
Alma Mater Studiorum · Università di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ENERGETICA

TESI DI LAUREA

in
Radioprotezione M

INVESTIGATION OF NOVEL
METHODOLOGIES FOR MCNP GEOMETRY

PREPARATION: APPLICATION ON THE
UPPER LAUNCHER BSM OF ITER

CANDIDATO:
Davide Laghi

RELATORE:
Chiar.mo Prof.
Marco Sumini

CORRELATORI:
Ph.D. Marco Fabbri (F4E)

Ph.D. Alfredo Portone (F4E)
Ing. Lorenzo Isolan

Anno Accademico 2017/2018

Sessione III



1



Contents

1 General Introduction 1
1.1 F4E and the ITER project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 MCNP: a Monte Carlo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Code’s Basics of functioning . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Constructive solid geometry CSG . . . . . . . . . . . . . . . . . . . . . . 2

2 Understanding and Investigating the Relationships between Geometrical Er-
rors and Lost Particles in MCNP 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The spherical source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Derivation of the relationships between lost particles and geometrical errors . . . 7
2.2.1 The Intersecting Geometry Error . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 The Undefined Geometry Error . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 MCNP validation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 MCNP test: Intersecting Geometry Error . . . . . . . . . . . . . . . . . . 12
2.3.2 MCNP test: Undefined Geometry Error . . . . . . . . . . . . . . . . . . 12
2.3.3 Overall test results considerations . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Spherical Source VS Parallelepipedal Source . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Validation of P-source laws . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The advantage of a P-Source . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Convergence to the Expected Lost Particle value . . . . . . . . . . . . . . . . . . 20
2.5.1 P-source vs Spherical Source . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Lost particles dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 A more thorough check on source size influence on convergence . . . . . . 21

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.1 Possible standardized procedure for lost particle debugging . . . . . . . . 24

3 Comparison between Unstructured Meshes and Fmeshses in neutronic anal-
ysis of the Electro-Cyclotron Upper Launcher Blanket Shield Module 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 How are UM implemented? . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Why Unstructured Meshes? . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 The MCNP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 The Tally Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Simulations and Post-Processing . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Reference and Control Tallies . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Global Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



3.3.3 Local results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 52

Appendices 53

A Uniform and isotropic fluence inside a sphere using a cosine distribution: an
analytical demonstration 54

A.0.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.0.2 Analytical demonstration1 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B SDEF card for a parallelepipedal source 57

C Used fillers 59

D Additional data 61

E Additional figures 63

F UM pre/post processing workflow and guidelines 68
F.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
F.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1A. Portone, personal communication, 2018.

3



List of Figures

1.1 CSG: a complex cell is built using primitive solids and boolean operators . . . . 3
1.2 XZ section of the C-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Visual explanation of IA dependency . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Maximum circular IA that can fit the source sphere . . . . . . . . . . . . . . . . 8
2.3 Scheme of the simplified void geometry . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Summary of the results obtained with MCNP on intersecting geometry error tests 13
2.5 Summary of the results obtained with MCNP on undefined geometry error tests 14
2.6 Spherical source generating a P-source . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Validation test for the P-source . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Ratio between the minimal error size that can be detected with a parallelepiped

and a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Convergence test result for a p-source and spherical source. . . . . . . . . . . . 21
2.10 Results summary of the convergence test based on lost particles value . . . . . . 22
2.11 Results of tests conducted on the dependence between source size and convergence. 23

3.1 C-Model envelopes structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 The upper launcher in the ITER tokamak . . . . . . . . . . . . . . . . . . . . . 28
3.3 Structured Vs Unstructured mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Visualization of the created envelopes. . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 The Bio Shield Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Exploded view of the meshed parts . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Global view of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Blanket module with the cutout. In transparent green the original envelope 29,

in pink the cut actually implemented and filled with void . . . . . . . . . . . . . 34
3.9 Visualization of the mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 Circled in red the chunk of elements erroneously allocated to CuCrZr . . . . . . 41
3.11 Percentage of cells/volume that presented a statistical error lower than defined

thresholds for different nuclear properties results . . . . . . . . . . . . . . . . . . 42
3.12 Volume distribution in unstructured mesh cells . . . . . . . . . . . . . . . . . . . 44
3.13 Local flux comparison results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.14 Local heating (implicit) comparison results . . . . . . . . . . . . . . . . . . . . . 45
3.15 Local heating (explicit) comparison results . . . . . . . . . . . . . . . . . . . . . 46
3.16 CuCrZr cells with a photon heating higher than 2.4 W/cc . . . . . . . . . . . . . 48
3.17 UM cells with higher neutron heating values in water . . . . . . . . . . . . . . . 49

A.1 Fluence’s contribute of dS on point Q . . . . . . . . . . . . . . . . . . . . . . . . 55

E.1 FMESH structure and positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 63
E.2 XY view of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
E.3 YZ view of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
E.4 Heating in Unstructured Meshes simulations, Y-section . . . . . . . . . . . . . . 65

4



E.5 Heating in Unstructured Meshes simulations, side view . . . . . . . . . . . . . . 66
E.6 Heating in Implicit fmesh simulations, Y-section . . . . . . . . . . . . . . . . . . 66
E.7 Heating in Implicit fmesh simulations, side view . . . . . . . . . . . . . . . . . . 67
E.8 Comparison between UM and Explicit results in water . . . . . . . . . . . . . . 67

F.1 Overview of the different pre-processing chains for UM and Fmesh approaches . 69

5



List of Tables

3.1 % volume deviation of the simplified CAD and of the Mesh with respect to the
original one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Different strategies for neutronic analysis . . . . . . . . . . . . . . . . . . . . . 37
3.3 Reference Tallies deviations in upper port plug (UM-CSG)/CSG . . . . . . . . . 40
3.4 Comparison between reference cell tallies and integrated mesh results [W] . . . 41
3.5 Heating peaks on one cell [W/cc] . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Heating peak, average on 1000 cell [W/cc] . . . . . . . . . . . . . . . . . . . . . 48

D.1 Control Tallies in Blanket, fluxes are in
[

#

cm3

]
while heating is in [W ] . . . . . . 61

D.2 Reference Tallies in Upper Launcher, fluxes are in
[

#

cm3

]
while heating is in [W ] 62

6



Abstract

Il seguente elaborato è il risultato di 6 mesi di stage svolti presso Fusion For Energy (F4E)
nell’ambito dell’analisi del trasporto neutronico con tecniche Monte Carlo. In particolare i temi
che verranno trattati sono due e riguardano entrambi la creazione, gestione e utilizzo del codice
MCNP per analisi nucleari.

Il primo argomento è quello degli errori geometrici che vengono generati quando avviene
una conversione da formato CAD a Constructive Solid Geometry (CSG) e le loro relazioni con
il fenomeno delle lost particles. Il passaggio a CSG tramite software è infatti inevitabile per la
costruzione di modelli complessi come quelli che vengono usati per rappresentare i componenti
di ITER e può generare zone della geometria che non vengono definite in modo corretto. Tali
aree causano la perdita di particelle durante la simulazione Monte Carlo, andando ad intaccare
l’ integrità statistica della soluzione del trasporto. Per questo motivo è molto importante ridurre
questo tipo di errori il più possibile, ed in quest’ottica il lavoro svolto è stato quello di trovare
metodi standardizzati per identificare tali errori ed infine stimarne le dimensioni.

Se la prima parte della tesi è incentrata sui problemi derivanti dalla modellazione CSG, la
seconda invece suggerisce un alternativa ad essa, che è l’uso di Mesh non Strutturate (UM),
un approccio che sta alla base di CFD e FEM, ma che risulta innovativo nell’ambito di codici
Monte Carlo. In particolare le UM sono state applicate ad una porzione dell’ Upper Launcher
(un componente di ITER) in modo da validare tale metodologia su modelli nucleari di alta
complessità. L’approccio CSG tradizionale e quello con UM sono state confrontati in termini
di risorse computazionali richieste, velocità, precisione e accuratezza sia a livello di risultati
globali che locali. Da ciò emerge che, nonostante esistano ancora alcuni limiti all’applicazione
per le UM dovuti in parte anche alla sua novità, vari vantaggi possono essere attribuiti a questo
tipo di approccio, tra cui un workflow più lineare, maggiore accuratezza nei risultati locali, e
soprattutto la possibilità futura di usare la stessa mesh per diversi tipi di analisi (come quelle
termiche o strutturali).



Abstract

The following dissertation is the result of a 6 months stage conducted at Fusion for Energy
(F4E) in the neutron transport analysis field with a Monte Carlo approach. Two topics in
particular will be discussed, both regarding the creation, management and usage of MCNP
models for nuclear analysis purposes.

The first topic is about the geometrical errors that are generated during a conversion from
CAD to Constructive Solid Geometry (CSG) format and their relationships with the lost parti-
cles phenomenon. The translation to CSG through software is indeed inevitable when building
complex models like the ones used to represent ITER components and this can generate areas
in the geometry that are not well defined. These areas cause a loss of particles during the
Monte Carlo simulation, affecting the statistical integrity of the transport solution. This is the
reason why it is key to reduce these errors as much as possible and so the focus of this work
was to find a standard way to identify these errors and finally estimate their size.

If the first part of the thesis is focused on the problems deriving from CSG modelling, the
second one, instead, suggest a possible alternative, which is the use of Unstructured Meshes
(UM), an approach that is the basis of CFD and FEM analysis, but is highly innovative in
the field of Monte Carlo codes. In particular UM have been applied to a portion of the Upper
Launcher (an ITER component) in order to validate this methodology on high complexity
nuclear models. The traditional CSG approach and UM one have been compared in terms
of computational resources consumption, velocity, precision and accuracy both on global and
local results. What emerged is that, even if there are still a few limits on the methodology due
also to its novelty, many advantages can be found on the UM application. Among them there
are a more linear workflow, better accuracy in local results, and more importantly the future
possibility of using the same mesh for different types of analysis (like thermal or structural).



Chapter 1

General Introduction

The focus of the thesis was to improve the geometry modelling conditions in nuclear analysis
investigating current problems and testing innovative solutions. This thesis is divided in three
chapters: first, a general introduction discussing a few concepts that will be useful to understand
the rest of the work, and then the two main topics which are the investigation of the lost particles
phenomenon and the application of Unstructured Meshes (UM) to MCNP models.

1.1 F4E and the ITER project
All the work related to this thesis was carried out at Fusion For Energy (F4E), the domestic
agency that is responsible for the European contribute to the ITER project. ITER, when com-
pleted, will be the biggest and most advanced prototype of a tokamak fusion reactor and it is
currently under construction in Cadarache, France, where the first plasma date is set to be 2025.
The partners participating to ITER are European Union (EU), USA, India, Korea, Japan and
Russia, each one represented by its domestic agency. F4E, in particular, is responsible for the
biggest contribution to the project (around 50%) because EU will be the one actually hosting
the reactor. Since each partner contribution is "in kind",i.e. not to provide money, but to
deliver reactor components instead, F4E is responsible for the preparation and coordination of
the design, research and development (R&D) and fabrication of most of the high-technology
components that are required to construct ITER. All of this is done both internally and involv-
ing skillful external companies through public tenders. Working in this environment was key
to have access to the latest nuclear analysis technologies and to models that probably are the
bigger and more complex in the whole nuclear community.

1.2 MCNP: a Monte Carlo code

1.2.1 Code’s Basics of functioning

MCNP[7] (Monte Carlo N-Particle) was the code on which this study was based. This was done
because it is the reference nuclear code used at Fusion for Energy and ITER project, but also
because it is probably the most common (and better qualified) code used nowadays for studying
the transport of particles and radiations. As several other nuclear analysis codes, MCNP is
based on a Monte Carlo simulation approach, meaning that, differently from deterministic ones,
its solution is based on statistics and probability. This is done because the transport of particles
and radiations is extremely complex and highly depends from parameters like the cross sections
that regulate the probabilities of different interactions of the particles with matter and from
medium geometry. These cross section are derived experimentally as well as from simplified
analytical models and depend on a bunch of factors like type of particle, material, energy, ecc.
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The generic functioning of Monte Carlo code is as following: a particle is generated in the
geometry with a certain position, direction and energy according to the source specifications
that have been defined by the user and then the code starts to simulate what is called the
particle history. The mean free path of the particle is computed and used to advance to the
next interaction where, according to cross sections, the particle obtains a new direction of flight
and energy. This process goes on until the particle is absorbed, exits from the geometry or it is
cut off from the code because under the energy limit set by the user. During the history there
could also be interactions that result in the creation of secondary particles (e.g. high energy
neutrons generating photons in the tokamak machine): the histories of these particles can be
simulated as well. When a sufficient numbers of histories is simulated in this way, thanks to
the the Central Limit Theorem[3], it is possible to derive a general solution for the transport
problem.

The great advantage of Monte Carlo codes is that they allow to simulate the transport
on far more complex geometries than deterministic ones while the drawback is that it could
require bigger computer resources and running time in order to simulate enough histories to
have good statistical results. Indeed all the simulations involving complex models during the
studies for this thesis were run on MARCONI super computer of the CINECA Computer Center
in Bologna.

1.2.2 Constructive solid geometry CSG

An additional complexity that characterizes Monte Carlo codes is the use of Constructive Solid
Geometry, also known with the acronym CSG. As it can be visualized in fig 1.1 Constructive
Solid Geometry means that every complex shape has to be built starting from primitive solids
like cubes, spheres, cones, ecc. that are combined using boolean operators. The reason for this
is that when the code is simulating a particle crossing a surface it needs to compute the normal
to that surface using its mathematical equation, and this is possible only up to second order
surfaces.

This requirement considerably limited the complexity of nuclear transport modelling in the
past since they had to be built by hand (even if they were still way less simplified than the
ones used for deterministic codes). Luckily nowadays there are softwares like SuperMC[11]
that provide a semi-automatic conversion from CAD to CSG format ready to be use in an
MCNP input. This allowed to exponentially increase the complexity of nuclear transport models
reaching peaks like the C-Model[5], the 90 degrees section of ITER’s tokamak used as the
reference model for all ITER nuclear analysis (a sectioned view of the C-model is represented
in fig 1.2).

However, the CAD-CSG translation is not fully automated: in order to be able to convert
complex CAD models, the analyst always has to perform additional manual operations like
repairing, defeaturing and splitting. Defeaturing consists in slightly simplifying a CAD model
removing all the smaller features like small rounds, short edges, etc. These features indeed have
no significant impact on the analysis results while they increase dramatically the complexity of
the conversion. Moreover special care has to be applied on removing all the splines in the CAD
model since they are not allowed in MCNP geometries.

Even after defeaturing, a geometrically complex component is unlikely to be translated
successfully without performing a splitting session first. Several cuts have to be performed on
the CAD for two main reasons:

1. Without splits the software would try to convert the entire part in a unique cell, inevitably
failing.

2. It has been observed that MCNP geometry loading time is driven by the cells which have

2



Figure 1.1: CSG: a complex cell is built using primitive solids and boolean operators

the higher number of “words” in their definition. This means that a higher number of
simpler cells has to be preferred instead of fewer cells presenting a high number of “words”.

