
Alma Mater Studiorum · University of Bologna

SCHOOL OF ENGINEERING AND ARCHITECTURE

Department of Computer Science and Engineering

Master's degree in Computer Engineering

Master's thesis
in

Protocols and Architectures for Space Networks M

Hierarchical Inter-Regional Routing
Algorithm for Interplanetary Networks

Defended by:
Nicola Alessi

Supervisor:
Prof. Carlo Caini

Co-Supervisor:
Scott Burleigh (NASA JPL)

Academic Year 2017-2018

To my beloved sister,

an endless source of inspiration.

To my parents,
constituent elements of my life.

Abstract

Le comunicazioni spaziali (satelliti geostazionari, satelliti ad orbita bassa, comunicazioni
interplanetarie o con lo spazio profondo) sono caratterizzate spesso da lunghi ritardi,
perdite elevate e connettività intermittente con frequenti interruzioni. I protocolli TCP/IP
risultano inadatti ad a�rontare questi problemi.
Per le comunicazioni via satellite geostazionario sono state create soluzioni dedicate,
come i Performance Enhancing Proxies (PEP), le quali tentano di a�rontare il problema
cercando di continuare ad utilizzare i protocolli TCP/IP. Nonostante questo sforzo abbia
portato a buoni risultati per le comunicazioni via satellite geostazionario, in cui il Round
Trip Time (RTT) è dell'ordine di circa 600ms, è risultato essere di�cile adattare questa
tecnologia alle reti interplanetarie o nello spazio profondo (Deep Space Network, DSN)
dove i ritardi di propagazione sono molto maggiori.
Verso la �ne degli anni '90 Vint Cerf, già progettista insieme a Bob Kahn dei protocolli
TCP/IP (1978), insieme ad altri ricercatori della NASA JPL (Jet Propulsion Labora-
tory) iniziò a studiare la fattibilità di estendere la rete Internet terrestre per poterla usare
nelle reti spaziali: è nato così il concetto di Internet Interplanetaria (InterPlanetary Net-
working, IPN). Negli anni successivi si è capito che reti di altra natura presentavano
caratteristiche simili alle reti interplanetarie. Per identi�care questo tipo di reti in cui
i protocolli Internet tradizionali falliscono è stato coniato il termine "Challenged Net-
works". L'idea di IPN si evolve così in Delay-/Disruption-Tolerant Networking (DTN),
con l'obiettivo di fornire un'architettura di rete adatta ad a�rontare i problemi di tutte
le reti challenged, non solo di quelle interplanetarie.
L'architettura DTN e i suoi protocolli sono stati inizialmente sviluppati dall' Internet
Research Task Force (IRTF) DTN Research Group (DTNRG). Esso è stato recente-
mente sciolto a seguito della costituzione di un analogo gruppo all'interno di Internet
Engineering Task Force. Il passaggio da "Research" a "Engineering" è indicativo del
livello di maturità nel frattempo raggiunto dagli standard. Un altro gruppo di ricerca
importante che lavora sull'architettura DTN è il Consultative Committee on Space Data
Systems (CCSDS) DTN Working Group, che si interessa per di proporre nuove speci�che
�nalizzate all'utilizzo dell'architettura DTN in ambito spaziale. CCSDS è un organismo
composto dalle maggiori agenzie spaziali, comprese NASA ed ESA.
Tra i vari aspetti in cui le reti DTN di�eriscono dai protocolli TCP/IP abbiamo il modo
in cui viene e�ettuato routing, ovvero l'instradamento dei dati inviati da una sorgente
ad un destinatario. Il Contact Graph Routing(CGR) è l'algoritmo di routing proposto
per le reti DTN in ambito interplanetario. L'aspetto che contraddistingue il CGR dagli
algoritmi di routing classici è che esso costruisce una rotta di "contatti" (ovvero delle pos-
sibilità di comunicazione programmate), anzichè costruire un percorso di nodi. Questa
caratteristica si rivela essere e�cace nell'ambito delle reti spaziali, dove i contatti sono

noti a priori.
Nonostante il CGR sia molto e�ciente e spesso in grado di trovare il percorso ottimo,
ovvero quello che permette di arrivare nel più breve tempo possibile a destinazione, esso
presenta dei problemi di scalabilità. Infatti, con l'aumentare del numero dei contatti
il suo tempo di esecuzione tende a crescere in modo esponenziale. In questa tesi viene
proposto un algoritmo di routing chiamato Hierarchical Inter-regional Routing (HIRR)
che ha l'obiettivo di mitigare il problema di scalabilità del CGR dividendo i nodi della
rete in diverse regioni amministrative, in cui l'utilizzo del CGR non risulta essere critico.
Lo scopo principale di HIRR è quindi quello di cercare di trarre il massimo bene�cio
dal CGR, accettando un ragionevole compromesso fra ottimalità delle rotte e tempo di
calcolo.
Questa tesi è stata svolta al Jet Propulsion Laboratory della NASA, situato a Pasadena
in California, aderendo al Visiting Student Research Program (VSRP).

Contents

1 Introduction 1
1.1 Delay/Disruption Tolerant Networking (DTN) overview 1
1.2 The DTN Architecture . 2

1.2.1 The Bundle layer . 2
1.3 Contact Graph Routing (CGR) overview 3

1.3.1 Other routing approaches . 5

2 Hierarchical Inter-Regional Routing (HIRR) 6
2.1 Motivations . 6
2.2 Organization of the hierarchical region structure 7

2.2.1 One region . 7
2.2.2 Two layers . 8
2.2.3 Three layers (and more) . 9

2.3 Rationale of the Hierarchical Inter-Regional Routing algorithm 10
2.4 Intermittent connectivity and reachability 11

2.4.1 Viable routes and passageways . 12
2.4.2 Dynamic topology and Internet comparison 12

2.5 Overview of the HIRR algorithm . 13
2.6 Algorithm implementation . 17

2.6.1 Blacklisting . 17
2.6.2 Search strategy . 18
2.6.3 Backward route learning . 20
2.6.4 Forward route learning . 21
2.6.5 Pseudocode . 24

2.7 HIRR Variants . 27
2.7.1 Auto rediscovery . 27
2.7.2 2-way handshake learning . 27

2.8 Algorithm Analysis . 28
2.8.1 Level representation . 28
2.8.2 Derivation . 29

3 JRegion prototype 33
3.1 Motivations . 33
3.2 Software architecture . 34

3.2.1 Software model description . 34
3.2.2 Running environment description 39

3.3 Usage . 41
3.3.1 Interpreter commands . 41

4 HIRR implementation within ION 53
4.1 ION Overview . 53
4.2 ION Design Principles . 54

4.2.1 Inter-task communication . 54
4.2.2 Zero-copy objects (ZCO) . 54
4.2.3 Personal Space Management (PSM) 55
4.2.4 Simple Data Recorder (SDR) . 55

4.3 HIRR implementation . 55
4.3.1 Forwarding Strategy . 56
4.3.2 HIRR model . 57
4.3.3 bprc con�guration �le . 58
4.3.4 ipnfw.c functions . 59

5 ION Inter-regional Test Suite 62
5.1 Motivations . 62
5.2 Scripts . 63
5.3 Experiments . 65

5.3.1 Scenario . 65
5.3.2 JRegion and ION con�guration �les 66
5.3.3 Experiment 1 . 67
5.3.4 Experiment 2 . 69
5.3.5 Experiment 3 . 70
5.3.6 Experiment 4 . 70

Conclusions 72

Acknowledgments 73

Chapter 1

Introduction

1.1 Delay/Disruption Tolerant Networking (DTN) overview

The communication protocols currently used in the Internet, in particular the ones from
the TCP/IP suite, were developed according to the following basic assumptions [5]:

1. there is always a continuous path between source and destination;

2. packet losses are few and are mainly caused by network congestion;

3. the transmission delay is small, so end-to-end retransmission mechanisms are a
suitable means of recovering lost data;

4. the network is homogeneous: each node supports the TCP/IP suite protocols.

When the TCP/IP protocols are used in networks where one or more of these assumptions
are not met, the results are often unsatisfactory. For this reason, these are sometimes
called "challenged networks"[6].
In Inter Planetary Networking (IPN) scenarios, delays are on the order of minutes or
hours (because of long interplanetary distances), the communication links are disrupted
(because of the motion of the planets), and the data loss rate can be relatively high [4].
Initially, only the space scenario was considered in IPN Special Interest Group deliber-
ations, but it soon became clear that some terrestrial networks were also "challenged"
[8]. From that point, the IPN architecture evolved in the Delay-/Disruption Tolerant
Networking (DTN) architecture, described in RFC4838 [7].
The application domain of the concepts originally developed for the IPN networks has
been extended to all challenged networks, such as sensor networks in oceans, military
tactical networks, satellite networks and so on.
The basic idea of DTN is analogous to the delivery of parcels: instead of having contin-
uous data �ows or small packets (at most a few thousand bytes), the communication is

1

based on "bundles", which are packets that can potentially reach large sizes. If links are
intermittent, as in space, these bundles can be stored by DTN nodes for long periods,
whenever necessary, waiting for the next opportunity of being transmitted to the follow-
ing node on the path to the destination, i.e. for the next "contact".
Of course, the aim of DTN is not to solve the physical constraints of challenged networks
(which cannot be eliminated) but to �nd the best way to cope with them, i.e. to make
communications possible in spite of them. For example, one limitation that derives from
long delays is that it is unwise to build applications that require many interactions. For
example, even with DTN you cannot conveniently make a phone call to Mars, as you
cannot eliminate the delay (the one way delay is in the range 3-23 min), but you can
send e-mails or transfer �les.
The more severe the challenges, the greater the bene�t of using DTN rather than in-
ternet protocols. At the same time, the DTN architecture does not present signi�cant
disadvantages should the challenges be less severe than expected.
The DTN architecture and its protocols were �rst standardized by the Internet Re-
search Task Force (IRTF) DTN Research Group (DTNRG). The DTNRG gave way to
the Internet Engineering Task Force (IETF) DTN working group (DTNWG) in 2015,
in recognition of the high level of maturity reached by the protocols. Standardization
for space applications is at present carried out in parallel to IETF by the Consultative
Committee on Space Data Systems (CCSDS), which is supported by almost all space
agencies, including NASA and ESA.

1.2 The DTN Architecture

1.2.1 The Bundle layer

In the DTN architecture, described in RFC4838 [7], a new layer, called "Bundle layer", is
inserted between Transport and Application layers. Devices implementing the protocol
at this layer, called Bundle Protocol (BP)[10], are called "DTN nodes".
An application developed for DTN networks can send messages of arbitrary size called
Application Data Units (ADUs). Each such message is encapsulated by the bundle pro-
tocol in one Protocol Data Unit (PDU) called a "bundle". Each bundle is composed
of two or more "blocks". The compulsory blocks are the "primary block", which is the
mandatory portion of the bundle header, and the "payload" block. Additional "exten-
sion" blocks may follow the primary block to support additional features, such as the
Bundle Security Protocol (BSP). The bundle protocol is in charge of forwarding a bun-
dle from a DTN node, also called a Bundle Protocol Agent (BPA), to the next one.
Each node on the path can store bundles, if necessary, before forwarding them to the
next node on the path. This mechanism is called "Store and Forward" and it is one
of the key features of the DTN architecture. Any required re-transmissions in an ARQ

(Automatic Repeat re-Quest) scheme may come from an intermediate node, and no end-
to-end connection is required between the sender and destination. Bundles can survive
a machine reboot or crash, if they are stored persistently. This approach is a departure
from the internet protocols, where a packet that cannot be immediately forwarded is
discarded. There is a sub-layer below the bundle layer called the "Convergence Layer",
which contains "Convergence Layer Adapters" that work as an interface to underlying
"Convergence Layer Protocols", which are typically transport protocols. Note that the
insertion of the Bundle Layer rede�nes the role played by Transport, which is no longer
end-to-end between source and destination but rather is limited to a single DTN hop
(i.e. between two topologically adjacent DTN nodes). This allows for the use of di�erent
transport protocols on di�erent segments of a heterogeneous network, which is required
in order to cope with the di�erent impairments that can be found on these diferent path
segments. For example, LTP (Licklider Transmission Protocol) can be used on space
links, while on terrestrial links it is more convenient to use TCP or UDP.

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport
Protocol A

Network
Protocol A

Transport
Protocol B

Network
Protocol B

Bundle Protocol

Transport
Protocol B

Network
Protocol B

Transport
Protocol C

Network
Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer
Adapter A

Conv. Layer
Adapter A

Conv. Layer
Adapter B

Conv. Layer
Adapter B

Conv. Layer
Adapter C

Convergence Layer
Adapter A

Network B Network C

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport
Protocol A

Network
Protocol A

Transport
Protocol B

Network
Protocol B

Bundle Protocol

Transport
Protocol B

Network
Protocol B

Transport
Protocol C

Network
Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer
Adapter A

Conv. Layer
Adapter A

Conv. Layer
Adapter B

Conv. Layer
Adapter B

Conv. Layer
Adapter C

Convergence Layer
Adapter A

Network B Network C

Figure 1.1: DTN Architecture and protocol stack.

1.3 Contact Graph Routing (CGR) overview

Routing is the procedure that selects the most suitable route by which to forward a
packet from the source node S to the destination node D in a network. In DTN, this
procedure is usually based on heuristic approaches that lead to sub-optimal solutions.
This happens because the nodes in the network can use only local information while
taking a routing decision. If a node could have information on the status of the other
nodes, the solution would be optimal.
Routing in "challenged networks" is much more complex than in Internet, because link
intermittency and long delays prevent a rapid exchange of information between nodes,
which is essential in ordinary routing protocols.

