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Sommario

Il calcolo all’ordine fisso non è spesso sufficiente per raggiungere la precisione richie-
sta per via di grandi contributi che possono emergere in particolari configurazioni
cinematiche dello stato finale, rompendo la convergenza dello sviluppo perturbativo.
Per questa ragione sono state sviluppate tecniche in grado di includere questi grandi
contributi a tutti gli ordini perturbativi, almeno in certe regioni cinematiche. In par-
ticolare una di queste tecniche è il soggetto di studio di questa tesi, la risommazione
dei grandi logaritmi di soglia.

Mentre la risommazione dei grandi logaritmi di soglia è ben definita per sezioni
d’urto differenziali in una variabile, le sezioni d’urto differenziali in due variabili,
come per il caso della distribuzione in rapidità, sono recentemente sotto i riflettori,
in fatti al momento esistono due approcci per includere i grandi logaritmi di soglia,
l’approccio Mellin-Mellin e l’approccio Mellin-Fourier.

In questo lavoro è stato fatto uno studio matematico dei due approcci e sono
state messe in luce le principali differenze. In particolare è stato notato che i due
approcci differiscono per termini che sono quadraticamente soppressi quando la mas-
sa dell’oggetto rivelato è vicina all’energia delle particelle incidenti. Questo risultato
è particolarmente interessante perché lascia intendere che la sezione d’urto in due
variabili non abbia o include già termini linearmente soppressi quando si raggiunge
la regione di soglia.
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Introduction

Nowadays the physics of the Standard Model has been deeply probed thanks to suc-
cessful experiments performed at LEP and SLC and Tevatron, and in recent years
at the Large Hadron Collider (LHC), where it was possible to do some of the most
remarkable detections in the field of particle physics. For example, during the LHC
RUN I it has been possible to detect one of the most fundamental bricks of the
Standard Model, the Higgs boson, necessary to explain why the W±, Z bosons, me-
diators of the weak interaction, are massive, and consequently from where the mass
of all the other particles come from. This discovery leads to a better understanding
of the already accepted physics that governs particle interactions described by the
Standard Model, and gives important clues on particles that are predicted by models
which try to go beyond the Standard Model by the introduction of new particles
in order to solve intrinsic problems of the Standard Model; the literature presents
many examples of theories that aim at extending the Standard model, at the price
of predicting the existence of new particles. An important process has taken place
recently: the production of the Higgs boson with a top-antitop quark pair has been
observed. This process is very rare and difficult to detect because it is hidden by
the multitude of decay products. This observation has been possible thanks to the
high energy that the accelerator can reach, 13-14 TeV, and the high precision of the
detector used, that are constantly upgraded.

In this context the theory that more than other is under the attention by theo-
retical particle physicist is quantum chromodynamics (QCD), which is the accepted
quantum field theory that describes strong interactions. QCD has a peculiar intrin-
sic property, the so-called asymptotic freedom, which arises from the non-abelian
nature of the invariance group which defines the theory. In practice, this means that
the coupling constant effectively decreases with increasing energy of the process un-
der consideration. This allows us to use perturbation theory to make predictions for
relevant observables.

The possibility to reach a high precision in the experiments requires very accu-
rate theoretical predictions. This is why much of the theoretical efforts have been
employed to calculate as many perturbative orders as possible for the processes of
interest. For example the cross section for the Drell-Yan process, chosen as the
test process in this work for its experimental importance, has been computed up to
next-to-next-to leading order (NNLO).

Fixed order calculations are often not sufficient to achieve the required precision,
because of large contributions that arise in special configurations of the final-state
kinematics, and spoil the convergence of the perturbative expansion. For this reason,
techniques to include contributions at all orders in perturbation theory, at least
in some particular kinematic region, have been developed, and are by now quite
established. In particular one of these techniques is the subject of study of this

3



Introduction 4

thesis, the resummation of large threshold logarithms.

Let us consider the production process of a heavy, weakly interacting final state,
such as for example a Higgs boson or a lepton-anti lepton pair. The mechanism
of cancellation of soft singularities produces terms in the perturbative coefficients
that become large when the mass of the detected object is close to the energy of the
colliding particles; in fact, such terms grow as powers of the logarithm of 1−M2/E2,
where M is the mass of the final state and E the available energy, with the power
of logs growing with the perturbative order. The peresence of such large logarithms
spoil the perturbative behavior of the series. We are then forced to resum all of these
large logarithmic contributions to obtain reliable prediction from the perturbative
expansion.

It turns out that, because of the energy and momentum conservation constraint,
an all order resummation in the space of physical variables appears not to be possible;
it is instead relatively easy to develop a resummation program in the conjugated
Mellin space, i.e. to resum the Mellin transform of the partonic cross section with
respect to the ratio x = M2/E2, and then go back to the physical space. This
approach, which is adopted in the present work, was pioneered by S. Catani and L.
Trentadue [1] and by G. Sterman [2].

It should be mentioned that a different resummation technique, based on an
effective field theory of QCD usually refer to as SCET (Soft and Collinear Effective
Theory), has also been developed and widely applied. We will not consider further
this approach in this thesis.

Threshold resummation has been long studied and applied to semi-inclusive pro-
cesses, such as the invariant mass distribution of Drell-Yan pairs or the transverse
momentum distribution of massive systems, but only recently it has been applied
to double differential observables, such as invariant mass and rapidity distribu-
tions. The resummation for the double semi-inclusive observables in the literature
is present with two different approaches: the Mellin-Mellin approach [3], and the
Mellin-Fourier approach [4]. The subject of this thesis is a detailed mathematical
comparison between the two approaches. In particular, in ref. [3] a numerical anal-
ysis of the two methods is presented, and interesting differences between the two
approaches are found. The authors explain this difference with the hypothesis that
the two approaches resum different kind of logarithms due to the different variables
used. At the end of this work it will be proposed a different, and more plausible,
origin of this difference.

