
Alma Mater Studiorum · University of
Bologna

SCHOOL OF SCIENCE

Second degree in computer science

Applying Machine Learning

to Cyber Security

Relator:

Prof.

Paolo Ciancarini

Correlators:

Prof.

Valentina Presutti

Mehwish Alam

Presented by:

Carlo Stomeo

Session II

Academic Year 2017-2018

”Be able to fly, learning to fall”
Salmo

Contents

Italian Introduction - Introduzione ix

Introduction xi

1 Background: Vulnerability, Intrusion detection and machine

learning 1

1.1 Intrusion Detection Systems 1

1.1.1 Misuse Based Intrusion Detection 2

1.1.2 Anomaly Based and Hybrid Intrusion Detection 2

1.2 Vulnerability detection . 3

1.2.1 Static Analysis . 3

1.2.2 Dynamic Analysis . 5

1.2.3 Hybrid Analysis . 5

1.3 Cyber Attacks . 5

1.4 Machine Learning . 7

1.4.1 ML applications . 8

Classification . 8

Clustering . 13

Regression . 14

1.4.2 ML approaches . 14

Regression Algorithms 15

Instance-based Algorithms 16

Decision Tree Algorithms 16

Bayesian Algorithms 17

i

CONTENTS CONTENTS

Clustering Algorithms 18

Association Rule Learning Algorithms 18

Artificial Neural Networks Algorithms 18

Dimensionality Reduction Algorithms 19

Ensemble Algorithms 20

2 Data sources for intrusion detection 21

2.1 Packet Capture . 21

2.2 NetFlow Data . 22

2.3 Public Datasets . 22

2.4 Traffic Generators . 24

3 Survey on ML approaches for Intrusion Detection 25

3.1 Artificial Neural Networks . 25

3.2 Association Rule Mining . 27

3.3 Clustering . 28

3.4 Decision Trees . 29

3.5 Random Forest . 30

3.6 Evolutionary Computation . 31

3.7 Support Vector Machine . 32

3.8 Discussion on State of the Art Algorithms 33

4 Survey on ML approaches for Vulnerability Detection 37

4.1 Principal Component Analysis 37

4.2 Clustering . 38

4.3 Decision Trees . 39

4.4 Random Forest . 39

4.5 Support Vector Machine . 41

5 Comparative evaluation of intrusion detection systems 43

5.1 Experimental setting: . 45

5.1.1 Dataset . 46

5.2 Methods Reproduction . 50

CONTENTS iii

5.2.1 Hybrid Random Forest 51

5.2.2 Cluster Center and Nearest Neighbor 54

5.2.3 Hybrid Detection combining Decision Trees and one-

class SVM . 57

5.3 Comparison Summary . 60

6 A real world Scenario and a novel unsupervised approach to

intrusion detection 63

6.1 Web Server Logs Analysis . 64

6.1.1 Structure . 64

6.1.2 Collected Data . 65

6.2 Data Preprocessing and Feature Extraction 66

6.2.1 Single Connections . 69

6.2.2 Sessions . 71

6.3 Proposed Approach . 73

6.4 Preliminary Evaluation . 76

6.4.1 Evaluation on the most asked resource 79

6.4.2 Evaluation on the whole dataset 84

7 Conclusion and Future Works 89

Bibliography 93

Sitography 101

List of Figures

1.1 Precision and Recall metrics. 11

2.1 The relation between DARPA, KDD-99 and NSL-KDD datasets. . 23

3.1 A simple example of decision tree for IDS 30

3.2 A graphic representation of SVM kernel function and separat-

ing hyperplane. 33

5.1 NSL-KDD attacks-types pie charts. 48

5.2 NSL-KDD attack categories pie charts. 49

5.3 CANN: new feature computation. source: [12] 55

5.4 Diagram of the hybrid IDS based on decision trees and one-

class SVM. source: [18] . 58

6.1 Combined Log Format example. 64

6.2 Traffic distribution with and without web crawlers. The data

field indicates the number of hour considered. 67

6.3 Kmeans Clustering output, projected in a 2 dimensional space

using Principal Component Analysis. The blue and the red

points represent respectively the normal and the attacks, as

marked by the heuristics. 75

6.4 Output of the models based on Kmeans + distance based or

One-Class SVM based outlier detection. 77

6.5 Evaluation dataset composition. Over a dataset containing

7398 connections only the 4.4% are attacks (325). 79

v

vi LIST OF FIGURES

6.6 Proposed model performances on the most used resource. . . . 81

6.7 Proposed model performances on the most used resource when

using a balanced Dataset. 83

6.8 Proposed model performances without splitting the connec-

tions by resource. 87

List of Tables

1.1 Confusion Matrix . 11

3.1 IDS state of the art summary. 35

4.1 Reported mean performances in [24] 39

4.2 Results reported in [10] for classification without feature ex-

traction. for a more detailed results refer to the paper. 41

5.1 Results reported in the proposed papers in terms of Accuracy,

Detection Rate (recall) and FAR. 44

5.2 NSL-KDD features grouped by their domain. [34] 47

5.3 Attack types divided by category in NSL-KDD training and

testing dataset. 50

5.4 Performances of the Hybrid Random Forest IDS when the

threshold changes. 54

5.5 Results of CANN using 10-fold cross validation and the NSL-

KDD test set. 57

5.6 Results of the Hybrid IDS based on decision tree and one-class

SVM while γ and ν vary. 60

5.7 State of the art IDSs experimental comparison summary. . . . 61

6.1 Single connections dataset example. 70

6.2 Session features. The ones with yellow background are option-

als and can be added or not depending on the kind of model

is going to be made. 72

vii

viii LIST OF TABLES

6.3 Preliminary results of outlier detection on single connections.

With known attacks we mean the connections marked as at-

tacks by the heuristics, while the training data consists in the

connection marked as non-attacks by the heuristics. 78

6.4 Outlier detection results over the most used resource. For

every evaluation metric the best and the worst models have

been highlighted. 82

6.5 Evaluation over the most used resource and using the unbal-

anced dataset. Comparison of the best performing outlier de-

tection model (in terms of recall), with the heuristics and ran-

dom guessing labels. 84

6.6 Outlier detection results over the most used resource using a

balanced dataset. For every evaluation metric the best and

the worst models have been highlighted. 85

6.7 Outlier detection results without splitting by resource and us-

ing a balanced dataset. Also the heuristics and random guess-

ing performances are expressed as baseline. For every evalua-

tion metric the best and the worst models have been highlighted. 88

Italian Introduction -

Introduzione

Parallelamente alla crescita esponenziale del Web e dei servizi ad esso as-

sociati, crescono anche gli attacchi informatici. Per questo motivo l’utilizzo

di misure di sicurezza non è mai stato cos̀ı importante. Al giorno d’oggi le

tecniche di Intrusion Detection (IDS) e di Vulnerability Detection sono due

delle misure di sicurezza più utilizzate. Gli IDS hanno lo scopo di analizzare

un sistema o una rete, alla ricerca di minacce alla sicurezza, come attività

sospette e accessi non autorizzati. Mentre la Vulnerability Detection con-

siste nell’analisi di un sistema, alla ricerca di vulnerabilità, punti deboli, che

possono essere sfruttati da un utente malintenzionato. Sono state proposte

molte tecniche per raggiungere questi obiettivi e ora tra queste stanno emer-

gendo anche Machine Learning (ML) e Data Mining (DM). Maggiori dettagli

sugli IDS (1.1) e sulla Vulnerability Detection (1.2) sono riportati nel capitolo

seguente.

Questo lavoro si pone due goal principali:

• Analizzare lo stato dell’arte su techiche di ML e DM applicate in questi

campi della cyber security.

– Fare una survey.

– Valutare la riproducibilità dei metodi analizzati.

– Comparare alcuni dei metodi analizzati nel medesimo scenario.

• Proporre una soluzione ad un caso d’uso reale.

ix

x Italian Introduction - Introduzione

Il primo passo non consiste semplicemente nella stesura di un Survey.

Questo perché la valutazione e la vera comprensione dello stato dell’arte sono

molto importanti, ma per ottenere realmente un vantaggio e una compren-

sione di ciò che è già stato fatto, dobbiamo riprodurre e confrontare i metodi

proposti. Questo porta ad un altro importante aspetto nell’ambito del Ma-

chine Leaning e più in generale in informatica: l’adesione ai principi FAIR

[9]. Questi principi sono stati proposti al fine di fornire una serie di linee

guida per rendere i dati reperibili, accessibili, interoperabili e riutilizzabili.

Questo non si applica solo ai dati, ma anche al codice, che dovrebbe essere

open source e quindi riproducibile, almeno nell’area di ricerca, consentendo

cos̀ı una crescita continua nello sviluppo di nuove soluzioni. (Una discus-

sione riguardo l’adesione dei metodi proposti nello stato dell’arte a queste

linee guida può essere trovata in sezione 3.8.)

Gli articoli presi in esame sono stati scelti per il loro impatto, con-

siderando il conteggio delle citazioni e il livello della conferenza o del giornale

in cui sono stati pubblicati. Inoltre, anche la data di pubblicazione è stata

considerata nella fase di scelta.

Per ragioni di tempo e coerenza con il caso d’uso reale analizzato, anche se il

lo stato dell’arte è stato analizzato sia per gli IDS che per la Vulnerability De-

tection, il confronto sperimentale è stato fatto solo per i primi, selezionando

i tre approcci che sono stati meglio documentati dagli autori. Il confronto

(capitolo 5) si è svolto utilizzando la stessa macchina e gli stessi dati, al

fine di confrontare le prestazioni dei metodi proposti nello stesso scenario.

Da questa prima analisi le tecniche di outlier detection sono risultate le più

efficiaci nell’individuare attachi noti e non. Infine, le conoscenze acquisite

da questo primo studio sono state utilizzate per trovare una soluzione a uno

scenario reale (capitolo 6). La scopo di quest’ultima fase è stato quello di

creare un IDS utilizzando solo i log di un server Apache in modo completa-

mente non supervisionato. La soluzione proposta consiste in due parti: (i) la

pre-elaborazione dei dati e (ii) la proposta di un modello non supervisionato

che utilizza tecniche di anomaly-outlier detection.

Introduction

In parallel to the exponential growth of the web and web based services

also cyber attacks are growing. For this reason the usage of security mea-

sures has never been so important. Intrusion Detection Systems (IDS) and

Vulnerability detection techniques are two of the most used security mea-

sures nowadays. IDSs have the purpose of analyzing a system or a network

looking for security threats, like suspicious activity and unauthorized access.

While Vulnerability Detection consists in the analysis of a system, looking

for vulnerabilities, weaknesses that can be exploited by an attacker. Many

techniques to achieve these goals have been proposed and now also Machine

Learning (ML) and Data Mining (DM) ones are emerging. For more details

about IDS (1.1) and Vulnerability Detection (1.2) refer to the next chapter.

This work has two main goals:

• Assess the state of the art about ML and DM techniques applied to

these cyber security fields.

– Make a Survey.

– Consider the reproducibility of the proposed methods.

– Compare some of the proposed methods with a common experi-

mental setting.

• Propose a solution to a real world scenario.

As you can see, the first step does not simply consist in the making of a

Survey, this because the Assessment of the state of the art is very important.

xi

xii Introduction

But to really gain advantage and comprehension of what has already been

done we need to reproduce and compare the proposed methods. This leads

to another important aspect in Machine Leaning and more in general in

Computer Science: the adhesion to the FAIR principles [9]. This principles

have been proposed in order to give a set of guidelines to make data findable,

accessible, interoperable and reusable. This does not only apply to the data,

but also to code, which should be open source and so reproducible, at least

in the research area, thus allowing a continuous growth in the development

of new solutions. (For a discussion about this aspects refer to section 3.8)

The papers taken under exam have been chosen for their impact, considering

the citation count, and the rank of conference/journal in which they have

been published. Moreover also the publication date has been considered as

an important aspect.

For time reasons and coherence to the real world scenario, even if the Survey

has been done for both IDSs and Vulnerability Detection, the experimental

comparison has been done only for IDSs, selecting the three of them which

have been better documented by the authors. The comparison in chapter 5

has been done with the same machine and the same data, in order to compare

the performances of the proposed methods in the same scenario. Finally the

knowledge acquired from this first study has been used to find a solution

to a real world scenario (chapter 6). The task was to make an IDS using

only web server logs in a complete unsupervised way. The proposed solution

consists in two parts: (i) the data preprocessing and (ii) the proposal of an

unsupervised model using outlier detection.

Chapter 1

Background: Vulnerability,

Intrusion detection and

machine learning

This chapter explains the basic concepts needed to understand this whole

work. As first Intrusion Detection Systems and software Anomaly Detection

will be introduced. Then an overview about Machine Learning will be given.

1.1 Intrusion Detection Systems

An intrusion detection system (IDS) is a system that monitors network

traffic for suspicious activity and unauthorized access. IDSs can be classified

into three major classes: (i) Active and Passive IDS, (ii) Network Intru-

sion Detection Systems (NIDS) and (iii) Host-Intrusion Detection Systems

(HIDS).

Active and Passive IDS: Active IDS are also known as Intrusion and Pre-

vention Detection System (IPDS). They automatically block the suspected

intrusions without an intervention of an operator. On the other hand, pas-

sive IDS only monitors and analyses the traffic and alerts an operator in case

1

Background: Vulnerability, Intrusion detection and machine learning

of an attack.

Host-Based IDS: These systems are installed on individual devices which

are connected to the network. They monitor the traffic of each of the devices

and they are deemed better if the activity of a particular device is to be

monitored.

Network-Based IDS: These kinds of systems usually monitor all the pass-

ing traffic at strategic points of the networks.

Moreover IDSs can be grouped in three other categories basing on the method

used to detect the attacks.

1.1.1 Misuse Based Intrusion Detection

Also known as Signature Based IDS, this systems identify security issues

from a set of known attacks and vulnerabilities. The idea is that every attack

can be expressed through a fingerprint that it leaves behind him, and then

this one can be used to identify new occurrences of the same attack. This

method can be very powerful detecting known attacks but the set of known

attack fingerprints needs to be continuously updated. Moreover even with

an updated dataset, previously unseen attack won’t be detected.

1.1.2 Anomaly Based and Hybrid Intrusion Detection

This approach is in some sense complementary to the previous one. In-

stead of detecting attacks from a set of known ones, it uses the pattern of

normal system behavior and marks as attack (anomaly) everything that de-

viates from that behavior. The pro of this technique is that it is able to

detect previously unseen attacks. However there are also negative aspects

doing this, for example there will always be new legitimate activities that

will be marked as attacks. So the negative aspect of this system is that it

often leads to a high number of false alarms. Another pro is that the normal

1.2 Vulnerability detection 3

usage pattern will be customized for every system, increasing the difficulty

for the attackers to find activities that can be carried out undetected. Hybrid

techniques are a combination of misuse-based and anomaly-based ones. They

have been proposed to reduce the number of false alarms, while maintaining

the capability to detect new attacks.

1.2 Vulnerability detection

“In the context of software security, vulnerabilities are specific flaws or

oversights in a piece of software that allow attackers to do something mali-

cious: expose or alter sensitive information, disrupt or destroy a system, or

take control of a computer system or program.” Dowd et al. [33].

Basically a vulnerability can be seen as a particular bug which can be ex-

ploited by a malicious user to start an attack against the system.

Vulnerability detection consists in the problem of analyzing a software and

detect vulnerabilities contained in it. As Jhala and Majumdar explain in

[28] this kind of problem is undecidable, this means that it is not possible to

write a program that finds all the vulnerabilities (soundness) and reports no

false vulnerabilities (completeness).

Despite this nature of the problem, as explained in [22] and summarized in

[2] different approaches have been proposed, trying to find an approximate

solution. This proposed methods can be divided in the following three main

families.

1.2.1 Static Analysis

A program is analyzed based only on his source code. This means that

there is no need to execute it. The approach examines the program code,

applying specific rules or algorithms (also known as inference), and derives

a list of vulnerable code present in a program that might result in successful

exploitations (Shahriar and Zulkernine [22]). The effectiveness of any static

Background: Vulnerability, Intrusion detection and machine learning

analysis depends on how accurate an inference technique is in discovering

potential vulnerable code, moreover,as it always happens, there is a trade-off

between the accuracy of the detection and the false positives. This means

that static analysis can be at his best sound, but false vulnerabilities will be

(probably) reported.

