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Prefazione

In questa tesi ci occupiamo dello studio di un modello matematico macro-

scopico che descrive l’insorgenza e l’evoluzione della malattia di Alzheimer

(AD) nel cervello umano. Abbiamo iniziato questo lavoro di tesi riesami-

nando l’articolo “Well-posedness of a mathematical model for Alzheimer’s

disease” di Michiel Bertsch, Bruno Franchi, Maria Carla Tesi ed Andrea To-

sin [6].

Il modello è basato sulla cosiddetta ipotesi di “amyloid cascade” (si veda

[17], [23], [31] per una completa bibliografia), insieme alla “prionoid

hypothesis” (si veda [9] e [33]). Da un punto di vista matematico, il modello

consiste in un’equazione di trasporto accoppiata con un sistema non lineare

di equazioni di tipo-Smoluchowski, con l’aggiunta di un termine diffusivo.

In particolare, l’equazione di trasporto in un intervallo limitato coinvolge

una misura di probabilità, introdotta nel modello per descrivere il grado di

malfunzionamento dei neuroni.

In vista delle caratteristiche dei fenomeni biologici di cui ci stiamo occupan-

do, il principale segno distintivo di tale sistema è che la velocità di trasporto

dipende dalla soluzione dell’equazione di Smoluchowski, che, a sua volta,

contiene un termine sorgente che dipende dalla soluzione dell’equazione di

trasporto: in questo modo i due gruppi di equazioni non possono essere

disaccoppiati.

Lo scopo principale di questa tesi è quello di studiare la buona-posizione

del modello matematico, analizzando in dettaglio un risultato di esistenza

ed unicità della soluzione del problema introdotto sopra, accoppiato con op-
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ii Prefazione

portune condizioni iniziali e al bordo [6]. La strategia utilizzata e descritta

approfonditamente nel corso di questo lavoro di tesi, può essere sintetizzata

come segue:

1. per trattare le misure di probabilità legate allo stato di salute del neuro-

ne, viene introdotto uno spazio metrico definito considerando lo spazio

delle misure di probabilità su [0, 1] dotato della distanza di Wasserstein.

Si riscrive poi il sistema in termini delle caratteristiche dell’equazione

di trasporto, mostrando che il nuovo problema cos̀ı ottenuto è equiva-

lente a quello originale. In particolare, si lavora tramite il trasporto di

misure lungo le caratteristiche, via push-forward. Ci preme evidenziare

come, sotto opportune ipotesi, le caratteristiche esistono in senso clas-

sico. La maggiore difficoltà incontrata è dovuta alla forte nonlinearità

del sistema.

2. Si risolve il sistema che coinvolge le caratteristiche tramite l’uso di un

argomento di contrazione che garantisce l’esistenza locale e l’unicità

della soluzione. Il fatto che la distanza di Wasserstein dipenda dall’a-

zione delle misure sulle funzioni Lipschitz induce una difficoltà tecnica

quando si prova ad applicare un argomento iterativo per ottenere l’e-

sistenza locale della soluzione. Tuttavia, questa difficoltà può essere

superata mediante una scelta accurata degli spazi in cui utilizzare il

teorema del punto fisso. In particolare, la mappa alla quale applicare

tale teorema è una contrazione non sul suo dominio, ma sul suo insieme

immagine.

3. La soluzione locale (rispetto al tempo t) del problema in termini delle

caratteristiche viene estesa globalmente: mediante delle stime a prio-

ri, l’esistenza globale è provata per il sistema con le caratteristiche, e

quindi anche per il problema originario equivalente.

Rimandiamo alla lettura dell’introduzione per una descrizione più dettagliata

del modello macroscopico qui studiato, del suo background biologico e dell’

organizzazione di questo lavoro di tesi.



Introduction

In this work we deal with the study of a macroscopic mathematical model

which describes the onset and progression of Alzheimer’s disease (AD) in

the human brain. We begin this thesis by reviewing the paper by Michiel

Bertsch, Bruno Franchi, Maria Carla Tesi and Andrea Tosin “Well-posedness

of a mathematical model for Alzheimer’s disease”, see [6].

In particular, the mathematical model here studied is the result of a research

carried on in the last few years by several authors on both microscopic and

macroscopic mathematical models for AD, and presented in a series of papers

[1], [4], [5], [13] and [15]. The macroscopic model was proposed in [4] and

in [5] and it is based on the so-called amyloid cascade hypothesis (see [17],

[23], [31] for a complete bibliography), together with the prionoid hypothesis

(see [9] and [33]) which is meant to mirror the spreading of the disease in the

neuronal net through neuron-to-neuron transmission.

From a biomedical point of view, AD is a neurodegenerative disease

caused by gradual brain cell death, whose symptoms develop slowly. It is

the prevalent form of late life dementia in the world today. Among the ma-

jor ten causes of death, AD is the only one that cannot be prevented and

cured. In 2015 it was estimate that about 44 million people suffered of AD,

mostly older than 65 years. Until 2040, this number of patients is expected

to double every 20 years [29]. Moreover, AD has a huge social and economic

impact both on the society and on the family of the patients [7], [21], [25].

The definition of a mathematical model which tries to describe such type of
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iv Introduction

disease provides another prospective apart from the classical in vivo and in

vitro approaches. On the other hand, in order to clarify the mathematical

choices made during modeling tries, it is necessary to take into consideration

their biological background.

Below we briefly describe the main factors involved in this type of disease.

According to the most recent biomedical literature on AD, focusing on neu-

rons and their interconnections it is known that beta-amyloid (Aβ) and its

toxic oligomeric isoforms Aβ40 and Aβ42 are the main causes of the cerebral

damage. Amyloid is a general term for protein fragments that the body

produces normally. In particular, monomeric Aβ is regularly produced by

neurons at the level of the neuronal membrane by intramembranous prote-

olysis of APP (amyloid precursor protein) and naturally eliminated -among

others- by the microglia. However in Alzheimer’s disease, by unknown rea-

sons perhaps due to external or partially genetic factors, an imbalance be-

tween produced and cleared Aβ begins to occur: less and less Aβ is taken

away and in the meantime other Aβ is produced. So fragments of soluble

Aβ diffuse through the brain tissue and eventually accumulate to form long,

hard and insoluble fibrils of larger aggregates. These spherical deposits are

known as senile plaques and they can be observed through medical imaging

by a PET (positron emission tomography) scan. However, the presence of

plaques does not seem related only to AD, due to the fact they have been

observed in patients without any symptoms of dementia. Recently, some

authors have suggested that they can be even protective to healthy neurons

(see [17]). In fact, soluble Aβ seems to be the principal cause of neuronal

death and eventually of dementia, since high levels of soluble Aβ40 and Aβ42

correlate much better with the presence and degree of cognitive deficits than

plaque statistics. We can consider this statement as a sort of up-dated ver-

sion of the amyloid cascade hypothesis. Moreover, the recent biomedical

literature has proposed a neuron-to-neuron prion-like transmission of the

disease as propagation mechanism of the neural damage in the neuronal net

(see [9],[28]).
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Another aspect that we would like to underline is the role of the microglia

in the phagocytic process of soluble Aβ: the presence of soluble Aβ induces

a general inflammation that activates the microglia which in turn secretes

proinflammatory innate cytokines (see [16]). So, this neurotoxic effect is

once again linked to high levels of soluble Aβ.

In order to model the different aspects of AD, as observed in [5], it is

necessary to take into considerations different spatial and temporal scales.

Indeed, the description of the role of a single neuron needs microscopic spa-

tial scales, while the description of the diffusion process in the brain needs

macroscopic spatial and short temporal scales. Finally, the global evolution

of the disease occurs in large temporal scales. In particular, it has been

observed that plaques of Aβ form extraordinarily quickly (minutes, hours),

while the first signs of dementia can occur long after (years, decades) the

first microscopic changes in the brain. For this reason, the model has been

developed in two steps. First, in [1] and [15] these considerations have led

the authors to treat the problem with a microscopic model, characterized by

the use of a microscopic scale, say a multiple of the size of the soma of a

single neuron (from 4 to 100 µm). Then, the interest in modeling the degree

of malfunctioning of demaged neurons has led the authors to formulate a

macroscopic model for AD. Here the brain is modelled with a macroscopic

scale, considering it as a continuous medium in which neurons are seen as

points of this set.

The main purpose of this thesis is to study the mathematical well-

posedness of such macroscopic model, by analyzing in detail the paper [6] in

all its mathematical aspects. From this point of view, the model consists of

a transport equation coupled with a system of nonlinear diffusion equations

(a Smoluchowski-type system with diffusion). In view of the features of the

biological phenomena we are dealing with, the main hallmark of such system

is that the transport velocity depends on the solution of the Smoluchowski

equation, which, in turn, contains a source term that depends on the solution

of the transport equation, so that the two groups of equations cannot be
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separated and they must be considered together. We refer the reader to

[27] for a complete bibliography about the use of transport equations in

mathematical models in life sciences.

Let us briefly introduce the model, referring to [4] and [5] for its complete

description. At the basis of the model there is the idea to set up a flexible

model which can be further developed in different directions. The main

features that the model aims to describe are the following:

• agglomeration phenomena: by means of the so-called Smoluchowski

equation;

• uniform diffusion: by the usual Fourier diffusion equation;

• production of Aβ, in the monomeric form: by a source term F ;

• outward flow of the cerebrospinal fluid through two inner disjoint ’holes’

representing the sections of the cerebral ventricles;

• isolate our portion of brain from the environment: by a homogeneous

Neumann condition on the outer boundary;

• neuron-to-neuron prion-like transmission.

At the same time, the model discards some phenomena involved in the de-

velopment of AD such as:

• the tortuosity of the brain tissue;

• the role of twisted fibers of the τ -protein;

• the degradation of plaques into smaller agglomerations.

As anticipated above, different mathematical choices of spatial and tem-

poral scales can be made when we have to describe biological phenomema. In

our case the model considers a large portion of cerebral tissue, represented by

an open and bounded set Ω ⊆ Rn (for instance a 3-dimensional region with

diameter of the order of 10cm, as suggested in [5]). As for the time scale, in



Introduction vii

order to describe in a single model both the production, diffusion, agglom-

eration and plaque-formation phenomena of Aβ (which occur in hours) and

the evolution of the disease (which occurs in years), we have to compare two

different time scales. For this reason it will be present in our equations a

small parameter ε > 0 which links a rapid τ -scale for diffusion and agglom-

eration dynamics with a slow t-scale for the progression of AD. This relation

can be expressed as ∆t = ε∆τ .

Let x ∈ Ω be the space variable and let t ≥ 0 be the time variable.

Moreover, let us fix N ∈ N which will represent the size of a senile plaque.

To describe the behaviour of β-amyloid in Ω we consider a vector-valued

function

u = (u1, . . . , uN), where um = um(x, t) (1 ≤ m ≤ N − 1)

represents the molar concentration at the point x ∈ Ω and at time t ≥ 0

of soluble Aβ-assemblies of m monomers. Therefore, we consider um as the

concentration of Aβ assemblies of polymers of length m.

We denote by

uN = uN(x, t)

the molar concentration of insoluble assemblies of at least N monomers, i.e.

uN represents a cluster of oligomers of length greater or equal to N . For its

own nature, uN is slightly different from others um’s.

As we have anticipated above, one of the main goals of the model is to

describe the infection from one neuron to another inside the neuronal net.

Indeed, a prion-like transmission seems to occur. In particular, the spread

of AD is only in one direction, i.e. if a healthy neuron A is close to a

damaged neuron B, it is possible that neuron A is infected by neuron B.

On the contrary, the opposite “infection” is not possible, i.e. the damaged

neuron B cannot be “recovered” by neuron A.

So, in order to describe this process we introduce another parameter a ∈ [0, 1]

which models the degree of malfunctioning of a neuron. In particular a = 0

has the meaning “the neuron is healty”, while a = 1 stands for “the neuron
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is dead”. Even if this parameter could seem artificial, the same authors

underline how, instead, it has biological counterpart, since it can be compared

with medical images from Fluorodeoxyglucose PET, which detect the cerebral

glucose metabolism.

To measure the health state of neurons, a probability measure is introduced

in the model. Given x ∈ Ω and t ≥ 0, f = fx,t is a probability measure

supported in [0, 1] and dfx,t(a) denotes the fraction of neurons at point x and

time t with degree of malfunctioning between a and a + da. At this point,

the health state becomes our variable of interest. Indeed, we are interested

in describing how it evolves during the progression of AD. Roughly speaking,

now the idea is to fix ourselves at a point x, i.e. at a certain neuron, and try

to understand how its degree of malfunctioning varies when time evolves. For

this reason, the equation which involves the health state of neurons involves

a divergence operator with respect to a and not to the space variable.

The progression of AD is determined by the deterioration rate of the

health state of the neurons

v = vx(a, t) ≥ 0

through the continuity equation

∂tf + ∂a(fv[f ]) = 0.

Here the notation v[f ] is used to stress that the deterioration rate depends

on f itself. We would like to underline how the deterioration rate must be

nonnegative since the infection can take place in only one direction, since a

demaged neuron cannot be cured by a healthier one.

Now we need a “costitutive law” for the rate v:

(v[f ])x(a, t) :=

�
Ω

(�
[0,1]

K(x, a, y, b)dfy,t(b)

)
dy (1)

+ S(x, a, u1(x, t), . . . , uN−1(x, t)).

The first integral term describes the possible propagation of AD through

the neural network: the degree of malfunctioning of a neuron deteriorates if
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its neighbours have a worse health state. For this reason, K is nonnegative

and healthier neighboring neurons cannot improve the state of a neuron:

K(x, a, y, b) ≥ 0 for all x, y ∈ Ω and a, b ∈ [0, 1] and K(x, a, y, b) = 0 if a > b.

Tipically K(x, a, y, b) is defined by the following expression

K(x, a, y, b) = Gx(a, b)H(x, y)

where Gx compares the healthy states, while H takes into considerations the

neighboring neurons. For example, in [4], Gx does not depend explicity on x

and has the form

Gx(a, b) = CG(b− a)+. (2)

Here p+ denotes the positive part of a real number, i.e. p+ := max{p, 0}.
Concerning H, a typical choice is H(x, y) = h(|x − y|), where h(r) is a

nonnegative and decreasing function which vanishes at some r = r0 and

satisfies
�
|y|<r0 h(|y|)dy = 1. In particular, in the limit r0 → 0, (1) becomes

of the form

(v[f ])x(a, t) :=

�
[0,1]

Gx(a, b)dfx,t(b) + S(x, a, u1(x, t), . . . , uN−1(x, t)). (3)

From now on we consider the deterioration rate v[f ] as in (3).

The second term S in (1) is nonnegative and takes into account the de-

pendence of the deterioration rate of the health state on high levels of toxic

soluble Aβ oligomers. Notice that S does not depend on the plaque uN ,

since we are not considering admissible a production of insoluble Aβ from

the degradation of plaques. For instance, an elementary definition for S is

the following:

S = CS(1− a)

(
N−1∑
m=1

mum(x, t)− U

)+

. (4)

The constant U > 0 can be seen as the minimal threshold value above which

the amount of toxic Aβ becomes dangerous. Indeed, we recall that there

is a physiologic Aβ production even in a healthy person. In particular, we

are assuming that the toxicity of soluble Aβ polymers does depend on m,

even if, to our best knowledge, quantitative data are only available for very
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short molecules. For long molecules any analytic expression different from

the one given here, would be arbitrary. We would like to stress that if K and

S are chosen as above, they vanish for a = 1 since the damaged neuron is

considered dead.

Up to now, the choices made in the model describe the evolution and the

propagation of AD. However, we have not considered its onset yet. In fact,

the continuity equation ∂tf+∂a(fv[f ]) = 0 is conservative by its own nature.

This means that a healthy person will continue to be healthy. Unfortunately,

this does not necessarily happen. So, to describe the onset of AD, we modify

the continuity equation by adding a jump operator to the right-hand side:

∂tf + ∂a(fv[f ]) = J [f ], (5)

where J [f ] takes into account the probability that, at a certain point of life,

some neurons become ill because of still unknown reasons, maybe due to ex-

ternal agents or genetic factors. So, we assume that in small, randomly chosen

parts of the cerebral tissue, concentrated for instance in the hippocampus,

the degree of malfunctioning of neurons randomly jumps to higher values.

Mathematically, (J [f ])x,t is a signed measure defined by

d(J [f ])x,t(a) := η(t)χ(x, t)

[(�
[0,1]

P (t, b, a)dfx,t(b)

)
da− dfx,t(a)

]
, (6)

where da is the usual Lebesque measure in [0, 1]. In addition, P (t, b, a) is the

probability to jump from state b to a (worst) state a. Obviously P (t, b, a) = 0

if a < b, since a damaged neuron cannot recover. For instance, we can choose

P (t, b, a) as:

P (t, b, a) ≡ P (b, a) =

 2
1−b if b ≤ a ≤ 1

2
(1 + b),

0 otherwise.

Finally, η > 0 is the jump frequency and χ(x, t) is a characteristic function

which localizes the region of the brain infected by AD.

Before writing the final system for the model, we have to define the source

term which describes the production of Aβ monomers by neurons. This
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source term depends on the degree of malfunctioning of neurons and it in-

creases if neurons are damaged. It can be chosen as follows:

F [f ](x, t) = CF

� 1

0

(µ0 + a)(1− a)dfx,t(a). (7)

Notice that (µ0 + a)(1− a) = µ0 if a = 0. Indeed, the small constant µ0 > 0

is meant to mirror the physiologic Aβ production that is always present even

for a healthy brain. On the other hand, (µ0 + a)(1− a) = 0 if a = 1. Thus,

F [f ] vanishes since there is no production if the neuron is dead. So, the final

system of equations for f, u1, . . . , uN is:

∂tf + ∂a(fv[f ]) = J [f ] in Ω× [0, 1]× (0, T ],

ε∂tu1−d1∆u1 = R1 :=

− u1

N∑
j=1

a1,juj + F [f ]− σ1u1

in QT = Ω× (0, T ],

ε∂tum−dm∆um = Rm := −um
N∑
j=1

am,juj

+
1

2

m−1∑
j=1

aj,m−jujum−j − σmum

in QT (2 ≤ m < N),

ε∂tuN = 1
2

∑
j+k≥N
k,j<N

aj,kujuk in QT .

(8)

We recall that ε > 0 is a small parameter which compares the two different

time scales: the dynamics of Aβ occur in hours, while the evolution of AD

occurs in years. The diffusion coefficients dm > 0 are small when m is large,

since big assemblies diffuse less. Concerning the equation for uN , there is

not the diffusion term since plaques do not move. Moreover, aN,N = 0 since

experimental data show that large oligomers do not aggregate with each

other. The phagocytic activity of the microglia and other bulk clearance

mechanisms are modeled by the linear term −σmum. It is reasonable that

σm is inversely proportional to m. For this reason, we assume that it does

not take place in the equation for uN , since plaques are too big to be eaten.

The quadratic term in um is given by the Smoluchowski equation and models
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the aggregation of Aβ polymers. For a detailed study of the aggregation

process and the choice of coagulation rates ai,j we refer the reader to [1] and

[15].

We assume that ∂Ω consists of smooth disjointed boundaries, ∂Ω0 and

∂Ω1, where ∂Ω1 represents the disjoint union of the boundaries of the cerebral

ventricles, through which Aβ is removed by the cerebrospinal fluid by an

outward flow through the choroid plexus (cf. [22] and [32]). In order to solve

the system (8), we have to couple it with initial-boundary conditions:

fx,0 = (f0)x if x ∈ Ω,

ui(x, 0) = u0i(x) if x ∈ Ω, 1 ≤ i ≤ N,

∂nui(x, t) = 0 if x ∈ ∂Ω0, t > 0, 1 ≤ i < N,

∂nui(x, t) = −γiui(x, t) if x ∈ ∂Ω1, t > 0, 1 ≤ i < N,

(9)

where n is the outward pointing normal on ∂Ω.

We would like to stress some important aspects of this model:

• the choice of looking for a measure fx,t, to study the degree of malfunc-

tioning of a neuron during AD evolution, comes from the model itsel.

In fact, a “healthy brain” (a = 0) would correspond to fx,t(a) = δ0(a),

where δ0(a) is the Dirac measure centered at the origin. Indeed, as we

show in Remark 3.5, δ0(a) is a weak solution of the continuity equation.

So, if we add the jump term J [f ] to the equation and we consider a dam-

aged brain, we are induced to search how the measure δ0(a) changes.

• The system (8) is deeply coupled. Indeed, the transport equation for

f contains a dependence on u1, . . . , uN−1 in the deterioration rate v[f ]

through S, whereas the diffusion-agglomeration system depends on f

through the source term F . Observe, that if S ≡ 0 in (3), then the

equation for f can be separated from the rest of the system and, in

this case, may be possibly studied alone by relying on the results re-

ported in [10] and [12]. However, the assumption S ≡ 0 would imply a
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propagation of the disease due only to prionic diffusion, which is a con-

troversial topic in the medical literature. For this reason, the authors

prefer to also take into account the toxic contribution of Aβ oligomers,

i.e., S 6≡ 0 in (3). This assumption requires studying the system (8) in

its coupled form.

• All the functions present in the model have a specific qualitative clinical

counterpart in routinely observable phenomena: the health state of the

different brain regions (by means of a PET measuring the cerebral

glucose metabolism), the amount of Aβ in the cerebral spinal fluid,

and the Aβ plaques (by means of amyloid-PET scans).

Concerning the global well-posedness of the model, we deal with weak

solutions of problem (8)-(9). See Chapter 3 for this definition and for the

hypotheses on the data.

The main result in [6] is the following one:

Theorem 0.1. Let Ω ⊂ Rn be an open and bounded set with a smooth

boundary ∂Ω, which is the disjoint union of ∂Ω0 and ∂Ω1. Let T > 0 and

N ∈ N, and let hypotheses (H1-H6) be satisfied. Then problem (8)− (9) has

a unique solution in Ω× [0, T ] in the sense of Definition 3.3.

The strategy used in [6] for proving Theorem 0.1 can be summarized as

follows:

(i) to treat the measures fx,t we introduce a metric spaceX[0,1] by endowing

the space of Borel probability measures on [0, 1] with the Wasserstein

distance. See Chapter 2 for its definition. We rewrite the system in

terms of the characteristics of the transport equation for f , showing

that the new system is equivalent to the original one. In particular,

we deal with the transport of measures along the characteristics via

push-forward. We stress that under the assumptions stated for the

problem the characteristics exist in the classical sense. The major dif-

ficulty arises from the strong nonlinearity of the system: the transport
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equation depends nonlinearly on both its solution (through an integral

operator) and the solution of the Smoluchowski system, which in turn

depends on the solution of the transport equation.

(ii) We solve the equivalent system by the use of a contraction argument

which guarantees uniqueness and local existence of the solution. In

particular, the map to which to apply the fixed point theorem is a con-

traction not on its domain, but on its image set. As observed in [6],

the fact that the Wasserstein distance can be characterized by the ac-

tion of the measures on Lipschitz functions yields a technical difficulty

when we try to apply an iteration argument in order to obtain the local

existence of a solution. This difficulty can be circumvented thanks to

an ad hoc formulation of the standard fixed point theorem.

(iii) The local (w.r.t. t) solution can be extended: through a priori bounds,

the global existence is proved.

In the long run, we would like to extend our investigation to a model which in-

corporates those important aspects that the macroscopic model deliberately

neglects, as the role of tau protein, the multifaceted mechanism of the mi-

croglia and disintegration processes of the plaques. This for several reasons:

to make the model more realistic, to obtain optimal quantitative agreement

with clinical data and also to investigate the possible formation of patterns

in the distribution of the level of malfunctioning of the brain.