Contact Graph Routing (CGR) [1] is a routing algorithm designed by NASA-JPL and
proposed for DTN networks. Since the DTN networks are mostly characterized by pre-
dictable disruptions and changes cannot be propagated in a short time, in CGR the
topology of a DTN network is de�ned as a sequence of "contacts", which represent the
opportunities for transmission between two nodes. The contacts are realized by the
motion of nodes. This motion is assumed random in terrestrial networks, while is deter-
ministic in space, as it derives from the motion of planets and spacecraft. This dichotomy
between random and deterministic necessarily leads to completely di�erent routing algo-
rithms for the two environments. As the space contacts are predictable, each DTN node
in space owns a list of contacts, known as "Contact Plan". Starting from the contact
plan, the task of CGR is to �nd the most suitable route (series of contacts) from source
to destination, based on some routing metrics such as the earliest delivery time. As the
network state may change over time while bundles are traversing the network (which
could last hours, instead of a few milliseconds as in Internet), the best route may change
while bundles are on the �ight. For this reason, CGR is performed on each node to
recompute the routes using local information.
Here we will limit the discussion of CGR to a few key points, referring the reader to [1]
for a more comprehensive treatment. A helpful way to understand CGR is to note that
the CGR routing problem is similar to planning the best sequence of airline �ights to a
distant destination. In this analogy, contacts are �ights and bundles are passengers.

• Each node uses the contact plan information (�ight schedules) to build a "contact
graph" and then computes from this graph a routing table listing the plausible
routes (sequences of �ights to arrive at destination);

• For each bundle (passenger), CGR checks the available routes and chooses the best.
In contrast to booking �ights, however, once the route is selected CGR uses only
the information related to the �rst contact: it selects the receiving node of that
contact as the best proximate node to which to send the bundle and it sets a time
limit ("forfeit" time) for successful transmission. In our analogy, this is equivalent
to booking the �rst �ight only. The reason for this divergent behavior is given in
the next bullet.

• For safety, the best route is recomputed at each node along the path to destination.
This is justi�ed by the fact that, by contrast to �ight booking programs, DTN
nodes cannot inform other nodes of their decisions in advance, thus all nodes on
the end-to-end path are unaware of other nodes' bookings on connecting "�ights".

• CGR enforces bundle priority. This means that a higher priority bundle has the
right to use a contact already fully allocated to lower priority bundles. This,
on the other hand, may lead to the need to reforward lower priority bundles.
This is addressed as soon as possible by the recently introduced "Overbooking
management" policy [2].

• If a bundle is not transmitted before its "forfeit" time elapses, it is immediately
queued for another pass through the routing procedure.

• In the route selection process, recent versions of CGR take account of data already
scheduled for transmission to proximate nodes in order to determine the corre-
sponding queueing delay. This consideration is termed "Earliest Transmission Op-
portunity" awareness[3], which is limited to the �rst hop). The same mechanism
allows CGR to skip a route if the bundle's estimated volume consumption is larger
than the residual volume of the �rst contact for its level of priority - by analogy, if
the �ight is fully booked by passengers of the same or higher priority.

Last, it is important to point out that CGR evolves constantly, and new features or
variations of the basic protocol are introduced at almost any new release of ION. The
latest version is going to be standardized by CCSDS as SABR (Scheduled Aware Bundle
Routing).

1.3.1 Other routing approaches

One of the main research activity in DTN networks is to �nd strategies to cope with
the new routing constraints. The proposed approaches to the DTN routing are di�er-
ent on the basis of the amount of information that a node holds: the two opposites are
those with zero con�guration information (as known as "opportunistic routing") to those
with perfect knowledge of the contacts, but not of bu�er occupancy at remote nodes (as
known as "deterministic routing"). Opportunistic approaches usually are based on �ood-
ing strategies such that the messages are typically duplicated either a �xed number of
times or else a variable number of times based on contact probability. If the probabil-
ity of having a contact establishment is high, the delivery success rate is higher than
approaches that rely on the accuracy of current network state information. The most
signi�cant opportunistic routing algorithms are single-hop multi-cast forwarding (Spray
and Wait), distribute application messages (carriers) to hosts within connected portions
of ad hoc networks (Epidemic Routing), and probabilistic analysis of predicted node
contact (PRoPHET). The details about these algorithms are out of the scope of this
thesis.
If the network is characterized by predictable contacts, a deterministic algorithm can im-
prove performance and avoid wasting bandwidth. The Contact Graph Routing (CGR)
algorithm is a deterministic algorithm. It assumes that the nodes hold a list of con-
tacts, known as a "contact plan". As the routing decisions are taken according to the
contact plan, this algorithm is intended as a perfect knowledge approach to the DTN
routing problem. Even if the initial formulation of CGR assumes that each node has full
knowledge, it was also extended to work in less perfect knowledge systems.

Chapter 2

Hierarchical Inter-Regional Routing
(HIRR)

2.1 Motivations

One of the limitations of CGR is that when the number of contacts becomes too high, the
execution of the routing procedure becomes computationally infeasible. To �nd how to
improve CGR is still an open challenge for the research community, which has proposed
di�erent approaches including the addition of optimizations and shortcuts to CGR [2]
integrating with other alternative routing algorithms [1], and introducing a hierarchical
routing structure.
Following this last approach, an inter-regional Routing (IRR) algorithm, designed to
complement CGR, is proposed in this thesis. The key idea is to divide the nodes into
"regions", each consisting of fewer nodes so that the usage of the CGR algorithm is
feasible within each region. In other words, CGR use should be limited to Intra Regional
Routing between nodes of the same region. By contrast, the inter-regional Routing al-
gorithm proposed here should be in charge of the routing between several regions. If
two nodes do not belong to the same region, the inter-regional procedure will try to �nd
a route to the destination region. Region crossing should be performed through special
nodes called "passageways", which should function as a gateway from one region to an-
other one. The task of the passageways (which are the only nodes allowed to belong to
two regions) is to connect regions and to allow forwarding between them. In spite of
their name, the "regions" have no geographical meaning because otherwise the bene�ts
of CGR (in terms of routing through contacts) would be lost. It is worth stressing once
again here that a CGR route consists of a series of contacts, not of a series of nodes as
in an Internet route. The series of contacts implies a geographical route, but it is not
equivalent, as it is impossible to derive the series of contacts (the CGR route) solely from
the list of nodes (the geographical route).

6

The idea of using regions in a routing protocol is not new. For example, in Internet the
equivalent of inter-regional routing is performed by BGP-4 (Border Gateway Protocol
version 4), described in the RFC4271 [9]. Unfortunately, BGP-4 is an algorithm that
performs many negotiations between gateways; therefore, it is not suitable for DTN net-
works. The idea of splitting the network into di�erent regions was considered in early
DTN concepts, but there was never any agreement on the basis on which regions should
be formed.
The inter-regional Routing algorithm proposed here follows a new approach that presents
a few advantages with respect to the previous ones. First, the complexity of the algo-
rithm is very low. Each passageway holds a list of banned destinations (blacklist of other
passageways) and the cost of a routing decision is equivalent to a search for the destina-
tion through this list. For this reason, by contrast to CGR, the overall time and space
complexity grow linearly with the number of nodes in the network. Second, routes are
self-forming and each node does not need to know the entire network but only its peers.
Third, the algorithm, even if distributed, produces consistent blacklists and tends to
converge to a state where every pair of known nodes, belonging to di�erent regions, are
reachable via one direct inter-regional route. A node can also detect if a destination is
not present in the network (never existed or removed) or, in one variant of the protocol,
detect its possible later appearance in another region.

2.2 Organization of the hierarchical region structure

In order to introduce the principles of the inter-regional routing, it is opportune to
represent the hierarchical region structure in a graphical way, which can be conveniently
done step by step. However, instead of presenting the �nal structure, it is more suitable
to build step by step the inter-regional hierarchical topology.

2.2.1 One region

Let us assume that at the starting point there is just one region, i.e. that all nodes are
cited in the same contact plan. Both source and destination necessarily belong to the
sole region (e.g. R0), and the only possible routing is thus intra-regional (Figure 2.1).
As links inside the region are potentially intermittent, an intra-regional route must be a
contact route. It is the task of the intra-region routing algorithm, such as CGR/SABR,
to �nd the best contact route, from source to destination.

R
0

S D

Figure 2.1: An initial situation where all nodes belong to the same
region R0, i.e. they share the same contact plan. As links are poten-
tially intermittent, a route is always a contact route, to be found by the
intra-regional algorithm, such as CGR-SABR.

2.2.2 Two layers

As the number of nodes increases, the processing time of the intra-regional algorithm
may become excessive. It is, therefore, necessary to divide the set of nodes into several
administrative subsets, called regions. These regions do not correspond to geographical
regions (e.g. they could consist of nodes belonging to a space agency, or to di�erent
departments of the same space agency).
The network's "root" region R0 functions as a backbone for the new "leaf" regions, such
as R1 and R2 in the example shown in Figure 2.2. Each region has (and is de�ned by)
its own contact plan. Regions do not overlap, which means that ordinary nodes can
belong to only one region (i.e. they can appear only in the corresponding contact plan).
Passageways are the exception, as they by de�nition belong to two regions, and thus they
must be cited in a special way in both the contact plans. In the example, P1 belongs to
the R1 region, which is its "home" region, but it is also projected on R0, which is termed
its "outer" region; P1 is cited in R1 contact plan as the only possible passageway to the
upper region R0; the same holds true for P2, with reference to R2.
Now if both source and destination belong to the same region (R0, R1 or R2) the routing
is purely intra-regional and everything goes as before. Vice versa, if the source is in
one region, e.g. R1, and the destination in another, e.g. R2, the full route is inter-
regional. More precisely, an inter-regional route can be de�ned as the sequence of nodes

S −P1−P2−D, consisting of the two end nodes and of the two traversed passageways,
P1 and P2. The task of the inter-regional routing is to �nd the inter-regional section, i.e.
the sequence of passageways between source and destination, i.e. in this very simple case
P1 − P2. The inter-regional routing operates at a higher level with respect to the intra-
regional routing algorithm, which is not replaced but just con�ned inside one region.
More precisely, our inter-regional route consists of three regional legs, S − P1, P1 − P2

and P2 −D. On each regional leg, it is the task of the intra-regional routing algorithm
to �nd the best sequence of contacts from the start to the end point. From S and P1

the best sequence of contacts is derived from the R1 contact plan, for P1 − P2, from R0,
and for P2 −D from R2 one.

R
0

R
1

 R
2

 P
2P

1

S D

Figure 2.2: The inter-regional route consists of three regional legs, S−
P1, P1−P2 and P2−D. On each regional leg, it is the task of the intra-
regional routing algorithm to �nd the best sequence of contacts from the
start to the end point. Possible intermediate nodes inside each leg are
not reported because the sequence of nodes could vary depending on the
sequence of contacts (CGR route) selected.

2.2.3 Three layers (and more)

Let us assume that after a while, as the number of nodes increases, it is necessary to
introduce a third regional layer. For example, by adding the sub-regions R11, R12 and
R13 (passageway P11, P12 and P13), and also R21 and R22 to R2 (passageway P21 and P22)
to our previous topology, we can obtain the three layer structure presented in �g. 2.3.
Assuming that the source is on R11 and the destination on R22, the inter-regional route
becomes S−P11−P1−P2−P22−D. It is the task of inter-regional routing algorithm to

�nd inter-regional section, i.e. the sequence of passageways P11−P1−P2−P22. Source and
destination can also be closer to each other, in terms of the number of passageways to be
traversed. For example, if the destination was on R0, the inter-regional section would be
just P11−P1. Analogously, if on R12, it would be P11−P12 and so on. Before proceeding,
it is convenient to note that the region structure just designed can be represented as a
tree, where elements are regions.
In our example, R0 is the root; R11, R12,R13, R21 and R22 are leaf nodes; R1 and R2

are intermediate nodes. The tree structure is very useful, as it can represent in a very
synthetic way the regions to be traversed from source to destination, i.e. the inter-
regional routing problem. We could go on by adding a fourth layer of regions, without,
however, adding anything new. We will thus prefer to terminate here the algorithm
overview, letting to next section the task of going in depth on crucial points.

R
0

R
1

 R
2R

12

 R
11

 R
21

P
12

 P
2

 P
21

 P
1

S

 P
11

 R

13

P
13

R
22

 P

22
D

Figure 2.3: The source S and the destination D are in di�erent regions,
so the inter-regional routing algorithm is involved. The resulting inter-
regional route is S − P11 − P1 − P2 − P22 − D and its inter-regional
section the same except the end points.

2.3 Rationale of the Hierarchical Inter-Regional Rout-

ing algorithm

The hierarchical structure just described shows clearly that with this design there is
always just one inter-regional section (one possible sequence of passageways) between
source and destination. Thus, since the inter-regional section is unique, we could wonder

why it is necessary to design an inter-regional algorithm to �nd it. In order to answer
this question, we must �rst point out that:

1. As stated in RFC4838 [7] and RFC5050 [10], DTN EID are names not addresses.
From a node EID it is therefore impossible to infer to which region the node belongs
to.

2. The topology (i.e. the region tree and related border passageways) is assumed
unknown to single entities in the scenario considered here. This design choice was
made because, in order to improve the scalability, we want to rely on a distributed
architecture with independent regions. In this structure, the entity in charge of
the management of region RX should only:

(a) provide a contact plan only for nodes in its region (which can be done au-
tonomously);

(b) �nd an agreement with managers of upper and lower regions about which
nodes should be chosen as border passageways.

In conclusion, although there is a unique inter-regional route from source to destination,
this route is unknown to the source and must be built step-by-step. More precisely, we
must discover:

(a) which region the destination belongs to;

(b) the inter-regional segment to reach it.

These two aspects, although logically distinct, are tackled together by the inter-regional
routing algorithm presented in details the next sections.

2.4 Intermittent connectivity and reachability

In the previous description, we have implicitly assumed that is possible to conveniently
transfer bundles on each regional leg (S−P1, P1−P2,..., PN−D). How can this be taken
for granted, given that each leg, which can involve many intermediate nodes and DTN
links, is a�ected by intermittent connectivity? By the way, this is why it is necessary to
use CGR to �nd the route between S−P1, or P1 and P2 and so on! In fact, the possibility
of transferring bundles cannot be taken for granted for any given pair of nodes belonging
to the same region. For the speci�c purposes of inter-regional routing, it is necessary to
abstract from contacts, and to introduce the concept of "reachability".
We say that given two nodes, A and B, belonging to the same region (i.e, sharing the
same contact plan) B is reachable from A only if, despite intermittent connectivity, it
is possible to transfer a reasonable amount of bundles of reasonable size in a reasonable

time, from A to B. This triple condition is deliberately but also necessarily expressed in
qualitative terms, as it is impossible to give a quantitative general de�nition of the three
"reasonable conditions", valid for all possible deployments. The quantitative de�nition
of them is thus left to network managers.
Note that reachability, for the sake of generality, is de�ned as unidirectional, although
it will be bidirectional in most cases. In the following, not to make the explanation too
clumsy, reachability will be assumed bidirectional; modi�cations for the unidirectional
case are trivial and left to the interested reader.