This work is organized as follows. In Chapter 1 we present a brief history of the
theory of the strong interaction and a brief introduction to quantum chromodynam-
ics, in order to enlighten the particular aspects that make this theory the perfect
candidate to describe the strong interaction. In Chapter 2 we study studied in detail
the Drell-Yan process and we present the explicit calculation of the first perturbative
correction in the case of the invariant mass distribution and the double differential
distribution in terms of the mass invariant and the rapidity. This process has been
chosen for its practical importance; in fact, it is the ground process to study physics
at the high energy scale that can be reached. Furthermore, the production of Drell-
Yan pairs is an extremely clean signal. In Chapter 3 we present a detailed review of
the resummation techniques, following the main steps of ref. [1], showing the prob-
lematics that can arise using this resummation program and a brief discussion on
how to solve it In particular, we will illustrate the so-called Minimal Prescription
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[5], a way to circumvent some difficulties originated by the low-energy behavior of
the theory. In Chapter 4 a detailed study on the two above-mentioned approaches
for the resummation of large logarithms in double semi-inclusive observables is pre-
sented, showing that they are the same approach up tu net-to-next-to-leading-power
terms.

In this work all expressions are written in natural units.
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Chapter 1

Theory of the Strong Interaction

This chapter will introduce the theory that, for its features, has been chosen to
describe strong interactions. The first attempt to find this theory had the target
of explaining the binding nuclear forces between the Proton and the Neutron. Ex-
periments shown that this force is not only very strong, but also acts at very short
distances. Yukawa found a phenomenological way to describe this force choosing as
mediator of the force a scalar massive boson called the Pion. The attempt to find
this new particle and test important aspect of the particles physics like the beta de-
caying and other electroweak phenomena led to build high precise particle detector
able to reveal out short living particles like the wanted Pion (∼ 2.6× 10−8s).
Before the 50s the only known particles were Electron, Muon, Proton, and Neutron,
but after those years the “particle zoo”1 was open and a lot of new particles enter in
the game. The first new particles detected was, clearly, the Pion discovered in 1947
in the studies of cosmic rays but in that year also the Kaon was discovered, it also
discovered in the cosmic rays. Since then many new particles were discovered, but
the multitude of these particles and the fact that some of these are mass excitations
of the lighter particles like the Proton and the Neutron lead to the hypothesis that
these particles can be made of sub-particles and the hadrons are a possible combi-
nation of these.
After the 60s Murray Gell-Mann and others proposed two classification scheme for
some of these particles, one called the “Eightfold Way”, to classify particles like the
Pion, the Kaon (i.e. mesons), the Proton and the Neutron (i.e. 1/2-spin baryons)
and the second called the “Decuplet Way” to classify 3/2-spin baryons. The classi-
fications are showed in Figure 1.1. These classifications were explain better in 1964
introducing the quark model. This model postulated the existence of three elemen-
tary particles with 1/2-spin and fractional electric charge named Up (u), Down (d)
and Strange (s)2 and use them to classify the hadrons in group-theoretical terms
as multiplets of the group SU(3). This model provided all the hadrons observed at
that time. Later on, the development of the electroweak theory suggested that the
quarks have six flavors instead of three, with the relative antiparticles, extending the
quark model. The complete list of the quarks is shown in Table 1.1 with the relative
masses and electric charge. In particular, the discovery of the ∆++ in 1951 and

1Name given to the multitude of particles detected in those years.
2The names of these particles derive from the situation observed at that time and the idea

behind the classification, in fact the two quarks, Up and Down, take the names from the two
components of the isospin and the quark Strange take its name from the “strange” long lifetime
of some particles
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its peculiar properties; the 3/2-spin and the 2e electric charge (e is the elementary
electric charge e = 0.3028

√
~c ), makes the wave function completely symmetric,
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Figure 1.1: The first two schemes are, respectively, the baryon and meson octet, while the
third is the baryon decuplet. On the abscissa there is the third component of the isospin
defined by the difference I3 = [(nu − nū)− (nd − nd̄)]/2 where the n’s are the number of
the quark up, down and their anti-particle. On the ordinate there is the “strangeness”
that take into account the number of strange quark inside the hadron and it is defined as
S = −(ns − ns̄).

|∆++〉 = | u↑ u↑ u↑ 〉. (1.1)

This configuration obviously violates the basic principle of the fermionic quantum
theory, the Pauli exclusion principle, that states that two identical quantum parti-
cle, with half-integer spin, cannot stay in the same state, i.e. cannot have the same
quantum numbers at the same time. To justify the existence of the baryon ∆++

Gell-Mann and others were forced to introduce a new quantum number, today called
the color charge, to give anti-symmetry to that state, in fact, if the quarks have this
new quantum number the state can be written in an anti-symmetric form,



9 Theory of the Strong Interaction 1

|∆++〉 =
1√
6

3∑
ijk=1

εijk| ui↑ uj↑ uk↑ 〉, (1.2)

where εijk is the Levi-Civita tensor (ε123 = 1), that it is obvously anti-symmetric in
the exchange of any color index. It is interesting to note that if one assumes that
the color charge has the SU(3) symmetry than the baryons transform as an SU(3)
singlet, where the quarks are irreducible representation of the group; this means
that the quarks are assembled to have “vanishing” color charge, in the language of
color this means that the hadrons are white. This assumption is very important for
two reason; first, there is the possibility to describe the manifestation of this charge
via the special unitary group SU(3) in a similar fashion of the electroweak theory
where the electric and weak charge are the manifestation of the U(1)⊗SU(2) group,
and the second reason is that the observable states3 are not colored, thus we are not
able to directly measure the color charge. All the information about the color seems
to be confined inside the hadron and to see the effect of this charge it is necessary
to probe it with enough energy to solve the constituents.