Additionally, in order to not increase the number of words or the total number of surfaces in
the model, it is good practice to split the CAD with surfaces already used by the geometry,
without creating new ones.

These processes are quite time consuming and sometimes it happens that the conversion of
complex or broken models generates geometrical errors, since the software is not perfect. In
the following chapter of this thesis the topic of geometrical errors and their relationship with
the lost particles phenomenon is addressed, while in the third chapter an alternative solution
to the use of CSG is proposed and its results compared with the traditional workflow.
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Figure 1.2: XZ section of the C-Model
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Chapter 2

Understanding and Investigating the
Relationships between Geometrical Errors
and Lost Particles in MCNP

2.1 Introduction

2.1.1 The errors

There are actually only two possible types of errors that can be generated during a CAD-
CSG conversion and it’s possible to refer to them as the "intersecting geometry error" and the
"undefined geometry error" .

The intersecting geometry error arises when two or more cells are wrongly defined in such
a way that they overlap: this forces the code to associate multiple datasets to the same region
of space while giving it no means to chose which one it should use, causing a particle crossing
that region to be lost. Instead the undefined geometry error consists in a region of space that
does not belong to any cell, meaning that the code has no datasets at all associated with that
region: this again causes lost particles.

The nature of these errors and how they exactly work will be better examined in the following
sections, but it is important to understand since the beginning why there is such an interest
on lost particles. As explained in section 1.2.1 the MCNP solution is a statistical one, and it
is based on computing the mean of all histories simulated. When a particle is lost, the history
has been simulated, but then removed from the computing of the final solution. This can affect
the statistical integrity of the solution, resulting in non-physical results. Indeed, in the MCNP
manual[7], it is recommended that the number of lost particle during a simulation should not
exceed 10, since even a single lost particle would already show that there is a glitch in the model
geometry. This limit was thought for when the models were still made by hand, nowadays, in
complex simulations as the one performed on ITER components, this is often exceeded. The
lost particle phenomenon is currently tolerated, since its negative effect is considered to be
less significant compared to the better accuracy that can be achieved by using more detailed
models.

However, even if tolerated, it is still key to keep the number of lost particles as low as
possible and great efforts are spent usually to debug models from geometrical errors causing
them. This is the reason why it was important to investigate and understand more in detail
how the particles are lost and which are the key parameters to take into account. From that,
the final goal of this study was to identify a standard procedure for the debugging process, and
to come up with a way to estimate the size of these errors.
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2.1.2 The spherical source

The preferred way to debug a model for lost particles is to flood the geometry with particles
hoping that some of them will get lost and reveal the geometrical errors that have to be
corrected. This lost particles test provides also an idea of the lost particles rate (the number
of lost particles divided by the number of histories simulated), which is often used as the
parameter on which a threshold is set dividing acceptable from unacceptable models. At the
moment though, analysts in the fusion community use different sources and set-ups to perform
this test and these differences can change the lost particles rate (from now on LPR) even if the
tests are performed on the same model. In other words there is not a standard procedure to
follow that helps to characterize the quality of a model in terms of objective and unchanging
parameters, leaving an opening for this work.

With this standardisation need in mind, the starting point for the study was to analyse
the source suggested by MCNP manual when debugging for lost particles that hereafter is
described:

• Spherical surface source

• Use of the VOID card

• NRM=-1 (inward direction)

• Default settings for VEC and DIR

The use of the VOID card means that the particles will not have interactions with matter and
will travel in a straight line after being generated. This also allows to simulate a greater number
of histories in a relative small time to properly flood the geometry with particles. Of course
the source will have inward direction since there is no interest on everything outside it, while
in order to better understand what’s intended with default DIR and VEC here is reported a
passage directly from the MCNP 6.2 manual[7](pag. 3-125):

“The source variables SUR, VEC, NRM, and DIR are used to determine the initial direction
of source-particle flight. The direction of flight is sampled with respect to the reference vector
VEC, which can itself be sampled from a distribution. The polar angle is the sampled value of
the variable DIR. The azimuthal angle is sampled uniformly in the range from 0o to 360o [...] If
VEC is not specified for a distribution on a surface (SUR=0), the vector normal to the surface,
with the sign determined by the sign of NRM, is used by default. If DIR is not specified for a
distribution on a surface, the cosine distribution [p(DIR) = 2×DIR, 0 < DIR < 1] is used by
default”.

This means that the flux through a general surface A from a surface source S will be:∫
A

∫
S

∫
α

∫
φ

S0
2 cosα

2π
sinα dαdφdSdA (2.1)

where α and φ are respectively the polar and azimuthal angle in the VEC reference system,
while S0 =

nps

S
will be the source strength.

The use here of a cosine distribution[6] grants that the particles fluence inside the sphere will
be isotropic and uniform. An analytical proof of that and further explanation about expression
(2.1) can be found in appendix A of this report. This is a key passage, because it means that
the orientation or the position in space of the geometrical errors will not affect the number of
particles that get lost since the fluence is uniform and isotropic.
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Figure 2.1: Visual explanation of IA dependency

2.2 Derivation of the relationships between lost particles
and geometrical errors

2.2.1 The Intersecting Geometry Error

As previously explained an intersection error consists in wrongly defined cells that overlap and
generate an intersection zone as visualized in figure (2.1). From the very first tests it was clear
that changing the volume of this intersection could have no impact on the particle lost ratio.
This provides an insight of how MCNP works: when a particle enters a cell, the code memorizes
the surfaces delimiting that cell and his cross sections and until the particle crosses one of these
surfaces the code will ‘think’ and act as the particle was still in that cell. When the particle
finally reaches one of the delimiting surfaces the code will look for another cell that has the
very same surface as a delimiter: if it finds it everything is fine and the particle enters in the
new cell, if it does not (due to a geometrical error) the particle get lost. This means that only
the particles crossing the intersection area between the two cells will get lost.

In figure (2.1) is shown a clarifying example: in track 1 the particle crosses some not properly
defined surfaces, but it enters and exit from the blue cell through well-defined ones, causing
the code to simulate it entirely as it was always in the blue cell. In track 2 instead the particle
enters in the red cell through a well defined surface, but exits from an erroneous one and so
gets lost. It’s useful to notice that in this example both particles crosses surface 1, which is an
erroneous one, but only particle 2 gets lost, and this happens because for a particle to get lost
it must cross the intersection area (IA) first1. That explains for example why increasing the
interference volume but leaving untouched the IA produce no change in the lost particle rate,
while increasing the IA results in a growth of it.

Another important consequence of this is that a complete overlap of two cells (e.g. a
sphere completely contained by a cube) would generate an intersecting error that would be
undetectable with the lost particle method, because in that case particles would always enter

1The particle will get lost only when it reaches one of the ill-defined surfaces, and not when it crosses the
IA, but if it didn’t cross the IA before it means that it has entered and will exit through well defined surfaces,
even if crossing ill-defined ones.
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Figure 2.2: Maximum circular IA that can fit the source sphere

and exit only from the well defined surfaces bounding the bigger cell.
The other two parameters whose influence on the LPR had to be checked were the source

sphere size and the error position in space. For a fixed IA, increasing the sphere source radius
resulted in a drop of LPR value, while changing the IA position (with a fixed source sphere
radius) appeared to not affect the LPR, in accordance with the assumption of a uniform and
isotropic fluence inside the source sphere.

Heuristic derivation of the intersecting error law

There is a simple geometry configuration where is possible to semi-analytically derive a law
relating the size of the IA, the source sphere radius and the LPR. Let’s consider a circle built
on a diameter of the source sphere as in figure (2.2). To integrate the cosine distribution of
emission properly we would have to integrate α1 on φ which is the azimuthal angle around
VEC, but since in this way α1 would be a function of φ, this would be too complicated to
solve. So here an assumption is made: both α1 and α2 are considered at the same time and
the integral over φ is calculated only on π instead of 2π, furthermore it is assumed that the
sum of emission probabilities calculated for α1 and α2 remains constant for every φ. In other
words this would mean that for example if we increase φ, the reduction in emission probability
caused by the reduction of α1 is exactly compensated by the augment due to the growing of
α2. If this assumption holds it means that the probability for a particle generated in P to hit
the IA would be:

π∫
0

 α1∫
0

cosα

π
sinαdαdφ+

α2∫
0

cosα

π
sinαdαdφ

 =
1

2

 α1∫
0

sin 2αdα +

α2∫
0

sin 2αdα

 =

=
1

4
[− cos 2α|α1

0 +
1

4
[− cos 2α|α2

0 =
1

4
[1 + (− cos 2α1) + 1 + (− cos 2α2)] =

1

2
(sin2 α1 + sin2 α2)

(2.2)
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where te trigonometric formula cos 2x = 1− sin2 x was applied.
Using the sine law in triangles:

sinα1

R
=

sin θ

l1
⇒ sinα1 =

R sin θ

l1
sinα2

R
=

sin(π − θ)
l2

⇒ sinα2 =
R sin θ

l2

(2.3)

Using the Carnot theorem:{
l21 = R2 +R2 − 2R2 cos θ = 2R2(1− cos θ)

l22 = 2R2(1− cos(π − θ)) = 2R2(1 + cos θ)
(2.4)

Inserting equations (2.4) and (2.3) in the master equation (2.2) results in:

1

2

R2 sin2 θ[2R2(1− cos θ + 1 + cos θ)]

4R4(1− cos2 θ)
=

1

2
(2.5)

That means that each particle generated on the spherical source will always have a 50% chance
to hit the considered IA independently from its position, that is, the expected lost particle rate
(from now on ELPR) will be 0.5.

Heuristically it could be supposed that if this result is true, the general lost particle rate
could be found relating a generic IA and the maximum IA previously discussed, something like:

ELPR =
1

2
× IA

IA(max)
=

1

2
× IA

πR2
(2.6)

This law perfectly fits the results discussed in the next section, but surely a more formal
derivation should be produced.
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Figure 2.3: Scheme of the simplified void geometry

2.2.2 The Undefined Geometry Error

As previously stated an undefined geometry error is not created by the overlap of existing cells,
but from the absence of them. The main difference between intersecting and undefined error
is that in the former a particle will get lost only if crossing the IA first, instead, for the latter,
is the total surface bounding the void region that matters since a particle crossing it would be
immediately lost. That means for instance that an undefined geometry error can be always
detected, even if completely contained by other cells.

Heuristic derivation of the undefined error law

Using the cosine distribution it is possible to derive a relationship between the void volume
surface, the source sphere size and the LPR for a simplified case as shown in figure (2.3). In
this case, where a spherical void error placed in the source origin is considered, the probability
for a particle to get lost will be:

α
′∫

0

2π∫
0

S0
2 cosα

2π
sinαdαdφ = S0

α
′∫

0

sin(2α)dαdφ =

S0

2
[− cos 2α|α

′

0 =
S0

2
[1 + (− cos 2α

′
)] = S0 sin2 α

′
(2.7)

where the relation cos 2x = 1 − sin2 x was used and the integration over φ was trivial thanks
to α′ remaining constant in this configuration.

This means that the probability for a particle to get lost only depends on α′ , which, thanks
to the simplified geometry that is being considered, will be the same for every source particle
and only depends on the size of the 2 spheres since sinα =

r

R
. In order to find the expected
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lost particle rate the probability found in eq.(2.7) will have to be integrated on the source’s
surface and then divided it by the total number of simulated particle:

ELPR =
Np

4πR2

r2

R2
· 4πR2 · 1

Np

=
r2

R2
(2.8)

A more general law could be extrapolated combining this result with an approach simi-
lar to the one proposed in section 2.1 for the intersecting error law based on the following
considerations:

• The maximum undefined volume that can be generated in the source sphere is as big as
the sphere itself.

• For such an error the probability for a particle to get lost will trivially be 1.

• It is reasonable to assume that the law will be a function of the ratio between the maximum
error surface and the target error surface.

The following is the combination of the previous considerations:

ELPR = 1× Void Surface
4πR2

(2.9)

which in the simplified case discussed before reduces indeed to:

ELPR =
4πr2

4πR2
=

r2

R2
(2.10)

Law (2.9) perfectly fits the MCNP tests described in the next subsection, but will surely need
a more formal derivation.
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2.3 MCNP validation tests
In the previous section semi-analytical relationships were found relating errors size, LPR and
source size. In this section are reported the results of all the different experimental test that
were performed in order to validate them.

If not otherwise specified each MCNP test was conducted creating a block of 99 slightly
different examples where one or more parameters were progressively changed. In order to
this, an ad hoc library was created in python that contained classes useful to create cubes,
spheres and sources in terms of MCNP input form and to perform basic operations on them
like translating them in space or drilling holes in them. Moreover, also the simulations running
and post-processing was automatised using python scripts. The default source sphere size had
a 250 cm radius while the default particle histories number was 106 for each run.

2.3.1 MCNP test: Intersecting Geometry Error

As anticipated, the law derived at the end of previous subsection perfectly fit all the imple-
mented tests’ results. Hereafter those tests are briefly described:

1. Using the default source, a rectangular IA placed in the sphere’s origin was progressively
increased in size.

2. Considering a fixed rectangular IA (100cm2), the radius of the spherical source was pro-
gressively increased from 16cm to 114cm.

3. Considering the default source and a fixed IA size (400cm2), the IA radial position was
progressively increased from y = 1.7cm to y = 168.3cm. This particular test was con-
ducted simulating 108 particles in order to achieve a better statistical precision.

A summary of the results is visualized in fig (2.4).
As it can be observed in figure (2.4c) and (2.4d) translating the IA causes the LPR to

oscillate around the predicted value (indicated by the black line). This behavior is due to
the statistical nature of MCNP solution, but anyway the percentage error, computed as the
difference between expected and real LPR divided by the expected one, always remains below
1%.

2.3.2 MCNP test: Undefined Geometry Error

As anticipated, the law derived at the end of previous subsection perfectly fits all the imple-
mented tests’ results. Hereafter those tests are briefly described:

1. The radius of a spherical void error placed in the origin of the default source sphere was
progressively increased from 0.2cm to 19.8cm.

2. The same setup was reproduced but with a cubic void error instead of a spherical one.

3. Considering a fixed spherical void error size (radius=10cm), its radial position was pro-
gressively translated from y = 2cm to y = 198cm. This test was run with 107 particles
in order to achieve a better statistical result.

