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Sommario

I buchi neri acustici sono l’analogo sonoro dei buchi neri gravitazionali. La
loro base teorica è l’analogia formale tra due tipi di equazione d’onda: quella per
la perturbazione del potenziale della velocità in un fluido non viscoso e inomo-
geneo e quella per un campo scalare in uno spazio-tempo curvo. Nel presente
lavoro, in primo luogo vengono introdotti gli elementi fondamentali della Rela-
tività Generale. In secondo luogo, vengono mostrate la metrica di Schwarzschild
e la sua rappresentazione nelle coordinate di Painlevé-Gullstrand. Successiva-
mente, la parte principale di questa tesi è dedicata alla derivazione della metrica
acustica e allo studio di buchi neri acustici a simmetria sferica o unidimensionali.
Per quanto riguarda questi ultimi, viene illustrato l’ugello di Laval, essendo un
possibile modello per realizzare sperimentalmente buchi neri acustici.





Abstract

Acoustic black holes are the sonic analogue of gravitational black holes. Their
theoretical basis is the formal analogy between two types of wave equation: the
one for the velocity potential perturbation in a non-homogeneous inviscid fluid
and the one for a scalar field in a curved space-time. In the present work, firstly
the basics of General Relativity are introduced. Secondly, the Schwarzschild
metric and its representation in the Painlevé-Gullstrand coordinates are shown.
Then, the main part of this thesis is dedicated to the derivation of the acoustic
metric and to the study of spherically-symmetric or one-dimensional acoustic
black holes. Concerning these last ones, the de Laval nozzle is depicted, being a
possible model to realize acoustic black holes experimentally.
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Introduction

The aim of this bachelor thesis is to describe the fundamental aspects of black
holes hydrodynamics. This branch has its foundations on the formal analogy
between the behaviour of acoustical disturbances in a non-homogeneous invis-
cid fluid and the wave propagation in a curved space-time. First of all, this
requires an overview of the basic elements of Einstein’s General Relativity, to
which Chapter 1 is dedicated. It begins with a discussion about the Equivalence
Principle, whose one of the main consequences is the geodesics equation. We
then deal with two postulates of General Relativity, that are the Principles of
General Relativity and General Covariance, which both lead to the necessity of
general tensorial physical equations. The first chapter ends with further geo-
metrical considerations about space-time curvature and with the derivation of
Einstein field equations.

In Chapter 2 we shall concentrate on a specific solution to Einstein field equa-
tions, that is the Schwarzschild metric for a spherically-symmetric gravitational
source. After its derivation, we will study the physical phenomena occuring at
the Schwarzschild radius, which results to be a coordinate singularity. For this
reason, in the following section we will introduce the Painlevé-Gullstrand coor-
dinate system, which permits to write the Schwarzschild metric in such a way
to eliminate this coordinate singularity. Chapter 1 and 2 will provide a solid
background for the last chapter.

Chapter 3 is the core of this thesis. We will start by recalling the funda-
mental equations of fluid dynamics, that are the continuity equation and Euler’s
equation. In the second section, the first order perturbative expansion of these
equations will be described. This leads to their linearization, which will result in
the wave equation for the velocity potential perturbation in a non-homogeneous
inviscid fluid. This equation will end up determining the propagation of sound
in such fluid and presenting the same formal structure as the wave equation in
curved space-time. In the following, this correspondence will be deepened up
to obtain the so-called acoustic metric. Theoretically, this represents the only
metric to which sound waves couple, thus showing an analogous behaviour to a
scalar field propagating in a Lorentzian space-time manifold. Furthermore, by

i



means of the Painlevé-Gullstrand coordinates, we will observe how the acous-
tic metric conformally achieves reproducing the Schwarzschild space-time for a
spherically-symmetric massive source.

The last section of Chapter 3 plays a significant experimental role. We will
provide an example of one-dimensional acoustic black hole realization, known
as de Laval nozzle. It is a converging-diverging nozzle in which sound waves
behave analogously to electromagnetic waves when subject to an hypothetical
one-dimensional gravitational black hole. This confirms the theoretical frame-
work depicted in the previous sections. Finally, this thesis concludes with an
appendix where a mathematical proof of the wave equation in curved space-time
is given.
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Chapter 1

Introduction to General Relativity

In this chapter we shall provide an overview of the basic concepts of Einstein’s
General Theory of Relativity. This will give us a sufficient base to introduce
the Schwarzschild solution to Einstein field equations and its representation in
Painlevé-Gullstrand coordinates in the next chapter.

1.1 Equivalence Principle and geodesics equation

Einstein’s General Theory of Relativity was invented as an attempt to extend
Newton’s theory of gravity in the framework of Special Relativity. However, this
theoretical project appeared impossible quite immediately. Indeed, Newtonian
gravity is described by the Poisson’s law

∇2φ = 4πGρ, (1.1.1)

where φ denotes the gravitational potential, ρ the matter density and G the
Newtonian constant of gravitation. Being a non-tensorial equation, this equation
can be shown not to be covariant under Lorentz transformation. Furthermore,
let us consider the relativistic tensorial form of Maxwell’s equations in terms of
the 4-potential Aµ and the 4-current Jµ in the Lorentz gauge

2Aµ =
4π

c
Jµ. (1.1.2)

Unlike this, Poisson’s equation for gravity (1.1.1) contains the Laplace opera-
tor ∇2, which is only a spatial differential operator. Therefore, this implies an
instant interaction, thus not leading to an interaction propagating at a finite
speed, as required by Special Relativity. Such problems motivated Einstein to
develop a completely new field theory for gravity, no longer inside the framework
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CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY
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Figure 1.1.1: A system P* of free-falling particles in the Earth gravitational field.
S denotes a reference frame comoving with the Earth and can be assumed to be
inertial. On the other hand, S ′ stands for a free-falling reference frame. S ′ is not
inertial in Newtonian gravity, while it is considered inertial in General Relativity.

of Special Relativity. Finally, he came up with an innovative and more general
description of space-time itself.

A core element of General Relativity is the Equivalence Principle. Its base is
the experimental equality between inertial massm(i) and gravitational massm(g).
Let us consider the Earth gravitational field as homogeneous and a system of free-
falling particles (Figure 1.1.1) . The reference frame comoving with the Earth
can be assumed to be inertial, neglecting rotational effects. Then, Newton’s
equation of motion for the N -th particle is

m
(i)
N

d2~xN
dt2

= m
(g)
N ~g. (1.1.3)

We shall now perform the non-galileian coordinate transformation{
~x′ = ~x− 1

2
~g t2

t′ = t
. (1.1.4)
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1.1. EQUIVALENCE PRINCIPLE AND GEODESICS EQUATION

Then, the equation of motion becomes

m
(i)
N

d2~x′N
dt2

+��
��

m
(i)
N ~g = �

���
m

(g)
N ~g, (1.1.5)

being m(i)
N = m

(g)
N . This means that gravity cannot be detected in a free-falling

reference frame, since everything in the frame is subject to the same homogeneous
gravitational force.

Let us now consider a parallel situation. We assume no gravity and an inertial
reference frame K where some particles are at rest. We now define a reference
frame K ′ through the same non-galileian coordinate transformation (1.1.4) (Fig-
ure 1.1.2)

K → K ′ ⇒

{
~x = ~x′ + 1

2
~g t2

t = t′
,

where now ~g is the acceleration owed by K ′ with respect to K.

g
x

K

K'

P*

Figure 1.1.2: A system P* of particles in the absence of gravity. K denotes an
inertial reference frame in which the particles are at rest. On the other hand,
K ′ stands for a reference frame moving upward with acceleration ~g with respect
to K. K ′ is not inertial in Newtonian gravity but it conveys the same physical
description as the inertial reference frame S in Figure 1.1.1.
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CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

Since for the N -th particle d2~xN
dt2

= 0 holds (it is at rest in K), in K ′ we have
d2~x′N
dt2

= −~g. This means in that frame the particles are perceived as being accel-
erated downward, just as though they were subject to gravity. As a consequence,
we infer the following duality between the two systems we have shown

• the inertial frame in the first case is equivalent to the non-inertial frame in
the second case,

• the non-inertial frame in the first case is equivalent to the inertial frame in
the second case.

Therefore, from an operational point of view, the best definition of inertial refer-
ence frame is a freely falling frame in a homogeneous gravitational field, in that
there are no other reliable ways to screen gravity. Finally, we are now able to
state the Equivalence Principle:

Equivalence Principle In an arbitrary gravitational field, for every space-
time point there exists a sufficiently small neighbourhood where

• the field can be approximated as homogeneous,

• a freely falling reference frame can be defined that locally acts as an inertial
frame where Special Relativity holds.

From this discussion, we deduce that Special Relativity holds only locally,
since a global inertial reference frame cannot be defined if the field is non-
homogeneous. Indeed, Special Relativity must be regarded as a valid framework
only within inertial reference frames in the absence of gravity.

Secondly, gravity acts as an inertial force and emerges in the transition from
a free-falling (i.e. inertial) reference frame to a non-inertial reference frame1.
As concerns this aspect, the Equivalence Principle has the remarkable property
to convey an algorithm to describe gravitational forces in a certain non-inertial
reference frame. We first need to write the physical equations for a specific sys-
tem in an inertial reference frame according to Special Relativity. Thereafter,
we perform the general coordinate transformation to the non-inertial reference
frame and we obtain the correct equations of motion in the presence of gravity.

Let us now see a significant example of it, which is a system of free-falling
particles in a gravitational field. {ξα} denote the space-time coordinates of the

1The only gravitational effects a free-falling observer can measure are tidal forces.
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1.1. EQUIVALENCE PRINCIPLE AND GEODESICS EQUATION

locally inertial reference frame, and {xα} the space-time coordinates of the lab-
oratory reference frame. In the freely falling frame the relativistic tensorial form
of Newton’s dynamical equations is

dPα

ds
= Kα = 0, (1.1.6)

where Pα denotes the 4-momentum, Kα the 4-force and s the invariant proper
time under Lorentz transformation (ds2 = ηµν dξ

µ dξν , ηµν ≡ diag(−1,+1,+1,
+ 1) is the Minkowski metric). If a massive particle has vanishing 4-momentum,
its 4-acceleration will be vanishing as well

dPα

ds
= 0 ⇒ d2ξα

ds2
= 0. (1.1.7)

Now we perform the coordinate transformation to the laboratory frame

d

ds

(
∂ξα

∂xµ
dxµ

ds

)
=
∂ξα

∂xµ
d2xµ

ds2
+

∂2ξα

∂xµ∂xν
dxµ

ds

dxν

ds
= 0, (1.1.8)

and multiplying both hand sides by ∂xλ

∂ξα
we obtain the following equation of

motion
d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0. (1.1.9)

Γλµν ≡ ∂xλ

∂ξα
∂2ξα

∂xµ∂xν
is defined affine connection and depends only on coordinate

transformation. That is why Γλµν
dxµ

ds
dxν

ds
is an acceleration term that encodes the

inertial forces from gravity acting on the particle.
If we were supposed to deal with massless particles (i.e. light propagation),

their trajectories would have ds2 = 0 identically. Therefore, in the freely falling
reference frame they would have to be parametrized by a different parameter q

d2ξα

dq2
= 0. (1.1.10)

Analogously, by performing the same coordinate transformation as previously,
we obtain

d2xλ

dq2
+ Γλµν

dxµ

dq

dxν

dq
= 0. (1.1.11)

The trajectories which are solutions to equation (1.1.9) (or (1.1.11)) are called
geodesics and the corresponding equation (1.1.9) (or (1.1.11)) is then called
geodesics equation. This entails that in a gravitational field both massive parti-
cles and light travel along geodesics, which are not straight lines in general. This
fact has also an impact on the causal structure of space-time, since light cones
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CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

are deformed by gravity. The metric tensor ηαβ itself changes. It undergoes a
general coordinate transformation:

ds2 = ηαβ dξ
α dξβ = ηαβ

∂ξα

∂xµ
dxµ

∂ξβ

∂xν
dxν = gµν dx

µ dxν , (1.1.12)

where gµν ≡ ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
is the metric tensor in the general coordinates frame and

is a (0,2) tensor. It can be proven such definition of ds2 preserves its property of
being a scalar under general coordinate transformations as well.