The success of the quark model opened the road to find an elementary theory
able to predict this kind of elementary particles, i.e. fermions with fractional electric
charge and a color charge; in addition it must show two peculiar properties of the
strong interaction, the color confinement, that close all the information about the
color charge inside the hadron, in fact, also if we try to separate its constituents from
it, they will acquire enough energy to form new colorless states with other quarks
produced by vacuum excitation; furthermore the asymptotic freedom discovered in
the 1973 by Gross and Wilczek following the suggestion of the Bjorken studies on
the scaling behavior of the structure function of the deep inelastic scattering pro-
cess between an Electron and a nucleon; later we will discuss this property in more
detail. The second property is very important to study high energy phenomena
because it means that at high energies (typically at energies much grater than the
hadronic scale ∼ 200 MeV) the constituent of the hadrons, more generally called
partons, do not interact each other and they are essentially free (not free to leave
that tiny space but anyway free); the “absence” of interaction inside the hadron
permit us to study the strong interaction effect using perturbation theory; but, as
will be shown later, the perturbative correction breaks the scaling behavior and the
contribution at all order of this scale-breaking terms can lead to a great violation
of the asymptotic freedom; this is an impossible situation because the existence of
this property is experimentally proved. The only theory that fits all of these request
is Quantum Chromo-Dynamics, QCD, a non-abelian gauge theory with the SU(3)
symmetry where the strong force is mediated by eight spin-1 mass-less vector bosons
called Gluons.

3There is no mathematical proof that the hadronic states are the only directly observable states,
but we have not been able yet to reveal free quarks. This problem is the confinement of the quark.
Below will be shown this aspect in more detail.
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Quark u d c s t b

Mass (MeV/c2) ∼ 2.3 ∼ 4.8 ∼ 1275 ∼ 95 ∼ 173210 ∼ 4180
e 2/3 -1/3 2/3 -1/3 2/3 -1/3

Table 1.1

1.1 Quantum Chromodynamics

To build up this theory it is necessary to write a lagrangian that show all the sym-
metries asked for the theory. In this case we have, in addition to the obvious Lorentz
covariance, required for any physical system, we take into account the local special
unitary group of symmetry SU(3)4 and the local gauge invariance, which is actually
related to the unitary group. The property of the theory to be gauge invariant is
one of the most important because it is responsible for the renormalizability of the
theory, beyond that it simplifies a lot the problem taken into account.
To take into account the SU(3) symmetry let me introduce a multiplet of three Dirac
spinor:

Ψ(x) =

ψr(x)
ψg(x)
ψb(x)

 , (1.3)

where the subscript represent the three color charges (red, green, blue). The in-
finitesimal action of this group on the multiplet can be write as follow:

Ψ(x) 7→ Ψ′(x) = eigsω
AtAΨ(x) = U(x)Ψ(x) (1.4)

where U(x) satisfy the unitary relation

U−1(x) = e−igsω
AtA = U †(x), (1.5)

and tA, (A = 1, 2, . . . , 8) represent the generator of the group.

A set of generators of the group is made of eight hermitian and traceless square
matrices of rank three (there are eight generator instead of nine because the group is
special, the requirement detU = 1 remove one degree of freedom), named Gell-Mann
matrices:

tA =
1

2
λA, (1.6)

4This symmetry is not a geometrical/spatial symmetry as the Lorentz symmetry but it is an
internal symmetry, thus it does not affect the position of the evaluation of the field, also if this
symmetry is local.
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with

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 , (1.7)

such that,

Tr
[
tAtB

]
=

1

2
δAB. (1.8)

The Gell-Mann matrices were normalized to obtain the 1/2 factor in the above trace
so we will be able to write the lagrangian of the theory with a similar form of the
QED case. From the relation (1.8) follow another important relation of this matri-
ces, that is; ∑

A

tAabt
B
bc =

4

3
δac, (1.9)

or in general ,

∑
A

tAabt
B
cd =

1

2

(
δadδbc −

1

3
δabδcd

)
. (1.10)

This relation are important because usually when we calculate the M matrix ele-
ment in the perturbation theory, i.e. the Feynman diagrams, we mediate over the
initial color and sum over the final color of the quarks involved in the process, fol-
lowing the idea that we don’t have methods to measure the color of the quarks. This
matrices permits to calculate the structure function of the algebra of the group from
the usual relation;

[tA, tB] = ifABCtC , (1.11)

where fABC is real and completely antisymmetric.

f 123 = 1, f 257 = f 147 = f 246 = f 345 =
1

2
,

f 156 = f 367 = −1

2
, f 485 = f 678 =

√
3

2
, (1.12)
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while all the other components are null.
A way to build a gauge invariant lagrangian is to generalize the minimal cou-

pling from the electromagnetic case to this one. I said generalize because in the
electromagnetic case the generator of the group are simply numbers, in fact, they
commute, i.e. the gauge theory is an abelian theory, and the vector potential has
the usual gauge transformation law, Aµ(x) 7→ Aµ(x)− ∂µω(x); in the case of QCD
the generators do not commute as we can see from Eq. (1.11). The generalized min-
imal coupling is reached by setting up a matrix-valued derivative operator Dµ that,
applied to the multiplets Ψ, transform like Ψ itself, thus it is a representation of the
SU(3) group. Following the idea in the QED case the covariant derivative operator is,

Dµ = ∂µ − igsABµ (x)tB, (1.13)

where we have introduced the non-abelian real vector potential. Its transformation
under the SU(3) group is defined by imposing that DµΨ(x) 7→ U(x)(DµΨ(x));

ABµ (x)tB 7→ U(x)
[
ABµ (x)tB

]
U †(x)− i

gs
[∂µU(x)]U †(x), (1.14)

that has a very more complicate form than the abelian case.
Now we are able to write the free lagrangian for the dynamics of the multiplets of
spinors that is completely invariant under the Lorentz transformation and SU(3)
transformation:

LM = Ψ(x)(i /D −M)Ψ(x). (1.15)

To give to the vector potential the role of a dynamical field we need to add to the
above lagrangian a term that describe the dynamics of the potential fields, i.e. terms

proportional to
(
∂µABµ (x)

)2
, and invariant under the action of the group SU(3). The

only valid term to this purpose is the square of the non-abelian field strength anti-
symmetric valued matrix tensor defined by;

FB
µν(x) = ∂µA

B
ν (x)− ∂νABµ (x)− igs[ABµ (x), ABν (x)], (1.16)

that, multiplied by the generator tA, transform under the action of the SU(3) group
like the adjoint representation;

Fµν(x) = FA
µν(x)tA 7→ U(x)FA

µν(x)U †(x) = U(x)
[
FA
µν(x)tA

]
U †(x), (1.17)

in fact, it is usual to say that the gluons live in the adjoint representation of the
SU(3) group while the quarks live in the fundamental represetation. The trace of
the square of Fµν(x) is obviously invariant for the cyclic property of the trace and
the unitary of U(x).

