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Introduzione

In questa tesi viene studiato il concetto di Z-graduazione buona di un’al-

gebra di Lie finito dimensionale su un campo F algebricamente chiuso di

caratteristica 0 e vengono analizzate in maniera particolare le Z-graduazioni

buone dell’algebra di Lie semplice sp2n(F). Il lavoro è basato sull’articolo [3]

contenente la classificazione delle Z-graduazioni buone delle algebre di Lie

semplici di dimensione finita su un campo algebricamente chiuso di carat-

teristica zero. Nel caso dei risultati relativi ad sp2n, tuttavia, l’articolo [3]

contiene soltanto gli enunciati e con questa tesi ci siamo prefissi l’obiettivo

di ricostruire tutte le dimostrazioni.

Una Z-graduazione di un’algebra di Lie g è definita come una decomposizione

del tipo

g =
⊕
k∈Z

gk, (1)

dove [gi, gj] ⊆ gi+j per ogni i, j ∈ Z. La Z-graduazione (1) si dice buona se

esiste un elemento e ∈ g2 tale che:

1. ade : gj → gj+2 è iniettiva per ogni j ≤ −1;

2. ade : gj → gj+2 è suriettiva per ogni j ≥ −1.

Nel primo capitolo abbiamo richiamato i principali risultati della teoria delle

algebre di Lie semisemplici di dimensione finita su un campo algebricamente

chiuso di caratteristica 0.

Nel secondo capitolo si è dato risalto al concetto di algebra di Lie riduttiva,

analizzandone le proprietà e caratterizzazioni più importanti, con l’obiettivo

principale di dimostrare il teorema di Jacobson-Morozov. Questo teorema
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4 INTRODUZIONE

afferma che, dati un’algebra di Lie semisemplice g su un campo algebrica-

mente chiuso di caratteristica 0 e un qualunque elemento nilpotente e ∈ g,

allora e può essere immerso in una sl2-tripla {e, h, f}, cioè in una terna tale

che [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .

Nel terzo capitolo si è infine iniziata l’analisi delle buone graduazioni di

un’algebra di Lie g. Si è data particolare importanza al caso in cui g

sia semisemplice; in questo caso, infatti, si può dimostrare che, data una

qualunque Z-graduazione g = ⊕j∈Zgj, allora esiste un elemento H ∈ g0 che

la definisce, cioè tale che gk = {x ∈ g | [H, x] = kx}. Inoltre si è dato

un esempio fondamentale di buona graduazione: il Dynkin grading. Dato

un qualunque elemento nilpotente e ∈ g, il Dynkin grading associato ad e

è la Z-graduazione data dalla decomposizione in autospazi di ad(h), dove

{e, h, f} è una sl2-tripla la cui esistenza è garantita dal teorema di Jacobson-

Morozov. Grazie alla teoria delle rappresentazioni irriducibili di sl2 si riesce a

dimostrare che tale graduazione è buona. Vengono poi analizzate le principali

proprietà delle Z-graduazioni buone, dimostrando in particolare che:

a. La condizione 1. è equivalente al fatto che Cg(e) ⊆
⊕
j≥0

gj;

b. Le condizioni 1. e 2. della definizione di buona graduazione sono

equivalenti;

c. Se g = ⊕j∈Zgj è una buona graduazione con buon elemento e ∈ g2,

H ∈ g0 è un elemento che la definisce e s = {e, h, f} è una sl2-tripla

contenente e, allora H − h appartiene al centro di Cg(s).

Il quarto capitolo, infine, è dedicato alla classificazione delle Z-graduazioni

buone di sp2n. A tal fine viene introdotto il concetto di partizione simplet-

tica. In particolare vengono associati ad ogni partizione simplettica p un

oggetto combinatorio SP (p), detto piramide simplettica, e due endomorfismi

simplettici legati a SP (p):

• un endomorfismo nilpotente e(p) (che descrive l’orbita nilpotente asso-

ciata alla partizione p) (si veda la Definizione 4.2.1);
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• un endomorfismo diagonale h(p) (si veda la Definizione 4.2.5).

In particolare si dimostra che si può immergere e(p) in una sl2-tripla

s = {e(p), h(p), f(p)} contenente h(p) e che quindi la Z-graduazione indotta

da ad(h(p)) risulta essere il Dynkin grading. Si studiano infine tutte le gra-

duazioni buone di sp2n con buon elemento e(p), cioè le cosiddette “coppie

buone” (h(p) + h, e(p)), dove e(p) è un buon elemento per la Z-graduazione

indotta da ad(h(p) + h) e h è un endomorfismo diagonale. Una volta data

una descrizione esplicita di Z(Cg(s)) per g = sp2n, si sfrutta la proprietà

c. per stabilire quando h = (h(p) + h) − h(p) ∈ Z(Cg(s)); in questo modo

si è in grado di ridurre i casi in cui (h(p) + h, e(p)) può essere una buona

coppia. Viene fornita una dettagliata descrizione di Csp2n(e(p)) grazie alla

quale è possibile determinare una caratterizzazione completa delle coppie

(h(p) + h, e(p)) buone.

Questa analisi di tipo combinatorio è stata generalizzata in [4] al caso delle

cosiddette superalgebre di Lie basic. Ci proponiamo in futuro di studiare le

graduazioni buone di un’altra classe di superalgebre di Lie di dimensione

finita: le cosiddette superalgebre di Cartan (si veda [8]).





Introduction

In this thesis we study the concept of good Z-grading of a finite dimen-

sional Lie algebra over an algebraically closed field F of characteristic 0,

and in particular we analyze the good Z-gradings of the simple Lie algebra

sp2n(F). Our work is based on the paper [3], containing the classification

of good Z-gradings of finite dimensional simple Lie algebras over an alge-

braically closed field of characteristic zero. However, in the case of sp2n, the

proofs of the results are omitted in the paper [3]. Thus, in this thesis, we

have set the target to reconstruct all the proofs.

A Z-grading of a Lie algebra g is defined as a decomposition of the type

g =
⊕
k∈Z

gk, (2)

where [gi, gj] ⊆ gi+j for all i, j ∈ Z. The Z-grading (2) is called good if there

exists an element e ∈ g2 such that:

1. ade : gj → gj+2 is injective for all j ≤ −1;

2. ade : gj → gj+2 is surjective for all j ≥ −1.

In the first chapter we recall the main results of the theory of finite dimen-

sional semisimple Lie algebras over an algebraically closed field of character-

istic 0.

In the second chapter a big emphasis is put on the concept of reductive Lie

algebra, analyzing the main properties and characterizations, with the prin-

cipal goal to prove the Jacobson-Morozov theorem. This theorem states that,
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if g is a semisimple Lie algebra over an algebraically closed field of character-

istic 0 and e ∈ g is any nilpotent element, then e can be embedded into an

sl2-triple {e, h, f}, i.e., a triple such that [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .

In the third chapter we finally study of the good Z-gradings of a Lie algebra

g. In particular, we focus our attention on a semisimple Lie algebra g is

semisimple. Indeed, in this case, it can be shown that, given any Z-grading

g = ⊕j∈Zgj, then there exists an element H ∈ g0 defining it, i.e., such that

gk = {x ∈ g | [H, x] = kx} for all k ∈ Z. Furthermore, we give a fundamen-

tal example of good Z-grading: the Dynkin one. If e ∈ g is any nilpotent

element, the Dynkin grading associated to e is the Z-grading given by the

eigenspace decomposition of ad(h), where {e, h, f} is an sl2-triple whose exis-

tence is ensured by the Jacobson-Morozov theorem. Thanks to the theory on

irreducible representations of sl2 we prove that such grading is good. Then

we analyze the main properties of good Z-gradings, showing in particular

that:

a. Condition 1. is equivalent to Cg(e) ⊆
⊕
j≥0

gj;

b. The conditions 1. and 2. in the definition of good element are equiva-

lent;

c. If g = ⊕j∈Zgj is a good Z-grading with good element e ∈ g2, H ∈ g0

is an element defining it and s = {e, h, f} is an sl2-triple containing e,

then H − h belongs to the center of Cg(s).

Finally, the fourth chapter is dedicated to the classification of the good Z-

gradings of sp2n. In order to do this, we introduce the concept of symplectic

partition. In particular, we associate to any such partition a combinatorial

object SP (p), called symplectic pyramid, and two symplectic endomorphisms

related to SP (p):

• a nilpotent endomorphism e(p) (that describes the nilpotent orbit as-

sociated to the partition p) (see Definition 4.2.1);

• a diagonal endomorphism h(p) (see Definition 4.2.5).
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Then, we show that e(p) can be embedded in an sl2-triple s = {e(p), h(p), f(p)}
containing h(p) and thus, that the Z-grading induced by ad(h(p)) is the

Dynkin grading. Afterwords, we study all the Z-gradings of sp2n with good

element e(p), i.e., the so called “good pairs” (h(p) + h, e(p)), where e(p) is a

good element for the Z-grading induced by ad(h(p) + h) and h is a diagonal

endomorphism. Once given an explicit description of Z(Cg(s)) for g = sp2n,

we use property c. to establish when h = (h(p) + h) − h(p) ∈ Z(Cg(s)); in

this way we are able to reduce the cases in which (h(p) + h, e(p)) can be a

good pair. We give also a detailed description of Csp2n , thanks to which we

are able to give a complete characterization of the good pairs (h(p)+h, e(p)).

This combinatorial type analysis in generalized in [4] to the case of the

so called basic Lie superalgebras. In the future, we intend to carry out the

good gradings of another class of finite dimensional Lie superalgebras: the

so called Cartan superalgebras (see [8]).
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Chapter 1

Basic results on Lie algebras

1.1 Lie algebras

Definition 1.1.1. A vector space g over a field F, with a bilinear operation

g × g → g, denoted (x, y) 7→ [x, y] and called the bracket or commutator of

x and y, is called a Lie algebra over F if the following axioms are satisfied:

(L1) [x, x] = 0 for all x in g.

(L2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ g (Jacobi identity).

Remark 1.1.2. Notice that (L1), applied to [x+ y, x+ y], implies anticom-

mutativity: [x, y] = −[y, x].

Conversely, if char F 6= 2, it is clear that anticommutativity implies (L1).

There is a standard way to associate a Lie algebra to an associative alge-

bra.

Proposition 1.1.3. Let (A, ·) be an associative algebra. Then (A, [, ]), with

[x, y] := x · y − y · x for x, y ∈ A, is a Lie algebra.

Proof. It is easy to see that axioms (L1) and (L2) are satisfied.

Example 1.1.4. • Let Mn(F) be the set of matrices of order n over

F and let · be the usual product of matrices. Then the Lie algebra

13



14 1. Basic results on Lie algebras

associated to the algebra (Mn(F), ·) is denoted by gl(n,F) ≡ gln.

We write down the multiplication table for gln relative to the standard

basis consisting of the matrices Eij (having 1 in the (i, j) position and

0 elsewhere). Since EijEkl = δjkEil, we have:

[Eij, Ekl] = δjkEil − δliEkj.

• If V is a finite dimensional vector space over F, denote by End(V )

the set of linear transformations V → V . Define the bracket as in

Proposition 1.1.3, so that End(V ) becomes a Lie algebra over F. In

order to distinguish this new algebra structure from the old associative

one, we write gl(V ) for End(V ) viewed as a Lie algebra and call it the

general linear algebra.

Definition 1.1.5. Let g, g′ be two Lie algebras. A linear map ϕ : g → g′

such that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g is called a Lie algebra

homomorphism. If ϕ is also bijective, it is called Lie algebra isomorphism.

Remark 1.1.6. Let V be an n-dimensional vector space over F. The Lie

algebras gl(V ) and gln are isomorphic; hence in the following we will identify

them.

Definition 1.1.7. Let g be a Lie algebra. A subspace h of g is a (Lie)

subalgebra of g if [x, y] ∈ h whenever x, y ∈ h.

Example 1.1.8. Let sln ≡ sln(F) := {X ∈ gln | trX = 0}. Then sln is a Lie

subalgebra of gln since, if X, Y ∈ sln, then also [X, Y ] ∈ sln.

Example 1.1.9. Let V be a vector space, dimV = 2n, with basis {v1, . . . , v2n}.
Consider the non-degenerate skew-symmetric bilinear form f on V given by

the matrix J =

(
0 In

−In 0

)
. Define the symplectic algebra as

sp(V ) ≡ sp2n := {x ∈ EndV | f(x(v), w) = −f(v, x(w)) for all v, w ∈ V }.

It can be easily shown that sp2n is closed under the bracket operation, and

thus it is a Lie subalgebra of gl2n. In matrix terms, the condition for
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x =

(
M N

P Q

)
(M,N,P,Q ∈ gln) to be symplectic is that Jx = −xTJ , i.e.,

that NT = N , P T = P , and Q = −MT (this last condition forces tr(x) = 0

and thus we can regard sp2n as a Lie subalgebra of sl2n).

A basis for sp2n is given by the following matrices:

• Eii − En+i,n+i, 1 ≤ i ≤ n;

• Eij − En+j,n+i, 1 ≤ i 6= j ≤ n;

• Ei,n+i, 1 ≤ i ≤ n;

• Ei,n+j + Ej,n+i, 1 ≤ i < j ≤ n;

• En+i,i, 1 ≤ i ≤ n;

• En+i,j + En+j,i, 1 ≤ i < j ≤ n.

Definition 1.1.10. Let g be a Lie algebra. A subset I ⊆ g is called ideal if

[x, y] ∈ I for every x ∈ I, y ∈ g.

Definition 1.1.11. Let g be a Lie algebra. We define the following ideals of

g:

• the derived algebra of g as [g, g] := 〈[x, y] | x, y ∈ g〉

• the center of g as Z(g) := {x ∈ g | [x, z] = 0 for all z ∈ g}

Definition 1.1.12. A Lie algebra g is called simple if [g, g] 6= 0 and it has

no proper ideals.

Example 1.1.13. Let us consider the basis of sl2(F) given by

{e, h, f} = {

(
0 1

0 0

)
,

(
1 0

0 −1

)
,

(
0 0

1 0

)
}.

Then:

• [h, e] = 2e;
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• [e, f ] = h;

• [h, f ] = −2f .

If charF 6= 2, then sl2(F) is simple, and the basis {e, h, f} is usually called

the standard basis of sl2.

Indeed, if I ⊆ sl2(F) is a nonzero ideal, take 0 6= x ∈ I. Then x = αe+βh+γf

for some α, β, γ ∈ F. Now, [x, e] = 2βe−γh ∈ I and [2βe−γh, e] = −2γe ∈ I
by definition of ideal.

• If γ 6= 0, then e ∈ I. Hence [e, f ] = h ∈ I and also [h, f ] = −2f ∈ I.

So e, h, f ∈ I, i.e., I = sl2(F)

• If γ = 0, then x = αe+βh. Then [x, e] = 2βe ∈ I. If β 6= 0, then e ∈ I
and we can conclude as before that I = sl2(F). Otherwise x = αe,

α 6= 0, and hence I = sl2(F).

Example 1.1.14. gln = sln⊕〈In〉, where 〈In〉 = Z(gln). In particular gln is

not simple.

1.2 Lie algebras of derivations

Definition 1.2.1. Let (A, ·) be an algebra over the field F. A derivation of

A is a linear map δ : A→ A satisfying the familiar product rule

δ(ab) = aδ(b) + δ(a)b,

called the Leibniz rule.

It is easily checked that the collection Der(A) of all derivations of A is

a vector subspace of End(A) and also that the commutator [δ, δ′] of two

derivations is again a derivation. So Der(A) is a Lie subalgebra of gl(A).

Note that, on the contrary, Der(A) is not a subalgebra of the associative

algebra End(A).

Since a Lie algebra g is an F-algebra, Der(g) is defined. Certain derivations

arise quite naturally, as follows.
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Definition 1.2.2. Let g be a Lie algebra and x ∈ g. Define the endomor-

phism of g

adx : g → g

y 7→ [x, y]

Remark 1.2.3. adx ∈ Der(g), because adx satisfies the Leibniz rule with

respect to the bracket. Indeed, by the Jacobi identity we have:

adx([y, z]) = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [adx(y), z] + [y, adx(z)].

Derivations of this form are called inner, all others outer.

1.3 Representations and modules

Definition 1.3.1. A representation of a Lie algebra g on a vector space V

over F (dimV <∞) is a Lie algebra homomorphism ϕ : g→ gl(V ).

An important example to keep in mind is the adjoint representation ad :

g → gl(g) which sends x to adx, where adx(y) = [x, y]. It is clear that ad is

a linear transformation. To see that it preserves the bracket, we calculate:

ad[x,y](z) = [[x, y], z] = [x, [y, z]] − [y, [x, z]] = adx(ady(z)) − ady(adx(z)) =

[adx, ady](z).

Definition 1.3.2. A representation ϕ : g → gl(V ) is called irreducible if

there does not exist a non-zero subspace W ( V such that ϕ(g)(W ) ⊆ W .

Example 1.3.3. Consider the standard representation of gln on Fn, i.e.,

ϕ : gln → gl(Fn)

X 7→ X

where X : Fn → Fn is such that v 7→ Xv. Then ϕ is irreducible since, given

any proper subspace W ⊂ Fn, for 0 6= w ∈ W and z ∈ Fn \ W , one can

always find an element X ∈ gln such that X(w) = z.
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It is often convenient to use the language of modules along with the

(equivalent) language of representations. As in other algebraic theories, there

is a natural definition.

Definition 1.3.4. Let g be a Lie algebra. A vector space V , endowed with

a bilinear operation g× V → V (denoted (x, v) 7→ x.v) is called a g-module

if the following condition is satisfied:

[x, y].v = x.y.v − y.x.v for all x, y ∈ g and v ∈ V.

Definition 1.3.5. Let V be a g-module. Then we can equip V ∗ with a

structure of g-module setting, for x ∈ g, f ∈ V ∗ and v ∈ V :

x.f(v) := −f(x.v).

Definition 1.3.6. Let V , W be g-modules. A g-module homomorphism

between V and W is a homomorphism of vector spaces ϕ : V → W such

that ϕ(x.v) = x.ϕ(v) for every x ∈ g, v ∈ V .

Remark 1.3.7. If ϕ : V → W is a homomorphism of g-modules, then kerϕ

is a g-submodule of V , i.e., g.kerϕ ⊆ kerϕ

Proof. If x ∈ g and v ∈ kerϕ, then x.v ∈ kerϕ since ϕ(x.v) = x.ϕ(v) = 0.

Remark 1.3.8. The concept of g-module is equivalent to the one of repre-

sentation.

Proof. If ϕ : g → gl(V ) is a representation of g, then V may be viewed as

a g-module via the action x.v = ϕ(x)(v). Conversely, given a g-module V ,

this equation defines a representation ϕ : g→ gl(V ).

Definition 1.3.9. A g-module V is called irreducible if it has precisely two

g-submodules (itself and 0), i.e., if it does not exist a non-zero g-submodule

W ( V such that g.W ⊆ W .

Definition 1.3.10. A g-module V is called completely reducible if V is a

direct sum of irreducible g-submodules.



1.4 Finite irreducible representations of sl2 19

1.4 Finite irreducible representations of sl2

In this section, we want to study the finite irreducible representations of

sl2(F), where F is an algebraically closed field of characteristic zero.

Let ϕ : sl2 → gl(V ) be an irreducible representation of finite dimension.

Consider the standard basis of sl2, given by {e, h, f}, where [h, e] = 2e,

[h, f ] = −2f and [e, f ] = h. Since F is algebraically closed, then there exists

a nonzero v ∈ V such that ϕ(h)(v) ≡ h.v = λv, λ ∈ F. Then

h.er.v = (λ+ 2r)er.v for all r ∈ Z+.

Indeed, by induction on r:

• if r = 0, then h.v = λv;

if r = 1, then h.e.v = [h, e].v + e.h.v = 2e.v + λe.v = (2 + λ)e.v.

• if r > 1, then h.er+1.v = h.e.er.v = [h, e].er.v + e.h.er.v = 2er+1.v +

(λ+ 2r)er+1.v = (λ+ 2(r + 1))er+1.v.

This implies that the er.v’s (if nonzero) are linearly independent, because

they are eigenvectors corresponding to distinct eigenvalues. But, as V is

finite dimensional, there must be a k ∈ Z+ such that ek.v 6= 0 and ek+1.v = 0.

Denote by w = ek.v 6= 0. Then h.w = λ′w and e.w = 0. We call w vector of

the highest weight λ′.

As before, one can prove by induction that:

h.f r.w = (λ′ − 2r)f r.w for all r ∈ Z+. (1.1)

Since V is finite dimensional, we can consider s ∈ Z+ such that f s.w 6= 0

and f s+1.w = 0. Now, consider the linear subspace W = 〈w, f.w, . . . , f s.w〉
of V , whose dimension is s+ 1. Notice that W is stable with respect to the

action of sl2. Indeed:

• f.W ⊆ W by construction;

• h.W ⊆ W by (1.1);
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• e.W ⊆ W because, by induction, one can prove that

e.fk.w = k(λ′ − k + 1)fk−1.w for all k ∈ Z+. (1.2)

But V is irreducible and hence, since dimW ≥ 1, then W = V .