Basing on the inference technique adopted by the algorithm this methods

can be divided as follows:

• Tainted data-flow based techniques mark input variables as tainted

and track their propagations. Warnings are generated if tainted inputs

or values derived from them are used in sensitive operations.

• String-pattern-matching based techniques derive from simple string

pattern matching methods. These techniques use a set of known func-

tion calls which can cause vulnerabilities, and identify some vulnerable

code starting from them. The program will then be tokenized and

evaluated in search of these patterns.

• Constraint based techniques define a series of constraints from a set

of known vulnerabilities in such a way that the violation of one of

these constraints imply the presence of the related vulnerability. The

constraints are then propagated and updated traversing the program

and constraint solvers are used to find input values that can violate the

constraints.

• Annotation based techniques annotate the program in terms of de-

sired pre and postconditions. After this an algorithm checks if data

variables can be used safely based on the annotated conditions or not.

When a precondition cannot be resolved from a previous statement’s

postcondition, then a warning message is generated.

1.3 Cyber Attacks 5

1.2.2 Dynamic Analysis

A program is analyzed executing it with some specific input and observing

his runtime behavior. This kind of analysis is strongly dependent from the

input, for this reason a Dynamic approach can’t be sound. In fact, in the most

of the cases, it is not possible to test a program with all the possible inputs

(because they can be infinite), so there will always be the possibility that

some vulnerability remains undiscovered. By the other way this approaches

can be complete, approving all secure programs without false alarms.

1.2.3 Hybrid Analysis

Combining the two previous techniques is possible to combine the pros of

both of them. This does not mean that Hybrid methods are both complete

and sound, because as we said this is not possible. In fact as Hybrid analysis

gains the advantages from both Static and Dynamic Analysis it also suffers

the cons from both these methods. One approach to Hybrid Analysis can

use Static Analysis to identify the locations in the program that may contain

some vulnerabilities and that need to be analyzed during program executions

to verify their actual exploitations (by Dynamic Analysis). In this way the

number of suspected vulnerabilities reported by a static analysis can be re-

duced. A different approach can employ as first a Dynamic Analysis approach

that leverages Static Analysis techniques to guide the test-case selection and

analysis process.

1.3 Cyber Attacks

In parallel to the IT development a huge range of attacks showed up. The

most common are briefly introduced in this section.

Brute Force Attack: The most basic kind of attack. It simply consist in

a complete search over the credentials space, trying to discover the password

Background: Vulnerability, Intrusion detection and machine learning

or other informations.

Denial of Service (DoS): This attack has the purpose to exhaust the

system’s capabilities, causing the interruption of the supplied services. With

DDoS a Distributed variant is referred. In this kind of attacks a huge amount

of hosts (generally controlled by some malware) is used to generate thousands

of request to a single target (typically a web server).

Code Injection: This attacks consists in the injection of some malign

code in a web application with the aim to steal access credentials or to the

impersonification of an already authenticated user.

Buffer Overflow: These attacks are characterized by the overwriting of

memory fragments of the process. This kind of vulnerabilities can lead to

DoS attacks or Code Injections.

Rootkit: a malign software with the aim to gain root access to a system.

Sometimes it can also lead to the remote access and control to the attacked

system.

Cross-Frame Scripting (XFS): An attack that combines Javascript code

and an Iframe to load a legitimate page with the aim to steal user informa-

tions. It is often used with phishing techniques.

Cross-Site Scripting (XSS): it enables attackers to inject client-side

scripts into web pages viewed by normal users. XSS is often used to by-

pass access controls such as the same-origin policy.

Keylogging: A keylogger is a software or hardware tool capable to secretly

sniff and register all the characters the user is pushing on his keyboard.

1.4 Machine Learning 7

Man in the middle: This attack consists in the interception of a com-

munication between two users, staying in the middle of them and behaving

with both of them as the other legitimate end of the communication.

Phishing: This term indicates the try to gain the credential of a user to

stole his identity. The most typical phishing attack is made using an e-mail

with looks legitimate with brings the user to a malign web page.

1.4 Machine Learning

Machine learning is a field of Artificial Intelligence that provides systems

the ability to automatically learn and improve from experience without being

explicitly programmed. Similarly to what happens to humans the learning

process starts from some example, some data to work on. Based on the

structure of this data Machine Learning algorithms mostly fall under the

following categories:

Supervised Algorithms

In this family of approaches the algorithm learns from past knowledge.

This means that the training data already contains knowledge, and the al-

gorithms needs to learn from it to predict future events. In this case we are

talking about labeled data, this means that the data comes also with his

explanation, for example imagine to a dataset containing pictures, labeled

with 1 if they contain a cat or 0 if not. If the aim of the program is to say

whenever a picture contains a cat or not this is an example of labeled learn-

ing. In this kind of algorithms the aim becomes to learn a model to identify

new occurrences, this model will basically be a function that explains the

learning data.

Unsupervised Algorithms

Here the data does not contains additional information about his meaning

so the purpose becomes to extract some pattern from unlabeled data. Let’s

Background: Vulnerability, Intrusion detection and machine learning

think to the previous example, if the dataset only contains picture with or

without cats, but they are not labeled we can still try to learn some pattern

from the data which will probably identify all the pictures containing cats.

Semi-supervised Algorithms

This family of algorithms falls in-between the previous ones. Semi-supervised

methods use both labeled and unlabeled data. Typically a small quantity of

labeled data is used to improve the accuracy of the model. This solutions are

well used when acquiring or learning on labeled data is resource-expensive,

while obtaining unlabeled data is not.

1.4.1 ML applications

Another categorization of machine learning algorithms can be done basing

on the kind of output we are expecting to obtain from the learned system.

Classification

One of the aim of supervised machine learning algorithm is to learn a

model from labeled data in order to gain the capability to assign labels to

unlabeled data, this process is called Classification. A very clear example

can be the mail filter which has to classify the incoming traffic between spam

and non-spam mails.

The classification process is typically organized in three phases:

• Training: a model is constructed over a dataset of labeled data, called

training dataset.

• Validation:As many classification approaches depends on some pa-

rameters which can modify their results, called meta-parameters, a

phase to tune them is needed. The validation phase is made to tune

this meta-parameters to optimize the classification performances. This

1.4 Machine Learning 9

phase works on a specific dataset, which has to be different from the

training and the testing ones, to prevent overfitting1.

• Testing: this last phase is made to give an evaluation in terms of

accuracy, recall and so on, of a specific classification model. Similarly

to the previous case the used dataset should be independent from the

previous two.

A technique used to prevent overfitting is cross-validation. It is typically

used when the training data is large. Cross validation is used to estimate

how accurately a model performs. It consists in the splitting of the data

in two complementary sub-sets, one used for training and the other one for

validating or testing. To reduce the variability of this process it is usually

repeated many times with different partitions. One example is 10-fold cross

validation, where the data set is divided into 10 folds of the same size, 9

of them are used as training data, while the other one is used for testing.

This process is repeated 10 times, using at each step a different partition

for testing. In this way the model comes evaluated 10 times, and his final

performance are computed as the average of these 10 evaluations.

In the following paragraphs the different classification types and the related

evaluation approaches will be introduced.

Binary Classification is the easiest form of classification, it is character-

ized by the task to recognize the membership of an element between two

classes. For this family of problems the metrics are computed from the con-

fusion matrix (table 1.1).

True Positive (TP) means that an element has been recognized as istace of

the class under exam and it really is, and in the same way a True Negative

(TN) means that the membership of the element to the class was correctly

1Overfitting is defined as the production of an analysis that corresponds too closely or

exactly to a particular set of data, and may therefore fail to fit additional data or predict

future observations reliably

Background: Vulnerability, Intrusion detection and machine learning

evaluated negative. False Positive (FP) and False Negative (FN) are respec-

tively indicating that the classification was wrongly positive and wrongly

negative.

The deriving metrics are the following:

• Accuracy gives a measure of the percentage of instances that are clas-

sified correctly.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision is the percentage of elements classified correctly over the

total number of elements classified as belonging to the target class.

Precision =
TP

TP + FP

• Recall (or detection rate in the following chapters) is the ratio of items

correctly classified as belonging to the target class over all the items

that actually belong to that class.

Recall =
TP

TP + FN

• False Alarm Rate (FAR) or false positive rate is the ratio of items

incorrectly classified as member of the target class over the total num-

ber of items not belonging to it.

FAR =
FP

TN + FP

In figure 1.1 you can find an image intuitively showing precision and recall

metrics2.

2The figure was taken from: https://en.wikipedia.org/wiki/Precision_and_

recall

https://en.wikipedia.org/wiki/ Precision_and_recall
https://en.wikipedia.org/wiki/ Precision_and_recall

1.4 Machine Learning 11

Figure 1.1: Precision and Recall metrics.

Actual Positive Actual Negative

Predicted Positive TP FP

Predicted Negative FN TN

Table 1.1: Confusion Matrix

Background: Vulnerability, Intrusion detection and machine learning

Multi-class Classification consists in the problem to recognize the mem-

bership of an element between more than two classes. This can be achieved by

combining multiple binary classifiers. There are two strategies to accomplish

this: one-vs-rest (also known as one-vs-all) and one-vs-one (or all-vs-all).

As the names suggest, the first strategy consists of training one classifier per

class: the class being considered is the positive class, while the other classes

are the negative class. The classification given to an element to evaluate is

the class associated with the model that classifies that element with higher

confidence. While in the second strategy, one-vs-one if n is the number of

classes then n*(n-1)/2 classifiers are trained, one for each combination of

classes. During testing, the class that receives the highest number of votes

is selected.

In this kind of classification the performance measures are:

• Average Accuracy

Accuracyaverage =

∑l
i=1

TPi+TNi

TPi+TNi+FPi+FNi

l

• Macro Precision

Precisionmacro =

∑l
i=1

TPi

TPi+FPi

l

• Macro Recall

Recallmacro =

∑l
i=1

TPi

TPi+FNi

l

• Micro Precision

Precisionmicro =

∑l
i=1 TPi∑l

i=1 TPi + FPi

• Micro Recall

Recallmicro =

∑l
i=1 TPi∑l

i=1 TPi + FNi

• Class False Positive Rate (Class FAR) indicates the ratio of Ex-

emplars from a given class incorrectly classified over all exemplars not

from that given class.

1.4 Machine Learning 13

The terms macro and micro are here indicating two different averaging strate-

gies. The first one averages the respective measures calculated for each class,

while the second one consists of calculating the sum of the numerators and

the sum of the denominators of the respective measures calculated for each

class, and then dividing the first sum by the second sum.

Multi Label Classification is a third case in which multiple labels may

be assigned to each instance. Two are the approaches to classify multi-label

data: algorithm adaptation methods and problem transformation methods

[33]. The first approach accounts for ad-hoc versions of multi-class algorithms

capable of generating multiple labels per instance. While the second one can

be approached with different solutions. One of these consists of using one-

vs-rest similar to the multi-class case. In this context, though, the output is

the union of the “positive” decisions of the classifiers. Ad-hoc measures are

required to evaluate the performance of a multi-label classifier [33]. If D is

the dataset on which performance is to be evaluated, Yi are the actual labels

of the ith instance of D and Zi are the labels generated by the classifier on

the same instance, accuracy, precision and recall respectively defined as:

Accuracymulti−label =
1

|D|

|D|∑
i=1

|Yi
⋂
Zi|

|Yi
⋃
Zi|

Precisionmulti−label =
1

|D|

|D|∑
i=1

|Yi
⋂
Zi|

|Zi|

Recallmulti−label =
1

|D|

|D|∑
i=1

|Yi
⋂
Zi|

|Yi|

Clustering

Clustering consists in the problem to divide a set of inputs into groups.

Unlike Classification the groups, and even their number, are not known a

priori, so Clustering is an unsupervised problem. The groups (clusters) are

made trying to maximize the similarity between members of the same cluster.

Background: Vulnerability, Intrusion detection and machine learning

Similarly to classification, clustering is not a specific algorithm, but a task

that can be achieved with different techniques, depending on the used model:

• Connectivity models (hierarchical clustering) group data by the dis-

tances between them.

• Centroid models (k-means) represents clusters by their mean vector.

• Distribution models (Expectation Maximization algorithm) assumes

that the groups yield from a statistical distribution.

• Density models group the data points as dense and connected re-

gions (Density-Based Spatial Clustering of Applications with Noise

DBSCAN).

• Graph models (clique) defines each cluster as a set of connected nodes

where each node has an edge to at least one other node in the set.

Regression

Regression analysis is a set of statistical processes for estimating the re-

lationships among variables. In simple words the idea is that there are some

independent variables, which, when taken together, produce a result - a de-

pendent variable. The regression model is then used to predict the result of

an unknown dependent variable, given the values of the independent ones.

Similarly to classification Regression is a supervised problem, but it does not

output a class, but a number. An example could be the problem of estimat-

ing the value of your house based on the number of bathrooms, bedrooms

and the square footage, taking as learning dataset the houses for sale in your

neighborhood.

1.4.2 ML approaches

To solve Machine Learning tasks a lot of possible approaches are available.

In this work an approach is intended as a family of algorithms grouped for

1.4 Machine Learning 15

their similarities3. This categorization could not be complete, in sense that

not all the possible ML algorithms fit in one of the following families, or

some of them can fit into more than one, but it is useful to get an overall

idea about the ML bases.

Regression Algorithms

As previously said, in this kind of supervised algorithms the purpose is to

find a function capable to understand the relationship between a dependent

variable and one or more independent variables (in the learning phase) and

than to predict the value of an output variable (the dependent one), given

some variable in input. While we speak about regression we can both refer to

the class of problems and to the class of algorithms, the fact is that regression

is a process, applied in algorithms to solve the class of problems.

Some of the most popular regression algorithms are:

• Linear Regression: it uses a linear approach to find the relationship

between the independent variables and the dependent one.

• Logistic Regression: it is used to estimate the parameters of a lo-

gistic model. Differently from Linear regression where the output can

assume continuous values, for logistic regression the problem is typi-

cally applied to a binary dependent variable, where the possible values

are 0 and 1, representing outcomes such as win/fail, dead/alive or at-

tack/normal.

• Stepwise Regression

• Ordinary Least Squares Regression (OLSR)

• Multivariate Adaptive Regression Splines (MARS)

• Locally Estimated Scatterplot Smoothing (LOESS)

3https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ ac-

cessed May 2018

Background: Vulnerability, Intrusion detection and machine learning

Instance-based Algorithms

This family of algorithms is characterized by the comparison of new prob-

lem instances with instances analyzed in the training phase and previously

stored in memory. Typically a dataset of examples is made by the algorithm,

and new data occurrences are compared with the one in the database using

a similarity measure in order to find the best matching one.

Popular algorithms in this family are:

• k-Nearest Neighbor (kNN): this method solves the classification

problem of an item basing on the classes of his k nearest neighbors in

the multidimensional vector space defined from the items features.

• Radial Basis Function Networks (RBF): they are neural networks

using RBF as activation function.

• Learning Vector Quantization (LVQ)

• Self-Organizing Map (SOM)

• Locally Weighted Learning (LWL)

Decision Tree Algorithms

This family of algorithms exploits a tree structure for his predicting pro-

cess. The tree is used to go from some observation about an object (the

branches of the tree) to conclusions about the item target value (represented

in his leaves). Decision trees can be both used in classification problems

(when the target variable can assume a discrete set of values) and regression

problems (when the target variable can assume continuous values). More

details about decision trees used in classification problems can be found at

sec. 3.4. This family of algorithms is known to be fast and accurate, reason

why it is a well used approach to many learning problems.

Some algorithms belonging to this family are:

• Classification and Regression Tree (CART): it consists in a deci-

sion tree implementation which can be used both for classification and

regression problems.

1.4 Machine Learning 17

• Random Forest: it consists in an ensemble method combing more

decision trees. It is used both for classification and regression tasks and

has been introduced to solve the decision trees’ habit to over-fitting the

training data.