2.4.1 Viable routes and passageways

A leg of an inter-regional route is said "viable" if its end nodes (e.g. S − P1, or P1− P2,
... ,or PN −D) are "reachable". An inter-regional route is said "viable" if all its legs are
viable.
In other words, to have a viable route each node of an inter-regional route, e.g. S−Px−
Py−D, must be reachable from the adjacent ones. To this end, there are two conditions
to be met:

1. the only passageway to the upper region and the possibly many passageways to
lower regions must all be assumed "reachable" from all nodes of the region that
can be source or destination of the inter-regional tra�c. This to ensure that the
terminal legs of the inter-regional paths S − Px and Py −D are "viable".

2. passageways of the same regions must all be reachable from/to each other. This
to have the internal legs viable as well.

It is obvious that in a real deployment, great care must be posed to passageways selection
in order to have viable inter-regional routes. The proposed inter-regional algorithm is
based on this condition.

2.4.2 Dynamic topology and Internet comparison

The association of an EID to a region and the inter-regional route to get it from another
region, once discovered, are assumed constant for a relatively long period. Therefore, the
route can be used for inter-regional routing of subsequent tra�c (form the same source
or from other sources belonging to the same region).
For scalability reasons, it is necessary to avoid recalculating inter-regional routes for each
bundle. At the same time, the inter-regional routing algorithm must be �exible enough
to tackle small-scale variations of the topology, such as the creation of a new region, or
the moving of one node to another region. For the sake of e�ciency, these variations
should happen rarely; in other words, the pace of these variations should be small with
respect to the pace of inter-regional tra�c.

There are, however, two important di�erences from our algorithm and routing on the
Internet. First, Internet nodes (NIC cards) are identi�ed by IP addresses, while DTN
nodes by DTN EIDs, which are names and not addresses, as highlighted before. Second,
in Internet dynamic routes are calculated a priori, i.e. independently of tra�c and by
means of a continuous exchange of information among nodes, while this is impractical
in DTN networks. Therefore, the proposed algorithm will discover the routes only when
and if there is a bundle to be routed from a source S to a destination D that belong to
two di�erent regions.

2.5 Overview of the HIRR algorithm

In order to make inter-regional routing decisions, each passageway holds a blacklist table
containing the excluded passageways for each destination node. Let us consider the same
topology shown in Figure 2.3 and start from an initial state where the blacklist tables are
empty on every node. We want to send a bundle from S to D, belonging to R11 and R22

respectively, and show how HIRR learns the inter-regional route S−P11−P1−P2−P22−D.
We call this route "forward route" because it is the route from S to D, in contrast to the
reverse route D − P22 − P2 − P1 − P11 − S, which is called "backward route". Although
the HIRR main goal is to learn the forward route, we will show that it can also learn the
backward route without additional cost.
In Figure 2.4 we can see the �rsts steps of the algorithm. Initially, S checks if its home
region R11 contains D. As R11 does not contain D, HIRR is executed instead of CGR.
As S is a terminal node (i.e., it is not a passageway), the only thing that it can do is
to try to reach the passageway P11 (there is just one, as R11 is a leaf region). When
P11 receives the bundle (red arrow from S in the Figure 2.4), it checks if one of its two
regions contains D. In this case, neither its home region R11 nor its outer region R1

contains D. If D exists, it can be reached only by exploring other regions.
This exploration starts with P11 sending a replica (by using CGR) of the bundle to: a)
all passageways that can bring to the sub-regions of R1, such as P12 and P13; b) the sole
passageway that can bring to the sole upper region R1, i.e. P1 (blue arrows in Figure
2.4). All these three passageways are the "peers" of P11.
Of course, this example cannot show all the HIRR scenarios. For example, we started
from a situation where all the blacklist table of each node are empty, and R11 is a leaf
region. If P12 had been in the blacklist of P11 for the node D, the copy from P11 to P12

would have not been sent. If R11 had had one or more sub-regions, P11 also would have
sent the replica to them.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
13

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

D

Figure 2.4: The source node S forwards the bundle to its home region
passageway P11 (red arrow). Then, HIRR is executed instead of CGR
on P11 because neither its home region (R11) nor its outer region (R1)
contain D. Replica of the bundles are created and sent P12, P13 and
P1. (�ooding to peer passageways).

As soon as the bundle replica arrives they learn some information, even before execute
CGR or HIRR:

• P12 learns that both P13 and P1 do not contain S;

• P13 learns that both P12 and P1 do not contain S;

• P1 learns that both P12 and P13 do not contain S.

This represents the backward route learning described above.
Let us continue with the description of the next phases of the Forward route learning.
P12 checks if its home region R12 or its outer region R1 contain D, which, unfortunately,
is not the case. As R12 has not any sub-regions (it is a leaf), it is immediately clear that
choosing P12 to reach D is wrong. For this reason, both P12 sends (by using CGR) a
blacklist message to P11. The same happens for P13 (see Figure 2.5). As soon as P11

receives both blacklist messages, it can create, learning by exclusion, the �rst leg P11−P1

of its inter-regional route (showed in Figure 2.3). This is the �rst result of the forward
route learning. The situation is di�erent for P1. Initially it checks if its home or outer
regions contain D but, unfortunately, neither its home region R12 or its outer region R1

contain D. Unlike the previous case, however, P1 has some peers that must be explored
(i.e., P0 and P2). For this reason, unlike P12 and P13, P1 cannot provide an immediate

feedback to P11. In this case, as D belongs to R22 (which is a region reachable from P1),
it never provides an answer to P11, as shown in �gure 2.5.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

DP
13

Figure 2.5: P12, P13 and P1 have received a bundle replica from P11.
Both P11 and P12 react sending a blacklist message to P11. P1 has not
enough information to answer, therefore it waits to learn about its peers
(i.e., P0 and P2).

Now, as described in Figure 2.6 with blue arrows, P1 sends a replica of the bundle
(using CGR) to P0 and P2. Using backward learning, P0 learns that P2 the node S is
not reachable via P2 and similarly P2 learns that S is not reachable via P0.
Similarly to what previously done by P12 and P13 in �gure 2.5, P0 �rst checks if D
belong to its region R0. Note that being R0 on top of the tree, P0, by contrast to all
other passageways, has not an outer region. As D does not belong to R0, P0 then sends
a blacklist message back to P1 (see the gray arrow in Figure 2.6).

 R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

DP
13

Figure 2.6: P1 is the only passageway that can continue the forwarding.
It sends a bundle replica to both P0 and P2 (blue arrows). As P0 cannot
continue the forwarding, after it receives the bundle from P1, it forwards
a blacklist message to P1 (gray arrow).

As soon as P2 receives its bundle replica, it �rst checks that D does not belong to
its home region (R2), then it has to explore its inner regions (its behavior is the dual of
P1, it has to explore below, instead of above), by sending a replica to P21 and P22 (see
the blue arrows in �gure 2.7). When P21 receives the replica, it learns (backward route
learning) that S is not reachable via P22. Similarly, P22 learns that S is not reachable
via P21.
As already happened several times before, after checking the presence of D in its regions
(by checking its contact plan), P21 sends a blacklist message back to P2, as shown by
the gray arrow in Figure 2.7. By contrast, when P22 receives the bundle replica, the
usual check for the presence of D within its contact plan succeeds, and the intra-regional
routing algorithm (in this case CGR) can be used to reach D (see the red arrow in Figure
2.7). The �rst exploration is now complete. Note that, although it could appear logic
to send back a positive con�rmation ("I have it"), this is not strictly necessary, as the
correct path can be learned at this point by exclusion (only one possibility is left to each
passageway, as all others have been blacklisted).
Now each passageway has learned the next routing decision that follows directly the
unique inter-regional route between S and D using the forward route learning. The
direct consequence is that if the source sends another bundle, it will be routed directly
to the destination, following its inter-regional route (see Figure 2.3). Moreover, if D
wants to send a response back to S, as it is likely, there is no need to explore the

topology again because all intermediate passageways have already learned the route in
the reverse direction (it can be seen by swapping the direction of the arrows in Figure
2.3) thanks to the backward route learning.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
13

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

D

Figure 2.7: P2 sends (by using CGR) a bundle replica to both P21 and
P22 to explore regions R21 and R22. Since D is not in R12, and R12 is
a leaf, P21 sends back a blacklist message to P2. By contrast, P22 �nds
D in its home region, thus it can use CGR to reach it. P22 does not
send back any positive acknowledgment, as not strictly necessary.

2.6 Algorithm implementation

2.6.1 Blacklisting

Each node maintains a list of entries (P,N), where P is a passageway and N is a
generic node, which could also be a passageway. The meaning is: P has blacklisted N .
The purpose of this blacklist is to prevent a node from forwarding future bundles to
passageways that have declared they cannot reach the destination. This blacklist must
be checked every time that a passageway wants to send a bundle replica to one of its
peer passageways. If the blacklist contains the destination D related to the peer P , the
bundle replica is not sent to that peer.

2.6.2 Search strategy

Given a source, this is the mechanism that propagates a replica of a given bundle across
all the topology. The bundle replica is sent to the only peer passageways that are
not blacklisted. If the destination is not blacklisted by any passageways, the bundle is
globally propagated among every passageway of the topology, as shown in Figure 2.8.
By contrast, if all the blacklist records are properly set the bundle follows the unique
inter-regional route, as shown in Figure 2.3.
To this end, every bundle is equipped with a �eld named "prior passageway", which is a
reference (e.g. its node name) to the previous forwarder passageway (if any).
In order to perform the exploration, a passageway who receives a bundle infers the
provenance of prior passageway matching its name with the regions declared in the
contact plan. In this case, the provenance can assume one of these three values:

• home: if the prior passageway belongs to the home region of the current passage-
way;

• outer: if the prior passageway belongs to the outer region of the current passage-
way;

• unknown: if the prior passageway is not de�ned. This happens only when the
current passageway is the �rst of the inter-regional route.

For example, considering the inter-regional route S − P11 − P1 − P2 − P21 − D of the
topology shown above in Figure 2.3:

• the prior passageway of the bundle received at P11 is not speci�ed, therefore its
provenance value is unknown;

• the prior passageway of the bundle received at P1 is P11 and its provenance value
is home;

• the prior passageway of the bundle received at P2 is P1 and its provenance value
is outer;

• the prior passageway of the bundle received at P22 is P2 and its provenance value
is outer;

Similarly, it is computed also the provenance value of every peer passageways. For
example, using the same example as before (Figure 2.3) we have that:

• P12, P13 and P1 are peer passageways of P11 and their provenance value is home;

• P11, P12, P13, P0 and P2 are peer passageways of P1. The provenance value of P11, P12

and P13 is home; the provenance value of P0 and P2 is outer.

• P21, P22, P0 and P1 are peer passageways of P2. The provenance value of P21, P22 is
home; the provenance value of P0 and P1 is outer.

• P21 and P2 are peer passageways of P11 and their provenance value is home;

The routing decision is made comparing the provenance value of the prior passageway
with the provenance value of each peer passageway. The exploration rule is:
For each non-blacklisted peer passageway, if its provenance value is di�erent from the
provenance value of the prior passageway, a bundle replica is sent.
Note that for the peer passageways, the provenance value unknown is impossible because
it is supposed that the peer passageways are always well de�ned in the contact plan. This
implies that if the provenance value of the prior passageway is unknown, the bundle
replica is spread in every direction (because the value unknown is always di�erent from
both home or outer). The Figure 2.8 resumes the spreading of the bundle replicas
described above and introduced step-by-step in the previous sections.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
13

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

D

Figure 2.8: The source node S belongs to the region R11 and the des-
tination node D belongs to the region R22. S initially tries to reach D
using CGR, but it fails because D is not in its home region. The blue ar-
rows show how the bundle is forwarded between the passageways. When
P22 receives the bundle it can �nally forward it to D. Note that CGR
is used in every forwarding step between two adjacent passageways.

The Figure 2.8 resumes the spreading of bundle replicas described above and intro-
duced step-by-step in the previous sections. It is important to note that the blue arrows
in that �gure form a spanning tree of the topology, as shown in Figure 2.9.

What happens to the spanning tree if we move the destination from R22 to R21? Noth-
ing: the spanning tree is always the same! The spanning tree that can be generated by
P11 is the same no matter which is the destination, therefore it is an intrinsic property
of P11. As a consequence of the rules de�ned for the exploration, this spanning tree is
unique. These considerations can be extended to each passageway of the topology. The
exploration can be seen as the theoretical problem well known as "tree traversal", i.e. the
process of visiting each node in a tree data structure exactly once. The described search
strategy can be seen as a procedure that explores the topology using the breadth-�rst
approach.

P
11

P
2

P
12

P
13

P
21

P
22

P
1

P
0

Figure 2.9: As the search strategy breaks all the loops it creates a span-
ning tree among the passageways involved. Every source node in the
same region generates the same spanning tree, which does not depend
on the destination node.