Note that, by (1.2) with k = s+ 1, we have:

e.f s+1.w︸ ︷︷ ︸
=0

= (s+ 1)︸ ︷︷ ︸
>0

(λ′ − s) f s.w.︸ ︷︷ ︸
6=0

.

Hence λ′ = s ∈ Z+. This implies that the weight of the vector of highest

weight is dimV −1. Therefore this weight uniquely determines the dimension

of the module, and vice versa. By (1.1), we can write

V =
s⊕

k=0

Vλ=s−2k,

where Vλ = {v ∈ V | h.v = λv}, called weight space. So the eigenvalues

of ϕ(h) are integers and form an arithmetic progression with difference 2,

−s,−s+ 2, . . . , s− 2, s. Note that these eigenvalues are either all even or all

odd.

Finally we also have that V has (up to nonzero scalar multiples) a unique

vector of highest weight, whose weight is s.

1.5 Nilpotency

Definition 1.5.1. Let g be a Lie algebra. The sequence of ideals of g defined

by

g0 = g, g1 = [g, g], g2 = [g, g1], . . . , gk = [g, gk−1]

is called the descending central sequence of g.

Definition 1.5.2. g is called nilpotent if there exists n ∈ Z+ such that

gn = 0.

Example 1.5.3. • Any abelian Lie algebra is nilpotent.
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• Let n(n,F) be the Lie algebra of all strictly upper triangular matrices.

Then n(n,F) is nilpotent.

• Let t(n,F) be the Lie algebra of all upper triangular matrices. Then

t(n,F) is not nilpotent since t(n,F)1 = [t(n,F), t(n,F)] = n(n,F) and

t(n,F)2 = [t(n,F), n(n,F)] = n(n,F) = t(n,F)k for every k ≥ 1.

Proposition 1.5.4. 1. Every homomorphic image of a nilpotent Lie al-

gebra is nilpotent.

2. If g/Z(g) is nilpotent, then also g is nilpotent.

Proof. 1. Let ϕ : g→ m be a Lie algebra homomorphism. Then for every

k ∈ Z+, ϕ(gk) = (ϕ(g))k. Hence, if gr = 0 for some r ∈ Z+, also

(ϕ(g))r = 0.

2. Let π : g→ g/Z(g) be the canonical projection. As g/Z(g) is nilpotent,

we know that (g/Z(g))k = 0 for some k ∈ Z+. But π(gk) = (π(g))k =

(g/Z(g))k = 0, i.e., gk ⊆ Z(g). Hence gk+1 = [g, gk] = 0.

Remark 1.5.5. Let g be a nilpotent Lie algebra. Then adx is a nilpotent

endomorphism for every x ∈ g. We will say that x is ad-nilpotent.

Proof. Let k ∈ Z+ such that gk = 0. Let x ∈ g. Then adx(g) ⊆ [g, g] = g1,

ad2
x(g) ⊆ g2, . . . , adkx(g) ⊆ gk = 0.

Lemma 1.5.6. Let x ∈ gl(V ). If x is nilpotent, then x is ad-nilpotent.

Proof. Let y ∈ gl(V ). Then adx(y) = xy − yx. We want to show that for

every k ∈ Z it holds:

adkx(y) =
k∑
i=0

αix
iyxk−i for some αi ∈ F.
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· k = 1: adx(y) = xy − yx = α0yx+ α1xy.

· k > 1:

adk+1
x (y) =adx(

k∑
i=0

αix
iyxk−i) =

k∑
i=0

αix
i+1yxk−i+

k∑
i=0

αix
iyxk+1−i =

k+1∑
i=0

βix
iyxk+1−i.

Hence, by the nilpotency of x, if we choose k sufficiently large, we have

adkx(y) = 0.

Theorem 1.5.7. Let g ⊆ gl(V ) be a Lie subalgebra consisting of nilpotent

endomorphisms. Then there exists a nonzero v ∈ V such that g.v = 0, i.e.,

such that v is an eigenvector common to all endomorphisms in g, relative to

the eigenvalue 0.

Proof. We show this by induction on dimg.

· dimg = 1: g = 〈x〉. Then there exists k ∈ Z+ such that xk = 0 and

xk−1(v) 6= 0 for some v ∈ V . Hence an eigenvector relative to the eigenvalue

0 is xk−1(v).

· dimg > 1: Let K ( g be a proper subalgebra (it exists, we can just con-

sider K = 〈y〉 for some y ∈ g) and x ∈ K. Then adx induces an action

on the vector space g/K, i.e., we can consider adx : g/K → g/K such that

adx(y +K) = [x, y] +K, which results to be well defined.

Since x ∈ K ( g is nilpotent, by Lemma 1.5.6 we can say that adx is

nilpotent. Hence also adx : g/K → g/K is nilpotent as endomorphism

of g/K. So ad(K) ⊆ gl(g/K) consists of nilpotent endomorphisms. Fur-

thermore dim(ad(K)) ≤ dimK < dimg; hence, by induction hypothesis ap-

plied to ad(K), we can say that there exists 0 6= (y + K) ∈ g/K such that

ad(K)(y +K) = 0, i.e., there exists y /∈ K such that [K, y] ⊆ K.

Set Ng(K) := {z ∈ g | [z,K] ⊆ K} ) K. It is easy to see that Ng(K) is a

Lie subalgebra of g. Hence, if we choose a maximal (proper) subalgebra of

g, we can say that Ng(K) = g. This leads us to say that K is an ideal. So
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g/K has a structure of Lie algebra, and π : g → g/K is a Lie algebra ho-

momorphism. Furthermore, since K is maximal, necessarily codimg(K) = 1;

indeed, if not, we could choose a proper subalgebra 〈x + K〉 ( g/K and

consequently π−1(〈x + K〉) = K ⊕ 〈x〉 would be a proper subalgebra of g

containing K.

Hence g = K ⊕ 〈z〉. Applying the induction hypothesis to K, we have that

W := {v ∈ V | K.v = 0} 6= 0. If we show that z(W ) ⊆ W we are done;

indeed, if this happens to be true, since z is nilpotent by assumption, also

z|W : W → W would be nilpotent, and hence there would exist 0 6= w ∈ W
such that z.w = 0. But w ∈ W implies K.w = 0 and (since g = K ⊕ 〈z〉)
then g.w = 0.

So, let v ∈ W , k ∈ K. Then k.z.v = [k, z].v + z.k.v = 0 because k.v = 0

(v ∈ W ) and [k, z].v = 0 ([k, z] ∈ K because K is an ideal). Hence

z.v ∈ W .

Theorem 1.5.8 (Engel). A Lie algebra g is nilpotent if and only if x is

ad-nilpotent for every x ∈ g.

Proof. By Remark 1.5.5 we already know that if g is nilpotent, then every

x ∈ g is ad-nilpotent.

Conversely, suppose that every x ∈ g is ad-nilpotent. Consider the Lie

subalgebra ad(g) ⊆ gl(g). By assumption, ad(g) consists of nilpotent endo-

morphisms. Hence, by Theorem 1.5.7, we know that there exists 0 6= x ∈ g

such that ad(g)(x) = 0, i.e., x ∈ Z(g). Hence Z(g) 6= 0. Now, by induction

on dimg:

· if dimg = 1, then g = Z(g); so g is commutative and hence nilpotent;

· if dimg > 1 then, since Z(g) 6= 0, dim(g/Z(g)) < dim(g). Furthermore

every element of g/Z(g) is ad-nilpotent as endomorphism of g/Z(g). Hence,

by induction hypothesis, g/Z(g) is nilpotent; so, by point 2. of Proposition

1.5.4, also g is nilpotent.
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1.6 Solvability

Definition 1.6.1. Let g be a Lie algebra. The sequence of ideals of g defined

by

g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , g(k) = [g(k−1), g(k−1)]

is called the derived series of g.

Definition 1.6.2. g is called solvable if there exists n ∈ Z+ such that g(n) =

0.

Example 1.6.3. • If a Lie algebra g is commutative, then it is solvable.

• If a Lie algebra g is nilpotent, then it is solvable (since g(k) ⊂ gk for

every k).

• t(n,F) is solvable (but not nilpotent).

• If a Lie algebra g is simple, then it is not solvable, since [g, g] = g.

Next we assemble a few simple observations about solvability.

Proposition 1.6.4. Let g be a Lie algebra.

1. If g is solvable, then so are all subalgebras and homomorphic images of

g.

2. If I is a solvable ideal of g such that g/I is solvable, then g itself is

solvable.

3. If I, J are solvable ideals of g, then so is I + J .

Proof. 1. Let S ⊆ g be a subalgebra. Then S(1) = [S, S] ⊆ [g, g] = g(1),

and analogously S(k) ⊆ g(k) for every k ∈ Z+.

If ϕ : g → m is a Lie algebra homomorphism, then ϕ preserves the

commutators, i.e., ϕ(g(k)) = (ϕ(g))(k) for every k ∈ Z+. So, if g(k) = 0,

then also (ϕ(g))(k) = 0.
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2. Consider the projection π : g → g/I. If (g/I)(k) = 0, then π(g(k)) =

(π(g))(k) = (g/I)(k) = 0, i.e., g(k) ⊆ I. Hence g(k+m) = I(m) for every

m ∈ Z+ and, since I is solvable, g(k+m) = 0 for some m.

3. By a standard isomorphism theorem, we have (I + J)/J ∼= I/(I ∩ J).

Note that I/(I ∩ J) is solvable as homomorphic image of the solvable

I. Hence (I + J)/J is solvable and, by point 2., I + J is solvable.

Remark 1.6.5. Let g be an arbitrary Lie algebra and let S be a maximal

(with respect to inclusion) solvable ideal. If I is any other solvable ideal of g

then, by point 3. of Proposition 1.6.4, we know that S + I = S, i.e., I ⊆ S.

This proves the existence of a unique maximal solvable ideal of g, called the

radical of g and denoted by Rad(g).

Definition 1.6.6. g is called semisimple if Rad(g) = 0.

Example 1.6.7. A simple Lie algebra g is semisimple.

Theorem 1.6.8 (Lie). Let g be a solvable subalgebra of gl(V ) (dimV <∞)

over an algebraically closed field F of characteristic 0. If V 6= 0, then V

contains a common eigenvector for all the endomorphisms of g.

Proof. We use induction on dimg.

· dimg = 1: g = 〈x〉, where x ∈ gl(V ). Since F is algebraically closed, then

x has an eigenvalue, which is eigenvalue of all scalar multiples of x.

· dimg > 1: Since g is solvable, [g, g] 6= g. Hence g/[g, g] is a nonzero

commutative Lie algebra. Let π : g → g/[g, g] be the projection and S ⊆
g/[g, g] be a linear subspace of codimension 1. Then S is an ideal since g/[g, g]

is commutative. Set K := π−1(S). Then K is an ideal of g of codimension

1. Hence we can write g = K ⊕ 〈z〉.
By induction hypothesis, we know that

W := {v ∈ V | k(v) = λ(k)v for all k ∈ K}
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is non empty. Let 0 6= v ∈ W . We want to show that z(v) ∈ W (indeed, if

this happens to be true, then g(v) = λ(g)v for every g ∈ g). For k ∈ K, we

have:

k(z(v)) = [k, z](v) + z(k(v)) = λ([k, z])v + λ(k)z(v).

In order to show that z(v) ∈ W , we need to show that λ([k, z]) = 0. Now,

consider Wn := 〈v, z(v), . . . , zn−1(v)〉, where n is the minimum such that

{v, z(v), . . . zn(v)} are linearly dependent. Set Wi = 〈v, z(v), . . . , zi−1(v)〉 for

every i = 1, . . . , n. We state that k(zr(v)) = λ(k)zr(v) + ωr, where ωr ∈ Wr

for every r = 1, . . . , n− 1. Indeed, by induction on r :

• if r = 1, then k(z(v)) = λ([k, z])v︸ ︷︷ ︸
∈W1

+λ(k)z(v);

• if r > 1, then k(zr+1(v)) = k(z(zr(v))) = [k, z](zr(v)) + z(k(zr(v))) =

λ([k, z])zr(v) + ωr︸︷︷︸
∈Wr

+λ(k)zr+1(v) + z(ω′r)︸ ︷︷ ︸
∈Wr+1

= λ(k)zr+1(v) + ωr+1︸︷︷︸
∈Wr+1

.

Consider k|Wn : Wn → Wn with respect to the basis {v, z(v), . . . , zn−1(v)}.
Then the associated matrix is:

λ(k) ∗ . . . ∗
0 λ(k) . . . ∗
...

. . . . . .
...

0 . . . 0 λ(k)


Hence its trace is nλ(k). In particular every element ofK of the form [k, z] has

trace nλ([k, z]). But the trace of a commutator is 0, and hence nλ([k, z]) = 0,

i.e., λ([k, z]) = 0.

Corollary 1.6.9. Let g be a solvable Lie subalgebra of gl(V ). Then there

exists a flag of V (i.e., a sequence of vector spaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂
Vn = V with dimVi = i and such that x(Vi) ⊆ Vi for all i = 0, . . . , n)

Remark 1.6.10. Let g be a solvable Lie algebra, ϕ : g→ gl(V ) a represen-

tation of g on V . Then ϕ(g) is a solvable Lie subalgebra of gl(V ). Hence, by
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the Corollary above, there exists a flag on V stabilized by ϕ(g). In particular,

if we take ϕ = ad, we obtain the following Corollary.

Corollary 1.6.11. If g is solvable, then there exists a chain of ideals in g:

0 = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ In = g,

with dimIi = i for all i = 0, . . . , n.

Corollary 1.6.12. A Lie algebra g is solvable if and only if [g, g] is nilpotent.

Proof. Obviously, if [g, g] is nilpotent, then g is solvable.

Conversely, suppose that g is solvable. By Engel’s Theorem (Theorem 1.5.8)

we just need to prove that every element of [g, g] is ad-nilpotent. Fix a chain

of ideals in g as in Corollary 1.6.11. Fix a basis of g obtained completing a

basis of Ii to a basis of Ii+1 for i = 0, . . . , n − 1. Then, with respect to this

basis, for every x ∈ g, the matrix of adx is upper triangular. Now, if we take

a generator [x, y] of [g, g], then ad[x,y] = [adx, ady] which has, in the fixed

basis, a matrix that is strictly upper triangular, and hence nilpotent.

1.7 Jordan-Chevalley decomposition

We recall a linear algebra result, which will be very helpful in the follow-

ing.

Proposition 1.7.1. 1. Let x ∈ End(V ) be diagonalizable. Let W ( V be

a vector subspace such that x(W ) ⊆ W . Then x|W is diagonalizable.

2. Let x, y ∈ End(V ) be diagonalizable such that [x, y] = 0. Then x, y are

simultaneously diagonalizable, i.e. they have the same eigenvectors.

Proof. 1. Let V =
⊕k

i=1 Vi, with Vi eigenspace of x associated to the

eigenvalue λi for all i = 1, . . . , k (λi 6= λj if i 6= j). Let w ∈ W ( V .

Then w = v1 + . . .+vk, with vi ∈ Vi. We want to show that vi ∈ Vi∩W ,

so that we get a generating set of W that consists of eigenvectors of
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x|W . By induction on k:

· k = 1: the thesis is true by construction.

· k > 1: Since x(w) = λ1v1 + . . . + λkvk ∈ W and W 3 λ1w =

λ1v1 +. . .+λkvk, then W 3 x(w)−λ1w = (λ2−λ1)v2 +. . .+(λk−λ1)vk.

By the induction hypothesis, we have that vi ∈ Vi∩W for i = 2, . . . , k.

Hence also v1 ∈ V1 ∩W . So vi ∈ Vi ∩W for all i = 1, . . . , k.

2. With the same notations as before, we want to show that y(Vi) ⊆ Vi

for all i. Let v ∈ Vi, i.e., x(v) = λiv. Then x(y(v)) = y(x(v)) = λiy(v);

therefore y(v) ∈ Vi. Hence, by point 1., we can conclude because y|Vi is

diagonalizable, i.e., we have a basis of Vi consisting of eigenvectors of

y.

Definition 1.7.2. An element x ∈ gl(V ) is called semisimple if it is diago-

nalizable.

Remark 1.7.3. Let x, y ∈ gl(V ) be semisimple (resp. nilpotent) such that

[x, y] = 0. Then x+ y is semisimple (resp. nilpotent).

Proof. By point 2. of Proposition 1.7.1, if x, y are semisimple, we can find a

basis of eigenvectors of V common both to x and to y. Hence, if v is such

an eigenvector, then (x+ y)(v) = x(v) + y(v) = λv + σv = (λ+ σ)v. Hence

x+ y is semisimple.

Furthermore, since x and y commute, (x+ y)k =
∑k

i=0 αix
iyk−i. Hence, if x

and y are nilpotent, so is x+ y.

Proposition 1.7.4. Let x ∈ gl(V ). Then:

1. there exist unique xs, xn ∈ gl(V ) with xs semisimple and xn nilpotent

such that [xs, xn] = 0 and x = xs + xn.

2. There exist two polynomials p(λ), q(λ) ∈ F(λ) such that p(0) = 0 = q(0)

and p(x) = xs and q(x) = xn. In particular xs and xn commute with

all the endomorphisms commuting with x.
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3. If A ⊂ B ⊂ V are linear subspaces such that x(B) ⊆ A, then xs(B) ⊆ A

and xn(B) ⊆ A.

Proof. Let V =
⊕k

i=1 Vi, where Vi = ker(x − ai)
mi , be the generalized

eigenspace decomposition, where a1, . . . , ak are the eigenvalues of x and

m1, . . . ,mk are the corresponding multiplicities. Notice that (λ − ai)
mi is

coprime with (λ − aj)mj for every i 6= j; hence, by the Chinese remainder

theorem, there exists a polynomial f(λ) ∈ F(λ) that satisfies:p(λ) ≡ ai mod (λ− ai)mi for i = 1, . . . , k

p(λ) ≡ 0 mod λ

Set q(λ) := λ− p(λ). Then p(0) = 0 = q(0).

Now, set xs := p(x), xn = q(x). Then x = xs + xn. Furthermore xs and

xn commute, as polynomials in x. Analogously, since they are polynomials

in x without constant term, xs and xn commute with every endomorphism

commuting with x.

Now, if x(B) ⊆ A, then every polynomial without constant term sends B in

A (for example x2(B) = x(x(B)) ⊆ x(A) ⊆ x(B) ⊆ A), i.e., xs(B) ⊆ A and

xn(B) ⊆ A.

Notice that for every i, we have p(λ) = ai +µ(λ− ai)mi ; hence xs|Vi = aiIdVi .

So Vi is an eigenspace of xs relative to the eigenvalue ai. This tells us that

xs is semisimple. Furthermore, since xn = q(x) = x − xs, then xn|Vi =

x|Vi + xs|Vi =


ai 1

. . .
. . .

. . . 1

ai

+


ai 0

. . .
. . .

. . . 0

ai

 =


0 1

. . .
. . .

. . . 1

0

. Hence

xn is nilpotent.

Now, suppose that this decomposition is not unique, i.e., that x = xs +xn =

s + n, with xs, s semisimple and xn, n nilpotent satisfying conditions 1, 2,

3. Then xs − s = xn − n. But [xs, s] = 0 = [n, xn] because s and n are

endomorphisms that commute with x (hence we can apply the condition 2.

to xs and xn). So, by Remark 1.7.3, xs − s is semisimple and xn − n is
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nilpotent. But an endomorphism that is both semisimple and nilpotent is

necessarily 0, i.e., xs − s = 0 = xn − n; hence xs = s and xn = n.

Definition 1.7.5. Let x ∈ gl(V ). Then the decomposition x = xs + xn

described in Proposition 1.7.4 is called the Jordan-Chevalley decomposition

of x.

Proposition 1.7.6. If x ∈ gl(V ) is semisimple, then so is adx. Further-

more, if v1, . . . , vn is a basis of eigenvectors of V relative to the eigenvalues

λ1, . . . , λn, then the eigenvectors of adx are the standard basis of gl(V ) rela-

tive to {v1, . . . , vn} with eigenvalues λi − λj.

Proof. The standard basis of gl(V ) relative to {v1, . . . , vn} is given by {eij}
satisfying eij(vk) = δjkvi for every k. Then, for every k we have:

adx(eij)(vk) =x(eij(vk))− eij(x(vk)) = δjkx(vi)− λkeij(vk)

=δjkλivi − δjkλkvi = (λi − λj)δjkvi = (λi − λj)eij(vk).

Hence adx(eij) = (λi − λj)eij.

Remark 1.7.7. Let x = xs + xn be the Jordan-Chevalley decomposition of

x ∈ gl(V ). Then adx = adxs + adxn , where adxs is semisimple and adxn is

nilpotent. Furthermore [adxs , adxn ] = ad[xs,xn] = 0. Hence, by the uniqueness

of the Jordan-Chevalley decomposition of x, we can say that adx = adxs +

adxn is the Jordan-Chevalley decomposition of adx.

1.8 Cartan’s criterion

Remark 1.8.1. Let b1, . . . , bk ∈ F, and f : F→ F any function. Then

r(x) =
k∑
i=1

f(bi)
∏
j 6=i

x− bj
bi − bj

is called the Lagrange interpolation polynomial, and takes value f(bi) in the

point bi for all i = 1, . . . , k.
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Lemma 1.8.2. Let A ⊆ B ⊆ gl(V ) be linear subspaces.