Specifically, this thesis is organized as follows. In Chapter 1, we intro-

duce notations, definitions and results of measure theory, which we will use

throughout this work. Next, in Chapter 2 we deal with the family of Borel

probability measures on a locally compact separable metric space, introduc-

ing the notions of Narrow, Weak∗ and Wasserstein convergence. We prove

some technical results in order to have, under certain assumptions, equiva-

lent convergences with respect to the previous topologies. In Chapter 3, we

describe the hypoteses on the data and formulate the main result of global

well-posedness. Then, in Chapter 4 we reformulate the problem (8)-(9) in
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terms of the characteristics for the transport equation for f and we prove

the equivalence between the new problem and the original one. In Chapter

5, we exhibit the proof of Theorem 5.1, that guaratees the local existence of

the solution and its uniqueness. This is proved by the following steps: by

Lemma 5.3 and Lemma 5.5 we construct the map to which to apply a con-

traction argument. Then, Proposition 5.8 reformulates the standard point

fixed theorem. Finally, in the second section of this Chapter, we prove a

priori bounds which imply global existence. From Chapter 3 to Chapter 5

we strictly follow the paper [6]. In particular, we review the proofs showing

all the details. We conclude the work with an Appendix. In Appendix A

we present some useful tools concerning the Narrow Convergence and the

Wasserstein Distance, referring to [3]. In Appendix B we list some auxiliary

theorems by showing in many cases a detailed proof. The main goal of this

Appendix, hopefully, is to make this thesis as self-consistent as possible.





Chapter 1

Prerequisites of Measure

Theory

In this chapter we introduce some basic notions of measure theory that

can be given in the abstract setting. The purpose is to recall those concepts

that will be useful throughout this work. To do this, we strictly follow the

organization and the notations of the the first chapter of [2]. Let us start with

the notions of positive and real measures in sets equipped with a σ-algebra

of subsets of a set given.

Definition 1.1. Let X be a nonempty set and let E be a collection of subsets

of X.

(i) E is called an algebra if ∅ ∈ E , E1 ∪ E2 ∈ E and X \ E1 ∈ E whenever

E1, E2 ∈ E .

(ii) E is called a σ− algebra if it is an algebra and for any (Eh)h∈N ⊂ E its

union
⋃
h∈N

Eh belongs to E .

(iii) For any collection G of subsets of X, the σ-algebra generated by G is

the smallest σ-algebra containing G. If (X, τ) is a topological space, we

denote by B(X) the σ-algebra of Borel subsets of X, i.e., the σ-algebra

generated by the open subsets of X.

1
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(iv) If E is a σ-algebra in X, we call the pair (X, E) a measure space.

Note that an algebra is closed not only under finite unions, but also

under finite intersections by the De Morgan laws. A σ-algebra, instead, is

closed under countable intersections and unions. Moreover, it is easy to check

that the intersection of any family of σ-algebras is a σ-algebra, therefore the

definition of generated σ-algebra is well posed. In addition, we underline

that if (X, τ) is a topological space, it is closed under finite intersections of

closed subsets, while the measure space (X,B(X)) is closed under countable

intersections of closed subsets. So, the concepts of topology and σ − algebra
are different.

Now we are ready to define the notion of positive measure on a measure

space.

Definition 1.2 (positive measure). Let (X, E) be a measure space and

µ : E −→ [0,+∞].

(i) We say that µ is additive if, for E1, E2 ∈ E , E1 ∩ E2 = ∅, we have

µ(E1 ∪ E2) = µ(E1) + µ(E2).

(ii) We say that µ is σ − subadditive if, for E ∈ E , (Eh)h∈N ⊂ E ,

E ⊂
+∞⋃
h=0

Eh ⇒ µ(E) ≤
+∞∑
h=0

µ(Eh).

(iii) We say that µ is a positive measure if µ(∅) = 0 and µ is σ − additive
on E , i.e. for any sequence (Eh)h∈N of pairwise disjoint elements of E

µ

(
+∞⋃
h=0

Eh

)
=

+∞∑
h=0

µ(Eh).

(iv) We say that µ is finite if µ(X) < +∞.

(v) We say that E ⊂ X is σ − finite w.r.t a positive measure µ if it is

the union of an increasing sequence of sets with finite measure. If X is

σ-finite, we say that µ is σ-finite.



3

Since µ is a positive measure,
+∞∑
h=0

µ(Eh) represents the sum of a series

with positive terms.

A probability measure is a particular case of positive measure. As we will see

throughout this thesis, we will work with spaces of probability measures, since

in the mathematical model for Alzheimer’s disease here studied, a probability

measure takes into account of the degree of malfunction of a neuron.

Definition 1.3. A positive measure µ such that µ(X) = 1 is called a

probability measure.

Let us now see some simple examples of σ-algebras and positive measures.

Example 1. (i) The family of all subsets of X is the largest σ-algebra of

subsets of X.

(ii) {∅, X} is the smallest σ-algebra of subsets of X.

(iii) B(R) is generated by G = {]a, b[; a, b ∈ Q} or by G ′ = {(−∞, a[; a ∈ Q}.

(iv) (Dirac measure) Let (X, E) be a measure space, x0 ∈ X, A ∈ E

δx0(A) :=

1 if x0 ∈ A

0 if x0 /∈ A.

(v) Let (X, E) be a measure space, A ∈ E

µ(A) :=

0 if A is finite or countable

+∞ otherwise.

(vi) The so-called Counting measure on the measure space of all subsets

of X is defined by

µ(A) :=

|A| if A is finite

+∞ otherwise.



4 1. Prerequisites of Measure Theory

(vii) (Discrete probability measure) Let (X, E) be a measure space with

X at most countable. We assume that ∀xi ∈ X, {xi} ∈ E , i ∈ N
and let pi ∈ R be the probability assigned to the point xi such that

0 ≤ pi ≤ 1 and
∑
i∈N

pi = 1. We define the probability measure µ by

posing µ(A) :=
∑
xi∈A

pi, for A ∈ E .

Remark 1.4. It follows from definition that any positive measure is monotone,

i.e., if A,B ∈ E , A ⊆ B, then µ(A) ≤ µ(B). Moreover, if (Eh)h∈N is an

increasing sequence of sets (respectively a decreasing sequence of sets with

µ(E0) < +∞), then

µ

(
∞⋃
h=0

Eh

)
= lim

h→+∞
µ(Eh), resp. µ

(
∞⋂
h=0

Eh

)
= lim

h→+∞
µ(Eh).

Before introducing the notion of real or signed measure, we would like

to point out how, by definition, a positive measure is not necessarily finite.

For this reason, according to the following definition, a positive measure, in

general, is not a particular case of real measure.

Definition 1.5 (Signed measure). Let (X, E) be a measure space.

(i) We say that µ : E −→ R is a signed measure if µ(∅) = 0 and ∀(Eh)h∈N
of pairwise disjoint elements of E

µ

(
+∞⋃
h=0

Eh

)
=

+∞∑
h=0

µ(Eh).

(ii) If µ is a signed measure, we define its total variation |µ| for every

E ∈ E as follows:

|µ|(E) := sup

{
+∞∑
h=0

|µ(Eh)|;Eh ∈ E pairwise disjoint, E =
+∞⋃
h=0

Eh

}

Remark 1.6. 1. Notice that in (i) it is necessary to request the absolute

convergence of the series: in fact, the sum of the series could depend

on the order of its terms, while the union does not.
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2. A signed measure takes only finite values.

3. Some author call a measure as in Definition 1.5 a “real” measure.

Remark 1.7. A probability measure is a positive measure that is also a real

measure, since it is finite. Moreover, real measures form a real vector space,

since it is immediate to check from Definition 1.5 that they can be added

and multiplied by real numbers.

Remark 1.8. If µ is a probability measure then |µ| coincides with µ.

Theorem 1.9 (See [2], Theorem 1.6). Let µ be a real measure on (X, E);

then |µ| is a positive finite measure.

For the proof of this Theorem we refer the reader to [2], Theorem 1.6, pp.

4-5.

Let us continue this recall to general measure theory, by introducing further

definitions of µ− negligible sets and measurable functions.

Definition 1.10 (µ-negligible set). Let µ be a positive measure on (X, E).

(i) A subset N ⊂ X is called µ − negligible if ∃E ∈ E such that N ⊂ E

and µ(E) = 0.

(ii) We say that a property P (x) depending on the point x ∈ X holds

µ− a.e. in X if the set where P fails is a µ-negligible set.

(iii) Let Eµ be the collection of all the subsets of X of the form F = E ∪N ,

with E ∈ E and N µ-negligible; then Eµ is a σ-algebra which is called

µ − completion of E , and we say that E ⊂ X is µ − measurable if

E ∈ Eµ. The measure µ extends to Eµ by setting µ(F ) = µ(E), for F

as above.

Definition 1.11 (measurable function). Let f : X −→ Y be a function,

with (X, E) a measure space and (Y, d) a metric space.

(i) The function f is said to be E −measurable if f−1(A) ∈ E for every

open set A ⊂ Y.
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(ii) If µ is a positive measure on (X, E), the function f is said to be

µ−measurable if it is Eµ−measurable.

In particular, if f is E−measurable, then f−1(B) ∈ E ∀B ∈ B(Y ). In addi-

tion, if (X, d′) is a metric space too, and we consider (X, E) with E = B(X),

then we say that f is a Borel measurable function if it is B(X)−measurable.

Notice that if X, Y are metric spaces, any continuous function f : X → Y

is Borel measurable. So, we can now restrict our discussion to measures de-

fined on the σ-algebra of a metric space. From now on, in this chapter, (X, d)

denotes a locally compact and separable metric space, l.c.s. metric space for

short. In particular, we recall that a topological space is separable if it con-

tains a countable, dense subset, while most commonly a topological space is

called locally compact, if every point x ∈ X has a compact neighbourhood,

i.e., there exists an open set U and a compact set K, such that x ∈ U ⊆ K.

There are other common definitions of locally compact space, but they are

all equivalent if X is a Hausdorff space, but this is always true if X is a

metric space, as in our case. Indeed if x, y ∈ X, x 6= y, then their distance

d(x, y) > 0. Thus we can find two disjoint open balls centered at x and at y

respectively, by taking a radius r < d(x,y)
2
.

Obviously, a compact space is locally compact, but the converse is not true:

for example Rn is locally compact but it is not compact.

Definition 1.12 (Borel and Radon measures). Let X be a l.c.s. metric

space and consider the measure space (X,B(X)) with its Borel σ-algebra.

(i) A positive measure on (X,B(X)) is called a Borel measure. If µ is a

Borel measure such that µ(K) < +∞, for every compact K ⊂ X, µ is

called a positive Radon measure.

(ii) A (real) set function defined on the relatively compact (i.e. their closure

is compact) Borel subsets of X which is a real measure on (K,B(K))

for every compact K ⊂ X is called a (real) Radon measure on X. If
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µ : B(X) −→ R is a real measure, according to Definition 1.5, then we

say that it is a finite Radon measure. We denote by Mloc(X) the

space of the real Radon measures on X and byM(X) the space of the

finite Radon measures on X.

Remark 1.13. Observe that if X is a l.c.s. metric space, then every Borel

probability measure on X is a finite Radon measure. Moreover, if µ is a

Radon measure and sup{|µ|(K) : K ⊂ X,K compact} < +∞, then it can

be extended to the whole of B(X) obtaining a finite Radon measure, which we

still denote with µ. We can extend it in this way: let us assume µ is positive,

as for example a probability measure, and set µ(E) = sup{µ(E ∩K) : K ⊂
X,K compact},∀E ∈ B(X).

The following result allows us to approximate, under certain hypotheses,

measurable sets through compact or open sets as a sort of inner or outer

regularity of measures. Once again, for the proof of the following Proposition

we refer the reader to the Proposition 1.43 of [2].

Proposition 1.14 (Inner and outer regularity of measures, see [2],

Proposition 1.43). Let X be a l.c.s. metric space and µ a Borel measure on

X; let E be a µ−measurable set.

(i) If µ is σ-finite, then

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

In this case we say that µ is inner regular.

(ii) Assume that a sequence (Xh)h∈N of open sets in X exists such that

µ(Xh) < +∞ ∀h and X =
⋃
h∈N

Xh, then

µ(E) = inf{µ(A) : E ⊂ A, A open}.

In this case we say that µ is outer regular.

If µ is inner and outer regular, we simply say that µ is regular.
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Remark 1.15. We would like to point out how this result always applies to a

Borel probability measure on any given l.c.s. metric space X. In fact, X is

σ-finite since it is the union of an increasing sequence of concentric balls of

the form Bn(x) with n ∈ N, x ∈ X fixed and µ(Bn(x)) ≤ µ(X) = 1 < +∞,

where Bn(x) denotes the open ball of radius n centered at x ∈ X. Therefore

µ is σ-finite on X, according to Definition 1.2. Hence (i) and (ii) hold.

Remark 1.16. Observe that according to Definition 1.12, a finite positive

Borel measure is also a positive Radon measure, since ∀K ⊂ X compact

µ(K) ≤ µ(X) < +∞. Thus, a finite positive Borel measure is a regular finite

positive Radon measure, by arguing as above. Note that this always holds

for a Borel probability measure.

Finally, before moving on to the next chapter, in which we are going

to introduce a distance between two probability measures, the Wasserstein

distance, it will be useful to recall some operations on measures, such as push

forward and restriction and the notion of the support of a measure.

Let us start with the definition of support.

Definition 1.17 (Support of a measure). Let µ be a positive Borel mea-

sure on the l.c.s. metric space X. We call the support of µ and we write

suppµ, the closed set

suppµ := {x ∈ X;µ(U) > 0 ∀ neighbourhood U of x}.

The operation of restriction, instead, allows us to define a new measure

by restricting µ to a subset of the σ-algebra.

Definition 1.18 (Restriction). Let µ be a positive or real measure on the

measure space (X, E). If E ∈ E , we set µ E(F ) = µ(E ∩ F ) ∀F ∈ E .

It is clear that µ E is a measure. In addition, we can note that if µ is a

Borel (Radon) measure and E is a Borel set, then µ E is a Borel (Radon)

measure, too.
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Finally, we would like to recall another important operation which will be

essential for the study of the well-posedness of the mathematical model for

Alzheimer’s disease, presented in the Introduction of this work. We are

talking about the push-forward of a measure, which allows us to map a

measure on a metric space X to another one, Y . In this thesis, the push-

forward’s operation will be used in order to rewrite and resolve the system

of the model in terms of the characteristics. Before defining it, we refer to

the first chapter of [2] for the definition of the integral respect to a positive

or real measure for measurable positive functions and its extension to real

summable and integrable functions.

Definition 1.19 (Push-forward). Let (X, E) and (Y,F) be measurable

spaces and let Φ : X −→ Y be such that Φ−1(F ) ∈ E whenever F ∈ F . For

any positive or real measure µ on (X, E) we define a measure Φ]µ in (Y,F)

by

Φ]µ(F ) := µ(Φ−1(F )) ∀F ∈ F .

Equivalently, the measure Φ]µ can be characterized by

�
Y

fd(Φ]µ) =

�
X

f ◦ Φdµ

with f a real function on Y summable w.r.t Φ]µ (then f ◦Φ is summable w.r.t

µ).

Remark 1.20. Notice that the push-forward of a probability measure is a

probability measure. From now on, in this work, we will take in the previous

definition the measure space with the Borel σ-algebra (X,B(X)), Φ : X −→
X, such that Φ−1(B) ∈ B(X) ∀B ∈ B(X) and µ a Borel probability measure

on X. So, Φ]µ is a Borel probability measure too and we have

�
X

f(x)d(Φ]µ)(x) =

�
X

f(Φ(x))dµ(x)

for every bounded Borel measurable function f defined on X.





Chapter 2

Narrow, Weak∗ and

Wasserstein convergence

In this chapter we introduce some tools which will be used throughout

this work. In particular, we present some results from [3], referring mainly

to the Chapter 5 and 7. These results, together with the definition of the

Wasserstein distance between two probability measures, will allow us to de-

fine a solution for the mathematical model for Alzheimer’s disease. As we

have seen in the previous chapter, X denotes a locally compact separable

metric space, with metric d. We denote by B(X) the Borel σ-algebra of the

Borel subsets of X, by P(X) the family of all Borel probability measures

on X. By the Remark 1.13 every µ ∈ P(X) is a positive finite Radon mea-

sure. Let us start by giving the definition of Narrow and Weak∗ convergence,

according to the probabilistic terminology.

Definition 2.1. Let (µn)n∈N be a sequence in P(X) and µ ∈ P(X). We say

that

(i) µn → µ narrowly as n→ +∞ if

lim
n→+∞

�
X

f(x)dµn(x) =

�
X

f(x)dµ(x) (2.1)

for every function f ∈ C0
b (X), the space of continuous and bounded

real functions defined on X.

11
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(ii) µn → µ weakly∗ as n→ +∞ if

lim
n→+∞

�
X

f(x)dµn(x) =

�
X

f(x)dµ(x) (2.2)

for every function f ∈ C0
c (X), the space of compactly supported con-

tinuous real functions defined on X.

Remark 2.2. Note that narrow convergence implies weak∗ convergence, since

a compactly supported continuous real function is bounded on X by the

generalization of Weierstrass Theorem to metric spaces (see Theorem B.1).

Moreover, narrow and weak∗ convergences are equivalent if X is compact,

since every continuous and bounded real function defined on X is compactly

supported if X is compact.

Let us recall the notion of relatively compact sets: a relatively compact

subset K of a topological space Y is a subset whose closure is compact.

More generally when sequences may be used to test for compactness, the

criterion for relative compactness becomes that any sequence in K has a

subsequence convergent in Y . Now, if we consider P(X) with the Narrow

topology, relatively compact sets can be characterized by the following useful

result, which requires the definition of tight set of P(X).

Definition 2.3. We say that a set K ⊂ P(X) is tight if ∀ε > 0 ∃Kε compact

in X such that µ(X \Kε) ≤ ε ∀µ ∈ K.

Remark 2.4. Notice that if the metric space (X, d) is compact, then every set

of Borel probability measures on X is tight. Indeed, we can choose Kε = X

in the definition above. Alternatively, this property can be obtained by

Proposition A.5, as shown in Appendix.

Theorem 2.5 (Prokhorov, see [3], Theorem 5.1.3). If a set K ⊂ P(X) is

tight, then K is relatively compact in P(X). Conversely, if X is complete,

then every relatively compact subset of P(X) is tight.

In order to introduce the Wasserstein distance and present a very useful

result which connects the Wasserstein convergence and the Narrow conver-
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gence, we have to give the definition of uniform integrability w.r.t. a given

set K ⊂ P(X).

Definition 2.6. (i) We say that a Borel measurable function

g : X → [0,+∞] is uniformly integrable w.r.t. a given set K ⊂ P(X)

if

lim
k→+∞

�
{x:g(x)≥k}

g(x)dµ(x) = 0

uniformly w.r.t. µ ∈ K, i.e.

lim
k→+∞

sup
µ∈K

�
{x:g(x)≥k}

g(x)dµ(x) = 0.

(ii) If d is a given metric for X, in the particular case of g(x) := d(x, x̄)p,

for some (and thus any) x̄ ∈ X and a given p ≥ 1, we say that the set

K ⊂ P(X) has uniformly integrable p−moments if

lim
k→+∞

�
X\Bk(x̄)

d(x, x̄)pdµ(x) = 0

uniformly w.r.t. µ ∈ K.

Since in the above definition g : X → [0,+∞], we recall that the family

of rays ]a,+∞] is a neighbourhood basis for +∞. Moreover, Bk(x̄) denotes

the open ball of radius k centered at x̄.

Now, the main goal of this thesis is to prove the well-posedness of the math-

ematical model for Alzheimer’s disease, presented in the introduction of this

work. In order to do this, we need some tools which we recall from [3],

without proofs. In particular, we will apply a useful lemma which provides

a characterization of a sequence of measures with uniformly integrable p-

moments in terms of (2.1), but extending its validity to functions unbounded

but “p-growth”. We say that a function f : X −→ R is p-growth if

|f(x)| ≤ A+Bd(x, x̄)p

∀x ∈ X, for some A,B ≥ 0 and x̄ ∈ X.
Notice that a bounded function is always a p-growth function.
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We denote by Pp(X) the following subset of Borel probability measures on

X:

Pp(X) :=

{
µ ∈ P(X) :

�
X

d(x, x̄)pdµ(x) < +∞ for some x̄ ∈ X
}
.

Lemma 2.7 (See [3], Lemma 5.1.7.). Let (µn)n∈N be a sequence in P(X)

narrowly convergent to µ ∈ P(X). The family {µn}n∈N ⊂ P(X) has uni-

formly integrable p-moments if and only if (2.1) holds for every continuous

p-growth function f : X −→ R.

In the previous chapter we have defined the notion of push-forward of a

measure. The tightness condition permits, under certain assumptions, to en-

sure the narrow convergence of the push-forward of a sequence of probability

measures.

Lemma 2.8 (See [3], Lemma 5.2.1.). Let X1, X2 be separable metric spaces,

X2 locally compact and let Φn : X1 −→ X2 be Borel measurable functions

uniformly converging to Φ on compact subsets of X1. Let (µn)n∈N ⊂ P(X1)

be a tight sequence narrowly converging to µ ∈ P(X1). If Φ is continuous,

then (Φn)]µn −→ Φ]µ narrowly as n→ +∞.

Proof. Let f : X2 −→ R be a bounded continuous function. Let us start to

prove

lim inf
n→+∞

�
X2

fd(Φn)]µn ≥
�
X2

fd(Φ)]µ. (2.3)

We can assume that f ≥ 0, eventually adding a constant to f . By hypoth-

esis, Φn converges uniformly to Φ on every compact K ⊂ X1. Thus, by

Proposition B.3 , proved in Appendix, f ◦ Φn converges uniformly to f ◦ Φ

on K. Therefore

lim inf
n→+∞

�
X2

fd(Φn)]µn = lim inf
n→+∞

�
X1

f ◦ Φndµn (2.4)

≥ lim inf
n→+∞

�
K

f ◦ Φndµn (2.5)

≥ lim inf
n→+∞

�
K

f ◦ Φdµn (2.6)

= lim inf
n→+∞

(�
X1

f ◦ Φdµn −
�
X1\K

f ◦ Φdµn

)
(2.7)
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≥ lim inf
n→+∞

�
X1

f ◦ Φdµn + (− sup f) sup
n
µn(X1 \K) (2.8)

=

�
X1

f ◦ Φdµ+ (− sup f) sup
n
µn(X1 \K) (2.9)

In particular (2.5) holds because f ≥ 0 and IX1 ≥ IK , where IA with A ∈
B(X1) denotes the indicator function such that IA(x) = 0 when x /∈ A and

IA(x) = 1 when x ∈ A; (2.6) holds since f ◦Φn converges uniformly to f ◦Φ

on K. Indeed∣∣∣∣�
K

f ◦ Φndµn −
�
K

f ◦ Φdµn

∣∣∣∣ ≤ �
K

|f ◦ Φn − f ◦ Φ|dµn ≤

≤ sup
K
|f ◦ Φn − f ◦ Φ|µn(K) ≤ sup

K
|f ◦ Φn − f ◦ Φ|

since µn are probability measures. Thus, letting n → +∞, the sup goes to

zero for the uniform convergence and we obtain

lim inf
n→+∞

(�
K

f ◦ Φndµn −
�
K

f ◦ Φdµn

)
= 0.

Now, we can apply Proposition B.2

0 = lim inf
n→+∞

(�
K

f ◦ Φndµn −
�
K

f ◦ Φdµn

)
(2.10)

≤ lim inf
n→+∞

(�
K

f ◦ Φndµn

)
+ lim sup

n→+∞

(
−
�
K

f ◦ Φdµn

)
(2.11)

= lim inf
n→+∞

(�
K

f ◦ Φndµn

)
− lim inf

n→+∞

(�
K

f ◦ Φdµn

)
(2.12)

Hence we obtain (2.6)

lim inf
n→+∞

(�
K

f ◦ Φdµn

)
≤ lim inf

n→+∞

(�
K

f ◦ Φndµn

)
.

Moreover, (2.7) holds because IK = IX1 − IX1\K ; for (2.8) we have used

�
X1\K

f ◦ Φdµn ≤ sup fµn(X1 \K) ≤ sup f sup
n
µn(X1 \K),

where sup f is a constant since f is bounded. Thus, by applying (B.3) in

Proposition B.2 we obtain (2.8); finally, (2.9) holds since f ◦Φ is continuous
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and bounded and µn converges narrowly to µ.

Now, since {µn} is tight we can find an increasing sequence of compact set

Km such that

lim
m

sup
n
µn(X1 \Km) = 0.

Putting K = Km in the inequality above and letting m ↑ +∞ we obtain

(2.3). To conclude we obtain the inequality for the lim sup by replacing f to

−f.