By looking at the form of the affine connection Γλµν and the general metric
gµν , we observe they are given in terms of second derivatives of {ξα} and first
derivatives of {ξα} respectively. Therefore, we may grasp the general metric can
be expressed as derivatives of the affine connection, which encodes the gravita-
tional force once multiplied for a mass. As a consequence, the general metric
gµν plays the role of potential for gravity in General Relativity. Moreover, in a
metric manifold the affine connection can be expressed in terms of the metric
itself in such a way

Γλµν =
1

2
gλρ
(
∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)
. (1.1.13)

1.2 Principle of General Relativity and Principle of Gen-
eral Covariance

One of the postulates General Relativity is based on is the Principle of General
Relativity

Principle of General Relativity All reference frames are equivalent, that
is, physical equations must be covariant under general coordinate transforma-
tions.

It is an extension of the Principle of Special Relativity, according to which iner-
tial observers were a kind of preferred reference frames. In order to accomplish
this new principle, physical equations then need to be written in tensorial form.
Unlike Special Relativity, tensors definition in General Relativity has to deal
with general coordinate transformations and not only Lorentz ones. Once an
equation is formulated in a specific frame by means of general tensors, then that
equation holds for any observer and the Principle of General Relativity is fulfilled.
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1.2. PRINCIPLE OF GENERAL RELATIVITY AND PRINCIPLE OF GENERAL
COVARIANCE

Despite its notation, the affine connection is not a tensor. Indeed, we saw in
a local inertial frame Γλµν = 0 and gravity is screened, whereas in a general coor-
dinate frame Γλµν 6= 0 and gravitational forces arise. Nevertheless, the geodesics
equation can be shown to be tensorial, even though it contains the affine con-
nection. We then infer that in the geodesics equation there appears a particular
combination of differential operators such that, once applied to a tensor, the re-
sult is again a tensor. On the one hand, by computing Γ

′λ
µν as associated to the

general coordinate transformation ξα ↔ x
′α, we obtain

Γ
′λ
µν =

∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x

′λ

∂xρ∂xσ
. (1.2.1)

If we contract Γ
′λ
µν with a transformed contravariant 4-vector V ′µ, we have

Γ
′λ
µν V

′µ =

[
∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x

′λ

∂xρ∂xσ

]
∂x
′µ

∂xη
V η =

=
∂x
′λ

∂xρ
∂xσ

∂x′ν
Γρτσ δ

τ
η V

η − ∂xρ

∂x′ν
∂2x

′λ

∂xρ∂xσ
δση V

η =

=
∂x
′λ

∂xρ
∂xσ

∂x′ν
Γρτσ V

τ − ∂xρ

∂x′ν
∂2x

′λ

∂xρ∂xσ
V σ

(1.2.2)

On the other hand, the derivative of a transformed contravariant 4-vector V ′µ
results in

∂V
′µ

∂x′λ
=

∂

∂x′λ

(
∂x
′µ

∂xν
V ν

)
=
∂x
′µ

∂xν
∂xρ

∂x′λ
∂V ν

∂xρ
+

∂2x
′µ

∂xν∂xρ
∂xρ

∂x′λ
V ν , (1.2.3)

which shows that partial derivatives of tensors are not tensors in general. We
observe that the second addend in equation (1.2.2) and the one in (1.2.3) are
the same with opposite sign. That addend is precisely the term preventing both
Γλµν V

µ and ∂V µ

∂xλ
from being tensors. As a consequence, by summing (1.2.2)

and (1.2.3), we obtain

∂V
′µ

∂x′λ
+ Γ

′µ
kλ V

′k =
∂x
′µ

∂xν
∂xρ

∂x′λ
∂V ν

∂xρ
+

���������∂2x
′µ

∂xν∂xρ
∂xρ

∂x′λ
V ν+

+
∂x
′µ

∂xν
∂xρ

∂x′λ
Γντρ V

τ −
���������∂2x

′µ

∂xν∂xρ
∂xρ

∂x′λ
V ν =

=
∂x
′µ

∂xν
∂xρ

∂x′λ

[
∂V ν

∂xρ
+ Γντρ V

τ

]
,

(1.2.4)

which implies ∂V µ

∂xλ
+ Γµkλ V

k is a (1,1) tensor. We define covariant derivative of a
contravariant vector V µ the linear map

D : V µ 7−→ V µ
;λ ≡

∂V µ

∂xλ
+ Γµkλ V

k. (1.2.5)
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CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

We note that this differential operation contains a combination of partial deriva-
tives and affine connection, that encodes gravity. This suggests the covariant
derivative be the correct differential operation in the framework of General Rel-
ativity, since it presents a coupling between the ordinary partial differentiation
and the gravitational field.

Analogously, we can define the covariant derivative of a contravariant vector
Aµ along a curve xµ = xµ(s)

DAµ

Ds
≡ dAµ

ds
+ Γµkλ

dxλ

ds
Ak, (1.2.6)

which yields

DAµ

Ds
≡ dAµ

ds
+ Γµkλ

dxλ

ds
Ak =

[
∂Aµ

∂xλ
+ ΓµkλA

k

]
dxλ

ds
= Aµ;λ

dxλ

ds
. (1.2.7)

Therefore, the covariant derivative of a contravariant vector along a curve is
given by the contraction of its covariant derivative with the tangent vector to
the curve dxλ

ds
. From a purely geometrical point of view, a vector field whose

covariant derivative along a curve xµ = xµ(s) vanishes is said parallel transported
along the curve. If this field is the tangent vector to the curve itself uµ = dxµ

ds
,

then we have

Duµ

Ds
=
duµ

ds
+ Γµkλ

dxλ

ds
uk =

d2xµ

ds2
+ Γµkλ

dxλ

ds

dxk

ds
= 0, (1.2.8)

which is exactly the geodesics equation (1.1.9). As a result, the geodesics equa-
tion can be interpreted as the parallel transport equation for the tangent vector
along a space-time curve, that is, the 4-velocity uµ = dxµ

ds
. In addition, we have

just demonstrated the geodesics equation is indeed a tensorial equation.

We can now state the Principle of General Covariance

Principle of General Covariance The equations that describe a physical
system immersed in a gravitational field have to satisfy the following require-
ments:

• they must be tensorial;

• they have to correctly describe the system in the absence of gravity.

Once an equation fulfils these constraints, then it will correctly describe the
system when gravity is present as well. The reason resides in that gravity is
an inertial force appearing when a change of reference frame is performed. The

8



1.3. SPACE-TIME CURVATURE AND EINSTEIN FIELD EQUATIONS

Principle of General Covariance then allows us to construct the correct tensorial
equation in the locally inertial reference frame in order to obtain a physical
equation holding for all reference frames.

An applying example of this principle is again the geodesics equation for a
particle. A particle immersed in a gravitational field becomes a free particle in a
locally inertial reference frame, due to the Equivalence Principle. In the absence
of gravity, its equation of motion is

duα

ds
= 0, (1.2.9)

where uα = dξα

ds
and ds2 = ηµν dξ

µ dξν . In a general coordinates frame, we have

ũα =
dxα

ds
=
∂xα

∂ξβ
uβ, ds2 = gµν dx

µ dxν = ηµν dξ
µ dξν .

Applying the Principle of General Covariance, we find the correct equation in
this frame is again

Duα

Ds
= 0,

since

• in the absence of gravity, covariant derivative and general metric respec-
tively reduce to partial derivative and Minkowski metric, therefore we ob-
tain equation (1.2.9);

• this equation is tensorial.

Practically speaking, once we have described a system in the absence of grav-
ity according to Special Relativity, we replace ordinary partial differentiation
with covariant differentiation and Minkowski metric ηµν with general metric gµν .
Thereby, we obtain the correct equation in the presence of gravity.

1.3 Space-time curvature and Einstein field equations

When we discussed the consequences of the Equivalence Principle, we found that
in a general space-time coordinate frame the metric is no longer constant but can
change from point to point (gµν = gµν(x

µ)). On the basis of equation (1.1.12), the
metric tensor gµν encodes the geometrical properties of the manifold on which it
is defined, that is space-time itself in General Relativity. Hence, if gµν depends on
the coordinates, the space-time will be possibly curved, in differential geometry
language. Indeed, the Equivalence Principle ensures the space-time manifold is
differentiable, by stating that in an arbitrary gravitational field a locally inertial

9



CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

reference frame where Special Relativity holds can always be found. This means
space-time is a general curved manifold which is locally flat, in that locally it
can be approximated by its tangent space, whose framework is within Special
Relativity. That is why the Equivalence Principle leads to the geometrization of
space-time in the presence of gravity.

We then infer that what distinguishes the presence or the absence of gravity is
the impossibility to define a metric tensor which is globally equivalent to ηµν . If a
coordinate transformation can be globally defined that maps a general metric gµν
into the Minkowski flat metric ηµν , then there is not a gravitational field. Here the
geometrical structure of space-time comes in. In fact, we are facing the problem
to distinguish mathematically between a curved and a flat manifold separately
from the metric alone, which is coordinate dependent. The mathematical object
which fulfils this request is the Riemann tensor

Rλ
µνk = − ∂

∂xk
Γλµν +

∂

∂xν
Γλµk − ΓαµνΓ

λ
kα + ΓαµkΓ

λ
να, (1.3.1)

since it is related to the following theorem:

Theorem A necessary and sufficient condition for the metric gµν to be equiv-
alent to ηµν - that is, there exists a coordinate transformation mapping gµν into
ηµν globally - is Rλ

µνk = 0.

Therefore, a manifold is curved if and only if Rλ
µνk 6= 0.