• Iterative Dichotomiser 3 (ID3)

• Chi-squared Automatic Interaction Detection (CHAID)

• Conditional Decision Trees

Bayesian Algorithms

The methods in this family exploit the Bayes theorem to solve classifica-

tion and regression problems. Briefly Bayesian inference derives the posterior

probability as a consequence of two antecedents: a prior probability and a

likelihood function derived from a statistical model for the observed data.

The posterior probability is computed according to Bayes’ theorem:

P (H|E) =
P (E|H) · P (H)

P (E)

The most popular Bayesian algorithms are:

• Näıve Bayes: these methods are highly scalable. They require a

number of parameters linear in the number of variables (features).

Maximum-likelihood training can be done by evaluating a closed-form

expression, which takes linear time.

• Gaussian Näıve Bayes: a case of Näıve Bayes in which the contin-

uous data are assumed to be distributed according to Gaussian distri-

bution.

• Multinomial Näıve Bayes: a case of Näıve Bayes in which the data

samples are assumed to be distributed according to Multinomial dis-

tribution.

• Bayesian Network: these methods use directed acyclic graph (DAG)

to represents a set of variables and their conditional dependencies. The

nodes of the DAG represent Bayesian variables, while the edges rep-

Background: Vulnerability, Intrusion detection and machine learning

resent some probabilistic relationship. This means that if there is no

path between two variables they are independent.

• Averaged One-Dependence Estimators (AODE)

• Bayesian Belief Network (BBN)

Clustering Algorithms

As for regression Clustering describes both a class of problem and a class

of methods. For this reason Clustering has already been explained in sub-

section 1.4.1, so it won’t be repeated.

Association Rule Learning Algorithms

Association rule learning methods extract rules that best explain observed

relationships between variables in large databases. These rules can discover

important associations in large multidimensional datasets using some mea-

sures of interest. A more detailed explanation of these algorithms can be

found in sec. 3.2.

Two popular algorithms in this family are:

• Apriori Algorithm: it proceeds identifying frequent items in the

data, extending them to larger datasets according to the fact that they

must appear together a sufficient number of times in the data.

• Eclat Algorithm: Equivalence Class Transformation is faster than

Apriori Algorithms using depth-first search algorithm based on set in-

tersection.

Artificial Neural Networks Algorithms

Artificial Neural Networks (ANN) algorithms are inspired to the animal

brain structure. The idea is to reproduce the behavior of biological neurons.

An ANN is based on a collection of connected units or nodes called artificial

neurons. Each neuron is a function that takes some input and give as a result

an output that will be the input for the neurons in the next layer. Neurons

1.4 Machine Learning 19

are structured in layers and each neural network is composed by at least tree

layers, one input layer, one (or more) hidden layer and one output layer.

Basing on the number of hidden layers the ANN can be classified as normal

or deep. In this second case the network is made by different neural layers.

For more details about ANN look at sec. 3.1.

Some well known algorithms in this family are:

• Convolutional Neural Network (CNN): inspired to the animal

visual cortex are typically used for image and video recognition.

• Perceptron: this algorithm is used to build linear binary classifiers.

• Back-Propagation: these techniques use back-propagation of the er-

rors to improve the selection of the weights in the neural network.

• Auto-Encoders: this type of neural network is used to learn a repre-

sentation for a set of data in an unsupervised way. It is typically used

for dimensionality reduction tasks.

Dimensionality Reduction Algorithms

These algorithms act in a unsupervised way, trying to represent data in a

simpler way. Basically they consist in the process of reducing the number of

variables under exam. For this reason they are useful in the process of simpli-

fying data for other supervised methods, like Classification and Regression.

Some known algorithms in this family are the following:

• Principal Component Analysis (PCA): this technique consists in

a statistical procedure that uses an orthogonal transformation to reduce

a set of observations of possibly correlated variables into a set of linearly

uncorrelated variables.

• Singular Value Decomposition (SVD): SVD 4 is an algorithm that

factors an m x n matrix (M) of real or complex values into three com-

ponent matrices USV*. U is an m x p matrix. S is a p x p diagonal

matrix. V is an n x p matrix, with V* being the transpose of V.

4https://blogs.oracle.com/r/using-svd-for-dimensionality-reduction accessed July 2018

Background: Vulnerability, Intrusion detection and machine learning

• Principal Component Regression (PCR)

• Partial Least Squares Regression (PLSR)

• Sammon Mapping

• Multidimensional Scaling (MDS)

• Projection Pursuit

• Linear Discriminant Analysis (LDA)

• Mixture Discriminant Analysis (MDA)

• Quadratic Discriminant Analysis (QDA)

• Flexible Discriminant Analysis (FDA)

Ensemble Algorithms

Ensemble methods make use of multiple models trained independently

and with different algorithms. The idea is to combine the single predictions

in some way to obtain a better one. Some popular Ensemble Algorithms are:

• Bootstrapped Aggregation (Bagging): each model in the ensem-

ble is trained on a random sub-set of the original training set. Moreover

each model vote with the same weight. This kind of technique is used

in random forest classifier.

• Boosting: the ensemble is built by incrementally training each new

model focusing on the training instances that have been misclassified

by the previous models. This methods are usually more accurate than

Bagging, but they also tend more to over-fitting.

• AdaBoost: A famous implementation of boosting methods.

• Stacked Generalization (blending)

• Gradient Boosting Machines (GBM)

• Gradient Boosted Regression Trees (GBRT)

• Random Forest

Chapter 2

Data sources for intrusion

detection

Similarly to what has been done in [6] in this chapter some available

data-sources designed for evaluating IDS will be described, including both

synthetic as well as real data. Moreover some simulator will be introduced.

These last one can be used to generate attacks for testing the algorithms and

for analysis purposes.

2.1 Packet Capture

The network traffic running on the different protocols like TCP, UDP,

ICMP and so on can be analyzed and recorded by a specific API called pcap1.

The Unix and Windows implementation of pcap are libpcacp2 and WinPcap3

which provide the packet-capture and filtering engines of many open source

and commercial network tools, including protocol analyzers (packet sniffers),

network monitors, network intrusion detection systems, traffic-generators and

network-testers. One of the most important feature of this API is to provide

the possibility of saving network logs on files which in turn allows a huge

1 https://www.tcpdump.org/manpages/pcap.3pcap.html accessed May 2018
2 http://www.tcpdump.org/ accessed May 2018
3 https://www.winpcap.org/ accessed May 2018

21

Data sources for intrusion detection

quantity of network data to be further analyzed by the algorithms.

2.2 NetFlow Data

NetFlow is a feature introduced in Cisco4 routers which collects IP net-

work traffic as it enters or exits an interface. The network flow is defined

as an unidirectional sequence of packets that share the exact same seven

packet attributes: router/switch interface, source IP address, destination IP

address, IP protocol, source port, destination port, and IP type of service.

The Netflow architecture consists of three main components:

• Flow exporter aggregates packets into flows and exports flow records

towards one or more flow collectors.

• Flow collector is responsible for reception, storage and preprocessing

of flow data received from a flow exporter.

• Analysis application analyzes received flow data in the context of

intrusion detection or traffic profiling, for example.

2.3 Public Datasets

The Cyber Systems and Technology Group of MIT Lincoln Laboratory,

has collected and distributed the first standard corpora for evaluation of com-

puter network intrusion detection systems. They provided two datasets as

result of this evaluation: the Defense Advanced Research Projects Agency

(DARPA) 1998 and DARPA 1999 data sets [40] [41]. These datasets con-

tain extensive examples of attacks and background traffic in which the TCP

dumps and logs were combined into one stream with many columns. The

training dataset is labeled and the attacks fall into five main classes namely,

Probe, Denial of Service(DoS), Remote to Local(R2L), User to Remote(U2R)

4https://www.cisco.com/ accessed May 2018

2.3 Public Datasets 23

Figure 2.1: The relation between DARPA, KDD-99 and NSL-KDD datasets.

and the Data attacks. Another one of the most used dataset is KDD-

99[31].This data set was used for The Third International Knowledge Discov-

ery and Data Mining Tools Competition, consisting in the feature extracted

version of DARPA dataset. The main goal of this competition was to build a

system for detecting network intrusions. KDD-99 consists in 4,900,000 single

connection vectors each of which contains 41 features and is labeled as either

normal or an attack, with exactly one specific attack type between DOS,

U2R, R2L, Probing Attack. An evolution of this dataset is the NSL-KDD

[31]. It solves some of the problems of KDD-99, like the record redundancy

in the training ad in the test set. In fig.2.1 you can see the relation be-

tween DARPA, KDD-99 and NSL-KDD. Moreover it is also possible to find

other public datasets such as SecRepo 5, a repository in which you can find

heterogeneous data sources, like network logs, snort logs and pcap files. Fi-

nally the Common Vulnerabilities and Exposure6 (CVE) is a dictionary of

known vulnerabilities, like the recently discovered heartbleed7. This dataset

is maintained by the MITRE corporation and used in numerous cybersecu-

rity products and services from around the world, including the U.S. National

Vulnerability Database.

5http://www.secrepo.com accessed May 2018
6 https://cve.mitre.org/ accessed May 2018
7http://heartbleed.com/ accessed May 2018

Data sources for intrusion detection

2.4 Traffic Generators

Traffic generators like SATAN8 (Security Administrator Tool for Analyz-

ing Networks) and Flame9 tool can be used to simulate attacks for testing

purpose or even to generate web traffic for the learning phase. For example

they can be used to obtain pcap files. SATAN is a tool developed to test and

find security problems in software and networks. Similarly the Flame tool is

a handy tool for evaluating anomaly detection systems operating at the flow

level.

8 http://www.porcupine.or/ accessed May 2018
9http://www.flame.ee.ethz.ch/ accessed May 2018

Chapter 3

Survey on ML approaches for

Intrusion Detection

This chapter discusses the state of the art techniques for Intrusion De-

tection mainly focusing on anomaly based approaches and hybrid solutions

due to their capability to recognize unknown attacks. The division of the

IDS is done based on the Data Mining and Machine Learning methodologies

adopted which are firstly briefly described. For a complete discussion of IDS,

including also misuse-based techniques you can look at [6].

3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) make use of neurons for computation.

These neurons are structured in several layers, the first layer is the input

layer and his output becomes the input to the next one. Finally, the output

is fed to the output layer which is the final layer and generates the result of

the algorithm. The layers between the input and the output ones are called

hidden layers.

As the number of hidden layers increases the learning time of ANN also in-

creases however with the advent of other techniques such as Recurrent Neural

Networks (RNN) as well as Convolutional Neural Networks (CNN) this lim-

25

Survey on ML approaches for Intrusion Detection

itation has been targeted and ANN are gaining more popularity.

Lippman et al. [39] process network sniffed data from DARPA dataset, con-

taining the bytes transferred to and from the victim through telnet sessions

to count the number of occurrences of a keyword eg., “password”, “permis-

sion denied” etc. Then these statistics are given as an input to two ANNs.

The first ANN computes the probability of an attack while the second ANN,

a Multi-Layer Perceptron (MLP), classifies the network activity into already

known attacks thus providing the name of an attack as an output. The

software used for this purpose is LNKnet [44], a pattern classification soft-

ware.The authors obtained results with 80% detection rate and low false

positive rate (1/day) while passing from simple keyword selection to key-

word selection with dynamically added keywords and discriminative training.

Y. Mirsky et al. [1] proposed Kitsune, an unsupervised IDS which uses

autoencoders to differentiate between normal and abnormal traffic patterns.

If the traffic pattern is an attack then it provides the class of the attack (if

known). They tested their proposal against Gaussian Mixture Model [14]

and pcStrem2 [3] showing that Kitsune performances depend on the number

of inputs per autoencoder. In any case it out performs both algorithms in

terms of Area Under the Curve (AUC) and Equal Error Rate (EER).

In [8] Kim et al. apply Long Short Term Memory (LSTM) to Recurrent

Neural Networks (RNN). They train the model on KDD-99 dataset, de-

veloping two experiments, in the first phase they try to find the optimal

hyper-parameter while in the second they evaluate the model with the previ-

ously obtained hyper-parameter. This method result in an average detection

percentage of 98.8%, while the false positive rate in around 10%.

3.2 Association Rule Mining 27

3.2 Association Rule Mining

Association rules were firstly proposed by Agrawal et al. in [43] as a

method to find co-occurrences in supermarket shopping, also called as market

basket analysis. The basic idea of this approach is to find previously unknown

rules from data, where a rule is in the following form:

IF condition(s) THEN result

Indicating that if some element is present (specified in the condition) also

the resulting one will be present. The limitation of this approach is that

it only works with binary data, while in the reality many problems need

more complex data representations. For this reason Fuzzy Association Rule

Mining has been proposed by Kuok et al. [42]. This new rules are defined in

the form of:

IF X is A THEN Y is B

Where, roughly, A and B are indicating some possible value that X and Y

can assume.

An example in the context of cyber security could be:

IF NumConntections is > 100000 THEN ConnectionType is DOS

Tajbakhsh et al. [30] applied fuzzy association rules on KDD-99 dataset.

To build a classifier fuzzy association rule-sets are exploited as descriptive

models of different classes. This method resulted in a nice detection ratio

in comparison to similar methods, but his capability to detect new kind of

attack is not so effective, anyway it shows 80% detection rate and a false

positive rate of 2.95%.

In [27] Ding et al. proposed an extension of Snort1, an open source mis-

use IDS which analyzes the network traffic applying rules to identify malign

behaviors. The proposed solution is an hybrid approach which uses Snort for

1https://www.snort.org/ accessed May 2018

Survey on ML approaches for Intrusion Detection

the misuse part and association rules to develop anomaly detection. The nor-

mal behavior is constructed using Frequent Episode Rules, assuming that the

frequent events come mostly from normal interaction with a system. From

the anomaly detection part they obtain new attack patterns which are than

converted into snort rules, for a more efficient and real-time detection. The

resulting detection rate was between 92.2% and 95.7%

3.3 Clustering

As we had seen in 1.4.1 Clustering is an unsupervised method for finding

patterns in high-dimensional unlabeled data. The basic idea is to group to-

gether data based on some similarity measure.

The idea in the context of intrusion detection systems is that ideally a clus-

tering method should divide the data in two clusters, one with all the normal

connections, and the other one with all the attacks.

Almalawy et al. [4] proposed and IDS for SCADA systems. Their approach is

based on the outlier concept. They cluster the SCADA system in dense clus-

ters using DBSCAN and the resulting n-dimensional space presents some

noise data (the outliers) which represent the critical states. The “outlier-

ness” of a state is evaluated through a cut-off function. Moreover they adopt

a technique of automatic proximity-based detection rules extraction which

enables the monitoring of the criticality degree of the system. Finally Al-

malawy et al. proposed a method to reduce the high false positive rate,

consisting in the re-labeling of the identified critical states by computing the

Euclidean distance from each critical state to each normal micro-cluster cen-

troid. If the critical state is located within any normal micro-cluster, it is

re-labeled as normal and assigned to that normal micro-cluster. This com-

plex method result in an average accuracy of 98%, but the false positive rate

remains quite high, with an average of 16%.

3.4 Decision Trees 29

In [12] Lin et al. present a novel feature representation approach: Clus-

ter center and Nearest Neighbor (CANN). In CANN approach two distances

are measured and summed, the first one based on the distance between each

data sample and its cluster center, computed using k-mean, and the second

distance is between the data and its nearest neighbor in the same cluster.

Then, this new and one-dimensional distance based feature is used to repre-

sent each data sample for intrusion detection by a k-Nearest Neighbor (k-NN)

classifier. The evaluation of this method has been made on KDD-99 datasets

selecting 6 and 19 features from the original dataset. With the 6-dimensional

dataset CANN provides an accuracy of 99.46%, detection rate of 99.28%, and

false positive rate of 2.9%.

3.4 Decision Trees

Decision trees are often used in classification problems. They are char-

acterized by a tree structure where leaves represent class, internal nodes

represent some test, the related outcomes are represented with the outgoing

branches, and paths from the root to one leaf represent a classification rule.

An exemplar is classified by testing its features values against the nodes of

the decision tree. A simple example of decision tree is represented in figure

3.1.