We can now write down the lagrangian used to describe the strong interaction,
that take into account all the symmetries required;
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L = −1

2
Tr [Fµν(x)F µν(x)] + Ψ(x)(i /D −M)Ψ(x). (1.18)

From the above lagrangian we can appreciate a new properties not present in an
abelian gauge theory like QED, the vector bosons field, that from now we will
refer to it with the name of gluons, are self-interacting as we can see from the
definition (1.16) where we have a new term compared with the electrodynamic case,
igs[A

B
µ (x), ABν (x)]; that represent the presence of the self interaction of the gluons

and it breaks the field strength gauge invariance, only its form in the (1.18) is gauge
invariant thanks to the cyclic property of the trace.

Like any other local gauge invariance required to be satisfied by the lagrangian,
it is forbidden to add the mass term for the gluons, like m2AµA

µ, because it is not
gauge invariant, thus the gluons must be massless, like they seems to be. Beside
this the mass term for the quark field it’s still gauge invariant and then admissible.

On the lagrangian (1.18) we can let act discrete operators, the C (charge conjuga-
tion), P (spatial inversion, parity transformation) and T (time reversal) symmetry.
These operators represent three variations that should not affect the theory, i.e. the
theory should be trivially invariant under those transformation, in fact, for exam-
ple, why should a field be different if we observe it reversing the time direction? It
should not be different, but the nature not always work as we aspect, in fact there
can be situation where these symmetries are broken, the most famous one is the
parity violation in the electroweak theory. In the case of QCD, i.e. the lagrangian
in the form (1.18), is well known that the three discrete symmetries are respected;
however it is possible to add a new term in the theory that preserve all the other
required symmetries but breaks both the CP symmetry, the term is,

gsθF
A
µν(x)F̃ µνA(x), (1.19)

where F̃ (x) is the dual of the field strength tensor,

F̃ µνA(x) =
1

2
εµνρσFA

ρσ(x). (1.20)

this is an uncomfortable situation because also if we set the θ parameter in such a
way to be negligible it can still be generated by the CP-violating effects of the weak
interaction. In the case of high energy physics this terms can be simply omitted
because it it is a total divergence, in fact,

FA
µν(x)F̃ µνA(x) = ∂µ

[
2εµνρσABν (x)

(
∂ρA

B
σ (x)− 2

3
gsf

ABCABρ (x)ACσ (x)

)]
; (1.21)

that does not give any contribution in the context of perturbation theory. However
the possibility to put that term in a 4-divergence form does not help in the non-
perturbative region in fact, the topology of the QCD vacuum can be non-trivial and
boundary terms can not be neglected. This is a still open problem called “strong
CP problem”.

The lagrangian (1.18) is not the most general, because, by symmetry, also other
terms like,
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Ψ(x) (DµD
µ)2 Ψ(x),

(
Ψ(x)FµνD

µDνΨ(x)
)3
, (FµνF

µν)4 , (1.22)

are permitted, in fact, they are all invariant under Lorentz and gauge transformation,
but they are not admissible in the theory because they make it non renormalizable,
in fact, by power counting method only the terms with a positive coupling’s mass di-
mension could be permitted. This request can be understood by an easy dimension
analysis. The divergencies can arise in the perturbation terms of a certain object,
for example the propagator, by combination of 1PI (one particle irreducible) loop
diagrams. For a general object with a coupling λ of mass dimension a and divergent
contribution given by only one 1PI loop diagram at a generic order n we can write
the correction to this object in the following way;

∆ = ∆0 + ∆1λ
n

∫ ∞
dl lD−1. (1.23)

The loop contribution gives a divergent contribution only if D > 0, than we can see
that if we call the mass dimension of ∆ and ∆1 respectively δ and δ1 we get the
following equation for D,

D = −an+ (δ − δ1). (1.24)

The dimension δ and δ1 depend only on the process take in consideration, i.e. in the
external leg configuration. From the equation (1.24) it is trivial that if a > 0 we have
a finite number of possible divergent diagram in the perturbation series, otherwise,
if a < 0 there are divergencies at each perturbative order of increasing power; this
situation is far to be practical and the amount of divergencies are not tractable, this
makes the theory non renormalizable. This is not a rigorous mathematical demon-
stration that coupling constant with negative dimension are not renormalizable, this
is a simple example to show the idea behind the power counting techniques. To find
more about this see the book [6], [7].

We are now sure that the theory (1.18) is the most general one that is invariant
under Lorentz transformation, SU(3) gauge symmetry and maybe5 renormalizable.
The last step left to do is its quantization, For our purpose, this means to write
down the Feynman rules for this theory. These rules are a powerful tool to study
the theory in the perturbative way and these, thanks to the path integral formalism,
can be deducted directly from the lagrangian (1.18). In addition they will provide
the propagator of the fields involved in the theory but since the theory is gauge in-
variant we can’t define the gluon propagator, thus we must add to the lagrangian a
“gauge-fixing term” and an associated ghost field to eliminate extra degrees of free-
dom that will arise by gauge-fix lagrangian; for a more detailed explanation on the
ghost field see the reference [8, 9] . The most used gauge-fixing term is the Rξ gauge;

Lgf = − 1

2ξ
(∂µA

µ)2, (1.25)

5The power counting method is just a guide to know if a theory could be renormalizable, because
also if D ≤ 0 there can be logarithm divergencies at all order.
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that is a generalization of the Lorentz gauge; while the associated ghost is,