A summary of these results is visualized in fig (2.5).
As it can be observed in figure (2.5c) and (2.5d) translating the void error causes the LPR

to oscillate around the predicted value (indicated by the black line). This behavior is due to
the statistical nature of MCNP solution, but anyway the percentage error, computed as the
difference between expected and real LPR divided by the expected one, alway remains below
1.5%.
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(a) Fixed source and IA’s position, changing IA’s
size

(b) Fixed IA’s position and size, changing source
radius

(c) Fixed source and IA’s size, translating on ra-
dial direction

(d) Relative error

Figure 2.4: Summary of the results obtained with MCNP on intersecting geometry error tests
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(a) Default source sphere, changing void sphere
size

(b) Default source sphere, changing void volume
size

(c) Default source and fixed error size, translating
on radial direction

(d) Relative error

Figure 2.5: Summary of the results obtained with MCNP on undefined geometry error tests
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2.3.3 Overall test results considerations

The test results allow to state quite confidently that the laws derived in the previous section are
able to accurately relate LPR, source size and errors size. Additionally they confirm that these
relationships are independent from the position or orientation in space of the errors. In fact,
the deviations between numerical results and analytical predictions always remain under a few
percentage points and it is possible to attribute this deviation to the statistical error associated
with the MCNP solution. A more thorough investigation on the size of this deviation and its
driving parameters will be conducted in a successive section of this chapter.

2.4 Spherical Source VS Parallelepipedal Source
It can be demonstrated that a cosine distribution allows to create a uniform and isotropic
fluence not only using a spherical source, but also using a generic closed surface. This could be
particularly helpful when trying to debug geometries that have a preponderant direction (eg.
like a pipe) because it allows to fit those shapes in sources with a smaller surface area. For
this reason an additional feasibility study on the use of a parallelepipedal source was conducted
(from now on P-source). The creation of a parallelepipedal source appears to be a bit more
complicated compared to the spherical one, indeed the input lines needed for his implementation
are more than 50, while for a spherical source they were just a couple. In Appendix B of this
report a more detailed explanation on the SDEF card required for the generation of such a
source is provided.

2.4.1 Validation of P-source laws

Undefined Geometry Error

The first test conducted was to check if the undefined geometry error law derived for the
spherical source was expandable also to a P-source, meaning:

ELPR =
Void Surface
P-surface

=
Void Surface

2ab+ 2bc+ 2ac
(2.11)

where a, b, c are the parallelepiped dimensions.
The test was conducted simulating 106 particles with a spherical undefined error of radius

equal to 1cm moved in 99 different positions inside a parallelepiped of dimensions 100cm ×
20cm × 10cm. From the results shown in fig.(2.7a,2.7b) it appears that the law is confirmed
since the percentage error, except a few points, remains below 4% with a relatively small number
of simulated particles.

Intersecting Geometry Error

Regarding the intersecting geometry error instead, the spherical source law resulted not directly
applicable and a new derivation was necessary. It is always possible to consider a P-source as
if it was created by a bigger sphere source like shown in fig(2.6): inside the region contained by
the parallelepiped it is indistinctly possible to consider that the uniform and isotropic fluence
is created by emitting N particles from the sphere or n from the parallelepiped. This is
possible because the number of particle n that arrive on the parallelepiped surface are uniformly
distributed thanks to the uniform fluence created by the sphere, and this means that if they
are re-emitted by the parallelepiped with a cosine distribution we will have the same uniform
and isotropic fluence inside the parallelepiped that would be created by the bigger sphere.
Fortunately the spherical undefined geometry error law actually relates n and N :
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n

N

Figure 2.6: Spherical source generating a P-source

ELPR =
n

N
=

P-surface
Sphere surface

⇒ N = n
4πR2

P-surface
(2.12)

where R is the sphere radius.
It only remains to apply the intersecting geometry error law for a spherical source:

Lost Particle = N
1

2

IA

πR2
= n

4πR2

P-surface
1

2

IA

πR2
(2.13)

Dividing by n to get the expected lost particle rate it remains2:

ELPR = 2 · IA

P-surface
(2.14)

In order to verify these results a test was conducted simulating 106 particles with an intersecting
geometry error presenting a rectangular IA shape of 64cm2 moved in 99 different positions inside
a parallelepiped of dimensions 100cm×20cm×20cm. From the results shown in fig. (2.7c,2.7d)
it appears that the law is confirmed since the percentage error, except a few points, remains
below 2% with a relatively small number of simulated particles.

2.4.2 The advantage of a P-Source

The main advantage of a P-source is its augmented efficiency in finding smaller geometrical
errors when the model shape has a predominant direction. This can be analytically demon-
strated considering a model shape with two characteristic dimensions: a length L and a depth

2equation (2.14) suggests that probably a more general law relating an intersecting volume error and generic

source shape should be ELPR = 2 · IA

Source Surface
that in the specific case of a sphere reduces indeed to

ELPR =
1

2
· IA
πR2
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(a) Fixed source and error size, changing error po-
sition

(b) Fixed source and error size, changing error po-
sition

(c) Fixed source and error size, changing error po-
sition

(d) Fixed source and error size, changing error po-
sition

Figure 2.7: Validation test for the P-source
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D such as his aspect ratio would be ` =
D

L
. In this configuration the smaller parallelepiped

that can include this shape will be of dimensions D×D×L, while the smaller sphere will have
a radius equal to half the parallelepiped diagonal, that is R =

√
L2 + 2D2/2.

The sources surfaces will than be:
Ap = (2D2 + 4DL)

As = 4π
L2 + 2D2

4

(2.15)

Using the laws derived in section (2.4.1) and (2.2.2) it is possible to calculate what will
be the smaller undefined geometry error detectable once the source size and a LPR have been
chosen: {

VSPmin = Ap · LPR min void surface using a P-source
VSSmin = As · LPR min void surface using a Spherical source

(2.16)

and the same thing can be done for the intersecting geometry error with the laws derived in
sections (2.2.1) and (2.4.1):

IAPmin =
1

2
Ap · LPR min IA using a P-source

IASmin =
1

2
As · LPR min IA surface using a Spherical source

(2.17)

then defining η as the ratio between the minimum errors size detectable by a parallelepiped
and a sphere it is possible to observe that:

η =
VSPmin

VSSmin
=

IAPmin

IASmin
=

(2D2 + 4DL)

π(L2 + 2D2)
(2.18)

Dividing everything by L2 the only variable that remains is the aspect ratio:

η =
2`2 + 4`

π(1 + 2`2)
(2.19)

The graphic of this function is reported in fig (2.8): it can be seen that the P-source can detect
a 40% smaller error if the shape model that is being checked for lost particle is cubic, while the
detected error is more than 90% smaller in case of ` ' 0.1 .
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Figure 2.8: Ratio between the minimal error size that can be detected with a parallelepiped
and a sphere
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2.5 Convergence to the Expected Lost Particle value
Since the MCNP solution is a statistical one, once all the laws were derived it emerged the
need to evaluate how the different sources were converging towards the ELPR, in other words
to understand which were the parameters influencing the relative error between the MCNP
obtained lost particle rate and the predicted theoretical one.

2.5.1 P-source vs Spherical Source

The first thing to check was if there were any differences in terms of convergence between a
spherical and a parallelepipedal source. In order to clarify this a test was conducted inserting the
same undefined geometry spherical error (radius 1cm) into two fixed size sources: a sphere with
radius equal to 50cm and a parallelepiped of dimensions 100cm× 20cm× 10cm. The test was
composed of 18 examples where the number of simulated particle was increased progressively
from 150000 to 147789188. Looking at the results shown in fig.(2.9) it appears that the source
sphere had a slightly worse performance, but this was probably due to the fact that its surface
was a bit bigger, meaning that there are no appreciable differences between how the two sources
converge to the ELPR. Anyway this graphic and other less structured tests that were not
included in this report suggested that the key convergence parameter was neither the source
shape or size nor the nps value, but the absolute number of lost particles instead.

2.5.2 Lost particles dependency

This lost particles’ dependency could be actually intuitive: the more particles are expected to
be lost, the better will be the statistic result of a stochastic simulation. For example if ELP
value is 1 and, once the simulation is run, the resulting number of lost particle is just one more
than the expected, this will be already an error of 100%.

To verify this idea a more complex test was conducted and hereafter its creation is described:

• Two sets of absolute expected lost particles values were generated dividing the [10− 103]
and [103 − 105] ranges in 50 equally spaced points each.

• For each value of expected lost particles the simulation was run with NPS equal to 106,
107 and 108.

• For each NPS a fixed spherical source was considered with radius R equal to 100cm for
106 and 107, but only 50cm for 108. This was done to try to show that the source size
was not a factor, anyway a more specific test about this topic was conducted successively.

• In each input a spherical undefined geometry error was inserted and its radius was calcu-
lated as3:

r =

√
LP

NPS
R (2.20)

allowing to be sure to have the desired expected lost particles value in each example.

In fig.(2.10) are summarized the results obtained from these 300 examples, below are some
considerations about it:

1. From figures (a) and (b) it seems confirmed that the relative error on a ELPR prediction
does not depend directly on the lost particle rate, but on the predicted lost particles value
instead. Indeed changing the NPS did not significantly affected the results.

3This is just a straightforward application of the undefined geometry error law
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Figure 2.9: Convergence test result for a p-source and spherical source.

2. Source size appears to not have a massive effect on the convergence to the theoretical value
since the NPS=108 results, which were obtained with a smaller source, are comparable
with the other two.

3. Figure (c) suggests that is reasonable to expect a relative error on the LPR prediction
below 10% if the expected lost particles value is around 102, while it can go under 1% once
the same value is over 104. For higher numbers of lost particles the prediction rapidly
converge to the theoretical solution, but to get these amount of lost particles the errors
size or the NPS value would have to be so high that they would be unrealistic for normal
application on lost particles debugging.

2.5.3 A more thorough check on source size influence on convergence

As previously anticipated an additional test was performed to better demonstrate that conver-
gence does not depend on source size. This independence can be better understood with an
example: two spherical sources with radius R1 > R2 are considered. If the same NPS value
is used for both sources, source 2 will clearly generate a more uniform and isotropic fluence.
However if inside the two sources is inserted an error whose size is calculated in such a way
that the absolute number of expected lost particles is the same for both cases, this would mean
that error 2 will be smaller than error 1. This explains why the source size does not affect the
convergence: source 2 will actually generate a better fluence than source 1 at any given space
scale, but source 2 will have to be confronted with a smaller error, meaning that it will have
to operate at a smaller scale than source 1, causing in the end both sources to have the same
precision. That is, the source size influence the prediction of the minimal error size detectable,
while the absolute number of lost particle is an indicator of how much this prediction is reliable.

Two separate tests were constructed in similar fashion to the one presented in section 2.5.2
but this time the expected lost particles value were kept fixed (102 in the first test and 104 in
the second), while the source radius was progressively increased. In fig.(2.11) are reported a
further description and the results of the two tests: they suggest that, as expected, the relative
error on the ELPR is roughly constant when the expected lost particles’ value is constant,
independently from the source size. Moreover it can be observed that the relative error value
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(a) Low LP value convergence, semilog graph (b) High LP value convergence, semilog graph

(c) Global results, log-log graph

Figure 2.10: Results summary of the convergence test based on lost particles value
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is around 10−1 when the expected lost particle value is 102 and it is 10−2 when the same value
is 104, confirming the results obtained in the previous section.

(a) 102LP , source radius R ∈ [50cm, 10000cm],
100 points

(b) 104LP , source radius R ∈ [50cm, 1000cm],
100 points

Figure 2.11: Results of tests conducted on the dependence between source size and conver-
gence.
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2.6 Conclusions
From the results contained in the previous sections it seems that 2 fairly easy relationships
relating geometry error size, lost particle and source size exist:

ELPR = 2 · IA

Source surface
Intersecting Geometry Error (2.21)

ELPR =
Void Surface
Source surface

Undefined Geometry Error (2.22)

where these formulas remain valid for every shape and position of a geometry error inserted
in a source with generic shape but able to generate an isotropic and uniform fluence inside its
volume.

More useful is to rearrange these relationships to explicit what will be the smaller error size
that would be statistically detected by a void run in MCNP once an acceptable LPR has been
chosen:

IAmin =
1

2
(Source surface) · LPR Intersecting Geometry Error (2.23)

Void Surfacemin = (Source surface) · LPR Undefined Geometry Error (2.24)

Hereafter are some important considerations:

1. All these tests were conducted for a single geometry error. In case of multiple errors,
if they are reasonably small and far away from each other, the lost particles caused by
one error should not have enough statistical impact to modify the fluence on each error’s
surface, that is the areas calculated with equations (2.23) and (2.24) will be the sum of
all the geometry errors areas. Instead in case they were pretty close to each other an
approximation could be done considering to have a void geometry error to include them
all.

2. A parallelepipedal source can be more efficient than a spherical one, especially with low
values of aspect ratio.

3. The intersecting geometry error is particularly problematic: the detection of it depends
only from his IA, but its volume could be way bigger. The extreme case would be an
intersection error completely contained by another cell: that would be undetectable.

4. The statistical error between calculated values and predicted ones seems to depend ex-
clusively from the expected lost particles absolute number.

2.6.1 Possible standardized procedure for lost particle debugging

Based on these consideration a possible strategy to standardize the lost particle debug procedure
would be to define a standard error size and a statistical error considered acceptable. Here below
is an example of this approach if intersecting geometry errors are considered:

1. The maximum intersection area acceptable is set to IAmax.

2. The LOST card is set equal to LP

3. The source geometry has to be chosen in such a way that its surface is minimized and it
is able to completely contain the model that has to be checked.
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4. The NPS value is set thanks to eq.(2.21) to:

NPS =
LP

2

Source surface
IAmax

(2.25)

5. A void run is executed.

The void run can have only two possible outcomes, either the simulation is completed or it
is interrupted. In the first case it would mean that the lost particle number was lower than
LP, meaning that the geometrical error size was smaller than IAmax. On the contrary an
interruption would imply that size was bigger than IAmax and the model should be further
debugged. Since the relative error between MCNP result and predicted value only depends on
the absolute values of expected lost particles, the choice of LP is fundamental as it associates a
statistical precision to the result. For example to chose LP=104 would mean that if the error’s
IA was about IAmax there would be roughly a 1% deviation between the number of lost particles
found and the predicted one. Since the expected lost particles value is directly proportional to
the geometry error’s size, this would mean that a geometry error whose IA was 1% bigger than
IAmax could still pass the void run test, while if his IA was 1% smaller it could fail it anyway.
In other words from the chosen LP depends the tolerance accepted on the size of the geometry
error that can be detected.

Numerical example

Thanks to this work it has been estimated that in the April 2018 release of the C-Model there
was an equivalent IA of 17.6cm2. Starting from this, a way to choose an acceptable IAmax
that a new part should have in order to be implemented in the C-model could be that the
insertion/substitution should at least not increase the current IA value. This can be done
assuming that the errors are equally distributed through the C-Model and then the IAmax
admitted by a part should not be greater than the volume ratio between the part and the
whole C-model multiplied by the current IA in the C-Model. If for example a port plug was
considered, the following would be the IAmax:

Volume ratio ≈ 0.0044 (2.26)
IAmax = 0.0044 · 17.6 = 0.078cm2 (2.27)

If then the lost card was set to 100, meaning that the tolerance on the error size would be 10%,
the following would be the numbers of histories to simulate in order to pass the test with both
a spherical source that could contain the whole C-Model, and one instead containing only the
port plug:

C-Model ⇒ R = 20m → NPS =
100

2
· 4π · 20002

0.078
≈ 3.2 · 1010 (2.28)

Port plug ⇒ R = 1.5m → NPS =
100

2
· 4π · 1502

0.078
≈ 1.8 · 108 (2.29)
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Chapter 3

Comparison between Unstructured
Meshes and Fmeshses in neutronic
analysis of the Electro-Cyclotron Upper
Launcher Blanket Shield Module

3.1 Introduction
If the previous chapter was focused on problems that derive from CSG, this one instead suggests
an alternative way to model MCNP geometry which is the application of Unstructured Meshes
(UM). This approach is pretty new since it firstly appear in MCNP in 2009 with the release
of MCNP6, but since then the UM capability has been significantly improved until it became
fairly stable only with the last release of MCNP6.2 in 2018. The work continues on the path
indicated by De Pietri’s et al. work[4] which already investigated this feature applying it to a
small section of the vacuum vessel of ITER tokamak using MCNP6.1. For this study instead,
the new MCNP release was used and UM were applied on a more complex model in order to
validate the UM feature on a proper ITER grade complexity analysis. The major upgrades
made from version 6.1 to 6.2 of MCNP are the following:

• The possibility of inserting more than one mesh in the geometry was added.

