bei ,

we overwrite the last element in each batch with the discounted reward calculated

recursively from the end of the episode and we mark it as terminal. Every time that

a positive reward is encountered in the sequence it re-initialize the reward counter

used for the calculation. If the last element of a batch has a positive reward it

remains unchanged. Batches that don’t lead to positive rewards but only to a

terminal state are not modified. With this modification we are simulating an end-

of-episode after almost every batch and we are implicitly imposing a value for every

transition that is part of a positive sequence. We expected that this would improve

the learning speed. Table 4.1 illustrates the modification of a generic sequence

stored in the short memory buffer before its insertion in the replay buffer. We will

call this technique Value Fixing. In order to start replay earlier the first positive

episode is used to initialize the replay buffer of all threads.

4.4 Best Replay 47

Figure 4.5: Raw results (left) and smoothed results (right) for ACER with Best

Replay and Value Fixing.

We expected that replaying often the best samples would improve training speed

and make the agent learn from the best experience made.

We tested this modification without negative rewards and the results were very

bad. We trained the algorithm on the V4 environment for 10 millions steps. As

we can see from Figure 4.5 the algorithm doesn’t learn anything and it reaches

only a few rewards.

We tried also the same procedure without Value Fixing, results are shown in

Figure 4.6 and are very similar the previous ones. Both the agents first obtain

some rewards but later they behave worse than the random agent and they cannot

reach any other positive reward. After the training we tested the resulting agent

and what we observed is that the agent’s behaviour is biased. For example it

remains stuck for a while near the left door probably because it is visually close

to the key. Continuously replaying from the same set of experiences makes the

network overfit, as it tries to learn very well a particular trajectory but it is not

able to generalize. It mistakes the real value of a state and this introduces bias in

the agent behaviour that performs worse than the random one.

We made also one last test to understand if adding experiences in Br instead of

replacing can be beneficial. The last modification is based on the first version of

48 4. 3B-ACER

Figure 4.6: Raw results (left) and smoothed results (right) for ACER with Best

Replay.

the code with Value Fixing, in this case episodes are inserted in the replay buffer

and don’t replace its previous content.

The results obtained are even worse than those we have discussed before. In all

the tests made there was some sort of instability, sometimes gradients and various

other related parameters increased even reaching very high values. This trend is

particularly evident in the last test we made, in this case the instability is so high

that Tensorflow crashed because a tensor reached infinite value. This phenomenon

is known as exploding gradient. It is known that replaying highly correlated samples

is inefficient and leads to high variance of the updates. It could be the cause of

this behaviour although a gradient explosion like the one we have noticed was not

expected and completely unjustified.

Assuming that the problem depends on replaying continuously similar samples,

the catastrophic performances of the last experiment could be justified. This

modification replays continuously the same experiences like the others but, even

when other good episodes are collected, the oldest samples remain in Br; it follows

that there are even more chances that similar batches are replayed at the same

time.

4.5 Triple Buffer 49

Be

Bp

Bn

Figure 4.7: An episode is divided between Bp and Bn in 3B-ACER. Before being

splitted and inserted the episode could be modified with Value Fixing. Coloured

boxes are sample trajectories, light grey boxes represent the unused space in a

buffer and dark gray boxes model the previous content of a buffer.

4.5 Triple Buffer

In order to overcome the issue we discussed in the last section we introduced a

new version that makes use of both positive and less meaningful experiences, we

called this Triple Buffer. We wanted to limit the total amount of allocated mem-

ory, thus we limited each buffer size to 25000 elements for each thread, memory

consumption raised but it never exceeded the total amount of RAM (16Gb).

In this version one buffer is used as short memory buffer, which we will call Be,

and the other two buffers are dedicated to positive and non-positive experiences.

We will call the positive buffer as Bp and the non-positive buffer Bn. The current

episode is stored in Be, once it ends it is analyzed and divided in the other buffers.

All the sample batches that are collected before a positive payoff, thus being part

of a path to a positive reward, or including it, are inserted in Bp. The remaining

batches that don’t lead to anything but a terminal state are inserted in Bn.