We shall now present two of Riemann tensor ’s contractions that will play a
fundamental role in Einstein field equations:

• the Ricci tensor
Rµk = Rλ

µλk = gλνRλµνk, (1.3.2)

where Rλµνk ≡ gλσR
σ
µνk. The Ricci tensor results symmetric (Rµk = Rkµ);

• the Ricci scalar
R = Rµ

µ = gµνRµν . (1.3.3)

The Riemann tensor also satisfies the so-called Bianchi identities

Rλµνk ; η +Rλµην ; k +Rλµkη ; ν = 0. (1.3.4)

A useful contracted form of these identities is the following

gλνRλµνk ; η + gλνRλµην ; k + gλνRλµkη ; ν = 0, (1.3.5)

10



1.3. SPACE-TIME CURVATURE AND EINSTEIN FIELD EQUATIONS

which yields
Rµk ; η −Rµη ; k +Rν

µkη ; ν = 0. (1.3.6)

After performing a second contraction with gµk, we obtain

R ; η − 2Rµ
η ;µ = 0, (1.3.7)

which reduces to (
Rµ
η −

1

2
δµηR

)
;µ

= 0 (1.3.8)

by means of algebraic manipulations. We finally compute the contraction with
gην and we obtain the contracted Bianchi identities

Gµν
;µ =

(
Rµν − 1

2
Rgµν

)
;µ

= 0, (1.3.9)

where Gµν ≡ Rµν − 1
2
Rgµν is named Einstein tensor.

We are now ready to derive the field equations for gravity in General Rela-
tivity. Taking Maxwell equations (1.1.2) as a model, we expect the gravitational
field equations to have a form such that the derivative (or a sort of) of the field
is related to the gravitational source. Then, we may first attempt to evaluate
the covariant derivative of the potential gµν to construct the field equation. This
would end up being identically null though. We shall now try and find the sources
of gravitational field. By Poisson’s equation (1.1.1) (which must be the Newto-
nian limit of General Relativity field equations), sources are matter densities.
By evaluating the Newtonian limit of geodesics equations, we would find that
Poisson’s equation (1.1.1) can be expressed as

∇2g00 = 8πGT00, (1.3.10)

where T00 is the 00-component of the energy-momentum tensor Tαβ. In order to
have tensorial equations, that relation has to be coherently extended to all of
the energy-momentum tensor components and we finally expect the source to be
the complete energy-momentum tensor itself.

The field equation form must then be

Hαβ = 8πGTαβ, (1.3.11)

whereHαβ should be a (0,2) symmetric tensor constructed with the metric and its
first and second derivatives. Since Tαβ satisfies the continuity equation ∂µT µν = 0
without gravity, we expect T µν ;µ = 0 holds with gravity. It is known that the

11



CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

Riemann tensor is the only tensor that can be obtained by the metric and its first
and second derivatives assuming linearity in the second derivative. We can then
think about making use of the Riemann tensor to construct the field equations.
In order to satisfy the covariant continuity equation, we suppose Hαβ is given by
a combination of the Ricci tensor and the Ricci scalar

Hαβ = c1Rαβ + c2 gαβ R, (1.3.12)

where c1 and c2 are constants to be defined. Now, by raising the index µ and re-
calling the contracted Bianchi identities (1.3.9), we have the following constraint(c1

2
+ c2

)
R ;µ = 0. (1.3.13)

We assume the equation is satisfied by requiring c2 = − c1
2
, since the alternative

R ;µ = 0 identically would impose other constraints on the theory. The candidate
field equations are then

c1

(
Rµν −

1

2
Rgµν

)
= 8πGTµν . (1.3.14)

To evaluate c1, we study the non-relativistic limit

c1

(
R00 −

1

2
Rg00

)
= 8πGT00. (1.3.15)

In that case, this equation reduces to Poisson’s law as expressed in (1.3.10) if
and only if c1 = 1. As a conclusion, we have now achieved the formulation of
Einstein2 field equations3

Rµν −
1

2
Rgµν = 8πGTµν . (1.3.16)

It is a non-linear (in the first derivative of the metric gµν) system of 10 coupled
differential equations. For this reason, they are very complicated to solve4 and
very few exact solutions are known, only for systems with strong symmetries. In
the next chapter we shall examine Schwarzschild solution, valid in the exterior
vacuum of a spherically-symmetric massive body.

2They are also called Einstein-Hilbert field equations due to their alternative derivation by
Hilbert.

3In modern cosmological models, the source right-hand side presents the further “dark en-
ergy” addend Λgµν - where Λ stands for the so-called cosmological constant - in order to take
the accelerated expansion of the Universe into account. In actual fact, Einstein himself first
introduced that term so as to obtain static Universe solutions, as was expected at that time.

4Their non-linearity conveys the fact that a gravitational field carries its own source, that
is energy, and causes a sort of back-reaction that invalidates the superposition principle.
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Chapter 2

Schwarzschild metric and
Painlevé-Gullstrand coordinates

This chapter will be dedicated to the derivation of the Schwarzschild metric.
We shall also provide the Painlevé-Gullstrand set of coordinates, which has the
propriety to appear regular at the event horizon.

2.1 Schwarzschild metric

The Schwarzschild solution to Einstein field equations was found by K. Schwarz-
schild in 1916. It describes the space-time in the exterior vacuum of a spherically-
symmetric massive source.

In this region we have Tµν = 0 (in the absence of electric charge), which
implies

Rµν −
1

2
Rgµν = 0,

gµν
(
Rµν −

1

2
Rgµν

)
= 0,

R− 1

2
· 4R = 0 ⇒ R = 0.

(2.1.1)

This leads to the vacuum Einstein equation

Rµν = 0. (2.1.2)

Therefore, given a source with a certain boundary Σ, we will have two solutions:

• inside the source: Tµν 6= 0 and g−µν is determined by the standard Einstein
field equations.

13
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• outside the source: Tµν = 0 and g+
µν is determined by the vacuum Einstein

equation (2.1.2).

Then, the two solutions must join continuously:

ds2
∣∣∣
Σ

= g−µν dx
µ dxν

∣∣∣
Σ−

= g+
µν dx

µ dxν
∣∣∣
Σ+
. (2.1.3)

In case of a spherically-symmetric source, it will not be necessary to check this
boundary condition. As S. Weinberg points out in [7], in that case the Newtonian
limit ensures the resulting metric will depend only on the mass of the source, not
on its details.

Due to the spherical symmetry of the system, we are looking for a rotation-
invariant line element in four dimensions. Its most general form is

ds2 = F (r, t)dt2 + C(r, t)d~x 2 + E(r, t)dt ~x · d~x+D(r, t)(~x · d~x)2, (2.1.4)

where r =
√
~x · ~x and all the differentials are rotation-invariant. This reduces

the 10 independent components of gµν to 4. By introducing spherical polar
coordinates 

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

, (2.1.5)

we obtain

ds2 = γ(r, t) dt2 + δ(r, t) dr dt+ α(r, t) dr2 + β2(r, t)(dθ2 + sin2 θ dφ2). (2.1.6)

Since on a 2-sphere S 2 with radius R the line element is expressed by

dl2
∣∣∣
S 2

= dr2 + r2(dθ2 + sin2 θ dφ2)
∣∣∣
r=R

= R2(dθ2 + sin2 θ dφ2), (2.1.7)

we observe that the last term in (2.1.6) represents the line element of a 2-sphere
with radius β(r, t) depending on r. Then, r is not the distance from the gravita-
tional source, but the 2-sphere is identified by r = R = const analogously.

If we perform a change of coordinates for (r, t), the spherical symmetry is
maintained. Hence, we define {

r̃ = β2(r, t)

t̃ = t
, (2.1.8)

which entails{
dr̃ = 1

2
√
β

[
∂β
∂r
dr + ∂β

∂t
dt
]

dt̃ = dt
⇒ dr =

[
2
√
β dr̃ − ∂β

∂t
dt̃

](
∂β

∂r

)−1

. (2.1.9)
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2.1. SCHWARZSCHILD METRIC

It is physically reasonable to expect that the gravitational field tends towards zero
at infinity. This condition is called asymptotic flatness and implies gµν −→ ηµν
for r −→ +∞ in spherical coordinates. For that purpose, β(r, t) cannot be
constant in r. In the new coordinates, we have

ds2 = γ̃(r̃, t̃) dt̃ 2 + 2δ̃(r̃, t̃) dr̃ dt̃+ α̃(r̃, t̃) dr̃2 + r̃2(dθ2 + sin2 θ dφ2). (2.1.10)

As concerns the time-like coordinate, it is convenient to choose one that
diagonalizes the metric {

r̂ = r̃

t̂ = φ(r̃, t̃), with ∂φ
∂t̃
6= 0

. (2.1.11)

In this new set of (r̃, t̃) coordinates, a mixed term of the following form appears

2

(
∂φ

∂t

)−1
[
δ − γ

(
∂φ

∂t

)−1
∂φ

∂r

]
dr̂ dt̂, (2.1.12)

where we called r̃ and t̃ again r and t, respectively. We are free to make the
mixed term vanish by choosing a function φ such that δ = γ

(
∂φ
∂t

)−1 ∂φ
∂r
. Finally,

the metric can be expressed as

ds2 = −eν(r,t)dt2 + eµ(r,t)dr2 + r2(dθ2 + sin2 θ dφ2), (2.1.13)

where we used a specific notation known as Schwarzschild gauge. This shows that
all spherically-symmetric metrics have only 2 independent components. The two
functions ν(r, t) and µ(r, t) are found from the Bianchi identities (1.3.4) and
from the vacuum Einstein equation (2.1.2), which further constrains them to be
time-independent. Eventually, we are left with the solution

µ+ ν = λ, for r ≥ R, (2.1.14)

where λ is a constant, and

e−µ(r,t) = −
(

1− 2m

r

)
, (2.1.15)

where 2m is another constant. Then, the metric (2.1.13) becomes

ds2 = −eλ
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2(dθ2 + sin2 θ dφ2). (2.1.16)

and only the constants λ and m remain to be fixed. By rescaling t −→ e−λ/2 t,
the new time-like coordinate e−λ/2 t still diagonalizes the metric and leads to
eλdt2 −→ dt2. This means we can choose λ = 0.
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As regards m, we shall take the Newtonian limit into account. In the Newto-
nian limit we have g00 = −(1 + 2φ), where φ = −GM

r
is the Newtonian potential.

On the other hand, in the Schwarzschild metric g00 = −
(
1− 2m

r

)
. As a conse-

quence - by reintroducing the speed of light c - there must be

2m =
2GM

c2
.

Finally, the Schwarzschild solution to Einstein field equation is

ds2 = −
(

1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2). (2.1.17)

As we mentioned previously, ν and µ result to be time-independent. This means
the staticity of the metric comes as a consequence and does not need to be as-
sumed a priori. This remarkable outcome constitutes the

Birkhoff Theorem The gravitational field generated by any spherically-
symmetric source is static, even though the source itself is not static.