• A bug causing the incorrect computation of the photon heating was fixed

• The geometry loading condition have been dramatically improved thanks to the creation
of the .mcnpum file format. In all previous versions of MCNP6 the only accepted way by
the code to load mesh informations was to attach a .inp file describing them. The problem
was that this kind of format was not optimized for MCNP and it was serial. Together with
version 6.2 was distributed a new utility called “convert” that is able indeed to convert a
.inp file into a .mcnpum one. What happens is that the .inp file is preprocessed to extract
all the informations needed by the code to run and everything is stored in the .mcnpum
file. This is the same process carried out by the code every time the UM geometry had to
be loaded in previous versions, but it is done in a highly parallelized way and just once.
This means that the loading time for complex meshes can be reduced from hours to just
tens of seconds when using a .mcnpum file instead of a .inp one.

• The .eeout file which is the standard MCNP output containing mesh results, has slightly
changed its structure, meaning that all scripts interacting with this kind of file had to be
adjusted.
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The component chosen for the study was the Blanket Shield Module (also known as BSM) of
the Electro-Cyclotron Upper Launcher. There will be four Upper Launchers installed in ITER
tokamak upper port plugs (see fig 3.2) and their function will be to heat up the plasma and
help to control its instabilities.

3.1.1 How are UM implemented?

Since now it has been repeated many times that Monte Carlo codes have to work with CSG,
so how is it possible to switch to Unstructured Meshes? What happens actually is the creation
of an hybrid model UM-CSG, where the mesh is inserted inside an ad hoc container called
universe. The universe feature has been included in MCNP for a long time and it was created
initially in order to group a set of cells, like for example the ones which constitute an assembly
of a fission nuclear reactor core, in order to easily replicate or translate them. In the C-Model
the universes have found a different application: ITER community refers to them as envelopes
and they are universes used as placeholders for the different tokamak components. In this
manner the C-Model is modular and its maintenance is highly simplified since a modification
made on one of the so called envelope fillers (which is the collection of cells filling one envelope)
will not affect the rest of the model integrity. A visualization of such a structure is reported in
fig 3.1.

What is done when implementing UM is simply creating an ad hoc envelope were the mesh
can be inserted and then the code is able to switch the way it computes the transport from
CSG to UM when a particle enters it. It is very important for the envelope to not intersect in
any way the mesh since this would cause lost particles.
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Figure 3.1: C-Model envelopes structure

Figure 3.2: The upper launcher in the ITER tokamak
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3.1.2 Why Unstructured Meshes?

The current standard strategy for carrying out nuclear analysis is the following:

1. Model defeaturing : using programs like SpaceClaim[2] the CAD model of the component
to study is simplified in order to allow a smoother conversion to a Constructive Solid
Geometry format (CSG).

2. CSG conversion: As already widely discussed, nowadays, with the aid of software like
SuperMC, it is possible to automatically convert a CAD model to an MCNP-ready CSG
model. However this process has a few limitation and, especially for large and complex
models, is not errors free.

3. Mesh Tally and results interpolation: a structured Mesh Tally (MT) grid is superimposed
on the model, the simulation is run and a radiation map is produced. As it is possible to
see in fig(3.3) the main problem of a structured mesh is that it doesn’t allow to perfectly
“follow” the material borders, resulting in voxels that contain more than one material.
This is a problem because it forces the user to make a decision on which approach should
be used to calculate the results in each of this “border voxels". There are two strategies
currently implemented: the implicit method, that tends to underestimate heating results,
and the explicit one, that instead can lead to the arise of unphysical local peaks in the
radiation map. These two procedures will be better described later on.

4. Interpolation: Once the radiation map is produced the results have to be interpolated on
an unstructured mesh of the component in order to be properly visualized and used for
other computational processes like thermo-fluid or mechanical analysis.

The complexity of this process and its intrinsic limit on reproducing faithfully the physical
reality of the model near materials borders generate an interest on studying the feasibility of
using unstructured meshes instead of structured ones:

1. Smaller need for defeaturing process since in this case its aim would only be to decrease the
number of elements needed to mesh the component while there are no problems meshing
for example splines or rounds.

2. No need for CSG conversion, since the mesh can be directly inserted in the model.

3. Better representation of the component’s geometry.

4. Easier interpolation mesh to mesh, with the possibility in the future to use the same mesh
for different analysis (like thermo-fluid ones) introducing no interpolation at all.

Figure 3.3: Structured Vs Unstructured mesh
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It has to be specified at this point that the application of unstructured meshes is not free
from limitations and problems, the hope though is that those are mainly due to the technique’s
novelty and computing power limits, both problems that could be resolved in the future.

3.2 Methodology
As introduced before, the focus of this work was the Upper Launcher’s BSM which is displayed
in fig(3.5). Since this was an experimental study the approach was to divide the BSM in smaller
blocks and to start meshing them independently: this allowed to make tests on smaller and
more manageable models and to better monitor the increasing complexity of the final one.
Finally a compromise was found between meshing the bigger portion of the model possibly
while still containing the estimation of preparing time and run time of the model. The final
result is that three blocks were meshed reaching the plane showed in fig(3.5a), just after the
bolts end. This was considered a sufficiently large portion of the BSM to analyze since, being
the part that faces directly the plasma, it is the most critical one and requires the most precise
data to design. Unfortunately the plane previously discussed cuts out the small mirrors circled
in red in fig(3.5b), therefore the decision was to exclude those from the meshing process and
just create a detailed CSG model of them to use in both the UM and CSG simulations. In
fig(3.6) an exploded materials view of the final CAD model is displayed.

3.2.1 The MCNP model

In order to be able to compare structured and unstructured meshes analysis two simulations
were run on two different models. The baseline for both was the C-model R180430[5], but,
as an approximation, distant backscattering effects were neglected in order to speed up the
calculation. To implement this, thanks to the C-model structure, all the envelope fillers far
away from the upper port were switched off, while the blanket region left empty were set to zero
importance. This caused all the particles entering in this region to die, resulting in a dramatic
reduction of the simulation’s run time. All of this is justified by the fact that the scope of this
work is not to provide final design data for the upper launcher, but instead to compare the two
methodologies already discussed on a ITER-complexity level analysis.

At this point, since the meshes in an MCNP input have to be inserted in a universe specifi-
cally created for them, from envelope 70 (the central upper port plug) were cut out the envelopes
701, 702, 703 and 704: the first 3 were filled with the 3 cuts of the meshed BSM while the last

Figure 3.4: Visualization of the created envelopes.
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(a) Global model of the BSM (b) Meshed blocks and small mirrors (circled in
red)

Figure 3.5: The Bio Shield Module

one was created in order to host the small CSG model mirrors (fig 3.4). The BSM envelopes
were obtained using the same planes used to create the three different parts in the first place,
but since it is mandatory for the envelope to not crop in any way the UM geometry that it
contains, all the meshes had to be translated 1mm in opportune directions to avoid coinci-
dence. In addition to this, envelope 29 (Blanket module) had to be modified since a cutout
was implemented to free a line of sight for the microwaves to reach the plasma as showed in
fig(3.8). Moreover the dummy 70 filler was substituted with a semi-detailed model of the Upper
Launcher. In figure (3.7) there is a visual representation of the final model built as described
since here.
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(a) SS316L(N)-IG (b) Water

(c) Steel 660 (d) CuCrZr

Figure 3.6: Exploded view of the meshed parts
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(a) Visualization of the envelopes that were filled. In pink it can be
seen the BSM model.

(b) MCNP plotter view. Unfortunately due to a visualization bug
the mesh is not entirely visible

Figure 3.7: Global view of the model
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Figure 3.8: Blanket module with the cutout. In transparent green the original envelope 29, in
pink the cut actually implemented and filled with void
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(a) Detail of the mesh (b) Visualization of the Mesh (No Steel)

Figure 3.9: Visualization of the mesh

The Meshing Process

Three different meshes were built with the aid of HyperMesh[1] using only first order tetrahedra.
This choice was derived from de Pietri’s work[4] that shows how this kind of elements have the
biggest advance in terms of simulation rate and memory usage. The total mesh was composed
of 2 652 451 elements and presented a decreasing density of them while moving away from
plasma. The meshing strategy was the following:

1. Cleaning and repairing of the geometry through SpaceClaim.

2. Mesh of the steel with the automatic tetrameshing tool of Hypermesh. This allowed to
have a refining of the mesh only where needed, like near the channels, bolts or small
rounds.

3. Extraction of the 2D faces of the steel mesh elements and projection of them to the
neighboring materials in order to ensure connectivity.

4. 2D mesh of the remaining surfaces.

5. 3D tetramesh filling the 2D shell.

In fig(3.9) is showed a more detailed view of the mesh obtained.
At this point the mesh has been exported as a .inp file in Abaqus format, as requested by

MCNP. It is important to notice that the procedure that leads to the creation of a working .inp
file is really delicate, since even a small deviation from the procedure that was followed would
prevent the geometry to load correctly when running MCNP. For this reason a more detailed
pre-processing guideline to follow is described in section F.1. Moreover, with the new MCNP
release (MCNP6.2), it is possible to create a preprocessed input file .mcnpum that already
contains all the information needed by the code to start the simulation. This file is created
preprocessing the previously modified .inp file with the “convert" MCNP’s utility as described
in the user guide for MCNP unstructured meshes [9]. In this way the conversion of the UM
geometry can be done just once and with an highly parallelized procedure allowing to decrease
the UM geometry loading time from tens of minutes/hours to seconds.

The CSG model

To have a fair comparison between UM and CSG a highly detailed CSG model of the BSM was
produced. This required a repairing and defeaturing session on SpaceClaim of the initial CAD
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Table 3.1: % volume deviation of the simplified CAD and of the Mesh with respect to the
original one.

Universe Block N. Elements Material UM Deviation CSG Deviation

701 801 597

SS316L(N) 0.00% −0.31%

CuCrZr +0.79% −0.33%

Water −2.65% −0.44%

702 1 405 143

SS316L(N) +0.54% −0.15%

CuCrZr −0.24% −0.24%

Water −2.07% +0.36%

703 445 711

SS316L(N) +0.31% +0.04%

S660 (Bolts) −2.36% +0.00%

Water −2.63% +0.22%

model that was than converted to MCNP input format with the aid of SuperMC. Since a direct
conversion of the model was impossible due to its complexity, a series of educated splitting of
the geometry was performed to help with that and maintain low enough the number of “words"
for each cell.

In table 3.1 are summarized the volume deviations of the CSG model and the UM one with
respect to the original CAD model.

3.2.2 The Tally Section

In order to validate the UM results and to compare them with the CSG simulation ones, a
series of tallies were implemented. Heating and flux were calculated both for neutrons and
photons in the universes 70, 701, 702, 703 and 704. In addition the neutron and photon flux
was calculated in all the blankets envelopes adjacent to the BSM (envelopes 23, 25, 26 and 29)
to double check that there were no changes in the particles transport due to the use of UM.

As far as the tallying of the actual model is concerned the strategy was different depending
on the utilized technique:

UM The tallying for an Unstructured Mesh in MCNP is pretty straightforward, the only thing
to do is to insert the correct EMBEE card in order to generate the .eeout files for flux
and heating for each mesh.

CSG In order to have a proper comparison 12 fmeshes were needed: 4 implicit calculating
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Table 3.2: Different strategies for neutronic analysis

UM FMESH Implicit FMESH Explicit

Transport Simulated on geometry
material

Simulated on geometry
material

Simulated on geometry
material

Flux Computed on the geom-
etry material

Computed on the geom-
etry material + Average

Computed on the geom-
etry material + Average

Heating Computed on the geom-
etry material

Computed on the geom-
etry material + Average

Computed on user-
defined material

neutron and photon flux+heating and then an additional two for each material to calculate
the explicit heating of neutrons and photons.

In order to understand the difference between these two processes it is useful to go a bit more in
depth on how an fmesh works. Since these mesh are superimposed on the model, the particles
transport is simulated on the actual geometry, but since a single flux value has to be assigned
to the voxel, it is clear that the result can be an average of fluxes computed on different
materials. To get heating results instead, the flux has to be multiplied for energy dependent
values contained in the material cross sections. There are two possible ways to do that:

Implicit: The heating is computed like the flux. This can cause under-estimation of the
heating near borders of two different materials with distant nuclear properties. Indeed
the resulting heating value associated with such a voxel will be the result of an average
between highly different heating values since they strongly depend on the material cross
section.

Explicit: The heating is computed on a specific material defined by the user. The analysis in
this way is more conservative but an fmesh needs to be generated for each material in the
model causing a more complex pre and post processing and additional running time.

In table 3.2 these different procedures are summarized.
All the fmeshes had the same structure:

• The dimension were 75cm x 90cm x 175cm. This allowed to cover entirely the BSM
geometry while still keeping the mesh as small as possible.

• The steps on each dimension were respectively 100 x 120 x 233 for a total of 2 796 000
voxels. This was done to have more or less the same number of elements as in the UM
simulation and to have almost cubic voxels (0.75cm x 0.75cm x 0.75cm = 0.422 cc).

In fig E.1, is reported a view of the fmesh position on the model.
All tallies were normalized to the standard ITER neutron power source of 400MW (500MW

of fusion power). Since the flux results are given in #/cc per source particle this means that
the flux had to be multiplied by the particle source rate:

(Flux tally) · Total Power/9(one sector)
Neutron energy

· (eV-J conv factor) =

#p

cc ·#sp

400/9 · 106 J/s

14.0791 · 106 eV
· 6.242 · 1018 eV/#sp

J
= [(Flux tally) · 1.9730 · 1019]

#p

cc · s
(3.1)
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while to convert from MeV per particle to W, the heating tallies were multiplied by:

(Heat tally) · (Source rate) · (MeV-J conv factor) =

MeV

cc ·#sp

· 1.9730 · 1019#sp

s
· 1019 · 1.6022 · 10−13 J

MeV
= [(Heat tally) · 3.1611 · 106]

W

cc
(3.2)

3.2.3 Simulations and Post-Processing

Unstructured Meshes Simulation

For UM simulation a series of variance reduction techniques were tried without success, since
the analog run demonstrate to remain the one with better performances. In particular there
were a normal directional bias toward the upper launcher and ADVANTG generated weight
windows. The inefficiency reason of the directional bias is still unknown, while for ADVANTG
the mediocre results were probably due to the peculiar model used for this work. In fact MCNP
requires weight windows to be created in a region that includes the entire source. In order to
do so, in this specific case, the majority of the domain on which ADVANTG was run resulted
to be void, possibly interfering with the correct functioning of the code. Anyway the fact that
a big section of the blanket was set to zero importance dramatically increased the simulation
rate and allowed for a completely analog run with relatively small computer power.