Lghost = ∂µB
A
Dµ
ACB

C , (1.26)

where BA is a complex scalar field. Now the Feynman rules are quite straightforward
from the lagrangian (1.18) plus the gauge fixing terms. The inverse of propagator of
the various fields, in the momentum space, can be found substituting ∂µ 7→ −ipµ, in
fact, for the three fields we have the following inverse propagator and the respective
propagator:

Quark : − iδab(/p−M) ⇒ i
/p+M

p2 −M2
δab (1.27)

Gluon : iδAB

[
p2gµν −

(
1− 1

ξ

)
pµpν

]
⇒ i

p2

[
−gµν + (1− ξ)p

µpν

p2

]
δAB

(1.28)

Ghost : − iδABp2 ⇒ i

p2
δAB. (1.29)

Finally the expression for the vertex are:

(q q g) − igstAγµ (1.30)

(g g g) − gsfABC [(p− k)µgνρ + (k − l)νgρµ + (l − p)ρgµν ] (1.31)

(where p+ k + l = 0)

(g g g g) − ig2
s [f

FACfFBD(gµνgσρ − gµρgσν)
fFADfFBC(gµνgσρ − gµσgνρ)
fFABfFCD(gµσgνρ − gµρgνσ)] (1.32)

(b b g) gsf
ABCpµ, (1.33)

where the last one expression is for the ghost-ghost-gluon vertex with pµ the ghost
outgoing momenta.

1.2 Asymptotic Freedom

The lagrangian (1.18) seems to be a perfect candidate to describe the strong inter-
action, but beyond the symmetry that the theory can have, experience teaches us
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that the strong interaction have two main features, that are in some way linked to
each other, color confinement and asymptotic freedom. The first one is very difficult
to deal with because it’s a phenomenon that we can observe at “low energy” (at
maximum at the typical hadronic scale) where the theory can’t be treated with the
perturbation theory, this means that to be sure that the lagrangian (1.18) has such
behavior we must find an exact solution that nowadays hasn’t been found. Fortu-
nately the technology is by our side and we are able to “simulate” the dynamics of
the theory, especially at low energy, with very interesting results, in fact, a lot of
simulation has been done to predict the masses of the lightest mesons and baryons
and the accordance with the experimental evidence is stunning, as showed in figure
1.2. This is an indirect proof that we could be on the right track, but a very hard
one. Fortunately the second property, the asymptotic freedom, gives us a great help,
in fact, it states that at high energies, or equivalently at very short distances, the
partons are essentially free. This means that at high energies we are allowed to use
perturbation theory to make predictions. However also the perturbation theory has
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Figure 1.2: In the picture are shown the masses of carious mesons and baryons predicted by
numerical solution of QCD and are compared with the experimental value. The parameter
in the numerical analysis are only the coupling strength and the Strange-quark mass. The
results seems to show a “good” accordance with the experimental value with a magnitude
of deviance of about 11%. This results has been exposed in the reference [10]

its own problems, in fact, usually the perturbative series of some objects, like the
Green function, can asymptotically diverge, the reason that will be clear soon. The
asymptotic divergence is a problem to deal with when we do calculation in high
energy QCD. Another problem of the perturbative series is the presence of the loop
diagrams that can be divergent; but thanks to the renormalizability of the theory we
can redefine (renormalize) the coupling constant and the fields present in the theory
to get a series in power of the new coupling constant with finite terms. Once the
coupling constant has been renormalized it will depend on the ratio of the energy
scale of the process (that we will named M) and another energy scale chosen by
ourselves (that it is usually named µ). This dependence on the scale is called the
“running coupling constant”. The choice of µ must be made to get a ratio M/µ as
near as possible the unity. This request follow from the logarithmic dependence of
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the renormalized coupling constant on the ration of the two energies. To appreciate
the last sentence we can go on following two ways, the first need to calculate some
diagrams to appreciate the fact that the UV divergencies, in this case, i.e. for a
adimensional coupling, appear as logarithms of that ratio (this method may be too
long), otherwise we can use the renormalization group approach that gives us the
energy evolution equation of the coupling constant. We now show this way because
it’s more interesting and efficient. When we regularize the divergencies that appears
in the loop integral we are forced to introduce a parameter, like µ, to control it.
For example the most trivial way is to add a UV cut-off in the integral or, like in
the case of the dimensional regularization, the parameter must be added to preserve
the original dimension of the physical object, because the unphysical dimensions
added in the procedure. The new variable is not physical, so the observable must
not depend on it. Here enters the renormalization procedure, performing a scaling
of the bare quantities6 and adding counterterms to remove the divergencies and
the µ dependence. We can rewrite the physics, or better the perturbative expan-
sion, without divergent terms using the renormalized coupling constant throwing
also the dependence from the unphysical variable in it. The advantage to move the
dependence of µ in the coupling constant is that in the experiment what is actually
measured is the normalized coupling, thus we can fix µ at the same energy at which
the coupling is experimentally known and than do prediction letting the coupling
“run”. To appreciate it it’s enough to see that an observable, that mustn’t depends
on the renormalization scale, satisfy the equation:

µ2 d

dµ2
G(M2/µ2, αs) =

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
G(M2/µ2, αs) = 0. (1.34)

The equation can be solved introducing a new function, the “running coupling”
αs(M

2), that satisfy the following relations:

µ2∂αs(M
2)

∂µ2
= −β(αs(M

2)),
∂αs(M

2)

∂αs
=
β(αs(M

2))

β(αs)
, (1.35)

where β(αs(M
2)) is the famous “beta function” defined as:

β(αs) = µ2∂αs
∂µ2

. (1.36)

The perturbation theory allow us to expand G(M2/µ2, αs) in power of αs, but the
expressions (1.35) teach us that objects proportional to αs(M

2) are solution of the
(1.34); this means that we can rewrite G(M2/µ2, αs) only in terms of the running
coupling constant, G(1, αs(M