Bilge et al. [23],[17] introduced EXPOSURE, a system that employs

large-scale, passive DNS analysis techniques to detect domains that are in-

volved in malicious activity. They adopted the Weka J48 decision tree pro-

gram as classifier using 15 features extracted from the DNS traffic. The

results vary considerably depending on the data set but overall, using ten-

fold cross-validation, the detection accuracy results in 98.5% and the false

positive rate in 0.9%.

Survey on ML approaches for Intrusion Detection

Figure 3.1: A simple example of decision tree for IDS

3.5 Random Forest

Random forest is a classification method which combines decision trees

and ensemble learning, a strategy based on the research of better hypothe-

sis, obtained combining simple ones. The forest is composed by many trees

that use as input randomly taken data features. Given a forest the resulting

prediction can be decided in two different ways: by majority voting or by

weighted average.

An hybrid approach in which an anomaly (outlier) detector was employed

to feed a second threat classifier (the misuse one) is proposed by Zhang et

al. [32].This second one is implemented using proximity between instances.

This method has been evaluated on KDD-99 resulting in a 94.7% detection

rate and 2% false positive rate for the outlier.

3.6 Evolutionary Computation 31

3.6 Evolutionary Computation

Evolutionary computation indicates an ensemble of methods that try to

reproduce natural behaviors to solve problems. This methods are Genetic

Algorithms (GA), Genetic Programming (GP), Evolution Strategies , Parti-

cle Swarm Optimization, Ant Colony Optimization, and Artificial Immune

Systems. Both GA and GP are based on the idea of evolution. They start

from a random population, than a fitness function is defined to evaluate

which elements of the population are the best (for solving the particular

problem in exam). The probability to reproduce for an element is propor-

tional to his fitness score, in this way the best elements will reproduce more

likely, in a positive trend. The individuals chosen for the reproduction can

mix their characterization (crossover) or also go under mutation, which ran-

domly change their characterization. After this phase the individuals with

the higher fitness score are used as a new generation and the procedure is

repeated. The main difference between GA and GP is the individual descrip-

tion. GA uses bit strings while GP uses entire programs, this involves that

the operations of crossover and mutation and significantly easier in the first

approach.

In [36] Lu et Traore proposed a rule evolution approach based on GP for

detecting known and novel attacks on the network. The initial rules were

selected based on background knowledge from known attacks. Each rule can

be represented as a parse tree. GP evolves these initial rules to generate new

rules using four genetic operators: reproduction, crossover, mutation, and

dropping condition operator. This method results in a detection rate near to

100% when the false positive rate is between 1.4% and 1.8%.

Elhag et al. [11] proposed the usage of a Genetic Fuzzy System (GFS), a

combination of Fuzzy Association Rules and Evolutionary Algorithms clas-

sifiers. This classification scheme is based on a divide-and-conquer strategy,

in which the original multi-class problem is divided into binary subproblems,

Survey on ML approaches for Intrusion Detection

which are independently learned by different base classifiers whose outputs

are then combined to classify an instance. Moreover they use the OVO bi-

narization that confronts all pairs of classes in order to learn a single model

for each couple.The method has been tested on KDD-99, resulting with an

accuracy of 99%, an average detection rate of 97.77% and a false positive

rate of 0.19 %.

3.7 Support Vector Machine

SVM is a supervised classification method that works on two classes.The

method tries to find a separating hyperplane in the feature space such that

the distance between the data points of each class and the hyperplane is

maximized. Sometimes the sets to discriminate are not linearly separable

in the space. For this reason the space should be transformed, making the

separation easier, as we can see in figure 3.2 2 (in our case for example the

white dots should represent the normal connections, while the black one the

attacks). The transformation is made using particular functions called kernel

functions.

SVM gives particularly nice results when the number of features is signifi-

cantly higher than the number of data points.

Wagner et al. [25] proposed to use Support Vector Machine to analyze

large volumes of Netflows records. In particular they used a special kernel

function, that takes into account both the contextual and the quantitative

information of Netflow records. This method results in a nice accuracy of

92% and a false positive rate between 0.004% and 0.033%.

Kim et al. [18] proposed an hybrid IDS using a decision tree for misuse

detection and one-class SVM for the anomaly one. The misuse model is used

2 The figure was taken from

https://en.wikipedia.org/wiki/Support_vector_machine

https://en.wikipedia.org/wiki/Support_vector_machine

3.8 Discussion on State of the Art Algorithms 33

Figure 3.2: A graphic representation of SVM kernel function and separating

hyperplane.

to divide the normal data in subsets and each one of them is used to train

a one-class SVM classifier for anomaly detection. The idea is that each area

for the decomposed normal data set does not have known attacks and in-

cludes less variety of connection patterns than the entire normal data set.

An anomaly detection model for each normal training data subset can pro-

file more innocent and concentrated data so that this decomposition method

can improve the profiling performances of the normal traffic behaviors. The

approach has been tested on NSL-KDD distinguishing between known and

unknown attacks. The ROC curves show that in the best case the detection

rate reaches 90% for previously unknown attacks when the false positive rate

is slightly smaller than 10%. For already known attacks the detection rate

can reach 100% when the false positive rate remains below 5%.

3.8 Discussion on State of the Art Algorithms

As the purpose of this first phase of work was to asses the state of the art,

we have to consider the Accessibility and the Reusability of the presented

works, according to the FAIR principles [9]. Unluckily the code is not open

source, and even the used datasets are not available. Moreover in the most of

Survey on ML approaches for Intrusion Detection

the cases also the documentation leaks of some information, for this reason

in chapter 5 only three of the analyzed methods have been reproduced. The

most of the approaches are using KDD-99 dataset, but also if it is accessible,

they are using a random subset of it, this means that we cannot reproduce

the experiments on exactly the same setting. So the first result of this work

is to stress the fact that there is the need ti improve the accessibility of the

works in this field.

Moreover, as shown in table 3.1 the most of the methods proposed in the

state of the art are supervised. This can be a big problem in real world

scenarios, as in the most of the cases people don’t have labelled data to

train their models. The last fact that emerges from this survey is that KDD

became a sort of well known ”battle ground” used to compare IDS. This is

nice, as it gives a common environment to test and compare the methods.

But it is also a problems considering the fact that people use only random

subsets of the data, and the fact that it is quite aged.

3.8 Discussion on State of the Art Algorithms 35

Paper Year Method Data Source Supervised

Lippman et al. [39] 2000 MLP DARPA-98 Unsupervised

Kim et al. [8] 2016 LSTM KDD-99

Tajbakhsh et al. [30] 2009
Fuzzy

association rules
KDD-99

Ding et al. [27] 2009
Simple

association rules
KDD-99

Lin et al. [12] 2015 K-NN KDD-99

Bilge et al. [23][17] 2011 - 2014 Decision trees DNS request

Zhang et al.[32] 2008 Random forest KDD-99

Lu et al.[36] 2004 GP DARPA-99

Elhag et al.[11] 2015
GP + Fuzzy

association rules
KDD-99

Wagner et al.[25] 2011 SVM Netflow records

Kim et al.[18] 2014
Decision tree

+ SVM
NSL-KDD

Y. Mirsky et al. [1] 2018 Auto-encoders
pcap from ip

cameras networks

Almalawy et al. [4] 2016 DBSCAN
SCADA systems

raw records

Table 3.1: IDS state of the art summary.

Chapter 4

Survey on ML approaches for

Vulnerability Detection

4.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that uses

an orthogonal transformation to reduce the dimensionality of a dataset con-

sisting in many observations of possibly correlated variables into a dataset

of values of linearly uncorrelated variables called principal components.

The first principal component is evaluated preserving the maximum possible

variance in the data. The same idea has to be applied to the next principal

components, under the constraint that they have to be orthogonal to the pre-

vious ones. The vectors obtained in this way will be uncorrelated orthogonal

bases set.

In [16] Yamaguchi et al. propose a method for assisted discovery of vul-

nerability in source code. The idea is to identify API usage patterns and

known vulnerabilities to guide code analysis. To do so the source code is

mapped to a vector space in the following 4 steps:

• In the first phase, called API symbols extraction the source code is

tokenized and parsed into individual functions.

37

Survey on ML approaches for Vulnerability Detection

• Next vector space embedding takes place. Each function is embed-

ded in a vector space in such a way that each dimension is associated

with one API symbol.

• This third step consists in the identification of API usage patterns.

The PCA technique is applied to infer descriptive directions in the

vector space, which correspond to dominant API usage patterns.

• Last the assisted vulnerability discovery phase consists in the ex-

pression of each function as a mixture of dominant API usage patterns.

In this way the vectorial location of a known vulnerability can be used

to identify functions sharing a similar API usage and so possibly con-

taining vulnerabilities.

4.2 Clustering

In [29] Makanju et al. proposed IPLoM (Iterative Partitioning Log Min-

ing) a log data clustering algorithm. The proposed approach works by itera-

tively partitioning a set of logs. At each step the partition factor is different,

in particular the steps are the following: partition by token count, parti-

tion by token position and partition by search of bijection. At each step of

the partitioning process the resultant partitions come closer to containing

only log messages produced by the same line format. When the partitioning

phase ends IPLoM produces a line format description for each cluster. This

approach is not directly applied to security, but it’s clustering capabilities

shown some nice result, with a recall of 81% a precision of 73% and a F-

measure of 76%.

A more focused approach is proposed by Yamaguchi et al. [16]. They de-

veloped an extension of joern1 (a graph database ad code property graph)

to detect taint style vulnerabilities in C programs. Their approach is based

1http://mlsec.org/joern/ accessed May 2018

4.3 Decision Trees 39

Decision Trees Linear Regression Random Forest Näıve Bayes

Accuracy 72.85% 71.91% 72.95% 62.40%

Recall 74.22% 59.39% 69.43% 29.18%

Far 28.51% 15.58% 23.53% 4.39%

Table 4.1: Reported mean performances in [24]

on the generation of definition graphs and on the clustering of similar callees

and types to guide the construction of search pattern for vulnerabilities. The

resulting method can detect unknown vulnerabilities, but it also shows some

limit, for example it is not able to detect vulnerabilities on concurrent exe-

cution, dynamic calls and shared resources like global variables.

4.3 Decision Trees

Chowdhury and Zulkernine [24] present a framework to automatically

predict vulnerabilities based on Complexity, Coupling and Cohesion (CCC)

metrics. This metrics are important indicators in the software quality which

have also been used to detect software faults in general. The authors con-

ducted a large empirical study on fifty-two releases of Mozilla Firefox devel-

oped over a period of four years. While they compare 4 ML approaches for

the vulnerability prediction: C4.5 Decision Tree, Random Forests, Logistic

Regression, and Näıve-Bayes. For all the algorithms Weka with default pa-

rameters has been used. The results in table 4.1 show that Decision Trees

and Random Forest performed better than the other algorithms.

4.4 Random Forest

In [7] Grieco et al. compared some ML approach to detect memory cor-

ruptions in programs binary code. Following this idea they implemented

VDiscover, a tool that uses popular ML techniques to predict vulnerabilities

Survey on ML approaches for Vulnerability Detection

in test cases. Starting from analyzing 1039 test cases taken from the Debian

Bug Tracker the dataset has been preprocessed in two different ways, with

word2vec and with bag-of-words, while three ML approaches have been tested:

Logistic Regression, Multilayer Perceptron (MLP) and Random Forest. In

this experiment the method which performed better in terms of accuracy was

random forest, trained using dynamical features.

Also Younis et al. [10] take under exam different machine learning ap-

proaches, but their purpose is quite different. They try to identify the at-

tributes of the code containing a vulnerability that makes the code more

likely to be exploited. So their purpose is not only to identify vulnerabilities,

but to check if they are exploitable. The authors examined 183 vulnerabilities

from the National Vulnerability Database for Linux Kernel and Apache Http

Server, finding 82 to have an exploit. After that, the authors characterized

the vulnerable functions with and without an exploit using the selected eight

software metrics: Source Line of Code, Cyclomatic complexity, CountPath,

Nesting Degree, Information Flow, Calling functions, Called by functions,

and Number of Invocations. Apache HTTP server. Only a combination of

this metrics has been used in the experiment, in fact the authors used three

different feature selection methods: correlation-based, wrapper and principal

component analysis. The classification methods used are Logistic Regression,

Näıve Bayes, Random Forest, and Support Vector machine. The experiments

results (table 4.2) show that the best approach is Random Forest.

In [19] Scandariato et al. propose an approach based on text mining the

source code of software components. Namely, each component is character-

ized as a series of terms contained in its source code, with the associated

frequencies. These features are used to forecast whether each component

is likely to contain vulnerabilities. Similarly to what has been done in the

previous paper the authors tested different ML approaches: Decision Trees,

4.5 Support Vector Machine 41

Logistic Regression Näıve Bayes Random Forest SVM

Accuracy 60% 70% 76.6% 66.7%

Recall 60% 70% 76% 67%

Far 50% 15% 32% 67%

Table 4.2: Results reported in [10] for classification without feature extrac-

tion. for a more detailed results refer to the paper.

k-Nearest Neighbor, Näıve Bayes, Random Forest and Support Vector Ma-

chine (SVM). Between these Random forest and Näıve Bayes resulted as the

more effective. Both of them have been tested using Weka, with default

setting for the Näıve Bayes, while the number of random trees for Random

Forest hat been increased to 100. The experiments shown that between these

two approaches Random Forest is the one doing better with 82% recall and

59% precision, against 73% precision and 55% recall for Näıve Bayes.

4.5 Support Vector Machine

Saul et al. [26] exploited on-line sources of vulnerabilities data to train

a classifier on known vulnerabilities to than detect new ones. The labeled

vulnerabilities based on their exploitation and than they extracted a high-

dimensional (d = 93578) feature vector of binary and integer valued features

for each vulnerability. Finally they applied SVM on this feature vectors.

In [13] Perl et al. apply SVM to find possible dangerous code. The au-

thors conducted a large-scale evaluation of 66 GitHub projects with 170,860

commits, gathering both metadata about the commits as well as mapping

CVEs to commits to create a database of vulnerability-contributing commits.

The resulting approach over-performed FlawFinder 2 resulting in a precision

of 56% in the best case.

2https://www.dwheeler.com/flawfinder/ accessed June 2018

Survey on ML approaches for Vulnerability Detection

Hovsepyan et al. [20] proposed an approach based on the analysis of source

code as text, without using additional informations, like code churn. The

experiment has been conducted on Java code, which has been transformed

in feature vectors. In detail every word in a document has been treated as

a feature for that document, and the number of occurrences of that word as

the value for that feature. The problem has been treated as a binary clas-

sification problem, where a file can be vulnerable or clean. Using an SVM

classifier they obtained an accuracy, precision and recall of 87%, 85% and

88% respectively.

Chapter 5

Comparative evaluation of

intrusion detection systems

Many of the surveyed papers report evaluation results in terms of accu-

racy, detection rate and FAR. This may lead to a comparison between them,

however the original experiments were conducted with different settings. Al-

though most of the proposed methods were evaluated against the KDD-99

dataset, each of them used a different random subset of it. Nevertheless, in

table 5.1 we report the performance of the methods as they are claimed by

the authors to provide an informal comparison between them.

Y. Mirsky et al. [1] is not appearing in the table because the results

are not reported in terms of FAR, accuracy or detection rate. As previously

said the best result is in terms of Area Under the Curve (AUC) with one

input per auto-encoder. Depending on the analyzed dataset their AUC score

goes between 0.79499 and 0.99997. As Mirsky et al. explain AUC is the

probability that a classifier will rank a randomly chosen anomalous instance

higher (in terms of attack) than a randomly chosen normal instance. In other

words, an algorithm with an AUC of 1 is a perfect anomaly detector on the

given dataset, whereas an algorithm with an AUC of 0.5 is randomly guessing

labels.

Table 5.1 is insufficient to provide a formal assessment of existing meth-

43

Comparative evaluation of intrusion detection systems

Accuracy Detection Rate FAR

Lippman et al. [39] - 80 % 1/day

Kim et al. [8] 96.93% 98.8% 10.04%

Tajbakhsh et al. [30] - 80.6% 2.95%

Ding et al. [27] - 92.2% - 95.7% -

Almalawy et al. [4] 98% - 16%

Lin et al. [12] 99.76% 99.99% 0.003%

Bilge et al. [23][17] 98.5% - 0.9%

Zhang et al.[32] - 94.7% 2%

Lu et al.[36] - ∼100 % 1.4%-1.8%

Elhag et al.[11] 99% 97.77% 0.19%

Wagner et al.[25] 92% - 0.004%- 0.033%

Kim et al.[18] - 90% <10%

Table 5.1: Results reported in the proposed papers in terms of Accuracy,

Detection Rate (recall) and FAR.