In total 5e9 histories were simulated divided in three runs on MARCONI super computer:

• First run: 1e8 particles for 1h 11min on 20 nodes with 30 cores each (600 cores in total),
the loading time for the geometry was roughly 22min.

• Second run: the first run was continued up to 2e9 histories in 5h and 36min on 20 nodes
with 36 cores each (720 cores in total).

• Third run: the simulation was completed reaching 5e9 histories with an additional 5h
17min on 20 nodes with 42 cores each (840 cores in total).

This means that, excluding the geometry load time, on average the simulation rate was:

7426
histories

CPU ·min
The final .eeout files were converted in a single .vtk file with the aid of a python script in
order to visualize the results on ParaView. This script had to be created since the native tool
from MCNP (um post op), that is supposed to take care of this process, is currently bugged.
Additional details on such a script can be found in appendix F.2. Finally the post processing
analysis relied heavily on the use of Jupyter Notebooks.

CSG Simulation

The CSG simulation was effectuated in a single run of 5e9 particles that lasted 8h 24min (with
a loading time of 24 min) on 20 nodes with 44 cores each (880 cores in total). This means that,
on average, the simulation rate was roughly a factor 1.59 faster than the UM one:

11837
histories

CPU ·min
The post-processing though was more complicated since it involved to process and combine
12 different .meshtal files. Those were converted to the .vtk format using a C script and then
interpolated through Paraview on the UM geometry to allow a confrontation between these 2
methods. The interpolation process was the following:

38



1. The cell values in the fmeshes were converted to point data using the Paraview filter
“CellDataToPointData".

2. The point values were interpolated on the correspondent UM geometry using the Paraview
filter “ResampleToDataset".

3. From the point data obtained in this way, the cell value for each element of the mesh was
reconstructed using the Paraview filter “PointDataToCellData".

The datasets obtained in this way were than appended to their equivalent UM ones and exported
in .csv format to be elaborated with the aid of Jupyter Notebook.

Computing resources

Loading and running time were already discussed in the previous sections, however there is
an additional factor to take into account when discussing computing resources and it’s the
RAM used to run the process. This is a key factor since currently in MARCONI the RAM is
limited to 4GB for each core and can be increased only running with less CPUs on every node
causing either longer simulation time or additional nodes allocation. To have an estimate of the
necessary memory for both models, local runs on a single core were launched to manually check
this value using windows task manager. It came to light that the UM simulation was lighter,
requiring only 2.8GB versus the 3.3GB needed by the CSG one. A third model was evaluated
consisting on the baseline of both models, that is, the common CSG fillers and cell tallies. The
memory required by this baseline case was 1.5GB meaning that UM BSM and relative meshes
weighted around 1.3GB while the CSG one plus the fmeshes (which were probably the heaviest
part) were around 1.8GB, almost 40% more.

3.3 Results

3.3.1 Reference and Control Tallies

As explained in section 3.2.2 two kind of cell tallies were set up:

• Control Tallies: The flux in the blanket near the upper port was tallied to check that the
use of UM do not change the particles transport.

• Reference Tallies: The total flux and heating in all the envelopes in the upper port plug
were tallied to check how close the two simulations results were and to have a reference
value for the integral result of structured and unstructured meshes.

The tables reporting the results of these tallies are table D.1 for the control ones and D.2
for the reference ones, but for readability purposes they have been moved in Appendix D.
No substantial difference was observed between the two simulations on the control tallies as
expected, while small differences were spotted on the reference ones and are highlighted in
table 3.3. It can be noticed that in envelopes 70 (the rest of the upper port plug) and 704
(small mirrors) the difference are below 1% since the simulations were run with the exact same
CSG model, there are instead bigger differences in the envelopes composing the BSM which
are around 1 − 3% with a peak difference of almost 10% in the photon heating of the first
wall. This envelope is way smaller than the other two but it is important to notice that it
is the most stressed zone of the BSM and it was the one with the higher refinement between
all the 3 unstructured meshes. The bigger actor in the first wall photon heating is surely the
thick CuCrZr layer and looking at the volume deviation it seems like there is roughly 1% more
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Table 3.3: Reference Tallies deviations in upper port plug (UM-CSG)/CSG

Envelope Neutron Flux Photon Flux Neutron Heating Photon Heating

70 0.001220 -0.001523 -0.000766 -0.002668

701 0.014627 -0.014427 -0.015471 0.096309

702 0.010523 -0.013184 -0.021090 -0.012911

703 0.007734 -0.018967 0.025452 0.044690

704 0.012088 -0.009096 -0.002131 -0.009750

(701+702+703) 0.010944 -0.014835 -0.015902 0.007852

CuCrZr in the UM model compared to the CSG one. It is not sure though if this can be the
only reason for such a spike in photon heating. Anyway if one looks at the total results for the
BSM, that is the sum of envelopes 701, 702 and 703, the deviation remains more or less under
1.5% for all the tallies.

3.3.2 Global Results

Cleaning and Checking of the results

The first step of the post processing was to have a general look at the results to check that
everything was in order. From this preliminary check two problems emerged from the UM
simulation:

1. 10 mesh cells had an incredibly small volume compared to the other ones, in fact the
biggest of them was still 7 order of magnitude smaller than the smallest cell in the rest
of the mesh. This caused the result in these cells to be completely unreliable due to poor
statistics and it was decided to eliminate them since they represented only the 6 · 10−16%
of the total volume.

2. A chunk of mesh cells (437) were erroneously calculated like they were CuCrZr instead
of water as shown in fig(3.10). Since the chunk was peripheral and the volume affected
was the 0.007% of the total one it was decided to not repeat the simulation and exclude
these cells from the results analysis. This volume deviation indeed was way lower than
the one already accepted between CAD and mesh volumes of the materials.

Error Analysis

The following thing to check were the statistical errors obtained in cell tallies, structured and
unstructured meshes. Both the reference and control tallies had, as expected, a really low error
oscillating between 0.01% and 0.02%. Among meshes results instead, the performance were
different depending on utilized method and tallied value as showed in fig 3.11. As a general
trend fluxes had lower errors then heating and neutron related values had lower errors then
photon ones. All of this was expected since these results mirror the causality order of these
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Figure 3.10: Circled in red the chunk of elements erroneously allocated to CuCrZr

Table 3.4: Comparison between reference cell tallies and integrated mesh results [W]

Value
Implicit Explicit UM

Reference Result % Dev Reference Result % Dev Reference Result % Dev

N heat 5.646e+4 5.237e+4 -7.241 5.646e+4 5.683e+4 0.654 5.5563e+4 5.5569e+4 -0.008

P heat 1.411e+5 1.273e+5 -9.784 1.411e+5 1.517e+5 7.517 1.4223e+5 14220e+5 -0.017

physical quantities: heating values depend on fluxes, while photons are generated by neutrons
interacting with the material.

Next thing that can be noticed is that fmesh tallies had lower errors compared to un-
structured ones with almost all the voxels below 10% error for every result. Nevertheless the
difference was not too large, especially if the errors are considered in volume percentages where
it can be seen that for UM 95% of the tallied BSM volume presented less than 10% error on
every physical quantity.

Integral results: Implicit VS Explicit VS UM

In order to have an idea of the results reliability the values coming from the meshes were
integrated on all the BSM geometry and compared to their corresponding reference tally since
they are considered to be the most accurate. Indeed in each of these envelopes there is only
void or material belonging to the BSM, meaning that every reference tally actually computed
the heating of the BSM part they were containing. This means that cell tallies and integral
mehses results should be exactly the same in ideal conditions: it’s easy to understand why is
that for an unstructured mesh, but this should be also the “aspiration" of a structured one once
it is interpolated. The smaller the interpolation, or the bigger the fmesh refinement, the better
will be the agreement between integral value and cell tally.

Hereafter are some consideration about the performances of these three methods which are
also summarized in tab 3.4:

Implicit The under-estimation of the implicit fmesh was significant for both neutron and
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Error N flux N heating P flux P heating

< 5% 96.02 46.57 63.38 33.68

< 10% 99.99 94.06 98.96 91.43

< 15% 99.99 98.71 99.93 98.96

< 20% 99.99 99.71 99.99 99.84

(a) UM, percentage of cells

Error N flux N heating P flux P heating

< 5% 98.98 63.67 85.21 59.92

< 10% 99.99 97.77 99.70 95.77

< 15% 99.99 99.67 99.99 99.69

< 20% 99.99 99.94 99.99 99.96

(b) UM, percentage of volume

Error N flux N heating P flux P heating

< 5% 100 88.51 98.89 86.21

< 10% 100 99.77 100 99.41

< 15% 100 99.98 100 99.953

< 20% 100 99.99 100 99.99

(c) FMESH, percentage of voxels

Figure 3.11: Percentage of cells/volume that presented a statistical error lower than defined
thresholds for different nuclear properties results
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photon heating reaching almost 10% on the photon one. This result was expected since
almost all the voxels positioned on the BSM border will contain a considerable portion
of void causing the calculated heating to be way under-estimated. This under-estimation
can vary wildly depending on the fmesh resolution and on the complexity of the geometry.

Explicit There appeared to be good agreement between integral results and reference tally for
the neutron heating, but a considerable difference instead (more than 7%) is observed for
the photon one. This result is hard to explain with only the data provided so far and will
need additional investigation in the following sections.

UM As expected there was almost a perfect agreement between mesh integral and reference
tally results (deviation below 0.02%). This proves that indeed both the particles transport
and heating are calculated in the unstructured mesh on the geometry material like they
were a series of small cell tallies. The very small deviation registered should be attributed
to the cells elimination discussed in section 3.3.2.

3.3.3 Local results

Cell volume comparison and interpolation

Before going into more details in local results a better understanding of the interpolation effect
was needed. In particular it is probable that the ratio between structured and unstructured
mesh cells and their relative position could have a big influence on interpolation efficacy. Pre-
vious studies have already shown how relative position between voxel and geometry can have
huge effects on the results, while in this work the distribution of UM volume (plotted in fig
3.12) was analyzed.

The volume of each structured mesh cell was roughly 0.422cc while the average value for the
unstructured ones was of 0.087cc meaning that on average the fmesh cells were almost 5 times
bigger than UM ones, and it can be seen from the graph how actually the majority of UM cells
had an even lower volume. This means that if some of the regions in space where under-sampled
by the fmesh grid this could have caused huge local deviations between the methodologies and
it had to be kept in mind while proceeding with the analysis.

Flux

As previously discussed the particles flux was calculated in the same way both for implicit and
explicit fmeshes. In graph 3.13 is visualized the percent deviation between interpolated fmesh
values and UM ones in each unstructured mesh cell. It shows that there was a quite good
agreement between the different simulations since more than 97% of the cells had a deviation
smaller than 10% for the neutrons flux and of 15% for the photons one. In figure 3.13(d) it
is also presented the deviations of the average values of photon and neutron heating between
implicit and UM for each material and it can be observed that generally this remains under 3%
except for the bolts where it reaches a peak of around 5%. All of this shows that the transport
of photons and neutrons is not affected significantly by small variations in the geometry or
material. A peak difference in the bolts is reasonable since they are small objects, meaning
that their mesh was more refined and a big surface/volume ratio. The last thing to notice is
that it seems there was no clear over or under-estimation of the fluxes since the distributions
reported in fig 3.13(a) and 3.13(b) seems to be more or less symmetric around a peak positioned
relatively near to zero.
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Figure 3.12: Volume distribution in unstructured mesh cells

(a) Neutron flux, cell by cell (b) Photon Flux, cell by cell

Deviation N flux P flux

< 5% 0.810913 0.638466

< 10% 0.984469 0.891206

< 15% 0.998820 0.968422

< 20% 0.999805 0.990224

(c) Ratio of cells under a fixed deviation

Material avg N flux dev (%) avg P flux dev(%)

Water -2.6455 2.9636

S660 1.4662 5.5821

SS316L(N) -0.8325 1.9345

CuCrZr -3.2443 2.9223

(d) Percent deviation of the average values abs(CSG-UM)/UM

Figure 3.13: Local flux comparison results
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(a) Neutron flux, cell by cell (b) Photon Flux, cell by cell

Material avg N flux dev (%) avg P flux dev(%)

Water -41.8031 424.3417

S660 -22.8798 -19.1959

SS316L(N) 18.9378 -17.1294

CuCrZr 41.3785 -32.2396

(c) Percent deviation of the average value abs(CSG-UM)/UM

Figure 3.14: Local heating (implicit) comparison results

Heating: Implicit VS UM

After the flux, heating local results were analyzed starting from comparing UM ones with the
one obtained using the implicit method. From the beginning it emerged a huge discrepancy
between them that is summarized in the graphs and tables of fig 3.14. This was probably due to
the fact that the homogenization of different materials, especially if they have distant nuclear
properties, often results in a gross approximation that strongly depends on geometry and mesh
refinement. This idea is supported by fig 3.14 where was reported the deviation of the mean
value for photon and neutron heating between implicit and UM results. Here a perfect example
of the previously described discrepancy can be found looking at the water results, in fact in the
model water is mainly distributed in relatively small channels encapsulated in steel or CuCrZr
and the homogenization near the borders generates a huge underestimation of the neutron
heating in the water. This happens because the contribute to it given by steel or CuCrZr is
significantly lower than the water one, while the exact opposite is true for the photon heating
which instead is way overestimated. Another example can be found looking at the bolts results:
since they neighbor only with SS316 steel (which has similar neutronic properties) and void,
both the neutron and photon heating were underestimated in this case because of the complete
absence of heating in void.