In this version there is not content replacement in Bp and Bn but batches are

sequentially added, once a buffer is full and a batch insertion is made the oldest

experiences are lost. In Figure 4.7 is illustrated the division of an episode between

the buffers.

50 4. 3B-ACER

Figure 4.8: Raw results on V4 (left) and V0 (right) environments for 3B-ACER

with Value Fixing.

During replay, for each thread, a batch of samples is independently selected from

its own Bp or Bn.

Each thread i select buffer Bpi with a probability Pi that is proportional to the

number of elements contained in Bpi and is defined as:

Pi =
len(Bpi)

len(Bpi)+len(Bni)

Buffer Bni is instead selected with probability 1 − Pi. For example, if thread i

has both Bpi and Bni of equal sizes, the algorithm selects for this thread a batch

from the positive buffer with probability of 50%. Once Bpi or Bni is selected for

sampling, the algorithm chooses a random element within the buffer. Using this

sampling strategy each batch contained in replay buffers has the same chances to

be selected. Mixing positive and non-positive experiences without making pref-

erences reduces correlation between samples during updates. The replay buffers

can be seen as a unique replay memory; this algorithm, which we will call Triple

Buffer ACER or 3B-ACER, is the most similar to the original one.

In vanilla ACER replay starts when replay buffer contains at least rs = 10000 tran-

sitions for each thread. This is made because replaying experiences when there

isn’t even one batch that could be used to learn useful informations is useless.

4.5 Triple Buffer 51

In 3B-ACER replay starts when at least one thread has found a positive reward

(the corresponding Bpi is not empty) and len(Bpi)+ len(Bni) > rs with rs = 5000.

We chose threshold rs to make replay start earlier: this could speed up learning in

the first phase where there are only a few transitions in Bp. In fact initially they

could be replayed more frequently with a lower value of rs.

In the first experiment we combined 3B-ACER with Value Fixing, blocks are mod-

ified before they are inserted in Bp. Unlike the original Value Fixing, during the

backward reward calculation, when a positive reward is encountered its value is

added to the current one. With this modification a sample that is part of a path

to multiple positive rewards has a higher value and it is a better approximation of

the real one.

We tested the algorithm on both V4 and V0 environment for 50 million steps.

Figure 4.8 shows the results for the test made on V4 environment, they are very

good and the agent consistently reaches 2500 points and occasionally even more.

We inspected the behaviour of the resulting agent and it plays very well, in the

first room it reaches the key and the door on the right without touching the skull.

It then moves in the right room avoiding the enemies, it goes downstairs reaching

the third room and it obtains a weapon. After achieving three rewards it goes

upstairs and kills one enemy with the weapon obtaining its fourth reward.

After these good results confirmed by subsequent tests we tried 3B-ACER with

Value Fixing on V0 environment. In this case the results, which are reported in

Figure 4.8 as before, were different and unexpected. Despite learning very quickly

it reaches 400 points and it never further improves. We inspected the behaviour

of the resulting agent and we noted that, after obtaining the key and returning at

the starting point without dying, it always chooses the left door. From this point

it cannot go right and the lasers on the left are too difficult to cross. We repeated

this experiment three times obtaining always the same results.

In order to overcome this problem we tested different solutions. At the beginning

of this work we modified ACER to make the end-of-game signal equal to end-

of-episode signal. We now have a modification that effectively learns and makes

average scores greater than 0 points. We combined 3B-ACER with Value Fixing,

52 4. 3B-ACER

Best Replay and Episodic Game. In this version Bp contains the best experiences

collected over an entire game while Bn contains all the other batches.

The current episode, which is a complete game, is stored in Be and, when the

episode ends, the total rewards obtained is compared with the maximum achieved.

If the total rewards exceed the maximum obtained, the current episode replaces

the content of Bp and its reward counter is updated. If rewards are equal to the

maximum, the content of Be is inserted in Bp without replacing its content. In

both cases before replacing or inserting Value Fixing (the last version) is applied

and the episode is divided between Bp and Bn as we have seen before. The tra-

jectory that leads to at least a positive reward goes in Bp and any trajectory that

leads to a terminal state without encountering a positive reward goes in Bn. If

current rewards are lower than the maximum the entire episode is inserted in Bn.