2)). This states that the interacting behavior of the
theory depends on the energetic scale we are, thus if we want use perturbation theory
we must be sure that the coupling is small, but now, “small” is connected with the
energy involved. To understand how the coupling constant change with the energy
(how it “runs”) it’s enough to solve:

M2∂αs(M
2)

∂M2
= −β(αs(M

2)). (1.37)

6The bare quantities are non renormalized object, i.e. divergent quantities.
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The solution of this equation is not trivial because we don’t have a finite form for
the beta function, in fact, we are only able to calculate the perturbative coefficient
of the expansion in power of αs(M

2);

β(αs(M
2)) = α2

s(M
2)
∞∑
n=0

βn
[
αs(M

2)
]n
, (1.38)

through the Feynman diagrams. For example the first three coefficient are:

β0 =
33− 2nf

12π
, (1.39)

β1 =
153− 19nf

24π2
, (1.40)

β2 =
77139− 15099nf + 325n2

f

3456π3
, (1.41)

where nf is the number of “activated”7 flavors. The value of this coefficient must
be directly calculated from the diagram. For a detailed explanation see references
[11, 12].

The positivity of the coefficients and the minus sign in the (1.37) are the mark
of the non abelian character of the theory that leads to the asymptotic freedom
property. For example we can easily solve the first order of the (1.37);

M2∂αs(M
2)

∂M2
= −α2

s(M
2)β0 (1.42)

that is,

αs(M
2) =

αs(µ
2)

1 + β0αs(µ2) log(M2/µ2)
, (1.43)

where µ is arbitrarily chosen but it must be in the perturbative region of energy.
Usually it’s chosen as the Z-boson mass and it is used the notation αs(MZ) = αs.
From this expression we can see that the coupling in the limit of very high energy,
i.e. when M2 � µ2, goes to zero, this means that the colored particle are essentially
free, they don’t feel the presence of the other colors. On the other side the coupling
diverge at energy near to;

Λ2 = M2
Z exp

[
− 1

β0αs

]
. (1.44)

This behavior is a rude proof of the color confinement problem, in fact, if we try to
separate two colored particle the energy around each other grows, until it is sufficient
to extract a particle from the vacuum and form a white bound state. In addition

7A flavor is “active” if there is enough energy to produce its mass.
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the perturbative approach tends to fail when we move towards that energy scale,
also before the coupling diverge, in fact, to break down the perturbation theory
it’s enough that the coupling is near to the unity. Fortunately the coupling diverge
very fast and the energy at which the the coupling approaches unity and where it
diverges are very near, in fact, we can see that at the first order;

Λ∞
ΛI

= e
− 1

2β0 ⇒ for nf = 5 Λ∞ = 0.94 ΛI, (1.45)

where Λ∞ is the energy at which the coupling diverge, and ΛI the energy at which
the coupling approaches to unity.

From the equation (1.39), (1.40) and (1.41) we can see that the way the coupling
run depends on the number of flavor activated. The activation of other flavor makes
αs(M

2) not differentiable in the points where the flavors are activated, in addition,
the energy at which the coupling diverges will depend on the number of flavors in-
volved (we can think about it as the number of flavors in an hadrons determine its
dimension), thus each value of nf has its own Λ-energy. For example when we use as
reference energy the Z-boson mass we must use nf = 5, because only the top quark
is not activated. This means that when we perform calculation using the running
constant we must chose the correct one of it based on the energy of the process. Im-
posing the continuity of the coupling through the activation of other quarks masses
we can get the following relation that link the energy limit λ at different number of
flavor, this relation are true for the one loop approximation, i.e. the lowest order of
β(αs):

nf = 5↔ 6; Λ6 = Λ5

(
Λ5

mt

) 2
21

Λ5 = Λ6

(
mt

Λ6

) 2
23

, (1.46)

nf = 4↔ 5; Λ5 = Λ4

(
Λ4

mb

) 2
23

Λ4 = Λ5

(
mb

Λ5

) 2
25

, (1.47)

nf = 3↔ 4; Λ4 = Λ3

(
Λ3

mc

) 2
25

Λ3 = Λ4

(
mc

Λ4

) 2
27

. (1.48)

At the moment is available also the exact solution of the (1.37) up to the fifth
order. For example the two loop solution of the (1.37) can be found by solving an
implicit equation;

1

αs(M2)
− 1

αs
+
β1

β0

log

(
αs(M

2)

1 + β1

β0
αs(M2)

)
− β1

β0

log

(
αs

1 + β1

β0
αs

)
= β0 log

M2

M2
Z

, (1.49)

that can be numerically solved at any desired accuracy or, at this level, it is still
possible to give an approximated solution to the equation (1.49), that is;
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αs(M
2) =

αs

1 + β0αs log M2

M2
Z

1−
β1

β0
αs log

(
1 + β0αs log M2

M2
Z

)
1 + β0αs log M2

M2
Z

 . (1.50)

We can use this expression (just because it’s more accurate than the (1.43)) to give
an estimation of the energy Λ, at which the coupling diverge. Take MZ = 91, 19
GeV and αs(M

2
Z) = 0.1184. The energy limit, at the second order is given by

Λ = MZ exp

{
− 1

2β0αs
− β1

2β2
0

log
αs

1 + β1

β0
αs

}
, (1.51)

that gives Λ = 180 MeV, a very low energy for the subnuclear physics in fact it is
the energy scale of the lighter mesons. This means that we can effectively try to
study what happen inside an hadron with the help of the perturbation theory.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
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Figure 1.3: We can see the running of the coupling αS from a summary of measurements of
it as a function of the respective energy scale Q. The measurements show good accordance
with the theoretical value, moreover the two little variations are due to the change of the
number of flavor involved and they are situated at the value of the quark charm mass
(∼1.29 GeV) and the quark bottom mass (∼ 4.20 GeV). The plot is from the PDG [13]

1.3 Beyond the Perturbative Expansion

The new definition of the coupling constant permits us to rewrite physical quantity
in term of it. For example, in the high energy regime we can use perturbation theory
and express physical quantity as a power series of αs(M

2);