Set M := {x ∈ gl(V ) | [x,B] ⊆ A}. Suppose that x ∈M satisfies tr(xy) = 0

for any y ∈M . Then x is nilpotent.

Proof. Consider the Jordan-Chevalley decomposition of x, i.e., x = xs + xn.

We want to show that xs = 0.

Let B = {v1, . . . , vm} be a basis of V relative to which xs has diagonal matrix

xs = diag(a1, . . . , am). Since the field F has characteristic zero, it contains a

subfield that is isomorphic to Q. Set E := spanQ{a1, . . . , am}. We have to

show that E = 0. Since E is finite dimensional over Q, we just need to show

that E∗ = {f : E → Q | f Q-linear} = 0, i.e., that for any f ∈ E∗, f(ai) = 0

for all i = 1, . . . ,m.

Now, fix f ∈ E∗. By Remark 1.8.1, there exists a polynomial r(λ) ∈ F(λ)

such that r(ai − aj) = f(ai) − f(aj), with r(0) = 0. Let y ∈ gl(V ) be the

element with matrix diag(f(a1), . . . , f(am)) with respect to B. By Propo-

sition 1.7.6, we know that adxs(eij) = (ai − aj)eij and then ady(eij) =

(f(ai) − f(aj))eij, so ady = r(adxs), that is a polynomial in adx with no

constant terms. Hence, also ady is a polynomial in adx with no constant

terms.

Now, since x ∈ M , we know that adx(B) ⊆ A. Furthermore, since ady is

a polynomial in adx with no constant terms, ady(B) ⊆ A; hence y ∈ M .

By assumption 0 = tr(xy) =
∑m

i=1 aif(ai). Hence 0 = f(
∑m

i=1 aif(ai)) =∑m
i=1(f(ai))

2. So f(ai) = 0 for all i = 1, . . . ,m.

Theorem 1.8.3 (Cartan’s criterion). Let g be a Lie subalgebra of gl(V ).

Suppose that tr(xy) = 0 for all x ∈ [g, g], y ∈ g. Then g is solvable.

Proof. We just need to show that any element of [g, g] is nilpotent. Indeed,

if this happens to be true then, by Proposition 1.7.6, every element in [g, g]

is ad-nilpotent, i.e., by Engel’s Theorem (Theorem 1.5.8), [g, g] is nilpotent,

i.e., g is solvable by Corollary 1.6.12. Hence we only need to prove that the

generators of [g, g], i.e., all the elements of the form [z1, z2] with z1, z2 ∈ g,

are nilpotent.
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Set A = [g, g], B = g, M = {x ∈ gl(V ) | [x, g] ⊆ [g, g]}. Clearly, M ⊇ g ⊇
[g, g]. We want to use Lemma 1.8.2, i.e., we want to prove that tr([z1, z2]y) =

0 for all y ∈M .

Now, notice that tr([z1, z2]y) = tr(z1z2y − z2z1y) = tr(z1z2y − z1yz2) =

tr(z1[z2, y]) = tr([z2, y]z1). But [z2, y] ∈ [g, g] by definition of M . Hence

tr([z1, z2], y) = tr([z2, y]z1) = 0 by assumption. So, using Lemma 1.8.2, we

can conclude that [z1, z2] is nilpotent.

Remark 1.8.4. In particular, if g ⊂ gl(V ) satisfies tr(xy) = 0 for all x, y ∈ g,

then g is solvable.

Corollary 1.8.5. Let g be a Lie algebra such that tr(adxady) = 0 for all

x ∈ [g, g], y ∈ g. Then g is solvable.

Proof. Using the Cartan’s criterion, we can say that ad(g) ⊂ gl(V ) is solv-

able. But ad(g) ∼= g/Z(g). Since Z(g) is solvable (it is abelian), so also is g

by point 2. of Proposition 1.6.4.

1.9 Semisimple Lie algebras

Definition 1.9.1. Let g be any Lie algebra. The bilinear form K : g×g→ F
defined by K(x, y) = tr(adxady) for x, y ∈ g is called the Killing form of g.

Remark 1.9.2. The Killing form K of g is:

1. symmetric;

2. associative, i.e., K([x, y], z) = K(x, [y, z]).

Proof. 1. K(x, y) = K(y, x) because, in general, tr(AB) = tr(BA) for A,B

matrices.

2. K([x, y], z) = tr(ad[x,y]adz) = tr([adx, ady]adz)

= tr(adxadyadz − adyadxadz) = tr(adxadyadz − adxadzady)

= tr(adx[ady, adz]) = tr(adxad[y,z]) = K(x, [y, z]).
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Remark 1.9.3. We recall that the radical radK of the Killing form K is

defined as follows:

radK = {x ∈ g | K(x, y) = 0 for all y ∈ g}.

Then K is non-degenerate if and only if radK = 0.

Notice also that radK is an ideal of g. Indeed, if x ∈ radK , y ∈ g, then

K([x, z], y) = K(x, [z, y]) = 0 for all y ∈ g.

Lemma 1.9.4. A Lie algebra g is semisimple if and only if it does not contain

any nonzero abelian ideals.

Proof. Any abelian ideal in a Lie algebra is solvable. Hence, if g is semisimple,

it has no nonzero abelian ideals.

Conversely, if by contradiction g is not semisimple, then consider k ∈ Z+

such that Rad(g)(k) = 0 with Rad(g)(k−1) 6= 0. Then Rad(g)(k−1) is a nonzero

abelian ideal in g.

Theorem 1.9.5. Let g be a Lie algebra. Then g is semisimple if and only if

its Killing form is non-degenerate.

Proof. Suppose that g is semisimple. Then we can apply the Cartan’s crite-

rion on radK (Theorem 1.8.3) to conclude that radK is solvable. But, since

g is semisimple, then necessarily radK = 0.

Conversely, suppose that K is non-degenerate. We want to use Lemma 1.9.4,

i.e., we want to prove that g has no nonzero abelian ideals. By contradic-

tion, if I 6= 0 is an abelian ideal of g, then we can consider a nonzero element

x ∈ I. For y ∈ g, consider adxady : g → I. Then (adxady)
2 : g → [I, I] = 0,

i.e., adxady is nilpotent. Hence K(x, y) = tr(adxady) = 0 for any y ∈ g, i.e.,

x ∈ radK .

We now recall two basic results that we will use in the following.

Remark 1.9.6. Let V be a finite dimensional F-vector space, α : V ×V → F
a bilinear form on V , and U ⊆ V a linear subspace.
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1. If α is non-degenerate then dimU + dimU⊥ = dimV .

2. V = U ⊕ U⊥ if and only if αU is non-degenerate.

Theorem 1.9.7. Let g be a semisimple Lie algebra. Then there exist ideals

I1, . . . , Ik of g which are simple (as Lie algebras) such that g = I1⊕ . . .⊕ Ik.

Moreover, if I is a simple ideal of g, then I = Ij for some j.

Proof. As a first step, let I be an arbitrary ideal of g.

Then I⊥ = {x ∈ g | K(x, y) = 0 for all y ∈ I} is also an ideal since, if

x ∈ I⊥ and z ∈ g, then K([x, z], y) = K(x, [z, y]) = 0 for any y ∈ I. Cartan’s

Criterion (Theorem 1.8.3), applied to the Lie algebra I, shows that the ideal

I ∩ I⊥ of g is solvable, so I ∩ I⊥ ⊆ Rad(g) = 0 since g is semisimple. Hence,

I ∩ I⊥ = 0. Therefore, since dimI + dimI⊥ = dimg by point 1. of Remark

1.9.6, we must have I⊕I⊥ = g. Now proceed by induction on dimg to obtain

the desired decomposition into direct sum of simple ideals.

Now, if I 6= 0 is a simple ideal of g, then [I, g] 6= 0 (otherwise I ⊆ Z(g), that

is not possible since g is semisimple). Furthermore [I, g] ⊆ I is an ideal of g.

Hence, by the semplicity of I, I = [I, g] = [I, I1] ⊕ . . . [I, Ik]. But [I, Ir] are

ideals both of I and of Ir; hence, since Ir are simple, [I, Ir] = 0 or [I, Ir] = Ir.

Analogously, [I, Ir] = 0 or [I, Ir] = I. Hence only one of the commutators is

nonzero, i.e., there exists r ∈ {1, . . . , k} such that I = [I, Ir] = Ir.

Corollary 1.9.8. If g is semisimple, then g = [g, g].

Proof. By Theorem 1.9.7 g = I1 ⊕ . . .⊕ Ik. So:

[g, g] = [I1, I1]⊕ . . .⊕ [Ik, Ik] = I1 ⊕ . . .⊕ Ik = g

because [Ii, Ij] ⊆ Ii ∩ Ij = 0 and Ij are simple.

Lemma 1.9.9. Let g be any Lie algebra. Then ad(g) is an ideal of Der(g).

Proof. Let δ ∈ Der(g), x ∈ g. Then for any y ∈ g we have:

[δ, adx](y) = δ(adx(y))− adx(δ(y)) = δ([x, y])− [x, δ(y)]

= [δ(x), y] + [x, δ(y)]− [x, δ(y)] = [δ(x), y] = adδ(x)(y).

Hence [δ, adx] = adδ(x), i.e., ad(g) is an ideal of Der(g).
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Theorem 1.9.10. Let g be a semisimple Lie algebra. Then ad(g) = Der(g).

Proof. Let us consider the map ad : g→ gl(g).

Then ker ad = {x ∈ g | [x, z] = 0 for all z ∈ g} = Z(g). But g is semisimple,

and so Z(g) = 0. So ad : g
∼−→ ad(g), i.e., ad(g) is semisimple. Hence

ad(g) has a Killing form that is non-degenerate (which is the restriction of

the Killing form of Der(g) to ad(g)). Therefore, by point 2. of Remark 1.9.6,

Der(g) = ad(g)⊕ (ad(g))⊥.

We need to show that (ad(g))⊥ = 0. Take δ ∈ (ad(g))⊥, x ∈ g; then, by the

proof of Proposition 1.9.9, [δ, adx] = adδ(x). But [δ, adx] ∈ ad(g)∩ (ad(g))⊥ =

{0}; hence adδ(x) = 0. Since ad is injective we have δ(x) = 0 and, by the

arbitrariness of x ∈ g, δ = 0.

Theorem 1.9.11. (Schur’s Lemma) Let ϕ be an irreducible representation

of g on V . Let f ∈ gl(V ) such that [ϕ(x), f ] = 0 for every x ∈ g. Then

f = λidV for some λ ∈ F.

Proof. Let V = ⊕Vλ be the generalized eigenspace decomposition with re-

spect to f , where Vλ = {v ∈ V | (f − λidV )k(v) = 0 for some k}.
Notice that ϕ(x)(Vλ) ⊆ Vλ for every x ∈ g. Indeed, since f and ϕ(x) com-

mute by hypothesis, we have (f−λidV )k(ϕ(x)(v)) = ϕ(x)(f−λidV )k(v) = 0.

Hence Vλ is a g-submodule of V . So, by the irreducibility of V , we have

V = Vλ.

Now, let V0 := {v ∈ V | (f − λidV )(v) = 0} 6= 0. Then, for every x ∈ g,

ϕ(x)(V0) ⊆ V0. Hence, by the irreducibility of V , V = V0.

Definition 1.9.12. Let g be semisimple and let Φ : g→ gl(V ) be a faithful

finite dimensional representation of g. The bilinear form β : g × g → F
such that β(x, y) = tr(Φ(x)Φ(y)) for x, y ∈ g is called the trace form of g

associated to Φ.

Example 1.9.13. If g is a Lie algebra, then the trace form associated to the

adjoint representation is the Killing form.
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Remark 1.9.14. As for the Killing form, one can show that β is symmetric

and associative (i.e. β([x, y], z) = β(x, [y, z]) for every x, y, z ∈ g). Further-

more, if g is semisimple then, by the Cartan’s criterion, β is non-degenerate.

Remark 1.9.15. Let g be a Lie algebra, β the trace form associated to a

representation Φ of g, B = {x1, . . . , xn} a basis of g and B′ = {y1, . . . , yn}
the dual basis of B with respect to β, i.e., such that β(xi, yj) = δij for every

i, j = 1, . . . , n. Then, for x ∈ g, we can write:

• [x, xi] =
∑n

j=1 aijxj, where aij ∈ F;

• [x, yi] =
∑n

j=1 bijyj, where bij ∈ F;

Notice that β([x, xi], yk) =
∑n

j=1 aijβ(xj, yk) =
∑n

j=1 aijδjk = aik. But

β([x, xi], yk) = −β([xi, x], yk) = −β(xi, [x, yk]) = −
∑n

j=1 bkjβ(xi, yj) = −bki.
Hence aik = −bki for every i, k = 1, . . . , n.

Definition 1.9.16. Let Φ : g → gl(V ) be a faithful representation of g. In

the notations of Remark 1.9.15, we call the Casimir element associated to Φ

the following element of gl(V ):

CΦ :=
n∑
i=1

Φ(xi)Φ(yi).

Lemma 1.9.17. Let a, b, c ∈ gl(V ). Then [a, bc] = [a, b]c+ b[a, c].

Proof. · [a, bc] = abc− bca
· [a, b]c+ b[a, c] = abc− bac+ bac− bca = abc− bca.

Proposition 1.9.18. CΦ is a g-module homomorphism. Furthermore, if V

is an irreducible g-module, then CΦ =
dimg

dimV
idV .

Proof. Let x ∈ g. Then

[Φ(x), CΦ] =

n∑
i=1

[Φ(x),Φ(xi)Φ(yi)]
1.9.17

=

n∑
i=1

[Φ(x),Φ(xi)]Φ(yi) +

n∑
i=1

Φ(xi)[Φ(x),Φ(yi)]

1.9.15
=

n∑
i,j=1

aijΦ(xj)Φ(yi) +

n∑
i,j=1

bjiΦ(xj)Φ(yi) = 0
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since aij = −bji by Remark 1.9.15.

Hence Φ(x)(CΦ(v)) = CΦ(Φ(x)(v)), i.e., CΦ is a homomorphism of g-modules.

Now, if V is irreducible, by Schur’s Lemma (Theorem 1.9.11), CΦ = λidV for

some λ ∈ F. Hence trCΦ = tr(λidV ) = λdimV .

But, by definition of Casimir element, we have that trCΦ =
∑n

i=1 trΦ(xi)Φ(yi) =∑n
i=1 β(xi, yi) =

∑n
i=1 δii = n = dimg. So λ =

dimg

dimV
.

Definition 1.9.19. Let g be a semisimple Lie algebra, Φ : g → gl(V ) any

finite dimensional representation of g (not necessarily faithful). Then kerΦ

is an ideal of g. But since g is semisimple, by point 2. of Remark 1.9.6, we

know that g = kerΦ⊕ (kerΦ)⊥, where both KerΦ and (KerΦ)⊥ are semisim-

ple. Then Φ|(kerΦ)⊥ is faithful.

We define the Casimir element associated to Φ as the Casimir element asso-

ciated to Φ|(kerΦ)⊥ .

Lemma 1.9.20. Let Φ : g→ gl(V ) be a representation of a semisimple Lie

algebra g. Then Φ(g) ⊂ sl(V ). In particular, Φ acts trivially on any one

dimensional g-module.

Proof. Since g is semisimple, by Corollary 1.9.8 we have g = [g, g]. Hence,

Φ(g) = Φ([g, g]) = [Φ(g),Φ(g)], then trΦ(g) = tr[Φ(g),Φ(g)] = 0 because the

trace of any commutator is zero. Therefore, Φ(g) ⊂ sl(V ).

In particular, if dim(V ) = 1 we have the thesis because sl(V ) = 0.

Lemma 1.9.21. A g-module V is completely reducible if and only if every

proper g-submodule of V has a direct complement that is itself a g-submodule

of V , i.e., if for every submodule W ⊂ V there exists a submodule W ′ ⊂ V

such that V = W ⊕W ′.

Proof. Suppose that V is a completely reducible g-module, i.e., V = ⊕i∈IVi
where I is a finite set of indices and the Vi’s are irreducible g-submodule of

V . Let W ′ be a g-submodule of V and W be the maximal g-submodule such

that W ′ ⊕W = {0}.
Suppose by contradiction that there exists j ∈ I such that Vj 6⊆ W ′ ⊕W ;
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then Vj ∩ (W ′⊕W ) is a g-submodule of Vj. Therefore, Vj ∩ (W ′⊕W ) = {0}
because Vj is irreducible and Vj 6⊆ Vj ∩ (W ′ ⊕W ).

Now, if we consider W ⊕ Vj, then W ⊕ Vj ) W and W ′ ∩ (W ⊕ Vj) = {0}.
This contradicts the maximality of W , so for all j ∈ I we have Vj ⊆ W ′⊕W .

Hence, V = W ′ ⊕W .

Conversely, we proceed by induction on dimV = n.

• If n = 1, then V is irreducible for dimensional reasons.

• If V is irreducible, there is nothing to prove. Hence, suppose that V

is not irreducible. If we take a nonzero g-submodule W ( V then, by

assumption, there exists a g-submoduleW ′ ⊂ V such that V = W⊕W ′.

Let S ⊂ W be a g-submodule of W . Then S is g-submodule of V , so

by assumption there exists a g-submodule S̃ of V such that V = S⊕ S̃.

Hence, W = V ∩W = (S ∩W )⊕ (S̃ ∩W ) = S⊕ (S̃ ∩W ). Now, notice

that S̃ ∩W is a g-module since both S̃ and W are g-modules.

Thus, by induction hypothesis, W is completely reducible; analogously

also W ′ is completely reducible. Therefore V = W ⊕W ′ is completely

reducible.

Theorem 1.9.22 (Weyl). Let g be a semisimple Lie algebra and

Φ : g→ gl(V ) a finite dimensional representation of g. Then Φ is completely

reducible.

Proof. In order to prove the theorem we will use Lemma 1.9.21, i.e., we will

to show that for every submodule W ⊂ V there exists a submodule W ′ ⊂ V

such that V = W ⊕W ′.

We can suppose that Φ is faithful. Indeed, if not, then g = I ⊕ J , where

I = kerΦ, I and J are semisimple, and Φ|J is faithful. So we just need

to prove that Φ is completely reducible on J , since I does not alter the

irreducible components of V , because Φ(I) = 0.

Step 1. Suppose that codimV (W ) = 1.
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· Case 1: W irreducible. We want to show that V = W ⊕ kerCΦ (i.e., we

want to show that dim kerCΦ = 1 and that kerCΦ ∩W = {0}).
We can define on V/W a structure of g-module, given by x.(v + W ) =

x.v + W . By Lemma 1.9.20, since V/W is one dimensional, g acts trivially

on V/W , i.e., Φ(g)(V ) ⊆ W . Hence CΦ(V ) ⊆ W . But W is irreducible

and so, by Proposition 1.9.18, we have that CΦ|W : W → W is such that

CΦ|W =
dimg

dimW
W . Hence kerCΦ ∩W = {0} and, by the dimension theorem,

dim kerCΦ = 1.

· Case 2: If W is any g- submodule of V of codimension 1, we proceed by

induction on dimW .

• If dimW = 1, then W is necessarily irreducible for dimensional reasons.

Hence we can apply Case 1 to conclude.

• If dimW > 1 and W is irreducible, we are in Case 1. Otherwise, let W ′

be a proper g-submodule of W , i.e., such that 0 6= W ′ ( W ⊆ V . Then

codimV/W ′(W/W
′) = 1. Since W ′ is a proper submodule of W , then

dimW/W ′ < dimW . Hence, by induction hypothesis, we can say that

there exists X̃ such that V/W = W/W ′ ⊕ X̃/W ′, with dim(X̃/W ′) =

1. Hence W ′ is a submodule of codimension 1 in X̃. Furthermore

dimW ′ < dimW ; so, by induction hypothesis X̃ = W ′ ⊕ Z. We state

that V = W ⊕ Z.

Indeed, Z is a g-submodule of V of dimension 1 by construction. So

we just need to prove that W ∩ Z = {0}. By contradiction, take 0 6=
x ∈ W ∩Z. Then x /∈ W ′ since Z ∩W ′ = {0}; hence (X̃/W ′) 3 x̄ 6= 0.

Analogously (W/W ′) 3 x̄ 6= 0. So 0 6= x̄ ∈ (W/W ′) ∩ (X̃/W ′), that is

absurd since W/W ′ and X̃/W ′ are in direct sum.

Step 2. Let W ⊂ V be any g-submodule of V . We can define of Hom(V,W )

a structure of g-module setting, for x ∈ g, f ∈ Hom(V,W ) and v ∈ V ,

(x.f)(v) := x.(f(v))− f(x.v).
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Now, consider the following linear subspaces of Hom(V,W ):

V := {f ∈ Hom(V,W ) | f|W = aidW , a ∈ F}

W := {f ∈ Hom(V,W ) | f|W = 0} ⊂ V

Notice that V and W are g-submodule of Hom(V,W ). Indeed, if f ∈ V
and x ∈ g, for any w ∈ W we have (x.f)(w) = x.(f(w)) − f(x.w) =

x.(aw) − a(x.w) = 0. Furthermore codimVW=1. Indeed, if we take a basis

{w1, . . . , wk} of W and complete it to a basis B = {w1, . . . , wk, vk+1, . . . , vn}

of V then, for f ∈ V , the matrix of f with respect to B is f =

(
aIk ∗
0 0

)
.