The Schwarzschild metric presents two singularities, at r = 0 and r = 2m =
2GM
c2
≡ RH respectively. RH is called Schwarzschild radius. It is important

to mark that the coordinate r does not measure distances directly, but it is
a quantity related to space position. In fact, the distance l at a fixed instant
between two points labelled by r1 and r2 is given by

l =

∫ r2

r1

dr√
1− 2m

r

. (2.1.18)

Analogously, the coordinate t is a quantity related to time measures. In fact, the
time interval τ between two events labelled by t1 and t2, at a fixed space point
denoted by r0, is given by

τ =

∫ t2

t1

√
1− 2m

r0

dt =

√
1− 2m

r0

(t2 − t1). (2.1.19)

This means the coordinate t can be interpreted as the proper time of a static
observer in the asymptotic limit r0 −→ +∞. If the radius R of the source
is greater than its Schwarzschild radius RH , the singularity in RH occurs in a
region where the metric has not the (2.1.17) definition. However, there exist
astrophysical sources for which R < RH , like black holes. In that case, the
singularity at the Schwarzschild radius is known as Schwarzschild singularity.
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2.1. SCHWARZSCHILD METRIC

Let us consider the motion of a test particle in a Schwarzschild gravitational
field. The geodesics equations imply that the particle cannot leave the plane
identified by the centre of the gravitational source and the test particle’s veloc-
ity. Then, we shall make use of the following theorem:

Theorem If a metric tensor gµν is independent on a certain coordinate xα,
the corresponding component uα of the cotangent vector is constant along the
trajectory

∂gβσ
∂xα

= 0 ⇒ duα
ds

= 0.

Since in the Schwarzschild metric we have symmetry with respect to both t
and φ coordinates, two first integrals of motion are obtained, just as happens in
classical mechanics

∂gµν
∂t

= 0 ⇒ u0 ≡ Ẽ (energy) is constant

∂gµν
∂φ

= 0 ⇒ u3 ≡ L̃ (angular momentum) is constant
.

Upon the constraint

gµν u
µ uν = −1 with u2 =

dθ

ds
= 0, (2.1.20)

we have

− Ẽ2

1− 2m
r(s)

+

(
dr
ds

)2

1− 2m
r(s)

+
L̃2

r2(s)
= −1, (2.1.21)

which finally leads to the radial equation of motion for the test particle:(
dr

ds

)2

=

(
−1 +

Ẽ2

1− 2m
r(s)

− L̃2

r2(s)

)(
1− 2m

r(s)

)
. (2.1.22)

If a test particle is moving along a radial time-like geodesic (that is, u3 = L̃ = 0),
from equation (2.1.22) we have(

dr

ds

)2

=

(
−1 +

Ẽ2

1− 2m
r(s)

)(
1− 2m

r(s)

)
= Ẽ2 −

(
1− 2m

r(s)

)
. (2.1.23)

Therefore, a freely falling observer measures a finite time interval

τ = −
∫ r2

r1

1√(
1− 2m

r(s)

)
− Ẽ2

dr, (2.1.24)
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even if r1 < RH < r2. The integral in equation (2.1.18) is also well defined
if r1 < RH < r2. In conclusion, spatial distances and time intervals are finite
across the Schwarzschild singularity, which does not result a boundary of space-
time. The regularity of physical quantities around the Schwarzschild singularity
suggests it might be just a coordinate singularity. In the next section we will
introduce a different set of coordinates in which there is no such singularity.
The gravitational field of the Schwarzschild singularity can be shown to be finite
indeed. By computing a scalar from the Riemann tensor, we have information on
the nature of gravitational field in a coordinate-independent way. For instance,

Rµνλk R
µνλk = 48

m2

r6
, (2.1.25)

which is regular for r = RH . This also conveys the singularity at r = 0 is truly
physical.

Nevertheless, unusual physical phenomena occur due to the Schwarzschild
singularity. For a test particle moving along a radial time-like geodesic, from
equation (2.1.23) we have

Ẽ2 −
(

1− 2m

r(s)

)
=

(
dr

dt

dt

ds

)2

=

(
dr

dt

)2
Ẽ2(

1− 2m
r(s)

)2 , (2.1.26)

since
dt

ds
= u0 = g00 u0 = − Ẽ

1− 2m
r(s)

. (2.1.27)

Therefore, a static observer asymptotically far from the gravitational source
would measure the following proper time interval

∆t = −
∫ r2

r1

Ẽ√
Ẽ2 −

(
1− 2m

r(s)

)(
1− 2m

r(s)

) dr, (2.1.28)

which results divergent if r1 < RH < r2.
As concerns the interior of a black hole (0 < r < RH), the Schwarzschild

metric is regular but its signature becomes (+,−,+,+). This means r and
t exchange their roles: r is now a time-like coordinate, while t is space-like.
The metric is no longer static and the t-symmetry turns into invariance under
spatial-transaltions. Furthermore, since time is characterized by flowing without
interruption, we may infer that a particle inside a black hole will necessarily
continue falling towards the singularity. For a static observer inside a black hole
we would have

ds2 = −
(

1− 2m

r0

)
dt2 > 0, (2.1.29)
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2.2. PAINLEVÉ-GULLSTRAND COORDINATE SYSTEM

which is not physically admitted. Even light cannot be stopped once inside a
black hole, since light is characterized by having ds2 = 0. For this reason, in
Schwarzschild space-time r = RH determines the event horizon, which is defined
as the boundary of the region from which null geodesics cannot escape. There
can be static photons only in the Schwarzschild singularity, where

ds2 = −
(

1− 2m

r0

) ∣∣∣∣
r0 = 2m

dt2 = 0. (2.1.30)

For example, when a photon is radially emitted at r = 2m during a star collapse,
it continues staying there.

2.2 Painlevé-Gullstrand coordinate system

We shall now introduce a coordinate system in which the Schwarzschild met-
ric (2.1.17) results regular across the event horizon. These coordinates are named
after P. Painlevé and A. Gullstrand, who discovered them independently one on
the other in the early 1920’s. The Painlevé-Gullstrand coordinates will also play
a significant role when we deal with spherically-symmetric acoustic black holes
in the next chapter.

Let us consider an observer moving along in-going, radial, time-like geodesics
of the Schwarzschild space-time and starting from r = +∞. Within the set of
standard coordinates (t, r, θ, φ) we introduced in the previous section, we define

f ≡ 1− 2m

r
. (2.2.1)

Then, the geodesics equations can be expressed as

dt

ds
= −Ẽ

f
,

(
dr

ds

)2

+ f = Ẽ2, (2.2.2)

as we already saw in equations (2.1.27) and (2.1.23). Due to the asymptotic
flatness, the energy parameter Ẽ is related to the observer’s initial speed v∞ by

Ẽ =
E(r = +∞)

m
= γ(r = +∞) =

1√
1− v2

∞
, (2.2.3)

where E(r = +∞) is the relativistic energy at r = +∞, m is the proper mass,
v∞ ≡ v(r = +∞) = dr

dt

∣∣
r=+∞ and c is set equal to unity.
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Firstly, we shall concentrate on the case v∞ = 0, which entails Ẽ = 1. The
geodesics equations then reduce to (dr

ds
is negative since r decreases)

dt

ds
= − 1

f
,

dr

ds
= −

√
1− f. (2.2.4)

The covariant components uα

uα =

(
−1,−

√
1− f
f

, 0, 0

)
(2.2.5)

of the observer’s 4-velocity are also equal to the gradient of a time function T :

uα = −∂αT, (2.2.6)

where

T = t+

∫ r

r1

√
1− f(r∗)

f(r∗)
dr∗. (2.2.7)

Except for an arbitrary integration constant, this yields

T = t+ 4M

(√
r

2M
+

1

2
ln

∣∣∣∣
√

r
2M
− 1√

r
2M

+ 1

∣∣∣∣
)
, (2.2.8)

where c and G are set equal to unity. This shall be the new time-like coordinate,
thus defining the Painlevé-Gullstrand coordinates as (T, r, θ, φ). Now we have

dt = dT − f−1(r)

√
2M

r
dr,

and the Schwarzschild metric in the Painlevé-Gullstrand coordinates becomes

ds2 = −fdT 2 + 2

√
2M

r
dT dr + dr2 + r2(dθ2 + sin2 θ dφ2), (2.2.9)

or equivalently

ds2 = −dT 2 +

(
dr +

√
2M

r
dT

)2

+ r2(dθ2 + sin2 θ dφ2). (2.2.10)

We observe that this metric is manifestly regular at the event horizon (r = 2M),
and still singular at the centre of the source (r = 0). Another remarkable feature
of this metric is the property that surfaces with constant T are intrinsically flat :

ds2 =

−dT 2 +

(
dr +

√
2M

r
dT

)2

+ r2(dθ2 + sin2 θ dφ2)


dT=0

=

= dr2 + r2(dθ2 + sin2 θ dφ2),
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2.2. PAINLEVÉ-GULLSTRAND COORDINATE SYSTEM

which is the metric of flat, three-dimensional space in spherical polar coordinates.
All the space-time curvature is therefore entirely encoded in the so-called shift
vector, the off-diagonal component of the metric tensor.

Secondly, it is possible to generalize these coordinates to other families of
freely falling observers. Each family will be labelled by a different value of Ẽ,
that is, by a different value of v∞. By defining

p =
1

Ẽ2
= 1− v2

∞, (2.2.11)

the geodesics equations now become

dt

ds
= − 1
√
pf
,

dr

ds
= −

√
1− pf
p

. (2.2.12)

The new parameter p results being 0 < p ≤ 1. Analogously to the previous case,
the covariant components uα of the observer’s 4-velocity are proportional to the
gradient of a time function T :

uα = − 1
√
p
∂αT, (2.2.13)

where

T = t+

∫ r

r1

√
1− pf(r∗)

f(r∗)
dr∗. (2.2.14)

Except for an arbitrary integration constant, this yields

T = t+ 2M

(
1− pf
1− f

+ ln

∣∣∣∣1−√1− pf
1 +
√

1− pf

∣∣∣∣− 1− p
2√

1− p
ln

∣∣∣∣√1− pf −
√

1− p√
1− pf +

√
1− p

∣∣∣∣) ,
(2.2.15)

which shall be the new time-like coordinate. We have then

dt = dT − f−1(r)
√

1− pf(r) dr,

and the Schwarzschild metric takes the form

ds2 = −fdT 2 + 2
√

1− pf dT dr + p dr2 + r2(dθ2 + sin2 θ dφ2), (2.2.16)

or equivalently

ds2 = −1

p
dT 2 + p

(
dr +

1

p

√
1− pfdT

)2

+ r2(dθ2 + sin2 θ dφ2). (2.2.17)
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This metric is still regular at the event horizon (r = 2M), but surfaces with
constant T are no longer intrinsically flat. Indeed, the induced metric

ds2 = p dr2 + r2(dθ2 + sin2 θ dφ2)

is associated to a nonzero Riemann tensor just because of the factor p in front
of dr2, as can be proven.