G(αs(M
2);µ) = αs(M

2)G1 + α2
s(M

2)G2 + . . . (1.52)
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Thus αs(M
2) tells us how G (αs(M

2);µ) varies with the energy, we can make this de-
pendence explicitly using, for simplicity, the (1.43), that since |β0αs(µ

2) logM2/µ2| <
1, it can be expanded as a geometrical series. The requirement at this level is valid
up to some hundred TeV,

β0αs(M
2
Z) log

M2

M2
Z

= 1 ⇒ M = MZ exp

{
1

2β0αs(M2
Z)

}
M ' 200TeV. (1.53)

Anyway since what matter is not only the value of αs(µ
2) but also the ratio of

M2/µ2 in the logarithm, if we change the scale µ2 we can still fall in the region of
convergence of the geometric series. We can write any physical quantity as function
of the running coupling and thanks to the perturbation theory it can be written as a
power series of the coupling. Studying perturbatively a preocess we can understand
a lot about the theory in a wide range of energies but anyway limited. A way to
get more information from the theory going away from the perturbative region is
necessary but not easy. The main problem are the divergences that arise from the
theory, like the well known Landau pole. For example expand αS(M2) at the first
order,

αs(M
2) = αs(µ

2)

(
1− β0αs(µ

2) log
M2

µs
+ . . .

)
, (1.54)

then G(αs(M
2);µ) can be written as;

G(αs(M
2);µ) = G1αs(µ

2)
∞∑
n=0

(
−αs(µ2)β0 log

M2

µ2

)n
+ . . . (1.55)

We can understand the nature of G(αs(M
2);µ) more from the running coupling

than the function itself; it is then important to get a well understanding of the
running coupling. If we want to push G (αs(M

2);µ) towards the Landau pole for
example we can see that G (αs(M

2);µ) diverge because αs(M
2) diverge, but at the

same time the terms of the perturbative series are finite; the perturbative series is
an asymptotic one and can be approximated to a convergent series that does not
diverge at the energy near the Landau pole . In other words the usual perturbation
expansion holds only inside the hadron, this means that when we expand a physical
quantity in terms of the renormalized coupling constant, we can not describe its
behavior further and further away from the perturbative region; going on with the
perturbative series it is possible to fall in the non perturbative region, where the
series badly diverge. Thus if we want to have a finite expression for a physical
quantity we must stop the series at the right point to be finite and such that it can
still be predictive for the theory. This is not an obvious work to do, because we
must find an expression that behaves like (1.52) in the perturbative region, but it
is finite away from it. An analysis of this situation has been done by ’t Hooft [14];
here I report the crucial steps.

Our aim is to find a finite expression for the (1.52) also away from the perturba-
tive region. Since physical quantity can be expressed in terms of Green functions, the
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two point Green function will be taken as example; in addition because β(αs(M
2))

is an infinite series we truncate the series a the second perturbative order then by
now αs(M

2) will be understood as the solution of the;

M2∂αs(M
2)

∂M2
= −β0α

2
s(M

2)− β1α
3
s(M

2), (1.56)

that is well defined.
In terms of this coupling the Callan-Symanzik equation for the two point green

function reads;(
M2 ∂

∂M2
+ β

(
αs
(
M2
)) ∂

∂αs(M2)
+ γ

(
αs
(
M2
)))

G
(
k2,M2, αs

(
M2
))

= 0,

(1.57)

where γ(αs(M
2)) is the mass anomalous dimension and k2 is the mass of the prop-

agating particle, unlike the (1.34) in this expression has been introduced also the
mass anomalous dimension γ(αs(M

2)) to be more general. The first two member
of the equation generate a vector field; if we choose to move the green function on
that flow, the above equation can be rewritten as follows,

d log G

dαs(M2)

(
k2,M2, αs

(
M2
))

= −γ (αs (M2))

β (αs (M2))

=
z0

α2
s(M

2)
+

z1

αs(M2)
+ z2 + . . . (1.58)

The anomalous dimension is still an infinite series, but the finiteness of the truncated
beta function permits us to write it down in a Laurent-series form. The differential
equation (1.58) doesn’t depend on k2, thus we can factorize it. The choice of the
curve over which we integrate the differential equation will introduce the scale de-
pendence µ2, also this contribution is put in the factorized part; than it is possible
to rewrite the green function as:

G
(
k2,M2, αs

(
M2
))

= Z(αs(M
2))G(k2/µ2), (1.59)

where the green function’s physical dimension force it to depend on the ration k2/µ2.
The solution to the equation (1.58) is given by;

G
(
k2,M2, αs

(
M2
))

= G(k2/µ2) exp

{
− z0

αs(M2)
− z1 logαs(M

2)− z2αs(M
2)− . . .

}
;

(1.60)

the coefficients z0 and z1 are the only interesting terms because in the high energy
limit, when αs(M

2) → 0, they give a contribution different from zero, while the
other terms can be absorbed in the coefficients of the perturbative series. This is a
tentative to resum the infinite series of G (k2,M2, αs (M2)) using only a truncated
beta function. Let’s now see what tell us this solution; in a compact form reads,

GR(k2/M2, αs) = αz1s e
− z0
αs G(k2/µ2), (1.61)
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where has been used αs = αs(M
2) to simplify the notation and R stay for “re-

summed” green function. It is important to study the analytical behavior of these
objects to understand if and how analytical continuation can be used in order to ex-
tend the function domain of convergence. Analytic functions are strongly dominated
by their poles and only knowing that we can have a lot of information about the
character of the function, a clear knowledge of the singularity of the (1.61) is needed.
More precisely, how the coupling affect the observable is what to look for. The first
information that we can get form (1.61) is the a branch-cut of the negative real axes
due to the term αz1s , this is not a bad thing because the coupling is positive and the
branch-cut can be bypassed on the Riemann surface. Other information are hidden
inside G(k2/µ2). To understand the effect of these singularities it’s convenient to
write the ratio k2/µ2 using the solution of the (1.56) neglecting, for simplicity, the
term proportional to β1, than we have;

x = log
k2

µ2
=

1

αs
+ β0 log

k2

M2
, (1.62)

as argument of G(x). To study the analytic structure of G(x) assumes x complex,
than, from experience, it is known that the green function has a pole when the
particle is on-shell, than, if k2 is assumed to be complex, the singularity in the x
complex plane is situated in,

x =
1

αs
+ β0 log

|k|2
M2

+ 2πβ0in, (1.63)

where n ∈ Z. This mean that the singularity lies all on the real positive axis. These
singularities, from the point of view of a complex coupling αs, give a problematic
situation, in fact, supposing that αs is complex the on-shell divergence occur when;