Heating: Explicit VS UM

More coherent results were found when trying to compare cell by cell the heating values obtained
with UM and the explicit method as summarized in fig 3.15. The general trend is to have
an improvement in the fmesh performance compared to the implicit method and a way more
symmetrical distribution of the deviation from the UM.
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(a) Neutron heating, cell by cell (b) Photon heating, cell by cell

Deviation N flux P flux

< 5% 0.525070 0.337954

< 10% 0.800960 0.629452

< 15% 0.909014 0.815319

< 20% 0.954842 0.915624

< 25% 0.976474 0.962732

(c) Ratio of cells under a fixed deviation

Material avg N flux dev (%) avg P flux dev(%)

Water -2.1996 6.6777

S660 7.1895 10.3849

SS316L(N) 3.5255 5.9061

CuCrZr -1.1313 11.9450

(d) Percent deviation of the average value abs(CSG-UM)/UM

Figure 3.15: Local heating (explicit) comparison results

46



Table 3.5: Heating peaks on one cell [W/cc]

Material n heating
UM

n heating
FMESH

p heating
UM

p heating
FMESH

n:(FMESH-
UM)/UM

p:(FMESH-
UM)/UM

CuCrZr 0.993882 0.844991 3.271116 2.681282 -0.149808 -0.180316

SS316L(N) 1.040252 0.975610 2.531820 2.388124 -0.062141 -0.056756

S660 0.217076 0.159666 0.747522 0.611654 -0.264471 -0.181758

Water 2.965323 2.471481 0.324553 0.267957 -0.166539 -0.174381

A series of considerations can be made:

1. Even if the agreement between UM and fmesh is better with explicit method there are
still significant local variations between the result, indeed, as visualized in 3.15(c) only
63% of the cells present a photon heating deviation below 10%, while to include almost
all the cells (around 96% of them) the percent deviation threshold have to be raised to
25%.

2. Fig 3.15(d) seems to suggest that there was an actual overestimation of the photon heating
in the explicit fmesh compared to UM, in fact the deviation distribution appears to be
symmetric, but around a peak that is shifted to around +7%. This is coherent with
the result find in section 3.3.2 where it was observed a similar discrepancy between the
explicit CSG integral result and correspondent reference tally.

Heating Peaks: Explicit Vs UM

At first, when the peak heating results for UM where checked, they presented values so high
that they were considered unphysical. It was then decided to exclude from this analysis the
cells that presented an error bigger than 30% on the photon heating. Neglecting these 238
cells seemed legit since they were considered unreliable and only represented the 0.00072 % of
the BSM volume. After this operation the peak value for photon and neutron heating in each
material was retrieved both for UM and explicit method: all the relative data is visualized in
table 3.5.

The variations encountered were more acceptable compared to the implicit method ones,
but still they were pretty big. For this reason an investigation was needed on the possible causes
of this and it started with plotting only the cells with the higher values of heating thanks to the
“threshold" Paraview filter. An example regarding the photon heating in CuCrZr is shown in
fig 3.16. These cells, as expected, are all located in the first wall which is more exposed to the
plasma, but the interesting thing is that it is clear how the cells majority present values ranging
from 2.4 to 2.6 W/cc which is significantly lower then the maximum peak registered (3.27
W/cc), in fact just some isolated cells have higher values. This is additional proof that, even
in high-flux regions, if the unstructured mesh cells are too small, they can lead to unphysical
results probably caused by poor statistics. To test this idea, instead of considering the highest
value in the dataset as the peak value, the 1000 cells with higher values were considered and
the mean of those was taken as the peak value. In table 3.6 these new peaks are reported with
an indication also of the ratio between 1000 and the total number of cells in each material.
This was done to show that it is still possible to refer to these results as peak values since the
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Figure 3.16: CuCrZr cells with a photon heating higher than 2.4 W/cc

Table 3.6: Heating peak, average on 1000 cell [W/cc]

Material Cell Ratio (%) n heating
UM

n heating
FMESH

p heating
UM

p heating
FMESH

n:(FMESH-
UM)/UM
(%)

p:(FMESH-
UM)/UM
(%)

CuCrZr 0.22 0.872 0.822 2.645 2.626 -5.73 -0.72

SS316L(N) 0.08 0.991 0.944 2.285 2.321 -4.74 1.58

S660 1.82 0.142 0.141 0.586 0.581 -0.70 -0.85

Water 0.12 2.728 2.438 0.272 0.258 -10.63 -5.15
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Figure 3.17: UM cells with higher neutron heating values in water

ratios in each material is around 1-2%�except for the bolts that have a fewer number of cells
compared to the others. After this simple operation, the deviations are significantly reduced
and they all remain under 5% except for the neutron heating in water which remains around
10%. To check that this last result was not still due to a bad statistics effect, through Paraview
all the cells with a neutron heating higher than the CSG peak were plotted as reported in fig
3.17. It can be seen that there are actually a lot of cells with higher neutron heating values
and it appears that a true underestimation was made by the CSG.
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3.4 Conclusions and future work
From this work many considerations can be made, for clarity purpose they will be divided in
macro-arguments:

Pre/Post-processing: The only true complexity during UM preprocessing is the meshing
phase. This could require more or less time in dependence from a series of factors like
CAD quality, meshing ability of the analyst and complexity of the part to mesh. However
this process presents a lot of room for improvement and, at least in principle, can speed up
considerably with experience. Moreover the time spent for meshing is comparable to the
one needed for the defeaturing of CAD model and splitting in order to be able to convert
the geometry in CSG form. Regarding the post-processing process instead, unstructured
meshes have a clear advantage in terms of time and complexity: all the data are already
there ready to be visualized and processed. This doesn’t happen with fmeshes where an
average analysis can easily requires the analyst to treat more than 10 meshes, interpolate
them on different pieces of the geometry and then recombine everything.

Precision: The structured meshes presented a lower and more uniform error, while the UM one
appeared to be highly dependent on the volume of the single cell as it could be expected.
This means that additional care is required when post-processing UM results since also
cells that are near the plasma can have bad statistics due to their dimensions. However
the difference of spatial resolution achieved between the two methodologies, which was
5 times higher on average for UM, sufficiently explain this error difference. It has to be
pointed out also that the high resolution in this case was not a choice, in fact it was the
only way to faithfully model small and round elements like the water channels. However
some improvement could have been done, like checking the cell dimensions during the
meshing phase in order to avoid unphysical results due to tiny volumes or the adoption
of 2nd order tetrahedra to reduce the mesh refinement while still maintaining the initial
geometry shape.

Accuracy One thing is the statistical error of the obtained results, another is to understand
how close are the obtained results to the physical reality, and regarding this the advantage
of UM seems clear. This happens for two main reasons: the first is that UM are the only
method in which flux and heating scoring are never averaged, the second is that, in order
to have local results, the fmesh need interpolation which introduce an additional error.
This conclusion is supported by the fact that the difference on local results is quite evident
while is less pronounced when looking at the global results. Additionally, is possible to
claim that UM global results were more accurate since their deviation with respect to
their reference tally is significantly smaller than fmesh ones and the geometry was less
simplified.

Integration: Interpolation is needed not only for visualization purposes, but it’s fundamental
when heating data has to be used as a thermal source for other kind of analysis which are
always based on unstructured mesh. A possible advantage of the UM can be that the same
exact mesh could be used in theory to calculate heating data and then directly applied as
a source in thermal analysis for example. At this stage this path is still theoretical, but in
principle it is already possible to apply in some applications: for example, thermal analysis
often uses meshes only composed by tetrahedra and polihedra, it should be possible to
develop a script able to automatically split the polihedra in tetras and than recompose
them once the neutronic simulation is completed. This would mean not only better source
data, but also a huge simplification in the integrated analysis workflow.
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Computer Resources: As previously commented there was practically no difference in the
loading time of the two models, while the simulation rate was around a factor 1.6 faster
for the CSG+FMESH simulation if compared to the UM one. However, since the UM
model was found to be lighter, this CSG advantage could be less effective than what it
was in this case. Indeed if these simulations were to be run on the full C-model or using
weight windows, the 4GB RAM limit could be easily exceeded causing a slow down of the
simulation if the same number of nodes is used. This effect can be even more emphasized
if the number of materials inside the model grows, since each one of them would require
an additional fmesh.

To conclude, unstructured meshes in neutronic analysis applications still need some fine
tuning and users still have to familiarize with them, but even if they still have some limitation
the author believes that they are ready to be used for production in specific application. At
the moment, the smaller the system, the more suitable UM are for the job, since intrinsically
they work with a very high resolution in order to reproduce the model geometry with tetras.
This could mean that UM can be easily used for specific analysis of sensitive components like
mirrors or other diagnostic systems. For this kind of application an UM analysis would be way
faster than a classic one when all the simulation life is considered from model production to
post-processing, so, since UM are already mature enough and ready to be used, they should be
preferred. Another line of work that could be pursued, even if still requires additional study,
is the integration between nuclear and other kind of analysis using only one mesh: this would
dramatically simplify the workflow and it is also the reason why UM capabilities were introduced
in Monte Carlo codes. The starting point of this integration process would probably be the
thermal analysis, since they mainly use meshes composed only by tetrahedra and polyhedra.
The thermal analyst, indeed, could produce a tetra mesh suitable for its kind of analysis and
then pass it to the nuclear analyst to compute the nuclear heating through MCNP using the UM
approach. At this point, with the help of a script, the tetras could be collapsed into polyhedra
providing in this way an appropriate local thermal source while avoiding the approximation that
would be introduced by interpolation. All of this would let users familiarize with UM while
still being productive, waiting for more studies and technical progresses that could expand the
field of applications of the methodology.
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Appendix A

Uniform and isotropic fluence inside a
sphere using a cosine distribution: an
analytical demonstration

A.0.1 Normalization

Let’s assume the source differential angular distribution is:

S(Ω) = S(θ) = S0
cosθ

2π

[
#particles

cm2 · steredians

]
(A.1)

where S0 =
Np

4πR2
is considered to be the source strength. Since:

dΩ =
dS

r2
=
r2sinθdθdφ

r2
= sinθdθdφ (A.2)

the un-normalized probability distribution function (pdf) will be:

pun(θ, φ)dθdφ = S(Ω)dΩ = S0
cosθ

2π
dΩ = S0

cosθ

2π
senθdθdφ (A.3)

defining µ = cosθ and remembering dµ = −senθdθ, the previous equation can be rewritten as:

pun(µ, φ)dµdφ = S0µ(−dµ)
dφ

2π
= f(µ)dµf(φ)dφ (A.4)

that means: f(φ)dφ =
1

2π
dφ

f(µ)dµ = S0µ(−dµ)
(A.5)

the distribution for φ is already normalized, we need to make sure the same stands for µ:

p(µ)dµ =
−S0µdµ

−S0

∫ 0

1
µdµ

=
−µdµ
1/2

(A.6)

Finally it is possible to recognize the p(µ) = −2µ relation as it is described in MCNP manual.
The minus sign comes from the fact that an increasing angle determines a decrease in cosine,
as a matter of fact:

π/2∫
0

sin θdθ =

0∫
1

−dµ =

1∫
0

dµ (A.7)
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Figure A.1: Fluence’s contribute of dS on point Q

A.0.2 Analytical demonstration1

The source’s emissivity is considered to be:

E =
S0

2π
2 cosαdΩ (A.8)

where S0, the strength of the source, is S0 = NPS · dS

4πR2
since the particles are sampled

uniformly on the surface.
E represents the number of particle generated in dS that are emitted inside the differential

solid angle dΩ. To compute the fluence in Q the emissivity has to be integrated on all the

source’s surface, considering Ω =
1

r2
dS:

ϕ =

∫
S

S0

π
cosα

1

r2
dS = S0

2π∫
0

1

π
dφ

π∫
0

cosα

r2
R2 sin θdθ = 2S0R

2

π∫
0

cosα

r2
sin θdθ (A.9)

The next step is to express α as a function of d, R and θ:

cosα = Ω̂ · n̂ =
~PQ

r
· n̂ (A.10)

where:
~PQ = − ~OP + ~OQ = [0, 0, d]− [R sin θ cosφ,R sin θ sinφ,R cos θ] (A.11)

n̂ = [− sin θ cosφ,− sin θ sinφ,− cos θ] (A.12)
1A. Portone, personal communication, 2018.
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Substituting equations A.11 and A.12 in equation A.10:

cosα =
R sin2 θ cos2 φ+R sin2 θ sin2 φ+R cos2 θ − d cos θ

r
=
R− d cos θ

r
(A.13)

Using Carnot theorem also r can be expressed as a function of d, R and θ:

r2 = R2 + d2 − 2Rd cos θ (A.14)

Substituting all of that in equation A.9:

ϕ = 2S0R
2

π∫
0

R− d cos θ

r3
sin θdθ = 2S0R

2

π∫
0

R− d cos θ

(R2 + d2 − 2Rd cos θ)3/2
sin θdθ (A.15)

The integral can be rewritten in a dimensionless form defining γ =
d

R
:

ϕ = 2S0R
2

π∫
0

R(1− γ cos θ)

[R2(1 + γ2 − 2γ cos θ)]3/2
sin θdθ = 2S0

π∫
0

(1− γ cos θ)

(1 + γ2 − 2γ cos θ)3/2
sin θdθ (A.16)

Introducing the usual µ = cos θ:

ϕ = 2S0

1∫
−1

(1− γµ)

(1 + γ2 − 2γµ)3/2
dµ = 2S0

[
µ− γ

(1− 2γµ+ γ2)1/2

∣∣∣∣1
−1

= 2S0 · 2 (A.17)

Finally using the definition of S0:

ϕ = 4 · 1

4πR2
=

1

πR2
(A.18)
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Appendix B

SDEF card for a parallelepipedal source

Hereafter is reported an example of a SDEF card generating a working 100cm× 20cm× 10cm
parallelepipedal source able to generate an isotropic and uniform fluence inside its volume:

sdef par=d1 y=fpar d20 z=fpar d30 x=fpar d40 vec=fpar d50 dir=d60
si1 l 1 1 1 1 1 1
sp1 0.03125 0.03125 0.15625 0.15625 0.3125 0.3125
c --Y ranges--
ds20 s 21 22 23 24 25 26
si21 -10.0 10.0
sp21 0 1
si22 -10.0 10.0
sp22 0 1
si23 l 10.0
sp23 1
si24 l -10.0
sp24 1
si25 -10.0 10.0
sp25 0 1
si26 -10.0 10.0
sp26 0 1
c --Z ranges--
ds30 s 31 32 33 34 35 36
si31 -5.0 5.0
sp31 0 1
si32 -5.0 5.0
sp32 0 1
si33 -5.0 5.0
sp33 0 1
si34 -5.0 5.0
sp34 0 1
si35 l 5.0
sp35 1
si36 l -5.0
sp36 1
c --X ranges--
ds40 s 41 42 43 44 45 46
si41 l 50.0
sp41 1
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si42 l -50.0
sp42 1
si43 -50.0 50.0
sp43 0 1
si44 -50.0 50.0
sp44 0 1
si45 -50.0 50.0
sp45 0 1
si46 -50.0 50.0
sp46 0 1
c --VEC--
ds50 s 51 52 53 54 55 56
si51 l -1 0 0
sp51 1
si52 l 1 0 0
sp52 1
si53 l 0 -1 0
sp53 1
si54 l 0 1 0
sp54 1
si55 l 0 0 -1
sp55 1
si56 l 0 0 1
sp56 1
c --DIR--
si60 0 1 $just inwards direction
sp60 -21 1 $cosine distribution

Breaking it down:

• First a generic plane surface is defined as a function of PAR. All the source parameters
depend on which of the 6 parallelepiped’s faces they refer to. In order to do so a dummy
parameter, the type of particle, was introduced.

• Each of the six surfaces receive a probability of emission equal to the ratio between
correspondent face surface and the total surface area of the parallelepiped.