If we compute the limits of T for p tending towards the extreme values of its
range, we obtain

lim
p→1

T = t+ 2M

(
2√

1− f
+ ln

∣∣∣∣1−√1− f
1 +
√

1− f

∣∣∣∣) , (2.2.18a)

lim
p→0

T = t+ 2M

(
1

1− f
+ ln

∣∣∣∣ f

1− f

∣∣∣∣) . (2.2.18b)

They result to be exactly the time-like variables of Painlevé-Gullstrand and
Eddington-Finkelstein coordinates1 respectively. This means that p defines a
one-parameter family of (Painlevé-Gullstrand)-like coordinates for Schwarzschild
space-time. This one-parameter family is shown to go “smoothly” from Painlevé-
Gullstrand (p = 1) to Eddington-Finkelstein (p = 0) system.

1The Eddington-Finkelstein coordinates are another set of regular coordinates (ṽ, r, θ, φ) −
where ṽ = t+

∫ r
r1

dr∗

f(r∗) − and describe radial null geodesics.
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Chapter 3

Black holes hydrodynamics

In this chapter we shall show how to deal with acoustic disturbances propagation
in a non-homogeneous flowing fluid by invoking the tools of Lorentzian differ-
ential geometry. The analogy between these apparently distant frameworks is
based on the following theorem:

Theorem If a fluid is barotropic and inviscid, and the flow is irrotational
(though possibly time-dependent) then the equation of motion for the velocity
potential ψ describing an acoustic disturbance is identical to the d’Alembertian
equation of motion for a minimally coupled massless scalar field propagating in
a (3+1)-dimensional Lorentzian geometry

∆ψ ≡ 1√
−g

∂µ(
√
−g gµν ∂νψ) = 0, (3.0.1)

where gµν(t, ~x) stands for the so called acoustic metric and depends on the den-
sity, flow velocity and local speed of sound.

Therefore, upon proving this theorem, we will find a remarkable connection be-
tween classical Newtonian fluid physics and the differential geometry of curved
(3+1)-dimensional Lorentzian space-times. This will provide a fruitful analogy
between the black holes of Einstein gravity and supersonic fluid flows. It will
finally lead to think of several concrete non-relativistic laboratory size systems
to form acoustic black holes e.g. de Laval nozzle.
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CHAPTER 3. BLACK HOLES HYDRODYNAMICS

3.1 Fundamental equations of fluid dynamics

To begin with, we recall that for a static homogeneous inviscid (zero viscosity)
fluid the propagation of sound waves is governed by the d’Alembert equation

∂2
t ψ = c2∇2ψ, (3.1.1)

where ψ indicates the sound wave function and c the speed of sound. Then, if
the fluid is in motion, it is necessary to take the fundamental equations of fluid
dynamics into account. They are the continuity equation

∂tρ+∇ · (ρ~v) = 0, (3.1.2)

and Euler’s equation

ρ
d~v

dt
≡ ρ[∂t~v + (~v · ∇)~v] = ~F, (3.1.3)

where

• ρ ≡ fluid volumetric mass density

• ~v ≡ fluid velocity vector

• ~F ≡ force on the fluid per unit volume

Let us assume the viscosity is negligible, with the only forces present being
those due to pressure, Newtonian gravity and an arbitrary gradient-derived and
possibly even time-dependent externally-imposed body force. In this case, the
expression for the force per unit volume takes the following form:

~F = −∇p− ρ∇φ− ρ∇Φ, (3.1.4)

where

• p ≡ pressure on the fluid

• φ ≡ Newtonian gravitational potential

• Φ ≡ potential of the external driving force (which may in fact be zero)

By manipulating Euler’s equation with standard algebra, it can be rewritten as

∂t~v = ~v × (∇ × ~v)− 1

ρ
∇p−∇

(
1

2
v2 + φ+ Φ

)
(3.1.5)

We will now take the flow to be vorticity free, that is locally irrotational (∇× ~v =
0). This is quite common for normal fluids, especially in situations of high
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symmetry. Provided that, we can introduce the velocity potential ψ such that
~v = −∇ψ, with ψ not necessarily being globally defined (it is sufficient that the
flow be vorticity free for velocity potentials existing on an atlas of open patches).
We will further assume the fluid is barotropic, which means that ρ is a function
of p only. On the other hand, in [5] W. G. Unruh makes the stronger assumption
that the fluid is isentropic - that is, the specific entropy density is constant
throughout the fluid - but this is not required. It is now possible to define the
specific enthalpy h(p) as a function of p only:

h(p) =

∫ p

0

dp′

ρ(p′)
; (3.1.6)

so that
∇h =

1

ρ
∇p. (3.1.7)

By integration, now Euler’s equation reduces to

− ∂tψ + h+
1

2
(∇ψ)2 + φ+ Φ = constant, (3.1.8)

which is a version of Bernoulli’s equation in the presence of external driving-
forces.

3.2 Perturbative approach

At this point, we could proceed by solving the complete equations of motion for
the fluid variables (ρ, p, ψ). However, in practice it appears more convenient to
separate the exact motion into two terms: some average bulk motion plus low
amplitude fluctuations. That is to say, we demand to linearize these equations of
motion around a certain background in order to deal with acoustical disturbances.
This means we shall set the functions (ρ, p, ψ) to be given by a definite bulk triad
(ρ0, p0, ψ0) plus a first order perturbation (ρ1, p1, ψ1):

ρ = ρ0 + ερ1 +O(ε2),

p = p0 + εp1 +O(ε2),

ψ = ψ0 + εψ1 +O(ε2),

with the gravitational potential φ and the driving potential Φ taken to be fixed
and external. Here fixed means neither is back-reaction allowed to modify the
potentials nor time-independent, as we expect the external driving forces can be
time-dependent indeed.
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Sound - and more generally acoustical disturbances - is defined to be these
linearized fluctuations in the dynamical quantities. It can be useful to clarify the
subtle difference between wind gusts and sound waves, which is to some extent a
matter of convention. The former are sufficiently low-frequency long-wavelength
disturbances and are conventionally lumped in with the average bulk motion. On
the other hand, the latter are higher-frequency shorter-wavelength disturbances.
Underlying our linearization programme there is the requirement that the ampli-
tude of such high-frequency short-wavelength disturbances be small. Sufficiently
high-amplitude sound waves then need direct solution of the full equations of
fluid dynamics.

Let us start by linearizing the continuity equation:

∂t(ρ0 + ερ1 +O(ε2)) +∇ · [(ρ0 + ερ1 +O(ε2)) (~v0 + ε~v1 +O(ε2))] = 0. (3.2.1)

Neglecting second order terms, this yields

∂tρ0 +∇ · (ρ0 ~v0) + ε[∂tρ1 +∇ · (ρ0 ~v1 + ρ1 ~v0)] = 0. (3.2.2)

We shall assume the background functions (ρ0, p0, ψ0) satisfy the continuity equa-
tion. This means that the coefficient of the first-degree term in ε in (3.2.2) must
vanish in order that (ρ, p, ψ) satisfy the continuity equation as well. The result
is the pair of equations

∂tρ0 +∇ · (ρ0 ~v0) = 0, (3.2.3a)
∂tρ1 +∇ · (ρ0 ~v1 + ρ1 ~v0) = 0. (3.2.3b)

The barotropic condition implies

h(p) = h(p0 + εp1 +O(ε2)) = h(p0) +

(
dh(p)

dp

∣∣∣∣
p=p0

)
εp1 +O(ε2) =

= h0 + ε
p1

ρ0

+O(ε2),

(3.2.4)

where h0 ≡ h(p0) and ρ0 = ρ(p0).
We will now linearize Euler’s equation, taking what (3.2.4) entails into con-

sideration:

− ∂t(ψ0 + εψ1 +O(ε2)) +

(
h0 + ε

p1

ρ0

+O(ε2)

)
+

1

2
[∇(ψ0 + εψ1 +O(ε2))]2+

+ φ+ Φ = constant

(3.2.5)
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Neglecting second order terms, this yields

−∂tψ0+h0+
1

2
(∇ψ0)2+φ+Φ+ε

[
−∂tψ1 +

p1

ρ0

− ~v0 · (∇ψ1)

]
= constant. (3.2.6)

We shall assume the background functions (ρ0, p0, ψ0) also satisfy Euler’s equa-
tion. This means that the coefficient of the first-degree term in ε in (3.2.2) must
vanish in order that (ρ, p, ψ) satisfy Euler’s equation as well. The result is the
pair of equations

− ∂tψ0 + h0 +
1

2
(∇ψ0)2 + φ+ Φ = constant, (3.2.7a)

− ∂tψ1 +
p1

ρ0

− ~v0 · (∇ψ1) = 0. (3.2.7b)

This last equation may be rearranged in the following way

p1 = ρ0(∂tψ1 + ~v0 · ∇ψ1). (3.2.8)

Due to the barotropic assumption, we have

ρ = ρ(p) = ρ(p0)+

(
dρ

dp

∣∣∣∣
p=p0

)
dp+O(dp2) = ρ0+

(
dρ

dp

∣∣∣∣
p=p0

)
εp1+O(ε2), (3.2.9)

and we had already constrained the expression of ρ:

ρ = ρ0 + ερ1 +O(ε2). (3.2.10)

Consequently,

ερ1 =

(
dρ

dp

∣∣∣∣
p=p0

)
εp1 ⇒ ρ1 =

(
dρ

dp

∣∣∣∣
p=p0

)
p1, (3.2.11)

and substituting (3.2.8) into (3.2.11) we obtain

ρ1 =

(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1). (3.2.12)

If we now express the linearized subequation of continuity (3.2.3b) in terms of
this result, we find

∂t

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]

+∇ ·

{
ρ0 ~v1 +

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]
~v0

}
= 0, (3.2.13)
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∂t

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]

−∇ ·

{
ρ0∇ψ1 −

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]
~v0

}
= 0, (3.2.14)

− ∂t

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]

+∇ ·

{
ρ0∇ψ1 −

[(
dρ

dp

∣∣∣∣
p=p0

)
ρ0(∂tψ1 + ~v0 · ∇ψ1)

]
~v0

}
= 0, (3.2.15)

The final result (3.2.15) is a wave equation describing the propagation of
the linearized scalar potential ψ1 in a non-homogeneous inviscid fluid. Once ψ1

is determined, p1 and ρ1 can be computed respectively from equations (3.2.8)
and (3.2.12). Thus, the wave equation (3.2.15) completely determines the prop-
agation of acoustical disturbances (ρ1, p1, ψ1). Furthermore, we can observe that
the local speed of sound is defined by

c−2 ≡

(
dρ

dp

∣∣∣∣
p=p0

)
. (3.2.16)

For the purpose of this dissertation, it is useful to render our wave equation
in a different shape. Let us introduce (3+1)-dimensional space-time coordinates
xµ ≡ (t;xi) - Greek indices run from 0 to 3, while Roman indices run from 1
to 3. Once constructed the following symmetric 4×4 matrix depending on these
coordinates xµ

fµν(t, ~x) ≡ ρ0

c2

−1
... −vj0

. . . . . . . . . . . . . . . . .