5.1 Experimental setting: 45

ods, therefore the next step is to address this issue by re-implementing exist-

ing methods and compare them in the same experimental setting. It has to

be noticed that in some cases the implementation of the methods may not

be exactly the same as it was in the original proposal, for many reasons, e.g.

the lack of implementation details in the paper, lack of access to the original

code.

5.1 Experimental setting:

All the experiments have been conducted using scikitLearn, TensorFlow,

Keras (with GPU support) and Weka. For reproducibility reasons the char-

acteristics of the environment in which the experiments have been conducted

are summarized in the following lines:

• Calculator:

– OS: Ubuntu 16.04 LTS

– CPU: Intel Core i7-6500U 2.5GHz x 4

– RAM: 12 GB

– ROM: 55 GB

– GPU: GeForce 920M/PCIe/SSE2

• Software versions:

– CUDA: 9.0.176

– CUDNN: 7.1.4

– Python: 2.7.12

– Tensorflow: 1.8.0

– Keras: 2.2.0

– Scikit Learn: 0.19.1

– Weka: 3.8.2

Comparative evaluation of intrusion detection systems

5.1.1 Dataset

The choosen dataset is NSL-KDD. As previously explained in 2 it derives

from KDD, a very known and used dataset for IDS. The dataset is composed

by training and testing dataset, in which each item is composed by 41 features

(table 5.2) extracted from DARPA. For more detail about the feature refer

at [31]. Of course this dataset is quite dated, but it still can be applied

as an effective benchmark dataset to compare different intrusion detection

methods.

NSL-KDD solves many of the problem of the KDD-99 dataset:

• It does not include redundant items in the training dataset and neither

in the testing one.

• The number of records in the train and test sets are reasonable, which

makes it affordable to run the experiments on the complete set, without

the need to randomly select a small portion of it.

While the training dataset contains 22 attacks types, divided in 4 attack

families, the testing one adds 17 new attacks types. This characterization

makes possible to test the IDSs capability to detect new attacks, a very im-

portant aspect for an IDS. The attacks types and the related attack category

present in the dataset are described in table 5.3.

In figure 5.1 you can find the pie charts describing the attacks percentage

in the training and in the testing dataset, while in figure 5.2 you will find

similar charts about the attacks categories.

Beyond this categorization we can see that the train and the test sets

are composed by 53.5% and 43.1% normal items respectively. This is prob-

ably the most important categorization we need to care of, because many

approaches use anomaly detection, which has to detect new attacks and of

course they cannot give a name to something they are seeing for the first

time. For this reason in this work the problem is approached as a Binary

Classification one, in which the task is to discriminate between normal and

malign connections.

5.1 Experimental setting: 47

Basic features Traffic features

1 duration 23 count

2 protocol type 24 srv count

3 service 25 serror rate

4 flag 26 srv serror rate

5 src bytes 27 rerror rate

6 dst bytes 28 srv rerror rate

7 land 29 same srv rate

8 wrong fragments 30 diff srv rate

9 urgent 31 srv diff host rate

Content features Host Traffic Features

10 hot 32 dst host count

11 num failed logins 33 dst host srv count

12 logged in 34 dst host same srv rate

13 num compromised 35 dst host diff srv rate

14 root shell 36 dst host same src port rate

15 su attempted 37 dst host srv diff host rate

16 num root 38 dst host serror rate

17 num file creations 39 dst host srv serror rate

18 num shells 40 dst host rerror rate

19 num access files 41 dst host srv rerror rate

20 num outbound cmds

21 is host login

22 is guest login

Table 5.2: NSL-KDD features grouped by their domain. [34]

Comparative evaluation of intrusion detection systems

(a) Attack types in the training set.

(b) Attack types in the testing set.

Figure 5.1: NSL-KDD attacks-types pie charts.

5.1 Experimental setting: 49

(a) Attack categories in the training set.

(b) Attack categories in the testing set.

Figure 5.2: NSL-KDD attack categories pie charts.

Comparative evaluation of intrusion detection systems

Attacks in training set Additional attacks in testing set

DOS
back, neptune, smurf, teardrop, land,

pod
apache2, mailbomb, processtable, udpstorm

Probe satan, portsweep, ipsweep, nmap mscan, saint

R2L

warezmaster, warezclient, ftp write,

guess passwd, imap, multihop, phf,

spy

sendmail, named, snmpgetattack,

snmpguess, xlock, xsnoop, worm

U2R
rootkit, buffer overflow, loadmodule,

perl
httptunnel, ps, sqlattack, xterm

Table 5.3: Attack types divided by category in NSL-KDD training and

testing dataset.

5.2 Methods Reproduction

As previously said one of the purposes of this work is the assessment and

the comparison of the method presented in the state of the art.

For this reason this section is going to illustrate in detail some of them, ex-

plaining how they have been reproduced and which are they results. The

reproduced methods are three, those best documented, and therefore repro-

ducible:

• Hybrid random forest [32]

• Cluster center + K-nearest neighbor [12]

• Decision tree + One-Class SVM [18]

The reproductions are not always strictly faithful, because the code of the

described methods is not available, and as it often happens, their description

is not enough detailed to understand all their aspects. Moreover in some case

the authors performs a different kind of classification, for example multi-class

instead of binary and so on. As explained before the reproduction has to be

done on a common environment to give sense to a comparison, this includes

5.2 Methods Reproduction 51

also the task, which in this work is binary classification between normal and

malign connections.

For this reasons the results shown in the following paragraphs will be different

from the one reported in the original papers. Moreover all the experiments

made for this work have been done using the NSL-KDD train dataset for

training and the test one fore testing. This can seem obvious, but in some

case the authors used a partition of the training dataset for the evaluation

of their methods. This lead to higher performances because the testing data

set contains zero days attacks, which are harder to be recognized.

5.2.1 Hybrid Random Forest

Zhang et al. [32] proposed an Hybrid IDS based on random forest. Their

method consists in the combination of a misuse based classifier, followed by

an outlier one. For all the three methods, misuse based, anomaly based

(outlier based) and the hybrid one the authors made some experiment using

KDD-99 searching the parameters which were optimizing their classifiers per-

formances. In the following reproduction these same parameters have been

used.

Misuse detection: This step is the simplest one and consists in the ap-

plication of a random forest classifier. The classifier has been configured to

use mtry 15 and 100 trees. Moreover the features 6, 20 and 21 (tab 5.2) have

been excluded. The misuse classifier shown the following performances:

• Accuracy: 77.64%

• Precision: 94.51%

• Detection rate (recall): 64.47%

• FAR: 4.94%

As we can expect from a misuse method tested with zero-days attacks the

detection rate is not very high, while the false alarm rate is quite low.

Comparative evaluation of intrusion detection systems

Anomaly detection: For the anomaly detection the authors proposed to

construct the normal patterns categorizing the network traffic by service. For

this reason they use a random forest classifier using the service as target class

and excluding all the malign connections. In this way the normal patterns

are identified for each service and the trained model can be used for outlier

detection. In this first step the random forest classifiers uses mtry 15 and 10

trees.

After the normal service patters are identified the authors proposed two

types of outliers for the outlier detection. First all the connection which are

classified wrong in term of service are marked as outlier (so as attack). Then

for the other an outlier-ness score is evaluated, considering as outlier all the

connections that falls over a predefined threshold. As described in the paper

the outlier-ness can be calculated over proximities.

class(k) = j denotes that the item k belongs to class j.

prox(n, k) denotes the proximity between items n and k. The proximity

between two items is computed as the number of trees in which the items

are classified in the same leaf. The average proximity from item n, belonging

to class j, to case k (the rest of the items belonging to the same class) is

computed as

P (n) =
∑

class(k)=j prox
2(n, k)

Denoting with N the number of cases in the dataset, the raw outlier-ness of

item n has been defined as

N
P (n)

For each class, the median and the absolute deviation of all raw outlier-ness

are calculated. The median is subtracted from each raw outlier-ness. The

result of the subtraction is divided by the absolute deviation to get the final

outlier-ness.

The only difference from the method described in the paper is that, instead

of constructing the normal patterns for the network service, here they have

been done fore the protocol types. The reason is very simple, and it is that in

5.2 Methods Reproduction 53

this scenario the results were better using the protocol types. Moreover, as

the threshold over which an outlier-ness score was considered to be determi-

nant for an anomaly, the experiment have been repeated with many different

thresholds. The best one are as follows:

• Accuracy: 84.08%

• Precision: 81.86%

• Detection rate (recall): 92.56%

• FAR: 27.11%

As expected the detection rate increased from the misuse detection, but the

false alarm rate is worst.

Hybrid detection: This last classifier combines the two previous ones. It

applies as first the misuse classifier, and than the anomaly one on all the

items that are classified as normal by the misuse detection. For this step

the authors set the misuse random forest to use 15 trees, mtry 34 and to

ignore the features 2,7,8,9,15,20 and 21. While for the anomaly detection the

number of trees is 35 and the value of mtry is 34. The authors proposed to

use as threshold 1%, this means that only the 1% of the items with the higher

outlier-ness will be marked as anomaly. In this experimental evaluation the

used threshold has been reduced up to 0.12%, which gave the best results

in terms of FAR. Moreover it has been tested both with the original misuse

detection parameters and with the newly proposed. The best results have

been obtained with the original settings for the misuse detector. Increasing

the threshold some better result in terms of detection rate can be obtained,

even if the FAR increase.

In table 5.4 you can see how increasing the threshold increases the detection

rate (recall) but it increases also the FAR, this happens because increasing

the threshold means considering as attacks also connections which are more

similar to the normal ones. In this case probably the best result is the one

Comparative evaluation of intrusion detection systems

Threshold Accuracy Precision Recall FAR

0.12% 77.64% 93.14% 65.52% 6.33%

20% 84.62% 90.02% 82.08% 12.03%

50% 83.37% 80.97% 99.42% 30.87%

Table 5.4: Performances of the Hybrid Random Forest IDS when the thresh-

old changes.

with threshold set to 20% which has a nice detection rate and the false alarm

rate remains not too high.

5.2.2 Cluster Center and Nearest Neighbor

Cluster Center and Nearest Neighbor (CANN) is a method proposed by

Lin et al. [12]. It is the only one that tries to manage the data set, trying to

find a more representative feature to be used for the classification.

As first K-mean is applied to find clusters and cluster centers, setting the

number of cluster to be found to the number of classes present in the classi-

fication problem. After this, for each item in the dataset two distances are

computed:

• the distance to each one of the cluster centers;

• the distance to the nearest neighbor of the item in the same cluster it

belongs to.

These two distances are then summed and used as new unique feature

for a k-NN classifier. The reason to use this new one-dimensional dataset is

very easy to understand, working on a one-dimensional dataset instead on

one with 41 dimensions is less expensive.

Considering the item Di in figure 5.3 his new feature is computed as

Dis(Di) =
∑5

j=1Dis(Di, Cj) +Dis(Di, N1)

5.2 Methods Reproduction 55

Figure 5.3: CANN: new feature computation.

source: [12]

Comparative evaluation of intrusion detection systems

where Cj is the cluster center of the j-th cluster and Nk is the k-th nearest

neighbor of the item Di. As we are considering only the nearest neighbor k

is 1, but it should be increased using a sum also in the second part of the

equation as follows:

Dis(Di) =
∑5

j=1Dis(Di, Cj) +
∑K

k=1Dis(Di, Nk)

In the paper Lin et al. use 5 cluster, as they are classifying over the attack

families, while in this work the task is to discriminate between normal and

malign connections, so the number of cluster is only two. Moreover they

authors used KDD as dataset, considering only a subset of his features, in

particular the use two different datasets, one composed by 6 features and one

composed by 19 features. Referring to table 5.2 the used features are:

• 6-dimensional dataset: 7, 9, 11, 18, 20 and 21;

• 19-dimensional dataset: 2, 4, 6, 12, 23, 25, 26, 27, 28, 29, 31, 32, 33,

34, 35, 36, 37, 38 and 39.

Testing this approach the best results have been obtained using the 19-

dimensional dataset and k=1 and 2 for the k-NN classifier over the new

one-dimensional data while working with 10-fold cross validation and on the

test set respectively. As we can expect using 10-fold cross validation on the

training data the results are strongly better than testing it on the test data,

because this is not an anomaly detection method, so it is not able to find zero-

days attacks. This is proved by the results reported in table 5.5. This results

may look very bad, but as already said we should consider that the new fea-

ture has not been used for anomaly detection, so they are normal. The new

one-dimensional dataset should be used to train an anomaly-detection model,

instead of a simple k-NN, to understand if it could improve his performance.

5.2 Methods Reproduction 57

Accuracy Precision Recall FAR

10-fold 88.05% 93.48% 79.9% 4.86%

test-set 47.60% 52.92% 73.54% 86.47%

Table 5.5: Results of CANN using 10-fold cross validation and the NSL-

KDD test set.

5.2.3 Hybrid Detection combining Decision Trees and

one-class SVM

Kim et al. [18] proposed an hybrid IDS in which a C4.5 decision tree is

used for misuse detection. The tree is also used to decompose the normal

training data into small subsets which are then used to train multiple one-

class SVM models (with Gaussian kernel) for the anomaly detection. As

described in the paper the training phase is composed by the following steps:

1. Prepare a training data set consisting of normal data and known attack

data.

2. Build a misuse detection model using a decision tree algorithm based

on the training data set.

3. Decompose the normal training data into subsets according to the de-

cision tree structure, data in the same leaf belong to the same subset.

4. For each normal leaf of the decision tree, build an anomaly detection

model using the 1-class SVM algorithm based on a normal data subset

for the leaf.

This means that if the decision tree marks an item as an attack, it is actually

considered to be an attack, while if it is marked as normal it will also be

subject to anomaly detection (as we can see in figure 5.4). The one-class

SVM are used as anomaly detector as they model a class pattern and then

they can be used to test the belonging of new items to this class (in our case

normal connections).

Comparative evaluation of intrusion detection systems

Figure 5.4: Diagram of the hybrid IDS based on decision trees and one-

class SVM.

source: [18]

5.2 Methods Reproduction 59

While reproducing this method a different decision tree algorithm has

been used, as sklearn does not implement the c4.5 one. In particular a clas-

sification and regression tree (CART) has been adopted. For the one-class

SVM two parameters are important, the parameter γ (gamma) which is char-

acteristic of the kernel function and in some sense models the capability of

the model to detect new attacks, and the parameter ν (nu) which controls

the fraction of training instances that are allowed to be rejected (and so not

considered as belonging to the modeled class).

Reproducing the method three different values of γ have been tested: 0.01,

0.1 and 1. While for ν 0.01 and 0.5 have been chosen.

Regarding the decision three the minimum number of instances per leaf has

been set to 0.1% of the dataset size.

The results obtained applying only misuse detection (the simple decision

tree) are the following:

• Accuracy 82.12%

• Precision 86.53%

• Recall 81.24%

• FAR 16.71%

This results are not bad, but the false alarm rate is quite high for a misuse

detector. this means that a possible way to improve the method is trying to

understand how to decrease this high FAR.

Moreover we can expect a FAR grater to this one for the hybrid detection,

because it usually suffers for high false positives and in this method the

items marked as attacks by the decision tree are not even evaluated by the

anomaly detection, so for sure the FAR won’t decrease. In table 5.6 the

results obtained by the hybrid detection while the parameters γ and ν change

are reported. It is possible to observe that when ν is 0.5 the detection rate

(recall) increase, but this is too much expensive in terms of FAR.

Comparative evaluation of intrusion detection systems

ν γ Accuracy Precision Recall FAR

0.01

0.01 85.62% 87.07% 87.77% 17.22%

0.1 85.75% 87.02% 88.1% 17.36%

1 86.84% 86.82% 90.64% 18.18%

0.5

0.01 74.31% 69.8% 96.72% 55.31%

0.1 74.2% 69.66% 96.85% 55.74%

1 75.53% 70.4% 98.38% 54.66%

Table 5.6: Results of the Hybrid IDS based on decision tree and one-class

SVM while γ and ν vary.