This modification tries to replay frequently batches that leads to positive rewards

taking in consideration the real value of a reward. If we want to replay frequently

only the best sequences possible we want to consider rewards that are reached in

multiple lives. For example, if the agent reaches two rewards in a life and a third

one in another life and previously it has reached less than three rewards in a game,

we want to learn this new trajectory entirely, discarding all previous and less valu-

able experiences. By combining episodic game and Value Fixing and maintaining

only the best sequences of batches we were hoping to overcome the problems we

have discussed with the previous case. Unfortunately results were even worse and

the agent reached consistently 400 points with both V4 and V0 environment. It

shows the same strange behaviour of the previous case and it always chooses the

left door.

The reason behind this behaviour could be the Value Fixing technique we were

using. V4 environment is almost completely deterministic, if a sequence of actions

leads to a reward once then most likely it will do so in the future as well. Thus

the value of transitions we were imposing can be a good approximation of the real

value.

The V0 environment is much less deterministic and an action can lead to a differ-

ent state from time to time. Value Fixing can lead to an overestimation in these

4.5 Triple Buffer 53

Figure 4.9: Raw results (left) and smoothed results (right) for 3B-ACER in V0

environment.

conditions because the behaviour of the underlying environment is not known. A

particular state-action trajectory can lead to a reward once but this does not guar-

antee that it will happen again, even if repeated multiple times. This can justify

the biased behaviour of the agent with the V0 environment. 3B-ACER with Value

Fixing can be a good choice in case of an almost perfectly known environment

reaching the same score obtained by other algorithms that are more competitive

than vanilla ACER.

Since Value Fixing introduces biases in the agent’s behaviour we tested the orig-

inal 3B-ACER without using this technique in both V4 and V0 environments for

50 millions steps. Results are reported in Figure 4.9, in this case the agent learns

more slowly than it did previously and the algorithm reaches only 500 points. It is

however more reliable than the previous modification because it reaches the same

results in both the environments. We made more tests to see if it can reliably

reproduce the results and we observed that it isn’t perfect. Learning starts when

the positive buffer contains a sufficient number of elements and the probability of

selecting a sample from Bp becomes sufficiently high. In the initial learning phase

the agent behaves randomly thus positive trajectory are not found always at the

same rate. The time needed to start learning is very variable, in one test it hasn’t

54 4. 3B-ACER

Figure 4.10: Raw results (left) and smoothed results (right) for 3B-ACER with

Half Replay in V4 environment.

started learning even after 50 millions steps. After the good results we obtained

with 3B-ACER the biggest problem was to speed up learning in the first phase.

The positive buffer must contain a sufficient number of elements to start the learn-

ing phase. In order to overcome this problem we tried two different sample policies,

we call these Sequence sampling and Half sampling. In Sequence sampling once

Bp is selected as the sampling buffer (using the number of elements contained) the

algorithm does not choose a random element but it uses an internal reference to

retrieve batches in sequence. We wanted to implement this sampling strategy be-

cause sampling positive experiences sequentially could propagate faster the value

of a state and thus speed up learning. We tested this modification for 50 millions

steps in both V4 and V0 environment but the results are almost identical to the

original 3B-ACER. The algorithm reaches good scores (500 points) but the time

needed to start learning is variable.

The last modification, Half sampling, is an interesting one. In this case both

buffers are chosen with a probability Pi = 50%. During the initial phase of learn-

ing a few elements are contained in Bp so, using this strategy, these are replayed

much more frequently than in the original 3B-ACER. As the number of elements

increases each positive sample is replayed less and less frequently.

4.5 Triple Buffer 55

Figure 4.11: Results on Space Invaders (left) and Montezuma’s Revenge (right)

for 3B-ACER and vanilla ACER.