To introduce the Wasserstein distance, we present first the concept of

marginals of a Borel probability measure on a product space and the notion

of transport plane. Let X1 and X2 be complete separable metric spaces

and we assume for our purpose that X1, X2 are also locally compact. We

consider X1, X2 as measure spaces with their respective Borel σ-algebra. Let

π1 : X1 ×X2 −→ X1 and π2 : X1 ×X2 −→ X2 be the projection operators

such that πi((x1, x2)) = xi with i ∈ {1, 2}.
From now on, when X = X1 × ...×Xk is a product space we will often use

bold letters to indicate Borel measures µ ∈ P(X). First, we recall how a

product space is defined; for our purposes we limits to consider a product of

measure spaces with the Borel σ-algebra, but it can be defined in the same

way starting from any σ-algebra.

Definition 2.9. We define the product space the pair

(X1 ×X2,B(X1)× B(X2))

where B(X1) × B(X2) is the product σ-algebra defined as the smallest σ-

algebra which makes the projection operators measurable. Equivalently,

we can define the product σ-algebra as the σ-algebra generated by the sets

(πi)−1(A) with A ∈ B(Xi) and i ∈ {1, 2}.

In particular, if we consider X1×X2 as topological space with the product

topology and we take now its Borel σ-algebra B(X1×X2), then by Theorem

B.4 we have that

B(X1 ×X2) = B(X1)× B(X2),
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since X1, X2 are separable metric spaces and thus they have a countable

basis of open sets. In the same way, if N ≥ 2 is an integer and X1, ..., XN are

separable metric spaces we have B(X1 × ...×XN) = B(X1)× ...× B(XN).

We introduce now the notion of transport plane between two probability

measures.

Definition 2.10. Let N ≥ 2 be an integer and i, j = 1, ..., N , we

denote by πi, πi,j the projection operators defined on the product space

X1 × ...×XN , respectively defined by

πi : (x1, ..., xN) 7→ xi ∈ Xi, πi,j : (x1, ..., xN) 7→ (xi, xj) ∈ Xi×Xj.

(i) If µ ∈ P(X1 × ... × XN), the marginals of µ are the probability

measures

µi := πi]µ ∈ P(Xi) µij := πi,j] µ ∈ P(Xi ×Xj).

(ii) If µi ∈ P(Xi), i = 1, ..., N , the class of multiple plans with marginals

µi is defined by

Γ(µ1, ..., µN) :=
{
µ ∈ P(X1 × ...×XN) : πi]µ = µi, i = 1, ..., N

}
.

(iii) In the case N = 2 a measure

µ ∈ Γ(µ1, µ2) :=
{
µ ∈ P(X1 ×X2) : π1

]µ = µ1, π2
]µ = µ2

}
is also called transport plane between µ1 and µ2.

Remark 2.11. The product measure µ1× µ2 (see Theorem B.5 in Appendix)

is a transport plane which belongs to Γ(µ1, µ2), since π1
] (µ

1 × µ2) = µ1 and

π2
] (µ

1 × µ2) = µ2. Indeed, if A ∈ B(X1)

π1
] (µ

1 × µ2)(A) = (µ1 × µ2)((π1)−1(A))

= µ1 × µ2(A×X2)

= µ1(A)µ2(X2)

= µ1(A).
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Similarly for π2
] (µ

1 × µ2) = µ2.

We would like to present the Wasserstein distance by briefly contextu-

alizing it within the so-called optimal transport problem. However, in this

work, we will assume the general results on optimal transportation problems

between probability measures, referring to the chapters 5 and 6 of [3] for

a detailed discussion. In this way we can have the right tools to build the

Alzheimer’s disease model setting discussed in this thesis.

In particular, when we refer to the optimal transportation problem, we can

consider a strong formulation of the problem with transport maps due to

Monge and a weak formulation with transport plans due to Kantorovich. As

regards the first one, let X, Y be complete and separable metric spaces, let

c : X × Y −→ [0,+∞] be a Borel cost function and let µ ∈ P(X), ν ∈ P(Y )

be given. The optimal transport problem, in Monge’s formulation, is given

by

inf

{�
X

c(x, t(x))dµ(x) : t]µ = ν

}
where t : X −→ Y is a Borel map, called transport map since it carries a

measure on X to a measure on Y via push-forward. However, sometimes

there may not be a transport map t such that t]µ = ν. So, Monge’s formula-

tion can be ill posed. Kantorovich’s formulation, instead, eludes this problem

by considering

min

{�
X×Y

c(x, y)dγ(x, y) : γ ∈ Γ(µ, ν)

}
since, by Remark 2.11, µ × ν ∈ Γ(µ, ν). As for the existence of an optimal

transport plane, this is guaranteed when c is a lower semicontinuous function.

We recall that if (X, d) is a metric space, we say that a function c : X →
[−∞,+∞] is lower semicontinuous if

lim
r→0

(
inf

y∈Br(x)\{x}
c(y)

)
≥ c(x), ∀x ∈ X.

This fact is proved in Chapter 5 and 6 of [3]: the idea is to use a lower

semicontinuity property for semicontinuous functions bounded from below
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and the fact that Γ(µ, ν) is tight (this property is equivalent to the tightness

of µ, ν, a property always guaranteed in a complete separable metric space).

In particular, if we consider as cost function c(x, y) = d(x, y)p, with p ≥ 1,

there is an optimal transport plane, since the metric d is Lipschitz-continuous,

thus continuous, which implies that dp is also continuous, and therefore it is

lower semicontinuous. Finally, this carries us to the Wasserstein distance.

Definition 2.12. Let X be a complete separable locally compact metric

space and p ≥ 1. The p-th Wasserstein distance between µ1, µ2 ∈ Pp(X) is

the number denoted by Wp(µ
1, µ2) and defined by

Wp
p (µ1, µ2) := inf

{�
X×X

d(x1, x2)pdµ(x1, x2) : µ ∈ Γ(µ1, µ2)

}
,

where Γ(µ1, µ2) ⊂ P(X2) is the set of all transport planes between µ1 and

µ2.

The function defined above is indeed a distance. We can prove the triangle

inequality using Remark A.2. Indeed, if µ1, µ2, µ3 ∈ Pp(X) and γ12 is optimal

between µ1 and µ2, γ23 is optimal between µ2 and µ3, then by Remark A.2

we can find γ ∈ P(X × X × X) such that π1,2
] γ = γ12, π2,3

] γ = γ23 and

such that if we take γ13 := π13
] γ, γ13 belongs to Γ(µ1, µ3). Now, since γ12 is

optimal between µ1 and µ2 and π1,2
] γ = γ12, we have

Wp
p (µ1, µ2) =

�
X2

d(x1, x2)pdγ12(x1, x2)

=

�
X2

d(x1, x2)pd(π1,2
] γ)(x1, x2)

=

�
X3

d(π1,2(x1, x2, x3))pdγ(x1, x2, x3)

=

�
X3

d(x1, x2)pdγ(x1, x2, x3).

If now we start from γ23, that is optimal between µ2 and µ3, and we use

π2,3
] γ = γ23, then in similar way we can get

Wp
p (µ2, µ3) =

�
X3

d(x2, x3)pdγ(x1, x2, x3).
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Now, since γ13 := π13
] γ ∈ Γ(µ1, µ3), we have

Wp
p (µ1, µ3) = inf

{�
X2

d(x1, x3)pdµ(x1, x3) : µ ∈ Γ(µ1, µ3)

}
≤

�
X2

d(x1, x3)pdγ13(x1, x3)

=

�
X2

d(x1, x3)pd(π13
] γ)(x1, x3)

=

�
X3

d(π13(x1, x2, x3))pdγ(x1, x2, x3)

=

�
X3

d(x1, x3)pdγ(x1, x2, x3).

The standard triangle inequality of the Lp distance allows us to conclude the

proof, where the Lp distance is defined as follows: we consider

Lp(µ;Y ) :=
{
r : X → Y µ−measurable :

�
X
dY (r(x), ȳ)pdµ(x) < +∞

for some (and thus any) ȳ ∈ Y
}

,

with the distance

d(r, s)Lp(µ;Y ) :=

(�
X

dY (r(x), s(x))pdµ(x)

) 1
p

.

Thus, for the previous computations

Wp(µ
1, µ3) ≤

(�
X3

d(x1, x3)pdγ(x1, x2, x3)

) 1
p

= d(x1, x3)Lp(γ;X)

≤ d(x1, x2)Lp(γ;X) + d(x2, x3)Lp(γ;X)

=Wp(µ
1, µ2) +Wp(µ

2, µ3).

The following result guarantees the completeness of the Wasserstein metric so

that we can work with a complete metric space of Borel probability measures

with finite p-moments.

Proposition 2.13 (See Proposition A.4). Let X be a complete separable

locally compact metric space. If µ ∈ P(X) has compact support then for any

x̄ ∈ X and p ≥ 1 �
X

d(x, x̄)pdµ(x) < +∞.
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In particular, µ has finite p-moment, i.e. µ ∈ Pp(X). Endowed with the p-th

Wasserstein distance Wp, Pp(X) is a complete metric space.

Now, as we have anticipated before, the main goal of this chapter is

obtaining some result that connects the Wasserstein convergence and the

narrow or equivalently the weak∗ convergence. To do this, we need to know

that the limit of a weakly∗ converging sequence, all supported within a fixed

compact, which does not depend by the terms of the sequence, is itself still

supported within that compact.

Proposition 2.14. Let X be a locally compact separable metric space. Let

(µn)n∈N be a sequence in Pp(X) such that µn −→ µ as n → +∞ weakly∗.

Suppose there exist a compact set K such that suppµn ⊂ K ∀n ∈ N and an

open set O satisfying

K ⊂ O and X \O 6= ∅.

Then suppµ ⊂ K.

Before giving the proof, let us introduce some notations: in a metric space

(X, d), the distance of a point x ∈ X from a set K ⊆ X is defined by

d(x,K) := inf
y∈K

d(x, y).

Moreover, the distance between two sets A,B ⊆ X is defined by

d(A,B) := inf
x∈A,y∈B

d(x, y).

Proof. Let H be any compact set such that H ⊂ X \K, hence d(H,K) > 0.

If we consider now

Hn :=

{
x ∈ X; d(x,H) <

1

2n

}
with n ∈ N, then for n sufficiently large, i.e. n ≥ n1, we have

Hn ∩K = ∅. (2.13)
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Moreover, H ⊂ X \ K where X \ K is open, since K is compact and thus

closed, and X \ (X \K) = K 6= ∅. So, by Proposition B.9 for n ≥ n2, Hn is

compact. Let’s set

n ≥ max(n1, n2) (2.14)

and let φn : X −→ R be a continuous function,

φn(x) :=

(
1− d(x,H)

1
2n

)+

,

where p+ := max(p, 0). By definition, φn ≡ 1 on H and suppφn ⊂ Hn. Thus

suppφn is compact because it is closed and contained in a compact set. Now,

by (2.14) and (2.13)
�
X
φndµj = 0 (remember that suppµj ⊂ K ∀j ∈ N).

Hence, since µj −→ µ weakly∗, i.e.

0 =

�
X

φndµj −→
�
X

φndµ,

as j → +∞, we have �
X

φndµ = 0.

Moreover, for any point x fixed we have φn(x) −→ IH(x) as n→ +∞, where

IH denotes the indicator function on H. Indeed, if x ∈ H, φn(x) = 1 −→
1 = IH(x) as n → +∞, while if x ∈ X \ H, φn(x) −→ 0 as n → +∞, by

definition of φn. In addition, |φn| ≤ 1 ∀n ∈ N and, since µ is a probability

measure,

1 ∈ L1(X;µ) :=

{
f : X −→ R µ−measurable;

�
X

|f |dµ < +∞
}
.

Thus, by the dominated convergence Theorem B.10

0 =

�
X

φndµ −→
�
X

IHdµ = µ(H) as n→ +∞.

Hence µ(H) = 0 ∀H compact, H ⊂ X \K.
Now, ∀x ∈ X \K there exists an open ball B(x, r) ⊂ X \K, since X \K is

open. So, if we show that µ(B(x, r)) = 0, then by definition of support we

can conclude that suppµ ⊂ K. Indeed, by Remark 1.15 µ is inner regular.

µ(B(x, r)) = sup{µ(H), H compact, H ⊂ B(x, r)}

= 0
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since H ⊂ B(x, r) ⊂ X \K, and we have already shown that µ(H) = 0, ∀H
compact, H ⊂ X \K.

Another useful result, which we will use later, connects the support of a

measure with that of its push-forward.

Proposition 2.15. Let X, Y be locally compact separable metric spaces. Let

µ ∈ P(X) and r : X −→ Y be an open continuous injective function, then

r(suppµ) ⊆ supp(r]µ) = r(suppµ).

In particular, if r is also a closed function

supp(r]µ) = r(suppµ).

Proof. Let us start to prove that supp(r]µ) ⊆ r(suppµ). We recall that, by

definition,

supp(r]µ) := {y ∈ Y ; (r]µ)(U) > 0, ∀neighborhood U of y}.

Since r(suppµ) is closed and contains r(suppµ), we have but to prove that

{y ∈ Y ; (r]µ)(U) > 0, ∀neighborhood U of y} ⊆ r(suppµ).

Hence we could conclude that r(suppµ) contains the closure of the previous

set, i.e. supp(r]µ) ⊆ r(suppµ).

Now, let ȳ ∈ {y ∈ Y ; (r]µ)(U) > 0, ∀neighborhood U of y}. We can say

that any neighborhood V of r−1(ȳ) can be represented as V = r−1(W ) with

W a neighborhood of ȳ. Indeed, since r is injective, V = r−1(r(V )). Hence

we can set W := r(V ) that is a neighborhood of ȳ since r is open. Therefore,

for any neighborhood V of r−1(ȳ), we have

µ(V ) = µ(r−1(W ))

= (r]µ)(W ) > 0

since W is a neighborhood of ȳ and

ȳ ∈ {y ∈ Y ; (r]µ)(U) > 0, ∀neighborhood U of y}.
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This means that r−1(ȳ) ∈ suppµ, i.e. ȳ ∈ r(suppµ).

Let’s show now the opposite inclusion r(suppµ) ⊆ supp(r]µ). For definition of

closure, since the support of a measure is a closed set, it is sufficient to show

that r(suppµ) ⊆ supp(r]µ). Let y ∈ r(suppµ) and U be any neighborhood of

y. Since y ∈ r(suppµ), there exists x ∈ suppµ such that r(x) = y. Moreover,

r is continuous, thus r−1(U) is a neighborhood of x. Hence

(r]µ)(U) = µ(r−1(U)) > 0

since x ∈ suppµ. This holds for any U neighborhood of y, i.e. y ∈ supp(r]µ).

Remark 2.16. Notice that it is sufficient the continuity of r to have

r(suppµ) ⊆ supp(r]µ).

We have now all the necessary tools to investigate the link between the

the Wasserstein convergence of a sequence of Borel probability measures and

the weak∗ convergence of the same sequence.

Proposition 2.17. Let X be a complete locally compact separable metric

space. Let (µn)n∈N be a sequence in Pp(X). We have

(i) if Wp(µn, µ)→ 0 as n→ +∞, then µn → µ as n→ +∞ weakly∗;

(ii) suppose there exists a compact set K such that suppµn ⊂ K for all

n ∈ N and an open set O satisfying

K ⊂ O and X \ O 6= ∅.

Then

Wp(µn, µ)→ 0 as n→ +∞

if and only if µn → µ as n→ +∞ weakly∗ or, equivalently, narrowly.

Proof. As for (i), we apply Proposition A.4 and we obtain µn → µ narrowly

and by Remark 2.2 also weakly∗. As for (ii), let us start to prove that if
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the support of every term of the sequence is contained in a fixed compact

K satisfying our assumptions, then, the weak∗ convergence of the sequence

implies the narrow one. Let f : X −→ R be any bounded continuous real

function. We can easily construct a continuous function f̃ such that

suppf̃ ⊂ O and f̃ ≡ f in K. (2.15)

For example, we can take f̃ as follows: first, let ε > 0 and Kε compact be

given by Proposition B.9; we take now

f̃(x) = f(x)

(
1− d(x,K)

ε

)+

which is a continuous function satisfying (2.15) with compact support, since

suppf̃ ⊂ Kε and Kε ⊂ O.
Thus

lim
n→+∞

�
X

f(x)dµn(x) = lim
n→+∞

�
K

f(x)dµn(x) = lim
n→+∞

�
K

f̃(x)dµn(x)

= lim
n→+∞

�
X

f̃(x)dµn(x) =

�
X

f̃(x)dµ(x) =

�
K

f̃(x)dµ(x) (2.16)

=

�
K

f(x)dµ(x) =

�
X

f(x)dµ(x)

where we have used repeatedly suppµn, suppµ ⊂ K (by Proposition 2.14)

and weak∗ convergence with f̃ . So, we have proved weak∗ convergence ⇒
narrow convergence. Now, in order to have lim

n→+∞
Wp(µn, µ) = 0, we apply

again Proposition A.4. To do this, we have but to prove that µn’s have

uniformly integrable p-moments. By Lemma 2.7 the assertion will follow by

showing that

lim
n→+∞

�
X

f(x)dµn(x) =

�
X

f(x)dµ(x) (2.17)

for any continuous real p-growth function f .

Take now such p-growth function f and we construct f̃ as above. Now, by

arguing exactly as in (2.16), we obtain (2.17) for any p-growth function f .

Hence (µn) has uniformly integrable p-moments. Thus by Proposition A.4

we have

lim
n→+∞

Wp(µn, µ) = 0.
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Remark 2.18. If X is compact, then the assertion (ii) is trivial. Indeed, we

have already pointed out that narrow convergence and weak∗ convergence

are equivalent on compact metric spaces. Thus we can apply Proposition

A.4. Indeed the µn’s have uniformly integrable p-moments, by Lemma 2.7.

However, since X is compact we don’t need to construct f̃ because any

continuous p-growth function on X is bounded. Therefore (2.17) holds due

to the narrow convergence hypothesis.

Remark 2.19. Throughout this thesis, we will work with Borel probability

measures µ on [0, 1]. So, in order to apply the previous proposition and thus

to find a compact K satisfying our assumptions, we will often consider µ

as the restriction on [0, 1] of a Borel probability measure defined on R and

supported in [0, 1], which we will still denote with µ to avoid cumbersome

notations. In this way we can always find an open set O in R, such that

[0, 1] ⊂ O and R \ O 6= ∅.

Proposition 2.20. Let X, Y be complete separable metric spaces. In addi-

tion, let X be compact and Y be locally compact. Let assume that for any

compact set K ⊂ Y there exists an open set O such that

K ⊂ O and Y \ O 6= ∅.

Let (µn)n∈N be a sequence in Pp(X). Let φn : X → Y be a sequence of

continuous injective (and hence open) maps that converges uniformly to a

continuous injective (and hence open) map φ : X → Y . Then, if p ≥ 1

lim
n→+∞

Wp(µn, µ) = 0 ⇐⇒ lim
n→+∞

Wp((φn)]µn, φ]µ) = 0.

Before giving the proof, we would like to point out how the assertion:

“continuous injective (and hence open) map φ : X → Y ” holds by Theorem

B.13 since X is compact.

Proof. Let us start to prove ⇒).

By Remark 2.4, the sequence (µn)n∈N is tight. Thus by Proposition 2.17,
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point (i), by Remark 2.2 and by Lemma 2.8

lim
n→+∞

Wp(µn, µ) = 0⇒ (φn)]µn → φ]µ

narrowly as n → +∞. Now, if φ(X) = Y , then Y is compact, since X

is compact and φ is continuous. Therefore, by Remark 2.18, we obtain

lim
n→+∞

Wp((φn)]µn, φ]µ) = 0. Otherwise, set

K0 := {y ∈ Y ; d(y, φ(X)) < ε}.

with ε > 0 given by Proposition B.9 and thus K0 is compact. Moreover, by

Theorem B.13, φn is a closed function ∀n ∈ N. Thus, by Proposition 2.15

supp((φn)]µn) = φn(suppµn) ⊂ φn(X).

Now, since φn converges uniformly to φ, if n > n̄, then φn(X) ⊂ K0.

Hence

supp((φn)]µn) ⊂ K0

that is compact. By assumption, there is an open set O0 such that

K0 ⊂ O0 and Y \ O0 6= ∅.

Thus by Proposition 2.17, part (ii), lim
n→+∞

Wp((φn)]µn, φ]µ) = 0. This proves

the first part of the statement.

Let’s prove ⇐) and suppose now lim
n→+∞

Wp((φn)]µn, φ]µ) = 0.

We notice now that the sequence (µn)n∈N is tight (again by Remark 2.4), and

hence by Theorem 2.5, it is relatively compact w.r.t. the narrow convergence.

Therefore, there exists a subsequence (µnj)j∈N converging narrowly to ν ∈
P(X). By Proposition 2.17 (or better by Remark 2.18), Wp(µnj , ν) → 0 as

j → +∞, and then Wp((φnj)]µnj , φ]ν)→ 0 as j → +∞ (by the first part of

the present proposition). Thus the uniqueness of the Wasserstein limit yields

φ]ν = φ]µ and eventually ν = µ. Indeed, let B ⊂ X be an open set (and

hence φ(B) is open in Y ), since φ is injective, we have

ν(B) = ν(φ−1(φ(B))) = (φ]ν)(φ(B)) = (φ]µ)(φ(B)) = µ(φ−1(φ(B))) = µ(B).
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By Coincidence criterion (see Proposition B.6), if ν and µ coincide on open

sets, then ν = µ on B(X).

Therefore lim
j→+∞

Wp(µnj , µ) = 0.

A standard argument in metric spaces makes it possible to recover the limit

for the full sequence (µn)n∈N. Indeed, let suppose by contradiction that

Wp(µn, µ) 9 0 as n → +∞. Then, ∃ε > 0 and ∃ a subsequence (µnk)k∈N

such that

Wp(µnk , µ) ≥ ε ∀k ∈ N. (2.18)

By arguing as above with (µn)n∈N replaced by (µnk)k∈N, we find a subsequence

(µnkj )j∈N of (µnk)k∈N such that Wp(µnkj , µ)→ 0 as j → +∞, i.e.

∀ε̃ > 0 ∃jε̃ ∈ N such that ∀j > jε̃, Wp(µnkj , µ) < ε̃.

But now, if we take ε̃ = ε we have Wp(µnkj , µ) < ε ∀j > jε and, at the same

time, Wp(µnkj , µ) ≥ ε (because this holds for all terms of (µnk)k∈N).

So we got a contradiction. This would conclude the proof.

However for greater completeness, we show how to construct the subsequence

(µnk)k∈N. We are assuming that Wp(µn, µ) 9 0. This means that

∃ε > 0 such that ∀k ∈ N ∃pk > k such that Wp(µpk , µ) ≥ ε.

We choose k = 1 ⇒ Wp(µp1 , µ) ≥ ε;

we choose k = p1 ⇒ Wp(µp2 , µ) ≥ ε, p2 > p1;

we choose k = p2 ⇒ Wp(µp3 , µ) ≥ ε, p3 > p2;

and so on. Thus (pk)k∈N is an increasing sequence of indeces, therefore it

gives a subsequence (µpk)k∈N such that Wp(µpk , µ) ≥ ε ∀k ∈ N.

Corollary 2.21. Let (X, d1), (Y, d2) be complete separable metric spaces sat-

isfying the assumption of Proposition 2.20. If I ⊂ R is a compact interval,

let φ : X × I → Y be a continuous map such that for any t ∈ I the map

x→ φ(x, t) is injective and open.

If t ∈ I, let µt ∈ P(X).

Then t 7→ µt is continuous (w.r.t. the Wasserstein topology) if and only if

t 7→ φ(·, t)]µt is continuous (w.r.t. the Wasserstein topology).
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Proof. We show the continuity of the function t 7→ µt (w.r.t. the Wasserstein

topology) using the well know approach by sequences.

Let t0 ∈ I, (tn)n∈N ⊂ I, tn 6= t0 ∀n ∈ N be any sequence such that tn → t0

as n→ +∞. Since X and I are compact and φ is continuous, then by Heine

Cantor Theorem φ is uniformly continuous, i.e.

∀ε > 0 ∃δ > 0 such that ∀(x, t), (y, s) ∈ X × I, d1(x, y) + |t− s| < δ

d2(φ(x, t), φ(y, s)) < ε.

Let consider now d2(φ(x, tn), φ(x, t0)). By uniform continuity if d1(x, x) +

|tn − t0| = |tn − t0| < δ, then d2(φ(x, tn), φ(x, t0)) < ε. For sure |tn − t0| < δ

since tn → t0 as n→ +∞.