2.6.3 Backward route learning

In the previous sections, we have seen how each passageway learns the backward path.
When a node receives a bundle, each peer passageway (except for the prior one) cannot
belong to a region which contains the source node. In other words, the prior passageway
is for sure the only one that can forward something addressed to the current bundle
source node. For this reason, is possible to add to the blacklist the entry (Px, source),
for each Px di�erent from the prior passageway.
For example, in �gure 2.7 we have seen that P2 learns using the backward route learning
that P0, P21 and P22 are not part of the inter-regional route from D to S.
Looking at the topology from a global point of view, we have seen that after sending a

bundle from a source S to a destination D, the network learns the inter-regional route
from D to S.
However, the backward route learning is more powerful than this: if the bundle traverse
the entire topology, the network learns also how to reach S from any source node.
In order to understand how much the backward route learning is e�ective, it is possible
to compute a lower bound for the minimum number of di�erent bundles required to reach
the convergent state, using the sole backward route learning. Let us assume that all the
nodes belong to a region that doesn't have nested regions. This assumption is optimistic,
so it is the reason why it is a lower bound instead of a precise value. Lets suppose to
have M nodes in the topology, called N1, N2, ... , NM . If N1, N2, ..., NM−1 send a bundle
to NM , every passageways learns the inter-regional route from N1, N2, ..., NM−1 to NM ,
by using the backward route learning. From this moment, every bundle sent from NM

follows the unique inter-regional route to the destination. In order to create the missing
routes, we have to send a bundle from NM to all the other ones (N1, N2, ..., NM−1). We
have sent:

• N − 1 bundles sent from N1, N2, ..., NM−1 to NM

• N − 1 bundles sent from to NM to N1, N2, ..., NM−1.

The total number of sent bundles is 2(N − 1), which is a lower bound for the mini-
mum number of di�erent bundles required to reach the convergent state, using the sole
backward route learning.

2.6.4 Forward route learning

As we have seen in Figure 2.5, a node that receives a bundle replica can send a blacklist
message to the prior passageway.
A passageway can send blacklist signals for two reasons:

1. after it receives a bundle replica it is unable to perform any forwarding. In this
case, a blacklist signal is sent back to the prior passageway.

2. after it receives a blacklist signals from all the nodes in one of its region (home
or outer). In this case, blacklist signals are sent to every passageway with the
provenance value di�erent to the provenance value of the prior passageway.

The former case always happened in the previous examples (see Figures 2.5, 2.6 and 2.7)
and it is resumed by the Figure 2.10. The latter case is required when there is a region
that contains other sub-regions, which is never crossed by the inter-regional route. If
this happens, a recursive blacklisting is triggered from the leaf sub-regions and the route
can be learned correctly.
For example, as shown in Figure 2.11, if we send a bundle from a source S belonging to

R11, to a destination D belonging to R13, the region R2 is never crossed by the inter-
regional route that we want to learn (i.e., S − P11 − P13 − D). In order to learn the
leg P11 − P13, the passageway P11 have to add in its blacklist P1 and P12. Nothing new
for P1, which sends a blacklist message to P11 as usual (shown in Figure 2.11 using gray
arrows). To send a blacklist message from P1 to P11, we need that P1 has blacklisted both
P0 and P2; similarly P2 waits to receive both blacklist messages from P21 and P22 (as
shown in Figure 2.11 using orange arrows). For this reason, the recursion is triggered by
the passageways of leaf sub-regions (P21 and P22) and it propagates back until a blacklist
message is received by P11.
The only question left is: why the recursion step is propagating blacklist messages to the
entire region instead of the answer only to the prior passageway?
As this rule is triggered by the receiving of a blacklist message, we have lost track of the
passageway who have sent the bundle replica. For this reason, the blacklist messages are
propagated to the entire region. We found two ways to solve this problem:

1. introduce a table that keeps track of the processed inter-regional bundles, and
retrieves from this table the passageway that has sent the replica;

2. each passageway injects the traveled path inside the bundle replicas, and retrieve
from this �eld the passageway that has sent the replica.

As both solutions add a lot of complexity and the information carried by extra blacklist
messages is correct (even if not strictly required), we decided to accept this bandwidth
wasting and keep the algorithm simple.
The forward route learning guarantee to let the network learns the direct route from S
to D. This technique does not interfere with the backward learning, therefore HIRR
implements both.
In order to understand how much the forward route learning is e�ective, it is possible to
compute a lower bound for the minimum number of di�erent bundles required to reach
the convergent state, using the sole forward route learning. Lets suppose to have M
nodes in the topology, called N1, N2, ... , NM . In the worst case, it is required to combine
without repetitions all the M nodes, taken two-by-two and considering the order. The
total number of sent bundles is M(M − 1), which is a lower bound for the minimum
number of di�erent bundles replica required to reach the convergent state, using the sole
forward route learning.

 R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
12

 P
0

 P
2P

1

 P
21

 P
22

 P
11

S

DP
13

Figure 2.10: The node S, which is part of R11, sends a bundle to D,
which is part of R22. The gray arrows show the blacklist message sent by
the passageways. This Figure resumes the blacklisting shown in Figures
2.5, 2.6 and 2.7.

 R
0

R
1

 R
2R

12

 R
13

 R
11

 R
21

R
22

P
13

P
12

P
0

 P

22

 P
11

S

D

P
1

 P
21

 P
2

Figure 2.11: The node S, which is part of R11, sends a bundle to D,
which is part of R13. The gray arrows are blacklist signal generated by
the former case, the orange ones are generated by the latter case (i.e.
recursion).

2.6.5 Pseudocode

Description: This function implements the backward route learning described above.
In order to get the most bene�t from this function, it must be invoked before executing
any intra-regional routing algorithm.

procedure backwardLearning(bundle)
source← bundle.sourceNode
priorPw ← bundle.priorPassageway
for each passageway in PeerPassagewayList do

if passageway 6= priorPw then
Add to blacklist the entry (passageway, source)

Description: This function combines the search strategy described above with the
forward route learning. For this reason, by �rst it sends a bundle replica to every
non-blacklisted passageway with opposite provenance respect to the prior passageway
provenance. If nothing was sent, it forwards a blacklist bundle to every passageway
within the same region of the prior passageway.
This function must be invoked if the contact plan of the current node does not contain
any reference to the destination node, i.e. if the destination is not part of any of the
current node regions.
Note that this is a "best e�ort" version of HIRR: if a CGR failure occurs, this procedure
continues its execution, returning a failure value at the end of the function, to inform
the application that something went wrong.

function interRegionalDataBundleHandling(bundle)
source← bundle.sourceNode
dest← bundle.destinationNode
priorPw ← bundle.priorPassageway
nothingSent← true

outcome← success

if am I a terminal node? then
return CGRforward(homeRegionPassageway, bundle)

for each peer in PeerPassagewayList do
if blacklist contains the entry (peer, dest) then

continue
if priorPw.provenance = peer.provenance then

continue
if CGRforward(peer, bundle) = failure then

outcome← failure

nothingSent← false

if nothingSent = true then
blacklistBundle← createBlacklistBundle(dest)
if CGRforward(priorPw, blacklistBundle) = failure then

outcome← failure

return outcome

Description: This function must be invoked when a blacklist bundle arrives. The goal
is, if it is necessary, to recursively propagate the blacklist signal. The function will return
a success value if the incoming blacklist bundle was processed correctly; otherwise, it will
return a failure.

function interRegionalBlacklistBundleHandling(bundle)
source← bundle.sourceNode
dest← bundle.destinationNode
priorPw ← bundle.priorPassageway
outcome← success

if blacklist contains the entry (priorPw, dest) then
return success

Add to blacklist the entry (priorPw, dest)
if currentRegion contains dest then

return success
if blacklistContainsAll(dest, priorPw.provenance) then

for each peer in PeerPassagewayList do
if blacklist contains (peer, dest) then

continue
if priorPw.provenance = peer.provenance then

continue
blacklistBundle← createBlacklistBundle(dest)
if CGRforward(peer, blacklistBundle) = failure then

outcome← failure

return outcome

Description: This function returns true if all peer passageways that belong to the
speci�ed provenances have blacklisted N , 0 otherwise.

function blacklistContainsAll(N, region)
for each peer in PeerPassagewayList do

if priorPw.provenance 6= peer.provenance then
continue

if blacklist doesn't contains (peer,N) then
return false

return true

2.7 HIRR Variants

2.7.1 Auto rediscovery

If a source node S sends a bundle to a destination D that does not belong to the
network (never existed or removed), each node will eventually learn that there is not any
passageway with an inter-regional route to D.
The problem is that if D later appears in the network, no one tries to reach it. A trivial
solution could be the following: at the beginning of the InterRegionalForward function,
it should be checked if the bundle is destined to a "dead end" (i.e. if D is banned from
all the peer passageways). In this case, all entries (Px, D) should be removed from the
blacklist and the algorithm re-run as the �rst time. The disadvantage is that this solution
exposes the architecture to a denial of service (DoS) attack if a node deliberately kept
injecting bundle destined to a non-existent destination, as each attempt would trigger
�ooding of the network. This point needs further investigation.

2.7.2 2-way handshake learning

Instead of sending blacklist messages, there is another way to learn the inter-regional
routes using the sole backward route learning.
Suppose we want to learn both the forward and backward inter-regional routes between S
and D. The whole process starts with a bundle probe spreading to the entire topology,
similarly as shown in Figure 2.8. Unlike before, here no passageway sends back any
blacklist message. When the probe starting from S arrives at D, by using the backward
route learning, all the passageways have learned the inter-regional route from D to S.
As we are not sending any blacklist messages, the inter-regional route from S to D is
not learned yet. In order to learn this route, D sends back to S another probe. As the
inter-regional route from D to S is formed, this response does not �ood the network, but
it follows its unique inter-regional route, as shown in Figure 2.12. When S receives this
probe, the inter-regional route from S to D is being learned.
At the end of the process, this 2-way handshake produces very similar results to standard
HIRR. Apparently, this procedure seems to be way better than the standard HIRR,
which propagates back the blacklist messages every time and also sometimes it needs a
recursion, wasting more bandwidth.
One of the problems of this approach is that, until S receives a response, it can not
send any bundle to D. As the DTN networks are often characterized by long RTT,
this procedure is a bottleneck that freezes the routing until the inter-regional route is
discovered. Another problem is that if the D does not exist, S can wait inde�nitely and
a timeout must be set to give up assuming that the node is not part of the network.
Finding the timeout value is critical because: a) if it is underestimated, it produces
wrong results because if the timer expires the passageway assumes that the destination

does not exist while the answer has not arrived yet; b) if it is overestimated, the bundles
addressed to D are pending for a long time and this can saturate the bu�ers.
This variant can be a starting point for future works, but at present, it needs further
investigation.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

P
13

P
12

P
0

 P
2P

1

 P
21

 P
22

 P
11

S

D

Figure 2.12: After receiving the probe, D respond to S with another
probe, which follows the unique inter-regional route learned thanks to
the previous one.

2.8 Algorithm Analysis

2.8.1 Level representation

Despite the hierarchical representation described above is intuitive, there is another way
to represent the topology, organizing the passageways by levels.
An example is given by Figure 2.13, which shows the same topology used in all the
previous examples (e.g. Figure 2.3). Each node of the graph represents a passageway
and the arcs between two nodes are their bidirectional reachability. This results in less
intuitive representation respect to the previous one, but it has the advantage of keeping
simple the formal analysis of HIRR.
The rules for drawing this graph are the following:

1. each passageway can be connected to just one higher level node;

2. each passageway can share the same higher level node with other nodes from the

same level; when this happens, all the involved nodes are fully connected one to
each other;

3. each passageway can have connections to many nodes from the lower level;

4. connections from non-adjacent levels are not allowed.

The graph obtained applying these rules (e.g. Figure 2.13) has a shape that reminds
a tree, but because of the presence of horizontal connections, the graph is not a tree,
therefore is not possible to use the same terminology.
In this graph a passageway can have one connection to only one higher level node (anal-
ogous to a "father" for the trees), many connections to nodes from the same level (anal-
ogous to the "siblings" for the trees) and many connections to nodes from lower level
(analogous to "children" for the trees).
Note that, from the perspective of each passageway, the union of the passageways in
the same level with the ones in the higher level represents the outer region, while the
passageways in the lower layer represent the home region. The Figure 2.9 shows that
the search strategy creates a spanning tree of this graph and the inter-regional route is
the only existing path between the �rst passageway (i.e., the root of the tree) and the
last passageway.

P
0

P
1

P
2

P
11

P
12

P
13

P
21

P
22

Figure 2.13: In the level representation, the resulting graph is organized
by levels. Each node has visibility of exactly 3 levels called: "same
level", "higher level" and "lower level". For example, from the per-
spective of the node P1 we have that: P2 belongs to its same level, P0

belongs to its higher level and P11, P12 and P13 belong to its lower level.

2.8.2 Derivation

The level representation was useful to derive the �nal version of the exploration strategy.
After conjecturing various rules that allow to each start node to traverse the graph
without cycles, a brute-force program was written to validate the results. The idea is to

create an algorithm capable to visit all the nodes once, by taking advantage of the full
connection between levels.
A minimal version of the exploration strategy is the following:

function searchStrategy(source, priorPassageway)
for each peer in PeerPassagewayList do

if skipForwarding(bundle) then
continue

forwardBundle(peer, bundle)

The goal of the brute force program is to derive a skipForwarding() function that
allows visiting all the nodes once without cycles. We can notice that the domain of the
variables is �nite, therefore is possible to represent the skipForwarding() function as a
truth table. A topology is given as input, and the brute force tries every possible truth
tables. A truth table is considered valid if it represents a function able to visit each node
of the topology without cycles, no matter which is the source or the destination.
In particular, we have:

• The skipForwarding() function returns two values: {true, false}.

• The domain of the peer passageway provenance is: {lower, same, higher}.

• The domain of the prior passageway provenance is: {unknown, lower, same, higher}.

The truth table can be written as a table with three columns, the �rst two for the prior
and peer passageways level and the last one for the outcome of the skipForwarding()
function. As the domain size is 2,3,4 respectively for the output of skipForwarding()
function, peer passageway provenance and prior passageway provenance, the number
of possible truth tables for the skipForwarding() function is 23∗4 = 4096. Since this
number is small, the brute force approach is one of the faster ways to solve the problem.
In the end, it emerged that if the topology is trivial several solutions may exist, but if it
is su�ciently complex only one solution exists. The solution is resumed on the following
truth table.

Prior passageway level Peer passageway level skipForwarding
unknown lower false

unknown same false

unknown higher false

lower lower true

lower same false

lower higher false

same lower false

same same true

same higher true

higher lower false

higher same true

higher higher true

X
2

X
4

X
1

X
3

Figure 2.14: The smallest topology where the brute force gives a general
unique solution.