As we have seen before replaying continuously the same experiences could lead to

instability. We wanted to prove that the cause of the exploding gradient is effec-

tively the correlation of the samples used in the updates. At the same time we

wanted to discover if replaying the same set of experiences more frequently could

speed up the learning process.

We tested this modification for 50 millions steps in both V0 and V4 environments.

Results are shown in Figure 4.10 for V4 environment, replaying more frequently

leads to a consistent speed up and this time the algorithm reaches 2500 points as

ACER with Value Fixing. Despite this impressive scores, as we expected, the learn-

ing process is not stable and even in this case, during a test, Tensorflow crashed

because gradients exploded reaching infinite values. This proves that instability

and sample correlation are related but we have not realized why precisely this

happens. Completely understanding this phenomenon requires further research.

Even if this last modification does not improve results, it proves that speeding up

learning and reaching better score is possible simply choosing an appropriate sam-

ple policy. If sample correlation is really the problem, an interesting strategy could

be simply a dynamic sample policy that change the probability Pi as a function of

some learning parameters (for example the gradient calculated with respect to the

56 4. 3B-ACER

value function). If these are in a determined range we simply choose Pi = 50%, as

parameters values start to rise we lower the probability until reaching a minimum

value. This minimum value could be the probability normally used in the original

3B-ACER (dependent on the number of elements contained).

In conclusion in deterministic environments 3B-ACER with Value Fixing is the

variant that has reached the best results but it is unreliable in more complex and

realistic problems. In more unpredictable environments plain 3B-ACER is the best

algorithm that, with a proper sample policy, could reach scores similar to those

obtained by much more modern works.

As a final test we wanted to discover plain 3B-ACER performances in general

problems so we tested it in a dense reward problem. We tested 3B-ACER on

Space Invaders because it is commonly used as benchmark. We trained the algo-

rithm on V0 environment for 10 millions steps because they are sufficient to make

a comparison (due to limited time and resources). Results are reported in Figure

4.11 where we compared 3B-ACER and vanilla ACER on Montezuma’s Revenge

and Space Invaders. As we can see from the figure 3B-ACER performs well also

on dense reward problem like Space Invaders obtaining similar scores. Results

obtained are slightly worse for 3B-ACER probably because in vanilla ACER a

large portion of the replay buffer contains positive experiences. In 3B-ACER the

size of the replay buffer used for positive experiences is halved thus every positive

transition has less chances to be replayed. While it doesn’t outperform the state

of the art, 3B-ACER is an interesting improvement of the original ACER and it

could perform even better with further research.

Conclusions

In this work we presented a complete introduction to Reinforcement Learning

and we discussed different kind of problems. We described the main approaches

to RL and the most influential algorithms.

We introduced OpenAI Gym [10], an important tool that is commonly used to

benchmark RL algorithms. We presented OpenAI Baselines [35] that represents

an interesting suite of algorithms that could be used to learn various tasks or as a

base for more advanced solutions.

Starting from the OpenAI ACER [8] implementation we proposed and tested var-

ious ideas used to improve the original algorithm. We found that two major ideas

can improve the base method: ACER with Value Fixing and 3B-ACER.

ACER with Value Fixing exploits the determinism of the environment and reaches

score similar to more modern algorithms but it is inadequate in non deterministic

environments. In these conditions the agent’s behaviour is biased and further re-

search is needed to completely understand the causes of this strange result.

3B-ACER learns much more slowly but it is usable in both deterministic and non-

deterministic environments, moreover the time needed to start learning is variable.

We discovered that 3B-ACER combined with a proper sample policy could learn

much faster and reach scores similar to those obtained by ACER with Value Fix-

ing.

Designing a good sample policy requires completely understanding the exploding

gradient phenomenon and how sample correlation in updates could make Tensor-

flow crash, further research is needed in this direction.

57

58 CONCLUSIONS

Here we report a list of possible improvements of this work:

• Try different problems, we made tests only on two games but OpenAI Gym

offers a large number of interesting tasks. In order to show the real perfor-

mance of 3B-ACER we need to test it on a large variety of problems. We

expect that it would perform similar to, or even better than, the original

ACER on a large portion of the tasks.