Setting ν to 0.01 the detection rate increase from the misuse model, while

the FAR increases only by a small percentage.

5.3 Comparison Summary

From the preceding experiments we can observe that hybrid approaches

can achieve nice results. In detail, compared with the same settings, using

One-Class SVM on subsets of the original data, identified by a decision tree

classifier outperforms the other methods, as shown in table 5.7. In the table

F1 measure has been added, lo let the reader compare the results easily.

Probably the reason behind this results is the choice of using a decision three

to split the data, before applying outlier detection. In fact it looks quite

intuitive that if we want to model a description of a class, the more the used

items are similar to each other, the better the resulting description will be.

5.3 Comparison Summary 61

Method
Accyracy

(%)

Precision

(%)

Recall

(%)

FAR

(%)

F1 Score

(%)

Hybrid Random

Forest
84.62 90.02 82.08 12.03 85

Cluster Centers +

Nearest Neighbor
47.60 52.92 73.54 86.47 61

Decision Trees +

One-Class SVM
86.84 86.82 90.64 18.18 89

Table 5.7: State of the art IDSs experimental comparison summary.

Chapter 6

A real world Scenario and a

novel unsupervised approach to

intrusion detection

Until this point only positive scenarios have been treated. In real world

the most of the time data is raw, and not labelled. In this work we will take

as Real World Scenario: the HAPS (Holistic Attack Prevention System)

project. The aim of this project is to take many different logs (web server,

application and so on) and apply Machine Learning techniques to detect

cyber security threaths. Working on raw log files is a different and harder

work that starting from a dataset designed to be used for Machine Learning

as the KDD one. In fact these logs are completely unlabelled and they need

to be preprocessed in order to apply ML methods. Moreover for different

Log types a different preprocessing needs to be applied, and the same stands

for the machine learning technique. For this reason this works focuses only

on web server logs.

63

A real world Scenario and a novel unsupervised approach to
intrusion detection

Figure 6.1: Combined Log Format example.

6.1 Web Server Logs Analysis

6.1.1 Structure

The web logs analyzed in this work are produced by an Apache Web

Server and they are expressed in Combined Log Format (fig. 6.1). In the

following lines the different fields of this format are explained.

• Src ip: It indicates the IP address of the client which generated the

request.

• Remote log name: It represents the client identity, determined by

identd on the client machine. If ’-’ is supplied instead of a valid string

it idicates that this information is not available. Moreover the Apache

documentation suggest not to use this field because it is not reliable.

• User Name: The user id of the person which requested the web re-

source, as established by the HTTP authentication.

• Time stamp: Date and hour of the moment in which the request has

been received by the server.

It is expressed as [day/Month/year:hour:minutes:seconds] where:

– day is expressed by 2 digits;

– Month is expressed by 3 characters with the first capitalized;

6.1 Web Server Logs Analysis 65

– year is expressed by 4 digits;

– hour is expressed by 2 digits;

– minutes is expressed by 2 digits;

– seconds is expressed by two digits.

• Time zone: It represents the time zone related to the previous filed.

It can begin with + or -, depending on the zone.

• Method: The request method.

• Resource: The requested resource in form of server path. It can be

followed by the request parameters.

• Protocol version: It indicates the HTTP protocol version.

• Status code: The status code that the server returns to the client.

• Return size: The size (in bytes) of the object returned by the server,

excluding the headers.

• Referrer: The web page in which the client was when it made the re-

quest. For example, following a link from the web site of your company,

the resulting request will have the url of your company web site as re-

ferrer field. This filed can be empty (-) if the request is generated by

directly writing an url in the url bar, or when the field is intentionally

leaved empty, as it often happens when the request is generated by a

bot.

• User Agent: It contains information relative to the client browser and

operating system.

6.1.2 Collected Data

The log files analyzed in this work cover a period of 30 days, for a total of

627.180 requests. A detailed analysis has been conducted using GoAccess1,

1https://goaccess.io/

A real world Scenario and a novel unsupervised approach to
intrusion detection

a terminal based log-analyzer. This analysis shows that the most of the

connections come from bots, as it can be derived from many different aspects.

As first the 8.83% of the static request are directed to robot.txt, a particular

file used by bots to discover which part of the web site are forbidden to

them. Second, almost the 83% of the request come from North America,

which is a quite strange behavior considering that the website in object is

Italian. Moreover more than the 83% of the request comes from declared web

crawler and another 8% from unknown browsers (which are generally related

to bots). Finally the traffic distribution along the day is almost constant

while it became more varied excluding the web crawlers (as shown in figure

6.2).

It has also to be considered the fact that GoAccess cannot detect all the

bots, because in many case they try to hide their identity, this means that

the percentages shown before can even be worst.

Another important aspect of the analyzed logs is that the remote log name

and the user name fields have been obfuscated by the web site owner for

privacy reasons.

6.2 Data Preprocessing and Feature Extrac-

tion

This phase of the work is one of the most important, because the quality

of the final ML model is strongly dependent to the quality of the data rep-

resentation.

As previously said the data under exam are completely unlabelled. For this

reason three possible high level approach can be applied:

• Use some completely unsupervised techniques (clustering)

• Apply outlier/anomaly detection starting from the assumption that the

most of the training data are normal.

6.2 Data Preprocessing and Feature Extraction 67

(a) With web crawlers.

(b) Without web crawlers.

Figure 6.2: Traffic distribution with and without web crawlers. The data

field indicates the number of hour considered.

A real world Scenario and a novel unsupervised approach to
intrusion detection

• Apply rules to the data to find labels and then use some classification

technique.

The first approach should be a bit much undetermined, because we don’t

have enough information to discriminate between normal and attack logs

simply clustering them together. The third one instead consists essentially

in misuse detection, which, as you already know at this point, is not able

to detect new attacks. Moreover starting from a set of rules to apply la-

bels to the data the resulting classifier will simply be a model representing

these same rules, nullifying the sense of making the model itself. As emerged

in chapter 3 anomaly detection can be a very effective technique to detect

known and new attacks. Moreover, if the outlier technique is used there is no

need to start from labelled data, but the starting assumption can be relaxed

to the need of training the normal models from a datasource consisting of

mostly normal items (as shown in sec. 5.2.3). For these reasons this work

focuses on the outlier technique, which also emerges in many works related

to the web log analysis as [38], [21], [35].

The reason why this choice is treated at this point is that the data pre-

processing step can depend on the model that is going to be realized. For

example we said that we need to assume that the most of the data is made

by normal items, but we also said that our data is completely unlabelled.

In some case it can look quite realistic to assume that the most of the traffic

of a web server is normal, but, to improve the truthfulness of this assump-

tion the first step of the data preprocessing phase has been to define a set

of heuristics to filter some known attack fingerprint. These heuristics are

directly applied to the raw logs. In detail they look for fingerprints in the

following fields:

• Resource, e.g. request containing one ore more ../ are often used by

attacker to access file that are outside of the website itself.

• Referrer and user agent, e.g. SSI tags <!– –> are often inserted by an

attacker which tries to execute some code.

6.2 Data Preprocessing and Feature Extraction 69

• Status code, e.g. even if it is not a rule a 5xx status code can be the

consequence of an attack to the web service.

As an attacker can exploit a very large number of different techniques also

the number of fingerprints to search for is very huge, for this reason they are

not listed here, but you can refer to [45], [46]. As explained in these works

not all the fingerprints described are enough to consider the connection dan-

gerous, but in some case they are related to other ones, so also this aspect is

considered when the data is pre-filtered. Obviously this set of heuristics does

not cover all the possible attacks, but it is only a simple way to pre-filter the

data. Moreover these heuristics can be updated in any time to obtain a more

effective filter.

Beside this first filtering phase the data still needs to be preprocessed in

such a way that it can be managed by a ML algorithm.

Analyzing the possible attacks it has appeared that probably a single model

should not be enough to catch all the possible attacks types. For example

there are attacks with are more related to the single connection structure,

like requests to root.exe; while other are related to a set of connection, usu-

ally sessions, like DOS attacks.

For this reason there should be the need to evaluate more models, and so

more datasets, in such a way to analyze both the single connections and the

sessions.

6.2.1 Single Connections

The first approach to represent the single connections is to simply split

them in their fields, which will be used as features in the dataset.

This approach can be useful for some aspect, but is probably too simplistic,

there is the need to understand which aspects can be more relevant to indi-

viduate an attack.

A significant part of a connection is the requested resource and the parame-

ters associated to it. For this reason the parameters themselves can be used

A real world Scenario and a novel unsupervised approach to
intrusion detection

IP Att1 Att2 Att3 N. Att.

192.168.1.4 ... ”Carlo” 5 2

192.168.1.2 0

Table 6.1: Single connections dataset example.

as feature in the dataset, and the value associated to the feature will be the

parameter value.

Since not all the requests use all the parameters, the not used ones will be

left empty in the dataset. Another useful information can be the number of

parameters passed to the request.

Let’s imagine to have to represent a log file containing only two requests.

Both of them pointing to the same resource /r1.html. This resource is re-

lated to three different parameters: att1, att2 and att3.

192.168.1.4 - - [10/Oct/2000:13:55:36 -0700] ”GET /r1.html?att1=”Carlo”&att3=5 HTTP/1.0” 200

2326 ”www.google.it” ”Mozilla/4.08 [en] (Win98; I ;Nav)”

192.168.1.2 - - [10/Oct/2000:13:55:36 -0700] ”GET /r1.html HTTP/1.0” 200 2326 ”www.google.it”

”Mozilla/4.08 [en] (Win98; I ;Nav)”

The resulting dataset should be as shown in table 6.1

However this kind of representation will result in a high increase in the

number of features, because for each single connection in the logs we will

have a feature for each possible parameter of each different resource ever re-

quested in the whole log.

Moreover, with the perspective of applying outlier detection, the most im-

portant thing is to have the capability to define clearly the normal models.

But the normal usage pattern will be different for each resource. So to solve

both these problems the whole dataset can be splitted by resource. In this

6.2 Data Preprocessing and Feature Extraction 71

way each dataset will have less features, representing only the parameters

associated to the resource considered (reducing also the computation time).

And it will be possible to create a different model for each resource, having

like this a more ”fitting” model to the actual usage pattern of that resource.

6.2.2 Sessions

To reason at this level, the first thing that has to be done is to reconstruct

the sessions. Even in this case this purpose is followed using an heuristic.

Similarly to what has been done in [37], [15] the chosen heuristic consists

in grouping connection inside a session if hey have common IP and User

Agent. Moreover all the connection inside a session should have a time-

stamp belonging to a 30 minute interval.

Once that the sessions have been identified they have to be represented.

Extending what has been done in [37] and [15] the considered features are

described in table 6.2.

One possible additional feature can be the session IP membership to a

DNS Black List (DNSBL). This information can be very meaningful as it can

tell us if the IP belongs to one of the following categories:

• Tor;

• Proxy;

• Spammer;

• Zombie;

• Dial-up.

However finding this information for each session can be time expensive, even

using an ip cache because to do so the ip has to be searched in very long lists

of ips.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Name Description

Total hits Total number of HTTP request

% img Percentage of images requested

% HTML Percentafe of html file requested

% Binary doc Percentage of binary doc files

% Binary exe Percentage of binary executable files

% ASCII Percentage of ASCII files

% Zip Percentage of compressed files

% Multimedia Percentage of multimedia files

% Other files Percentage of other file requested

Bandwidth Total bytes requested

Robots.txt True if robot.txt has been visited

Session time time passed between the first and the last connection

Avg interval Avg time passed between two request

Is interval constant
True if the time between all couples of two

following connections in the session is constant

Night requests Number of requests between 12 p.m and 7 a.m.

Repeated requests Number of repeated requests

% Errors Percentage of requests resulting with code >= 400

% GET Percentage of GETs

% POST Percentage of POSTs

% HEAD Percentage of HEADs

% Other Method Percentage of other methods

% Unassigned Referrer Percentage of requests with unassigned referrer

nMisbehavior
The number of requests signaled by the heuristics

used to pre-filter the connections

nAloneMisbhavior
The number of requests with a fingerprint which

signals an attack even alone

nOtherMisbehavior
The number of requests with a fingerprint which signals

an attack only if related to other ones

geoIp The origin of the request

dnsbl True if the src ip is present in some DNS black list

Table 6.2: Session features. The ones with yellow background are optionals

and can be added or not depending on the kind of model is going to be made.

6.3 Proposed Approach 73

6.3 Proposed Approach

As we already said the idea is to apply outlier detection, but we have

still not discussed how to do it. Having this in mind, a solution to the risky

assumption of starting from mostly normal connection has been proposed.

Moreover, related to single connections, we already considered to split the

data by resource. In such a way we will have more similar substets of the

original data. This step may give us some problems if a resource has a very

small amount of connections, or if someone asks for a never seen resource.

In the first case we can simply skip this step, and using the entire dataset.

It will require more time, as the number of features will grow, but there is

always the possibility to apply dimensionality reduction algorithms, as PCA,

to manage this problem. In the second case we can simply mark a request

to a never seen resource as an outlier, as it is requesting something that

completely differs from what we had analyzed in the training phase.

In the following paragraph an outlier detection method for evaluating single

connections will be proposed, as an extension of what has already been said.

Outlier Detection for single connections: Let’s consider in this phase a

the set of connections related to the most used resource. After preprocessing

the data as described in 6.2.1, KMeans (with euclidean distance) is applied

to find clusters inside the data. As Kmeans need numerical values the strings

present in the dataset are converted in integer using an hash functions. An

alternative to this approach is to use One Hot Encoding 2, which converts

the problem of strings to a binary one adding one feature (column) for each

possible couple feature-value in the original dataset and than using 1 or 0

to indicate the presence or absence of that co-occurence. In this work it has

now been used because it cause a huge growth in the number of features.

Remember that this first training phase has to be done on the connections

that have been marked as normal (non malign) by the heuristics. Kmeans

2 https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

accessed: November 2018

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

A real world Scenario and a novel unsupervised approach to
intrusion detection

requires the number of cluster as parameter, so the best value for this pa-

rameter needs to be found. In our example it appeared to be 4 as Kmeans

project 4 clear clusters in the space (figure 6.3). The image shows that the

connection marked as attacks by the heuristics appear quite far from the

cluster centers, moreover it shows that near the big clusters we can find

some outliers (isolated point). Another important aspect is that three of the

four cluster contain only bot connection, while the fourth one contains all

the human connections, plus some other bot connection. This means that

using clustering we can solve another of the big problems of the data under

analysis, the fact the the most of the connections are coming from bots. This

is a problem because it can lead to a model describing only bot connections,

making result as outliers all the connections coming by humans. Clustering

in some sense is solving the problem as it split the connections between group

of bot ones, and human ones. Each group is then representing similar con-

nections, so similar pattern, that can be used separately for outlier detection.

Moreover using clustering to split the connections related to a single resource

can be useful as it creates groups of similar items, improving like this the

precision of the normal patterns generated. Starting from this point there

are two alternatives to detect outliers:

• use a distance based threshold for each one of the clusters;

• make a one-class svm classifier for each one of the clusters.

The first method can be easier, because it does not need any additional

computation or model training. The items distances from the cluster centers

are already computed when the Kmeans model is fitted. This distances will

be compared against a threshold and whenever an item distance is greater

then the threshold it will be considered to be an outlier. The only difficulty

is to understand how to fix the threshold over which consider an element to

be an outlier. If we want to fix the number of false positives under a pre-

defined percentage, n%, we can order the distances and take as threshold the

distance value that is bigger than the n% of the distances. As an alternative

6.3 Proposed Approach 75

Figure 6.3: Kmeans Clustering output, projected in a 2 dimensional space

using Principal Component Analysis. The blue and the red points represent

respectively the normal and the attacks, as marked by the heuristics.

we can try other values, for example coming from the average distance and

the mean deviation. In any case to improve the detection performance the

threshold needs to by adjusted, but without having labelled data it is not

possible.