• X,Y and Z ranges are specified in order to actually generate each face of the parallelepiped,
the probability of emission inside each range is uniform.

• All the 6 VEC are specified to be normal to the faces and with inward direction.

• The polar angle emission probability is set to be a cosine distribution where 0 < cosα < 1
in order to emit particles only in the inward directions.
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Appendix C

Used fillers

Hereafter is the list of envelopes that were left filled:

• ’22’ Blanket rows 7-8-9 [Blanket]

• ’23’ Blanket rows 7-8-9 [Blanket]

• ’24’ Blanket rows 7-8-9 [Blanket]

• ’25’ Blanket row 10 [Blanket]

• ’26’ Blanket row 10 [Blanket]

• ’27’ Blanket row 11 [Blanket]

• ’28’ Blanket row 11 [Blanket]

• ’29’ Blanket row 11 (MODIFIED) [Blanket]

• ’30’ Blanket row 11 [Blanket]

• ’31’ Blanket row 11 [Blanket]

• ’32’ Blanket row 12 [Blanket]

• ’33’ Blanket row 12 [Blanket]

• ’34’ Blanket row 12 [Blanket]

• ’35’ Blanket row 12 [Blanket]

• ’36’ Blanket row 12 [Blanket]

• ’70’ EC-upper launcher, NEW FILLER [Upper Launcher]

• ’701’ BSM 1st cut (NEW ENVELOPE) [BSM]

• ’702’ BSM 2nd cut (NEW ENVELOPE) [BSM]

• ’703’ BSM 3rd cut (NEW ENVELOPE) [BSM]

• ’704’ small mirrors (NEW ENVELOPE) [BSM]

• ’125’ Shield above upper port [Top Shield]

• ’128’ Upper port extension and connecting duct (CENTRAL) [Upper Port Extension]
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• ’157’ VV PS2, field joint [Vacuum Vessel]

• ’158’ VV PS2, field joint [Vacuum Vessel]

• ’159’ VV PS2 [Vacuum Vessel]

• ’160’ VV PS2 [Vacuum Vessel]
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Appendix D

Additional data

Table D.1: Control Tallies in Blanket, fluxes are in
[

#

cm3

]
while heating is in [W ]

Envelope N flux UM N flux CSG P flux UM P flux CSG N:(UM-
CSG) /CSG

P:(UM-
CSG) /CSG

23 6.200990e+19 6.199650e+19 3.687380e+19 3.688050e+19 0.000216 -0.000182

25 3.458390e+19 3.456450e+19 2.023990e+19 2.024940e+19 0.000561 -0.000469

26 3.447750e+19 3.445600e+19 2.015390e+19 2.016680e+19 0.000624 -0.000640

29 2.793380e+19 2.791690e+19 1.774680e+19 1.774980e+19 0.000605 -0.000169
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Table D.2: Reference Tallies in Upper Launcher, fluxes are in
[

#

cm3

]
while heating is in [W ]

EnvelopeNeutron
Flux
CSG

Neutron
Flux
UM

Neutron
Heat-
ing
CSG

Neutron
Heat-
ing
UM

Photon
Flux
CSG

Photon
Flux
UM

Photon
Heat-
ing
CSG

Photon
Heat-
ing
UM

70 1.770e+19 1.772e+19 24293 24274 8.360e+18 8.347e+18 61618 61454

701 4.885e+18 4.957e+18 10303 10144 2.753e+18 2.714e+18 15105 16560

702 8.992e+18 9.086e+18 41108 40241 5.614e+18 5.540e+18 103786 102446

703 4.4260e+184.460e+18 5049 5178 2.515e+18 2.467e+18 22226 23219

704 3.185e+17 3.224e+17 595 593 1.549e+17 1.535e+17 3308 3276

BSM 1.830e+19 1.850e+19 56461 55563 1.088e+19 1.072e+19 141118 142226
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Appendix E

Additional figures

Figure E.1: FMESH structure and positioning
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Figure E.2: XY view of the model

Figure E.3: YZ view of the model
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Figure E.4: Heating in Unstructured Meshes simulations, Y-section
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Figure E.5: Heating in Unstructured Meshes simulations, side view

Figure E.6: Heating in Implicit fmesh simulations, Y-section
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Figure E.7: Heating in Implicit fmesh simulations, side view

Figure E.8: Comparison between UM and Explicit results in water
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Appendix F

UM pre/post processing workflow and
guidelines

F.1 Pre-processing
In fig F.1 is reported a scheme summarizing the different pre-processing guidelines to follow
both for UM and FMESH approach. The majority of these instructions have been already
discussed in detail, but the points related to the generation of the .inp file need to be further
explained.

The .inp file is the standard input file used by Abaqus and it contains all the information
useful to define the mesh (that would be nodes, elements, etc.). MCNP uses this file format as
its default UM geometry source, meaning that, when meshing, it has to be used either Abaqus
or a meshing software that can export a .inp file. Alternatively, even a generic meshing software
could be used, but an ad hoc script would have to be produced in order to translate the default
mesh information file of that software into a .inp one. From all of this it is clear how using
different meshing software can result in different procedures to follow, but, in the end, what
matters is to obtain the correct structure of the .inp file as requested by MCNP. The following
is the general structure that must be followed in order to describe a first order tetra mesh with
only one part:

*Part, name=PART-1
*NODE
...
(List of nodes in .inp format starting from 1)
...
*ELEMENT, TYPE=C3D4
...
(list of mesh elements in .inp format starting from 1 )
...
*ELSET, ELSET=<elset 1 name>_material_statistics_001
...
(list of elements belonging to the elset)
...
*ELSET, ELSET=<elset 2 name>_material_statistics_002
...
(list of elements belonging to the elset)
...
*End Part
**
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Figure F.1: Overview of the different pre-processing chains for UM and Fmesh approaches
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**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=PART-1-1, part=PART-1
*End Instance
*End Assembly
**HMNAME MATS 1 <material 1 name>_001 (number generated during exporting)
*MATERIAL, NAME=<material 1 name>_001
**HMNAME MATS 2 <material 2 name>_002 (number generated during exporting)
*MATERIAL, NAME=<material 2 name>_002
*****

If the meshing software is Hypermesh, to obtain this .inp these are the steps:

• An elset of elements for each material have to be created and renamed according to MCNP
specifics (e.g. Channels_material_statistics_001)

• All the elements that do not have to be exported must be cancelled in order to avoid gaps
in the elements numeration (this includes eventual 2D elements used during the meshing
phase)

• All elements have to be renumbered starting from 1 using the Hypermesh tool “Renumber
all”.

• All the materials have to be created renaming them according to the corresponding elset
(e.g. water_001)

• Export in Abaqus format

This will produce a naked structure containing nodes, elements, elsets and materials with the
right format. At this point additional edit will be needed in order to mirror the final structure:

• Add the lines regarding the part and assembly definitions and instances

• Eliminate gaps between elements definition, this should be a unique list

• Add a space between “Element,” and “Type” that will be probably missing.

In the following pages are reported an example both of the Hypermesh and of the MCNP
versions of the .inp file.
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.inp file: Hypermesh version (in red what needs to be cancelled)

*NODE
1, 640.98812336299, -20.10866271356, 487.91214050368
2, 643.28151169247, -22.13695520122, 489.24577549982
3, 700.78715997404, 31.240273600544, 449.09417962591

...
*ELEMENT,TYPE=C3D4, ELSET=Body_SS316_material_statistics_001

1, 56264, 56261, 55755, 55700
2, 56378, 56379, 56264, 55755
3, 56262, 56380, 55699, 56264

...
*ELEMENT,TYPE=C3D4, ELSET=Pipes_water_material_statistics_002

1658, 156264, 156261, 155755, 155700
...

*ELEMENT,TYPE=C3D4, ELSET=Bolts_steel6608_material_statistics_003
56284, 856264, 856261, 855755, 855700
...

*ELSET, ELSET=Body_SS316_material_statistics_001
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24,
...

*ELSET, ELSET=Pipes_water_material_statistics_002
302201, 302202, 302203, 302204, 302205, 302206, 302207, 302208,
302209, 302210, 302211, 302212, 302213, 302214, 302215, 302216,
302217, 302218, 302219, 302220, 302221, 302222, 302223, 302224,
...

*ELSET, ELSET=Bolts_steel6608_material_statistics_003
369732, 369733, 369734, 369735, 369736, 369737, 369738, 369739,
369740, 369741, 369742, 369743, 369744, 369745, 369746, 369747,
369748, 369749, 369750, 369751, 369752, 369753, 369754, 369755,
369756, 369757, 369758, 369759, 369760, 369761, 369762, 369763,
...

**HMNAME MATS 1 SS316_001 6
*MATERIAL, NAME=SS316_001
**HMNAME MATS 2 water_002 22
*MATERIAL, NAME=water_002
**HMNAME MATS 3 steel6608_003 52
*MATERIAL, NAME=steel6608_003
**HMNAME MATS 4 M312_004 20
*****
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.inp file: MCNP version (in blue what has to be added)

*Part, name=PART-1
*NODE

1, 640.98812336299, -20.10866271356, 487.91214050368
2, 643.28151169247, -22.13695520122, 489.24577549982
3, 700.78715997404, 31.240273600544, 449.09417962591

...
*ELEMENT,<space>TYPE=C3D4

1, 56264, 56261, 55755, 55700
2, 56378, 56379, 56264, 55755
3, 56262, 56380, 55699, 56264

...
*ELSET, ELSET=Body_SS316_material_statistics_001

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24,
...

*ELSET, ELSET=Pipes_water_material_statistics_002
302201, 302202, 302203, 302204, 302205, 302206, 302207, 302208,
302209, 302210, 302211, 302212, 302213, 302214, 302215, 302216,
302217, 302218, 302219, 302220, 302221, 302222, 302223, 302224,
...

*ELSET, ELSET=Bolts_steel6608_material_statistics_003
369732, 369733, 369734, 369735, 369736, 369737, 369738, 369739,
369740, 369741, 369742, 369743, 369744, 369745, 369746, 369747,
369748, 369749, 369750, 369751, 369752, 369753, 369754, 369755,
369756, 369757, 369758, 369759, 369760, 369761, 369762, 369763,
...

*End Part
**
**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=PART-1-1, part=PART-1
*End Instance
*End Assembly
**HMNAME MATS 1 SS316_001 6
*MATERIAL, NAME=SS316_001
**HMNAME MATS 2 water_002 22
*MATERIAL, NAME=water_002
**HMNAME MATS 3 steel6608_003 52
*MATERIAL, NAME=steel6608_003
**HMNAME MATS 4 M312_004 20
*****
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F.2 Post-processing
As specified before, in order to convert the UM results from .eeout to .vtk format, a python
script had to be generated. The script currently only works with first order tetrahedra and
with MCNP6.2 version since the format of the .eeout file was changed from MCNP6.1. The

python function asks for two parameters:

• “mode” → the possible modes are “single” which in case of multiple .eeout generates a
single .vtk merging them all, or “multi” which instead creates a different .vtk for each
.eeout file.

• “e” → is the list of .eeout file to convert

In addition to the conversion, the code also outputs a pandas DataFrame (results.pkl) that
can be directly loaded in python for post-processing. The following is the actual code:

import re
import pandas as pd

def eeout_tovtk(mode,e):
#-------------------------------------------------
#=============== MULTI MODE ======================
#-------------------------------------------------

if mode==’multi’:
#
# === READING FILE ===
#

# -- General Variables --
numTets=0
numNodes=0
particleList=[]
nodesX=[]
nodesY=[]
nodesZ=[]

#Identifiers
idNodes=’NUMBER OF NODES’
idTets=’NUMBER OF 1st TETS’
idParticlesType=’PARTICLE LIST’
idNodeX=’NODES X’
idNodeY=’NODES Y’
idNodeZ=’NODES Z’
idElem=’ELEMENT TYPE’
idConn=’CONNECTIVITY DATA 1ST ORDER TETS ELEMENT ORDERED’
idNeighbour=’NEAREST NEIGHBOR DATA 1ST ORDER TETS’
# Common patterns
patNumber=re.compile(’\d+’)
patNumberSci=re.compile(’[-+]*\d+.\d+E[+-]\d+’)
patSpace=re.compile(’\s+’)
patFlux=re.compile(’d*4$’)
patHeat=re.compile(’d*6$’)
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#special patterns
patTets=re.compile(’\d\d+’)

#Flags
readFlag=False

#pathfile=input(’insert .eeout pathfile’)
pathfile=e

# -- Reading mesh topology --
print(’\nReading mesh Topology...’)

# General infos
with open (pathfile,’r’) as infile:

for line in infile:
if line.find(idNodes) !=-1:

numNodes=patNumber.search(line).group()
if line.find(idTets) !=-1:

numTets=patTets.search(line).group()
break

# Particle type
with open (pathfile,’r’) as infile:

for line in infile:
if readFlag:

particleList=(patNumber.findall(line))
break

if line.find(idParticlesType) !=-1:
readFlag=True

with open (pathfile,’r’) as infile:

# Reading nodes
readFlagX=False
readFlagY=False
readFlagZ=False

for line in infile:

# Reading nodes
if readFlagX:

split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesX.append(float(a.group()))
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if readFlagY:
split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesY.append(float(a.group()))

if readFlagZ:
split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesZ.append(float(a.group()))

if line.find(idNodeX) !=-1:
readFlagX=True

if line.find(idNodeY) !=-1:
readFlagY=True
readFlagX=False

if line.find(idNodeZ) !=-1:
readFlagZ=True
readFlagY=False

#Reading element type
if line.find(idElem) !=-1:

readFlagZ=False

#Reading connectivity data
cells=[]
data=[]
with open (pathfile,’r’) as infile:

# Reading nodes
readFlagCon=False

for line in infile:
if readFlagCon:

data.append(line)
if line.find(idConn) !=-1:

readFlagCon=True
if line.find(idNeighbour) !=-1:

readFlagCon=False

del data[-1]
del data[-1]
for string in data:

newline=string.strip()

75



substrings=patSpace.split(newline)
field = ’4 ’
for substring in substrings:

num=int(patNumber.search(substring).group())-1
field=field+’ ’+’{:11d}’.format(num)

cells.append(field)