• Study a new sample policy that speed up the learning process of 3B-ACER,

namely by filling the positive buffer more quickly until it contains a sufficient

number of elements.

• Combine Experience Replay and Triple Buffer with a more modern and intu-

itive algorithm like PPO [32], with a more modern base algorithm combined

with the ideas we have seen it could be much more sample efficient and it

could perform very well on a large variety of tasks.

• Insert prior knowledge: human agents have innate skills like object detection

that represent a huge advantage respect to modern RL algorithms. What an

artificial agent “sees” is just a bunch of pixels, it searches for recurrent pat-

terns and no more. We instead are able to recognize objects and understand

that they are points of interest, this lead to a more sophisticated planning.

Inserting prior knowledge, like adding positions and shapes of objects as

input informations, could make the agent learn much more efficiently.

Appendix A. Hyperparameters

Hyperparameter Value

Number of steps per batch 20

Frame stack 4

γ 0.99

α 0.99

δ 1

Learning rate 0.0007

Gradient norm clipping coeff. 10

Entropy coefficient 0.01

Value function loss coeff. 0.5

IS weight clipping factor 10

RMSProp α 0.99

RMSProp ε 0.00001

Trust region Yes

Replay ratio 4

Frame skipping 4

Number of parallel actors 16

Network architecture CNN

Table A.1: ACER default hyperparameters used in all experiments made.

59

Appendix B. Scores

Agent Score

Human average [31] 4753

Human Expert [31] 34900

Human World Record [31] 1219200

DQN [3] 0

A3C [9] 67

ACER [8] 0.3

DDQN-CTS [23] 3705.5

A3C-CTS [23] 1127

DQN-PixelCNN [24] 2514.3

The Reactor [25] 2643.5

Feature-EB [26] 2745.4

Deep-CS [29] 2504.6

UBE [27] 3000

Ape-X [28] 2500

PPO [30] 2497

RND [30] 8152

Go-Explore [31] 43763

Table B.1: Best results on Montezuma’s Revenge.

60

Bibliography

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[2] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274, 2017.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-

land, Georg Ostrovski, et al. Human-level control through deep reinforcement

learning. Nature, 518(7540):529, 2015.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[5] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484, 2016.

[6] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

[7] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine learning, 8(3-4):293–321, 1992.

61

62 BIBLIOGRAPHY

[8] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,

Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with

experience replay. arXiv preprint arXiv:1611.01224, 2016.

[9] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,

Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous methods for deep reinforcement learning. In International conference

on machine learning, pages 1928–1937, 2016.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[11] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew

Hausknecht, and Michael Bowling. Revisiting the arcade learning environ-

ment: Evaluation protocols and open problems for general agents. Journal of

Artificial Intelligence Research, 61:523–562, 2018.

[12] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves

master-level play. Neural computation, 6(2):215–219, 1994.

[13] Matej Moravč́ık, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill,

Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael

Bowling. Deepstack: Expert-level artificial intelligence in heads-up no-limit

poker. Science, 356(6337):508–513, 2017.

[14] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game

with actor-critic curriculum learning. ICLR 2017, 2016.

[15] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao

Long, and Jun Wang. Multiagent bidirectionally-coordinated nets for learning

to play starcraft combat games. arXiv preprint arXiv:1703.10069, 2, 2017.

[16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learn-

ing with double q-learning. In Thirtieth AAAI Conference on Artificial Intel-

ligence, 2016.

BIBLIOGRAPHY 63

[17] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,

and Nando De Freitas. Dueling network architectures for deep reinforcement

learning. arXiv preprint arXiv:1511.06581, 2015.

[18] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. arXiv preprint arXiv:1511.05952, 2015.

[19] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-

sour. Policy gradient methods for reinforcement learning with function ap-

proximation. In Advances in neural information processing systems, pages

1057–1063, 2000.

[20] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp

Moritz. Trust region policy optimization. In Icml, volume 37, pages 1889–

1897, 2015.

[21] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe

and efficient off-policy reinforcement learning. In Advances in Neural Infor-

mation Processing Systems, pages 1054–1062, 2016.