The second method is more expensive in terms of computation time, as it

requires to train other models, in particular one One-Class SVM for each

cluster. By the other side, as seen in the state of the art, this kind of classi-

fier can be very precise detecting outliers and it finds them not simply fixing

a distance threshold. Unluckily also in this case the model requires some

parameter to be calibrated. The first is ν, which in some sense regulates the

number of elements that can be considered to be outliers in the training data,

so in our case it actually fix an upper bound to the percentage of outliers we

will find in the data. While the second one if γ which is the coefficient of

the svm kernel function. Unluckily also in this case these parameters need to

be calibrated to improve the performances, but again, without labelled data

this cannot be done.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Without having the possibility to evaluate the output of the models trying

to find better parameters, what has been done is to fix a quite conserva-

tive thresholds; meaning thresholds that try to keep the number of detected

outliers low, and so, also the number of false alarms. This choice has been

done both for the distance based and for the One-Class SVM based outlier

detection models, setting the distance threshold to 1.0 (around the double

of the average distance to the cluster centers) and ν to 0.01 respectively.

As first ”evaluation” the percentage of connection marked as outliers that

were also marked as attack by the heuristics has been counted. Moreover

the number of outliers found in the connections marked as normal by the

heuristics has been counted. These preliminary results are reported in ta-

ble 6.3 which shows that the most of the connections marked as attacks by

the heuristics are also marked as outliers by the models. This means that

both the models are at able to detect the attacks found by the heuristics.

Moreover we should consider that also the heuristics may have some false

positive, and that we can change the models threshold to increase the per-

centages reported in table. The problem again is that without the labelled

data we cannot know if there are false positives in the heuristics which are

not detected by the models (so it is working fine) or if we need to improve

its detection performances.

The same results are graphically expressed in figure 6.4, where you can

see the other outliers found by the models. These will look the majority of

the connections, but this is only a graphical issue due to the overlapping of

the point. To understand the cardinality of the outliers refer to the previous

table.

6.4 Preliminary Evaluation

Has already mentioned the data used for this experiment is completely

unlabelled, thus not allowing an evaluation to be carried out. For this reason

a domain expert have been asked to label a small subset of the original

6.4 Preliminary Evaluation 77

(a) Distance based model.

(b) One-Class SVM based model.

Figure 6.4: Output of the models based on Kmeans + distance based or

One-Class SVM based outlier detection.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Known attacks

marked

as outliers

Outliers in

training data

Outliers

in

cluster 0

Outliers

in

cluster 1

Outliers

in

cluster 2

Outliers

in

cluster 3

Distance

based
85 %

22313

over

422006

21364

over

288478

230

over

25171

221

over

78426

498

over

29931

One-Class

SVM based
90 %

4218

over

422006

2886

over

288478

250

over

25171

783

over

78426

299

over

29931

Table 6.3: Preliminary results of outlier detection on single connections.

With known attacks we mean the connections marked as attacks by the

heuristics, while the training data consists in the connection marked as non-

attacks by the heuristics.

data. The Evaluation subset includes the 1% of the original dataset, obtained

selecting the 1% of the connections related each one of the resources thus

reproducing the original connection distribution. Moreover, related to the

three most used resources the half of the connections included in the subset

have been marked as outliers by the proposed models. In addition to this

1% of the Dataset (7262 items) a small dataset containing only attacks has

been added (136 additional connections). The resulting evaluation dataset is

unbalanced, as it contains only 325 attacks; 189 coming from the 1% of the

original dataset plus other 136 coming from the additional connections (fig

6.5).

Moreover their threshold have been changed, to see how their performances

change.

This evaluation process have been repeated two times, one considering

only the most requested resource (which covers more than the 60% of all

the connections) and one considering all the resources, without splitting by

resource.

6.4 Preliminary Evaluation 79

Figure 6.5: Evaluation dataset composition. Over a dataset containing

7398 connections only the 4.4% are attacks (325).

6.4.1 Evaluation on the most asked resource

The first evaluation has been done following the idea of splitting the

connections by resource, focusing on the most used one. Doing this a problem

emerged: in the connection marked by the expert there are no attacks to this

resource. While the additional log file containing only attacks contains 89

attacks requesting this resource. Having these problems in mind, in figure 6.6

and table 6.4 you can see the results of both the models. The figure represent

how the models behave while their parameters change, while the table shows

which one goes better according to each one of the evaluation metrics. As

opposed to what has been observed in the previous chapter we can observe

that the distance based model can detect more attacks. Moreover his false

alarms rate is lower as compared to the One-Class SVM based model. In

both cases the precision is very low, but we have to consider that it is given

by TP
TP+FP

. Considering that we are applying an anomaly detection method

the false positive will always be in some sense high, while we have a really low

number of attacks, so also the true positives won’t ever be enough to make

up for the false positives. Although the results obtained from the proposed

models are not optimal, it is possible to observe that they are still better

A real world Scenario and a novel unsupervised approach to
intrusion detection

than those obtained from heuristics:

• Accuracy 97,93%

• Precision -

• Recall 0

• FAR 0

The reason why the accuracy is so high is that the heuristics are marking all

the new connections as non-attacks including the 89 new ones, but in respect

to the amount of connections this does not count a lot. The new attacks are

not detected by the heuristics because they do not contain anyone of the

most know attack fingerprints, and so they can pass undetected. Of course,

though not clearly, these connections are different from the ”normal” ones,

and for this reason they can be detected by the outlier detection models if

they are enough sensitive. But increasing their sensitivity also increase the

number of false positives. In table 6.5 the performances of the heuristics and

the best outlier detection model are compared with random guessing, which

is often used as simple baseline.

As previously said the dataset used for the evaluation is strongly unbal-

anced, causing many problems. One example is the Precision, which always

result very low. To solve this problem the evaluation has been repeated on

a more balanced dataset, downsampling the number of normal (non-attack)

connections to the double of the attacks. Table 6.6 shows the result of this

second evaluation, from which is possible to observe how the Distance-Based

outlier detection outperforms the One-Class SVM based. Moreover it is

possible to observe how using a balanced dataset the general performances

increase and in particular the precision, which was low using the unbalanced

one. The same results are also reported in a graphical way in figure 6.7.

6.4 Preliminary Evaluation 81

(a) Distance based model.

(b) One-Class SVM based model.

Figure 6.6: Proposed model performances on the most used resource.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Accuracy Precision Recall FAR

Distance

Based -

th 0.55

58.77 4.12 85.39 41.81

Distance

Based -

th 0.58

62.57 3.98 74.15 37.66
Worst in

column

Distance

Based -

th 0.6

64.59 3.79 66.29 35.44
Best in

column

Distance

Based -

th 0.7

79.23 2.58 24.72 19.61

Distance

Based -

th 0.8

85.05 1.4 8.98 13.33

Distance

Based -

th 1.0

86.98 0.42 2.24 11.23

One-Class

SVM based-

ν 0.01

96.75 0 0 1.2

One-Class

SVM based-

ν 0.1

88.23 1.16 5.61 10.02

One-Class

SVM based-

ν 0.15

82.76 1.33 10.11 15.7

One-Class

SVM based-

ν 0.2

79.28 2.25 21.34 19.49

One-Class

SVM based-

ν 0.5

50.67 2.73 66.29 49.65

Table 6.4: Outlier detection results over the most used resource. For every

evaluation metric the best and the worst models have been highlighted.

6.4 Preliminary Evaluation 83

(a) Distance based model.

(b) One-Class SVM based model.

Figure 6.7: Proposed model performances on the most used resource when

using a balanced Dataset.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Accuracy Precision Recall FAR

Distance Based

th 0.5
58.77 4.12 85.39 41.81

Heuristics 97.93 - 0 0

Random guessing

labels
51.74 2.29 53.93 48.30

Table 6.5: Evaluation over the most used resource and using the unbalanced

dataset. Comparison of the best performing outlier detection model (in terms

of recall), with the heuristics and random guessing labels.

6.4.2 Evaluation on the whole dataset

This time the proposed outlier detection models have been evaluated

without considering the resources separately, but all together. The reason

for this additional evaluation is that, as previously said, it may happen that

some resource has not enough connection to build a model. As the previous

section shown how using an unbalanced dataset for the evaluation creates

some problem this time only the balanced one has been used. As previously

done, the balanced evaluation dataset has been obtained downsampling the

non-attack connection to the double of the attack ones.

The results of this evaluation are described in table 6.7 and figure 6.8. In the

table also the performances of the heuristics and random guessing labels are

expressed as a baseline. As expected the heuristics show low false positives,

but also a low recall (detection ratio). The reason for this behavior is that

heuristics belong to the misuse intrusion detection family, which is not able

to detect attacks that have not been previously described.

Moreover we can observe how the performances are in general worst than the

one obtained splitting by resource. Also this behavior was expected because

splitting by resource we obtain clusters of more homogeneous connections

compared to the one obtained here. This cause poorer normal pattern rep-

resentations and so worst detection performances. This phenomenon highly

6.4 Preliminary Evaluation 85

Accuracy Precision Recall FAR

Distance

Based -

th 0.55

67.41 50.66 85.39 41.57

Distance

Based -

th 0.58

67.04 50.38 74.15 36.15
Worst in

column

Distance

Based -

th 0.6

66.29 49.57 66.29 33.70
Best in

Column

Distance

Based -

th 0.7

60.29 36.06 24.71 21.91

Distance

Based -

th 0.8

59.92 23.52 8.98 14.06

Distance

Based -

th 1.0

59.17 8.33 2.24 12.35

One-Class

SVM Based -

ν 0.01

65.54 0.0 0.0 1.68

One-Class

SVM Based -

ν 0.1

58.42 15.62 5.61 15.16

One-Class

SVM Based -

ν 0.15

52.80 16.36 10.11 25.84

One-Class

SVM Based -

ν 0.2

56.55 29.23 21.34 25.84

One-Class

SVM Based -

ν 0.5

54.30 39.07 66.29 51.68

Table 6.6: Outlier detection results over the most used resource using a

balanced dataset. For every evaluation metric the best and the worst models

have been highlighted.

A real world Scenario and a novel unsupervised approach to
intrusion detection

affects the One-Class SVM Based model, whose performances diminishes to

such an extent that the FAR is superior to the recall. Lastly this experiment

confirms that the model based on distance works better than the One-Class

SVM based. But differently from the previous evaluations the best thresh-

old is not 0.55, as it lead to an excessive number of false alarms (FAR =

62%). In this case probably the best performing model can be considered

the Distance-based one with threshold = 0.7 as it leads to an accuracy of

57.06% ,a precision of 40.41% , a recall of 60.12% and a FAR of 44.46%.

6.4 Preliminary Evaluation 87

(a) Distance based model.

(b) One-Class SVM based model.

Figure 6.8: Proposed model performances without splitting the connections

by resource.

A real world Scenario and a novel unsupervised approach to
intrusion detection

Accuracy Precision Recall FAR

Distance

Based - th 0.55
53.68 40.73 84.96 62.0

Distance

Based - th 0.58
54.61 40.93 80.98 58.61

Worst in

Column

Distance

Based - th 0.6
54.30 40.38 77.30 57.23

Best in

Column

Distance

Based - th 0.7
57.06 40.41 60.12 44.46

Distance

Based - th 0.8
58.91 40.0 46.01 34.61

Distance

Based - th 1.0
58.60 32.58 22.39 23.23

One-Class SVM

Based - ν 0.01
66.39 37.5 0.92 0.76

One-Class SVM

Based - ν 0.1
63.01 30.33 8.28 9.53

One-Class SVM

Based - ν 0.15
61.98 33.81 14.41 14.15

One-Class SVM

Based - ν 0.2
58.19 28.64 16.87 21.07

One-Class SVM

Based - ν 0.5
48.77 31.79 46.62 50.15

Heuristics 93.78 22.76 17.17 2.68

Random guessing

labels
49.69 33.26 50.30 50.61

Table 6.7: Outlier detection results without splitting by resource and using

a balanced dataset. Also the heuristics and random guessing performances

are expressed as baseline. For every evaluation metric the best and the worst

models have been highlighted.

Chapter 7

Conclusion and Future Works

This work firstly analyzed the state of the art about two important fields

of cyber security: vulnerability and intrusion detection, focusing on the sec-

ond one. Two important problems in this field emerged:

• The most of the proposed approaches are supervised, while in real world

scenarios we rarely come across the labeled data.

• The state of the art methods are not reproducible as well as the datasets

used for testing these approaches along with their source code are not

available freely.

Moreover three Intrusion Detection System approaches based on Machine

Learning have been reproduced on a common environment showing how Hy-

brid and Anomaly detection can be effective detecting known and new at-

tacks. In detail the idea of applying One-Class SVM classifier on subsets of

the data containing similar items emerged has the most powerful method.

Lastly a real world scenario has been considered. Differently from the most

of the methods analyzed in the state of the art the data sources consisted

of raw web server logs without any labels. The proposed solution takes into

account both the most important aspects of Machine Learning: the data

preprocessing and the ML method itself. As from the state of the art outlier

detection emerged, the idea has been to apply this technique also in this

89

Conclusion and Future Works

scenario, but it requires the assumption to start from a majority of normal

(non attacks) data. To make this assumption more reliable a set of heuristics

has been defined with the purpose of pre-filtering the raw logs. Moreover

two feature extraction methods have been proposed, one to describe single

connections and one to describe sessions. The reason for this choice is that

these two different points of view can detect different kind of attacks. Lastly

an outlier detection model has been proposed to analyze the single connec-

tions, based on the partitioning of the data by the requested resource and

clustering, followed by outliers identification basing on distance metrics or

on One-Class SVM models. In future also techniques that can be applied

to the entire dataset needs to be considered. Moreover also some technique

to automatically find the number of clusters should be determined, like the

elbow method 1 which looks at the percentage of variance expressed by the

data as a function of the number of clusters.

As the used data is completely unlabeled it has not been possible to make

a precise evaluation of the methods, but it has been observed that both the

outlier detection models (the distance based and the One-Class SVM based)

are able to mark as outliers an high percentage of the connections marked as

attack by the heuristics. This means that the proposed approaches are well

reproducing the detections capability of the heuristics, also considering that

in some case the heuristics themselves may give false positives. Moreover, A

preliminary evaluation has been conducted where an expert labeled a small

subset (∼ 1%) of the original data. The subset was extracted based on the

frequently requested resources. The evaluation was also conducted on the

whole data set leading to two main result:

• The distance based model outperforms the One-Class SVM based and

also the heuristics, showing how the outlier detection can be used to

detect new attacks, even if the number of false alarms tends to grow.

• When the resources are considered one at a time, the performances are

1 https://en.wikipedia.org/wiki/Elbow_method_(clustering) accessed: Novem-

ber 2018

https://en.wikipedia.org/wiki/Elbow_method_(clustering)

91

significantly better than when they are all processed together. This

demonstrates that defining techniques to group the data in similar clus-

ters improves the outlier detection performances.

As a future perspective, similar methods should be tested on the dataset de-

scribing sessions. However, a different family of algorithms can be employed

based on the requirements of the sessions. Precise evaluation strategies need

to be designed in future on bigger and more balanced evaluation dataset.

Lastly there is a need to define a model that analyzes application logs and

generates some results. As a next step, these results should be combined

with the ones coming from the session and the connection analysis.

Bibliography

[1] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.

“Kitsune: An Ensemble of Autoencoders for Online Network Intrusion

Detection.” In: (2018).

[2] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. “Software

Vulnerability Analysis and Discovery Using Machine-Learning and Data-

Mining Techniques: A Survey.” In: ACM Comput. Surv. 50.4 (Aug.

2017), 56:1–56:36. doi: 10.1145/3092566.

[3] Yisroel Mirsky, Tal Halpern, Rishabh Upadhyay, Sivan Toledo, and

Yuval Elovici. “Enhanced situation space mining for data streams.” en.

In: Proceedings of the Symposium on Applied Computing, SAC 2017,

Marrakech, Morocco, April 3-7, 2017. Ed. by Ahmed Seffah, Birgit

Penzenstadler, Carina Alves, and Xin Peng. ACM Press, 2017, pp. 842–

849. doi: 10.1145/3019612.3019671.