#-- Reading edits --
print(’Reading Edits...’)
editParticles=[]
editUserNumber=[]
with open (pathfile,’r’) as infile:

editsDataFlag=False
for line in infile:

if editsDataFlag:
strippedline=line.strip()
array=patSpace.split(strippedline)
editParticles.append(array[4])
editUserNumber.append(array[1].strip(’-’))
editsDataFlag=False

if line.find(’EDIT DATA’) !=-1:
editsDataFlag=True

if line.find(’NODES X’) !=-1:
break

editSETS=[]
errorSETS=[]
patEditNumber=re.compile(’\d+$’)
n_tally=len(editUserNumber)
for editCounter,editNumber in enumerate(editUserNumber):

with open (pathfile,’r’) as infile:
valuesFlag=False
errorFlag=False
rightTally=False
valuesList=[]
errorList=[]
for line in infile:

if valuesFlag and rightTally :
strippedline=line.strip()
values=patSpace.split(strippedline)
for value in values:

valuesList.append(value)

if errorFlag:
strippedline=line.strip()
errorValues=patSpace.split(strippedline)
for value in errorValues:

errorList.append(value)
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if line.find(’DATA OUTPUT PARTICLE’)!= -1 or \
line.find(’CENTROIDS X’)!= -1:

del valuesList[0]
del valuesList[-37:]
editSETS.append(valuesList)
if n_tally==(editCounter+1):

del errorList[0]
del errorList[-9:]
errorSETS.append(errorList)
break

else:
del errorList[0]
del errorList[-20:]
errorSETS.append(errorList)
break

if line.find(’DATA OUTPUT PARTICLE’) != -1:
checkName=patEditNumber.search(line).group()
rightTally=(editNumber==checkName)

if line.find(’DATA SETS RESULT TIME BIN’) != -1:
valuesFlag=True

if line.find(’DATA SETS RESULT SQR TIME BIN’) != -1:
valuesFlag=False

if rightTally:
if line.find(’DATA SETS REL ERROR TIME BIN’) != -1:

errorFlag=True

#--Read material--
materialFlag=False
materialsList=[]
fieldList=[]
with open (pathfile,’r’) as infile:

for line in infile:
if line.find(’CONNECTIVITY DATA’) !=-1:

break
if materialFlag:

strippedline=line.strip()
matLine=patSpace.split(strippedline)
for mat in matLine:

materialsList.append(mat)
if line.find(’ELEMENT MATERIAL’) !=-1:

materialFlag=True

del materialsList[-6:]
fieldList.append(materialsList)
#--Read Density--
densityFlag=False
volumeFlag=False
densityList=[]
volumesList=[]
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with open (pathfile,’r’) as infile:
for line in infile:

if densityFlag:
strippedline=line.strip()
densityLine=patSpace.split(strippedline)
for density in densityLine:

densityList.append(density)
if volumeFlag:

strippedline=line.strip()
volumeLine=patSpace.split(strippedline)
for vol in volumeLine:

volumesList.append(vol)
if line.find(’DENSITY’) !=-1:

densityFlag=True
if line.find(’VOLUMES’) !=-1:

volumeFlag=True
densityFlag=False

del densityList[-8:]
fieldList.append(densityList)
fieldList.append(volumesList)
#
# === Writing output ===
#
for n_edit,editname in enumerate(editUserNumber):

patDot=re.compile(’.’)
title=patDot.split(pathfile)
outpath=title[0]+’_’+editname+’.vtk’
print(’writing ’+outpath+’...’)
with open(outpath,’w’) as outfile:

#-- Header --
outfile.write(’# vtk DataFile Version 3.0 \n’+ \

’Original file: ’+pathfile+’\n’+ \
’ASCII \n \n’)

#-- DataSet --

#NODES
outfile.write(’DATASET UNSTRUCTURED_GRID \n’+ \

’POINTS ’+str(numNodes)+’ float’)
for n, node in enumerate(nodesX):

outfile.write( ’\n’+’{:12.6f}’.format(node)+’ ’+ \
’{:12.6f}’.format(nodesY[n])+’ ’+ \
’{:12.6f}’.format(nodesZ[n]))

#CELLS
outfile.write(’\n\nCELLS ’+numTets+’ ’+str(int(numTets)*5)+’\n’)
for line in cells:

outfile.write(line+’\n’)
#CELL Type
outfile.write(’\nCELL_TYPES ’+numTets+’\n’)
for i in range(int(numTets)):
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outfile.write(’10 \n’)
#CELL DATA
checkflux=patFlux.search(editname)
checkheat=patHeat.search(editname)
if editParticles[n_edit]==’1’:

name=’Neutron_’
else:

name=’Photon_’
if checkflux != None:

name=name+’Flux_’+checkflux.group()
if checkheat != None:

name=name+’Heating_’+checkheat.group()
outfile.write(’\nCELL_DATA ’+numTets+’\n’+ \

’\nSCALARS ’+name+’ float 1 \n’+ \
’LOOKUP_TABLE default \n’)

for item in editSETS[n_edit]:
outfile.write(item+’\n’)

outfile.write(’\nSCALARS ’+name+’_ERROR’+’ float 1 \n’+ \
’LOOKUP_TABLE default \n’)

for item in errorSETS[n_edit]:
outfile.write(item+’\n’)

#FIELD DATA
fieldDataNames=[’Material’,’Density’,’Cell_Volume’]
for field,fieldDataName in enumerate(fieldDataNames):

outfile.write(’\nFIELD FieldData 1\n’+ \
fieldDataName+’ 1 ’+numTets+’ float\n’)

for value in fieldList[field]:
outfile.write(value+’\n’)

#-------------------------------------------------
#=============== SINGLE MODE ======================
#-------------------------------------------------
elif mode == ’single’:

#
# === READING FILE ===
#

#Identifiers
idNodes=’NUMBER OF NODES’
idTets=’NUMBER OF 1st TETS’
idParticlesType=’PARTICLE LIST’
idNodeX=’NODES X’
idNodeY=’NODES Y’
idNodeZ=’NODES Z’
idElem=’ELEMENT TYPE’
idConn=’CONNECTIVITY DATA 1ST ORDER TETS ELEMENT ORDERED’
idNeighbour=’NEAREST NEIGHBOR DATA 1ST ORDER TETS’
# Common patterns
patNumber=re.compile(’\d+’)
patNumberSci=re.compile(’[-+]*\d+.\d+E[+-]\d+’)
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patSpace=re.compile(’\s+’)
patFlux=re.compile(’d*4$’)
patHeat=re.compile(’d*6$’)
#special patterns
patTets=re.compile(’\d\d+’)

#pathfile=input(’insert .eeout pathfile’)
pathfileList=e

numTetsMatrix=[]
numNodesMatrix=[]
particleListMatrix=[]
nodesXMatrix=[]
nodesYMatrix=[]
nodesZMatrix=[]
dataMatrix=[]
cellsMatrix=[]
editParticlesMatrix=[]
editUserNumberMatrix=[]
editSETSMatrix=[]
errorSETSMatrix=[]
fieldListMatrix=[]
nodes_to_add=-1
# -- Reading mesh topology --
print(’\nReading mesh Topology...’)
for iteration, pathfile in enumerate(pathfileList):

# -- General Variables --
numTets=0
numNodes=0
particleList=[]
nodesX=[]
nodesY=[]
nodesZ=[]
#Flags
readFlag=False
# General infos
with open (pathfile,’r’) as infile:

for line in infile:
if line.find(idNodes) !=-1:

numNodes=patNumber.search(line).group()
if line.find(idTets) !=-1:

numTets=patTets.search(line).group()
break

numTetsMatrix.append(numTets)
numNodesMatrix.append(numNodes)

# Particle type
with open (pathfile,’r’) as infile:

for line in infile:
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if readFlag:
particleList=(patNumber.findall(line))
break

if line.find(idParticlesType) !=-1:
readFlag=True

particleListMatrix.append(particleList)

with open (pathfile,’r’) as infile:

# Reading nodes
readFlagX=False
readFlagY=False
readFlagZ=False

for line in infile:

# Reading nodes
if readFlagX:

split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesX.append(float(a.group()))

if readFlagY:
split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesY.append(float(a.group()))

if readFlagZ:
split=patSpace.split(line)
for string in split:

a=patNumberSci.search(string)
if a != None:

nodesZ.append(float(a.group()))

if line.find(idNodeX) !=-1:
readFlagX=True

if line.find(idNodeY) !=-1:
readFlagY=True
readFlagX=False

if line.find(idNodeZ) !=-1:
readFlagZ=True
readFlagY=False

#Reading element type
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if line.find(idElem) !=-1:
readFlagZ=False

nodesXMatrix.append(nodesX)
nodesYMatrix.append(nodesY)
nodesZMatrix.append(nodesZ)

#Reading connectivity data
cells=[]
data=[]
with open (pathfile,’r’) as infile:

# Reading nodes
readFlagCon=False

for line in infile:
if readFlagCon:

data.append(line)
if line.find(idConn) !=-1:

readFlagCon=True
if line.find(idNeighbour) !=-1:

readFlagCon=False

del data[-1]
del data[-1]
for string in data:

newline=string.strip()
substrings=patSpace.split(newline)
field = ’4 ’
for substring in substrings:

num=int(patNumber.search(substring).group())+nodes_to_add
field=field+’ ’+’{:11d}’.format(num)

cells.append(field)

dataMatrix.append(data)
cellsMatrix.append(cells)
nodes_to_add=nodes_to_add+int(numNodes)

#-- Reading edits --
print(’Reading Edits in ’+pathfile+’...’)
editParticles=[]
editUserNumber=[]
with open (pathfile,’r’) as infile:

editsDataFlag=False
for line in infile:

if editsDataFlag:
strippedline=line.strip()
array=patSpace.split(strippedline)
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editParticles.append(array[4])
editUserNumber.append(array[1].strip(’-’))
editsDataFlag=False

if line.find(’EDIT DATA’) !=-1:
editsDataFlag=True

if line.find(’NODES X’) !=-1:
break

editParticlesMatrix.append(editParticles)
editUserNumberMatrix.append(editUserNumber)

editSETS=[]
errorSETS=[]
patEditNumber=re.compile(’\d+$’)
n_tally=len(editUserNumber)
for editCounter,editNumber in enumerate(editUserNumber):

with open (pathfile,’r’) as infile:
valuesFlag=False
errorFlag=False
rightTally=False
valuesList=[]
errorList=[]
for line in infile:

if valuesFlag and rightTally :
strippedline=line.strip()
values=patSpace.split(strippedline)
for value in values:

valuesList.append(value)

if errorFlag:
strippedline=line.strip()
errorValues=patSpace.split(strippedline)
for value in errorValues:

errorList.append(value)
if line.find(’DATA OUTPUT PARTICLE’)!= -1 or \
line.find(’CENTROIDS X’)!= -1:

del valuesList[0]
del valuesList[-37:]
editSETS.append(valuesList)
if n_tally==(editCounter+1):

del errorList[0]
del errorList[-9:]
errorSETS.append(errorList)
break

else:
del errorList[0]
del errorList[-20:]
errorSETS.append(errorList)
break
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if line.find(’DATA OUTPUT PARTICLE’) != -1:
checkName=patEditNumber.search(line).group()
rightTally=(editNumber==checkName)

if line.find(’DATA SETS RESULT TIME BIN’) != -1:
valuesFlag=True

if line.find(’DATA SETS RESULT SQR TIME BIN’) != -1:
valuesFlag=False

if rightTally:
if line.find(’DATA SETS REL ERROR TIME BIN’) != -1:

errorFlag=True
editSETSMatrix.append(editSETS)
errorSETSMatrix.append(errorSETS)

#--Read material--
materialFlag=False
materialsList=[]
fieldList=[]
with open (pathfile,’r’) as infile:

for line in infile:
if line.find(’CONNECTIVITY DATA’) !=-1:

break
if materialFlag:

strippedline=line.strip()
matLine=patSpace.split(strippedline)
for mat in matLine:

materialsList.append(mat)
if line.find(’ELEMENT MATERIAL’) !=-1:

materialFlag=True

del materialsList[-6:]
fieldList.append(materialsList)
#--Read Density--
densityFlag=False
volumeFlag=False
densityList=[]
volumesList=[]
with open (pathfile,’r’) as infile:

for line in infile:
if densityFlag:

strippedline=line.strip()
densityLine=patSpace.split(strippedline)
for density in densityLine:

densityList.append(density)
if volumeFlag:

strippedline=line.strip()
volumeLine=patSpace.split(strippedline)
for vol in volumeLine:

volumesList.append(vol)
if line.find(’DENSITY’) !=-1:

densityFlag=True
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if line.find(’VOLUMES’) !=-1:
volumeFlag=True
densityFlag=False

del densityList[-8:]
fieldList.append(densityList)
fieldList.append(volumesList)

fieldListMatrix.append(fieldList)
#
# === Writing output ===
#
#Single VTK mode
results=pd.DataFrame()

totalTets=str(sum(list(map(int,numTetsMatrix))))
totalNodes=str(sum(list(map(int,numNodesMatrix))))

outpath=’global.vtk’
print(’writing ’+outpath+’...’)
with open(outpath,’w’) as outfile:

#-- Header --
outfile.write(’# vtk DataFile Version 3.0 \n’+ \

’Original file: ’+pathfile+’\n’+ \
’ASCII \n \n’)

#-- DataSet --

#NODES
outfile.write(’DATASET UNSTRUCTURED_GRID \n’+ \

’POINTS ’+totalNodes+’ float’)
for i, item in enumerate(nodesXMatrix): #for each nodesX set

for n, node in enumerate(item):#for each x node value in the set
outfile.write( ’\n’+’{:12.6f}’.format(node)+’ ’+ \
’{:12.6f}’.format((nodesYMatrix[i])[n])+’ ’+ \
’{:12.6f}’.format((nodesZMatrix[i])[n]))

#CELLS
outfile.write(’\n\nCELLS ’+totalTets+’ ’+str(int(totalTets)*5)+’\n’)
for item in cellsMatrix:

for line in item:
outfile.write(line+’\n’)

#CELL Type
outfile.write(’\nCELL_TYPES ’+totalTets+’\n’)
for i in range(int(totalTets)):

outfile.write(’10 \n’)
#CELL DATA
outfile.write(’\nCELL_DATA ’+totalTets+’\n’)
for n_edit,editname in enumerate(editUserNumberMatrix[0]):

checkflux=patFlux.search(editname)
checkheat=patHeat.search(editname)
if editParticles[n_edit]==’1’:

85



name=’Neutron_’
else:

name=’Photon_’
if checkflux != None:

name=name+’Flux_’+checkflux.group()
if checkheat != None:

name=name+’Heating_’+checkheat.group()
outfile.write(’\nSCALARS ’+name+’ float 1 \n’+ \

’LOOKUP_TABLE default \n’)
editsetList=[]
for editset in editSETSMatrix:

for item in editset[n_edit]:
editsetList.append(float(item))
outfile.write(item+’\n’)

results[name]=editsetList

outfile.write(’\nSCALARS ’+name+’_ERROR’+’ float 1 \n’+ \
’LOOKUP_TABLE default \n’)

errorList=[]
for errorset in errorSETSMatrix:

for item in errorset[n_edit]:
errorList.append(float(item))
outfile.write(item+’\n’)

results[name+’_ERROR’]=errorList
#FIELD DATA
fieldDataNames=[’Material’,’Density’,’Cell_Volume’]
for field,fieldDataName in enumerate(fieldDataNames):

outfile.write(’\nFIELD FieldData 1\n’+ \
fieldDataName+’ 1 ’+totalTets+’ float\n’)

fieldList=[]
for fieldlist in fieldListMatrix:

for value in fieldlist[field]:
fieldList.append(float(value))
outfile.write(value+’\n’)

results[fieldDataName]=fieldList
results.to_pickle(’results.pkl’)

return;
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