Thus ∀ε̃ > 0 ∃nε̃ ∈ N such that ∀n ≥ nε̃, |tn − t0| < ε̃. Therefore, if we take

ε̃ = δ, there exists nδ ∈ N such that |tn− t0| < δ ∀n ≥ nδ. Hence by uniform

continuity of φ, we get

d2(φ(x, tn), φ(x, t0)) < ε

∀n ≥ nδ,∀x ∈ X, that is the definition of uniform convergence of the function

φ(·, tn) to the function φ(·, t0). Thus by Proposition 2.20

lim
n→+∞

Wp(µtn , µt0) = 0 iff lim
n→+∞

Wp(φ(·, tn)]µtn , φ(·, t0)]µt0) = 0.





Chapter 3

Problem Statement and Main

Result

In the previous chapters we have introduced some useful tools that we

will use to investigate the mathematical well-posedness of the macroscopic

model for AD presented in the Introduction of this work. In this chapter we

state the problem studied in this thesis by describing the hypotheses on the

data and giving the definition of an its solution. Finally, we introduce the

main result of existence and uniqueness of the solution, whose proof will be

provided in the following chapters.

Throughout this thesis we set T > 0, N ∈ N, while Ω ⊂ Rn is an open

and bounded set with a smooth boundary ∂Ω, which is the disjoint union of

∂Ω0 and ∂Ω1.

To treat the measures fx,t that take into account the degree of malfunctioning

of neurons, we introduce a metric space X[0,1].

Definition 3.1. The space P([0, 1]) of Borel probability measures on [0, 1]

endowed with the Wasserstein distance W1 is denoted by X[0,1], i.e.

X[0,1] := (P([0, 1]),W1).

We refer to Chapter 2 for the definition of the Wasserstein distances Wp.

By Proposition A.4, X[0,1] is a complete separable metric space since [0, 1] is

31
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complete respect to the induced Euclidean metric because it is a closed set

in R, which is complete. Moreover, by Proposition 2.17 and by Remark 2.19,

a sequence (µn)n∈N converges in X[0,1] if and only if it converges narrowly or

weakly∗.

We denote by C([0, T ];X[0,1]) the space of continuous functions from the

interval [0, T ] to X[0,1], i.e.

C([0, T ];X[0,1]) =
{
t 7→ µt ∈ X[0,1];W1(µt, µt0)→ 0 as t→ t0, t0 ∈ [0, T ]

}
.

It is easy to see that, endowed with the distance

max
0≤t≤T

W1((µ1)t, (µ2)t),

C([0, T ];X[0,1]) is a complete metric space.

3.1 Hypotheses on the data

Let us start to recall some notations. Below we denote by ∂a, ∇u, etc.,

distributional derivatives, while C denotes a generic constant. Moreover, we

recall the following spaces

(i) L∞(Ω;C([0, 1]×[0,+∞)N−1)) =
{

measurable functions on Ω such that

x 7→ S(x, a, u1, . . . , uN−1) = Sx(a, u1, . . . , uN−1) ∈ C([0, 1]×[0,+∞)N−1)

for a.e. x ∈ Ω and sup
x∈Ω

(
sup

[0,1]×[0,+∞)N−1

|S(x, a, u1, . . . , uN−1)|
)
< +∞

}
;

(ii) H1(Ω) = {f ∈ L2(Ω);∀i = 1, . . . , n ∃∂xif and ∂xif ∈ L2(Ω)}.
If f ∈ H1(Ω) we define

‖f‖H1(Ω) :=

(�
Ω

|f |2 + |∇f |2dx
) 1

2

;
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(iii) L2([0, T ];H1(Ω)) =
{
t 7→ f(t, ·) ∈ H1(Ω); ‖f(t, ·)‖H1(Ω) is a

measurable function on [0, T ] and
� T

0
‖f(t, ·)‖2

H1(Ω)dt < +∞
}

;

(iv) H1([0, T ];H1(Ω)) =
{
f(t, ·) ∈ H1(Ω), ∂tf(t, ·) ∈ H1(Ω)∀t ∈ [0, T ];

‖f(t, ·)‖H1(Ω), ‖∂tf(t, ·)‖H1(Ω) are measurable functions on [0, T ] and� T
0

(
‖f(t, ·)‖2

H1(Ω) + ‖∂tf(t, ·)‖2
H1(Ω)

)
dt < +∞

}
.
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Throughout the work we shall use the following assumptions on the data.

(H1) ε, CF , µ0, di, σi, γi, ai,j are positive constants (1 ≤ i < N, 1 ≤ j ≤ N);

(H2) u0i ∈ C(Ω) is nonnegative (i = 1, . . . , N) and (f0)x ∈ X[0,1] for a.e.

x ∈ Ω;

(H3) χ is the characteristic function of a measurable set Q0 ⊆ QT = Ω ×
[0, T ]; the function η ∈ C([0, T ]) is nonnegative;

(H4) for a.e. x ∈ Ω, Gx ∈ C([0, 1]2), Gx(1, b) = 0 for b ∈ [0, 1], and

−C ≤ ∂aGx ≤ 0, |∂bGx| ≤ C in [0, 1]2; (3.1)

(H5) S ∈ L∞(Ω;C([0, 1]× [0,+∞)N−1)), S(x, 1, u1, . . . , uN−1) = 0 for ui ≥ 0

and a.e. x ∈ Ω, and for all compact sets K ⊂ [0,+∞)N−1 there exists

a constant C(K) such that for a.e. x ∈ Ω

−C(K) ≤ ∂aS(x, a, u) ≤ 0, |∇uS(x, a, u)| ≤ C(K) for a ∈ [0, 1], u ∈ K;

(3.2)

(H6) P ∈ C([0, T ]× [0, 1]2), P is nonnegative for all t ∈ [0, T ]

� 1

0

P (t, b, a)da = 1 for b ∈ [0, 1], P (t, b, a) = 0 if a < b, (3.3)

and there exists L > 0 such that, for all a
′
, a
′′
, b
′
, b
′′ ∈ [0, 1] and t ∈

[0, T ]

|P (t, b
′
, a
′
)− P (t, b

′′
, a
′′
)| ≤ L(|b′ − b′′|+ |a′ − a′′ |). (3.4)

Remark 3.2. Notice that it is easy to check that all functions presented in

the Introduction of this thesis satisfy all the above assumptions.

3.2 Main result

We introduce some additional notation. Let M([0, 1]) be the space of

signed Radon measures on the interval [0, 1]. Then M([0, 1]) is the dual of
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C([0, 1]) (see [2], Remark 1.57 ). We say that µ : Ω × (0, T ) →M([0, 1]) is

weakly∗ measurable if for any ρ ∈ C([0, 1]) the map

(x, t) 7→
�
ρ(a)dµx,t(a) (3.5)

is measurable in Ω× (0, T ). We say that

f ∈ L(Ω;C([0, T ];X[0,1]))

if f ∈ C([0, T ];X[0,1]) for a.e. x ∈ Ω and f is weakly∗ measurable as a function

from Ω× (0, T ) inM([0, 1]). In particular, if f ∈ L(Ω;C([0, T ];X[0,1])), then,

by the Fubini theorem (see in Appendix), for all ψ ∈ C([0, 1]× Ω× [0, T ])

x 7→
� T

0

(�
ψ(a, x, t)dfx,t(a)

)
dt

is measurable and belongs to L∞(Ω). Indeed∣∣∣∣� T

0

(�
ψ(a, x, t)dfx,t(a)

)
dt

∣∣∣∣ ≤ C

� T

0

�
dfx,t(a)dt = CT < +∞

since fx,t is a probability measure and ψ is bounded.

We can now define what we mean by “solution” of problem (8)-(9). In

order to define a solution in weak sense, we use a typical technique that it is

often used to rewrite a differential equation in a form where less smoothness

is required to define a “solution”. The basic idea is to multiply the PDE

by a smooth “test function”, integrate one or more times over some domain,

and finally use integration by parts to move derivatives onto the smooth test

function. In this way the resulting equation involves fewer derivatives on the

“solution”, and hence requiring less regularity.

Definition 3.3. An (N+1)-ple (f, u1, . . . , uN) is called a solution of problem

(8)-(9) in Ω× [0, T ] if

(i) f ∈ L(Ω;C([0, T ];X[0,1]));

(ii) ui ∈ C(QT ) and ui ≥ 0 in QT for 1 ≤ i ≤ N ;



36 3. Problem Statement and Main Result

(iii) the first equation in (8) is satisfied in a weak sense: for a.e. x ∈ Ω� τ

0

( �
(∂tφ+vx∂aφ)dfx,t +

�
φdJx,t

)
dt =

�
φ(·, τ)dfx,τ −

�
φ(·, 0)d(f0)x

for all τ ∈ [0, T ] and φ ∈ C1([0, 1] × [0, T ]), where the function v is

defined by (3) and the signed measure J by (6);

(iv) if 1 ≤ i < N , ui ∈ L2([0, T ];H1(Ω)) and

di

� T

0

[�
Ω

∇ui(x, t) · ∇ψ(x, t)dx+ γi

�
∂Ω1

ui(x, t)ψ(x, t)dσ(x)

]
dt

= ε

� �
QT

ui∂tψdxdt+ ε

�
Ω

u0iψ(x, 0)dx+

� �
QT

Riψdxdt (3.6)

for all ψ ∈ H1([0, T ];H1(Ω)), ψ(x, T ) = 0, where Ri is defined as in (8)

and F (which is part of R1) by (7);

(v) ∂tuN ∈ C(QT ), uN(·, 0) = u0N in Ω, and the equation for uN in (8) is

satisfied in QT .

Remark 3.4. (a) It follows from (6) and (H6) that, for a.e. x ∈ Ω,
�
dJx,t(a) =

0 for t ∈ [0, T ]. Indeed, by Fubini theorem,
�
dJx,t(a) = ηχ

[� 1

0

� 1

0

P (t, b, a)dfx,t(b)da−
� 1

0

dfx,t(a)

]
= ηχ

[� 1

0

� 1

0

P (t, b, a)dadfx,t(b)− 1

]
= ηχ

[� 1

0

1dfx,t(b)− 1

]
= ηχ [1− 1] = 0

since fx,t is a probability measure on [0, 1].

(b) It follows from (3.1) - (3.2) that, for a.e. x ∈ Ω, vx is Lipschitz continuous

w.r.t. a, uniformly in t ∈ [0, T ], i.e. there exists a constant L, which does

not depend on t, such that

|vx(a
′
, t)− vx(a

′′
, t)| ≤ L|a′ − a′′ | ∀a′ , a′′ ∈ [0, 1],∀t ∈ [0, T ].
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Indeed, if (x, t) 7→ (u1, . . . , uN−1) is continuous on QT , (u1, . . . , uN−1) belongs

to a compact set K of RN−1. Therefore, by (3.1) - (3.2)

−C(K) ≤ ∂aS ≤ 0 and − C ≤ ∂aGx ≤ 0,

hence

∂avx(a, t) =

�
[0,1]

∂aG(x, a, b)dfx,t(b) + ∂aS(x, a, u1(x, t), . . . , uN−1(x, t))

(3.7)

and

−C − C(K) ≤ ∂avx(a, t) ≤ 0. (3.8)

(c) As observed in [6], the concept of weak solution of the first order transport

equation, defined in Definition 3.3(iii), needs some explanation. In particular,

it follows from (H4 −H5) that, for a.e. x ∈ Ω, vx(1, t) = 0 for t ∈ [0, T ] and

vx(a, t) ≥ 0 for a ∈ [0, 1] and t ∈ [0, T ]. This implies that formally the “flux”

fv vanishes at a = 1, a condition which allows the choice of continuous test

functions φ(x, a, t) without any restriction at a = 1. Since v ≥ 0 at a = 0,

characteristics (see the next chapter) “enter the domain [0, 1]” at a = 0; so we

need a boundary condition at a = 0 which, according to Definition 3.3(iii),

is again the no flux condition. Actually this is imposed by the condition

that fx,τ is a probability measure in [0, 1]: choosing φ ≡ 1 it follows from

Definition 3.3(iii) and from point (a) that for a.e. x ∈ Ω�
dfx,τ =

�
d(f0)x = 1 for τ ∈ (0, T ].

Remark 3.5. We would like to stress that if we consider the continuity equa-

tion ∂tf + ∂a(fv[f ]) = 0 without the jump operator, then the Dirac measure

centered at the origin δ0(a), which would correspond to a “healthy brain”, is

a weak solution of the continuity equation in the sense of Definition 3.3 (iii),

without the integral term for J . Indeed, for fx,t = δ0, the deterioration rate

in (3) becomes

(v[δ0])x(a, t) =

� 1

0

Gx(a, b)dδ0(b) + S(x, a, u1, . . . , uN−1)

= Gx(a, 0) + S(x, a, u1, . . . , uN−1).
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Let τ ∈ [0, T ], φ ∈ C1([0, 1]× [0, T ]) and u := (u1, . . . , uN−1) then, δ0(a) is a

solution if it satisfies

� τ

0

( �
∂tφ(a, t)dδ0(a)

)
dt+

� τ

0

(�
(Gx(a, 0) + S(x, a, u))∂aφ(a, t)dδ0(a)

)
dt

=

�
φ(a, τ)dδ0(a)−

�
φ(a, 0)dδ0(a)

⇐⇒

� τ

0

∂tφ(0, t)dt+

� τ

0

(Gx(0, 0) + S(x, 0, u1, . . . , uN−1))∂aφ(0, t)dt

= φ(0, τ)− φ(0, 0)

But now, if we consider Gx and S defined as in (2) and (4), then in a “healthy

brain” the following term

� τ

0

(Gx(0, 0) + S(x, 0, u1, . . . , uN−1))∂aφ(0, t)dt = 0,

since both Gx(0, 0) and S(x, 0, u1, . . . , uN−1)) = CS

(
N−1∑
m=1

mum(x, t)− Ū
)+

are equal to zero. Indeed, if the neuron is not damaged the amount of toxic

Aβ oligomers does not exceed the threshold value Ū . Therefore, the previous

equation becomes

� τ

0

∂tφ(0, t)dt = φ(0, τ)− φ(0, 0)

that is obviously satisfied for all τ ∈ [0, T ] and φ ∈ C1([0, 1]× [0, T ]).

We are now ready to present the main result studied in this thesis. Re-

calling [6], our purpose is to show that the problem (8)− (9) is well-posed.

Theorem 3.6. Let Ω ⊂ Rn be an open and bounded set with a smooth

boundary ∂Ω, which is the disjoint union of ∂Ω0 and ∂Ω1. Let T > 0 and

N ∈ N, and let hypotheses (H1-H6) be satisfied. Then problem (8)− (9) has

a unique solution in Ω× [0, T ] in the sense of Definition 3.3.
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We will prove this theorem by proceeding by steps. In particular, the

purpose of the next chapter is to introduce the characteristics for the first

order transport equation for f . Then we will rewrite the original problem (8)

in terms of the characteristics and we will prove that the resulting system is

equivalent to the original one.





Chapter 4

Statement of the problem in

terms of characteristics

In this chapter we are going to reformulate problem (8)-(9) in terms of

the so-called characteristics for the first order transport equation for f . As

we will see, this provides us a new system that is equivalent to the original

one. Once this equivalence is proved, in the following chapter we will prove

the existence and uniqueness of the solution for the reformulated system. We

stress that the proof of the equivalence between the new problem involving

the characteristics and the original one will request some efforts. Indeed,

the major difficulty arises from the strong non linearity of the system: the

transport equation depends nonlinearly on both its solution (f), through an

integral operator (v[f ]), and the solution of the Smoluchowski system, which

in turn depends on the solution of the transport equation (F [f ]).

Let us start to introduce the characteristics.

Let f ∈ L(Ω;C([0, T ];X[0,1])) and ui ∈ C(QT ), and let v[f ] be defined by

(3). As we have seen in Remark 3.4 (b), for a.e. x ∈ Ω the map a 7→ vx(a, t)

is Lipschitz continuous, uniformly respect to t ∈ [0, T ]. Thus, the following

Cauchy problem issued from y ∈ [0, 1],∂tAx(y, t) = vx(Ax(y, t), t) for 0 < t ≤ T,

Ax(y, 0) = y,
(4.1)

41
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has a unique solution, by Cauchy-Lipischitz Theorem. In particular, the

solution of (4.1) is called characteristic of the transport equation ∂tf +

∂a(fv[f ]) = 0 which starts from y at the time t = 0.

We would like to point out that under our hypotheses the characteristics

exist in the classical sense.

In particular, the solution of (4.1) satisfies0 ≤ Ax(y1, t) < Ax(y2, t) ≤ Ax(1, t) = 1 if 0 ≤ y1 < y2 ≤ 1, 0 ≤ t ≤ T,

Ax(y, t1) ≤ Ax(y, t2) if y ∈ [0, 1], 0 ≤ t1 ≤ t2 ≤ T.

(4.2)

Indeed, as for the first chain of inequalities, Ax(1, t) = 1 since for a.e. x ∈ Ω,

vx(1, t) = 0 ∀t ∈ [0, T ], by our assumptions (H4 − H5). Thus, a = 1 is a

so-called steady state and the corresponding constant solution Ax(1, t) ≡ 1

satisfies (4.1) with initial data y = 1. Moreover, it follows from (H4 − H5)

that, for a.e. x ∈ Ω, vx(a, t) ≥ 0 for a ∈ [0, 1] and t ∈ [0, T ]. Hence

∂tAx(y, t) ≥ 0, i.e. the function t 7→ Ax(y, t) is increasing. Therefore, if

the initial data y1 ∈ [0, 1], i.e. Ax(y1, 0) = y1 ≥ 0, then Ax(y1, t) ≥ 0

∀t ∈ [0, T ]. Finally, for uniqueness of the solution of a Cauchy problem, we

have Ax(y1, t) < Ax(y2, t) if 0 ≤ y1 < y2 ≤ 1, 0 ≤ t ≤ T . As for the second

inequality in (4.2), it follows again by monotony of the map t 7→ Ax(y, t).

In particular, for a.e. x ∈ Ω, the function y 7→ Ax(y, t) is injective for all

t ∈ [0, T ]. Indeed, let suppose that Ax(y1, t) = Ax(y2, t). If y1 < y2 ⇒
Ax(y1, t) < Ax(y2, t), if y2 < y1 ⇒ Ax(y2, t) < Ax(y1, t). It follows that

y1 = y2. In addition, observe that, for a.e. x ∈ Ω, y 7→ Ax(y, t) is continuous

by a classical result on continuous dependence on initial data [19] and

∂yAx(y, t) = exp

(� t

0

∂avx(Ax(y, s), s)ds

)
> 0 for all t ∈ [0, T ]. (4.3)

Now, before proceeding to reformulate the original problem in terms of

the characteristics, we prove the following result.

Proposition 4.1. Let f ∈ L(Ω;C([0, T ];X[0,1])) and ui ∈ C(QT ). Let v[f ]

and J [f ] be defined by (3) and (6). Let, for a.e. x ∈ Ω, Ax(y, t) be the
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solution of (4.1) for any y ∈ [0, 1]. If f satisfies (5) in the sense of Definition

3.3(iii), then, for a.e. x ∈ Ω,

suppfx,t, suppJx,t ⊆ [Ax(0, t), 1] for t ∈ [0, T ]. (4.4)

Proof. Ax is well defined for a.e. x ∈ Ω. We fix such x and also τ ∈ [0, T ].

Let h ∈ C1(R) be nondecreasing and satisfy h ≡ 0 in (−∞, 0] and h ≡ 1 in

[1,+∞). Let δ > 0 and set for a.e. x ∈ Ω

hδ(s) = h
(s
δ

)
for s ∈ R, ψδ(a, t) = hδ(Ax(0, t)−a) for a ∈ [0, 1], t ∈ [0, T ].

Then, by construction, ψδ is of class C1 and

∂aψδ(a, t) = ∂ahδ(Ax(0, t)−a) = ∂ah

(
Ax(0, t)− a

δ

)
= −1

δ
h
′
(
Ax(0, t)− a

δ

)
,

∂tψδ(a, t) = ∂thδ(Ax(0, t)− a) = ∂th

(
Ax(0, t)− a

δ

)
=

1

δ
∂tAx(0, t)h

′
(
Ax(0, t)− a

δ

)
=

1

δ
vx(Ax(0, t), t)h

′
(
Ax(0, t)− a

δ

)
.

Now, by assumption, f satisfies (5) in the sense of Definition 3.3(iii). We

can use ψδ as a test function in Definition 3.3(iii). Since Ax(0, 0) = 0,

ψδ(a, 0) = hδ(−a) = 0 if a ≥ 0. Hence
�
ψδ(·, 0)d(f0)x = 0. Therefore,

the test function relation

� τ

0

(�
(∂tψδ + vx∂aψδ)dfx,t

)
dt =

�
ψδ(·, τ)dfx,τ −

� τ

0

(�
ψδdJx,t

)
dt

implies that

�
ψδ(·, τ)dfx,τ −

� τ

0

(�
ψδdJx,t

)
dt→ 0 as δ → 0 (4.5)

if we prove that

� τ

0

(�
(∂tψδ + vx∂aψδ)dfx,t

)
dt→ 0 as δ → 0. (4.6)
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To prove (4.6) we observe that

|∂tψδ + vx∂aψδ| =
∣∣∣∣vx(Ax(0, t), t)− vx(a, t)δ

h
′
(
Ax(0, t)− a

δ

)∣∣∣∣
≤ C

∣∣∣∣Ax(0, t)− aδ
h
′
(
Ax(0, t)− a

δ

)∣∣∣∣
≤ C sup

s∈R
|sh′(s)|

by the Lipschitz continuity of a 7→ vx(a, t), uniformly w.r.t. t, by Remark

3.4(b). In particular C is a some constant which does not depend on δ.

Notice that sup
s∈R
|sh′(s)| < +∞. Indeed, sh

′
(s) is continuous on R because h

is C1, h
′
(s) ≡ 0 for s ≤ 0 and s ≥ 1, while on the compact 0 ≤ s ≤ 1, sh

′
(s)

is bounded.

Hence ∣∣∣ � τ

0

(�
(∂tψδ + vx∂aψδ)dfx,t

)
dt
∣∣∣ (4.7)

≤ C

� τ

0

(� ∣∣∣∣Ax(0, t)− aδ
h
′
(
Ax(0, t)− a

δ

)∣∣∣∣ dfx,t) dt (4.8)

Now, if Ax(0,t)−a
δ

≤ 0 or Ax(0,t)−a
δ

≥ 1, then h
′
(
Ax(0,t)−a

δ

)
= 0, by construction

of h. Thus we consider a such that 0 < Ax(0,t)−a
δ

< 1 and a ≥ 0, i.e.
a > Ax(0, t)− δ

a < Ax(0, t)

a ≥ 0

⇐⇒ a ∈ (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t)).

Hence

(4.8) = C

� τ

0

(� ∣∣∣Ax(0, t)− a
δ

h
′
(
Ax(0, t)− a

δ

) ∣∣∣
dfx,t (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t))

)
dt

≤ C sup
s∈R
|sh′(s)|

� τ

0

(�
dfx,t (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t))

)
dt

= CC̃

� τ

0

(�
dfx,t (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t))

)
dt.
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So, we have obtained

∣∣∣� τ

0

(�
(∂tψδ + vx∂aψδ)dfx,t

)
dt
∣∣∣

≤ CC̃

� τ

0

(�
dfx,t (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t))

)
dt (4.9)

where we recall that, here and in the following, the symbol denotes the

restriction of a measure to a measurable subset, as we have seen in Definition

1.18. Now, since
⋂
δ>0

(Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t)) = ∅ and

∣∣∣∣� dfx,t (Ax(0, t)− δ, Ax(0, t)) ∩ [0, Ax(0, t))

∣∣∣∣ ≤ 1 for t ∈ [0, τ ],

(4.6) follows from (4.9) and the dominated convergence theorem. Therefore

(4.5) follows.