[22] A. Asperti, D. Cortesi, C. de Pieri, G. Pedrini, and F. Sovrano. Crawling in

rogue’s dungeons with deep reinforcement techniques. IEEE Transactions on

Games, pages 1–1, 2019.

[23] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Remi Munos. Unifying count-based exploration and intrinsic

motivation. In Advances in Neural Information Processing Systems, pages

1471–1479, 2016.

[24] Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos.

Count-based exploration with neural density models. In Proceedings of the

34th International Conference on Machine Learning-Volume 70, pages 2721–

2730. JMLR. org, 2017.

[25] Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot,

Marc Bellemare, and Remi Munos. The reactor: A fast and sample-efficient

64 BIBLIOGRAPHY

actor-critic agent for reinforcement learning. In International Conference on

Learning Representations, 2018.

[26] Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter.

Count-based exploration in feature space for reinforcement learning. arXiv

preprint arXiv:1706.08090, 2017.

[27] Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih.

The uncertainty bellman equation and exploration. arXiv preprint

arXiv:1709.05380, 2017.

[28] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hes-

sel, Hado Van Hasselt, and David Silver. Distributed prioritized experience

replay. arXiv preprint arXiv:1803.00933, 2018.

[29] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell,

and Alexei A Efros. Large-scale study of curiosity-driven learning. arXiv

preprint arXiv:1808.04355, 2018.

[30] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration

by random network distillation. arXiv preprint arXiv:1810.12894, 2018.

[31] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff

Clune. Go-explore: a new approach for hard-exploration problems. arXiv

preprint arXiv:1901.10995, 2019.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[33] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,

Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles

Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforce-

ment learning. arXiv preprint arXiv:1507.04296, 2015.

BIBLIOGRAPHY 65

[34] Google’s Machine Intelligence Research. Tensorflow: an Open Source Machine

Learning Framework for Everyone, 2019. https://github.com/tensorflow/

tensorflow, Last accessed on 2019-02-28.

[35] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias

Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and

Peter Zhokhov. Openai baselines. GitHub, GitHub repository, 2017.

[36] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba.

Scalable trust-region method for deep reinforcement learning using kronecker-

factored approximation. In Advances in neural information processing sys-

tems, pages 5279–5288, 2017.

[37] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[38] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learn-

ing. In Advances in Neural Information Processing Systems, pages 4565–4573,

2016.

[39] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-

ciech Zaremba. Hindsight experience replay. In Advances in Neural Informa-

tion Processing Systems, pages 5048–5058, 2017.

[40] Matplotlib Development Team. Matplotlib Python 2D plotting library, 2019.

https://matplotlib.org/, Last accessed on 2019-02-28.

[41] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and

Alexei A Efros. Investigating human priors for playing video games. arXiv

preprint arXiv:1802.10217, 2018.

[42] OpenCV Development Team. Template Matching with OpenCV

2.4, 2019. https://docs.opencv.org/2.4/doc/tutorials/imgproc/

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://matplotlib.org/
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

66 BIBLIOGRAPHY

histograms/template_matching/template_matching.html, Last accessed

on 2019-02-28.

https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

Acknowledgements

I’m very thankful to Andrea Asperti for his patience, support and ideas during

this entire period of work.

I also want to thank to my friends and family for supporting me in this long

journey.

	Introduction
	List of Figures
	List of Tables
	Background
	Reinforcement Learning
	Finite MDP
	Reward
	Episode
	Policy
	Value function
	Model
	Applications

	RL algorithms
	Dynamic programming
	Monte Carlo
	Temporal-Difference
	Sarsa
	Q-learning
	DQN

	Policy gradient
	REINFORCE
	A3C
	TRPO
	ACER

	ATARI
	Montezuma's Revenge
	OpenAI Gym

	3B-ACER
	OpenAI Baselines
	Episodic Lifes
	Negative Rewards
	Best Replay
	Triple Buffer

	Conclusions
	Appendix Hyperparameters
	Appendix Scores
	Bibliography