Instead, for g ∈ W , the matrix relative to B is f =

(
0 ∗
0 0

)
. So, by Step

1 we know that V = W ⊕ 〈f〉, where 〈f〉 is a g-submodule of dimension 1.

Since f ∈ V \W , then f|W = aidW , with a 6= 0. In particular we can suppose

that a = 1.

We state that V = W ⊕ kerf . Indeed:

• f : V → W is such that f|W = idW . Hence Kerf ∩W = {0}.

• dimV = dimW + dim kerf by the dimension theorem.

• kerf is a g-submodule. In fact, since 〈f〉 is a g-submodule of dimension

1 and g is semisimple, by Lemma 1.9.20, g acts trivially on 〈f〉, i.e.,

x.f = 0 for all x ∈ g. Hence 0 = (x.f)(v) = x.(f(v))−f(x.v), i.e., f is a

g-module homomorphism. So, by Remark 1.3.7, kerf is a g-submodule

of V .

1.10 Cartan decomposition

Definition 1.10.1. Let h be a subalgebra of g. We define the normalizer of

h in g as the following subalgebra:

Ng(h) := {x ∈ g | [x, g] ⊆ g}.



1.10 Cartan decomposition 41

Definition 1.10.2. Let h be a subalgebra of g. h is called a Cartan subalgebra

of g if it is nilpotent and Ng(h) = h.

Definition 1.10.3. A toral subalgebra of a Lie algebra g is a non-zero sub-

algebra of g consisting of semisimple elements.

We recall that if g is a semisimple Lie algebra, then h is a Cartan subal-

gebra of g if and only if it is a maximal toral subalgebra of g (see [5]). This

holds also more in general for reductive Lie algebras, which will be introduced

in Chapter 2.

In this section, g will denote a (non-zero) semisimple Lie algebra. Here,

we want to recall the Cartan decomposition of a semisimple Lie algebra.

Remark 1.10.4. Every semisimple Lie algebra g contains at least one semisim-

ple element. Hence g always contains a non-zero toral subalgebra.

Proof. We can find x 6= 0, x ∈ g, whose semisimple part s in the abstract

Jordan decomposition is non-zero. Indeed if not, g would consist entirely of

ad-nilpotent elements, then g would be nilpotent by Engel’s Theorem. So

〈s〉 is a non-zero toral subalgebra of g.

Lemma 1.10.5. A toral subalgebra T of g is abelian.

Proof. We want to show that [x, y] = 0 for every x, y ∈ g. This is equivalent

to showing that, for every x ∈ g, adx : T → T has all the eigenvalues equal

to 0. Let x ∈ g. By contradiction, suppose that there exists a nonzero y ∈ g

such that adx(y) = ay, with a 6= 0. But adx(y) = [x, y] = −[y, x]; hence

[y, x] = −ax. Since ady is diagonalizable by assumption, there exists a basis

of T that consists of eigenvectors of ady. Therefore x = x1 + . . .+ xk, where

ady(x) = λixi for some λi ∈ F. Hence ady(x) = λ1x1 + . . . + λkxk, that is a

linear combination of eigenvectors of ady relative to nonzero eigenvalues (if

λi = 0, then the corresponding eigenvector does not appear in the sum). But

ady(x) = −ay 6= 0, that is an eigenvector of ady relative to the eigenvalue

0.
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Now fix a maximal toral subalgebra h of g. Since h is abelian by Lemma

1.10.5, {adh : g→ g | h ∈ h} is a commuting family of semisimple endomor-

phisms. Then, according to point 2. of Proposition 1.7.1, the family above

is simultaneously diagonalizable.

Hence we can write

g =
⊕
α∈h∗

gα,

where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.
Notice that g0 = Cg(h) ⊇ h 6= 0, i.e. g0 6= 0. So we can decompose g as

follows.

g = g0 ⊕
⊕
α∈Φ

gα,

where Φ = {α ∈ h∗, α 6= 0 | gα 6= 0}. This decomposition is known as the

Cartan decomposition of g and Φ is called the root system of g relative to h.

We begin with a few simple observations about the root space decompo-

sition of a semisimple Lie algebra.

Remark 1.10.6. #Φ <∞ (because g is finite dimensional).

Proposition 1.10.7. Let g be a semisimple Lie algebra and g = g0⊕⊕α∈Φgα

be the Cartan decomposition of g. Then, for all α, β ∈ h∗:

1. [gα, gβ] ⊂ gα+β;

2. if α, β ∈ h∗ such that α + β 6= 0, then K(gα, gβ) = 0.

Proof. 1. This assertion follows from the Jacobi identity. Indeed, for x ∈
gα, y ∈ gβ and h ∈ h, we have:

adh([x, y]) = [h, [x, y]] = [[h, x], y] + [x, [h, y]] = α(h)[x, y] + β(h)[x, y]

= (α + β)(h)[x, y].

This means that [x, y] ∈ gα+β.
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2. Let h ∈ h, x ∈ gα, y ∈ gβ. We have:

· K([h, x], y) = α(h)K(x, y),

· K([h, x], y) = −K([x, h], y) = −K(x, [h, y]) = −β(h)K(x, y), by anti-

symmetry of commutator and associativity of the Killing form.

Then α(h)K(x, y) = −β(h)K(x, y) ⇒ (α + β)(h)K(x, y) = 0. This

forces K(x, y) = 0 because α + β 6= 0 that means that there exists

h ∈ h such that (α + β)(h) 6= 0.

Corollary 1.10.8. The restriction of the Killing form of g to g0 = Cg(h) is

non-degenerate.

Proposition 1.10.9. Let h be a maximal toral subalgebra of g. Then

h = Cg(h).

Using Proposition 1.10.9, we can rewrite the Cartan decomposition of g

as

g = h⊕
⊕
α∈Φ

gα.

Remark 1.10.10. Corollary 1.10.8 combined with Proposition 1.10.9 allows

us to say that the restriction of the Killing form to h is non-degenerate.

Hence we can identify h with h∗ via the isomorphism given by:

h 7→ ϕh(t) = K(h, t)

tα ← [ α if α(h) = K(tα, h) (∗)

Theorem 1.10.11. Let g be a semisimple Lie algebra and Φ be the root

system of g.

1. Φ spans h∗.

2. If α ∈ Φ, then −α ∈ Φ.

3. Let α ∈ Φ, x ∈ gα, y ∈ g−α. Then [x, y] = K(x, y)tα (tα as in (∗)).

4. If α ∈ Φ, then [gα, g−α] = 〈tα〉.
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5. If α ∈ Φ, then K(tα, tα) 6= 0.

6. If α ∈ Φ and xα is a nonzero element of gα, then there exists x−α ∈ g−α

such that 〈xα, x−α, hα := [xα, x−α]〉 ∼= sl2.

7. hα =
2tα

K(tα, tα)
and h−α = −hα.

Proof.

1. If Φ fails to span h∗, then (by duality) there exists nonzero h ∈ h such

that α(h) = 0 for all α ∈ Φ. This means that [h, gα] = 0 for all α ∈ Φ.

Since [h, h] = 0, this in turn forces [h, g] = 0⇔ h ∈ Z(g). But Z(g) = 0

since g is semisimple, which is absurd because h 6= 0.

2. Let α ∈ Φ. If −α /∈ Φ, then for all β ∈ Φ α + β 6= 0. Therefore

K(gα, gβ) = 0 by point 2. of Proposition 1.10.7. Moreover K(gα, h) =

K(gα, g0) = 0, then K(gα, g) = 0, contradicting the non-degeneracy of

K.

3. Let α ∈ Φ, x ∈ gα, y ∈ g−α. Let h ∈ h be arbitrary. The associativity

of K implies:

K(h, [x, y]) = K([h, x], y) = K(α(h)x, y) = α(h)K(x, y)

= K(h, tα)K(x, y) = K(h,K(x, y)tα).

Since K is non-degenerate and the last relation is true for all h ∈ h, we

have that:

[x, y] = K(x, y)tα.

4. Point 3. tells us that if suffices to prove that if α ∈ Φ and xα ∈ gα,

then there exists y ∈ g−α such that K(x, y) 6= 0. Otherwise, we would

have K(x, gα) = 0. On the other hand, we know that:

• K(x, gβ) = 0 for all β such that α + β 6= 0 by point 2. of Propo-

sition 1.10.7,

• K(x, h) = K(x, g0) = 0.
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It follows that K(x, g) = 0, which is absurd since K is non-degenerate.

Therefore we can find 0 6= y ∈ g−α for which K(x, y) 6= 0.

5. Suppose K(tα, tα) = 0 ⇔ α(tα) = 0, so that [tα, x] = 0 = [tα, y] for all

x ∈ gα, y ∈ g−α.

As in 4., we can find such xα, yα satisfying K(xα, yα) 6= 0. Modifying

one or the other by a scalar, we may as well assume that K(xα, yα) = 1.

Then [xα, yα] = tα, by 3. It follows that the subspace S of g spanned by

xα, yα, tα is a three dimensional solvable algebra. Since S is solvable,

ad(S) ∈ gl(g) is solvable because it is the homomorphic image of S with

respect to ad: g → gl(g). Then there exists a basis of g such that the

elements ads, with s ∈ S, have upper triangular matrix. In particular,

since adtα = [adxα , adyα ], adtα has a strictly upper triangular matrix,

i.e., adtα is nilpotent. But tα ∈ h, then adtα is semisimple.

So adtα is both semisimple and nilpotent, i.e., adtα = 0. By injectivity

of adtα , this says that tα = 0, contrary to choice of tα.

6. We want to prove that the following linear map:

f : 〈xα, x−α, hα〉 → sl2

xα 7→ e

x−α 7→ f

hα 7→ h

where {e,f ,h} is the standard basis of sl2, is an isomorphism of Lie

algebras.

Given 0 6= xα ∈ gα, by 4. and 5. we can find y ∈ g−α such that

K(xα, yα) =
2

K(tα, tα)
. Set hα :=

2tα
K(tα, tα)

, then [xα, yα] = hα, by 3.

Moreover,

[hα, xα] =
2

K(tα, tα)
[tα, xα] =

2

K(tα, tα)
α(tα)xα =

2

α(tα)
α(tα)xα = 2xα

[hα, yα] =
2

K(tα, tα)
[tα, yα] = − 2

K(tα, tα)
α(tα)yα = − 2

α(tα)
α(tα)yα = −2yα
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7. Point 6. shows that hα =
2tα

K(tα, tα)
. So we only have to prove that

h−α = −hα.

Recall that tα is defined by K(tα, h) = α(h) (h ∈ h). This shows that

t−α = −tα and in view of the way hα is defined, the assertion follows.

Proposition 1.10.12. 1. α ∈ Φ implies dim gα = 1.

2. If α ∈ Φ, the only scalar multiples of α which are roots are α and −α.

3. If α, β ∈ Φ, then β(hα) ∈ Z and β − β(hα)α ∈ Φ, where hα is the

element introduced in Theorem 1.10.11. The numbers β(hα) are called

Cartan integers.

4. If α, β, α + β ∈ Φ, then [gα, gβ] = gα+β.

5. Let α, β ∈ Φ, β 6= ±α. Let r, q be (respectively) the largest integers for

which β− rα, β+ qα are roots. Then β+ kα ∈ Φ for all k = −r, . . . , q,
and β(hα) = r − q.

Proof. Fix α ∈ Φ. Consider the subspace M of g spanned by h along with

all root spaces of the form gcα (c ∈ F∗), i.e.:

M = h⊕
⊕
cα∈Φ
c∈F∗

gcα with α ∈ Φ.

For sure gα and g−α are in this sum by point 2. of Proposition 1.10.11.

Now, take xα ∈ g and consider Sα = 〈xα, yα, hα〉 ∼= sl2 the subalgebra of g

constructed as in point 6. of Proposition 1.10.11. Note that M is an

Sα-submodule of g with respect to the adjoint action. Indeed, by point 1. of

Proposition 1.10.7:

• [hα, h] = 0 since h is abelian and [hα, gcα] ⊆ (cα)(hα)gcα.

Hence adhα(M) ⊆M .

• [xα, h] = −α(h)xα for all h ∈ h and [xα, gcα] ⊆ g(c+1)α.

Hence adxα(M) ⊆M .
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• [yα, h] = α(h)yα for all h ∈ h and [yα, gcα] ⊆ g(c−1)α.

Hence adyα(M) ⊆M .

Therefore M is a finite dimensional (Sα ∼= sl2)-module. The weights of hα

on M are 0 and 2c = cα(hα) for nonzero c’s such that gcα 6= 0. In particular,

since all weights of an sl2-module are integers, 2c ∈ Z, i.e., c must be an

integral multiple of 1
2
. On the other hand, α ∈ Φ ⊂ h∗ is such that α : h→ F

with α(hα) = 2 and α 6= 0. Hence h = kerα ⊕ 〈hα〉. Note that Sα acts

trivially on kerα. Indeed, for z ∈ kerα ⊂ h:

• [hα, z] = 0 since h is abelian;

• [xα, z] = −[z, xα] = −α(z)xα = 0 since z ∈ kerα;

• [yα, z] = −[z, yα] = α(z)yα = 0 since z ∈ kerα;

Hence kerα is a trivial Sα-submodule of M . Moreover, also Sα is an

Sα-submodule of M . Therefore, thanks to Weyl’s Theorem (Theorem 1.9.22)

we have:

M = kerα⊕ Sα ⊕ T,

where T ⊆
⊕
cα∈Φ
c 6=0

gcα is an Sα-submodule.

Recall that the weights of an irreducible sl2-module form an arithmetic pro-

gression with difference 2 from −s to s for some s ∈ Z+. Hence in this

progression either 0 or 1 must appear. Now, the weights on T are 2c 6= 0.

This means that even weights can not appear in T , since 0 does not appear.

In particular c 6= 2, i.e., 2α /∈ Φ. So α
2
/∈ Φ (because otherwise α /∈ Φ against

assumption). Then c 6= 1
2
. Hence, also 1 can not be a weight of T . Therefore

T = 0.

In this way we proved that M = kerα⊕ Sα. This proves points 1. and 2.

Next we examine how Sα acts on root spaces gβ, β 6= ±α. Set

K =
⊕

β+kα∈Φ
k∈Z

gβ+kα.
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As before, one can show that K is a Sα-submodule of g with respect to the

adjoint action. The weights of hα on K are (β + kα)(hα) = β(hα) + 2k. On

the other hand β(hα) + 2k ∈ Z since all the weights of an sl2-module are

integers; hence β(hα) ∈ Z. Using Weyl’s Theorem we can write K = ⊕Vi,
where Vi are irreducible sl2-modules, and #{Vi} = µ(0) +µ(1), where µ(i) is

the number of times i appears as weight of K. But the weights β(hα) + 2k

are all even or all odd and 0 or 1 appears only once. Hence K = Vi for some

i, i.e., K is irreducible.

Denote by q the maximum non-negative integer such that β + qα ∈ Φ, and

by r the maximum non-negative integer such that β − rα ∈ Φ. Hence the

weights of K form an arithmetic progression with difference 2:

β(hα)− 2r, . . . , β(hα) + 2q.

This implies that the roots β+kα form a string β−rα, . . . , β, . . . , β+qα. No-

tice also that (β− rα)(hα) = (−β+ qα)(hα); this implies that β(hα) = r− q.
Finally, observe that if α, β, α + β ∈ Φ, then adgα maps gβ onto gα+β. Oth-

erwise, we could assume that [xα, gβ] = 0. But then
⊕

k≤0 gβ+kα would be a

proper Sα-submodule of K, against its irreducibility. Indeed for all k ≤ 0:

[xα, gβ+kα] ⊆ gβ+(k+1)α ⊆
⊕

k≤0 gβ+kα because, if k < 0, then k + 1 ≤ 0 and

[xα, gβ] = 0 for k = 0.

Analogously, we can prove that also hα and yα stabilize
⊕

k≤0 gβ+kα.

Remark 1.10.13. Since the restriction to h of the Killing form is non-

degenerate by Remark 1.10.10, we may transfer the form to h∗, letting

(α, β) := K(tα, tβ) for all α, β ∈ h∗. This is a non-degenerate bilinear form

on h∗, with (α, β) ∈ Q for every α, β ∈ h∗. We know that Φ spans h∗ by

point 1. of Theorem 1.10.11, so we can choose a basis {α1, . . . , αl} of h∗

consisting of roots. If we set EQ := spanQ{α1, . . . , αl}, we can prove that

(., .) is a positive definite form on EQ. Now, let ER be the real vector space

obtained by extending the base field from Q to R (i.e., ER := R ⊗ EQ); the

form extends canonically to ER and is positive definite.
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1.11 Root systems

Throughout this section, E will denote a Euclidean space, i.e., a finite

dimensional vector space over R endowed with a positive definite symmetric

bilinear form (., .). Moreover, α will denote a nonzero element in E.

Definition 1.11.1. Define the reflecting hyperplane of α as follows:

Pα = {v ∈ E | (v, α) = 0}.

Definition 1.11.2. The invertible linear transformation σα : E → E such

that σα(v) = v for all v ∈ Pα and σα(α) = −α is called the reflecion with

respect to Pα.

Remark 1.11.3. It is easy to write down an explicit formula for σα:

σα(β) = β − 2(β, α)

(α, α)
α.

Definition 1.11.4. Let α, β ∈ E. We define

〈β, α〉 :=
2(β, α)

(α, α)
.

Definition 1.11.5. A subset Φ of the Euclidean space E is called an abstract

root system in E if the following axioms are satisfied:

(R1) Φ is finite, spans E and does not contain 0.

(R2) If α ∈ Φ, then cα ∈ Φ if and only if c = ±1.

(R3) For all α, β ∈ Φ, σα(β) = β − 〈β, α〉α ∈ Φ.

(R4) For all α, β ∈ Φ, then 〈α, β〉 ∈ Z.

Example 1.11.6. The root system of a semisimple Lie algebra is an abstract

root system in ER.

Definition 1.11.7. Call ` := dimE the rank of the root system Φ.
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Example 1.11.8. Let us describe the root systems of rank 1.

For ` = 1, we have E ∼= R ⊇ Φ. Thus, by property (R2) of Definition 1.11.5,

Φ = {±α}, with α 6= 0.

We can represent it with the following diagram, labeled by A1:

Example 1.11.9. Let us describe the root systems of rank 2.

For ` = 2, we have E ∼= R2 ⊇ Φ. Thus, by property (R1) of Definition 1.11.5,

we can consider α, β ∈ Φ, with β 6= ±α.

Recall that (α, β) = ‖α‖‖β‖ cos α̂β. Thus, 〈α, β〉 =
2(α, β)

(β, β)
=

2‖α‖
‖β‖

cos α̂β.

So, since 〈α, β〉 and 〈β, α〉 have like sign and 〈α, β〉 ∈ Z by property (R4) of

Definition 1.11.5,

0 ≤ 〈α, β〉〈β, α〉 = 4 cos2 α̂β ≤ 3,

where the last inequality holds because β 6= ±α.

From now on, suppose that ‖β‖ ≥ ‖α‖. Then, according to the choice of

cos2 α̂β ∈ {0, 1
4
, 1

2
, 3

4
}, we have the following possibilities that can be obtained

using the axioms of the abstract root systems.

• If cos2 α̂β = 0, then Φ = {±α,±β} and it can be represented by the

following diagram, labeled by A1 × A1:

• If cos2 α̂β = 1
4
, then Φ = {±α,±β,±(α+β)} and it can be represented

by the following diagram, labeled by A2:
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• If cos2 α̂β = 1
2
, then Φ = {±α,±β,±(α+ β),±(2α+ β)} and it can be

represented by the following diagram, labeled by B2:

• If cos2 α̂β = 3
4
, then Φ = {±α,±β,±(α + β),±(2α + β),±(3α +

β),±(3α + 2β)} and it can be represented by the following diagram,

labeled by G2:

Therefore, the following possibilities are the only ones when β 6= ±α and

‖β‖ ≥ ‖α‖.

〈α, β〉 〈β, α〉 α̂β
‖β‖2

‖α‖2

0 0 π
2

undetermined

1 1 π
3

1

−1 −1 2
3
π 1

1 2 π
4

2

−1 −2 3
4
π 2

1 3 π
6

3

−1 −3 5
6
π 3
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Table 1.

Proposition 1.11.10. Let α, β ∈ Φ, β 6= ±α. Then:

1. if (α, β) > 0, α− β ∈ Φ;

2. if (α, β) < 0, α + β ∈ Φ.

Proof. 1. Since (α, β) > 0 if and only if 〈α, β〉 > 0, Table 1 shows that

either 〈α, β〉 = 1 (if ‖β‖ ≥ ‖α‖) or 〈β, α〉 = 1 (if ‖α‖ ≥ ‖β‖).
In the first case σβ(α) = α− 〈α, β〉β = α− β ∈ Φ by property (R3).