Moreover by the dominated convergence theorem

�
ψδ(·, τ)dfx,τ →

�
dfx,τ [0, Ax(0, τ)) as δ → 0 (4.10)

and

� τ

0

(�
ψδdJx,t

)
dt→

� τ

0

(�
dJx,t [0, Ax(0, t))

)
dt as δ → 0. (4.11)

In particular, as for (4.10), |ψδ(·, τ)| ≤ 1 ∈ L1
dfx,τ

and ψδ(·, τ)→ I[0,Ax(0,τ)) as

δ → 0. Indeed,

if 0 ≤ a < Ax(0, τ)⇒ ψδ(a, τ) = h

(
Ax(0, τ)− a

δ

)
→ 1 as δ → 0,

if a ≥ Ax(0, τ)⇒ ψδ(a, τ) = h

(
Ax(0, τ)− a

δ

)
→ 0 as δ → 0.

Hence we obtain (4.10) by the dominated convergence theorem.

As for, (4.11):
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∣∣∣∣� ψδdJx,t

∣∣∣∣ =

∣∣∣∣� ψδ(a, t)ηχ

(�
P (t, b, a)dfx,t(b)

)
da−

�
ψδ(a, t)ηχdfx,t(a)

∣∣∣∣
≤ ηχ

∣∣∣∣� ψδ(a, t)

(�
P (t, b, a)dfx,t(b)

)
da

∣∣∣∣
+ ηχ

�
|ψδ(a, t)|dfx,t(a)

≤ C1η

∣∣∣∣� 1

0

ψδ(a, t)da

∣∣∣∣+ η

�
dfx,t(a)

≤ (C1 + 1)η ≤ (C1 + 1) sup
0≤t≤T

η(t) = C2 <∞ and

� τ

0

C2 < +∞

where we have used 0 ≤ ψδ ≤ 1, (H3), sup
[0,T ]×[0,1]2

P (t, b, a) < +∞ by (H6) and

the fact that fx,t is a probability measure.

Moreover,
�
ψδ(a, t)dJx,t(a)→

�
dJx,t [0, Ax(0, t)) as δ → 0. Indeed, as for

the first term in
�
ψδ(a, t)dJx,t(a),

ηχ

�
ψδ(a, t)

( � 1

0

P (t, b, a)dfx,t(b)
)
da→ (4.12)

ηχ

�
I[0,Ax(0,t))(a)

(� 1

0

P (t, b, a)dfx,t(b)

)
da

= ηχ

� Ax(0,t)

0

(� 1

0

P (t, b, a)dfx,t(b)

)
da

as δ → 0 by the dominated convergence theorem since∣∣∣∣ψδ(a, t) � 1

0

P (t, b, a)dfx,t(b)

∣∣∣∣ ≤ C ∈ L1
da (0 ≤ a ≤ 1)

and

ψδ(a, t)

� 1

0

P (t, b, a)dfx,t(b)→ I[0,Ax(0,t))(a)

(� 1

0

P (t, b, a)dfx,t(b)

)
as δ → 0.

As for the second term, we have already shown by (4.10) that

ηχ

�
ψδ(a, t)dfx,t(a)→ ηχ

�
dfx,t [0, Ax(0, t)) as δ → 0. (4.13)

Thus by (4.12) and (4.13) we have�
ψδ(a, t)dJx,t(a)→

�
dJx,t [0, Ax(0, t)) as δ → 0,
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hence we can conclude that (4.11) holds by the dominated convergence the-

orem.

Finally, since both (4.5) and (4.10), (4.11) hold, then by uniqueness of the

limit we have�
dfx,τ [0, Ax(0, τ)) =

� τ

0

(�
dJx,t [0, Ax(0, t))

)
dt. (4.14)

Now, it follows from (6), Fubini’s theorem, and (3.3) that
�
dJx,t(a) [0, Ax(0, t))

= η(t)χ(x, t)

[� (� Ax(0,t)

0

P (t, b, a)da

)
dfx,t(b)−

�
dfx,t(a) [0, Ax(0, t))

]

= ηχ
[ � (� Ax(0,t)

b

P (t, b, a)da

)
dfx,t(b) [0, Ax(0, t))

−
�
dfx,t [0, Ax(0, t))

]
(4.15)

≤ ηχ

[�
dfx,t(b) [0, Ax(0, t))−

�
dfx,t(a) [0, Ax(0, t))

]
= 0.

Combined with (4.14), it gives

0 ≤
�
dfx,τ [0, Ax(0, τ)) =

� τ

0

(�
dJx,t [0, Ax(0, τ))

)
dt ≤ 0

hence
�
dfx,τ [0, Ax(0, τ)) = 0 for τ ∈ [0, T ] and thus suppfx,t ⊆ [Ax(0, t), 1]

for t ∈ [0, T ]. In addition, if we come back to (4.15) with
�
dfx,t [0, Ax(0, t)) =

0, we have

�
dJx,t(a) [0, Ax(0, t)) = ηχ

� (� Ax(0,t)

b

P (t, b, a)da

)
dfx,t(b) [0, Ax(0, t))

≥ 0.

Hence

0 ≤
�
dJx,t(a) [0, Ax(0, t)) ≤ 0⇒

�
dJx,t(a) [0, Ax(0, t)) = 0,

which implies suppJx,t ⊆ [Ax(0, t), 1] for t ∈ [0, T ].
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We are now ready to reformulate the original problem in terms of the

characteristics. Specifically, we shall see below that the measure f can be

obtained by transporting along the characteristics a suitable measure g. In

particular f is the push forward of g through A (cf. Definition 1.19), where

g satisfies



∂tAx(y, t) =
�
Gx(Ax(y, t), Ax(ξ, t))dgx,t(ξ) + S(x,Ax(y, t), u1, . . . , uN−1),

∂tgx,t(y) = ηχ
[
∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)− gx,t(y)

]
,

ε∂tu1 − d1∆u1 = R̃1

:= −u1

N∑
j=1

a1,juj − σ1u1 + CF

�
(µ0 + Ax(ξ, t))(1− Ax(ξ, t))dgx,t(ξ),

ε∂tum − dm∆um = R̃m := −um
N∑
j=1

am,juj + 1
2

m−1∑
j=1

aj,m−jujum−j − σmum,

ε∂tuN = 1
2

∑
j+k≥N
k,j<N

aj,kujuk,

(4.16)

where x ∈ Ω, y ∈ [0, 1], t ∈ (0, T ], and 2 ≤ m < N , with initial and boundary

conditions



gx,0(y) = (f0)x(y), Ax(y, 0) = y if x ∈ Ω, 0 ≤ y ≤ 1,

ui(x, 0) = u0i(x) if x ∈ Ω, 1 ≤ i ≤ N,

∂nui(x, t) = 0 if x ∈ ∂Ω0, t ∈ (0, T ], 1 ≤ i < N,

∂nui(x, t) = −γiui(x, t) if x ∈ ∂Ω1, t ∈ (0, T ], 1 ≤ i < N.

(4.17)

Notice that this new system has N + 2 equations, while the original one has

N+1. Indeed, as we have already anticipated, the idea is to find f as the push

forward of g through A, i.e. f := A]g, so we have an extra unknown variable,

that is the characteristic. In particular, (4.16)1 is the same equation of (4.1)1

by writing vx(Ax(y, t), t) with the push forward, according to Definition 1.19,
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i.e.

∂tAx(y, t) = vx(Ax(y, t), t)

=

�
Gx(Ax(y, t), b)dfx,t(b) + S(x,Ax(y, t), u1, . . . , uN−1)

=

�
Gx(Ax(y, t), Ax(ξ, t))dgx,t(ξ) + S(x,Ax(y, t), u1, . . . , uN−1).

Similarly for (4.16)3, while in (4.16)2 the right-hand side reformulates the

jump term J [f ] by using again the push-forward through A. In particular,

the measure da which appears in (6) becomes formally ∂yAx(y, t)dy, by the

relation a = Ax(y, t).

Definition 4.2. The (N + 2)-ple (A, g, u1, . . . , uN) is called a solution of

problem (4.16)-(4.17) in Ω× [0, T ] if

(i) g ∈ L(Ω;C([0, T ];X[0,1]));

(ii) A, ∂tA ∈ L∞(Ω;C([0, 1]× [0, T ]; [0, 1]));

(iii) ui ∈ C(QT ) and ui ≥ 0 in QT for 1 ≤ i ≤ N ;

(iv) for a.e. x ∈ Ω, Ax satisfies (4.16)1 and Ax(y, 0) = y for y ∈ [0, 1];

(v) (4.16)2 for g is satisfied in a weak sense for a.e. x ∈ Ω: for all τ ∈ (0, T ]

and φ ∈ C([0, 1]× [0, T ]) with ∂tφ ∈ C([0, 1]× [0, T ])
�
φ(y, τ)dgx,τ (y)−

�
φ(y, 0)d(f0)x(y)−

� τ

0

(�
∂tφ(y, t)dgx,t(y)

)
dt

=

� τ

0

ηχ

[ � 1

0

φ(y, t)∂yAx(y, t)

(�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)

)
dy

−
�
φ(y, t)dgx,t(y)

]
dt; (4.18)

(vi) if 1 ≤ i < N , ui ∈ L2([0, T ];H1(Ω)), and

di

� T

0

[�
Ω

∇ui(x, t) · ∇ψ(x, t)dx+ γi

�
∂Ω1

ui(x, t)ψ(x, t)dσ(x)

]
dt

= ε

� �
QT

ui∂tψdxdt+ ε

�
Ω

u0iψ(x, 0)dx+

� �
QT

R̃iψdxdt (4.19)
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for all ψ ∈ H1([0, T ];H1(Ω)), ψ(x, T ) = 0, where R̃i is defined as in

(4.16);

(vii) ∂tuN ∈ C(QT ), uN(·, 0) = u0N in Ω, and the equation for uN in (4.16)

is satisfied in QT .

In the remainder of this chapter we prove the equivalence of problems

(8)-(9) and (4.16)-(4.17), proceeding by steps. Let us start with the first

step by proving the following result which ensures that if we have a solution

of (4.16)-(4.17), then we can find, by push-forward, a solution of (8)-(9).

Theorem 4.3. Let hypotheses (H1 −H6) be satisfied. Let (A, g, u1, . . . , uN)

be a solution of (4.16)− (4.17) in Ω× [0, T ] and set, for a.e. x ∈ Ω,

fx,t := Ax(·, t)]gx,t for all t ∈ [0, T ].

Then (f, u1, . . . , uN) is a solution of problem (8)− (9) in Ω× [0, T ].

Notice that if (A, g, u1, . . . , uN) is a solution of (4.16)-(4.17), then, in

order to prove that (f, u1, . . . , uN), defined as above, is a solution of (8)-(9),

it is sufficient to verify Definition 3.3(i),(iii) and (iv) (only for i = 1) since

the other requests are the same presented in Definition 4.2 and thus satisfied

by assumptions.

Proof. Since, for a.e. x ∈ Ω, gx,t is a Borel regular probability measure in

[0, 1] for t ∈ [0, T ], so is fx,t by Remark 1.20, Remark 1.15 and Remark

B.15. As we have said above, for a.e. x ∈ Ω the function y 7→ Ax(y, t) with

y ∈ [0, 1] is continuous and by (4.3) it is also injective for t ∈ [0, T ], so that by

Theorem B.13 it is open and closed and thus by Proposition 2.15, recalling

that Ax(1, t) = 1

suppfx,t = Ax(suppgx,t, t) ⊆ Ax([0, 1], t) = [Ax(0, t), 1]. (4.20)

In particular, fx,t ∈ X[0,1] for a.e. x ∈ Ω, since [Ax(0, t), 1] ⊆ [0, 1]. In

addition, by Theorem B.13 and by Corollary 2.21, the map t 7→ fx,t belongs
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to C([0, T ];X[0,1]) for a.e. x ∈ Ω. Finally, f ∈ L(Ω;C([0, T ];X[0,1])) since f

is weakly∗ measurable. Indeed, ∀ρ ∈ C([0, 1]) the map

(x, t) 7→
�
ρ(a)dfx,t(a) =

�
ρ(Ax(y, t))dgx,t(y)

is measurable in Ω× (0, T ) since (x, t) 7→
�
ρ(Ax(y, t))dgx,t(y) is measurable,

being y 7→ ρ(Ax(y, t)) continuous and g ∈ L(Ω;C([0, T ];X[0,1])).

Now let, for a.e. x ∈ Ω, v be defined by (3) and J by (6). By (4.20) and

(3.3),
�
P (t, b, a)dfx,t(b) = 0 if a < Ax(0, t), suppJx,t ⊆ suppfx,t, whence

suppJx,t ⊆ [Ax(0, t), 1]. (4.21)

To avoid cumbersome notations, we set Bx(·, t) := A−1
x (·, t). Since

Ax(·, t) : [0, 1]→ [Ax(0, t), Ax(1, t)] = [Ax(0, t), 1],

is injective and surjective, Bx(·, t) is well-defined in [Ax(0, t), 1],

Bx(Ax(y, t), t) ≡ y for y ∈ [0, 1], and Ax(Bx(a, t), t) ≡ a for a ∈ [Ax(0, t), 1].

Since suppfx,t ⊆ [Ax(0, t), 1], integrals of functions of Bx(·, t) w.r.t. fx,t are

well-defined.

By Definition 4.2(iv), ∂tAx(y, t) = vx(Ax(y, t), t) for a.e. x ∈ Ω. By (4.3),

Bx is Lipschitz continuous w.r.t. y for a.e. x ∈ Ω. Differentiating the identity

Ax(Bx(y, t), t) = y with respect to t and y, we obtain that∂yAx(Bx(a, t), t)∂tBx(a, t) + ∂tAx(Bx(a, t), t) = 0,

∂yAx(Bx(y, t), t)∂yBx(y, t) = 1
⇐⇒


∂yAx(Bx(a, t), t)∂tBx(a, t) = −∂tAx(Bx(a, t), t) =

− vx(Ax(Bx(a, t), t), t) = −vx(a, t),

∂yAx(Bx(y, t), t)∂yBx(y, t) = 1,

(4.22)

so that ∂tBx(y, t)∂yAx(Bx(y, t), t)∂yBx(y, t) = ∂tBx(y, t) · 1 = ∂tBx(y, t) and,

by (4.22),

∂tBx(y, t) = −vx(y, t)∂yBx(y, t). (4.23)
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Let us prove Definition 3.3(iii). Let ψ ∈ C1([0, 1] × [0, T ]). Let τ ∈ (0, T ].

Let x be fixed such that Ax, ∂tAx ∈ C([0, 1]× [0, T ]; [0, 1]) (by assumption A

is solution, thus it satisfies Definition 4.2(ii)) and set

φ(y, t) = ψ(Ax(y, t), t) for y ∈ [0, 1]

and

Cφ = −
�
φ(y, τ)dgx,τ (y) +

�
φ(y, 0)d(f0)x(y)

= −
�
φ(Bx(Ax(y, τ), τ), τ)dgx,τ (y) +

�
φ(y, 0)d(f0)x(y)

= −
�
φ(Bx(a, τ), τ)dfx,τ (a) +

�
φ(a, 0)d(f0)x(a),

where the last equality holds by definition of push-forward with

fx,τ = Ax(·, τ)]gx,τ . Since φ satisfies the conditions in Definition 4.2(v), it

follows that

−
� T

0

(�
∂tφ(y, t)dgx,t(y)

)
dt

=

� T

0

ηχ

[ � 1

0

φ(y, t)∂yAx(y, t)

(�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)

)
dy

−
�
φ(y, t)dgx,t(y)

]
dt+ Cφ

=

� T

0

ηχ

[ � 1

0

φ(Bx(Ax(y, t), t), t)∂yAx(y, t)

(�
P (t, b, Ax(y, t))dfx,t(b)

)
dy

−
�
φ(Bx(Ax(y, t), t), t)dgx,t(y)

]
dt+ Cφ

=

� T

0

ηχ

[ � Ax(1,t)

Ax(0,t)

φ(Bx(a, t), t)

(�
P (t, b, a)dfx,t(b)

)
da

−
�
φ(Bx(Ax(y, t), t), t)dgx,t(y)

]
dt+ Cφ (4.24)

where we have used the Definition 1.19 of push-forward and the relation

da = ∂yA(x, y, t)dy.
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On the other hand, the first left-hand side of (4.24) can be written as

−
� T

0

(�
∂tφ(y, t)dgx,t(y)

)
dt = −

� T

0

(�
∂tφ(Bx(Ax(y, t), t), t)dgx,t(y)

)
dt

= −
� T

0

(�
∂tφ(Bx(a, t), t)dfx,t(a)

)
dt.

(4.25)

Let a ∈ [Ax(0, t), 1]. Then ψ(a, t) = ψ(Ax(Bx(a, t), t), t) = φ(Bx(a, t), t) and

∂tψ(a, t) = ∂yφ(Bx(a, t), t)∂tBx(a, t) + ∂tφ(Bx(a, t), t). (4.26)

Since we know, by (4.20), that suppfx,t ⊆ [Ax(0, t), 1], it follows from (4.24)-

(4.25)-(4.26) that

−
� T

0

(�
∂tψ(a, t)dfx,t(a)

)
dt =

−
� T

0

(�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a)

)
dt

−
� T

0

(�
∂tφ(Bx(a, t), t)dfx,t(a)

)
dt

= −
� T

0

(�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a)

)
dt−

� T

0

�
∂tφ(y, t)dgx,t(y)dt
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= −
� T

0

(�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a)

)
dt

+

� T

0

ηχ

[ � Ax(1,t)

Ax(0,t)

φ(Bx(a, t), t)

(�
P (t, b, a)dfx,t(b)

)
da

−
�
φ(Bx(Ax(y, t), t), t)dgx,t(y)

]
dt+ Cφ

= −
� T

0

(�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a)

)
dt

+

� T

0

ηχ

[ � Ax(1,t)

Ax(0,t)

ψ(a, t)

(�
P (t, b, a)dfx,t(b)

)
da

−
�
ψ(a, t)dfx,t(a)

]
dt+ Cφ

= −
� T

0

(�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a)

)
dt

+

� T

0

(�
ψ(a, t)dJx,t(a)

)
dt+ Cφ. (4.27)

By (4.23),

−
�
∂yφ(Bx(a, t), t)∂tBx(a, t)dfx,t(a) (4.28)

=

�
∂yφ(Bx(a, t), t)∂aBx(a, t)vx(a, t)dfx,t(a)

=

�
∂aψ(a, t)vx(a, t)dfx,t(a), (4.29)

whence, by (4.27), the first equation in (8) is satisfied in the weak sense:

−
� T

0

(�
∂tψ(a, t)dfx,t(a)

)
dt =

� T

0

(�
∂aψ(a, t)vx(a, t)dfx,t(a)

)
dt

+

� T

0

(�
ψ(a, t)dJx,t(a)

)
dt−

�
ψ(a, τ)dfx,τ (a) +

�
ψ(a, 0)d(f0)x(a).

(4.30)

So we have proved that Definition 3.3(iii) holds.
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Concerning the Smoluchowski system in (8), it is sufficient to notice that

the third equation in (4.16) and the second equation in (8) coincide via the

push-forward, since
�

(µ0 + a)(1− a)dfx,t(a) =

�
(µ0 + Ax(ξ, t))(1− Ax(ξ, t))dgx,t(ξ).

The proof of the equivalence between problems (8)-(9) and (4.16)-(4.17)

is completed by the following result.

Theorem 4.4. Let (f, u1, . . . , uN) be a solution of (8)− (9) in Ω× [0, T ] and

let Ax(y, t) be defined by (4.1). Then there exists a probability measure gx,t

such that

fx,t := Ax(·, t)]gx,t,

and (A, g, u1, . . . , uN) is a solution of problem (4.16)− (4.17) in Ω× [0, T ].

Proof. As before, we fix x ∈ Ω for a.e. x ∈ Ω, and t ∈ [0, T ]. We consider

the map

Ax(·, t) : [0, 1] 7→ [Ax(0, t), 1].

By Proposition 4.1, fx,t = fx,t [Ax(0, t), 1]. Hence, by Theorem 1.20 in [24],

there exists a positive Radon measure gx,t on [0, 1] such that

fx,t = fx,t [Ax(0, t), 1] = Ax(·, t)]gx,t.

Obviously, since fx,t is a probability measure, gx,t is a probability measure

too and belongs to X[0,1]. By Theorem B.13 and by Corollary 2.21, the map

t 7→ gx,t is continuous w.r.t. the Wasserstein metric. Moreover, gx,t → (f0)x

as t → 0 since Ax(y, 0) = y. Indeed, t 7→ gx,t is continuous w.r.t. the

Wasserstein metric, therefore gx,t → gx,0 as t → 0. On the other hand,

fx,t = Ax(·, t)]gx,t and t 7→ fx,t is continuous w.r.t. the Wasserstein metric

since f is solution of (8)-(9) by assumption. Thus fx,t → fx,0 as t → 0 and

Ax(·, t)]gx,t → Ax(·, 0)]gx,0 as t → 0. Hence, by uniqueness of the limit (in

the Wasserstein metric) fx,0 = Ax(·, 0)]gx,0, i.e. fx,0 = gx,0 since Ax(·, 0) is
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the identity map. But now by hypotheses fx,0 = (f0)x, whence gx,0 = (f0)x.

Therefore g satisfies the qualitative assumptions in order to be a solution

of (4.16) and (4.17). To complete the proof of the theorem, it is enough to

check the identities in the proof of Theorem 4.3 in the opposite direction.



Chapter 5

Existence and Uniqueness

Result

As we have seen in Chapter 4 the problem (8)-(9) can be reformulated

in terms of the characteristics providing a new system (4.16)-(4.17) which

we have proved by Theorems 4.3 and 4.4 to be equivalent to the original

one. Now, the goal of this chapter is to prove the main result of this thesis,

Theorem 3.6. In order to do this, we have organized this chapter in two

sections: in the first one we prove local (with respect to t) existence and

uniqueness of a solution of problem (4.16)-(4.17), while in the second section

we show that this solution can be continued in [0, T ]. In this way Theorem

3.6 will be proved.

5.1 Local existence and Uniqueness

The purpose of this section is to prove the following result.

Theorem 5.1. Let Ω ⊂ Rn be an open and bounded set with a smooth

boundary ∂Ω, which is the disjoint union of smooth manifolds ∂Ω0 and ∂Ω1.

Let T > 0 and N ∈ N, and let hypotheses (H1−H6) be satisfied. Then there

exists τ ∈ (0, T ] such that problem (4.16)− (4.17) has a unique solution in

Ω× [0, τ ].

57
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The proof is based on a contraction argument. In particular, we recall

that the Wasserstein distance W1 is the metric involved by the probability

measures f . By Kantorovich-Rubinstein duality (see Proposition A.3), the

Wasserstein distance depends on the action of the measures on Lipschitz

functions. This fact yields a technical difficulty when we try to apply an

iteration argument in order to obtain the local existence of a solution. In

order to circumvent this difficulty we will introduce an ad hoc formulation

of the standard fixed point theorem.

To this purpose, we introduce a suitable metric space. Let us consider

the following normed spaces

L∞(Ω;C([0, 1]× [0, τ ]; [0, 1])), and C(Ω× [0, τ ];RN)

endowed with the following standard norms:

if A ∈ L∞(Ω;C([0, 1]× [0, τ ]; [0, 1])), define

‖A‖ := sup
x∈Ω

max
[0,1]×[0,τ ]

|Ax(y, t)|;

if u ∈ C(Ω× [0, τ ];RN), define

‖u‖ := max
Ω×[0,τ ]

‖u(x, t)‖RN .

Definition 5.2. Let τ ∈ (0, T ] be given. We denote by (Xτ , d) the complete

metric space

Xτ := L∞(Ω;C([0, 1]×[0, τ ]; [0, 1]))×L(Ω;C([0, τ ];X[0,1]))×C(Ω×[0, τ ];RN),

where L∞(Ω;C([0, 1]× [0, τ ]; [0, 1])) and C(Ω× [0, τ ];RN) are endowed with

their natural metrics as normed spaces, and L(Ω;C([0, τ ];X[0,1])) is endowed

with the metric

sup
x∈Ω

max
t∈[0,τ ]

W1(fx,t, gx,t)

(Notice that condition (3.5) passes to the limit w.r.t. the W1-convergence,

by Proposition 2.17).

We denote by Xτ,ρ the closed ball in Xτ of radius ρ > 0 centered at

(y, f0, u0).
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Notice that, for the moment, we have given up the nonnegativity of ui,

since u = (u1, . . . , uN) ∈ C(Ω × [0, τ ];RN). However it will be recovered

during the proof of Theorem 5.1. For this reason we define S also for negative

values of ui, by requiring that S is even with respect to ui for each i =

1, . . . , N − 1.