The �rst observation about this truth table is that the values "same" and "higher" are
always interchangeable. For this reason, we collapsed these two values in only one value.
This observation is the key point that allowed us to de�ne the idea of "home region"
and the "outer region". The home region corresponds to the lower level. The outer
region corresponds to the union between the same and the higher levels. Using these
substitutions, the previous truth table is simpli�ed and it carries the same information
as before.

Prior passageway provenance Peer passageway provenance skipForwarding
unknown outer false

unknown home false

outer outer true

outer home false

home outer false

home home true

Analyzing this new truth table, it becomes clear that the skipForwarding() function
returns true if the prior passageway provenance is equal to the peer passageway prove-
nance, false otherwise.

Chapter 3

JRegion prototype

3.1 Motivations

During the developing of the HIRR algorithm, it was necessary to implement and test
several approaches to the inter-regional routing problem. Unfortunately, current DTN
implementations (including ION) are not designed for rapid prototyping purposes.
In particular, writing experimental code for ION is challenging because:

• ION is written in C, therefore the memory is managed manually;

• the software is complex as it implements a lot of features that are irrelevant to the
development and testing of the inter-regional routing algorithm.

• starting a single node requires to launch several daemons, which implies that start-
ing di�erent nodes on the same machine is a slow process (up to 10 seconds each);
moreover, the total amount of memory is high;

• each node needs its own con�guration �les, which makes the managing of a high
number of nodes impractical.

JRegion is a prototype written in Java speci�cally designed to avoid the problems de-
scribed above.
The main goal of this prototype is to make possible a rapid evaluation of the inter-
regional algorithms that can be implemented on top of CGR. JRegion is not intended
as an alternative DTN implementation and is designed to run all nodes only on a sin-
gle machine. Since we need to simulate several independent DTN nodes using as less
memory as possible and making them easy to create and to destroy, each DTN node is
implemented as a single thread. The communication between threads is made by Java
BlockingQueues, which provide for the producer-consumer synchronization.
Each thread manages an input queue (i.e. its induct) and a list of the input queues of

33

its peer nodes (i.e. its outducts).
As JRegion is not a DTN implementation, these queues are not scheduled and they are
supposed to be always available. At present, the prototype is not able to emulate the
channel intermittencies, but it can be easily extended if necessary. Moreover, the pro-
totype also lacks the CGR implementation, which is replaced by a fake intra-regional
routing algorithm that is always able to reach the desired node (if in the same region).
Of course, if CGR were used, the prototype should also handle the case of a CGR failure.
As the prototype always run on a single machine, an interpreter was designed to dynam-
ically interact with the system. When running, it provides a command line as a user
interface. The interpreter accepts several commands, for example to de�ne the topology,
to add or remove nodes, to send a bundle from a source to a destination etc. It can
also read instructions from a �le, therefore any interaction with the prototype can be
scripted.
JRegion is designed to be highly extensible using Java class inheritance and polymor-
phism. In fact, the prototype contains several experimental inter-regional routing algo-
rithms, among which HIRR was eventually selected thanks to its advantages.
By contrast to ION, the compilation is usually performed in background by the IDE and
its time is negligible. Moreover, e�cient memory management is out of the scope of this
prototype, therefore we can rely on the Java garbage collector without managing the
memory.
The following table resumes the di�erences between ION and JRegion.

ION JRegion
Language C Java
Memory management manual (SDR,PSM, ...) automatic (Java garbage collector)
Compilation time up to a few minutes negligible
Each node runs a set of processes one thread
Memory usage for each node high (few megabytes) low (few kilobites)
Time required to start a node up to 10 seconds few milliseconds
Con�guration di�erent for each node centralized
DTN stack implementation full stack not implemented yet
CGR implementation present not implemented yet
Nodes can be instantiated to same or di�erent machines same machine

3.2 Software architecture

3.2.1 Software model description

• Bundle class: it is a minimal representation of a bundle, which has no payload
and contains only the essential information for the inter-regional routing.

More precisely, it contains:

� a bundle identi�er, stored in the ID attribute;

� references to the source, the destination and the prior passageway, stored
respectively in the source, destination and priorPassageway attributes;

� the bundle type, stored in the type attribute, which can be "DATA" (for
regular bundles) or "BLACKLIST" (for the passageway blacklist messages).

This class declares only the constructor, getter and setter methods.

• Duct class: it is a minimal representation of a duct. As JRegion does not contain
any abstraction regarding contacts, each connection is assumed stable and without
disruption. Even if this may appear as a strong assumption, it may represent a
realistic scenario because the inter-regional routing algorithms are executed on top
of CGR, which is in charge of managing scheduled link intermittency.
This class implements the communication between nodes exchanging bundle class
instances between threads, using the producer-consumer synchronization. In order
to keep the implementation simple, the direction (input or output) of ducts is not
implemented. Each node has a reference to an input queue (i.e. its induct) and also
to a list of output queues (i.e. its outducts). This class has an attribute declared as
a BlockingQueue (which is an interface provided by Java) and it is instantiated by
the concrete class LinkedBlockingQueue, which implements a thread-safe queue
with in�nite capacity. The Duct class has only two methods: receive() and send().
If the queue is empty the receive() method is blocking. As the queue has in�nite
capacity, the send() method is never blocking. This class has no getters and setters
because it manages the access to the only class attribute (queue), which must be
protected from external usages.

• Region class: it is a representation of regions. More precisely, it contains:

� the name of the region, stored in the name private attribute;

� a list of node that belongs to the region, stored in the nodes private attribute.

� a reference to its enclosing region, stored in the enclosingRegion private at-
tribute;

� a list of nested regions, stored in the nestedRegions private attribute;

Despite the fact that regions can be seen as nodes of a tree, to avoid any ambiguity
we will reserve the term "node" to the DTN nodes. Thus, we will use the term
enclosingRegion to refer to the father node of a region (i.e., its encompassing
region), and nestedRegions to the children nodes (i.e., its sub-regions).
This class contains one constructor and multiple getter and setter methods. It also
contains the following methods needed for the region management:

� private void setEnclosingRegion(Region region)

This method sets the enclosing region of the current region.

� public void addNestedRegion(Region region)

This method adds a nested region in the current region.

� public void addNode(Node node)

This method adds a node in the current region.

� public void removeNode(Node node)

This method removes a node from the current region.

• Node class: it is a minimal implementation of a DTN node. In more details, it
contains:

� a node name, in the name private attribute ;

� a reference to its region, in the region private attribute;

� a reference to its induct, in the induct private attribute;

� a list of vents (always empty for the terminal nodes), in the vents private
attribute;

� a blacklist, in the blacklist private attribute;

� a registry of received bundles, in the receivedBundles private attribute;

� a reference to the inter-regional algorithm in use, stored in irrAlgorithm
private attribute.

The Node class is one of the most complex classes in the prototype. Each Node
instance runs a thread that emulates a DTN node: every thread listens on the
node induct waiting for new bundles. When a bundle arrives, it can be processed
in di�erent ways, depending on the situation:

� the bundle is discarded, if it is a duplicate of a bundle previously received;

� the bundle is delivered, if the node match with the bundle destination;

� the intra-regional routing algorithm is called, if the destination belongs to the
same region;

� vice versa, the inter-regional routing algorithm is called, if the destination
does not belong to the same region.

This class contains one constructor, getter and setter methods. It contains also the
following public methods needed for the management of a node:

� public void addVent(Node vent)

This method adds the speci�ed vent in the current node.

� public void removeVent(Node vent)

This method removes the speci�ed vent from the current node.

� public void addBlacklistEntry(Node P, Node N)

This method adds the entry (P,N) in the blacklist of the current node.

� public void clearBlacklist ()

This method deletes all the blacklist entries of the current node.

The incoming bundles are processed with several methods, including the following:

� @Override

public void run()

It is the thread main function, overridden from the Java Thread class. It
contains an in�nite loop that uses the receive() function to retrieve a bundle
from the induct. After the incoming bundle arrival, this function manages
the bundle calling the following methods: standardDataBundleHandling()
interRegionalDataBundleHandling() and blacklistBundleHandling().

� private boolean standardDataBundleHandling(Bundle

bundle)

This method performs the regular bundle processing. It attempts to treat
the incoming bundle as a regular bundle. First, if the current node is the
bundle destination, the bundle is delivered and this function returns true.
Second, it calls the backwardRouteLearning() method. Third, if the des-
tination belongs to the same region of the node, perform the intra-regional
routing algorithm. If all of these attempt fails, the method returns false and
the interRegionalDataBundleHandling() method is called.

� private void interRegionalDataBundleHandling(Bundle

bundle)

This method is called if the regular DTN processing (described above) fails.
Its behavior is described in detail in the "pseudocode" section of the previous
chapter.

� private void

interRegionalBlacklistBundleHandling(Bundle

bundle)

This method is called when a blacklist bundle is received. Its behavior is
described in the "pseudocode" section of the previous chapter.

� private boolean intraRegionalForwarding(Bundle

bundle)

It simulates an intra-regional algorithm (e.g., CGR). If the environment vari-
able HOT_POTATO_ROUTING_ENABLED is set to true, the bundle
is forwarded to a random node within the same region of the current node.
This process is repeated for all the nodes inside the region until the bundle
reaches its destination. By contrast, ifHOT_POTATO_ROUTING_ENABLED
is set to false the bundle is forwarded directly to the destination. This func-
tion returns a success value if the destination node belongs to the same region
of the current node. Otherwise, it returns a failure value.

• IRRAlgorithm class: It is an abstract class used to implement the inter-regional
routing algorithms. Each algorithm concrete instance can be created using the fac-
tory method makeAlgorithm(). The concrete algorithms extend this class over-
riding the missing methods:

� public abstract List <Node >

getDataFloodingNodes(Bundle bundle)

This method returns a list of the vents selected for the bundle data forwarding.

� public abstract List <Node >

getBlacklistFloodingNodes(Bundle bundle)

This method returns a list of the vents selected for the blacklist messages
forwarding after receiving a data bundle.

� public abstract List <Node >

getBlacklistFloodingRecursionNodes(Bundle bundle)

This method returns a list of the vents selected for the blacklist messages
forwarding after receiving a blacklist bundle. This method is basically re-
sponsible for the implementation of the recursions after receiving a blacklist
message.

There is also the isDeadEnd() method used to implement the "auto rediscov-
ery" variant described in the previous chapter. Overriding this method is optional
because it has a default implementation. At present, JRegion contains several con-
crete classes corresponding to all the experimental inter-regional routing algorithms
developed and tested. One of them is called HirrAlgorithm and it implements
the HIRR algorithm presented in this thesis.

3.2.2 Running environment description

• Environment: This class represents the global view of a running instance of the
software managing the declared regions and nodes of a given topology.
The declaration of regions and nodes is realized using two java HashMap at-
tributes. The �rst one, named regions, represents the declared regions within the
environment creating a correspondence between the name of each region and its
corresponding object. The second one, named nodes, represents the declared nodes
within the environment creating a correspondence between the name of each node
and its corresponding object. Since nodes and regions can be added and removed
dynamically from the environment, this class is responsible for keeping coherent
the overall state of the declared nodes and regions. It contains also the following
set of global variables used by the entire program:

� public static boolean HOT_POTATO_ROUTING_ENABLED

If this variable is set to true, the intra-regional routing procedure forwards the
bundle to a random node within the same region. This process is repeated
until the destination is reached. If this variable is set to false, the bundle is
always forwarded directly to the next inter-regional hop or to the destination
(if it belongs to the same region of the current node). This can be used in
order to emulate the CGR routing inside a region. The default value suggested
is false.

� public static boolean BUNDLE_REGISTRY_ENABLED

it is used in order to break the loops. If this variable is set to true, each node
remembers the transit of each bundle. If a bundle arrives twice, it will be
discarded. The default value suggested is true.

� public static boolean BACKWARD_LEARNING_ENABLED

If this variable is set to true the backward learning is performed, it is skipped
otherwise. The default value suggested is true.

� public static boolean AUTO_REDISCOVERY_ENABLED

If this variable is set to true the "auto rediscovery" variant explained in the
previous chapter is enabled, it will be skipped otherwise. The default value
suggested is false.

� public static String IRR_ALGORITHM

It is used for the inter-regional algorithm selection. The available values for
this variable are: treeirr, fctirr and hirr. The �rst two are experimental

algorithms that are not documented in this thesis. They are still present in
JRegion as examples that show how to extend the prototype. For this reason,
hirr is the suggested default value.

� public static long GLOBAL_FORWARDING_DELAY

It is the delay added to each forwarding expressed in milliseconds. The sug-
gested default value is 0 because the prototype provides the same output
results even with bigger values. Higher values can be useful in experiments
regarding the performances in terms of average delivery time.

This class de�nes also several methods to manage the declared regions and nodes:

� public void declareNode(String regionName , String

nodeName)

This method is used to declare a node given its name inside the speci�ed
region.

� public void declareRegion(String name)

This method is used to declare a region given its name.

� public void removeNode(String nodeName)

This method kills the corresponding thread and removes the speci�ed node
from the declared nodes.

� public void destroyRegion(String regionName)

This method recursively removes a region and its nested regions from the
environment. Each node inside the speci�ed region and its nested regions is
also removed from the declared nodes and the corresponding thread is killed.

� public void nestRegions(String external , String

nested)

This method is used to nest a speci�ed region in another one. Both regions
must be previously declared.

� public void addVent(String from , String to)

This methods are used to add a mono-directional vent between nodes belong-
ing to di�erent regions.

� public void addBidirectionalVent(String n1 , String

n2)

This methods are used to add a bidirectional vent between nodes belonging
to di�erent regions.

� public void sendBundle(String from , String to,

boolean waitForDelivery)

This method is used to send a bundle from a previously declared node to
another one. The source node must be previously declared but the destination
may not exist. If blocking parameter is true this command waits for the end
of any interaction before exit, otherwise the method return immediately and
the threads start to work independently.

� public void clearAllBlacklists ()

This method deletes all the blacklist entries of every node in order to be able
to start a new experiment from scratch without restarting the interpreter.