In the second case σα(β) = β−〈β, α〉α = β−α ∈ Φ by property (R3).

Thus α− β ∈ Φ by property (R2).

2. The second assertion follows from the first applied to −β in place of β.

Definition 1.11.11. A subset ∆ of Φ is called a base if:

(B1) ∆ is a basis of E;

(B2) each root β ∈ Φ can be written as β =
∑

γ∈∆ nγγ, with integral coeffi-

cients nγ all non-negative or all non-positive.

The roots in ∆ are called simple. We call β ∈ Φ positive (resp. negative) if

nγ ≥ 0 (resp. nγ ≤ 0) for every γ ∈ ∆.

Theorem 1.11.12. Every root system Φ has a base.

Proof. See [5], 10.1.

Definition 1.11.13. Let (Φ, ER) be a root system and ∆ = {α1, . . . , αl}
a base of Φ. The Coxeter graph associated to (Φ,∆) is defined as a graph

having l vertices in which the ith and the jth vertix (i 6= j) are linked by

〈αi, αj〉〈αj, αi〉 edges.

Definition 1.11.14. In the same setting as before, we call Dynkin diagram

of Φ the Coxeter graph of Φ in which we add an arrow from the ith to the

jth vertix if (αi, αi) > (αj, αj).



Chapter 2

Reductive Lie algebras

2.1 Basic results on reductive Lie algebras

Definition 2.1.1. A Lie algebra g for which Rad(g) = Z(g) is called reduc-

tive.

Example 2.1.2. 1. A commutative Lie algebra g is reductive, since Rad(g) =

g = Z(g).

2. If g is a semisimple Lie algebra, then it is reductive since Rad(g) =

{0} = Z(g).

3. gln is reductive, since gln = sln ⊕ 〈In〉, and Z(gln) = 〈In〉 = Rad(gln).

Proposition 2.1.3. 1. g is a reductive Lie algebra if and only if g =

[g, g]⊕ Z(g), with [g, g] semisimple.

2. Let g ⊆ gl(V ) be a nonzero Lie algebra acting irreducibly on V (via the

natural action). Then g is reductive, with dimZ(g) ≤ 1. If in addition

g ⊆ sl(V ), then g is semisimple.

Proof. 1. By definition of reductive Lie algebra we have Rad(g) = Z(g);

hence g′ := g/Z(g) is semisimple.

The adjoint action induces an action of g′ on g: for x̄ := x+Z(g) ∈ g′,

53
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we consider adx̄ : g→ g such that y 7→ [x, y] (it is easy to see that it is

well defined).

Since g′ is semisimple, g is a completely reducible g′-module by Weyl’s

theorem (Theorem 1.9.22). Hence we can write g = Z(g) ⊕M , where

Z(g) is a trivial g′-submodule of g because it is an ideal of g, and M is

an ideal of g by definition of adx̄. Moreover, [g, g] = [M,M ] = M by

Corollary 1.9.8 because M ∼= g′, that is semisimple.

The converse is true since, if we consider any solvable ideal I ⊂ [g, g]⊕
Z(g), then it must be I ∩ [g, g] = {0} since otherwise I ∩ [g, g] would

be a nonzero solvable ideal in [g, g], that is semisimple. So I ⊆ Z(g)

and hence Rad(g) ⊆ Z(g).

2. Let S = Radg. By Lie’s theorem (Theorem 1.6.8), there exists an

eigenvector v ∈ V common to all the elements of S, i.e., such that

s.v = λ(s)v for all s ∈ S. Now, if x ∈ g then [x, s] ∈ S; thus

s.(x.v) = x.(s.v)− [s, x].v = λ(s)x.v − λ([s, x])v. (2.1)

Since g acts irreducibly on V , all vectors in V are obtainable by re-

peated applications of elements of g to v and formation of linear com-

binations. It therefore follows from (2.1) that the matrices of all s ∈ S
(relative to a suitable basis of V ) are be upper triangular, with λ(s)

the only diagonal entry. However, the commutators [s, x] ∈ S (s ∈ S,

x ∈ g) have trace 0, so this condition forces λ to vanish on [S, g]. Re-

ferring back to (2.1), we now conclude that s ∈ S acts diagonally on

V as the scalars λ(s). In particular, S = Z(g); so g is reductive and

dimS ≤ 1.

Finally, if g ⊆ sl(V ), since sl(V ) contains no scalars except 0, S = 0

and thus g is semisimple.

Proposition 2.1.4. Let n ∈ N. Then:

1. sln is semisimple;
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2. sp2n is semisimple.

Proof. 1. Let V be an n-dimensional vector space. Since gl(V ) = sl(V )⊕
〈IV 〉 and since gl(V ) acts irreducibly on V (see Example 1.3.3), then

it is clear that sl(V ) acts irreducibly as well. Thus, by point 2. of

Proposition 2.1.3, sln is semisimple.

2. Let V be a 2n-dimensional vector space. Notice that any subspace W

of V which is invariant under the action of a subalgebra g of gl(V ) is

also invariant under the action of the (associative) subalgebra of EndV

generated by IV and g. Indeed, if w ∈ W then (αIV +
∑

i βixi)(w) =

αw +
∑

i βixi(w) ∈ W for all xi ∈ g, α, βi ∈ F. We now want to prove

that all the endomorphisms in V are obtainable from IV and sp2n using

addiction, scalar multiplication and ordinary multiplication. From IV

we get all scalars. Now, Eii = 1
2
((Eii −Ei+n,i+n) + I2n)(Eii −Ei+n,i+n)

for all i = 1, . . . , n and similarly for i = n + 1, . . . , 2n. Therefore we

get all possible diagonal matrices. Now, multiplying various other basis

elements (such as Eij − Eji) by suitable Eii yields all the possible off-

diagonal matrices Eij.

Thus, using Example 1.3.3 combined with point 2. of Proposition 2.1.3,

we get that sp2n is semisimple.

Proposition 2.1.5. Let g be a semisimple Lie algebra and x ∈ g a semisim-

ple element. Then Cg(x) is reductive. Furthermore, if h ⊂ g is a maximal

toral subalgebra containing x, Cg(x) = h ⊕ ⊕α∈Φxgα, where Φx = {α ∈
Φ | α(x) = 0} and Φ is the root system of g.

Proof. Consider the Cartan decomposition g = h⊕⊕α∈Φgα. On one hand, if

w ∈ Cg(x) lies in gα for some α ∈ Φ then, by definition, [h,w] = α(h)w for

all h ∈ h. But the element x ∈ h must centralize w, and so we get α(x)w = 0.

Let Φx = {α ∈ Φ | α(x) = 0}. These remarks show that

Cg(x) = h⊕
⊕
α∈Φx

gα.
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One can easily show that Φx satisfies the axioms of a root system; hence we

can consider a base of simple roots ∆x for Φx.

In order to show that Cg(x) is reductive, we may show (using point 1. of

Proposition 2.1.3) the decomposition [Cg(x), Cg(x)] ⊕ Z(Cg(x)). Begin by

defining

h1 :=
⋂
α∈Φx

kerα.

Since the span of the roots in Φx has dimension equal to the rank of the root

system Φx by Definition 1.11.7 and Remark 1.10.13, we get that dim(h1) =

dim(h) − rank(Φx). For each α ∈ Φ, pick elements hα ∈ h as in point 6. of

Theorem 1.10.11. Now define

h2 := spanF{hα | α ∈ ∆x}.

Clearly dim(h2) = rank(Φx). We have now the following refined decomposi-

tion of Cg(x):

Cg(x) = h1 ⊕ h2 ⊕
⊕
α∈Φx

gα.

Finally we can say that:

• Z(Cg(x)) = h1. Indeed, if we take h1 ∈ h1 then [h1, h1] = [h1, h2] = 0

since toral subalgebras are commutative by Lemma 1.10.5. Further-

more, if zα ∈ gα, then [h1, zα] = α(h1)zα = 0. Hence h1 ⊆ Z(Cg(x)).

The converse follows using standard properties of root systems.

• [Cg(x), Cg(x)] = h2 ⊕ ⊕α∈Φxgα. Indeed we know that [h1, Cg(x)] = 0.

Furthermore [h2, gα] = gα and [gα, g−α] = 〈hα〉 for all α ∈ ∆x.

Notice that K([Cg(x), Cg(x)], h1) = K(Cg(x), [Cg(x), h1]) = 0. Hence the

Killing form of [Cg(x), Cg(x)] is non-degenerate because otherwise it would

result K([Cg(x), Cg(x)], g) = 0, against the semisemplicity of g (see Theorem

1.9.5). Thus, by point 1. of Proposition 2.1.3, Cg(x) is reductive.

Lemma 2.1.6. Let Φ : g → gl(V ) be an irreducible representation of g on

V (with dimV <∞). Then Φ([g,Rad(g)]) = 0.
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Proof. We know that Rad(g) is solvable; then Φ(Rad(g)) ⊂ gl(V ) is solvable

by Proposition 1.6.4. Hence, by Lie’s Theorem, there exists a nonzero v ∈ V
such that Φ(h)(v) = λ(h)v for every h ∈ Rad(g), where λ ∈ Rad(g)∗.

Now, let Vλ = {w ∈ V : Φ(h)(w) = h.w = λ(h)w for all h ∈ Rad(g)} 6= 0.

We want to show that g.Vλ ⊂ Vλ. If x ∈ g, h ∈ Rad(g), w ∈ Vλ, then:

h.x.w = [h, x].w + x.h.w = λ([h, x])w + λ(h)x.w (2.2)

Now we want to show that λ([h, x]) = 0. Let Wn = spanF{v, x.v, . . . , xn−1.v},
where n ∈ N is the minimum such that {v, x.v, . . . , xn.v} are linearly depen-

dent. Denote Wi = spanF{v, x.v, . . . , xi−1.v}, for i = 1, . . . , n. We claim that

h.xr.v = λ(h)xr.v + ωr , where ωr ∈ Wr. Indeed, by induction on r:

• if r = 1 we are in the case of (2.2);

• if r > 1,

h.(xr+1.v) = h.(x.(xr.v)) = [h, x].(xr.v) + x.(h.(xr.v)) = λ([h, x])xr.v+

ωr+λ(h)xr+1.v+x.ω′r, where ωr, ω
′
r ∈ Wr. Hence h.(xr+1.v) = λ(h)xr+1.v+

ωr+1, where ωr+1 ∈ Wr+1.

Now, let h ∈ Rad(g). Consider h|Wn : Wn → Wn; its matrix, with respect to

the basis {v, x.v, . . . , xn−1.v} is:
λ(h) ∗ . . . ∗

0 λ(h) . . . ∗
...

. . . . . .
...

0 . . . 0 λ(h)


Hence the trace of h|Wn is nλ(h). In particular, every element of g of the

form [h, x] ∈ g has trace nλ([h, x]); but the trace of a commutator is 0, and

so λ([h, x]) = 0.

Hence, by (2.2) we obtain that h.x.v = λ(h)x.v. So Vλ is a submodule of

V and, since Vλ 6= 0 and V is irreducible, it holds V = Vλ, that implies

Φ(h) = λ(h)idV for every h ∈ Rad(g).

Now, if h = [x, h′] ∈ [g,Rad(g)], then Φ(h)v = Φ(x)Φ(h′)v − Φ(h′)Φ(x)v =

λ(h′)Φ(x)v− λ(h′)Φ(x)v = 0 for every v ∈ V . Hence Φ([g,Rad(g)]) = 0.
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Theorem 2.1.7. Let Φ : g → gl(V ) be a representation of g on V (with

dimV < ∞), and let βΦ be the associated trace form on g. If βΦ is non-

degenerate, then g is reductive.

Proof. We can construct a sequence of g-submodules of V :

{0} = V0 ⊂ V1 ⊂ . . . Vt = V

such that Vi/Vi−1 is irreducible. Indeed:

• if V is irreducible, we take V0 = {0}, V1 = V ;

• if V is not irreducible, we take W to be a maximal g-submodule of

V . Then V/W is irreducible and we can construct the sequence of

g-submodules of V above iterating this procedure.

By Lemma 2.1.6, [g,Rad(g)] acts trivially on Vi/Vi−1, i.e., for every x ∈
[g,Rad(g)] we have x.Vi ⊆ Vi−1. But the Vi’s are g-modules, and hence we

can say that y.x.Vi ⊆ Vi−1 for every y ∈ g. So, if we take a basis of V obtained

by completing a basis of Vi−1 to a basis of Vi for every i = 1, . . . , t, we have

that the matrix associated to Φ(y)Φ(x) is strictly upper triangular, and hence

βΦ(y, x) = tr(Φ(y)Φ(x)) = 0 for every y ∈ g, x ∈ [g,Rad(g)]. But βΦ is non-

degenerate by assumption, hence [g,Rad(g)] = 0. So Rad(g) ⊆ Z(g) and,

since the converse is always true, g is reductive.

2.2 The Jacobson Morozov theorem

Remark 2.2.1. Let A ∈ gl(V ), where V is a finite dimensional vector space.

Then A is nilpotent if and only if tr(Ak) = 0 for all k ∈ Z+.

Proof. If A is nilpotent, then tr(Ak) = 0 for all k ∈ Z+ because all eigenvalues

of A are 0, and hence so are all eigenvalues of Ak.

Conversely, suppose that tr(Ak) = 0 for all k ∈ Z+. By contradiction,

suppose that A is not nilpotent, with nonzero eigenvalues λ1, . . . , λr and
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corresponding multiplicities m1, . . . ,mr. Then tr(Ak) = m1λ
k
1 + . . . + mrλ

k
r

for every k. Hence, we have:
m1λ1 + . . .+mrλr = 0

...

m1λ
r
1 + . . .+mrλ

r
r = 0

(2.3)

i.e., 
λ1 λ2 · · · λr

λ2
1 λ2

2 · · · λ2
r

...
...

. . .
...

λr1 λr2 · · · λrr




m1

m2

...

mr

 =


0

0
...

0


But

det


λ1 λ2 · · · λr

λ2
1 λ2

2 · · · λ2
r

...
...

. . .
...

λr1 λr2 · · · λrr

 = λ1 · . . . · λr det



1 1 · · · 1

λ1 λ2 · · · λr

λ2
1 λ2

2 · · · λ2
r

...
...

. . .
...

λr−1
1 λr−1

2 · · · λr−1
r


.

This is the determinant of the Vandermonde matrix, that is nonzero. Hence

the unique solution of (2.3) is m1 = . . . = mr = 0, that is absurd.

Lemma 2.2.2. Let C ∈ gl(V ), where V is a finite-dimensional vector space.

Suppose that C =
r∑
i=1

[Ai, Bi] (with Ai, Bi ∈ gl(V )) and that [C,Ai] = 0 for

i = 1, 2, . . . r. Then C is nilpotent.

Proof. For i ∈ {1, . . . r}, we have [Ck−1, Ai] = 0 for k ≥ 1 where C0 = IdV ,

indeed:

[Ck−1, Ai] = [C · . . . · C︸ ︷︷ ︸
k−1

, Ai] = C · . . . · C︸ ︷︷ ︸
k−1

Ai − AiC · . . . · C︸ ︷︷ ︸
k−1

=

= C · . . . · C︸ ︷︷ ︸
k−2

AiC − AiC · . . . · C︸ ︷︷ ︸
k−1

=

= . . . = AiC · . . . · C︸ ︷︷ ︸
k−1

−AiC · . . . · C︸ ︷︷ ︸
k−1

= 0
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Hence

Ck = Ck−1C =
r∑
i=1

Ck−1[Ai, Bi] =
r∑
i=1

Ck−1(AiBi−BiAi) =
r∑
i=1

(Ai(C
k−1Bi)−

(Ck−1Bi)Ai) =
r∑
i=1

[Ai, C
k−1Bi].

Since the trace of any commutator is 0, this gives tr(Ck) = 0 for k ≥ 1.

Hence C is nilpotent by Remark 2.2.1.

Lemma 2.2.3 (Morozov). Let g be a finite-dimensional Lie algebra over a

field of characteristic 0. Suppose that there exist e, h ∈ g such that [h, e] = 2e

and h ∈ [e, g]. Then there exists f ∈ g such that [h, f ] = −2f , [e, f ] = h

(and [h, e] = 2e).

Proof. By assumption h ∈ [e, g], then there exists an element z ∈ g such that

h = [e, z]. Moreover, since ad is a homomorphism of Lie algebras, we have

that:

• [adh, ade] = ad[h,e] = ad2e = 2ade;

• [ade, adz] = ad[e,z] = adh.

The first of these relations together with Lemma 2.2.2 implies that ade is

nilpotent. Besides,

[e, [h, z] + 2z] = [e, [h, z]] + 2[e, z] = [[e, h], z]− [h, [e, z]] + 2h

= [−2e, z]− [h, h] + 2h = −2h+ 2h = 0

Hence [h, z] = −2z + x1, where x1 ∈ Cg(e), the centralizer of e in g.

Since [adh, ade] = 2ade, if b ∈ Cg(e), then:

adeadh(b) = adhade(b)− 2ade(b) = 0 (2.4)

Hence adh(b) ∈ Cg(e); therefore, adh(Cg(e)) ⊆ Cg(e).

Moreover we notice that the following relation holds:

[adie, adz] =
(∗)

adi−1
e [ade, adz] + adi−2

e [ade, adz]ade + · · ·+ [ade, adz]adi−1
e

=
(∗∗)

adi−1
e adh + adi−2

e adhade + · · ·+ adhadi−1
e
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(the right hand side of (∗) is (adieadz−adi−1
e adzade)+(adi−1

e adzade−adi−2
e adzad2

e)+

(adi−2
e adzad2

e − adi−3
e adzad3

e) + · · · + (adeadzadi−1
e − adzadie); thus only the

first and the last term of the sum survive, that is exactly [adie, adz]).

By induction on k ∈ N, we can also prove that:

adkeadh = adhadke − 2kadke . (2.5)

Indeed:

• if k = 1

adeadh − adhade = [ade, adh] = −2ade.

• if k > 1

adkeadh = adeadk−1
e adh = ade(adhadk−1

e − 2(k − 1)adk−1
e )

= (adeadh)adk−1
e − 2(k − 1)adke

= (adhade − 2ade)adk−1
e − 2(k − 1)adke

= adhadke − 2ade − 2(k − 1)adke

= adhadke − 2kadke .

Now, applying relation (2.5) in the equality (∗∗), we get:

[adie, adz] = i(adh − (i− 1))adi−1
e .

Let b ∈ Cg(e) ∩ Im(adi−1
e ). Then there exists a ∈ g such that b = adi−1

e (a)

and ade(b) = ade(adi−1
e (a)) = adie(a) = 0. Hence:

i(adh−(i−1))adi−1
e (a) = [adie, adz](a) = adieadz(a)−adzadie(a) = adie(adz(a)),

meaning that i(adh − (i− 1))adi−1
e (a) ∈ Im(adie).

Thus, by this and since adh(Cg(e)) ⊆ Cg(e), we have

i(adh − (i− 1))(b) ∈ Cg(e) ∩ Im(adie). (2.6)
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It follows from this relation and the nilpotency of ade that, if b is any element

of Cg(e), there exists a positive integer m such that:

(adh −m)(adh − (m− 1)) · . . . · (adh − 1)adh(b) = 0.

In fact, by (2.6) we have that:

b ∈ Cg(e) = Cg(e) ∩ Im(ad0
e)

⇒ adh(b) ∈ Cg(e) ∩ Im(ad1
e)

⇒ (adh − 1)adh(b) ∈ Cg(e) ∩ Im(ad2
e)

...

⇒ (adh −m)(adh − (m− 1)) · . . . · (adh − 1)adh(b) ∈ Cg(e) ∩ Im(adm+1
e ) = {0}.

This tells us that the characteristic roots of adh|Cg(e) : Cg(e)→ Cg(e) are non-

negative integers. Hence adh+2 induces a non-singular linear transformation

in Cg(e) and consequently there exists y1 ∈ Cg(e) such that (adh+2)(y1) = x1,

where x1 ∈ Cg(e) is the element such that [h, z] = 2z + x1. Then [h, y1] =

−2y1 + x1. Hence, if we set f = z − y1, we have [h, f ] = [h, z] − [h, y1] =

−2z + x1 + 2y1 − x1 = −2(z − y1) = −2f . Also, thanks to the fact that

y1 ∈ Cg(e), we have [e, f ] = [e, z] − [e, y1] = [e, z] = h. Hence the thesis

holds.

Lemma 2.2.4. Let e ∈ g be a nilpotent element and K be the Killing form

on g. Then K(e, Cg(e)) = 0.

Proof. Take y ∈ Cg(e). Then ad[e,y] = 0, i.e., [ade, ady] = 0. Therefore

adeady = adyade. This means that, for arbitrary k ∈ Z+, (adeady)
k =

adkeadky. By the nilpotency of e we can take k >> 1 such that adke = 0. Then

(adeady)
k = 0, i.e., adeady is nilpotent and hence its trace is zero. Therefore

K(e, y) = tr(adeady) = 0.

Now we prove a strengthened version of point 6. of Theorem 1.10.11, the

so called Jacobson-Morozov Theorem.
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Theorem 2.2.5 (Jacobson-Morozov). Let g be a semisimple Lie algebra over

an algebraically closed field of charactesristic 0. If e is a nonzero nilpotent

element of g, then there exists a standard triple {e, h, f} for g.