We must construct the map to which we can apply the contraction argu-

ment. We will do this proceeding by steps.

Let us start to prove the following Lemma whose meaning is that to refor-

mulate the Cauchy problem (4.1) presented in Chapter 4 by replacing the

rate vx(a, t) with an analogous rate v̂x(a, t) defined by fixing a point in this

new metric space Xτ .

Lemma 5.3. Let (Â, g, u) ∈ XT and set, for a.e. x ∈ Ω,

v̂x(a, t) :=

�
Gx(a, Âx(ξ, t))dgx,t(ξ) + S(x, a, u1, . . . , uN−1) ≥ 0. (5.1)

Then, for a.e. x ∈ Ω, the Cauchy problem∂tAx(y, t) = v̂x(Ax(y, t), t) for t > 0,

Ax(y, 0) = y ∈ [0, 1],
(5.2)

has a unique solution defined for all t ∈ (0, T ], and the function y 7→ Ax(y, t)

is continuous, strictly increasing (and thus open) on [0, 1], and maps [0, 1]

onto [Ax(0, t), 1] for all t ∈ [0, T ]. Finally, the map (x, y, t) 7→ Ax(y, t)

belongs to L∞(Ω;C([0, 1]× [0, T ]; [0, 1])).

Notice that the function y 7→ Ax(y, t) has features similar to y 7→ Ax(y, t)

defined by (4.1).

Proof. Let us start to specify that a continuous, strictly increasing function

on [0, 1] is open by Theorem B.13 since it is injective.

Now, we claim that, for a.e. x ∈ Ω, the map (a, t) 7→ v̂x(a, t) is continuous

and Lipschitz continuous w.r.t. a ∈ [0, 1], uniformly in t ∈ [0, T ].

By (3.2) this is trivial for the map (a, t) 7→ S(x, a, u1(x, t), . . . , uN−1(x, t)),

since (x, t) 7→ (u1, . . . , uN−1) is continuous on Ω × [0, T ] and (u1, . . . , uN−1)
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belongs to a compact set of RN−1. It remains to show that

(a, t) 7→
�
Gx(a, Âx(ξ, t))dgx,t(ξ)

is continuous and uniformly Lipschitz continuous with respect to a ∈ [0, 1].

Let a, a0 ∈ [0, 1] and t, t0 ∈ (0, T ] be given. Then∣∣∣� Gx(a, Âx(ξ, t))dgx,t(ξ)− �
Gx(a0, Âx(ξ, t0))dgx,t0(ξ)

∣∣∣
≤
∣∣∣� Gx(a, Âx(ξ, t))dgx,t(ξ)− �

Gx(a0, Âx(ξ, t0))dgx,t(ξ)
∣∣∣

+
∣∣∣ � Gx(a0, Âx(ξ, t0))dgx,t(ξ)−

�
Gx(a0, Âx(ξ, t0))dgx,t0(ξ)

∣∣∣ := I1 + I2,

(5.3)

by adding and subtracting the same term
�
Gx(a0, Âx(ξ, t0))dgx,t(ξ) and using

the triangle inequality. Now, (a, ξ, t) 7→ Gx(a, Âx(ξ, t)) is uniformly continu-

ous in [0, 1]2× [0, T ], since, by our assumptions, it is continuous in a compact

set. Therefore I1 → 0 as (a, t)→ (a0, t0). Indeed,∣∣∣ � Gx(a, Âx(ξ, t))dgx,t(ξ)− �
Gx(a0, Âx(ξ, t0))dgx,t(ξ)

∣∣∣
≤

� ∣∣Gx(a, Âx(ξ, t))− Gx(a0, Âx(ξ, t0))
∣∣dgx,t(ξ) (5.4)

Now, we know by uniform continuity that

∀ε > 0 ∃δ > 0 such that |Gx(a, Âx(ξ, t))− Gx(a0, Âx(ξ0, t0))
∣∣ < ε,

∀(a, ξ, t); |(a, ξ, t)− (a0, ξ0, t0)| < δ.

Hence, if we take (a, ξ, t), (a0, ξ, t0), such that |(a, ξ, t)− (a0, ξ, t0)| = |(a, t)−
(a0, t0)| < δ (we have chosen ξ0 = ξ) we obtain

(5.4) ≤ ε

�
dgx,t(ξ)

= ε.

Thus, we have shown that ∀ε there exists δ > 0 such that |I1| < ε for all

(a, t) such that 0 < |(a, t)− (a0, t0)| < δ, i.e. I1 → 0 as (a, t)→ (a0, t0).
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As for I2, since ξ 7→ Gx(a0, Âx(ξ, t0)) is continuous in [0, 1] and for a.e. x ∈ Ω

t 7→ gx,t ∈ C([0, T ];X[0,1]), then gx,t → gx,t0 w.r.t. the Wasserstein distance

as t → t0, i.e. W1(gx,t, gx,t0) → 0 as t → t0. Therefore, by Proposition 2.17

and by Remark 2.2, t 7→ gx,t is narrowly continuous, then I2 → 0 as t→ t0.

Similarly, by (3.1), for a.e. x ∈ Ω and all ξ ∈ [0, 1] and t ∈ [0, T ],

|Gx(a, Âx(ξ, t))− Gx(a
′
, Âx(ξ, t))| ≤ C|a− a′ | for a, a

′ ∈ [0, 1].

This completes the proof of the claim, which implies, for a.e. x ∈ Ω, the

existence and uniqueness of the solution of problem (5.2) for all y ∈ [0, 1].

By a standard argument,

∂yAx(y, t) = exp

[� t

0

∂av̂x(Ax(y, s), s)ds

]
> 0. (5.5)

So, by (5.5), (3.1) and (3.2), we have 0 < C1 ≤ ∂yAx(y, t) ≤ C2 for some

constants C1, C2 which depend on the compact set K ⊂ RN−1 which con-

tains (u1(x, t), . . . , uN−1(x, t)). Finally, by a classical result on continuous

dependence on initial data [19], we have that (x, y, t) 7→ Ax(y, t) belongs to

L∞(Ω;C([0, 1]× [0, T ]; [0, 1])).

Remark 5.4. It follows from the proof of Lemma 5.3 (in particular from (5.5))

that Ax(ξ, s) is Lipschitz continuous in ξ, uniformly w.r.t. x and s.

Lemma 5.5. Let (Â, g, u) ∈ XT . Let for a.e. x ∈ Ω, A be defined as in

Lemma 5.3 and (F [g])x,t be the signed measure on [0, 1] defined by

d(F [g])x,t := ηχ

[
∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)dy − dgx,t(y)

]
for 0 < t ≤ T . Then, for a.e. x ∈ Ω,

(i) the integral equation

g
x,t

= (f0)x +

� t

0

(F [g])x,sds (5.6)

has a unique solution t 7→ g
x,t

which belongs to C([0, T ];X[0,1]);1

1In the integral equation (5.6), the integral term has the following meaning: if t→ µt is

a continuous map from [0, T ] to X[0,1], for any Borel set B ⊂ [0, 1], we set
(� t

0
µsds

)
(B) :=

� t

0
µs(B)ds.
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(ii) the measure g
x,t

is a weak solution of the system

∂tgx,t(y) = ηχ
[
∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)− gx,t(y)

]
,

g
x,0

= (f0)x
(5.7)

in the sense of (4.18).

Proof. First of all, we observe that for a.e. x ∈ Ω and s ∈ [0, T ] and for all

g ∈ X[0,1], �
d(F [g])x,s = 0. (5.8)

This assertion is obvious if χ(x, s) = 0. If χ(x, s) = 1, by Fubini’s theorem,

by (3.3) and by posing b = Ax(y, s) (implying the relation db = ∂yAx(y, s)dy),

we get

1

η

�
d(F [g])x,s =

� (�
P (s, Ax(ξ, s), Ax(y, s))∂yAx(y, s)dy

)
dgx,s(ξ)

−
�
dgx,s(y)

=

� (� Ax(1,s)=1

Ax(0,s)

P (s, Ax(ξ, s), b)db
)
dgx,s(ξ)−

�
dgx,s(y)

=

� (� 1

0

P (s, Ax(ξ, s), b)db
)
dgx,s(ξ)−

�
dgx,s(y)

=

�
dgx,s(ξ)−

�
dgx,s(y) = 0,

where
� 1

Ax(0,s)
P (s, Ax(ξ, s), b)db =

� 1

0
P (s, Ax(ξ, s), b)db recalling that, by

(3.3)

P (s, Ax(ξ, s), b) = 0 if b < Ax(ξ, s), and Ax(0, s) ≤ Ax(ξ, s) because ξ 7→
Ax(ξ, s) is increasing by Lemma 5.3. Therefore for 0 ≤ b < Ax(0, s) we have

P (s, Ax(ξ, s), b) = 0, so we can extend the integral in [0, 1].

We set for a.e. x ∈ Ω (from now on we fix such x),

qt := e
� t
0 η(s)χ(x,s)dsgx,t for t ∈ [0, T ].
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Let Y be the set of such q, i.e. q ∈ Y if the map t 7→ e−
� t
0 η(s)χ(x,s)dsqt belongs

to C([0, T ];X[0,1]). Then Y naturally inherits a metric from C([0, T ];X[0,1]),

dY (q1, q2) := max
t∈[0,T ]

W1

(
e−

� t
0 η(s)χ(x,s)ds(q1)t, e

−
� t
0 η(s)χ(x,s)ds(q2)t

)
,

so Y is a complete metric space.

The equation for g translates into

∂tqt(y) = Lqt(y) := ηχ(x, t)∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dqt(ξ) ≥ 0,

and the corresponding integral equation is

qt = (f0)x +

� t

0

Lqsds for t ∈ [0, T ]. (5.9)

Indeed, formally

∂tqt(y) = ∂t(e
� t
0 η(s)χ(x,s)dsgx,t)

= η(t)χ(x, t)e
� t
0 η(s)χ(x,s)dsgx,t + e

� t
0 η(s)χ(x,s)ds∂tgx,t

= ηχqt+

+ e
� t
0 η(s)χ(x,s)dsηχ

[
∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)− gx,t(y)

]
= ηχqt − ηχe

� t
0 η(s)χ(x,s)dsgx,t+

+ ηχ∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))e

� t
0 η(s)χ(x,s)dsdgx,t(ξ)

= ηχqt − ηχqt + ηχ∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dqt(ξ)

= ηχ(x, t)∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))dqt(ξ).

Now, we consider the map

q 7→ (f0)x +

� t

0

Lqsds. (5.10)

To this map we will apply a contraction argument. In particular, one easily

checks that, by (5.8), for all q ∈ Y�
dLqt = η(t)χ(x, t)e

� t
0 η(s)χ(x,s)ds for t ∈ [0, T ], (f0)x +

� t

0

Lqsds ∈ Y.

(5.11)
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We prove that (f0)x +
� t

0
Lqsds ∈ Y . By definition of the space Y we have

to show that the map t 7→ e−
� t
0 η(s)χ(x,s)((f0)x +

� t
0
Lqsds) ∈ C([0, T ], X[0,1]).

Let us start to prove that ∀t ∈ [0, T ], e−
� t
0 η(s)χ(x,s)((f0)x +

� t
0
Lqsds) ∈ X[0,1].

Recalling that (f0)x ∈ X[0,1] and qt ∈ Y , by Fubini’s Theorem we have

�
e−

� t
0 η(s)χ(x,s)dsd

(
(f0)x +

� t

0

Lqsds
)

(y)

=

�
e−

� t
0 η(s)χ(x,s)dsd(f0)x(y) +

�
e−

� t
0 η(s)χ(x,s)d

(� t

0

Lqsds
)

(y)

= e−
� t
0 η(s)χ(x,s)ds+

+

� t

0

e−
� t
0 ηχ
( �

η(s)χ(x, s)∂yAx(y, s)( �
P (t, Ax(ξ, s), Ax(y, s))dqs(ξ)

)
dy
)
ds

= e−
� t
0 η(s)χ(x,s)ds+

+

� t

0

e−
� s
0 ηχe−

� t
s ηχ
( �

η(s)χ(x, s)
(�

P (t, Ax(ξ, s), b)db
)
dqs(ξ)

)
ds

= e−
� t
0 η(s)χ(x,s)ds +

� t

0

e−
� t
s ηχη(s)χ(x, s)

�
e−

� s
0 ηχdqs(ξ)ds

= e−
� t
0 η(s)χ(x,s)ds +

� t

0

e
� s
t η(u)χ(x,u)duη(s)χ(x, s)ds

= e−
� t
0 η(s)χ(x,s)ds +

[
e
� s
t ηχ
]s=t
s=0

= e−
� t
0 η(s)χ(x,s)ds + 1− e

� 0
t η(u)χ(x,u)du

= e−
� t
0 η(s)χ(x,s)ds + 1− e−

� t
0 η(u)χ(x,u)du = 1.

Concerning the continuity of the map t 7→ e−
� t
0 η(s)χ(x,s)((f0)x+

� t
0
Lqsds) ∈

C([0, T ];X[0,1]), by Proposition 2.17 it is enough to show that it is narrowly



5.1 Local existence and Uniqueness 65

continuous. Let ρ ∈ C([0, 1]).�
ρ(y)e−

� t
0 ηχd

(
(f0)x +

� t

0

Lqsds
)

(y) =

�
ρ(y)e−

� t
0 ηχd(f0)x(y)

+

�
ρ(y)e−

� t
0 ηχd

(� t

0

Lqsds
)

(y)

=: I1 + I2.

As for I1, by the dominated convergence theorem I1 →
�
ρ(y)e−

� t0
0 ηχd(f0)x(y)

as t→ t0.

As for I2:

I2 =

�
ρ(y)e−

� t
0 ηχ
(� t

0

ηχ∂yAx(y, s)
(�

P (s, Ax(ξ, s), Ax(y, s))dqs(ξ)
)
ds
)
dy,

let us show that we can apply the dominated convergence theorem:∣∣∣ρ(y)e−
� t
0 ηχ
( � t

0

ηχ∂yAx(y, s)
(�

P (s, Ax(ξ, s), Ax(y, s))dqs(ξ)
)
ds
)∣∣∣

≤ max
y∈[0,1]

|ρ(y)|max
[0,T ]

η C2

� T

0

�
P (s, Ax(ξ, s), Ax(y, s))dqs(ξ)ds

≤ max
y∈[0,1]

|ρ(y)|max
[0,T ]

η C2C

� T

0

�
e
� s
0 ηχe−

� s
0 ηχdqs(ξ)ds

≤ C̃e
� T
0 η(u)χ(x,u)du

� T

0

�
e−

� s
0 η(u)χ(x,u)dudqs(ξ)ds

= C̄

� T

0

1ds

≤ C̄T ∈ L1
dy (y ∈ [0, 1])

where we have used (5.5), (H3), (H6), and the assumption qt ∈ Y , i.e.

e−
� t
0 ηχqt ∈ C([0, T ];X[0,1]). Moreover,

ρ(y)e−
� t
0 ηχ
( � t

0

ηχ∂yAx(y, s)
(�

P (s, Ax(ξ, s), Ax(y, s))dqs(ξ)
)
ds
)

converges to

ρ(y)e−
� t0
0 ηχ

( � t0

0

ηχ∂yAx(y, s)
(�

P (s, Ax(ξ, s), Ax(y, s))dqs(ξ)
)
ds
)
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as t→ t0. Hence by the dominated convergence theorem

�
ρ(y)e−

� t
0 η(s)χ(x,s)dsd

(� t

0

Lqsds
)

(y) −→
�
ρ(y)e−

� t0
0 η(s)χ(x,s)dsd

( � t0

0

Lqsds
)

(y)

as t→ t0. Therefore, (f0)x +
� t

0
Lqsds ∈ Y .

Let us come back to consider the map (5.10). If we show that it is a contrac-

tion, i.e., it is such that for all q1, q2 ∈ Y

J0(q1, q2) := dY

(
(f0)x +

� t

0

L(q1)sds, (f0)x +

� t

0

L(q2)sds

)
≤ CdY (q1, q2),

(5.12)

it follows from a standard contraction argument that the map (5.10) has a

unique fixed point in a sufficiently small interval [0, τ ] and that (5.9) has a

unique local solution q which can be continued in [0, T ].

To prove (5.12) we use the characterization of the W1-distance given in

Proposition A.3:

dY (q1, q2) = max
t∈[0,T ]

[
e−

� t
0 η(s)χ(x,s)ds sup

{�
φd(q1 − q2)t;φ ∈ Lip1([0, 1],R)

}]
,

(5.13)

where Lip1([0, 1],R) is the space of Lipschitz continuous functions Φ : [0, 1]→
R with Lipschitz constant not greater than 1.

Hence

J0(q1, q2) = max
t∈[0,T ]

[
e−

� t
0 η(s)χ(x,s)ds sup{Iφ(t);φ ∈ Lip1([0, 1],R)}

]
,

where

Iφ(t) :=

�
φd

� t

0

(L(q1)s − L(q2)s)ds

and L(q1)s − L(q2)s is given by

η(s)χ(x, s)

(�
P (s, Ax(ξ, s), Ax(y, s))∂yAx(y, s)d(q1 − q2)s(ξ)

)
.
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By Fubini’s theorem, Iφ(t) is equal to

�
φ(y)

� t

0

(
ηχ
(�

P (s, Ax(ξ, s), Ax(y, s))∂yAx(y, s)d(q1 − q2)s(ξ)
)
dy
)
ds

=

� t

0

ηχ
( � 1

Ax(0,s)

φ(Bx(b, s))
(�

P (s, Ax(ξ, s), b)d(q1 − q2)s(ξ)
)
db
)
ds

=

� t

0

ηχ
( � ( � 1

Ax(0,s)

φ(Bx(b, s))P (s, Ax(ξ, s), b)db
)
d(q1 − q2)s(ξ)

)
ds.

By (5.11), Iφ(t) = 0 if φ is constant, so we may assume that φ(0) = 0.

Indeed, we could always take φ̃(y) = φ(y) − φ(0), whence φ̃(0) = 0 and

|φ̃(y
′
)− φ̃(y

′′
)| = |φ(y

′
)− φ(y

′′
)| ≤ |y′ − y′′ |, i.e. φ̃ ∈ Lip1([0, 1],R).

Hence, we can assume that φ(0) = 0. So, |φ(y)| = |φ(y)−φ(0)| ≤ C|y−0| ≤
|y| ≤ 1, i.e., |φ| ≤ 1 and, by (3.4),∣∣∣ � 1

Ax(0,s)

φ(Bx(b, s))(P (s, Ax(ξ
′
, s), b)− P (s, Ax(ξ

′′
, s), b))db

∣∣∣
≤

� 1

Ax(0,s)

|P (s, Ax(ξ
′
, s), b)− P (s, Ax(ξ

′′
, s), b)|db ≤ L|ξ′ − ξ′′ |.

Therefore the function

ξ 7→ 1

L

� 1

Ax(0,s)

φ(Bx(b, s))P (s, Ax(ξ, s), b)db ∈ Lip1([0, 1],R),

whence

Iφ(t) =

� t

0

ηχ
(� (� 1

Ax(0,s)

L

L
φ(Bx(b, s))P (s, Ax(ξ, s), b)db

)
d(q1 − q2)s(ξ)

)
ds

≤ L

� t

0

ηχ sup
{�

φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)
}
ds

≤ Lmax
[0,T ]

η

� t

0

sup
{ �

φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)
}
ds.

By passing to the sup:

sup{Iφ(t);φ ∈ Lip1([0, 1],R)}

≤ Lmax
[0,T ]

η

� t

0

sup
{ �

φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)
}
ds
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and

e−
� t
0 η(s)χ(x,s)ds sup{Iφ(t);φ ∈ Lip1([0, 1],R)}

≤ Lmax
[0,T ]

η

� t

0

[
e−

� t
0 η(u)χ(x,u)du·

· sup
{ �

φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)
}]
ds

≤ Lmax
[0,T ]

η

� t

0

max
s∈[0,T ]

[
e−

� s
0 η(u)χ(x,u)du·

· sup
{ �

φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)
}]
ds

≤ LT max
[0,T ]

η max
s∈[0,T ]

[
e−

� s
0 η(u)χ(x,u)du sup

{ �
φd(q1 − q2)s;φ ∈ Lip1([0, 1],R)

}]
= LT max

[0,T ]
η dY (q1, q2).

Thus (5.12) follows by taking the sup of the left-hand side term:

J0(q1, q2) ≤ LT max
t∈[0,T ]

η(t) dY (q1, q2).

Therefore, the map (5.10) has a unique fixed point in a sufficiently small

interval [0, τ ], which can be continued in [0, T ].

Setting

g
x,t

= e−
� t
0 η(s)χ(x,s)dsq

t
for t ∈ [0, T ],

we have completed the proof of part (i) of the Lemma.

Fix an x ∈ Ω for which (5.6) and (5.9) (for q) are valid. Since the map

t 7→ g
x,t

is continuous in the weak∗ topology (and so is t 7→ q
t
) by Proposition

2.17, and P and Ax are continuous functions, then we can say that the map

(y, t) 7→
�
P (t, Ax(ξ, t), Ax(y, t))dqt(ξ)

is continuous in [0, 1] × [0, T ] by arguing in the same way as in (5.3). In

particular, it is also bounded. Hence L(q, ·) ∈ L∞((0, 1)× (0, T )), where we

recall that Lq
t

:= ηχ(x, t)∂yAx(y, t)
�
P (t, Ax(ξ, t), Ax(y, t))dqt(ξ) ≥ 0.
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We set q̃ = q − (f0)x. By (5.9)

q̃t = q
t
− (f0)x = (f0)x − (f0)x +

� t

0

Lq
s
ds =

� t

0

L(q̃s + (f0)x)ds

i.e.,

q̃t =

� t

0

L(q̃s + (f0)x)ds for t ∈ [0, T ].

Since, by boundedness of L(q̃s + (f0)x)(y), t 7→ q̃t(y) is absolutely continuous

in [0, T ] for a.e. y ∈ (0, 1). This means that for all τ ∈ (0, T ] and ψ ∈
L∞([0, 1]× [0, T ]) with ∂tψ ∈ L∞([0, 1]× [0, T ]), we have
� 1

0

ψ(y, τ)q̃τ (y)dy =

� 1

0

(� τ

0

(ψ(y, t)q̃t(y))
′
dt
)
dy

=

� �
(0,1)×(0,τ)

[∂tψ(y, t)q̃t(y) + ψ(y, t)L((q̃t + (f0)x)(y))]dydt.