−vi0
... (c2δij − vi0v

j
0)

 , (3.2.17)

the wave equation (3.2.15) can be rewritten as

∂µ(fµν ∂νψ1) = 0. (3.2.18)

This remarkably compact formulation shows a clear resemblance to the covariant
wave equation in curved space-time (see in the Appendix) and suggests employ-
ing the techniques of curved space-time (3+1)-dimensional Lorentzian geometry.
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3.3 The acoustic metric

Let us start this section with a pair of definitions from differential geometry.
A pseudo-Riemannian manifold is a manifold on which a non-degenerate scalar
product from a metric tensor is defined. A Lorentzian manifold is a pseudo-
Riemannian manifold whose metric tensor has signature (n−1, 1) (or equivalently
(1, n − 1)), where n stands for the number of dimensions of the manifold itself.
As proven in the Appendix, in any Lorentzian manifold the curved space-time
covariant d’Alembertian operator is given in terms of the metric gµν(t, ~x) and
partial derivatives only by

∆ψ ≡ 1√
−g

∂µ(
√
−g gµν ∂νψ), (3.3.1)

where ψ is a scalar field. Therefore, the covariant wave equation in curved space-
time is written as

∆ψ ≡ 1√
−g

∂µ(
√
−g gµν ∂νψ) = 0. (3.3.2)

The inverse metric gµν(t, ~x) is pointwise the inverse matrix of gµν(t, ~x), and g ≡
det(gµν). Let us compare the wave operator in (3.2.18) for the propagation of the
linearized scalar velocity potential ψ1 with the one in (3.3.2) for the propagation
of a scalar field ψ in a curved space-time

∆ ≡ 1√
−g

∂µ(
√
−g gµν ∂ν) (3.3.3a)

∂µ(fµν ∂ν). (3.3.3b)

Then, we infer that we may identify
√
−g gµν = fµν . (3.3.4)

On the one hand, this implies

det(fµν) = det
(√
−g gµν

)
= (
√
−g)4 det(gµν) = (

√
−g)4[det(gµν)]

−1 =

= (
√
−g)4g−1 = g.

(3.3.5)

On the other hand, from the explicit expression (3.2.17),

det(fµν) = det

ρ0

c2

−1
... −vj0

. . . . . . . . . . . . . . . . .

−vi0
... (c2δij − vi0v

j
0)


 =

(ρ0

c2

)4

∣∣∣∣∣∣∣
−1

... −vj0
. . . . . . . . . . . . . . . . .

−vi0
... (c2δij − vi0v

j
0)

∣∣∣∣∣∣∣ =

=
(ρ0

c2

)4

· [(−1) · (c2 − v2
0)− (−v0)2] · [c2] · [c2] = −ρ

4
0

c2
,

(3.3.6)
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where we expanded the determinant in minors by means of the Laplace theorem.
Hence,

g = −ρ
4
0

c2
⇒

√
−g =

ρ2
0

c
. (3.3.7)

By the hypothesized identification (3.3.4), gµν(t, ~x) becomes

gµν(t, ~x) =
fµν(t, ~x)√
−g

=
c

ρ2
0

ρ0

c2

−1
... −vj0

. . . . . . . . . . . . . . . . .

−vi0
... (c2δij − vi0v

j
0)


 =

=
1

ρ0c

−1
... −vj0

. . . . . . . . . . . . . . . . .

−vi0
... (c2δij − vi0v

j
0)

 .
(3.3.8)

We can now determine the metric gµν(t, ~x) itself by inverting this 4× 4 matrix.
Finally, we obtain the so-called acoustic metric

gµν(t, ~x) ≡ ρ0

c

−(c2 − v2
0)

... −vj0
. . . . . . . . . . . . . .

−vi0
... δij

 , (3.3.9)

and equivalently the acoustic interval can be expressed as

ds2 ≡ gµν dx
µ dxν =

ρ0

c

[
−c2dt2 + (dxi − vi0 dt) δij (dxj − vj0 dt)

]
. (3.3.10)

We point out that the signature of this metric is indeed (−,+,+,+) - or equiva-
lently (3,1) - which allows us to regard it as Lorentzian. Moreover, we can deduce
that there are two distinct metrics relevant to our physical system and they play
two different roles:

• The physical space-time metric is just the usual flat Minkowski metric

ηµν ≡ (diag[−c2
light, 1, 1, 1])µν , (3.3.11)

where clight = speed of light. This is the only metric to which the fluid
particles couple - in fact, we assume that their motion is completely non-
relativistic (‖~v0‖ � clight).

• Conversely, sound waves couple only to the acoustic metric gµν without
“perceiving” the physical metric ηµν at all.
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Before proceeding with the next section, we shall add another pair of comments.
While in a completely general (3+1)-dimensional Lorentzian geometry the metric
has 6 degrees of freedom per point in space-time, the acoustic metric is more
constrained. The former is described by a 4× 4 symmetric matrix, which leaves
10 independent components, then the 4 Bianchi identities lead to 6 degrees of
freedom in whole. The latter, in addition, is specified completely by the 3 scalars
ψ0(t, ~x), ρ0(t, ~x) and c(t, ~x), and the continuity equation adds another constraint.
In the end, the acoustic metric has at most 2 degrees of freedom per point in
space-time.

Another difference between the two kinds of metric is the relation to the dis-
tribution of matter. For the former it is determined by the non-linear Einstein-
Hilbert differential field equations, whereas the equation for the latter (3.3.9) is
linear in the volumetric mass density ρ0.

3.4 The acoustic metric in Painlevé-Gullstrand coordinates

We shall now see how close the acoustic metric achieves reproducing the Schwarz-
schild geometry we depicted in Chapter 2. This appears in a clearer way if we
introduce the Painlevé-Gullstrand coordinates to represent Schwarzschild space-
time (see Chapter 2). As showed in Chapter 2, the Schwarzschild metric in the
Painlevé-Gullstrand coordinates may be written as:

ds2 = −dT 2 +

(
dr +

√
2M

r
dT

)2

+ r2(dθ2 + sin2 θ dφ2), (3.4.1)

where the gravitational constant G and the speed of light clight have been conven-
tionally set equal to 1. Given such Painlevé-Gullstrand line element, we could try
to force the acoustic interval (3.3.10) in the specific case of a fluid flow surround-
ing a point sink (i.e. a spherically-symmetric fluid flow) into this form. Once
performed the summation over the indexes i and j, the acoustic interval (3.3.10)
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is equivalent to

ds2 =
ρ0

c

[
−c2dt2 + (dx1 − v1

0 dt)
2 + (dx2 − v2

0 dt)
2 + (dx3 − v3

0 dt)
2
]

=

=
ρ0

c
[−c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 + (v1

0 dt)
2 + (v2

0 dt)
2 + (v3

0 dt)
2+

− 2 dx1v1
0 dt− 2 dx2v2

0 dt− 2 dx3v3
0 dt] =

=
ρ0

c
[−c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 + ((v1

0)2 + (v2
0)2 + (v3

0)2) dt2+

− 2 dt(v1
0 dx

1 + v2
0 dx

2 + v3
0 dx

3) =

=
ρ0

c
[−c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 + v2

0 dt
2+

− 2 dt(v1
0 dx

1 + v2
0 dx

2 + v3
0 dx

3).

(3.4.2)

We shall now move to spherical polar coordinates and the above becomes

ds2 =
ρ0

c
[−c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dφ2 + v2

0 dt
2+

− 2 dt(vr̂0 dr + vθ̂0 r dθ + vφ̂0 r sin θ dφ)].
(3.4.3)

For a fluid flow surrounding a point sink (i.e. a spherically-symmetric fluid flow),
the ~v0 components along the θ̂ and φ̂ directions vanish, hence the equation (3.4.3)
reduces to

ds2 =
ρ0

c
[−c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dφ2 + (vr̂0)2 dt2 − 2 dt vr̂0 dr] =

=
ρ0

c
[−c2dt2 + (dr − vr̂0 dt)2 + r2(dθ2 + sin2 θ dφ2)].

(3.4.4)

If we compare this result to the Painlevé-Gullstrand line element (3.4.1), we
immediately observe a remarkable analogy (T and t play the same role of “time”
coordinate).

As a consequence, we infer that the analogy is completely fulfilled if the
following constraints can be compelled:

• the local speed of sound c is picked to be a time and position independent
constant, which we normilize to unity,

• the density ρ0 is picked to be time independent,

• v0 = vr̂0 is set equal to −
√

2M
r

(the minus sign indicates that the velocity
vector ~v0 points towards the sink).
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In that case, the continuity subequation (3.2.3a) reduces to

∇ · (ρ0 ~v0) = 0, (3.4.5)

which can be used to deduce the position-dependency of ρ0. Since ~v0 = vr̂0 r̂, the
reduced continuity subequation (3.4.5) yields

1

r2

∂

∂r

(
r2ρ0v0

)
= 0. (3.4.6)

Thereafter,
1

r2

∂

∂r

(
r2ρ0v0

)
= − 1

r2

∂

∂r

(
r2ρ0

√
2M

r

)
= 0, (3.4.7)

and avoiding the singularity for r = 0, we obtain

∂

∂r

(
r2ρ0

√
2M

r

)
= 0 ⇒ r2ρ0

√
2M

r
= constant (in r) ⇒

⇒ ρ0 ∝ r−3/2.

(3.4.8)

Overall, the acoustic metric (3.4.4) is now

ds2 ∝ r−3/2

−dT 2 +

(
dr +

√
2M

r
dT

)2

+ r2(dθ2 + sin2 θ dφ2)

 , (3.4.9)

thus achieving a conformal net result to the Painlevé-Gullstrand form of the
Schwarzschild metric. The relationship between the acoustic metric and the
Schwarzschild geometry is not exact though. However, if our attention were fo-
cused either on analyzing basic features of the Hawking radiation process or on
the behaviour in the immediate region of the event horizon, the conformal factor
would not be influential and could be neglected. In actual fact, this matter lies
outside the purpose of our dissertation and we shall rather move to an example
of acoustic black hole realization.

3.5 De Laval nozzle

Unlike gravitational black holes, which are formed by the collapse of very massive
objects, acoustic (or, equivalently, sonic) black holes do not require such extreme
conditions for their realization. A simple example is provided by a converging-
diverging nozzle, called a de Laval nozzle (Figure 3.5.1).

33



CHAPTER 3. BLACK HOLES HYDRODYNAMICS

o z

flow

Figure 3.5.1: A de Laval nozzle. As explained in the text, it is possible to set
the system to have a regular flow that is subsonic on one side of the waist and
supersonic on the other. The one-dimensional reference frame is fixed along the
axis of the nozzle and points to the right. The origin is located at the waist
of the nozzle, where the sonic horizon (v0(z) = c) is formed. The acoustic
metric associated with this flow is that of a one-dimensional acoustic black hole
ds2 = ρ0

c
[−c2dt2 + (dz − v0(z) dt)2].