• Interpreter class: The interpreter is an executable class that directly performs
instructions written in a command line prompt or in a script �le, without requiring
them previously to have been compiled. Each instance of this class refers to an
instance of the Environment class, stored in the env attribute.
When the interpreter is started it executes a default con�guration �le called ”default.conf”.
If this �le does not exist the console prints an error message and the execution con-
tinues using an hard-coded con�guration. The core of this class is represented by
the public method called parseInputLine(), which takes the string inputLine as
a parameter. This string is split into two tokens using the space character as a
delimiter: the �rst token corresponds to the name of the command that is exe-
cuted; the second token is the list of parameters. At this point, the interpreter
dynamically invokes a method having the same name of the command using the
Java Re�ection, passing the second token as a parameter. The called method is
in charge to parse the parameter list and to execute the corresponding command
over the environment.
This mechanism allows extending the interpreter by adding new methods. For ex-
ample, if we want to de�ne a new command called test, we just need to add the
method test(String params) to the interpreter class. Inside the method, we can
interact with the environment to implement the behavior of the test command. Af-
ter this, launching the interpreter we will be able to use the test command typing in
the command line (or in a script �le) test parameter1 parameter2 ... parameterN .

3.3 Usage

3.3.1 Interpreter commands

Command: region R1 R2 ... RN

This command is used to declare multiple regions by their name.
The environment is updated with the new references to the speci�ed regions.
Once declared the regions are not connected to each other and they do not contain
any node (see the nest and add commands for this purpose).

Usage example

region R1 R2 R3 R4

This command de�nes 4 regions respectively called R1,R2,R3 and R4

Command: nest RE RN1 RN2 ... RRM

This command is used to nest multiple regions RNx to an enclosing region RE.
Before using the nest command, the speci�ed regions must be previously declared
using the region command.
The environment is updated adding the references to the speci�ed region nesting.

Usage example

region R1 R11 R12 R13
nest R1 R11 R12 R13

After declaring R1, R11, R12 and R13 with the region command, the nest
command set R11,R12 and R13 as sub-region of R1.

Command: add R N1 N2 ... NM

Add inside region R the speci�ed nodes N1, N2, ... NM .
The node declaration is implicit to this command.
For each �rst-declared node, a new Node instance is created and added to the
environment and its thread is immediately executed.

Usage example

region R1 R2
add R1 N1
add R2 N2 N3

The �rst instruction declares the regions R1 and R2.
The node N1 is created and added to the region R1 by the second instruction.
The nodes N2 and N3 are added to the region R2 by the third instruction.

Command: vent Nfrom Nto

This command requires exactly two parameters, named Nfrom and Nto.
It adds a vent from Nfrom to Nto.
This vent is not bidirectional, therefore the vent from Nto to Nfrom is not declared
implicitly.
Nfrom and Nto must belong to di�erent regions.
If a node holds a bidirectional vent toward another node, it is automatically con-
sidered a passageway.

Usage example

region R1 R2
add R1 N1
add R2 N2
vent N1 N2

The �rst instruction de�nes the regions R1 and R2.
The second and the third instructions add respectively the node N1 to R1 and
the node N2 to R2.
The last instruction declares a vent from N1 to N2.
Note that this does not imply the existence of a vent from N2 to N1.

Command: doublevent N1 N2

This command requires exactly two parameters, named N1 and N2.
It adds a bidirectional vent between N1 and N2.
N1 and N2 must belong to di�erent regions.
If a node holds a bidirectional vent toward another node, it is automatically con-
sidered a passageway.

Usage example

region R1 R2
add R1 N1
add R2 N2
doublevent N1 N2

The �rst instruction de�nes the regions R1 and R2.
The second and the third instructions add respectively the node N1 to R1 and
the node N2 to R2.
The last instruction declares a bidirectional vent from N1 to N2. In other
words, this command declares also the vent from N2 to N1.

Command: runscript FileName

This command reads line by line the speci�ed �le, executing sequentially the in-
structions.
runscript accepts the same commands de�ned for the command line prompt. This
command can be used for creating scripts that contain scenario de�nitions and/or
experiments.

Usage example

runscript test_scenario

The �le test_scenario is read line by line, and each line is executed by the
interpreter.

Command: send Source Destination

This command sends a bundle from the Source node to the Destination node.
By contrast of syncsend, this command is not blocking, therefore the interpreter
instantaneously gives back the prompt to the user or to the input script.
The output format is the same as syncsend command.

Usage example

region R1 R2
add R1 N1 N2
add R2 N3 N4 N5
doublevent N1 N3
send N1 N2
� node N1: received DATA from node: USER
� node N2: received DATA from node: N1
� node N2: bundle DELIVERED!!
send N2 N4
� node N2: received DATA from node: USER
� node N1: received DATA from node: N2
� node N3: received DATA from node: N1
� node N4: received DATA from node: N3
� node N4: bundle DELIVERED!!

The �rst command adds the regions R1 and R2. The second and the third add
some nodes to these regions.
The fourth command adds a bidirectional vent between the nodes N1 and N2,
which are now considered as passageways.
The �fth command sends a bundle from N1 to N3, and the last one sends a
bundle from N2 to N4. As the nodes N1 and N2 belong to the same region,
the �rst bundle sending is intra-regional.
By contrast, as the nodes N2 and N4 belong to di�erent regions, the second
bundle sending is inter-regional.
Note that, as the send command is not blocking, both commands runs concur-
rently.

Command: syncsend Source Destination

This command sends a bundle from the Source node to the Destination node.
By contrast of send, this command is blocking, therefore the interpreter waits for
the end of the command before giving back the prompt to the user or to the input
script.
The output format is the same as send command.

Usage example

region R1 R2
add R1 N1 N2
add R2 N3 N4 N5
doublevent N1 N3
syncsend N1 N2
� node N1: received DATA from node: USER bundle ID: 346861221
� node N2: received DATA from node: N1 bundle ID: 346861221
� node N2: bundle DELIVERED!!
syncsend N2 N4
� node N2: received DATA from node: USER bundle ID: 1188392295
� node N1: received DATA from node: N2 bundle ID: 1188392295
� node N3: received DATA from node: N1 bundle ID: 1188392295
� node N4: received DATA from node: N3 bundle ID: 1188392295
� node N4: bundle DELIVERED!!

The �rst command adds the regions R1 and R2. The second and the third add
some nodes to these regions.
The fourth command adds a bidirectional vent between the nodes N1 and N2,
which are now considered as passageways.
The �fth command sends a bundle from N1 to N3, and the last one sends a
bundle from N2 to N4. As the nodes N1 and N2 belong to the same region,
the �rst bundle sending is intra-regional.
By contrast, as the nodes N2 and N4 belong to di�erent regions, the second
bundle sending is inter-regional.
As the syncsend command is blocking, before going on the last command wait
for the end of the execution of the previous one.

Command: kill N

This command terminates the thread related to the N node and remove it from the
environment. The speci�ed node must already exist.

Usage example

region R1
add R1 N1 N2 N3
kill N1
� node N1: Thread exit...

After the �rst two instructions, the region R1 contains three nodes named
respectivelyN1, N2 andN3. The last instruction terminates the thread related
to the node N1 and remove its references from the environment.

Command: remove Region

Destroy recursively a region killing also all the node contained in each one.
The speci�ed region must exist.

Usage example

region R1 R2 R3
nest R1 R2 R3
add R1 N1 N2 N3
add R2 N4 N5
add R3 N6 N7 N8
remove R1
� node N4: Thread exit...
� node N2: Thread exit...
� node N7: Thread exit...
� node N5: Thread exit...
� node N6: Thread exit...
� node N8: Thread exit...
� node N1: Thread exit...
� node N3: Thread exit...

The �rst instruction will de�ne three regions, respectively named R1, R2 and
R3.
The second one will nest R2 and R3 in R1.
The add instructions are adding some nodes within the regions de�ned.
As the remove works recursively, all the nodes related to the region R1 and its
subregions are killed.
The environment is updated removing both nodes and regions involved in the
recursion.

Command: var V ariableName = value

Used to assign change value to the environment variables. The list of the available
variables is described in the previous section.

Usage example

var GLOBAL_FORWARDING_DELAY = 150

Set the global delay to 150 milliseconds.
The environment variable is updated, therefore the changes are applied instan-
taneously.

Command: route

For each node, it prints a human readable output of its blacklist content. This
command does not expect any parameters.

Usage example

var BACKWARD_LEARNING_ENABLED = true
region R0 R1 R2
add R0 90
add R1 91 10 11 12
add R2 92 20 21 22
doublevent 90 91
doublevent 91 92
send 10 20
� node 10: received DATA from node: USER
� node 91: received DATA from node: 10
� node 90: received DATA from node: 91
� node 91: received SIGNAL from node: 90 BLACKLIST node: 20
� node 92: received DATA from node: 91
� node 20: received DATA from node: 92
� node 20: bundle DELIVERED!!
routes
� node 91:
� � 90 HAS BLACKLISTED 10
� � 92 HAS BLACKLISTED 10
� � 90 HAS BLACKLISTED 20

Command: generate

Generate ION con�guration �les representing the same scenario currently in use.
A folder called scenario will contain the resulting output. The previous content of
that folder will be wiped. During this generation, contacts are assumed to always
continue. The goal is to obtain con�guration �les that let ION act exactly as the
JRegion. More realistic scenario can be created using the generated con�gurations
as template.

Usage example

runscript test_scenario
generate

The script test_scenario contains the de�nition of a generic scenario, in terms
of regions, nodes and vents.
After loading the scenario, ION con�guration �les are generated.
The scenario will contain the result.

Chapter 4

HIRR implementation within ION

4.1 ION Overview

The Interplanetary Overlay Network (ION) is an implementation of the DTN architec-
ture developed by NASA Jet Propulsion Laboratory (JPL), described in RFC4838[7]. It
is speci�cally designed for embedded systems, in particular for robotic spacecraft. This
software is the proposed DTN implementation for future space missions, with the aim
of reducing the cost and risk in communications by simplifying the construction of au-
tomated communication networks.
ION is a DTN implementation that is able to work in an interplanetary network envi-
ronment and has been written taking into account the following constraints:

• Link constraints: all interplanetary communications are wireless and they can be
slow and asymmetric. The reason behind this is that the available electrical power
for spacecraft is limited and antennae are small, so emitted signals are usually
weak. This limits the transmission speed from a spacecraft to Earth to bit rates
in the range from 256 kbps to 6 Mbps (higher values can however be reached with
optical links, whose study is on going). Even if the electrical power provided to
transmitters on Earth is much greater, the sensitivity of receivers on spacecraft is
constrained by limited power and the size of the antenna. Because in the previous
missions the volume of command tra�c that had to be sent to spacecraft was less
than the volume of telemetry the spacecraft was expected to return, old spacecraft
receivers have been designed for lower data rates from Earth to the spacecraft, to
bit rates on the order of 1kbps to 2 kbps.

• Processor constraints: the computing capability of the spacecraft CPUs is very
low compared to terrestrial ones. As before, one of the causes is that the spacecraft
have limited electrical power. Another problem is that the deep space environment
is characterized by intense radiations that make impractical the use of regular

53

processors. For this reason, in order to minimize errors in computation and storage,
these processors and the memory must be designed to be tolerant to radiations.
This special treatment is not common for terrestrial application, therefore these
processors are much more expensive than the traditional ones.

• Operating system constraints: in general, the software written for spacecraft
must be highly reliable and have hard real-time processing deadlines, therefore it
runs on hard real-time operating systems. As the processing performed by the
spacecraft must be highly reliable, the result of computations must be predictable.
In this context, the dynamic allocation of memory must be avoided as much as
possible because it can introduce unpredictable e�ects that can compromise the
functionalities of the spacecraft risking the failure of the space mission. In addition,
many real-time operating systems do not support protected-memory models that
are usually present in most of the traditional operating systems. Therefore, all
tasks share the same system memory, which can be accessed directly without any
protection.

4.2 ION Design Principles

4.2.1 Inter-task communication

ION is designed to take advantage of the shared memory model, using it for inter-task
communication purposes. In this way, a data object can be shared between tasks and
the access is regulated by semaphores. Semaphore operations are usually as fast as the
storage and retrieval of data in memory. Therefore, this inter-task data interchange
model is reasonably e�cient for �ight software. The communication between a sending
task and a receiver task is always implemented as following:

• The sending task attempts to take a mutex semaphore. When it succeeds, it
appends the data object to a queue implemented as a linked list in shared memory.
After this, the mutex semaphore is released and a signal is sent (releasing another
semaphore) to announce that the list contains a new element.

• The receiving task, which is waiting for the release of the signal semaphore, resumes
its execution. When this happens, it takes the mutex of the queue and extracts
the object from the list and give the mutex semaphore back.

4.2.2 Zero-copy objects (ZCO)

Another way to take advantage of the shared memory is the usage of zero-copy objects.
Instead of creating multiple copies of the same object for each process, the elements

contained in the linked lists are replaced with pointers. In this way, each object is
instantiated only once. This approach reduces the memory usage and eliminates the
overhead of copying large objects byte-by-byte. If a task needs to access an object, the
pointer is provided and a reference counter variable is increased. A zero-copy object can
be destroyed only if its reference counter goes to zero. This works as a protection against
any attempt to destroy the object while other tasks are using it.

4.2.3 Personal Space Management (PSM)

Even if in principle the memory is completely shared, in ION there is a library called Per-
sonal Space Management (PSM) used to allocate and recover objects within an assigned
memory block of �xed size. PSM is a memory manager that provides an abstraction
that separates the application from the di�erences between private and shared memory.
It is designed to be more e�cient than the common malloc() and free() system calls.

4.2.4 Simple Data Recorder (SDR)

Simple Data Recorder (SDR) is a memory manager similar to PSM that manages the non-
volatile storage. In other words, it is implemented as an "object database" management
system. It provides the functions to manage data structures of arbitrary complexity
in persistent storage, relying on a single �xed-size �le. One of the main goals of SDR
is to provide an abstraction similar to a DBMS. To this end, it provides a transaction
mechanism that guarantees the ACID properties (Atomicity, Consistency, Isolation, and
Durability). The aim of SDR is to maintain consistent the state of a node after an
unexpected crash or reboot.