[4] Abdulmohsen Almalawi, Adil Fahad, Zahir Tari, Abdullah Alamri,

Rayed AlGhamdi, and Albert Y. Zomaya. “An Efficient Data-Driven

Clustering Technique to Detect Attacks in SCADA Systems.” In: IEEE

Transactions on Information Forensics and Security 11.5 (May 2016),

pp. 893–906. doi: 10.1109/TIFS.2015.2512522.

[5] Elisa Bertino, Ravi Sandhu, and Alexander Pretschner, eds. Proceedings

of the Sixth ACM on Conference on Data and Application Security and

Privacy, CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016.

ACM, 2016.

93

https://doi.org/10.1145/3092566
https://doi.org/10.1145/3019612.3019671
https://doi.org/10.1109/TIFS.2015.2512522

94 Bibliography

[6] Anna L. Buczak and Erhan Guven. “A Survey of Data Mining and

Machine Learning Methods for Cyber Security Intrusion Detection.”

In: IEEE Communications Surveys Tutorials 18.2 (2016), pp. 1153–

1176. doi: 10.1109/COMST.2015.2494502.

[7] Gustavo Grieco, Guillermo Luis Grinblat, Lucas C. Uzal, Sanjay Rawat,

Josselin Feist, and Laurent Mounier. “Toward Large-Scale Vulnerabil-

ity Discovery using Machine Learning.” In: Proceedings of the Sixth

ACM on Conference on Data and Application Security and Privacy,

CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016. Ed. by

Elisa Bertino, Ravi Sandhu, and Alexander Pretschner. ACM, 2016,

pp. 85–96. doi: 10.1145/2857705.2857720.

[8] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. “Long

Short Term Memory Recurrent Neural Network Classifier for Intrusion

Detection.” In: 2016 International Conference on Platform Technology

and Service (PlatCon). Feb. 2016, pp. 1–5. doi: 10.1109/PlatCon.

2016.7456805.

[9] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle

Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,

Luiz Bonino da Silva Santos, Philip E Bourne, et al. “The FAIR Guid-

ing Principles for scientific data management and stewardship.” In:

Scientific data 3 (2016).

[10] Awad A. Younis, Yashwant K. Malaiya, Charles Anderson, and Indrajit

Ray. “To Fear or Not to Fear That is the Question: Code Characteris-

tics of a Vulnerable Functionwith an Existing Exploit.” In: Proceedings

of the Sixth ACM on Conference on Data and Application Security and

Privacy, CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016.

Ed. by Elisa Bertino, Ravi Sandhu, and Alexander Pretschner. ACM,

2016, pp. 97–104. doi: 10.1145/2857705.2857750.

[11] Salma Elhag, Alberto Fernández, Abdullah Bawakid, Saleh Alshom-

rani, and Francisco Herrera. “On the combination of genetic fuzzy

https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.1145/2857705.2857750

Bibliography 95

systems and pairwise learning for improving detection rates on Intru-

sion Detection Systems.” en. In: Expert Systems with Applications 42.1

(Jan. 2015), pp. 193–202. doi: 10.1016/j.eswa.2014.08.002.

[12] Wei-Chao Lin, Shih-Wen Ke, and Chih-Fong Tsai. “CANN: An intru-

sion detection system based on combining cluster centers and nearest

neighbors.” en. In: Knowledge-Based Systems 78 (Apr. 2015), pp. 13–

21. doi: 10.1016/j.knosys.2015.01.009.

[13] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Ya-

maguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. “VCCFinder:

Finding Potential Vulnerabilities in Open-Source Projects to Assist

Code Audits.” In: Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, Denver, CO, USA, Oc-

tober 12-16, 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher

Kruegel. ACM, 2015, pp. 426–437. doi: 10.1145/2810103.2813604.

[14] Douglas Reynolds. “Gaussian mixture models.” In: Encyclopedia of bio-

metrics (2015), pp. 827–832.

[15] Dilip Singh Sisodia, Shrish Verma, and Om Prakash Vyas. “Agglomer-

ative Approach for Identification and Elimination of Web Robots from

Web Server Logs to Extract Knowledge about Actual Visitors.” en.

In: Journal of Data Analysis and Information Processing 03.01 (2015),

pp. 1–10. doi: 10.4236/jdaip.2015.31001.

[16] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.

“Automatic Inference of Search Patterns for Taint-Style Vulnerabili-

ties.” In: 2015 IEEE Symposium on Security and Privacy. IEEE Com-

puter Society, May 2015, pp. 797–812. doi: 10.1109/SP.2015.54.

[17] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christo-

pher Kruegel. “Exposure: A Passive DNS Analysis Service to Detect

and Report Malicious Domains.” en. In: ACM Transactions on Infor-

mation and System Security 16.4 (Apr. 2014), pp. 1–28. doi: 10.1145/

2584679.

https://doi.org/10.1016/j.eswa.2014.08.002
https://doi.org/10.1016/j.knosys.2015.01.009
https://doi.org/10.1145/2810103.2813604
https://doi.org/10.4236/jdaip.2015.31001
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1145/2584679
https://doi.org/10.1145/2584679

96 Bibliography

[18] Gisung Kim, Seungmin Lee, and Sehun Kim. “A novel hybrid intru-

sion detection method integrating anomaly detection with misuse de-

tection.” In: Expert Systems with Applications 41.4 (2014), pp. 1690–

1700. doi: 10.1016/j.eswa.2013.08.066.

[19] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter

Joosen. “Predicting vulnerable software components via text mining.”

In: IEEE Transactions on Software Engineering 40.10 (2014), pp. 993–

1006. doi: 10.1109/TSE.2014.2340398.

[20] Aram Hovsepyan, Riccardo Scandariato, Wouter Joosen, and James

Walden. “Software vulnerability prediction using text analysis tech-

niques.” In: Proceedings of the 4th international workshop on Security

measurements and metrics. ACM. 2012, pp. 7–10.

[21] Jens Müller, Jörg Schwenk, and Ing Mario Heiderich. “Web Application

Forensics.” In: (2012).

[22] Hossain Shahriar and Mohammad Zulkernine. “Mitigating program

security vulnerabilities: Approaches and challenges.” In: ACM Com-

puting Surveys (CSUR) 44.3 (2012), p. 11. doi: 10.1145/2187671.

2187673.

[23] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi.

“EXPOSURE: Finding Malicious Domains Using Passive DNS Anal-

ysis.” In: Proceedings of the Network and Distributed System Security

Symposium, NDSS 2011, San Diego, California, USA, 6th February -

9th February 2011. The Internet Society, 2011.

[24] Istehad Chowdhury and Mohammad Zulkernine. “Using complexity,

coupling, and cohesion metrics as early indicators of vulnerabilities.”

In: Journal of Systems Architecture 57.3 (2011), pp. 294–313. doi: 10.

1016/j.sysarc.2010.06.003.

[25] Cynthia Wagner, Jérôme François, Radu State, and Thomas Engel.

“Machine Learning Approach for IP-Flow Record Anomaly Detection.”

en. In: NETWORKING 2011. Ed. by David Hutchison et al. Vol. 6640.

https://doi.org/10.1016/j.eswa.2013.08.066
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1145/2187671.2187673
https://doi.org/10.1145/2187671.2187673
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003

Bibliography 97

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 28–39. doi:

10.1007/978-3-642-20757-0_3.

[26] Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M.

Voelker. “Beyond heuristics: learning to classify vulnerabilities and pre-

dict exploits.” en. In: Proceedings of the 16th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, Wash-

ington, DC, USA, July 25-28, 2010. Ed. by Bharat Rao, Balaji Krish-

napuram, Andrew Tomkins, and Qiang Yang. ACM Press, 2010, p. 105.

doi: 10.1145/1835804.1835821.

[27] Yu-Xin Ding, Min Xiao, and Ai-Wu Liu. “Research and implementation

on snort-based hybrid intrusion detection system.” In: 2009 Interna-

tional Conference on Machine Learning and Cybernetics. Vol. 3. July

2009, pp. 1414–1418. doi: 10.1109/ICMLC.2009.5212282.

[28] Ranjit Jhala and Rupak Majumdar. “Software model checking.” In:

ACM Comput. Surv. 41.4 (2009), 21:1–21:54. doi: 10.1145/1592434.

1592438.

[29] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos

E. Milios. “Clustering event logs using iterative partitioning.” en. In:

Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Paris, France, June 28 - July

1, 2009. Ed. by John F. Elder IV, Françoise Fogelman-Soulié, Peter A.

Flach, and Mohammed Javeed Zaki. ACM Press, 2009, p. 1255. doi:

10.1145/1557019.1557154.

[30] Arman Tajbakhsh, Mohammad Rahmati, and Abdolreza Mirzaei. “In-

trusion detection using fuzzy association rules.” In: Applied Soft Com-

puting 9.2 (Mar. 2009), pp. 462–469. doi: 10.1016/j.asoc.2008.06.

001.

[31] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani.

“A detailed analysis of the KDD CUP 99 data set.” In: 2009 IEEE

Symposium on Computational Intelligence for Security and Defense

https://doi.org/10.1007/978-3-642-20757-0_3
https://doi.org/10.1145/1835804.1835821
https://doi.org/10.1109/ICMLC.2009.5212282
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1016/j.asoc.2008.06.001
https://doi.org/10.1016/j.asoc.2008.06.001

98 Bibliography

Applications, CISDA 2009, Ottawa, Canada, July 8-10, 2009. IEEE,

2009, pp. 1–6. doi: 10.1109/CISDA.2009.5356528.

[32] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. “Random-

Forests-Based Network Intrusion Detection Systems.” In: IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 38.5 (Sept. 2008), pp. 649–659. doi: 10.1109/TSMCC.2008.

923876.

[33] Mark Dowd, John McDonald, and Justin Schuh. The art of software

security assessment: Identifying and preventing software vulnerabilities.

Pearson Education, 2006.

[34] Zhang Xue-qin, Gu Chun-hua, and Lin Jia-jun. “Intrusion detection

system based on feature selection and support vector machine.” In:

Communications and Networking in China, 2006. ChinaCom’06. First

International Conference on. IEEE. 2006, pp. 1–5.

[35] Christopher Kruegel, Giovanni Vigna, and William Robertson. “A multi-

model approach to the detection of web-based attacks.” en. In: Com-

puter Networks 48.5 (Aug. 2005), pp. 717–738. doi: 10 . 1016 / j .

comnet.2005.01.009.

[36] Wei Lu and Issa Traore. “Detecting New Forms of Network Intrusion

Using Genetic Programming.” en. In: Computational Intelligence 20.3

(Aug. 2004), pp. 475–494. doi: 10.1111/j.0824-7935.2004.00247.x.

[37] Pang-Ning Tan and Vipin Kumar. “Discovery of Web Robot Sessions

Based on Their Navigational Patterns.” en. In: Intelligent Technologies

for Information Analysis. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2004, pp. 193–222. doi: 10.1007/978-3-662-07952-2_9.

[38] Pingchuan Ma. “Log Analysis-Based Intrusion Detection via Unsuper-

vised Learning.” In: Master of Science, School of Informatics, Univer-

sity of Edinburgh (2003).

https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/TSMCC.2008.923876
https://doi.org/10.1109/TSMCC.2008.923876
https://doi.org/10.1016/j.comnet.2005.01.009
https://doi.org/10.1016/j.comnet.2005.01.009
https://doi.org/10.1111/j.0824-7935.2004.00247.x
https://doi.org/10.1007/978-3-662-07952-2_9

Bibliography 99

[39] Richard P. Lippmann and Robert K. Cunningham. “Improving intru-

sion detection performance using keyword selection and neural net-

works.” en. In: Computer Networks 34.4 (Oct. 2000), pp. 597–603. doi:

10.1016/S1389-1286(00)00140-7.

[40] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines,

Kristopher R. Kendall, David McClung, Dan Weber, Seth E. Webster,

Dan Wyschogrod, Robert K. Cunningham, et al. “Evaluating intru-

sion detection systems: the 1998 DARPA off-line intrusion detection

evaluation.” In: DARPA Information Survivability Conference and Ex-

position, 2000. DISCEX ’00. Proceedings. Vol. 2. 2000, 12–26 vol.2.

doi: 10.1109/DISCEX.2000.821506.

[41] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Ko-

rba, and Kumar Das. “The 1999 DARPA on-line intrusion detection

evaluation.” en. In: Computer Networks (2000), p. 17.

[42] Chan Man Kuok, Ada Fu, and Man Hon Wong. “Mining fuzzy asso-

ciation rules in databases.” en. In: ACM SIGMOD Record 27.1 (Mar.

1998), pp. 41–46. doi: 10.1145/273244.273257.

[43] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. “Mining As-

sociation Rules between Sets of Items in Large Databases.” In: Proceed-

ings of the 1993 ACM SIGMOD International Conference on Manage-

ment of Data, Washington, DC, USA, May 26-28, 1993. Ed. by Pe-

ter Buneman and Sushil Jajodia. Vol. 22. 2. ACM. ACM Press, 1993,

pp. 207–216. doi: 10.1145/170035.170072.

[44] Richard P. Lippmann, Linda Kukolich, and Elliot Singer. LNKnet:

Neural Network, Machine-Learning, and Statistical Software for Pat-

tern Classification. en. Tech. rep. MASSACHUSETTS INST OF TECH

LEXINGTON LINCOLN LAB, Jan. 1993.

https://doi.org/10.1016/S1389-1286(00)00140-7
https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.1145/273244.273257
https://doi.org/10.1145/170035.170072

Sitography

[45] cgisecurity.com. Fingerprinting Port 80 Attacks:A look into web server,

and web application attack signatures. https://www.cgisecurity.

com/papers/fingerprint-port80.txt. (Visited on 10/24/2018).

[46] cgisecurity.com. Fingerprinting Port 80 Attacks:A look into web server,

and web application attack signatures: Part Two. https://www.cgisecurity.

com/papers/fingerprinting-2.txt. (Visited on 10/24/2018).

101

https://www.cgisecurity.com/papers/fingerprint-port80.txt
https://www.cgisecurity.com/papers/fingerprint-port80.txt
https://www.cgisecurity.com/papers/fingerprinting-2.txt
https://www.cgisecurity.com/papers/fingerprinting-2.txt

Acknowledgments

I would like to thank all those who helped me in the realization of this

Thesis:

the supervisor Paolo Ciancarini;

the co-supervisor Valentina Presutti;

and the co-supervisor Mehwish Alam.

	Italian Introduction - Introduzione
	Introduction
	Background: Vulnerability, Intrusion detection and machine learning
	Intrusion Detection Systems
	Misuse Based Intrusion Detection
	Anomaly Based and Hybrid Intrusion Detection

	Vulnerability detection
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

	Cyber Attacks
	Machine Learning
	ML applications
	Classification
	Clustering
	Regression

	ML approaches
	Regression Algorithms
	Instance-based Algorithms
	Decision Tree Algorithms
	Bayesian Algorithms
	Clustering Algorithms
	Association Rule Learning Algorithms
	Artificial Neural Networks Algorithms
	Dimensionality Reduction Algorithms
	Ensemble Algorithms

	Data sources for intrusion detection
	Packet Capture
	NetFlow Data
	Public Datasets
	Traffic Generators

	Survey on ML approaches for Intrusion Detection
	Artificial Neural Networks
	Association Rule Mining
	Clustering
	Decision Trees
	Random Forest
	Evolutionary Computation
	Support Vector Machine
	Discussion on State of the Art Algorithms

	Survey on ML approaches for Vulnerability Detection
	Principal Component Analysis
	Clustering
	Decision Trees
	Random Forest
	Support Vector Machine

	Comparative evaluation of intrusion detection systems
	Experimental setting:
	Dataset

	Methods Reproduction
	Hybrid Random Forest
	Cluster Center and Nearest Neighbor
	Hybrid Detection combining Decision Trees and one-class SVM

	Comparison Summary

	A real world Scenario and a novel unsupervised approach to intrusion detection
	Web Server Logs Analysis
	Structure
	Collected Data

	Data Preprocessing and Feature Extraction
	Single Connections
	Sessions

	Proposed Approach
	Preliminary Evaluation
	Evaluation on the most asked resource
	Evaluation on the whole dataset

	Conclusion and Future Works
	Bibliography
	Sitography