Let us fix a reference frame such that the nozzle points along the z-axis and
the origin is set at the waist of the nozzle. The fluid is made to flow from right
to left with transverse velocities (i.e. in the x and y directions) negligible with
respect to the velocity along the z-axis. We also make the further assumption
that this quasi one-dimensional flow is stationary. This means that the volumet-
ric mass density ρ0 does not depend on time and the continuity equation (3.2.3a)
yields

∇ · (ρ0 ~v0) = 0. (3.5.1)

Let us now integrate this equation on the volume V of a flux tube in the nozzle
starting at coordinate z1 and finishing at coordinate z2 (Figure 3.5.2). Upon
applying the divergence theorem, we have:∫

V

d3x∇ · (ρ0 ~v0) =

∮
∂V

dσ n̂ · ρ0 ~v0, (3.5.2)

where
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o zz¹ z²

L
n

¹
n ²
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flow

Figure 3.5.2: The flux tube of integration. n̂1 and n̂2 denote the unit vectors
orthogonal to the base and to the top of the flux tube respectively, whereas n̂L
stands for the unit vector orthogonal to the lateral surface of the flux tube.

• ∂V ≡ boundary of the volume V,

• dσ ≡ infinitesimal surface element of ∂V ,

• n̂ ≡ unit vector perpendicular to ∂V .

Since the velocity ~v0 points along streamlines, ~v0 is orthogonal to n̂ on the lateral
surface of the flux tube and their scalar product will be null. On the other hand,
the only non-vanishing contributions to the surface integral in (3.5.2) will be
given by the scalar products on the base and the top of the flux tube. In the
physical system that we are considering − being quasi one-dimensional − ρ0

and ~v0 are set to depend only on the z-coordinate. Therefore, (3.5.2) becomes
(n̂2 = − n̂1) ∫

A(z1)

dσ n̂1 · ρ0 ~v0 −
∫
A(z2)

dσ n̂1 · ρ0 ~v0 =

= ρ0(z1) v0(z1)A(z1)− ρ0(z2) v0(z2)A(z2),

(3.5.3)

where A(z) indicates the cross section area at coordinate z. The stationary
condition (3.5.1) holding, the integral (3.5.2) will be identically null, thus yielding

ρ0(z1) v0(z1)A(z1) = ρ0(z2) v0(z2)A(z2). (3.5.4)
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Without changing this result, we can ideally reduce the lateral surface as much
as we want. In the limit of the lateral surface area tending towards zero, we
obtain

ρ0(z) v0(z)A(z) = constant. (3.5.5)
Assuming no influence of either gravity or external forces, the reduced Euler’s
subequation (3.2.7a) of our system is

∂t~v0 = −1

ρ
∇p0 −∇

(
1

2
v2

0

)
. (3.5.6)

Since for a stationary flow the velocity does not depend explicitly on time, we
have

− 1

ρ
∇p0 −∇

(
1

2
v2

0

)
= 0 ⇒ 1

ρ

∂

∂z
p0 +

∂

∂z

(
1

2
v2

0

)
= 0 ⇒

⇒ 1

ρ

∂p0

∂ρ

∂ρ

∂z
+ v0(z)

∂v0(z)

∂z
= 0.

(3.5.7)

As we are not considering perturbations in this case, ρ = ρ0 = ρ0(z). Moreover,
due to the barotropic assumption,

∂p0

∂ρ
=
dp0

dρ
=

(
dρ

dp

∣∣∣∣
p=p0

)−1

= c2, (3.5.8)

and we obtain
c2

ρ0(z)

dρ0(z)

dz
+ v0(z)

dv0(z)

dz
= 0. (3.5.9)

By differentiating equation (3.5.5), we have

ρ′0 v0A+ ρ0 v
′
0A+ ρ0 v0A

′ = 0 ⇒ ρ′0 = − ρ0

Av0

(A′v0 + Av′0), (3.5.10)

where ′ stands for derivative with respect to z. Now, substituting (3.5.10)
into (3.5.9), this yields

c2

ρ0

[
− ρ0

Av0

(A′v0 + Av′0)

]
+ v0 v

′
0 = 0 ⇒ −c

2A′

A
− c2v′0

v0

+ v0 v
′
0 = 0 ⇒

⇒ A′

A
= − 1

c2

(
c2v′0
v0

− v0 v
′
0

)
=

(
v0 v

′
0

c2
− v′0
v0

)
=
v′0
v0

(
v2

0 − c2

c2

)
= λ(v0)

v′0
v0

,

(3.5.11)

where
λ(v0) ≡ v2

0 − c2

c2
(3.5.12)

This equation tells us a difference in behaviour between subsonic and super-
sonic flows.
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• For the former (that is, v0 < c), λ(v0) < 0 therefore the speed decreases
as the area increases and vice versa. Let us suppose the fluid starts from
z = +∞ with a speed v+∞. We have

A′/A < 0 ⇒ v′0/v0 > 0

through the converging nozzle − until the waist of the nozzle, where

A′/A = 0 ⇒ v′0/v0 = 0.

Then,
A′/A > 0 ⇒ v′0/v0 < 0

along the diverging part.

Consequently, we infer that the speed increases till a maximum value v∗0 < c
in correspondence with the waist of the nozzle, and then decreases to a value
v−∞ ≤ v+∞.

• For the latter (that is, v0 > c), λ(v0) > 0 and the picture changes com-
pletely. Let us consider the same situation in the previous point with an
exception.

The fluid motion starts being subsonic but now it has been adjusted so
as to increase its speed beyond the value c. According to (3.5.11), the
transition from subsonic to supersonic flow can occur only at the waist
of the nozzle. Unless the acceleration dv0

dt
= dv0

dz
dz
dt

= v′0 v0 diverges when
v0 tends towards c1 (which we consider as unphysical), v0 = c implies
A′/A = 0, which holds only at the origin indeed. Then, after passing the
waist, v0 > c ⇒ λ(v0 > c) > 0, which entails A′/A and v′0/v0 have
the same sign. This means that the fluid now increases its speed along
the divergent part of the nozzle, unlike the subsonic case. In addition,
from the continuity equation (3.5.5) we infer that in the supersonic region

1In that case,

lim
v0→c

A′

A
= lim
v0→c

v′0v0
v20

(
v20 − c2

c2

)
= lim
v0→c

v′0v0

(
v20 − c2

v20c
2

)
is not defined, since

lim
v0→c

(
v20 − c2

v20c
2

)
= 0.
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(z < 0), since both A and v0 increase, the density ρ0 (and the pressure p0
2)

decreases.

In conclusion, the fluid configuration we have just depicted in the second point
corresponds to that of a sonic black hole. Its sonic horizon is located at the waist
of the nozzle z = 0 and its sonic trapped region is the supersonic region z < 03.

We shall now integrate the nozzle equation (3.5.11) from z = 0 to a generic
coordinate z∗. If the velocity of sound c is constant, we have for the acoustic
black hole configuration∫ z∗

0

1

A

dA

dz
dz =

∫ z∗

0

1

v0

dv0

dz

(
v2

0 − c2

c2

)
dz ⇒ A(z∗) =

c

v0(z∗)
AHe

[v20(z∗)−c2]/2c2 ,

(3.5.13)
where AH ≡ A(0) is the area of the waist of the nozzle and ~v0(0) ≡ −c ẑ. On the
other hand, the subsonic solution (v0 always < c) is

A(z∗) =
v0(0)

v0(z∗)
AHe

[v20(z∗)−v20(0)]/2c2 . (3.5.14)

Starting from this initial subsonic configuration, an acoustic black hole can be
formed by lowering the pressure in the exhaust region (i.e. large negative z),
which entails a continuous deformation of the velocity profile.

Finally, let us see how an external force causes a sonic horizon translation.
We have observed above that this is forced to form and remain at the waist of the
nozzle, due to the fine tuning condition A′ = 0 being in correspondence with the
origin. Indeed, the flow will self-adjust to satisfy this fine tuning, which further
keeps the acceleration finite at the acoustic horizon. On the contrary, in the
presence of an external driving force Q = Q(z) = −ρ0

∂Φ
∂z

(Φ ≡ potential), the
situation slightly changes. The reduced Euler’s subequation (3.2.7a) is now

∂t~v0 = −1

ρ

∂p0

∂z
− ∂

∂z

(
1

2
v2

0 + Φ

)
. (3.5.15)

2From equation (3.5.7), we have v0(z)dv0(z)dz = − 1
ρ0

∂p0
∂z . Since ρ0 > 0 and the left-hand

side turns out to be positive for z < 0, then ∂p0
∂z must be negative for z < 0. This means the

pressure p0 decreases in the supersonic region.
3By analogy with General Relativity, the sonic trapped region is the region containing sonic

outer trapped surfaces. They are surfaces for which the fluid velocity is inward-pointing and the
normal component of the fluid velocity is greater than c. Then, any sound wave will be swept
inward by the fluid flow, hence the appellative trapped. The sonic event horizon is defined,
like in General Relativity, by demanding that it be the boundary of the region from which
null geodesics (sound waves or, quantically, phonons) cannot escape. In a steady flow (the
analogue of a stationary geometry in General Relativity), the sonic event horizon coincides
with the boundary of the sonic trapped region (the so-called sonic apparent horizon).
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Then, we shall make the same considerations and perform the same calculations
as before but taking the potential Φ into account. At the end, this yields

A′

A
=
v′0
v0

(
v2

0 − c2

c2

)
+

Q

ρ0c2
. (3.5.16)

Therefore, when v0 = c the above equation becomes

A′

A

∣∣∣∣
H

=
Q

ρ0c2

∣∣∣∣
H

, (3.5.17)

with
∣∣∣∣
H

meaning that this equation conveys the horizon location. As a result, in

the presence of an external force the sonic horizon is not necessarily located at
the waist of the nozzle.

After all this dissertation, the reader must have noticed that, in the context
of black holes hydrodynamics, the local speed of sound plays the same role as
the speed of light in General Relativity. That is why it has been conventionally
denoted by the letter c.
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Conclusions

In this work, we presented the basics of acoustic black holes and a model of
its experimental realization. This shows that applying concepts and tools from
General Relativity to acoustics permits to map gravitational (theoretical) issues
into (possibly) experimental problems.

We first had an overview of the fundamentals of General Relativity and
spherically-symmetric gravitational fields. Then, we focused on a purely for-
mal analogy between two wave equations within apparently far Physics branches
respectively. In the end, we were able to construct a fruitful framework in which
to deal with some fluid systems in the same way as Einstein’s theory of gravita-
tion. In particular, we studied the spherically-symmetric and the one-dimensional
sonic analogues of gravitational black holes, up to guess a possible realization as
well.

In recent years, all of this led to simulate quantum black holes phenomena by
means of analogous quantum condensed matter systems. In fact, what seems to
be the sonic analogue of Hawking radiation has been detected by J. Steinhauer
(see [4]). Consequently, it may be claimed − within reasonable limits − acoustic
black holes are a valid alternative to investigate quantum phenomena related to
gravitational systems.
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Appendix A

Wave equation in curved space-time

We have already mentioned that the wave equation in a curved space-time takes
the form

∆ψ ≡ 1√
−g

∂µ(
√
−g gµν ∂νψ) = 0. (A.0.1)

More technically, this is the d’Alembertian equation of motion for a minimally
coupled massless scalar field ψ propagating in a (3+1)-dimensional Lorentzian
geometry on which a metric tensor gµν(t, ~x) is defined.