4.3 HIRR implementation

Although the HIRR algorithm was tested by means JRegion prototype, there are other
practical aspects to consider. For example, the ability of passageways to �ood the
topology without any protection may represent a critical security problem. During
this research activity, a possible solution has been conceived: using a DTN node auto-
con�guration (DNAC) mechanism to manage the insertion of a node inside a region and
exchanging public keys among nodes and passageways using DTKA (Delay-Tolerant Key
Administration).
JRegion prototype, described in Chapter 3, proved essential in fast de�ning the basic
characteristics of the HIRR algorithm. The next step was to integrate HIRR in ION.
Given the complexity of this task, we decided to divide it into two phases. The former
consists in building a preliminary version, a sort of C prototype, to study the interaction
of HIRR with the other protocols present in ION, and in particular with CGR. The

latter in building the de�nitive o�cial implementation, taking advantage of the lessons
learned with the C prototype. The �rst phase has been carried out during this thesis
and is described in this chapter. It is a necessary preliminary step towards the de�nitive
implementation, which will follow in the near future, authored by my NASA supervisor,
like the rest of the ION code.

4.3.1 Forwarding Strategy

Figure 4.1 shows the new forwarding strategy for an outgoing bundle. The scheme uses
a �rst success approach: all the techniques are applied sequentially and the forwarding
procedure ends encountering the �rst success (shown in green). If all the techniques
fail, the bundle is saved into a memory space called limbo with the hope that it can be
reforwarded in the future (e.g., after a contact plan update).
The �rst routing technique is called "sticky routing" and it fails (shown in red) if the
bundle does not have a �ow label. Each �ow label is associated with a preference type
(static or dynamic) and a preferred node number. The e�ect is to forward to the pre-
ferred node indicated by the �ow label if possible, and to forward to the best available
alternative neighbor otherwise. The second routing technique is called "static routing".
A static route is a predetermined route computed by the node administrator (e.g. a
ground station). This step fails if a static route to the destination of the bundle does not
exist. If the destination is cited in the contact plan of the current node, CGR is used.
Otherwise, the HIRR procedures are executed.

Preferential (Sticky) Routing

Static routing (use an exit)

Contact Graph
Routing

CGR

Failed

No

Destination
belongs to

contact plan

Failed

Yes

Limbo

Outgoing
bundles

Success

Success

Failed

Failed

Success

Success Success

… CGR

Hierarchical Inter-Region
Routing

Figure 4.1: New forwarding strategy that includes the hierarchical inter-
regional routing.

4.3.2 HIRR model

The bpP.h �le de�nes the structures required by the bundle protocol implementation. It
has been modi�ed adding the following HIRR structures:

• Provenance: it is an enumeration (enum) that describes the provenance of a peer
passageway. It de�nes three values: Home, Outer or Unknown.
As explained in Chapter 2, the value is: Home if the peer passageway belongs to
the home region of the current passageway; Outer if the peer passageway belongs
to the outer region of the current passageway; Unknown if the peer passageway
is not de�ned (this happens only when the current passageway is the �rst of the
inter-regional route).

• PeerPassageway: it is a structure (struct) that describes the peer passageways.

Each peer is de�ned by a node number and a Provenance. Passageways are the
only nodes that can contain other peer passageways.

• BundleType: it is an enumeration (enum) that describes the inter-regional bundle
type. It de�nes two values: Data or Blacklist.

• BlacklistEntry: it is a structure (struct) that describes the blacklist entries. As
explained in Chapter 2, a blacklist entry is an entry (P,N), where P is a peer
passageway and N is a node, which could also be a passageway. The meaning is:
P has blacklisted N .

The bpP.h �le contains also the BpDB structure, which represents the bundle protocol
con�guration of a node. For example, this structure contains the contact plan, the induct
list, the outduct list etc. SDR contains a singleton instance of this structure, that can
be retrieved by the function getBpConstants(). This structure has been modi�ed to
contain also the following:

• peerPassageways: it is an SDR list of PeerPassageway instances. It represents
the list of all the known peers of the current passageway. Regular nodes should
not declare any peer, otherwise they are treated by HIRR as passageways.

• blacklist: it is an SDR list of BlacklistEntry instances. It represents the list of
all the learned blacklist rules of the current node.

• defaultPwNbr: it is an uvast variable that stores the default passageway node
number.

Both peerPassageways and blacklist are SDR list created in bpInit(), an initialization
function of the bundle protocol de�ned in the �le libbpP.c.

4.3.3 bprc con�guration �le

The program bpadmin is an interpreter used to con�gure the bundle protocol for the
current ION node. It can be run specifying a con�guration �le (bprc) or using the com-
mand line interface. The most important commands allow to de�ne endpoints, inducts
and outducts. See the help (command "h") or the ION manual for more details.
The bpadmin.c �le is being modi�ed to accept also the de�nitions of peer passageways
and the default passageway. The bprc con�guration �le now can contain the following
commands:

• P nodeNbr: this command declares the default passageway of a terminal node.
For example, to de�ne the node 1 as default passageway for the terminal node 2,
the bprc �le of 2 must contain the command "P 1".

• p nodeNbr provenance: this command declares a peer passageway of the current
passageway. The provenance can be "O" to de�ne an Outer region or "H" to de�ne
an Home region. For example, to de�ne the peer passageway 3 in the home region
of the passageway 1, the bprc �le of 1 must contain the command "p 3 H".

4.3.4 ipnfw.c functions

The ipnfw program is a daemon launched by bpadmin in response to the start command
"s" and it is terminated when the interpreter receives the stop command "x". Its goal is
to extract bundles from an output bundle queue and forward the bundle to a proximate
destination after computing the routing procedures. This �le is the core of the routing
strategy in ION. It has been modi�ed to perform HIRR if the current region does not
contain the bundle destination.

Blacklist functions

• i n t b l a c k l i s tCon t a i n s (uvast P, uvast N)

this function returns 1 if the blacklist contains the entry (P,N), 0 otherwise.

• i n t b l a c k l i s tCon t a i n sA l l (uvast N, HIRRProvenance provenances)

this function returns 1 if all peer passageways that belong to the speci�ed provenances
have blacklisted N , 0 otherwise.

• void b lack l i s tAdd (uvast P, uvast N)

this function adds the entry (P,N) to the blacklist.

• void b l a c k l i s tC l e a rDe s t i n a t i o n (uvast N)

this function removes from the blacklist all the entries that have N as blacklisted
destination.

• void b l a c k l i s t P r i n t ()

this function print the blacklist in a human readable format.

Getter and setter functions

• uvast getDefaultPassagewayNbr ()

this function retrieve the BpDB structure contained in SDR and returns the node
number of the default passageway.

• void setIRRvalues (Bundle ∗bundle , uvast priorPwNbr , BundleType type)

this function set the prior passageway number (priorPwNbr) and the bundle type
to the speci�ed input bundle. It must be called before forwarding a replica to
update the HIRR additional information of that bundle.

• uvast getPriorPassageway (Bundle ∗bundle)

this function returns the prior passageway node number of a given bundle.

• uvast getSource (Bundle ∗bundle)

this function returns the source node number of a given bundle.

• uvast ge tDes t ina t i on (Bundle ∗bundle)

this function returns the destination node number of a given bundle.

• BundleType getBundleType (Bundle ∗bundle)

this function returns the type of a given bundle, either Data or Blacklist.

• HIRRProvenance getProvenance (uvast nodeNbr)

this function returns the provenance of a given bundle, which can be Home, Outer
or Unknown.

Utility functions

• i n t regionContainsNode (uvast nodeNbr)

this function returns 1 if the current region contains the speci�ed node, 0 otherwise.

• i n t isDeadEnd (Bundle ∗bundle)

this function returns 1 if none of bundle replicas can not be sent because all the
selected peer passageways have blacklisted the bundle destination, 0 otherwise. It
is used to implement the auto rediscovery variant described in Chapter 2.

Bundle forwarding functions

• void forwardBundleRepl ica (Bundle ∗bundle , uvast nodeNbr)

this function creates a replica of the given bundle and forwards it to the speci�ed
node number using CGR.

• void fo rwardBlack l i s tBund le (Bundle ∗bundle , uvast nodeNbr)

this function creates a blacklist bundle and forwards it to the speci�ed node number
using CGR.

• i n t dataBundleFlooding (Bundle ∗bundle)

this function forwards the bundle replica to all peer passageways that both: a)
have di�erent region provenance respect to the current passageway; B) have not
blacklisted the destination. It returns the total number of forwarded bundles.

• void s igna lBundleF lood ing (Bundle ∗bundle , HIRRProvenance provenances)

this function forwards a blacklist bundle to each passageway belonging to the spec-
i�ed provenances.

HIRR functions

• void interRegionalDataBundleHandl ing (Bundle ∗bundle)

This function performs HIRR for a bundle whose destination does not belong to the
current region. Further details are provided in the pseudocode section of Chapter
2.

• void in t e rReg iona lB lack l i s tBund l eHand l ing (Bundle ∗bundle)

this function is called when a blacklist bundle arrives. If required, it performs the
blacklist bundle recursion. Further details are provided in the pseudocode section
of Chapter 2.

• void backwardLearning (Bundle ∗bundle)

this function implements the backward route learning described in Chapter 2. Fur-
ther details are provided in the pseudocode section of Chapter 2.

Chapter 5

ION Inter-regional Test Suite

5.1 Motivations

In general, testing the HIRR implementation is a challenging task because it is not
possible to conduct meaningful experiments in small topologies. This is not surprising
because HIRR is designed to improve the scalability of CGR partitioning the network in
regions, thus it does not make much sense to perform experiments with small numbers
of nodes and little partitioning. In fact, if our reference topologies had too few nodes
it would not be necessary to use an algorithm like HIRR because there would be no
scalability issues. Testing the HIRR implementation in ION is much harder than JRegion
because, even if we choose a complex topology, we need to cope with other challenges:

• creating the con�guration �les for all the nodes

• starting a large number of nodes

• dynamically adding or removing nodes from the regions

These challenges have revealed the need to create a test suite. It uses one of the ION
features that allows starting several nodes in the same machine without requiring any
virtualization techniques. This approach has signi�cant advantages over the use of virtual
machines or containers in terms of the amount of the memory and CPU needed to cope
with a high number of instantiable nodes. In fact, in an average desktop machine, the
maximum number of nodes that can be run is more or less one hundred. Note that this
number is large compared to the number of nodes that can be run using virtual machines
or containers but is small compared to the number of nodes that can be run in JRegion.
The ION test suite for HIRR testing is composed of several bash scripts, which provides
a subset of commands equivalent to the ones provided by JRegion. The main goal is
to manage the ION nodes in a centralized fashion, similar to the JRegion interpreter.
By contrast with JRegion, the regions are statically de�ned by the contact plans of the

62

nodes. All the con�guration �les used in ION were automatically generated with the
"generate" command of JRegion.

5.2 Scripts

environment.sh

This �le contains the functions to create and maintain the environment. It is conceptually
the equivalent of Environment class of JRegion but it contains only a subset of its
functions for the sake of simplicity.

• bu i ld ()

This function has no parameters. It creates the environment.db �le according to
the con�guration �les of each node in the nodes directory. This �le contains a line
for each node in the topology. Each line contains the region name, the node name
and the default passageway name, each separated by a space.

• getDefaultPassageway ()

This function takes a region name as parameter and prints the name of the default
passageway node of the considered region.

• addNode ()

This function takes a region name and a node name as parameters. After deducting
the default passageway from the region name, it inserts a line in the environment.db
containing the given region, node name and the deducted default passageway.

• deleteNode ()

This function takes a node name as parameter and deletes from the environment.db
�le the corresponding line (if exists).

• getRegionNodeList ()

This function takes a region name as parameter. It scans the environment.db �le
and prints all the node names having the given region name as �rst word of the
lines.

• whereIs ()

This function takes as parameter a node name and prints the name of its corre-
sponding region.

• pr in t ()

This function has no parameters and prints the content of environment.db �le.

• getNodes ()

This function has no parameters and prints all the node names contained in the
environment.db �le.

start.sh

This script is used to start multiple ION nodes. If it is run without parameters starts
all nodes contained the nodes folder. Alternatively, a list of node names separated by
spaces can be passed as parameters. In this case, only the speci�ed nodes are started.
Each node is started using the only function contained in this script: startNode(). This
function takes a node name as a parameter and starts the corresponding node in the
nodes folder. It terminates with a success state only after the speci�ed node is correctly
started, or with an error if an error occurred.
Starting a single ION node may require up to 10 seconds, therefore starting sequentially
a bunch of nodes may be a problem if the number of nodes to be started is large. For
this reason, the start.sh script runs in parallel the starting function of each node and it
ends when all the nodes are being started correctly. If an error occurred in at least one
of the startNode() executions, the script brutally terminates printing an error message.

send.sh

This script is used to send a test-�le from a source to a destination. It is similar to the
JRegion send command. This script takes two parameters as input: the �rst is the node
name of the source node, the second is the node name of the destination node. After the
test-�le is sent, this script is blocking until the destination node receives the �le.

add.sh

This script is used to add a node into an existing region. It is similar to the JRegion
add command. It requires exactly two input parameters: the node name and the region
name. If the speci�ed node does not exist, it will be created. If the speci�ed region does
not exist, the script terminates giving an error message. In order to create a new node,
its ION con�guration �les are automatically generated. After creating (or reintroducing)
a node into a region, this script updates the con�guration of all nodes belonging to the
speci�ed region adding the missing contacts between them and the speci�ed node. If the
whole process succeeds, the environment is updated with the information regarding the
speci�ed node.

kill.sh

This script is used to remove the speci�ed node from its region. It is analogous to the
JRegion kill command, but it presents some di�erences: JRegion kills the thread that
represents the speci�ed DTN node and it removes all its references from the environment;
on contrary this script removes every reference (e.g., contacts, outducts, plan, etc.) to
the speci�ed node but does not kill its processes. In other words, the speci�ed node is
removed isolating it from the rest of its region. This decision was made to simplify the
reintroduction of the same node to another region using the add.sh script.