Proof. We will argue by induction on the dimension of g.

If this is 3 (the smallest dimension for a semisimple Lie algebra), then g must

be isomorphic to sl2. Indeed, if g = h⊕
⊕

α∈Φ gα is the Cartan decomposition

of g then, by point 1. of Theorem 1.10.11, #Φ > 0. Thus by point 6. of

Theorem 1.10.11 we know that g contains an sl2-triple. But, since dimg = 3,

then g ∼= sl2. Now, take z ∈ sl2 ∼= g nilpotent and denote by {e, h, f} the

standard basis of sl2. Then z = ae + bf (h can not appear because it is

semisimple); but det(z− λI2) = det

(
−λ a

b −λ

)
= λ2− ab. So z is nilpotent

if and only if either a = 0 or b = 0. Therefore,

• if z = ae, then {z, h, 1
a
f} is an sl2-triple containing z;

• if z = bf , then {z,−h, 1
b
e} is an sl2-triple containing z.

Assume dim(g) > 3. If e lies in a proper semisimple Lie subalgebra a of g,

then by induction we can find an sl2-triple in a, that is an sl2-triple also in

g.

Thus we may assume for the remainder of the proof that e does not lie in

any proper semisimple Lie subalgebra of g.

Let K be the Killing form on g. First of all, notice that (Cg(e))
⊥ = [g, e]

where the orthogonal complement is take relative to the Killing form. Indeed:

• [g, e] ⊆ (Cg(e))
⊥ because, if x = [z, e] ∈ [g, e], then K(x,Cg(e)) =

K([z, e], Cg(e)) = K(z, [e, Cg(e)]) = 0;

• dim(Cg(e))
⊥ = dimg − dim(Cg(e)) and, considering ade : g → g, we

can say that dimg = dim[e, g] + dimCg(e).

By Lemma 2.2.4 we can say that K(e, Cg(e)) = 0 and so e ∈ (Cg(e))
⊥ =

[g, e]. Thus there exists h′ ∈ g such that [h′, e] = 2e.
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Claim 1. There exists a semisimple element h such that [h, e] = 2e.

To see this, let h′ = h′s + h′n be the Jordan-Chevalley decomposition of h′ in

g. By point 3. of Proposition 1.7.4 we know that h′s and h′n stabilize every

subspace that h′ stabilizes. So h′s acts semisimply and h′n act nilpotently on

the subspace 〈e〉; hence [h′s, e] = 2e, [h′n, e] = 0. Thus we may take h = h′s.

Claim 2. If h is as in Claim 1, then h ∈ [g, e]

By contradiction, suppose that h /∈ [g, e]. Then, as [g, e] = (Cg(e))
⊥, we

must have

K(h,Cg(e)) 6= 0. (2.7)

By an easy calculation with the Jacobi identity we see that adh leaves Cg(e)

invariant. Hence adh must act semisimply on Cg(e), so we may decompose

Cg(e) into adh eigenspaces:

Cg(e) =
⊕
τi∈F

Cg(e)τi .

Note that Cg(e)0 = {z ∈ Cg(e) | [h, z] = 0} = CCg(e)(h). So we have:

Cg(e) = CCg(e)(h)⊕
⊕
τi 6=0

Cg(e)τi . (2.8)

By the invariance of the Killing form K(h, [h,Cg(e)]) = K([h, h], Cg(e)) = 0.

Thus, if z is a nonzero element of Cg(e)τi with τi 6= 0, then 0 = K(h, [h, z]) =

K(h, τiz) = τiK(h, z). This shows that

h ∈ (Cg(e)τi)
⊥ for all τi 6= 0. (2.9)

Combining (2.7), (2.8) and (2.9), we can say that there exists z ∈ CCg(e)(h)

such that K(h, z) 6= 0. If z is nilpotent then, by Lemma 2.2.4 we can say

that K(h, z) = 0, a contradiction. Hence zs 6= 0. By point 3. of Proposition

1.7.4, we can say that zs is a nonzero semisimple element in CCg(e)(f). By

Proposition 2.1.5 we know that Cg(zs) is reductive, whence [Cg(zs), Cg(zs)] is

a semisimple Lie subalgebra of g. It is a proper subalgebra, since Cg(zs) = g

only if zs = 0. We have now shown that h ∈ Cg(zs) and e ∈ Cg(zs). Hence

2e = [h, e] ∈ [Cg(zs), Cg(zs)]. Thus our nilpotent element e belongs to a
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proper semisimple subalgebra of g, in contradiction to our assumption.

Hence, by Lemma 2.2.3, we conclude that there exists f ∈ g such that

{e, h, f} in an sl2-triple.
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Chapter 3

Good Z-gradings

3.1 Basic definitions

From now on, we shall assume that g is a finite-dimensional Lie algebra

over an algebraically closed field F of characteristic 0.

Definition 3.1.1. Let g be a Lie algebra. A Z-grading of g is a decomposi-

tion:

g = ⊕j∈Zgj

where the gj’s are vector subspaces of g such that [gi, gj] ⊂ gi+j.

Remark 3.1.2. If g = ⊕i∈Zgi is semisimple, then there exists an element

H ∈ g0 defining the Z-grading, i.e., such that gk = {x ∈ g | [H, x] = kx} for

all k ∈ Z.

Proof. Define φ : g → g such that, for x ∈ gk, φ(x) = kx, and extend it on

g by linearity. This endomorphism is a derivation. Indeed, if x ∈ gk and

y ∈ gj, then

φ([x, y]) = (k + j)[x, y] since [x, y] ∈ gk+j

[φ(x), y] + [x, φ(y)] = k[x, y] + j[x, y] = (k + j)[x, y].

Since all derivations of g are inner by Theorem 1.9.10, i.e., Derg = adg, there

exists H ∈ g such that φ = adH . So if x ∈ gk, we have that φ(x) = adH(x)⇔
kx = [H, x]. Hence gk = {x ∈ g : [H, x] = kx}.

67
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Definition 3.1.3. A Z-grading g = ⊕j∈Zgj is called even if dimgj = 0 for

all j odd. Otherwise it is called odd.

Proposition 3.1.4. Let g = ⊕i∈Zgi be a semisimple Lie algebra. Then

K(gi, gj) = 0 if i+ j 6= 0.

Proof. Take x ∈ gi, y ∈ gj (i + j 6= 0) and H ∈ g0 defining the Z-grading.

Then:

−iK(x, y) = K([x,H], y) = K(x, [H, y]) = jK(x, y).

Hence (i+ j)K(x, y) = 0 and, as i+ j 6= 0, K(x, y) = 0.

Proposition 3.1.5. Let g = ⊕i∈Zgi be a semisimple Lie algebra. Then g0 is

reductive.

Proof. By Proposition 3.1.4, we have K(g0, gi) = 0 for every i 6= 0. Hence

K|g0×g0 is non-degenerate. Indeed, if we take z ∈ g0 such that K(z, g0) = 0

then, since K(z, gi) = 0 for every i 6= 0, K(z, g) = 0. But K is non-

degenerate on g because g is semisimple, and so z = 0. Hence, by Theorem

2.1.7, g0 is reductive.

Definition 3.1.6. Let g be a Lie algebra and S ⊂ g. The centralizer of S

in g is defined as follows:

Cg(S) = {x ∈ g | [x, S] = 0}.

Definition 3.1.7. An element e ∈ g2 is called good if the following properties

hold:

a) ade : gj → gj+2 is injective for j ≤ −1;

b) ade : gj → gj+2 is surjective for j ≥ −1.

Remark 3.1.8. Given the definition of good element, we can immediately

observe that:

1. e is a nonzero ad-nilpotent element of g;
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2. Point a) of Definition 3.1.7 is equivalent to the fact that the centralizer

Cg(e) of e lies in ⊕j≥0gj;

3. ade : g−1 → g1 is bijective;

4. [g0, g2] = g2.

Proof. 1. If e = 0, then ade(x) = 0 for all x ∈ gj. But this contradicts

point a) of Definition 3.1.7.

Moreover adke ∈ g2k = 0 for k >> 1 since g is finite-dimensional.

2. 3.1.7a) ⇒ Cg(e) ⊆ ⊕j≥0gj.

Suppose by contradiction that x ∈ Cg(e), x 6= 0 such that x ∈
⊕
j≤−1

gj.

Write x =
∑

j≤−1 xj, with xj ∈ gj. Then 0 = ade(x) =
∑

j≤−1 ade(xj).

Since every summand lies in a different homogeneous component of the

Z-grading, then ade(xj) = 0 for all j ≤ −1. But ade is injective for

j ≤ −1, i.e., xj = 0 for all j. Hence x = 0.

Cg(e) ⊆ ⊕j≥0gj ⇒ 3.1.7a).

Fix j ≤ −1 and let x, y ∈ gj with x 6= y, such that ade(x) = ade(y),

then

[e, x] = [e, y]⇔ [e, x− y] = 0⇔ ade(x− y) = 0.

Since Cg(e) ⊆ ⊕j≥0gj, x− y ∈ ⊕j≥0gj. This is a contradiction because,

by assumption, 0 6= x− y ∈ gj, with j ≤ −1.

3. It follows from a) and b) for j = −1.

4. Obvious by property b) of Definition 3.1.7 for j = 0.

Definition 3.1.9. A Z-grading of g is called good if it admits a good element.

3.2 Dynkin Z-gradings

The most important examples of good Z-gradings of g correspond to sl2-

triples {e, h, f}, where [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . We call the good
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Z-gradings thus obtained the Dynkin Z-gradings. In this section we show

more precisely what a Dynkin Z-grading is and why it is good.

Let e ∈ g be a nonzero nilpotent element. By the Jacobson-Morozov

Theorem (Theorem 2.2.5), e embeds into a sl2-triple {e, h, f}, i.e., [h, e] =

2e, [h, f ] = −2f and [e, f ] = h. Since adh acts semisimply on g, we can

decompose g into the direct sum of its eigenspaces:

g =
⊕
λ∈F

gλ,

where gλ = {z ∈ g | adh(z) = λz}.
Let a := 〈e, h, f〉 and consider the adjoint representation of a on g such

that x 7→ adx). Then, by Weyl’s Theorem (Theorem 1.9.22), since a is

semisimple, g decomposes as a direct sum of irreducible finite-dimensional

(a ∼= sl2)-modules gsk :

g =
r⊕

k=1

gsk (3.1)

where gsk = 〈wk, f.wk, . . . , f sk .wk〉 with h.wk = skwk and e.wk = 0 (by x.z

we denote adx(z)).

Now, since the weights of h on gsk are integers for every k, we can write:

g =
⊕
i∈Z

gi, (3.2)

where gi = {z ∈ g | [h, z] = ix}.
This decomposition of g is called Dynkin Z-grading associated to the nilpo-

tent element e, and does not depend on the choice of the sl2-triple containing

e (see Chapter x. in [9]).

Remark 3.2.1. The decomposition g =
⊕

i∈Z gi introduced in (3.2) is a

Z-grading.

Proof. Let x ∈ gi, y ∈ gj, then [h, [x, y]] = [[h, x], y] + [x, [h, y]] = i[x, y] +

j[x, y] = (i+ j)[x, y], i.e., [x, y] ∈ gi+j.
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Proposition 3.2.2. The Z-grading g =
⊕

i∈Z gi introduced in (3.2) is good

with good element e.

Proof. • ade : gj → gj+2 is injective for j ≤ −1.

By point 2. of Remark 3.1.8, it is enough to show that Cg(e) ⊆ ⊕j≥0gj.

Thanks to the decomposition (3.1) of g as sum of irreducible sl2-

modules, we can say that Cg(e) = 〈w1, . . . , wr〉, with h.wi = siwi and

si ≥ 0 for all i = 1, . . . , r. Hence Cg(e) ⊆ ⊕j≥0gj.

• ade : gj → gj+2 is surjective for j ≥ −1.

Fix j ≥ −1. Thanks to the decomposition (3.1), we can find a ba-

sis of gj+2 consisting of elements of the form fk.wi, where h.fk.wi =

(j + 2)fk.wi for some k ∈ {0, . . . , si} and i ∈ {1, . . . , r}. By the repre-

sentation theory of sl2 (in particular equation (1.2)), we know that:

e.f l.wi = l(si − l + 1)f l−1.wi for all l ∈ Z+.

Then, for l = k + 1, we have e.fk+1.wi = (k + 1)(si − k)fk.wi. Hence

ade is surjective on gj because:

· fk+1.wi ∈ gj since g = ⊕j∈Zgj is a Z-grading;

· si 6= k because if not, we would have h.f si .wi = (j + 2)f si .wi. But,

by representation theory of sl2 we know that h.f si .wi = −sif si .wi. So

we would get j + 2 = −si, which can not happen because j + 2 ≥ 1

and −si ≤ 0.

· fk+1.wi 6= 0 because we have seen that k < si in the previous point.

Example 3.2.3 (sp4). Consider the Cartan decomposition of sp4

sp4 = H ⊕ L±α ⊕ L±β ⊕ L±(α+β) ⊕ L±(2α+β).

Taken xα ∈ Lα, we know by point 6. of Proposition 1.10.11 that there exist

x−α ∈ L−α such that 〈xα, x−α, hα := [xα, x−α]〉 ∼= sl2.
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Now we want to construct a Z-grading of sp4 given by the eigenspace decom-

position of adhα , so:

[hα, H] = 0 (since hα ∈ H) ⇒ H ⊆ g0,

[hα, xβ] = β(hα)xβ = 〈β, α〉xβ = 2
(β, α)

(α, α)
xβ = −xβ ⇒ xβ ∈ g−1,

[hα, x−β] = x−β ⇒ x−β ∈ g1,

[hα, xα] = 2xα ⇒ xα ∈ g2,

[hα, x−α] = −2x−α ⇒ x−α ∈ g−2,

[hα, xα+β] = (α + β)(hα)xα+β = (2− 1)xα+β = xα+β ⇒ xα+β ∈ g1,

[hα, x−α−β] = −x−α−β ⇒ x−α−β ∈ g−1,

[hα, x2α+β] = (2α + β)(hα)x2α+β = (4− 1)x2α+β = 3x2α+β ⇒ xα+β ∈ g3,

[hα, x−2α−β] = −3x−2α−β ⇒ x−2α−β ∈ g−3.

Hence

sp4 = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 (3.3)

is the eigenspace decomposition of adhα of sp4 where

• g0 = H,

• g1 = 〈x−β, xα+β〉 and g−1 = 〈xβ, x−α−β〉,

• g2 = 〈xα〉 and g−2 = 〈x−α〉,

• g3 = 〈x2α+β〉 and g−3 = 〈x−2α−β〉.

This decomposition (3.3) is a good Z-grading of sp4. In fact:

1. (3.3) is a Z-grading of sp4 by Remark 3.2.1.

2. (3.3) is a good Z-grading since it admits a good element that is xα ∈ g2,

in fact:

• adxα : g−3 → g−1 such that x−2α−β 7→ x−α−β is injective because

dimg−3 = 1 and adxα(x−2α−β) = x−α−β 6= 0,
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• adxα : g−2 → g0 such that xα 7→ hα is injective because dimg−2 = 1

and adxα(x−α) = hα 6= 0,

• adxα : g−1 → g1 such that xβ 7→ xα+β, x−α−β 7→ x−β, up to scalars,

is bijective because it maps a basis into a basis and adxα(xβ) 6= 0

since [Lα, Lβ] = Lα+β and dimLα+β = 1 by points 4. and 1. of

Proposition 1.10.12,

• adxα : g0 → g2 such that hα 7→ −2xα is surjective because dimg2 =

1,

• adxα : g1 → g3 such that xα+β 7→ x2α+β, x−β 7→ 0 (Lα−β = 0) is

surjective because dimg3 = 1.

3.3 Properties of good gradings

From now on, we shall assume that g is a semisimple Lie algebra. Fix a

Z-grading of g:

g = ⊕j∈Zgj (3.4)

Lemma 3.3.1. Let e ∈ g2, e 6= 0. Then there exists h ∈ g0 and f ∈ g−2 such

that {e, h, f} forms an sl2-triple, i.e., [h, e] = 2e, [e, f ] = h, [h, f ] = −2f .

Proof. By the Jacobson Morozov Theorem (Theorem 2.2.5), there exist h, f ∈
g such that {e, h, f} is an sl2-triple. We write h =

∑
j∈Z hj, f =

∑
j∈Z fj

according to the given Z-grading of g. Then

• [h0, e] = 2e because 2e = [h, e] = [
∑

j∈Z hj, e] =
∑

j∈Z[hj, e]. But e ∈ g2

and [hj, e] ∈ gj+2, so [hj, e] = 0 for j 6= 0 and [h0, e] = 2e.

• [e, g] 3 h0 since [e, f−2] = h0; in fact
∑

j∈Z hj = h = [e, f ] = [e,
∑

j∈Z fj] =∑
j∈Z [e, fj]⇒ hj+2 = [e, fj] for j ∈ Z.

Therefore, by Morozov’s lemma (Lemma 2.2.3), there exists f ′ such that

{e, h0, f ′} is an sl2-triple. But then {e, h0, f ′−2} is an sl2-triple, in fact:

• [h0, e] = 2e,
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• [e, f ′] = h0, then g0 3 h0 = [e, f ′] = [e,
∑

j∈Z f
′
j] =

∑
j∈Z [e, f ′j] so, as

above, [e, f ′−2] = h0,

• [h0, f
′] = −2f ′, but −2f ′ = −2

∑
j∈Z f

′
j =

∑
j∈Z−2f ′j] and [h0, f

′] =

[h0,
∑

j∈Z f
′
j] =

∑
j∈Z [h0, f

′
j], hence −2f ′j = [h0, f

′
j] for j ∈ Z.

Lemma 3.3.2. Let e ∈ g be a nonzero nilpotent element, s = {e, h, f}
an sl2-triple and g = ⊕i∈Zgi the Dynkin grading introduced in (3.2). Set

Cg(e)i = Cg(e) ∩ gi. Then:

1. Cg(e) =
⊕
i≥0

Cg(e)i;

2. Cg(e) ∩ [g, e] =
⊕
i>0

Cg(e)i;

3. Cg(e)0 = Cg(s).

Proof. Thanks to the decomposition of g = ⊕kj=1gsk introduced in (3.1), we

can say that Cg(e) = 〈w1, . . . , wr〉, with h.wi = siwi and si ≥ 0 for all

i = 1, . . . , r.

1. This implies that Cg(e) ⊆ ⊕j≥0gj. Thus Cg(e) = ⊕j≥0Cg(e)j.

2. In order to prove the second point, we want to show that wi ∈ [g, e]

if and only if si > 0. Indeed si > 0 is equivalent to dimgsi > 1. This

means that f.wi 6= 0. Thus, since e.fk.wi = k(si− k+ 1)fk−1.wi for all

k (see equation (1.2)), we have that e.f.wi = siwi, i.e., wi ∈ [g, e].

3. Cg(e)0 = {wi1 , . . . , wik}, with h.wij = 0 (i.e., sij = 0).

Cg(s) = {z ∈ g | e.z = f.z = h.z = 0}; this means that z ∈ Cg(s) if

and only if z = wi (because e.z = 0) with si = 0 (because h.z = 0).

Thus Cg(s) = {wi1 , . . . , wik}.
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Proposition 3.3.3. Let e be a non-zero nilpotent element of g and let

s = {e, h, f} be an sl2-triple. Then Cg(s) is a reductive subalgebra of Cg(e),

called the reductive part of Cg(e).

Proof. By point 3. in Lemma 3.3.2, we know that Cg(s) = Cg(e)0; thus,

using Proposition 3.1.5, we can say that Cg(s) is reductive.

Theorem 3.3.4. Let g = ⊕j∈Zgj be a good Z-grading and e ∈ g2 a good

element. Let H ∈ g be the element defining the Z-grading, and let s =

{e, h, f} be an sl2-triple given by Lemma 3.3.1. Then z := H − h lies in the

center of Cg(s).

Proof. The existence of H is guaranteed by Remark 3.1.2. The eigenvalues of

adH on Cg(e) are non-negative since, if a ∈ Cg(e) ⊆ ⊕j≥0gj is an eigenvector

of adH , by point 2. of Remark 3.1.8 we have Cg(e) ⊆ ⊕j≥0gj. Thus there

exists j ≥ 0 such that a ∈ gj, so adH(a) = [H, a] = ja with j ≥ 0.

Hence the eigenvalues of adH on Cg(s) are non-negative because

Cg(s) = {a ∈ g : [a, e] = 0, [a, h] = 0, [a, f ] = 0} ⊆ Cg(e). So we can write

Cg(s) = ⊕i≥0Cg(s)i. By Proposition 3.3.3, Cg(s) is reductive; thus we can

say that Cg(s) = [Cg(s), Cg(s)]⊕Z(Cg(s)), where [Cg(s), Cg(s)] is semisimple

thanks to Proposition 2.1.3. Notice the following facts.