Let us demonstrate this specific form for the covariant d’Alembertian opera-
tor. We will first start by computing the covariant divergence of a contravariant
vector

∇µV
µ ≡ V µ

;µ =
∂V µ

∂xµ
+ ΓµµλV

λ, (A.0.2)

where Γµµλ is given by

Γµµλ =
1

2
gµρ
(
∂gρµ
∂xλ

+
∂gρλ
∂xµ

− ∂gµλ
∂xρ

)
=

1

2
gµρ

∂gρµ
∂xλ

. (A.0.3)

To evaluate such Γµµλ, we recall that for an arbitrary matrix M the following
equation holds

tr
[
M−1(x)

∂M(x)

∂xλ

]
=

∂

∂xλ
ln | detM(x) |, (A.0.4)

where det denotes the determinant and tr the trace, that is, the sum of the
diagonal elements. Indeed, for a slight variation dM owing to a slight variation
dxλ, we have

ln | det(M + dM) | ≈ ln | detM + d(detM) | ≈

≈ ln | detM |+ ∂

∂xλ
[ ln | detM(x) | ]dxλ ⇒
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⇒ ln | det(M + dM) | − ln | detM | ≈ ∂

∂xλ
[ ln | detM(x) | ]dxλ ⇒

⇒ ln

∣∣∣∣det(M + dM)

detM

∣∣∣∣ ≈ ∂

∂xλ
[ ln | detM(x) | ]dxλ,

ln

∣∣∣∣det(M + dM)

detM

∣∣∣∣ = ln | detM−1(M + dM) | = ln | det
(
I +M−1dM

)
|.

For any n× n real matrix ε,

det(I + ε) = 1 + tr(ε) +O(ε2)

holds.
Since M−1dM is an infinitesimal matrix, then

ln | det
(
I +M−1dM

)
| ≈ ln | 1 + tr(M−1dM) | ≈ tr(M−1dM),

where we used the approximation ln | 1 + x | ≈ x for x� 1. Thereafter,

tr(M−1dM) = tr
(
M−1∂M

∂xλ
dxλ
)

= tr
(
M−1∂M

∂xλ

)
dxλ.

Therefore,

tr
[
M−1(x)

∂M(x)

∂xλ

]
dxλ =

∂

∂xλ
[ ln | detM(x) | ]dxλ,

neglecting higher orders. Finally, equaling the coefficients of each differential
dxλ, we have proven equation (A.0.4).

In particular, if M is the metric tensor gµν , we have

tr
[
gµρ

∂gρν
∂xλ

]
=

∂

∂xλ
ln | det gµν |, (A.0.5)

and from (A.0.3) (having Einstein’s notation for indexes in mind)

tr
[
gµρ

∂gρν
∂xλ

]
=
∑
µ=ν

gµρ
∂gρν
∂xλ

= gµρ
∂gρµ
∂xλ

= 2 Γµµλ ⇒

⇒ Γµµλ =
1

2

∂

∂xλ
ln |g| = ∂

∂xλ
ln (
√
−g) =

1√
−g

∂

∂xλ
√
−g, (A.0.6)

where g ≡ det gµν . The covariant divergence becomes

V µ
;µ = ∂µV

µ +
1√
−g

∂λ(
√
−g)V λ. (A.0.7)
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Since ∂λ(
√
−g)V λ = ∂λ(

√
−g V λ) −

√
−g ∂λV λ, the above equation (A.0.7) re-

duces to

V µ
;µ = ∂µV

µ +
1√
−g

[∂λ(
√
−g V λ)−

√
−g ∂λV λ] =

= ∂µV
µ +

1√
−g

∂λ(
√
−g V λ)− ∂λV λ =

= �
��∂µV

µ +
1√
−g

∂µ(
√
−g V µ)−�

��∂µV
µ =

=
1√
−g

∂µ(
√
−g V µ),

(A.0.8)

where we were allowed to change the index λ with the index µ, since λ appeared
as a repeated index.

Let us now suppose V µ is ∇µψ ≡ gµν ∇νψ
1. Since ψ is a scalar field, its

covariant derivative coincides with the ordinary gradient

∇νψ = ∂νψ.

From equation (A.0.8), in the present case we obtain

∇µV
µ = ∇µ∇µψ =

1√
−g

∂µ(
√
−g∇µψ) =

1√
−g

∂µ(
√
−g gµν ∇νψ) =

=
1√
−g

∂µ(
√
−g gµν ∂νψ).

(A.0.9)

The expression that we have just derived shows many remarkable features. Firstly
− by interpreting ∆ ≡ ∇µ∇µ as the covariant d’Alembertian operator− if (A.0.9)
vanishes we have

∆ψ =
1√
−g

∂µ(
√
−g gµν ∂νψ) = 0.

Indeed, this turns out to represent the wave equation in a curved space-time, as
we wanted to prove. Secondly, we observe that the curved space-time covariant
d’Alembertian operator ∆ ≡ ∇µ∇µ is given in terms of the metric tensor gµν(t, ~x)
and ordinary partial derivatives only, without any covariant differentiation.

1∇µψ ≡ gµν ∇νψ = gµν ∂νψ ≡ ∂µψ is indeed a contravariant vector.

45





Bibliography

1R. Balbinot, A. Fabbri, S. Fagnocchi, and R. Parentani, “Hawking radiation
from acoustic black holes, short distance and back-reaction effects”, Riv. Nuovo
Cim. 28, 1–55 (2005), arXiv:gr-qc/0601079 [gr-qc].

2R. D’Inverno, Introducing einstein’s relativity, Comparative Pathobiology - Stud-
ies in the Postmodern Theory of Education (Clarendon Press, 1992).

3K. Martel and E. Poisson, “Regular coordinate systems for Schwarzschild and
other spherical space-times”, Am. J. Phys. 69, 476–480 (2001), arXiv:gr-qc/
0001069 [gr-qc].

4J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement
in an analogue black hole”, Nature Phys. 12, 959 (2016), arXiv:1510.00621
[gr-qc].

5W. G. Unruh, “Dumb holes and the effects of high frequencies on black hole
evaporation”, (1994), arXiv:gr-qc/9409008 [gr-qc].

6M. Visser, “Acoustic black holes: Horizons, ergospheres, and Hawking radiation”,
Class. Quant. Grav. 15, 1767–1791 (1998), arXiv:gr-qc/9712010 [gr-qc].

7S. Weinberg, Gravitation and cosmology: principles and applications of the gen-
eral theory of relativity (New York: Wiley, 1972).

47

http://dx.doi.org/10.1393/ncr/i2006-10001-9
http://dx.doi.org/10.1393/ncr/i2006-10001-9
http://arxiv.org/abs/gr-qc/0601079
http://dx.doi.org/10.1119/1.1336836
http://arxiv.org/abs/gr-qc/0001069
http://arxiv.org/abs/gr-qc/0001069
http://dx.doi.org/10.1038/nphys3863
http://arxiv.org/abs/1510.00621
http://arxiv.org/abs/1510.00621
http://arxiv.org/abs/gr-qc/9409008
http://dx.doi.org/10.1088/0264-9381/15/6/024
http://arxiv.org/abs/gr-qc/9712010




Ringraziamenti

Come qualcuno suggerisce, sarebbe più opportuno scrivere una sezione del «Mi
sono laureato nonostante ecc...» che una dei Ringraziamenti. Ad ogni modo, non
mi esimerò dall’attenermi alla consuetudine e ringrazierò chi di dovere.

Innanzitutto, ringrazio il mio relatore, il Prof. Roberto Balbinot, per l’atten-
zione e la dedizione riservatemi nella stesura di questo elaborato. Ringrazio
anche il Prof. Alessandro Fabbri, per avermi introdotto per primo all’argomento
dei buchi neri acustici e per il sostegno che non ha mancato di darmi nel corso
di quest’anno.

Ringrazio tutti gli amici che hanno condiviso con me questi anni di studi
a Bologna. Pertanto, ringrazio la “balotta” dei Ragazzi di Via Mascarella, che
ha contribuito a farmi sentire a casa durante la permanenza in questa città;
quello “smanettone” di Filippo Papa, con cui ho avuto il piacere di svolgere le
prove di laboratorio negli ultimi due anni; i membri dell’Associazione Italiana
Studenti di Fisica e in particolare quelli del Comitato Locale di Bologna, che
ho avuto l’onore e l’onere di presiedere lo scorso anno: grazie a loro la mia
esperienza universitaria si è sicuramente arricchita; il gruppo mensa, per i vari
pranzi in compagnia; il Gruppo Giovani della Parrocchia di San Gioacchino e in
particolare Michele Iannello per avermi introdotto a questa realtà: da quando ho
cominciato a farne parte, il Gruppo Giovani ha di certo aggiunto profondità alla
mia vita da “bolognese adottivo”.

Ringrazio anche tutti gli amici di Forlì che, nonostante la mia crescente as-
senza nel corso degli ultimi anni, mi sono stati vicini e si sono mostrati sem-
pre pronti ad accogliermi ogni volta che sono tornato in terra natìa. Ringrazio
dunque la mitica Comitiva, i miei compagni di classe del liceo, i Polverieri e gli
Underwave.

Ringrazio i miei professori del liceo e in geneale tutti i maestri di vita −
più che di nozioni... − che mi hanno permesso di arrivare a questo risultato.
Tra questi, ringrazio di cuore Don Erio, per la guida spirituale che non ha mai
mancato di darmi sin dalla mia nascita.

Un grazie va ovviamente a tutta la mia famiglia, che mi ha supportato (e
sopportato...) in questo percorso. Ringrazio quindi i miei nonni, per la vicinanza

49



che mi hanno dedicato, e più di tutti ringrazio i miei genitori: pungolanti o
amorevoli a seconda di quale fosse il meglio per me di volta in volta, hanno
soprattutto loro il merito di avermi fatto rialzare in seguito a ogni caduta.

Infine, ringrazio in generale chi mi ha sempre incoraggiato e ha alimentato in
me quel senso di meraviglia e curiosità che dà significato allo studio. Insomma,
un immenso grazie a chi mi ha fatto crescere più come uomo che come fisico.

50


	Introduction
	Introduction to General Relativity
	Equivalence Principle and geodesics equation
	Principle of General Relativity and Principle of General Covariance
	Space-time curvature and Einstein field equations

	Schwarzschild metric and Painlevé-Gullstrand coordinates
	Schwarzschild metric
	Painlevé-Gullstrand coordinate system

	Black holes hydrodynamics
	Fundamental equations of fluid dynamics
	Perturbative approach
	The acoustic metric
	The acoustic metric in Painlevé-Gullstrand coordinates
	De Laval nozzle

	Conclusions
	Wave equation in curved space-time