5.3 Experiments

5.3.1 Scenario

The following tests are conducted with the same topology introduced in Figure 5.1. This
topology is equal to the topology shown in the previous examples, with the di�erence
that the passageway names are numerical. Each region has 3 terminal nodes and one
border passageway.
To interpret rapidly the results we used the following naming conventions:

• the region name of a nested region is equal to the enclosing region name followed
by a progressive number. For example, the name of regions nested inside R1 are
R11, R12, R13, etc.

• the border passageway node number is 9 followed by the region number. For
example, the node number of the passageway on the border of region R13 is 913.

• the name of a node is equal to the region number followed by a progressive number.
For example, the number of nodes in region R21 are 211, 212, 213, etc.

These name conventions give us the advantage of knowing the information of the prove-
nance of each node by looking at its node name.

R
0

R
1

 R
2R

12

 R

13

 R
11

 R
21

R
22

913

 912

90

92 91

 921
 922

 911

111
112

113

121

122

123

132

131 133

11

12

13

1

2

3

22

21

23

211
212

213

221 223
222

Figure 5.1: Topology used for testing. Passageways are represented as
red dots and terminal nodes are represented as gray dots. Each region
has 3 terminal nodes and one border passageway.

5.3.2 JRegion and ION con�guration �les

The topology described in Figure 5.1 is de�ned by the following JRegion con�guration
�le. After loading this con�guration in JRegion, we have generated the equivalent ION
con�guration �les using the generate command.

environment v a r i a b l e s
var HOT_POTATO_ROUTING_ENABLED = f a l s e
var BUNDLE_REGISTRY_ENABLED = true
var GLOBAL_FORWARDING_DELAY = 0
var BACKWARD_LEARNING_ENABLED = true
var AUTO_REDISCOVERY_ENABLED = f a l s e
var IRR_ALGORITHM = h i r r

#reg i on s
r eg i on R0 R1 R2 R11 R12 R13 R21 R22

#nest enc lo s ingReg ion nestedR1 nestedR2 nestedR3 . . .
nes t R0 R1 R2
nest R1 R11 R12 R13
nest R2 R21 R22

#add Region Node1 Node2 Node3 . . .
add R0 2 3 4
add R1 11 12 13

add R2 21 22 23
add R11 111 112 113
add R12 121 122 123
add R13 131 132 133
add R21 211 212 213
add R22 221 222 223

#passageways
add R0 90
add R1 91
add R2 92
add R11 911
add R12 912
add R13 913
add R21 921
add R22 922

#vent Node1 Node2 −> #add a monod i r ec t i oa l vent from Node1 to Node2
#doublevent Node1 Node2 −> #add a b i d i r e c t i o n a l vent between Node1 ad Node2

#R0
doublevent 90 91
doublevent 90 92
doublevent 91 92

#R1
doublevent 91 911
doublevent 91 912
doublevent 91 913
doublevent 911 912
doublevent 911 913
doublevent 912 913

#R2
doublevent 92 921
doublevent 92 922
doublevent 921 922

5.3.3 Experiment 1

The goal of this experiment is to show the behavior of both JRegion and ION sending
a bundle from a source node in region R11 and a destination node in region R22, as
shown in Chapter 2 at Figures 2.4, 2.5, 2.6 and 2.7. This experiment terminates with
a success value if the behavior of passageways matches with the cited �gures, a failure
otherwise. The following outputs con�rm the success of this experiment: a bundle replica
is propagated to the entire topology and the passageways not involved in the inter-

regional route send back a blacklist message, as expected from the cited �gures. After
this experiment, the passageways have learned the unique inter-regional route between
the two nodes. Note that the order of the output lines is not predictable, but the content
is the same in both cases.

JRegion

send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 913 : r e c e i v ed DATA from node : 911
node 912 : r e c e i v ed DATA from node : 911
node 90 : r e c e i v ed DATA from node : 91
node 92 : r e c e i v ed DATA from node : 91
node 911 : r e c e i v ed SIGNAL from node : 913 BLACKLIST node : 222
node 91 : r e c e i v ed SIGNAL from node : 90 BLACKLIST node : 222
node 921 : r e c e i v ed DATA from node : 92
node 922 : r e c e i v ed DATA from node : 92
node 911 : r e c e i v ed SIGNAL from node : 912 BLACKLIST node : 222
node 222 : r e c e i v ed DATA from node : 922
node 222 : bundle DELIVERED ! !
node 92 : r e c e i v ed SIGNAL from node : 921 BLACKLIST node : 222
−−−
Experiment 1 passed .

ION

. / send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 913 : r e c e i v ed DATA from node : 911
node 912 : r e c e i v ed DATA from node : 911
node 90 : r e c e i v ed DATA from node : 91
node 92 : r e c e i v ed DATA from node : 91
node 911 : r e c e i v ed SIGNAL from node : 913 BLACKLIST node : 222
node 911 : r e c e i v ed SIGNAL from node : 912 BLACKLIST node : 222
node 922 : r e c e i v ed DATA from node : 92
node 921 : r e c e i v ed DATA from node : 92
node 222 : r e c e i v ed DATA from node : 922
node 222 : BUNDLE DELIVERED!
node 92 : r e c e i v ed SIGNAL from node : 921 BLACKLIST node : 222
node 91 : r e c e i v ed SIGNAL from node : 90 BLACKLIST node : 222
−−−
Experiment 1 passed .

5.3.4 Experiment 2

The goal of this experiment is to show that if we repeat twice the same operation of
the �rst experiment, the second bundle follows the unique inter-regional route between
the source and the destination, as already shown in the Chapter 2 at Figure 2.3. The
experiment terminates with a success value if the second bundle follows the unique inter-
regional route without generating blacklist bundles, a failure otherwise. The following
outputs shows the experiment success in both JRegion and ION.

JRegion

send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 913 : r e c e i v ed DATA from node : 911
node 912 : r e c e i v ed DATA from node : 911
node 90 : r e c e i v ed DATA from node : 91
node 92 : r e c e i v ed DATA from node : 91
node 911 : r e c e i v ed SIGNAL from node : 913 BLACKLIST node : 222
node 91 : r e c e i v ed SIGNAL from node : 90 BLACKLIST node : 222
node 921 : r e c e i v ed DATA from node : 92
node 922 : r e c e i v ed DATA from node : 92
node 911 : r e c e i v ed SIGNAL from node : 912 BLACKLIST node : 222
node 222 : r e c e i v ed DATA from node : 922
node 222 : bundle DELIVERED ! !
node 92 : r e c e i v ed SIGNAL from node : 921 BLACKLIST node : 222

send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 92 : r e c e i v ed DATA from node : 91
node 922 : r e c e i v ed DATA from node : 92
node 222 : r e c e i v ed DATA from node : 922
node 222 : bundle DELIVERED ! !

−−−
Experiment 2 passed .

ION

. / send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 913 : r e c e i v ed DATA from node : 911
node 912 : r e c e i v ed DATA from node : 911

node 90 : r e c e i v ed DATA from node : 91
node 92 : r e c e i v ed DATA from node : 91
node 911 : r e c e i v ed SIGNAL from node : 913 BLACKLIST node : 222
node 911 : r e c e i v ed SIGNAL from node : 912 BLACKLIST node : 222
node 922 : r e c e i v ed DATA from node : 92
node 921 : r e c e i v ed DATA from node : 92
node 222 : r e c e i v ed DATA from node : 922
node 222 : BUNDLE DELIVERED!
node 92 : r e c e i v ed SIGNAL from node : 921 BLACKLIST node : 222
node 91 : r e c e i v ed SIGNAL from node : 90 BLACKLIST node : 222

. / send 111 222
node 111 : r e c e i v ed DATA from node : USER
node 911 : r e c e i v ed DATA from node : 111
node 91 : r e c e i v ed DATA from node : 911
node 92 : r e c e i v ed DATA from node : 91
node 922 : r e c e i v ed DATA from node : 92
node 222 : r e c e i v ed DATA from node : 922
node 222 : BUNDLE DELIVERED!

−−−
Experiment 2 passed .

5.3.5 Experiment 3

The goal of this experiment is to check the global behavior of HIRR. It has two steps:
the �rst one consists in sending a bundle between all the possible pairs of source and
destination in the topology to learn all the existing inter-regional routes; the second step
consists in repeating the same procedure and check if all the bundles follow the unique
inter-regional route between each pair of source and destination. The experiment fails
if during the second step there is at least one bundle that follows multiple inter-regional
routes or there is a passageway that sends blacklist bundles. The test terminates with
a success message if no anomaly has been detected. As this experiment requires to send
a large number of bundles, the output is too much verbose and it is not shown in this
document. The outcome was positive and the ION output matches with the JRegion
one (except for the order because it is not predictable).

5.3.6 Experiment 4

The goal of this experiment is to check the validity of every possible route. It sends
a bundle between two nodes twice: the �rst sending is used to learn the unique inter-
regional route between the nodes, the second is used to check immediately if it was
learned correctly. The experiment fails if during the second step the bundle follows
multiple inter-regional routes or there is a passageway that sends blacklist bundles. These
two steps are repeated for each possible pair of source and destination in the topology.

The test terminates with a success message if no anomaly has been detected. Like the
previous experiment, it sends a large number of bundles and the output is too much
verbose, therefore is not reported in this document. The outcome was positive and
the ION output matches with the JRegion one (except for the order because it is not
predictable).

Conclusions

This work was carried out at NASA Jet Propulsion Laboratory located in Pasadena,
California, under the Visiting Student Research Program (VSRP). It concerns Inter-
Planetary Networking (IPN), which is a particular application case of Delay/Disruption
Tolerant Networking (DTN) architecture, based on the introduction of the Bundle Pro-
tocol. In particular, it is focused on the problem of routing and describes a possible way
to solve the Contact Graph Routing (CGR) scalability problem using an Inter-Regional
Routing (IRR) approach.
The proposed solution, named Hierarchical Inter-Regional Routing (HIRR), exploits the
idea of region nesting in a hierarchical topology. Here, each DTN node is assigned to
an administrative region where bundles can move from a region to the next by passing
through special nodes that belong to two regions, called passageways. These nodes learn
the next inter-regional leg to the path to the destination, by using a �ooding-based mech-
anism. Once the path is learned, the cost of successive inter-regional routing decisions
increases linearly with the number of nodes present in the topology.
In order to support a fast HIRR development, the algorithm was initially implemented
as a Java prototype named JRegion. Later, when the algorithm became mature enough,
we decided to build a proof-of-concept implementation of HIRR within the latest ION
release (3.6.2, Nov 2018). Finally, we carried out a series of tests to prove the correct-
ness of both implementations. The preliminary results show that the CGR scalability
problem is virtually solved at the price of some bandwidth wasting in the preliminary
phase when inter-regional routes are learned, and of an optimality reduction of the routes
found with respect of global use of CGR.
The solution proposed and studied in this thesis has been positively accepted by my
NASA mentor, Scott Burleigh, and will be further investigated by his research team
with the development of a new implementation with a greater degree of integration with
other ION components. My hope is that the work carried out in this thesis can be useful
for future space missions.

72

Acknowledgments

First of all, I would like to thank my thesis supervisor Carlo Caini, a professor from
the University of Bologna. During the last years, he involved me in his DTN research
activities and gave me precious suggestions for my student career. Over time he became
more than a professor: for me he is a guide, a mentor and a friend. Last but not least,
he gave me the opportunity to carry out my thesis work in California at NASA Jet
Propulsion Laboratory, which was the most important experience of my life. Words are
never enough to express my gratitude.
I would like to express my appreciation to my JPL mentor Scott Burleigh and co-mentor
Leigh Torgerson for giving me the opportunity to work with them at JPL and helping
me with this thesis project.
I also would like to thank my o�ce mate Marc Sanchez Net for our discussions that
helped me to improve the quality of this work.
Another thanks goes to Michele Rodol� for giving me precious advice on how to manage
my stay in Pasadena.
Finally, I would like to thank all the friends I met here, who made my abroad experience
in California unforgettable.

73

Bibliography

[1] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini, M. Feld-
mann, M. Marchese, J. Segui, and K. Suzuki. Contact graph routing in dtn space
networks: overview, enhancements and performance. IEEE Communications Mag-
azine, 53(3):38�46, March 2015.

[2] N. Bezirgiannidis, C. Caini, D. D. P. Montenero, M. Ruggieri, and V. Tsaoussidis.
Contact graph routing enhancements for delay tolerant space communications. pages
17�23, Sept 2014.

[3] N. Bezirgiannidis, C. Caini, and V. Tsaoussidis. Analysis of contact graph routing
enhancements for dtn space communications. International Journal of Satellite
Communications and Networking, 34(5):695�709.

[4] S. Burleigh, V. Cerf, R. Durst, K. Fall, A. Hooke, K. Scott, and H. Weiss. The
interplanetary internet: A communications infrastructure for mars exploration. Acta
Astronautica, 53(4):365 � 373, 2003. The New Face of Space Selected Proceedings
of the 53rd International Astronautical Federation Congress.

[5] C. Caini, P. Cornice, R. Firrincieli, M. Livini, and D. Lacamera. Analysis of tcp
and dtn retransmission algorithms in presence of channel disruptions. In 2009 First
International Conference on Advances in Satellite and Space Communications, pages
174�179, July 2009.

[6] C. Caini, H. Cruickshank, S. Farrell, and M. Marchese. Delay- and disruption-
tolerant networking (dtn): An alternative solution for future satellite networking
applications. Proceedings of the IEEE, 99(11):1980�1997, Nov 2011.

[7] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and
H. Weiss. Delay-tolerant networking architecture. RFC 4838, RFC Editor, April
2007.

[8] K. Fall. A delay-tolerant network architecture for challenged internets. In Pro-
ceedings of the 2003 Conference on Applications, Technologies, Architectures, and

74

Protocols for Computer Communications, SIGCOMM '03, pages 27�34, New York,
NY, USA, 2003. ACM.

[9] Y. Rekhter, T. Li, and E. S. Hares. A border gateway protocol 4 (bgp-4). RFC
4271, RFC Editor, January 2006.

[10] K. Scott and S. Burleigh. Bundle protocol speci�cation. RFC 5050, RFC Editor,
November 2007.