(5.14)

Finally let φ(y, t) ∈ C([0, 1] × [0, T ]) with ∂tφ ∈ C([0, 1] × [0, T ]) (we recall

that x is fixed). We substitute the function ψ(y, t) = e−
� t
0 η(s)χ(x,s)dsφ(y, t)

into (5.14). Since

∂tψ(y, t) = e−
� t
0 η(s)χ(x,s)ds(−ηχφ(y, t) + ∂tφ(y, t)),

ψ and ∂tψ are continuous with respect to y and, by a straightforward calcu-

lation, (5.14) transforms into�
φ(y, τ)dg

x,τ
(y)−

�
ψ(y, 0)d(f0)x(y)

=

�
e
� τ
0 η(s)χ(x,s)ψ(y, τ)dg

x,τ
(y)−

�
ψ(y, 0)d(f0)x(y)

=

�
ψ(y, τ)dq

τ
(y)−

�
ψ(y, 0)d(f0)x(y)

=

�
ψ(y, τ)dq̃τ (y) +

�
ψ(y, τ)d(f0)x(y)−

�
ψ(y, 0)d(f0)x(y)

=

� �
(0,1)×(0,τ)

[∂tψ(y, t)q̃t(y) + ψ(y, t)L((q̃t + (f0)x)(y))]dydt+

+

�
ψ(y, τ)d(f0)x(y)−

�
ψ(y, 0)d(f0)x(y)
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=

� �
(0,1)×(0,τ)

e−
� t
0 η(s)χ(x,s)ds(−ηχφ(y, t) + ∂tφ(y, t))q̃t(y)dydt+

+

� �
(0,1)×(0,τ)

ψ(y, t)L((q̃t + (f0)x)(y))dydt+

+

�
(ψ(y, τ)− ψ(y, 0))d(f0)x(y)

=

� �
(0,1)×(0,τ)

∂tφ(y, t)e−
� t
0 η(s)χ(x,s)dsq

t
(y)dydt

−
� �

(0,1)×(0,τ)

∂tφ(y, t)e−
� t
0 η(s)χ(x,s)dsd(f0)x(y)dt

−
� �

(0,1)×(0,τ)

η(t)χ(x, t)φ(y, t)e−
� t
0 η(s)χ(x,s)ds(q

t
− (f0)x)(y)dydt+

+

� �
(0,1)×(0,τ)

ψ(y, t)Lq
t
(y)dydt+

� τ

0

( �
∂tψ(y, t)d(f0)x(y)

)
dt

=

� �
(0,1)×(0,τ)

∂tφ(y, t)dg
x,t

(y)dt

−
� �

(0,1)×(0,τ)

∂tφ(y, t)e−
� t
0 η(s)χ(x,s)dsd(f0)x(y)dt

−
� �

(0,1)×(0,τ)

η(t)χ(x, t)φ(y, t)dg
x,t

(y)dt

−
� �

(0,1)×(0,τ)

−η(t)χ(x, t)φ(y, t)e−
� t
0 η(s)χ(x,s)dsd(f0)x(y)dt+

+

� �
(0,1)×(0,τ)

ψ(y, t)Lq
t
(y)dydt+

� τ

0

( �
∂tψ(y, t)d(f0)x(y)

)
dt

=

� �
(0,1)×(0,τ)

∂tφ(y, t)dg
x,t

(y)dt

−
� �

(0,1)×(0,τ)

∂tψ(y, t)d(f0)x(y)dt

−
� �

(0,1)×(0,τ)

η(t)χ(x, t)φ(y, t)dg
x,t

(y)dt+

+

� �
(0,1)×(0,τ)

[
φ(y, t)ηχ∂yAx(y, t)

�
P (t, Ax(ξ, t), Ax(y, t))e

−
� t
0 ηχdsdq

t
(ξ)
]
dydt

+

� τ

0

(�
∂tψ(y, t)d(f0)x(y)

)
dt

=

� τ

0

( �
φ(y, t)d(F [g])x,t(y) +

�
∂tφ(y, t)dg

x,t
(y)
)
dt.
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Therefore, we have obtained

�
φ(y, τ)dg

x,τ
(y)−

�
ψ(y, 0)d(f0)x(y)

=

� τ

0

(�
φ(y, t)d(F [g])x,t(y) +

�
∂tφ(y, t)dg

x,t
(y)
)
dt

for all τ ∈ [0, T ] and for all φ(y, t) ∈ C([0, 1] × [0, T ]) with ∂tφ ∈ C([0, 1] ×
[0, T ]). Since ψ(y, 0) = φ(y, 0), this implies that g

x,t
(y) satisfies the equation

of the system in sense of (4.18):

�
φ(y, τ)dg

x,τ
(y)−

�
φ(y, 0)d(f0)x(y)

=

� τ

0

( �
φ(y, t)d(F [g])x,t(y) +

�
∂tφ(y, t)dg

x,t
(y)
)
dt.

Let (Â, g, u) := (Â, g, u1, . . . , uN) ∈ Xτ,ρ. By Lemma 5.3, (Â, g, u) uniquely

defines a function A ∈ L∞(Ω;C([0, 1]× [0, τ ]; [0, 1])), and, by Lemma 5.5, A

uniquely defines a measure g ∈ L(Ω;C([0, T ];X[0,1])). Let u := (u1, . . . , uN)

be a weak solution of the problemε∂tum − dm∆um = Fm(A, g, u) (1 ≤ m < N), in Qτ = Ω× (0, τ ]

ε∂tuN = FN(A, g, u) in Qτ = Ω× (0, τ ]

(5.15)

with initial and boundary conditions
ui(x, 0) = u0i(x) if x ∈ Ω,

∂nui(x, t) = 0 if x ∈ ∂Ω0, t > 0, (1 ≤ i ≤ N).

∂nui(x, t) = −γiui(x, t) if x ∈ ∂Ω1 × (0, τ ].

(5.16)
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Here we have set

F1(A, g, u) := −u1

N∑
j=1

a1,juj − σ1u1+

+ CF

� 1

0

(µ0 + Ax(ξ, t))(1− Ax(ξ, t))dgx,t(ξ),

Fm(A, g, u) := −um
N∑
j=1

am,juj + 1
2

m−1∑
j=1

aj,m−jujum−j − σmum,

FN(A, g, u) := 1
2

∑
j+k≥N
k,j<N

aj,kujuk.

Notice that, since (Â, g, u) ∈ Xτ,ρ, Fi ∈ L∞(Ω× [0, τ ]) (i = 1, . . . , N) and its

norm only depends on the compact set K ⊂ RN containing (u1, . . . , uN). We

also observe that system (5.15)-(5.16) consists of N − 1 (uncoupled) scalar

linear heat equations with linear boundary conditions and an ordinary differ-

ential equation. Therefore it has a unique weak solution u. More precisely,

following [26] and recalling that Xτ,ρ denotes the closed ball of radius ρ > 0

centered at (y, f0, u0) in Xτ , we have the following result.

Proposition 5.6 (see Theorems 2.11, 3.2, and 3.3 in [26]). Let (Â, g, u) ∈
Xτ,ρ. For all 1 ≤ i < N there exists a unique

ui ∈ C([0, τ ];L2(Ω)) ∩ L2([0, τ ];H1(Ω))

such that

di

� τ

0

[�
Ω

∇ui(x, t) · ∇ψ(x, t)dx+ γi

�
∂Ω1

ui(x, t)ψ(x, t)dσ(x)

]
dt

= ε

� �
Qτ

ui∂tψdxdt+ ε

�
Ω

u0iψ(x, 0)dx+

� �
Qτ

Fi(A, g, u)ψdxdt

for all ψ ∈ H1([0, τ ];H1(Ω)), ψ(x, τ) = 0.

Let uN(x, t) = u0N(x) +
� τ

0
FN(A, g, u)ds and u = (u1, . . . , uN). Then u ∈

C(Qτ ;RN), u(·, 0) = u0 and, for 1 ≤ i ≤ N ,

‖ui‖C(Qτ ;R) ≤ C{‖u0i‖L∞(Ω) + ‖Fi‖Lr(Qτ ;R)} if r > n,
1

r
+
n

2r
< 1.

In particular ‖ui‖C(Qτ ;R) ≤ C{‖u0i‖C(Ω) + τ
1
r ‖Fi‖C(Qτ ;R)}.
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So, by involving the main results seen so far in this chapter, we are now

ready to define the map to which we shall apply a contraction argument. Let

ρ > 0 be fixed. We know that if (Â, g, u) ∈ Xτ,ρ, then we can find uniquely A

as in Lemma 5.3, g as in Lemma 5.5 and u as in Proposition 5.6 introduced

above. Using this notation, we set

H(Â, g, u) := (A, g, u) for (Â, g, u) ∈ Xτ,ρ. (5.17)

Let Td denote the metric topology of Xτ,ρ and T the weaker topology on

Xτ,ρ which is obtained by endowing L∞(Ω;C([0, 1] × [0, τ ]; [0, 1])) with the

L1-topology on Ω× [0, 1]× [0, τ ].

In particular, the following proposition ensures that if τ > 0 is sufficiently

small, H is well defined as a map from Xτ,ρ to Xτ,ρ; moreover, it is a contrac-

tion not at the first step on Xτ,ρ but when we re-apply it to its image H(Xτ,ρ),
where H(Xτ,ρ) ⊂ Xτ,ρ. Finally, H : (Xτ,ρ, Td)→ (Xτ,ρ, T ) is continuous.

Proposition 5.7. Let ρ > 0 be fixed and let H(Â, g, u) be defined by (5.17).

If τ > 0 is sufficiently small, then H : Xτ,ρ → Xτ,ρ, (An, gn, un) → (A, g, u)

in T , if (Ân, gn, un)→ (Â, g, u) in Td , and H is a contraction on H(Xτ,ρ).

Proof. Let us start to prove that H(Xτ,ρ) ⊂ Xτ,ρ if τ is sufficiently small.

We recall that Xτ,ρ denotes the closed ball in Xτ of radius ρ centered at

(y, f0, u0). By Proposition 5.6, ‖u(·, t) − u0‖C(Ω;RN ) → 0 as t → 0+. This

means that ∀ρ > 0 there exists δ > 0, such that ∀t, 0 < |t| < δ we have

max
Ω
‖u(·, t)− u0‖RN < ε.

Thus, since max
Ω×[0,τ ]

‖u(x, t)− u0‖RN ≤ max
[0,τ ]

(max
Ω
‖u(·, t)− u0‖RN ) ≤ ε if τ < δ

(for example we can choose ε < ρ√
3
, if we want that (A, g, u) belongs to the

closed ball of radius ρ). So, to prove that (A, g, u) belongs to the closed ball

Xτ,ρ for τ > 0 sufficiently small, by arguing as above, it remains to show

that, as t→ 0+,

sup
x∈Ω,0≤y≤1

|Ax(y, t)− y| → 0, sup
x∈Ω
W1(g

x,t
, (f0)x)→ 0. (5.18)

By (5.2), recalling that y ∈ [0, 1], v̂x(1, t) = 0 and (a, t) 7→ v̂x(a, t) is contin-

uous and Lipschitz continuous w.r.t. a ∈ [0, 1], uniformly in t ∈ [0, T ], as we
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have seen in the proof of Lemma 5.3 by using assumptions (3.1) and (3.2),

we obtain

|Ax(y, t)− y| = |Ax(y, t)− Ax(y, 0)|

=
∣∣∣� t

0

∂tAx(y, s)ds
∣∣∣

=
∣∣∣� t

0

v̂x(Ax(y, s), s)ds
∣∣∣

=
∣∣∣� t

0

(
v̂x(Ax(y, s), s)− v̂x(1, s)

)
ds
∣∣∣

≤ C1

� t

0

|Ax(y, s)− 1|ds ≤ C1

� t

0

(
|Ax(y, s)− y|+ |y − 1|

)
ds

≤ C1

� t

0

(
|Ax(y, s)− y|+ 1

)
ds

≤ C1

� t

0

|Ax(y, s)− y|ds+ C2τ.

Therefore, by Gronwall’s Lemma B.17

|Ax(y, t)− y| ≤ C2τe
C1t → 0

as τ → 0+ (which also implies t→ 0+). This gives (5.18)1.

As for (5.18)2 , it easily follows from Lemma 5.3(i) and its proof: indeed, for

a.e. x ∈ Ω, t 7→ g
x,t

is the unique solution of the integral equation

g
x,t

= (f0)x +

� t

0

(F [g])x,sds

and it belongs to C([0, T ];X[0,1]). Thus, by continuity g
x,t
→ g

x,0
= (f0)x as

t→ 0+ in the Wasserstein topology, i.e. W1(g
x,t
, (f0)x)→ 0 as t→ 0+. This

concludes the proof and therefore H maps Xτ,ρ in Xτ,ρ since H(Xτ,ρ) ⊂ Xτ,ρ
if τ is sufficiently small, i.e. H : Xτ,ρ → Xτ,ρ.
Now, let us prove the (Td, T )-continuity of H. Let Ân, Â ∈ L∞(Ω;C([0, 1]×
[0, τ ]; [0, 1])) be such that (Ân, gn, un) → (Â, g, u) in Xτ,ρ as n → +∞. We

have to show that An → A in L1(Ω× [0, 1]× [0, τ ]) as n→ +∞.

Since |An| ≤ 1 ∀n and 1 ∈ L1(Ω × [0, 1] × [0, τ ]), then by the dominated
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convergence theorem, An → A in L1(Ω× [0, 1]× [0, τ ]) if we prove that

An → A a.e. in Ω× [0, 1]× [0, τ ] as n→ +∞. (5.19)

To prove (5.19) we observe that by (5.2)∣∣(An)x(y, t)− Ax(y, t)
∣∣ =

∣∣(An)x(y, t)− y + y − Ax(y, t)
∣∣

=
∣∣(An)x(y, t)− (An)x(y, 0) + Ax(y, 0)− Ax(y, t)

∣∣
=
∣∣∣� t

0

�
Gx((An)x(y, s), (Ân)x(ξ, s))d(gn)x,s(ξ)ds

+

� t

0

S(x, (An)x(y, s), un(x, s))ds

−
� t

0

�
Gx(Ax(y, s), Âx(ξ, s))dgx,s(ξ)ds

−
� t

0

S(x,Ax(y, s), u(x, s))ds
∣∣∣

≤
� t

0

∣∣∣ � [Gx((An)x(y, s), (Ân)x(ξ, s))− Gx(Ax(y, s), Âx(ξ, s))]d(gn)x,s(ξ)
∣∣∣ds

+

� t

0

∣∣∣ � Gx(Ax(y, s), Âx(ξ, s))d(gn − g)x,s(ξ)
∣∣∣ds

+

� t

0

∣∣S(x, (An)x(y, s), un(x, s))− S(x, (An)x(y, s), u(x, s))
∣∣ds

+

� t

0

∣∣S(x, (An)x(y, s), u(x, s))− S(x,Ax(y, s), u(x, s))
∣∣ds

=: I1 + I2 + I3 + I4, (5.20)

where Ij = Ij(x, y, t) for j = 1, 2, 3, 4.

Now, since (Ân, gn, un), (Â, g, u) ∈ Xτ,ρ, we have in particular

max
Ω×[0,τ ]

‖un − u‖RN ≤ 2ρ.

Therefore, the constant C(K) given by (3.2) depends on ρ, if we consider as

compact K ⊂ RN−1 a closed ball in RN−1 of radius depending on ρ in order

to contain un, u. So, it follows easily from (3.2) that

I3 ≤ Cρt sup
x∈Ω,0≤s≤τ

|un(x, s)− u(x, s)| ≤ Cρtd((Ân, gn, un), (Â, g, u)).
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Concerning I4, always by (3.2) we have

I4 ≤ Cρ

� t

0

|(An)x(y, s)− Ax(y, s)|ds.

By (3.1)

I1 ≤� t

0

� ∣∣∣Gx((An)x(y, s), (Ân)x(ξ, s))− Gx(Ax(y, s), (Ân)x(ξ, s))
∣∣∣d(gn)x,s(ξ)ds

+

� t

0

� ∣∣∣Gx(Ax(y, s), (Ân)x(ξ, s))− Gx(Ax(y, s), Âx(ξ, s))
∣∣∣d(gn)x,s(ξ)ds

≤ C

� t

0

� ∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣d(gn)x,s(ξ)ds

+ C

� t

0

� ∣∣∣(Ân)x(ξ, s)− Âx(ξ, s)
∣∣∣d(gn)x,s(ξ)ds

= C

� t

0

∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣ � d(gn)x,s(ξ)ds

+ C

� t

0

�
sup

x∈Ω,0≤y≤1,0≤s≤τ

∣∣∣(Ân)x(ξ, s)− Âx(ξ, s)
∣∣∣d(gn)x,s(ξ)ds

= C

� t

0

∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣ds+ Ct sup

x∈Ω,0≤y≤1,0≤s≤τ

∣∣∣(Ân)x(ξ, s)− Âx(ξ, s)
∣∣∣

≤ C

� t

0

∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣ds+ Ctd((Ân, gn, un), (Â, g, u)).

Therefore,

∣∣(An)x(y, t)− Ax(y, t)
∣∣ ≤ I1 + I2 + I3 + I4

≤ (C + Cρ)

� t

0

∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣ds+ (C + Cρ)td((Ân, gn, un), (Â, g, u))

+ I2(x, y, t)

≤ C ′ρ

� t

0

∣∣∣(An)x(y, s)− Ax(y, s)
∣∣∣ds+ C ′ρτd((Ân, gn, un), (Â, g, u)) + I2(x, y, τ).
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By Gronwall’s Lemma B.17∣∣(An)x(y, t)− Ax(y, t)
∣∣

≤
(
C ′ρτd((Ân, gn, un), (Â, g, u)) + I2(x, y, τ)

)
eC
′
ρt

≤
(
C ′ρτd((Ân, gn, un), (Â, g, u)) + I2(x, y, τ)

)
eC
′
ρτ → 0 (5.21)

as n → +∞ since d((Ân, gn, un), (Â, g, u)) → 0 and I2(x, y, τ) → 0 as n →
+∞ by Proposition 2.17, as we will show below. In particular this proves

(5.19) and thus An → A in L1(Ω× [0, 1]× [0, τ ]).

Let us now prove what we have stated above, i.e. that I2(x, y, τ) → 0 as

n→ +∞. We recall that

I2(x, y, τ) =

� τ

0

∣∣∣ � Gx(Ax(y, s), Âx(ξ, s))d(gn − g)x,s(ξ)
∣∣∣ds.

Since

W1((gn)x,s, gx,s) ≤ sup
x∈Ω

max
0≤t≤τ

W1((gn)x,t, gx,t) ≤ d((Ân, gn, un), (Â, g, u)),

we have W1((gn)x,s, gx,s) → 0 as n → +∞. Therefore, by Proposition 2.17

(gn)x,s → gx,s weakly∗ as n→ +∞ and thus

�
Gx(Ax(y, s), Âx(ξ, s))d(gn − g)x,s(ξ)→ 0

as n→ +∞.

Moreover,∣∣∣ � Gx(Ax(y, s), Âx(ξ, s))d(gn − g)x,s(ξ)
∣∣∣

≤
� ∣∣∣Gx(Ax(y, s), Âx(ξ, s))∣∣∣d(gn)x,s(ξ) +

� ∣∣∣Gx(Ax(y, s), Âx(ξ, s))∣∣∣dgx,s(ξ)
≤ 2C < +∞.

Hence by the dominated convergence theorem I2(x, y, τ)→ 0 as n→ +∞.

Notice that to complete the proof of the (Td, T )-continuity of the map H
it remains to prove that g

n
→ g in L(Ω;C([0, τ ];X[0,1])) and un → u in
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C(Ω× [0, τ ];RN). This will be done in the sequel, when we prove that H is

a contraction.

In the remainder of the proof, we show that H is a contraction on H(Xτ,ρ)
if τ is small enough. Let (Â1, g1, u1), (Â2, g2, u2) ∈ H(Xτ,ρ). Repeating the

same arguments leading to (5.21), we attain that

|A1
x(y, t)− A2

x(y, t)|

≤
(
C ′ρτd((Â1, g1, u1), (Â2, g2, u2))+

+

� τ

0

∣∣∣� Gx(A2
x(y, s), Â

2
x(ξ, s))d(g1 − g2)x,s(ξ)

∣∣∣ds)eC′ρτ .
Since (Â2, g2, u2) ∈ H(Xτ,ρ), it follows from Remark 5.4 and (3.1) that

Â2
x(ξ, s) and Gx(A2

x(y, s), Â
2
x(ξ, s)) are Lipschitz continuous in ξ, uniformly

w.r.t. x and s. Therefore, by Proposition A.3,

|A1
x(y, t)− A2

x(y, t)|

≤
(
C ′ρτd((Â1, g1, u1), (Â2, g2, u2)) + Cρ

� τ

0

W1(g1
x,s, g

2
x,s)ds

)
eC
′
ρτ

≤ eC
′
ρτ (C ′ρ + Cρ)τd((Â1, g1, u1), (Â2, g2, u2)),

whence

sup
x,y,t
|A1

x(y, t)− A2
x(y, t)| ≤ eC

′
ρτ (C ′ρ + Cρ)τd((Â1, g1, u1), (Â2, g2, u2)). (5.22)

Let us pass to consider now W1(g1
x,t
, g2

x,t
). In view of the definition of g1, g2,

we may reproduce the arguments in the proof of Lemma 5.5 and obtain that

W1(g1

x,t
, g2

x,t
) ≤ C max

[0,T ]
η t sup

0≤s≤t
W1(g1

x,s, g
2
x,s) (5.23)

≤ Cτd((Â1, g1, u1), (Â2, g2, u2)). (5.24)

Finally we have to estimate the third component max
Ω×[0,τ ]

|u1 − u2|. Set U =

u1 − u2 and U = (U1, . . . , UN). Then, U is a weak solution in the sense of

Proposition 5.6 of a system similar to (5.15)-(5.16) with Fj replaced by F̃j :=
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Fj(A
1, g1, u1)− Fj(A2, g2, u2), j = 1, . . . , N , and u0 replaced by U(x, 0) = 0.

By Proposition 5.6,

‖u1 − u2‖C(Ω×[0,τ ];RN ) = ‖U‖C(Ω×[0,τ ];RN ) ≤
N∑
i=1

‖U i‖C(Ω×[0,τ ];R)

≤ Cτ
1
r

N∑
i=1

‖F̃i‖C(Ω×[0,τ ];R). (5.25)

If k > 1, Fk is a polynomial in the components of u and, since u1, u2 are

uniformly bounded by a constant which depends on ρ in Ω× [0, τ ],

‖F̃k‖C(Ω×[0,τ ];R) ≤ Cρ
∑
i

‖u1
i − u2

i ‖C(Ω×[0,τ ];R) if k > 1,

and hence

‖F̃k‖C(Ω×[0,τ ];R) ≤ Cρd((Â1, g1, u1), (Â2, g2, u2)) if k > 1. (5.26)

The same argument applies to the polynomial terms of F̃1, so if we call

I :=

� 1

0

(µ0 + A1
x(ξ, t))(1− A1

x(ξ, t))dg
1

x,t
(ξ)

−
� 1

0

(µ0 + A2
x(ξ, t))(1− A2

x(ξ, t))dg
2

x,t
(ξ),

we have to estimate ‖I‖C(Ω×[0,τ ];R). Arguing as above,

|I| ≤ J1 + J2

:=

� 1

0

|(µ0 + A1
x(ξ, t))(1− A1

x(ξ, t))− (µ0 + A2
x(ξ, t))(1− A2

x(ξ, t))dg
1

x,t
(ξ)

+
∣∣∣ � 1

0

(µ0 + A2
x(ξ, t))(1− A2

x(ξ, t))d(g1

x,t
− g2

x,t
)(ξ)

∣∣∣.
By a straightward calculation and by (5.22)

J1 =

� 1

0

∣∣(A2
x(ξ, t)− A1

x(ξ, t)
)(

(µ0 − 1) + A2
x(ξ, t) + A1

x(ξ, t)
)∣∣dg1

x,t
(ξ)

≤
� 1

0

∣∣A2
x(ξ, t)− A1

x(ξ, t)
∣∣(|µ0 − 1|+

∣∣A2
x(ξ, t) + A1

x(ξ, t)
∣∣)dg1

x,t
(ξ)

≤ (2 + |µ0 − 1|) sup
x,ξ,t

∣∣A2
x(ξ, t)− A1

x(ξ, t)
∣∣ � 1

0

dg1

x,t
(ξ)

≤ CeC
′
ρτ (C ′ρ + Cρ)τd((Â1, g1, u1), (Â2, g2, u2)).
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Concerning J2, by Remark 5.4, the map ξ 7→ (µ0 + A2
x(ξ, t))(1− A2

x(ξ, t)) is

Lipschitz continuous w.r.t. ξ, uniformly w.r.t. x and t. Thus, by Proposition

A.3 and by (5.24),

J2 ≤ CρW1(g1

x,t
, g2

x,t
) ≤ Cρτd((Â1, g1, u1), (Â2, g2, u2)),

so that

‖F̃1‖C(Ω×[0,τ ];R) ≤ Cρτd((Â1, g1, u1), (Â2, g2, u2))+

+Cρd((Â1, g1, u1), (Â2, g2, u2)).

Combining the last estimate with (5.26) and finally with (5.25), we obtain

that

‖u1 − u2‖C(Ω×[0,τ ];RN ) ≤ Cρτ
1
r d((Â1, g1, u1), (Â2, g2, u2)). (5.27)

It follows from (5.22), (5.24) and (5.27) that H is a contraction on H(Xτ,ρ)
if τ is small enough.

This also concludes the proof of the (Td, T )-continuity of H, since it follows

that g
n
→ g and un → u.

At this point we have the right tools to complete the proof of Theorem

5.1. In order to do this, we need a minor modification of the classical Banach-

Caccioppoli fixed point theorem.

Proposition 5.8. Let (X, d) be a complete metric space and let Td be the

topology induced by d. Let T be a Hausdorff topology on X which is weaker

than Td. If H : X → X is a contraction on H(X) which is (Td, T )-

continuous, then H has a unique fixed point.