1. [H, [Cg(s), Cg(s)]] = 0. Indeed, since [Cg(s), Cg(s)] is semisimple, the

Killing form restricted to it is non-degenerate by Theorem 1.9.5. Since

K([H, [Cg(s),⊕j>0Cg(s)j]], [Cg(s), Cg(s)]) = 0 by Proposition 3.1.4 and

[H, [Cg(s)0, Cg(s)0]] = 0 because H is the element defining the Z-

grading, then [H, [Cg(s), Cg(s)]] = 0.

2. [h,Cg(s)] = 0 by the definition of Cg(s).

3. [H − h, [Cg(s), Cg(s)]] = [H, [Cg(s), Cg(s)]] − [h, [Cg(s), Cg(s)]] = 0 by

points 1., 2. and the Jacobi identity.

4. H − h ∈ Cg(s) because H is the element defining the Z-grading and

{e, h, f} is an sl2-triple. Thus [H − h, Z(Cg(s))] = 0.
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Therefore [z, Cg(s)] = 0, i.e., z ∈ Z(Cg(s)).

Corollary 3.3.5. If s = {e, h, f} is an sl2-triple in g and the center of Cg(s)

is trivial, then the only good grading for which e is a good element is the

Dynkin grading.

Proof. If Z(Cg(s)) = 0, then z := H − h = 0 because by Theorem 3.3.4 we

have z ∈ Z(Cg(s)). Hence H = h. But H ∈ g is the element defining the Z-

grading, i.e., gj = {a ∈ g : [H, a] = ja} = {a ∈ g : [h, a] = ja}. Since H = h,

the good Z-grading of g with good element e is the one obtained by the

eigenspace decomposition of adh in g, that means the Dynkin Z-grading.

Example 3.3.6 (sl2).

Consider g = sl2 = 〈s〉 =〈

(
0 1

0 0

)
,

(
1 0

0 −1

)
,

(
0 0

1 0

)
〉.

Notice that Cg(s) = Z(sl2) = 0 because sl2 is semisimple. Hence Z(Cg(s)) =

0 and, by Corollary 3.3.5, the Dyinkin grading is the only Z-grading for which

e =

(
0 1

0 0

)
is a good element.

Example 3.3.7 (sl3).

Consider g = sl3. Up to conjugation, the only nilpotent elements of g are

e1 =


0 1 0

0 0 1

0 0 0

 , e2 =


0 1 0

0 0 0

0 0 0

 .

We start analyzing the case of an sl2-triple containing e1.

With a simple calculation one can check that s1 = {e1, h1, f1} is an sl2-triple,

with h1 =


2 0 0

0 0 0

0 0 −2

 and f1 =


0 0 0

2 0 0

0 2 0

. Now we want to compute
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Cg(s1). Consider x =


a b c

d e f

g h −a− e

∈ Cg(s1). Then:

0 = [x, h1] =


a b c

d e f

g h −a− e




2 0 0

0 0 0

0 0 −2

−


2 0 0

0 0 0

0 0 −2



a b c

d e f

g h −a− e



=


0 2b −4c

2d 0 −2f

4g 2h 0



if and only if b = c = d = f = g = h = 0. Thus x =


a 0 0

0 e 0

0 0 −a− e

.

Moreover,

0 = [x, e1] =


a 0 0

0 e 0

0 0 −a− e




0 1 0

0 0 1

0 0 0

−


0 1 0

0 0 1

0 0 0



a 0 0

0 e 0

0 0 −a− e



=


0 a+ e 0

0 0 a+ 2e

0 0 0


if and only if a = e = 0.

Therefore Cg(s1) = 0; hence Z(Cg(s1)) = 0 and, by Corollary 3.3.5, the

Dyinkin grading is the only Z-grading for which e1 is a good element.

Now we analyze the second case, in which we consider an sl2-triple con-

taining e2.

It easy to see that s2 = {e2, h2, f2} is an sl2-triple, with h2 =


1 0 0

0 −1 0

0 0 0


and f2 =


0 0 0

1 0 0

0 0 0

. Now we want to compute Cg(s2).
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Consider x =


a b c

d e f

g h −a− e

∈ Cg(s2). Then:

0 = [x, h2] =


a b c

d e f

g h −a− e




1 0 0

0 −1 0

0 0 0

−


1 0 0

0 −1 0

0 0 0



a b c

d e f

g h −a− e



=


0 −2b −c
2d 0 f

g −h 0



if and only if b = c = d = f = g = h = 0. Thus x =


a 0 0

0 e 0

0 0 −a− e

.

Moreover,

0 = [x, e2] =


a 0 0

0 e 0

0 0 −a− e




0 1 0

0 0 0

0 0 0

−


0 1 0

0 0 0

0 0 0



a 0 0

0 e 0

0 0 −a− e



=


0 a− e 0

0 0 0

0 0 0



if and only if a = e. Thus x =


a 0 0

0 a 0

0 0 −2a

 ∈ Cg(s2) (it is easy to see that

such x commutes with f2).

Therefore Cg(s2) = 〈


a 0 0

0 a 0

0 0 −2a

 〉. So Z(Cg(s2)) = Cg(s2) because Cg(s2)

is one-dimensional and hence commutative.

Hence, in this case we can not establish if the Dynkin grading is the only

good Z-grading with good element e2.

Definition 3.3.8. The following construction can be found in [3].

By Proposition 3.1.5, we know that g0 is a reductive subalgebra of g. Fur-

thermore, it can be proven that a Cartan subalgebra h of g0 is a Cartan
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subalgebra of g (see [7]).

Let g = h ⊕ (
⊕

α gα) be the root space decomposition of g with respect to

h. Let ∆+
0 be a system of positive roots of the subalgebra g0. It is well

known that ∆+ = ∆+
0 ∪ (α | gα ⊂ gs, s > 0) is a set of positive roots of

g. Let Π = {α1, . . . , αr} ⊂ ∆+ be the set of the simple roots. Setting

Πs = (α ∈ Π|gα ⊂ gs) we obtain a decomposition of Π into a disjoint union

of subsets Π = ∪s≥0Πs. This decomposition is called the characteristic of

the Z-grading g = ⊕i∈Zgi. So we obtain a bijection between all Z-gradings

up to conjugation and all characteristics.

Theorem 3.3.9. If the Z-grading g = ⊕j∈Zgj is good, then Π = Π0∪Π1∪Π2.

Proof. Let e ∈ g2 be a good element. From the construction above, we

can write e =
∑

ρj∈Φ+ eρj , with ρj = αj1 + . . . + αjkj for some non-negative

simple roots αji . Suppose, by contradiction, that there exists a simple root

αj /∈ Π0 ∪Π1 ∪Π2. Then e lies in the Lie subalgebra generated by eαi , i 6= j.

Indeed, if not, we could find an addend eρr of e such that αj ∈ {αr1 , . . . , αrkr}.
But, since degeρr =

∑
k degeαrk , then e could not belong to g2. Therefore

[eρi , e−αj ] ∈ gρi−αj = {0} for all i and hence [e, e−αj ] = 0. This contradicts

property a) of Definition 3.1.7.

Corollary 3.3.10. All good Z-gradings are among those defined by degeαi =

−dege−αi = 0, 1 or 2, i = 1, . . . , r.

Lemma 3.3.11. Let g = ⊕jgj be a Z-grading, e ∈ g2 and K the Killing form

on g. Then [e, gj] 6= gj+2 if and only if there exists a non-zero a ∈ g−j−2

such that K([e, gj], a) = 0.

Proof. Suppose that K([e, gj], a) = 0 for some non-zero a ∈ g−j−2. Suppose

by contradiction that [e, gj] = gj+2 for some j ≥ −1. Then K(gj+2, a) = 0.

Now, take H ∈ g0 defining the grading. K(gk, a) = 0 for all k ∈ Z, k 6= j+ 2

by Proposition 3.1.4. Hence (g, a) = 0. This is a contradiction because K is

non-degenerate and a 6= 0.
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Conversely, suppose that [e, gj] ( gj+2. Notice that g⊥j+2 = ⊕k 6=−j−2gk by

the non-degeneracy of K (see Proposition 3.1.4). Then [e, gj]
⊥ ) g⊥j+2 =

⊕k 6=−j−2gk. This implies that [e, gj]
⊥ ∩ g−j−2 6= 0, i.e., there exists a nonzero

element a ∈ g−j−2 such that K([e, gj], a) = 0.

Theorem 3.3.12. Properties a) and b) of the definition of good element

(Definition 3.1.7) of a Z-grading g = ⊕jgj are equivalent.

Proof. By Lemma 3.3.11 we know that the property [e, gj] 6= gj+2 for j ≥ −1

is equivalent to the existence of a non-zero element a ∈ g−j−2 such that

K([e, gj], a) = 0. But the latter equality is equivalent to K([e, a], gj) = 0 by

the invariance of K and this is equivalent to [e, a] = 0 by the non-degeneracy

of K. Then ade : g−j−2 → g−j is not injective.

Theorem 3.3.13. Let g = ⊕j∈Zgj be a good Z-grading with good element e.

Then Cg(e) ∼= g0 + g−1 as Cg0(e)-modules.

Proof. Due to properties a) and b) of Definition 3.1.7 we have the following

exact sequence of Cg0(e)-modules:

0→ Cg(e)
id→ g−1 + g0 + g+

ade→ g+ → 0.

Indeed,

• id : Cg(e)→ g−1 + g0 + g+ is injective because, by point 2. of Remark

3.1.8, Cg(e) ⊂ g≥;

• ade : g−1 +g0 +g+ → g+ is surjective by property b) of Definition 3.1.7;

• ker(ade) = {x ∈ g−1 + g0 + g+ | [e, x] = 0} = Cg(e) = Im(id)

Moreover, we can note that Cg(e), g−1, g0, and g+ are Cg0(e)-modules. We

show that only for Cg(e) (it will be analogue in the other cases).

Since the concept of g-module is equivalent to the concept of representation

ϕ : g→ gl(V ), it is enough to consider the adjoint representation:

ad : Cg0(e) → gl(Cg(e))

x 7→ adx : Cg(e)→ Cg(e)
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and verify that adx is well defined as Cg(e)-endomorphism, i.e., adx(Cg(e)) ⊆
Cg(e). Thus, let x ∈ Cg0(e) and y ∈ Cg(e); then [e, [x, y]] = [[e, x], y] +

[x, [e, y]] = [0, y] + [x, 0] = 0, so [x, y] ∈ Cg(e). Hence, Cg(e) ∼= g0 + g−1 as

Cg0(e)-modules because for all x ∈ Cg0(e) and y ∈ g0 + g−1 we have that

ade(adx(y)) = adx(ade(y)) since [e, x] = 0.

Corollary 3.3.14. Let g = ⊕jgj be a Z-grading and let e ∈ g2. Then

dimCg(e) ≥ dimg−1 + dimg0, and equality holds if and only if e is a good

element.

Proof. We have an exact sequence of vector spaces (the proof of its exactness

is analogue to the one in Theorem 3.3.13):

0→ Cg(e) ∩ (g−1 + g≥)
id→ g−1 + g0 + g+

ade→ [e, g−1 + g≥]→ 0.

Hence dimCg(e) + dim[e, g−1 + g≥] ≥ dim(Cg(e) ∩ (g−1 + g≥)) = dimg−1 +

dimg0 + dimg+. But, since [e, g−1 + g≥] ⊆ g+ (and equality holds if and only

if e is good), one has dimCg(e) + dimg+ ≥ dimg−1 + dimg0 + dimg+, i.e.

dimCg(e) ≥ dimg−1 + dimg0, and hence the Corollary follows.

Definition 3.3.15. Let g be a Lie algebra and V be a g-module. Then V is

called self-dual if it is isomorphic to V ∗ as g-module.

Lemma 3.3.16. Let g be a Lie algebra, V be a g-module via the adjoint

action. If there exists a non-degenerate g-invariant bilinear form (., .) : V ×
V → F, then V is self-dual.

Proof. Set

ϕ : V → V ∗

v 7→ (w 7→ (v, w))

Then:

• ϕ is bijective since (., .) is non-degenerate;
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• ϕ(x.v) = x.ϕ(v) for every x ∈ g and v ∈ V . Indeed, if w ∈ V :

(ϕ(x.v))(w) = (x.v, w) = ([x, v], w)

(x.ϕ(v))(w) = −ϕ(v)(x.w) = −(v, x.w) = −(v, [x,w]) = −([v, x], w) =

([x, v], w)

where we used the invariancy of (., .).

Corollary 3.3.17. Let g = ⊕j∈Zgj be a good Z-grading with good element e.

Then the representation of Cg0(e) on Cg(e) is self-dual.

Proof. Consider the bilinear form on g−1 given by 〈a, b〉 := K(e, [a, b]). Note

that 〈., .〉 has the following properties:

1. It is Cg0(e)-invariant. Indeed, if we take c ∈ Cg0(e), a, b ∈ g−1,

one has [a, c], [b, c] ∈ g−1. Furthermore 〈[a, c], b〉 = K(e, [[a, c], b]) =

K(e, [a, [c, b]]) −K(e, [c, [a, b]]) = 〈a, [c, b]〉 −K([e, c], [a, b]) = 〈a, [c, b]〉
because c ∈ Cg0(e).

2. It is non-degenerate. Indeed, if we take a ∈ g−1 such that 〈g−1, a〉 = 0,

then K(e, [g−1, a]) = 0, i.e. K([e, g−1], a) = 0. Using point 3. of

Remark 3.1.8 we can say that the latter is equivalent to K(g1, a) =

0. Moreover, by Proposition 3.1.4, K(gk, a) = 0 for all k 6= 1. So

K(g, a) = 0 and, by non-degeneracy of K, a = 0.

Hence the Cg0(e)-module g−1 is self-dual by Lemma 3.3.16.

Similarly, the Cg0(e)-module g0 is self-dual since the bilinear form K is non-

degenerate on g0. So we can conclude using Theorem 3.3.13.



Chapter 4

Good gradings of sp2n

4.1 Symplectic partitions and symplectic pyra-

mids

Definition 4.1.1. A partition of n is a tuple p = (p1, . . . , ps) with pi ∈ N,

pi ≥ pi+1 and p1 + . . . + ps = n. We denote by Par(n) the set of all the

partitions of n.

Definition 4.1.2. We denote by multp(j) the multiplicity of the number j

in the partition p, i.e.,

multp(j) := #{i : pi = j}.

Definition 4.1.3. Let p = (p1, . . . , ps) ∈ Par(n). Then p∗ = (p∗1, p
∗
2, . . .),

where p∗j := #{i : pi ≥ j}, j = 1, 2, . . ., is called the dual partition of p.

From now on, given a partition p, we denote by p1 > p2 > . . . > ps its

distinct non-zero parts and use notation p = (pm1
1 , . . . , pmss ), where mi is the

multiplicity of pi in p.

Definition 4.1.4. A partition p = (pm1
1 , . . . , pmss ) is called symplectic if mi

is even for odd pi.

Example 4.1.5. The partition p = (5, 5, 4, 3, 3, 3, 3) = (52, 41, 34) is sym-

plectic.

83
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Recall the following result that will be very useful in this section and

whose proof can be found in [[2], Theorem 5.13].

Theorem 4.1.6. Symplectic partitions of 2n correspond bijectively to nilpo-

tent orbits in sp2n.

Definition 4.1.7. Let p = (pm1
1 , . . . , pmss ) be a symplectic partition of 2n. We

define the symplectic pyramid SP (p) as follows. It is a centrally symmetric

(around (0,0)) collection of 2n boxes of size 1 × 1 on the plane, centered at

points with integer coordinates (called the coordinates of the corresponding

boxes).

• If m1 = 2k1 + 1 is odd, then the 0th row of SP (p) is non-empty and the

first coordinates of boxes in this row form an arithmetic progression

−p1 + 1,−p1 + 3, . . . , p1 − 1. The rows from 1st to kth
1 consist of boxes

with the first coordinates forming the same arithmetic progression.

• If m1 = 2k1 is even, then the 0th row of SP (p) is empty and the first

coordinates of boxes in the rows from 1st to kth
1 form an arithmetic

progression −p1 + 1,−p1 + 3, . . . , p1 − 1.

For the subsequent rows:

• If the multiplicity m2 of p2 is even, then the rows from the (k1 + 1)th

to the (k1 + m2

2
)th consist of boxes with first coordinates forming an

arithmetic progression −p2 + 1,−p2 + 3, . . . , p2 − 1.

• If m2 is odd, then the (k1 + 1)th row consists of boxes with first coor-

dinates forming the arithmetic progression 1, 3, . . . , p2 − 1 (recall that

p2 must be even if m2 is odd) and the m2−1
2

subsequent rows con-

sist of boxes with first coordinates forming the arithmetic progression

−p2 + 1,−p2 + 3, . . . , p2 − 1.

All the subsequent parts of p are treated in the same way as p2. The rows

in the lower half-plane are obtained by the central symmetry.
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Example 4.1.8. The symplectic pyramid SP (p) associated to the symplectic

partition p = (63, 41, 22) is:

Example 4.1.9. The symplectic pyramid SP (p) associated to the symplectic

partition p = (52, 41, 34) is:

4.2 The symplectic endomorphisms e(p) and

h(p)

Definition 4.2.1. The nilpotent endomorphism e(p) of F2n corresponding

to a symplectic partition p is obtained by filling the boxes of SP (p) by the

standard basis vectors v1, . . . , vn, v−1, . . . , v−n of F2n such that vectors in

boxes in the right half-plane (x ≥ 0 and y > 0 if x = 0) have position indices
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i and those in the centrally symmetric boxes have indices −i. Then e(p)

maps vectors in each box to its right neighbor (changed by sign if both the

vectors involved are labeled with negative indices) and to 0 if there is no right

neighbor, with the exception of the boxes with coordinates (−1,−`) and no

right neighbors; the vector in such a box is mapped by e(p) to the vector in

the (1, `) box (which has no left neighbors).

Remark 4.2.2. The nilpotent endomorphism e(p) is symplectic.

Proof. Recall that every symplectic endomorphism has matrix of this form:(
A B

C −AT

)

where A,B,C ∈ gln, B = BT , C = CT .

Let

(
A B

C D

)
be the matrix associated to e(p). Then, by construction, C =

0 because the vectors {v1, . . . , vn} are mapped to themselves. Furthermore,

since B = (bij) is the matrix of the coordinates of the vectors v1, . . . , vn in

the images of v−1, . . . , v−n, B is symmetric because:

• if v−i 7→ vi, then the ith diagonal entry of B is 1;

• if v−i 7→ vj for j 6= i, by construction we have that v−j 7→ vi, and so

bij = 1 if and only if bji = 1.

Similarly, since by construction, if vi 7→ vj, then v−j 7→ −v−i, D = −AT .

Example 4.2.3. Let p = (22). The nilpotent symplectic endomorphism e(p)

can be graphically represented by the following collection of arrows.
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The endomorphism e(p) represented in figure corresponds to:

v−2 7→ v1 7→ 0

v−1 7→ v2 7→ 0

where vi is the ith basis vector of the standard basis of F4 and v−i is the

(n+ i)th basis vector of the standard basis of F4 (n = 2).

The symplectic matrix associated to e(p) is:
0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 .

Example 4.2.4. Let p = (32). The nilpotent symplectic endomorphism e(p)

can be graphically represented by the following collection of arrows.

The endomorphism e(p) represented in figure corresponds to:

v−3 7→ v2 7→ v1 7→ 0

v−1 7→ v−2 7→ v3 7→ 0.

The symplectic matrix associated to e(p) is:

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0


.

Definition 4.2.5. In the same setting as before, we define the diagonal ma-

trix h(p) ∈ sp2n by letting its jth diagonal entry equal to the first coordinate

of the center of the jth box of SP (p).
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Remark 4.2.6. The eigenspace decomposition of ad(h(p)) is a Z-grading of

sp2n.

Proof. By Proposition 1.7.6, we know that ad(h(p)) is semisimple. Let

h(p) = diag(h1, . . . , hn,−h1, . . . ,−hn). In order to show that the eigenspace

decomposition of ad(h(p)) is a Z-grading, we calculate the brackets of h(p)

with the elements of the basis of sp2n described in Example 1.1.9, using

Proposition 1.7.6.

• [h(p), Eii − En+i,n+i] = (hi − hi)Eii − (hn+i − hn+i)En+i,n+i = 0;

• [h(p), Eij − En+j,n+i] = (hi − hj)Eij − (−hj + hi)En+j,n+i

= (hi − hj)(Eij − En+j,n+i);

• [h(p), Ei,n+i] = (hi + hi)Ei,n+i = 2hiEi,n+i;

• [h(p), Ei,n+j + Ej,n+i] = (hi + hj)Ei,n+j + (hj + hi)Ej,n+i

= (hi + hj)(Ei,n+j + Ej,n+i);

• [h(p), En+i,i] = (−hi − hi)En+i,i = −2hiEn+i,i;

• [h(p), En+i,j + En+j,i] = (−hi − hj)En+i,j + (−hj − hi)Ei,n+j

= −2(hi + hj)(En+i,j + En+j,i).

Hence we can write the eigenspace decomposition of sp2n as

sp2n =
⊕
k∈Z

sp(F2n)k,

where sp(F2n)k = {x ∈ sp2n | [h(p), x] = kx}.
One can easily show that if x ∈ sp(F2n)i and y ∈ sp(F2n)j, then [x, y] ∈
sp(F2n)i+j. So the eigenspace decomposition of ad(h(p)) is a Z-grading of

sp2n.