Proof. We start carrying out the standard iteration procedure, by defining

the iterative sequence

xn+1 = H(xn), (5.28)

starting from a point x0 ∈ H(X), so that xn ∈ H(X) for all n ≥ 0. By a

standard argument, it is a Cauchy sequence. Thus, by the completeness of
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(X, d), we may assume that xn → x̄ ∈ X as n→ +∞. When H is a contrac-

tion on all points of X, and, hence, in particular is Lipschitz continuous from

X to X, we can conclude the proof taking the limit as n → +∞ in (5.28).

In our case this argument has to be slightly adapted since H is a contraction

only on H(X). But since H is (Td, T )-continuous in X, the following holds:

on one side xn+1 → x̄ as n→ +∞ with respect to the topology Td and thus

also with respect to the topology T , since it is weaker than Td; on the other

hand H(xn)→ H(x̄) as n→ +∞ w.r.t. the topology T . Therefore, by (5.28)

and by the uniqueness of the limit in T , we can conclude that x̄ = H(x̄).

Proof of Theorem 5.1. By Proposition 5.7 and the fixed point theorem (Propo-

sition 5.8), the problem (4.16)-(4.17) has a unique solution in the sense of

Definition 4.2 in Ω× [0, τ ], for τ small enough, if we show the nonnegativity

of ui:

ui ≥ 0 in Ω× [0, τ ] (i = 1, . . . , N). (5.29)

If we suppose to have already shown that ui ≥ 0 for i = 1, . . . , N − 1, then

for i = N , (5.29) is trivially satisfied.

For i = 1, . . . , N − 1, (5.29) formally follows from the maximum principle.

Let we make this precise if i = 1. If 1 < i < N − 1 the proof is even easier,

since the i− th equation of the system (4.16) has not the integral term.

Since f = CF
� 1

0
(µ0 + Ax(ξ, t))(1 − Ax(ξ, t))dgx,t(ξ) is nonnegative and

belongs to L∞(Qτ ), there exists a sequence of smooth nonnegative functions

(fk)k∈N such that fk → f as k → +∞ in Lr(Qτ ), where r > n and 1
r

+ n
2r
< 1.

We can also approximate h =
N∑
j=1

a1,juj + σ1 ∈ C(Qτ ) uniformly by smooth

functions hk.

Now, let vk be the unique smooth solution of

ε∂tvk = d1∆vk − vkhk + fk in Qτ ,

vk(x, 0) = u01(x) if x ∈ Ω,

∂nvk(x, t) = 0 if x ∈ ∂Ω0, t > 0,

∂nvk(x, t) = −γ1vk(x, t) if x ∈ ∂Ω1, t > 0.

(5.30)
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Since γ1 > 0, fk ≥ 0 in Qτ , and u01 ≥ 0 in Ω, it follows from the maximum

principle that vk ≥ 0 in Qτ (see [1]).

On the other hand, wk := u1 − vk is a weak solution of

ε∂twk = d1∆wk − wkhk − u1(h− hk) + f − fk in Qτ ,

wk(x, 0) = 0 if x ∈ Ω,

∂nwk(x, t) = 0 if x ∈ ∂Ω0, t > 0,

∂nwk(x, t) = −γ1wk(x, t) if x ∈ ∂Ω1, t > 0.

(5.31)

So it follows from Theorem 3.2 in [26] that wk → 0 as k → +∞ uniformly

on Qτ and therefore vk → u1 as k → +∞ uniformly on Qτ . Thus also u1 ≥ 0

in Qτ .

5.2 Global existence

In this section we complete the proof of Theorem 3.6. We recall that prob-

lems (4.16)-(4.17) and (8)-(9) are equivalent, as we have proved in Chapter

4. So, if we show that the local solution of problem (4.16)-(4.17), whose

uniqueness and local existence has been proved in the previous section, can

be continued to the whole interval [0, T ], then we will complete the proof of

Theorem 3.6.

In order to show the global existence (with respect to t) of the solution,

we argue by contradiction. Let (A, g, u) be the local solution of (4.16)-(4.17)

and let us suppose that the maximal interval of existence is [0, τ ∗) for some

τ ∗ < T .

First, we provide an a priori estimate for u(x, t).

Since

CF

� 1

0

(µ0 + Ax(ξ, t))(1− Ax(ξ, t))dgx,t(ξ) ≤ C1 in Ω× [0, τ ∗) (5.32)

for some constant C1, it follows formally from the maximum principle that

u1(x, t) ≤ sup
Ω
u01 + C1t for x ∈ Ω, 0 ≤ t < τ ∗.
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Similarly, if u1, . . . , um−1 are bounded in L∞(Ω×[0, τ ∗)) for some 1 < m < N

then,

1

2

m−1∑
j=1

aj,m−jujum−j ≤ Cm in Ω× [0, τ ∗)

for some constant Cm, and it follows formally from the maximum principle

that

um(x, t) ≤ sup
Ω
u0m + Cmt for x ∈ Ω, 0 ≤ t < τ ∗.

In both cases the use of the maximum principle is justified as in the proof of

(5.29). Concerning the boundedness of uN in Ω× [0, τ ∗), it follows from that

of u1, . . . , uN−1, so we have obtained that, for some Cu > 0,

|u| ≤ Cu in Ω× [0, τ ∗). (5.33)

This a priori estimate for u(x, t) allows us to show the existence of

lim
t→τ∗

u(x, t) =: u(x, τ ∗).

Indeed, in view of (5.32) and (5.33), it follows from standard regularity the-

ory for weak solutions of parabolic equations that u is uniformly (Hölder)

continuous in Ω× [0, τ ∗) (see, for example, Theorem 1, p.111 in [30]). Hence

u can be extended to Ω× [0, τ ∗] as a continuous function.

Let us pass to show the existence of

lim
t→τ∗

Ax(y, t) =: Ax(y, τ
∗).

Arguing as in the proof of Lemma 5.3 we obtain thatAx(y, t) and v̂x(Ax(y, t), t)

are Lipshitz continuous with respect to y, uniformly with respect to x ∈ Ω

and t ∈ [0, τ ∗). By the boundedness of v̂x(Ax(y, t), t), the map t 7→ Ax(y, t)

is Lipschitz continuous on [0, τ ∗). Hence Ax(y, τ
∗) := lim

t→τ∗
Ax(y, t) exists and

is Lipschitz continuous with respect to y, uniformly with respect to x ∈ Ω.

Finally, we can affirm that there exists

lim
t→τ∗

gx,t =: gx,τ∗ .
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Indeed, we can reproduce the arguments of the proof of Lemma 5.5 and we

obtain that the map t 7→ gx,t is Lipschitz continuous from [0, τ ∗) to X[0,1],

which, we recall, is endowed with the Wasserstein distance W1.

Hence, if we consider the functions gx,τ∗ and u(x, τ ∗) as the given initial

data, then the local existence theorem provides a solution in [τ ∗, τ1], for some

τ1 ∈ [τ ∗, T ]. Therefore [0, τ ∗) is not the maximal interval of existence.

So, we have found a contradiction.

This proves the global existence of the solution and completes the proof

of Theorem 3.6.



Appendix A

Narrow Convergence and the

Wasserstein Distance: some

useful tools

The main purpose of this Appendix is helping the reader in the compre-

hension of all the steps of this thesis. Indeed we cite some useful results

which we have used in this work, in order to adapt more or less well-known

results in literature to our modeling needs for Alzheimer’s disease. For proofs

and further details we refer to [3].

Throughout this Appendix, X denotes a complete separable and locally com-

pact metric space with metric d, unless other specifications. We remind that

a positive Borel measure µ on X such that µ(X) = 1 is called probabil-

ity measure and we write µ ∈ P(X). Moreover, we denote by Pp(X) the

following subset of Borel probability measures on X

Pp(X) :=

{
µ ∈ P(X) :

�
X

d(x, x̄)pdµ(x) < +∞ for some x̄ ∈ X
}
.

Let us start introducing a useful Lemma which allows to prove the triangle

inequality for the Wasserstein distance.

Lemma A.1 (See [3], Lemma 5.3.2). Let X1, X2, X3 be complete separable

and locally compact metric spaces and let γ12 ∈ P(X1×X2), γ13 ∈ P(X1×X3)

85
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tools

such that π1
] γ

12 = π1
] γ

13 = µ1. Then there exists µ ∈ P(X1 ×X2 ×X3) such

that

π1,2
] µ = γ12, π1,3

] µ = γ13. (A.1)

We denote by Γ1(γ12, γ13) the subset of plans µ ∈ P(X1×X2×X3) satisfying

(A.1).

Remark A.2. (See [3], Remark 5.3.3) A similar situation occurs when γ12 ∈
P(X1 × X2) and γ23 ∈ P(X2 × X3). Now we say that µ ∈ Γ2(γ12, γ23) if

π1,2
] µ = γ12, π2,3

] µ = γ23. Notice that Γ2(γ12, γ23) is not empty if and only if

π2
] γ

12 = π2
] γ

23. Indeed, this follows by using πi](π
i,j
] µ) = (πi ◦ πi,j)]µ and the

definition of Γ2(γ12, γ23). In this case there exists a measure µ ∈ Γ2(γ12, γ23)

constructed as in the proof of the previous lemma (see [3]) such that π1,3
] µ

belongs by construction to Γ(µ1, µ3).

In Chapter 2 we have given the definition of the p-th Wasserstein distance

between two probability measures µ and ν involving all transport plans be-

tween them. However, when p = 1 there is a particular case which allows us

to have a characterization of the Wasserstein distance with a sort of duality

form. This is expressed by the following Proposition.

Proposition A.3 (Kantorovich-Rubinstein duality; cf. equation (7.1.2)

of [3]). If µ, ν ∈ P1(X) have compact support, then

W1(µ, ν) = sup

{�
X

Φd(µ− ν) : Φ ∈ Lip1(X,R)

}
,

where Lip1(X,R) is the space of Lipschitz continuous functions Φ : X −→ R
with Lipschitz constant not greater than 1.

We consider now the space Pp(X) endowed with the p-th Wasserstein

distance: we are interested in investigating its compactness and complete-

ness and the relation between the Wasserstein convergence and the narrow

convergence. About this we cite the following result.

Proposition A.4 (See [3], Proposition 7.1.5). Pp(X) endowed with the p-

Wasserstein distance is a separable metric space which is complete if X is
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complete. A set K ⊂ Pp(X) is relatively compact if and only if it is p-

uniformly integrable and tight. In particular, for a given sequence (µn)n∈N ⊂
Pp(X) we have

lim
n→+∞

Wp(µn, µ) = 0 ⇐⇒

µn −→ µ narrowly as n→ +∞,

(µn)n∈N has uniformly integrable p−moments.

The property of tightness of a set of probability measures is often re-

quested. So, in order to check if a set K ⊂ P(X) is tight, we can use the

following result which provides an integral condition for this property.

Proposition A.5 (See [3], Remark 5.1.5). Let X be a locally compact separa-

ble metric space and K ⊂ P(X). If there exists a function φ : X −→ [0,+∞],

whose sublevels {x ∈ X : φ(x) ≤ c} are compact in X, such that

sup
µ∈K

�
X

φ(x)dµ(x) < +∞

then K is tight.

Proof. It is sufficient to apply Chebichev inequality (see Proposition A.6)

which shows that the tightness condition in Definition 2.3 is satisfied by the

family of sublevels of φ. Indeed, we have

1

t

�
X

φdµ ≤ 1

t
sup
µ∈K

�
X

φdµ −→ 0

as t→ +∞, since sup
µ∈K

�
X
φ(x)dµ(x) < +∞. This means that ∀ε > 0 ∃Mε > 0

such that ∀t ≥Mε
1

t
sup
µ∈K

�
X

φdµ ≤ ε.

Thus, by posing t = tε = Mε and by using Chebichev inequality,

µ(X \ {x ∈ X;φ(x) ≤ tε}) = µ({x ∈ X;φ(x) > tε})

≤ 1

tε

�
X

φdµ

≤ ε.

Thus, if we take Kε := {x ∈ X;φ(x) ≤ tε}, it is compact by hypothesis and

it satisfies the tightness condition.
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Obviously, if X is compact, every K ⊂ P(X) is tight, by choosing φ ≡ 1

on X.

Proposition A.6 (Chebichev inequality, see [2], Remark 1.18). If f :

X −→ [0,+∞], f µ-measurable is such that
�
X
fdµ < +∞, then for any

t > 0

µ({x ∈ X : f(x) > t}) ≤ 1

t

�
X

fdµ.
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Some auxiliary theorems

Let us recall some notations: in a metric space (X, d), the distance of a

point x ∈ X from a set K is defined by

d(x,K) := inf
y∈K

d(x, y).

Moreover, the distance between two sets A,B ⊂ X is defined by

d(A,B) := inf
x∈A,y∈B

d(x, y).

Theorem B.1. Let (X, d) be a metric space and let K ⊆ X be compact. If

f : K −→ R is continuous, then f must attain a maximum and a minimum.

Proposition B.2. Let an and bn be real bounded sequences. Then

lim sup
n→+∞

(an + bn) ≥ lim sup
n→+∞

an + lim inf
n→+∞

bn (B.1)

lim inf
n→+∞

(an + bn) ≤ lim inf
n→+∞

an + lim sup
n→+∞

bn (B.2)

lim inf
n→+∞

(an + bn) ≥ lim inf
n→+∞

an + lim inf
n→+∞

bn (B.3)

In particular, if one of the sequences converges, then the equality holds in

(B.3).

Proof. Let us start to prove the first inequality. We have, by definition of

sup and inf:

sup
k≥n

(ak + bk) ≥ sup
k≥n

ak + inf
k≥n

bk
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lim
n→+∞

sup
k≥n

(ak + bk) ≥ lim
n→+∞

sup
k≥n

ak + lim
n→+∞

inf
k≥n

bk

Hence by definition of lim sup and lim inf (i.e.lim sup
n→+∞

an := lim
n→+∞

sup
k≥n

an and

lim inf
n→+∞

an := lim
n→+∞

inf
k≥n

an):

lim sup
n→+∞

(an + bn) ≥ lim sup
n→+∞

an + lim inf
n→+∞

bn.

By replacing in the previous inequality an and bn with −an and −bn and using

lim sup
n→+∞

(−an) = − lim inf
n→+∞

an and lim inf
n→+∞

(−an) = − lim sup
n→+∞

an, we obtain the

second inequality.

Finally, the last inequality follows from the definition of lim inf.

Proposition B.3. Let (X1, d1), (X2, d2) be separable metric spaces, X2 lo-

cally compact and let φn : X1 −→ X2 be Borel measurable functions uniformly

converging to φ on compact subsets of X1. If φ : X1 −→ X2 is continuous,

then for any compact set K ⊂ X1 the uniform convergence of φn to φ on K

implies the uniform convergence of f ◦φn to f ◦φ on K, where f : X2 −→ R
is a continuous function.

Proof. Let K ⊂ X1 be compact. Since φ is continuous, φ(K) ⊂ X2 is

compact. Let U be a neighborhood of φ(K), for example U =
⋃

y∈φ(K)

Bd2(y, r)

with r > 0 and Bd2 an open ball respect to the metric d2 of radius r and

centered at y. Since X2 is locally compact, by Proposition B.8 there exists

W compact such that φ(K) ⊂ W ⊂ U ⊂ X2.

We consider now 0 < ε < d2(φ(K), ∂W ), where ∂W denotes the boundary

of the set. Moreover, we know that φn converges uniformly to φ on K, i.e.

∀ε > 0 (and thus also for 0 < ε < d2(φ(K), ∂W ) fixed) ∃nε ∈ N such that

sup
x∈K

d2(φn(x), φ(x)) ≤ ε ∀n ≥ nε

Therefore,

d2(φn(x), φ(K)) = inf
y∈φ(K)

d2(φn(x), y) ≤ d2(φn(x), φ(x)) ≤ ε
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∀n ≥ nε,∀x ∈ K. This means that

φn(K) ⊂ {y ∈ X2; d2(y, φ(K)) ≤ ε} ⊂ W ∀n ≥ nε.

Now, we remember that f is continuous, thus by Heine Cantor it is uniformly

continuous on W , since W is compact, i.e. ∀ε̄ > 0 ∃δ > 0 such that ∀x, y ∈
W , if d2(x, y) < δ

|f(x)− f(y)| < ε̄.

Now, if we take ε < min(d2(φ(K), ∂W ), δ), by the uniform convergence

d2(φn(x), φ(x)) < ε < δ ∀n ≥ nε ∀x ∈ K.

Hence by uniform continuity of f we have proved that ∀ε̄ > 0 ∃n̄ = nε ∈ N
such that

|f(φn(x))− f(φ(x))| < ε̄ ∀n ≥ n̄ ∀x ∈ K

that is the definition of uniform convergence of f ◦ φn to f ◦ φ.

Theorem B.4. Let X, Y be topological spaces with a countable basis of

open sets. Then the Borel σ-algebra of the topological product space X × Y
coincides with the product σ-algebra

B(X × Y ) = B(X)× B(Y ).

Proof. The product σ-algebra contains the rectangles U×V whenever U and

V vary in the basis of open sets of the first and the second space respectively.

Indeed, U × V = (π1)−1(U) ∩ (π2)−1(V ) ∈ B(X) × B(Y ). In addition, they

form a countable basis for the open sets of the topological product X × Y ,

thus they generate B(X × Y ). Hence B(X) × B(Y ) ⊇ B(X × Y ). The

opposite inclusion follows from definition of the product topology and the

product σ-algebra.

Theorem B.5 (Fubini). Let (X1, E1), (X2, E2) be measurable spaces and

µ1, µ2 be positive σ-finite measures in X1, X2 respectively. Then, there is a

unique positive σ-finite measure µ on (X1 ×X2, E1 × E2) such that

µ(E1 × E2) = µ1(E1) · µ2(E2) ∀E1 ∈ E1 ∀E2 ∈ E2.
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Furthermore, for any µ-measurable function u : X1×X2 → [0,+∞] we have

that

x 7→
�
X2

u(x, y)dµ2(y) and y 7→
�
X1

u(x, y)dµ1(x)

are respectively µ1-measurable and µ2-measurable and

�
X1×X2

udµ =

�
X1

(�
X2

u(x, y)dµ2(y)

)
dµ1(x)

=

�
X2

(�
X1

u(x, y)dµ1(x)

)
dµ2(y).

Proposition B.6 (Coincidence criterion, see [2], Proposition 1.8). Let

µ, ν be positive measures on the measure space (X, E), and let G ⊂ E be a

family closed under finite intersection; assume that µ(E) = ν(E) for every

E ∈ G, and that there exists a sequence (Xh) in G such that X =
⋃
hXh and

µ(Xh) = ν(Xh) < +∞ for any h. Then µ and ν coincide on the σ-algebra

generated by G.

We prove now some very useful results for a locally compact topological

space that we have often used during this thesis in order to have compact

sets. We recall that a Hausdorff topological space X is said locally compact

if every point x ∈ X has a compact neighborhood.

Proposition B.7 (See Corollaire Proposition 9 in [8]). Let X be a locally

compact topological space, every point of X has a fundamental system of

compact neighborhoods.

This property can be generalized as follows.

Proposition B.8 (See [8], Proposition 10.). Let X be a locally compact

topological space, every compact set K has a fundamental system of compact

neighborhoods.

Proof. Let U be any neighborhood of K: ∀x ∈ K there exists a compact

neighborhood W (x) of x contained in U. The interiors of the sets W (x) form

an open cover of K when x varies in K, thus , since K is compact, there is a
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finite number of points xi ∈ K (1 ≤ i ≤ n) such that the interiors of W (xi)

form a cover of K. Then V :=
n⋃
i=1

W (xi) is a compact neighborhood of K

contained in U , since a finite union of compact sets is compact.

Proposition B.9. Let (X, d) be a locally compact metric space. Let K be a

compact set and O an open set such that

K ⊂ O and X \O 6= ∅.

Then there exists ε > 0 such that the set

Kε := {x ∈ X : d(x,K) < ε}

is compact and K ⊂ Kε ⊂ O.

Proof. Let us consider a compact neighborhood V of K contained in O, which

exists by Proposition B.8. Now, we take ε > 0 such that ε < d(∂K, ∂V ).

Then K ⊂ Kε ⊂ V , and Kε is compact because it is a closed set contained

in a compact set.

Theorem B.10 (Dominated Convergence Theorem). Let u, uh : X −→
R be µ-measurable functions and assume that uh(x) −→ u(x) for µ-a.e. x ∈
X as h→ +∞. If �

X

sup
h
|uh|dµ < +∞

then

lim
h→+∞

�
X

uhdµ =

�
X

udµ.

Definition B.11. Let X and Y be topological spaces. A function f : X −→
Y is a local homeomorphism if for every point x ∈ X there exists an open set

U that contains x such that the image f(U) is open in Y and the restriction

f|U : U −→ f(U) is a homeomorphism (with the respective induced topologies

on U and on f(U)).

Theorem B.12. Every local homeomorphism is an open map.
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Proof. Let f : X −→ Y be a local homeomorphism and V ⊆ X be open in

X; f(V ) is open iff ∀y ∈ f(V ) ∃U ⊆ Y open in Y such that y ∈ U ⊆ f(V ).

Let y ∈ f(V ) and x ∈ V such that f(x) = y. Then, since f is a local

homeomorphism, ∃A ⊆ X open in X; B ⊆ Y open in Y such that

x ∈ A; f(A) = B and f|A : A→ B is a homeomorphism.

Then y ∈ f(V ∩ A) and U = f(V ∩ A) is open in B since V ∩ A is open in

A and f|A is open because it is a homeomorphism. Moreover, U is also open

in Y since B is open in Y.

Theorem B.13. Let (X, d1), (Y, d2) be metric spaces with X compact and

let f : X −→ Y be a continuous injective function. Then f is open and

closed.

Proof. Let us start to prove that f is closed. Let C be a closed set in X,

then it is compact, since X is compact. Hence f(C) is compact in Y because

f is continuous and thus f(C) is also closed in Y.

To prove that f is open, by Theorem B.12 it is sufficient to show that it is a

local homeomorphism.

Let x be any point in X and let B2(f(x), r) be an open ball in Y centered at

f(x). Since f is continuous U := f−1(B2(f(x), r)) is an open neighborhood

of x. Now, we want to show that

f|U : U −→ f(U)

is a homeomorphism. First, f|U is bijective, since f is injective. Second, it

is continuous because f is continuous and U, f(U) are open respectively in

X, Y . Finally, we have to show that f−1
|U : f(U)→ U is continuous.

Let C be a closed set in U , i.e. C = S ∩ U with S a closed set in X. Then

(f−1
|U )−1(C) = f|U (C) = f(S ∩ U) = f(S) ∩ f(U)

where the last equality holds since f is injective. Now f(S) ∩ f(U) is closed

in f(U) because f(S) is closed in Y since we have already proved that f is

closed. Therefore f−1
|U is continuous and this concludes the proof.
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Proposition B.14 (See Corollario 6.8. in [11]). Let X be a separable metric

space, then every subspace Y of X is separable.

Remark B.15. Notice that [0, 1] with the induced Euclidean metric is a sep-

arable metric space. Indeed, R is separable since Q is dense in R.

Lemma B.16 (Gronwall’s Lemma (strong formulation)). Let u ∈ C1([0, T ];R)

such that
du(t)

dt
≤ Bu(t), ∀t ∈ [0, T ],

then

u(t) ≤ u(0)eBt ∀t ∈ [0, T ].

Proof. Indeed, we have that

d

dt
[u(t)e−Bt] = e−Bt[

du(t)

dt
−Bu(t)] ≤ 0.

By integration, it follows that

u(t)e−Bt − u(0) ≤ 0, hence u(t)e−Bt ≤ u(0).

So, the result follows immediately.

Lemma B.17 (Gronwall’s Lemma (weak formulation)). Let u ∈ C([0, T ];R)

such that

u(t) ≤ A+B

� t

0

u(s)ds ∀t ∈ [0, T ],

then

u(t) ≤ AeBt, ∀t ∈ [0, T ].

Proof. Let us setting w(t) = A+B
� t

0
u(s)ds ∈ C1. In particular,

dw(t)

dt
= Bu(t) ≤ B

(
A+B

� t

0

u(s)ds

)
= Bw(t).

Therefore, by the strong formulation of Gronwall’s Lemma we have

w(t) ≤ w(0)eBt, and since w(0) = A we obtain

u(t) ≤ w(t) ≤ AeBt.
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