Remark 4.2.7. Let sp2n = ⊕j∈Zgj be the Z-grading defined by ad(h(p)).

Then e(p) ∈ g2.
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Proof. By definition, e(p) is a sum of elementary endomorphisms Est which

connect boxes with centers with first coordinate hs with boxes with centers

with first coordinate hs + 2 (see figure in Example 4.2.4). Thus, by Proposi-

tion 1.7.6, [h(p), Est] = 2Est. So Est ∈ g2 and also e(p) ∈ g2.

Remark 4.2.8. The nilpotent endomorphism e(p) can be embedded into an

sl2-triple {e(p), h(p), f(p)} containing h(p).

Proof. By Remark 4.2.7, [h(p), e(p)] = 2e(p). Thus, by Claim 2. of the proof

of the Jacobson-Morozov Theorem (Theorem 2.2.5), h(p) ∈ [sp2n, e(p)]. So,

by Lemma 2.2.3, there exists an sl2-triple as requested.

4.3 Classification of good gradings of sp2n

Definition 4.3.1. Let k ∈ sp2n be a diagonal matrix and e be a nilpotent

symplectic endomorphism. Then we say that the pair (k, e) is good if e is

a good element in the Z-grading given by the eigenspace decomposition of

ad(k).

Remark 4.3.2. The diagonal matrix h(p) ∈ sp2n defines the Dynkin grading

corresponding to the symplectic nilpotent endomorphism e(p). Thus, the pair

(h(p), e(p)) is good.

Proof. By Remark 4.2.8, we know that there exists an sl2-triple containing

h(p) and e(p); thus the grading induced by ad(h(p)) is the Dynkin grading,

which is good with good element e(p) by Proposition 3.2.2.

Theorem 4.3.3. Let e ∈ sp2n be a nilpotent element, and p = (p1, . . . , ps)

the partition of the Jordan canonical form of e. Let (p∗1, . . . , p
∗
r) be the dual

partition of p. Then the dimension of the centralizer of e in sp2n is:

r∑
i=1

(p∗i )
2

2
+

1

2
#{j ∈ {1, . . . , s} | pj is odd}.

Proof. See [10].
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A description of the reductive parts of centralizers Cg(e) for a nilpotent

element e in the Lie algebras of classical type can be found in [1]. The

following theorem follows from this description.

Theorem 4.3.4. Let e = e(p) ∈ sp2n be the nilpotent element corresponding

to a partition p, and let c(p) be the dimension of the center of the reductive

part of Csp2n(e). Then:

c(p) = #{even parts of the partition p with multiplicity 2}.

By Theorem 4.3.4, the dimension of the center of the reductive part of

Csp2n(e(p)) is equal to c(p), the number of even parts of the partition p having

multiplicity 2. If c(p) = 0 then, by Corollary 3.3.5, the only good grading of

sp2n with good element e(p) is the Dynkin one. Thus, we may assume from

now on that c(p) > 0.

An explicit description of the center of the reductive part of Csp2n(e(p)) is

given by the following result, that can be found in [3].

Lemma 4.3.5. Let p1, . . . , pc(p) be all distinct even parts of a symplectic

partition p, having multiplicity 2. Define diagonal matrices z(t1, . . . , tc(p)) ∈
sp2n, t1, . . . , tc(p) ∈ F, whose jth diagonal entry is ti if the jth basis vector lies

in a box of SP (p) in the (strictly) upper half-plane in a row corresponding to

the part pi, and is −ti if the jth basis vector lies in the centrally symmetric

box, and all other entries are zero. Then the center of the reductive part of

Csp2n(e(p)) consists of all these matrices.

Example 4.3.6. Consider the partition p = (22) of the number 4. Notice

that, by Theorem 4.3.4, this is the only symplectic partition of the number

4 such that c(p) > 0 (in particular c(p) = 1).

Consider the symplectic endomorphism e(p) associated to the following choice

of the labeling of SP (p).
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whose associated matrix is e(p) =

 0
0 1

1 0

0 0

.

By Lemma 4.3.5 the center of the reductive part of the centralizer of e(p)

consists of all the matrices of the form z(t1) = diag(−t1, t1, t1,−t1). Now we

want to show explicitly that the elements of the center of the reductive part

of the centralizer of e(p) are precisely those of this form.

First of all notice that, by Theorem 4.3.3, dimCsp4(e(p)) = 4. A basis of

Csp4(e(p)) is given by the following diagrams:

where the minus above an arrow connecting the ith and the jth basis vector

indicates that vi 7→ −vj.
So any element of Csp4(e(p)) is of the form:

x =


d 0 b a

0 −d a c

0 0 −d 0

0 0 0 d

 .

We now want to determine f(p) =


0 0

0 a

b 0
0

∈ sp4 such that s =

{e(p), h(p), f(p)} is an sl2-triple, with h(p) = diag(1, 1,−1,−1). So, im-

posing that [e(p), f(p)] = h(p), we get a = b = 1.
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In order to describe Csp4(s) it is enough to see which conditions an element

x ∈ Csp4(e(p)) has to satisfy so that it also belongs to Csp4(f(p)). Hence

x ∈ Csp4(f(p)) if and only if:

0 = [f(p), x] =


0 0 0 0

0 0 0 0

0 −d a c

d 0 b a

−


a b 0 0

c a 0 0

0 −d 0 0

d 0 0 0


from which we get the conditions a = b = c = 0. So an element x belongs to

Csp4(s) if and only if it is of the form

x =


d

−d
−d

d

 .

Notice that such an element also belongs to Z(Csp4(s)) because it is diagonal.

This agrees with the description of Z(Csp4(s)) given by Lemma 4.3.5.

Example 4.3.7. Consider the partition p = (22, 12) of the number 6. Notice

that this is the only symplectic partition of the number 6 such that c(p) > 0

(in particular c(p) = 1) by Theorem 4.3.4.

Consider the symplectic endomorphism e(p) associated to the following choice

of the labeling of SP (p).

whose associated matrix is e(p) =


0

0 1 0

1 0 0

0 0 0

0 0

.

By Lemma 4.3.5 the center of the reductive part of the centralizer of e(p)
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consists of all the matrices of the form z(t1) = diag(−t1, t1, 0, t1,−t1, 0). Now

we want to show explicitly that the elements of the center of the reductive

part of the centralizer of e(p) are precisely those of this form.

First of all notice that, by Theorem 4.3.3, dimCsp4(e(p)) = 11. A basis is

given by the following diagrams:
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Thus any element of Csp6(e(p)) is of the form:

x =



a 0 l e c i

0 −a m c d h

0 0 −b i h f

0 0 0 −a 0 0

0 0 0 0 a 0

0 0 g −l −m b


.

We now want to determine f(p) =


0 0

0 n 0

p 0 0

0 0 0

0

∈ sp6 such that s =

{e(p), h(p), f(p)} is an sl2-triple, with h(p) = diag(1, 1, 0,−1,−1, 0). So,

imposing that [e(p), f(p)] = h(p), we get n = p = 1.

In order to describe Csp6(s) it is enough to see which conditions an element

x ∈ Csp6(e(p)) has to satisfy so that it also belongs to Csp6(f(p)). Hence
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x ∈ Csp6(f(p)) if and only if:

0 = [x, f(p)] =



c e 0 0 0 0

d c 0 0 0 0

h i 0 0 0 0

0 −a 0 0 0 0

a 0 0 0 0 0

−m −l 0 0 0 0


−



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −a m c d h

a 0 l e c i

0 0 0 0 0 0


from which we get the conditions c = d = e = h = i = l = m = 0. So an

element x belongs to Csp6(s) if and only if it is of the form

x =



a 0 0 0 0 0

0 −a 0 0 0 0

0 0 −b 0 0 f

0 0 0 −a 0 0

0 0 0 0 a 0

0 0 g 0 0 b


.

So, imposing that x ∈ Z(Csp6(s)) we get the conditions b = f = g = 0. Thus

a generic element of Z(Csp6(s)) is of the form

a

−a
0

−a
a

0


.

Remark 4.3.8. In the next theorem we want to characterize all the good

Z-gradings with good element e(p). Such gradings are induced by a pair

(h(p) + h, e(p)), where h ∈ sp2n is a diagonal matrix. By Theorem 3.3.4, h

belongs to the center of the reductive part of the centralizer of e(p); thus, by

Lemma 4.3.5, h = z(t1, . . . , tc(p)) for some t1, . . . , tc(p) ∈ F.

Remark 4.3.9. In the same notation as in Remark 4.3.8 notice that, if we

consider the “symplectic pyramid” P̃ obtained by SP (p) by shifting by ti to
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the right the row of length pi in the upper half plane, by ti to the left the

row of length pi in the lower half plane and leaving all the other rows fixed,

then the grading determined by ad(h(p) + h) is the one induced by h(P̃ ).

Recall that (h(p)+h, e(p)) is a good pair if and only if Csp2n(e(p)) is contained

in the non-negative part of the Z-grading given by the eigenspace decompo-

sition of ad(h(p) + z(t1, . . . , tc(p))). But the pyramid P̃ is obtained by SP (p)

moving only the rows of length p1, . . . , pc(p); thus we will need to see when

the endomorphisms of Csp2n(e(p)) connecting rows with at least one of length

pi (i ∈ {1, . . . , c(p)}) are contained in the non-negative part of the Z-grading

given by the eigenspace decomposition of ad(h(p) + z(t1, . . . , tc(p))).

Remark 4.3.10. Let k, h ∈ Z, k > h. consider the following partitions:

1. p1 = ((2k)2);

2. p2 = ((2k)2, 2h);

3. p3 = ((2k)2, (2h+ 1)2).

4. p4 = ((2k)2, (2h)2);

Then:

1. The dimension of the centralizer of the symplectic endomorphism e(p1)

can be obtained by Theorem 4.3.3, and it turns out to be

dimCsp2n(e(p1)) = 4k.

A description can be given by the following diagrams commuting with

e(p1) and describing symplectic endomorphisms because they are lin-

early independent since every such endomorphism f is a sum of ele-

mentary ones, which appear as summands only in f , and in no other

endomorphism.
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Type a)

Type b)

Type c)
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Type d)

Notice that, due to its symplecticity, every endomorphism of Type A)

(resp. Type B)) is uniquely determined by the image of the vector w1

(resp. w2) indicated in the figure in the upper (resp. lower) half plane.

2. The dimension of the centralizer of the symplectic endomorphism e(p2)

can be obtained by Theorem 4.3.3, and it turns out to be

dimCsp2n(e(p2)) = 5h + 4k. Furthermore, Theorem 4.3.3 allows us to

say that dimCsp2n(e((2k)2)) = 4k and dimCsp2n(e((2h))) = h; thus the

number of diagrams commuting with e(p2) that describe symplectic

endomorphisms and link rows of different lengths is

dimCsp2n(e(p2))− dimCsp2n(e((2k)2))− dimCsp2n(e((2h))) = 4h.

A description can be given by the following diagrams, which are linearly

independent for the same reason of 1.
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Type e)

Type f)

Notice that, due to its symplecticity, every endomorphism of Type E)

(resp. Type F)) is uniquely determined by the image of the vector w1

(resp. w2) indicated in figure.

3. The dimension of the centralizer of the symplectic endomorphism e(p3)

can be obtained by Theorem 4.3.3, and it turns out to be

dimCsp2n(e(p3)) = 12h + 4k + 7. Furthermore, Theorem 4.3.3 allows

us to say that dimCsp2n(e((2k)2)) = 4k and dimCsp2n(e((2h + 1)2)) =

4h+3; thus the number of diagrams commuting with e(p3) that describe
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symplectic endomorphisms and link rows of different lengths is

dimCsp2n(e(p3))−dimCsp2n(e((2k)2))−dimCsp2n(e((2h+1)2)) = 8h+4.

A description can be given by the following diagrams, which are linearly

independent for the same reason of 1.

Type g)

Type h)
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Type i)

Type l)

Notice that, due to its symplecticity, every endomorphism of Type G)

(resp. Type H)) is uniquely determined by the image of the vector w1 in

the lower (resp. upper) half plane. Analogously, every endomorphism

of Type I) (resp. Type L)) is uniquely determined by the image of the

vector w2 in the lower (resp. upper) half plane.

4. The dimension of the centralizer of the symplectic endomorphism e(p4)

can be obtained by Theorem 4.3.3, and it turns out to be

dimCsp2n(e(p4)) = 12h + 4k. Furthermore, Theorem 4.3.3 allows us

to say that dimCsp2n(e((2k)2)) = 4k and dimCsp2n(e((2h)2)) = 4h; thus

the number of diagrams commuting with e(p4) that describe symplectic
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endomorphisms and link rows of different lengths is

dimCsp2n(e(p4))− dimCsp2n(e((2k)2))− dimCsp2n(e((2h)2)) = 8h.

The diagrams describing such endomorphisms are of the same form of

the ones commuting with e(p3) (see diagrams of Type G), H), I), L)),

with the only difference that the step r ranges from 0 to 2h− 1.

Theorem 4.3.11. The element H(p) := h(p)+h defines a good Z-grading of

sp2n if and only if h = z(t1, . . . , tc(p)) for some t1, . . . , tc(p) ∈ F (as in Lemma

4.3.5) and one of the following cases holds:

1. all parts of p are even and have multiplicity 2, and either all ti ∈
{−1, 0, 1} or all ti ∈ {1

2
,−1

2
};

2. not all parts of p are even of multiplicity 2, and all ti ∈ {−1, 0, 1}.

We will denote H(p) by H(p; t1, . . . , tc(p)).

These Z-gradings are the same if and only if the ti’s differ by signs. Further-

more, these are all good Z-gradings of sp2n for which e(p) is a good element

(up to conjugation by the centralizer of e(p) in Sp2n).

Proof. Suppose that the pair (H(p), e(p)) is good. First of all notice that,

by Remark 4.3.8, h = z(t1, . . . , tc(p)) for some t1, . . . , tc(p) ∈ F.

1. If all the parts of p are even with multiplicity 2, then ad(H(p)) defines

a Z-grading if and only if all the differences of the diagonal elements of

z(t1, . . . , tc(p)) are integers. But such differences are ±2ti, ±(ti − tj) or

±(ti + tj) = ±(ti − tj + 2tj); thus ad(H(p)) defines a Z-grading if and

only if ti ∈ Z/2 and ti − tj ∈ Z for all i, j = 1, . . . , c(p).

2. If not all the parts of p are even with multiplicity 2, then ad(H(p))

defines a Z-grading if and only if all the differences of the diagonal

elements of z(t1, . . . , tc(p)) are integers. But such differences are ±ti,
±(ti − tj) or ±(ti + tj) = ±(ti − tj + 2tj); thus ad(H(p)) defines a

Z-grading if and only if ti ∈ Z and ti − tj ∈ Z for all i, j = 1, . . . , c(p).



4.3 Classification of good gradings of sp2n 103

Now, consider the “symplectic pyramid” P̃ obtained as in Remark 4.3.9.

Then the grading determined by ad(H(p; t1, . . . , tc(p))) is the one induced by

h(P̃ ).

By Remark 4.3.9, (H(p; t1, . . . , tc(p)), e(p)) is a good pair if and only if the

endomorphisms of Csp2n(e(p)) connecting rows with at least one with length

pi (i ∈ {1, . . . , c(p)}) are contained in the non-negative part of the Z-grading

given by the eigenspace decomposition of ad(H(p; t1, . . . , tc(p))). If ti > 1,

then the diagram of the type of figure B) in Remark 4.3.10 relative to the

two rows of lenght pi with step r = 1 becomes, for example:

If ti < −1, then the diagram of the type of figure A) in Remark 4.3.10 relative

to the two rows of lenght pi with step r = 1 becomes, for example:

So, if |ti| > 1, we can find an element ϕ ∈ Csp2n(e(p)) that belongs to the

negative part of the grading induced by ad(H(p; t1, . . . , tc(p))); indeed the

ending of the arrows in the diagrams above are located strictly to the left of

their source. Hence |ti| ≤ 1. By the conditions previously obtained, the only

cases that can occur are the following:

1. if all the parts of p are even with multiplicity 2, then either all ti ∈
{−1, 0, 1} or all ti ∈ {1

2
,−1

2
};
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2. if not all parts of p are even of multiplicity 2, then all ti ∈ {−1, 0, 1}.

Conversely, suppose h = z(t1, . . . , tc(p)) for some t1, . . . , tc(p) ∈ F and

that either condition 1. or 2. holds. First of all, notice that condition 1.

or 2. implies that the eigenspace decomposition of ad(H(p; t1, . . . , tc(p))) is

a Z-grading. Let sp2n =
⊕
j∈Z

gj be the Z-grading induced by ad(h(p)) and

sp2n =
⊕
j∈Z

g̃j be the Z-grading induced by ad(H(p; t1, . . . , tc(p))). We want

to show that, under conditions 1. or 2., Csp2n(e(p)) ⊆
⊕
j≥0

g̃j. By Remark

4.3.9 we just need to prove that the diagrams described in Remark 4.3.10 are

contained in
⊕
j≥0

g̃j. Furthermore it will be sufficient to prove just that the

diagrams described in Remark 4.3.10 with the smallest step r are contained

in
⊕
j≥0

g̃j (indeed, if this happens to be true, this will hold also for the dia-

grams with bigger step r). Consider i ∈ {1, . . . , c(p)} and let pi = 2k.

If we are in Case 1. of Remark 4.3.10 (i.e., we consider the partition

((2k)2)), then the minimum possible step is r = 1. Such an endomorphism

ϕ can be represented in the following way:

Therefore, since the difference of the coordinates of the columns between the

ending of every row and its source in the diagram is 2, then ϕ ∈ g2 and so

the endomorphism ϕ will belong to g̃2−2ti (see for example the figure below).

But, as |ti| ≤ 1, ϕ ∈ g̃≥0.
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If we are in Case 2. of Remark 4.3.10 (i.e., we consider the partition

((2k)2, 2h) with k > h), then the minimum possible step is r = 0. Such an

endomorphism ϕ can be represented in the following way:

Therefore, since the difference of the coordinates of the columns between the

ending of every row and its source in the diagram is 2, then ϕ ∈ g2(k−h) and

so the endomorphism ϕ will belong to g̃2(k−h)+ti (see for example the figure

below). But, as |ti| ≤ 1 and k > h, ϕ ∈ g̃≥0.

If we are in Case 3. of Remark 4.3.10 (i.e., we consider the partition

((2k)2, (2h + 1)2) with k > h), then the minimum possible step is r = 0.

Such an endomorphism ϕ can be represented in the following way:
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Therefore, since the difference of the coordinates of the columns between the

ending of every row and its source in the diagram is 1, then ϕ ∈ g2(k−h)−1

and so the endomorphism ϕ will belong to g̃2(k−h)−1+ti (see for example the

figure below). But, as |ti| ≤ 1, ϕ ∈ g̃≥0.

If we are in Case 4. of Remark 4.3.10 (i.e., we consider the partition

((2k)2, (2h)2) with k > h), then the minimum possible step is r = 0. Such

an endomorphism ϕ can be represented in the following way:

Therefore, since the difference of the coordinates of the columns between the

ending of every row and its source in the diagram is 2, then ϕ ∈ g2(k−h) and

so the endomorphism ϕ will belong to g̃2(k−h)+ti (see for example the figure

below). But, as |ti| ≤ 1 and k > h, ϕ ∈ g̃≥0.
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Hence, Csp2n(e(p)) ⊆
⊕
j≥0

g̃j. Thus, the pair (H(p; t1, . . . , tc(p)), e(p)) is

good.

Corollary 4.3.12. A nilpotent element e(p) of sp2n is good for at least one

even Z-grading if and only if it is either even (i.e., its Dynkin grading is

even), or it is odd and all even parts of p have multiplicity 2.

Proof. If p is even (i.e., all the parts of p have the same parity), then it is

clear that the differences between the first coordinates of any two boxes in

SP (p) is even, as shown by the picture below.

Thus the Dynkin grading with good element e(p) is even.

Now, suppose that p = (pm1
1 , . . . , pmss ) is odd (i.e., not all pi’s have the same

parity) and all even parts of p have multiplicity 2. Then we are in the case

given by the following figure.
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If we consider the grading given by the eigenspace decomposition of

ad(H(p, 1, . . . , 1)) = ad(h(p) + z(1, . . . , 1)), then it results to be even, as the

figure below underlines.

But by Theorem 4.3.11, the pair (H(p, 1, . . . , 1), e(p)) is good; thus we have

also the second case.

Now, the only case we did not consider is the one when p = (pm1
1 , . . . , pmss )

is odd but not all its even parts have multiplicity 2. In this case we can take

an even pi such that mi 6= 2 and an odd pj, like in the figure below.
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The differences between the first coordinates of two rows with length pi

and pj in SP (p) is clearly odd. Furthermore, since adding z(t1, . . . , tc(p))

to h(p) does not change the position of the rows of length pi and pj in the

“symplectic pyramid” associated to H(p, t1, . . . , tc(p)), we can conclude that

(h(p) + z(t1, . . . , tc(p)), e(p)) is never an even pair.
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