αs =
Re[αs]− 2πiβ0n

Re2[αs] + (2πβ0n)2
, (1.64)

that means that all the on-shell singularities that arise from the multi-valued com-
plex logarithm condensate in the region where αs → 0. This accumulation of di-
vergencies in the asymptotic freedom region is the worst situation to have; analytic
continuation will never work in this situation. A stronger method to get a finite
result for resummed divergent series must be found. A possible solution is to use
well defined resummation techniques for asymptotic series, like the Borel summa-
tion. This method states that the resummed green function must have a form like,

GR(k2, αs) =

∫ ∞
0

dz F (z)e−
z2

αs , (1.65)

where F (z) is,

F (x) = a0δ(z) +
∞∑
n=0

zn

n!
an+1. (1.66)

The advantage to use this method is that F (z) converges much faster than G(k2, αs)
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and it may have a very well defined radius of convergence. Than if F (z) can be
analytically continued to all real positive z and the integral converge, not necessarily
for every αs, than we can have a finite form for the resummed green function. Also
this method fails to give a finite solution for the resummed green function, by the
way, it fail “better” than the previous one, let’s see how it work and why it fails.

Take for example the correlation function of the vacuum,

Z0[φ] =

∫
Dφ e−S[φ], (1.67)

that is the green function of the vacuum, where S[φ] is the action of the theory in
its euclidean formulation, and Dφ is the usual infinite dimensional integration of the
path integral approach. To simplify the following step it is useful to scale the field
to get:

Z0[φ′] =

∫
Dφ′ e−

S[φ′]
αs . (1.68)

To write it in terms of the Borel sum, the function F (z) has the following form;

F (z) =

∫
Dφ′ δ(z − S[φ′]) =

∑
i

∣∣∣∣δS[φ]

δφ

∣∣∣∣−1

φi(z)

, (1.69)

where φi(z) is the i-th solution of S[φ] = z. All the singular structure of F (z) is
encoded in the equation of motion, i.e. when δS[φ]/δφ = 0, in addition if z = S

[
φ
]

such that φ satisfy the equation of motion, the (1.69) can be expanded around z to
get;

δS[φ]

δφ
→

√
2
δ2S[φ]

δφ2

∣∣∣
φ

(z − z), (1.70)

thus F (z) is not only singular but it also has a branch cut towards the negative
real axes if φ is a minimum of the action, or towards the positive real axes is φ
is a maximum of the action. This kind of singularities are called instantons which
physics is well known and there are much ways to handle it, so they are not a prob-
lem. In particular the case of QCD has singularity among the real positive axes, but
anyway this kind of singularities are well understood and procedure to find a finite
result are possible. A worst situation arise for other kind of singularities due to the
procedure of renormalization, in fact, the divergent contribution of loop integral has
the following form,

αsC
n

∫
d4k

k2a
(log k2)n, (1.71)

where the exponent a depends on what is observed, i.e. the process studied, and
it is at least three of greater; to obtain a not UV divergent integral; and C should
be proportional to the first non-trivial β(αs) coefficient. A general solution of the
integral is proportional to

(a− 2)−n−1Cnn!, (1.72)
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that means that the green function can be written as,

G(αs) '
∑ (gsC)n

(a− 2)−n−1
n! (1.73)

and, consequently the F (z), in the limit of high n,

F (z) '
∑(

zC

a− 2

)n
, (1.74)

it is obviously divergent in the case that all coefficient are all equal 1, i.e. there are
singularity in

z =
a− 2

C
. (1.75)

In the case of an asymptotic freedom theory, like QCD, where C is negative, this
singularity are on the real negative axes and does not create any problem until
the region of interest is the real positive one. Anyway in QCD there could be IR
singularities that are take into account for value of a smaller than three, projecting
the singularities on the real positive axes opening a peculiar problem for the QCD
because unlike to the UV singularities these are not well understood and a safe
treatment is developed. A better understanding of the IR divergencies is needed.

1.4 Parton Model

The theory exposed above is not enough to describe real events because it’s not
still possible to control free quarks in collision experiments. Since there is only the
possibility to let collide hadrons, QCD seems to be useless. Anyway in high energy
experiment it’s possible to reach energy high enough to penetrate the hadron and
the hard collision can be figured to happen through a parton and another external
particle; in the case of hadron-hadron collision, between a parton from each hadron,
breaking the stable initial structure and producing a cluster of new hadrons in the
final state. To get information from the multitude of hadrons generated in the final
state is very hard indeed it’s more wise to be inclusive over all hadronic final state
and take information from other observables, for example, in the DIS the informa-
tion needed are carried by the scattered electron, in the Drell-Yan process by the
final state lepton pair and in the annihilation of leptons is used the angle of jet
productions, but not the component of the jets itself. The procedure to describe the
collision between with hadrons like a collision between partons can be applied only
if the internal hadron’s characteristic time is much smaller than the time of the hard
collision; this is required to get detailed information on the internal structure of the
hadron, it’s like to take a picture of it. The tentative to study a process in such a
way is the so called “naive parton model”. It states that an hadron is composed
by partons (quarks and gluons) that carries a fraction of the hadron’s momentum,
everyone directed in the hadron’s direction, with zero transverse momentum (this
assumption it’s obviously false, indeed the real situation is more near to a transverse
component with a gaussian distribution peaked around zero) and the information
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on distribution inside of it are in the “parton distribution function” (PDF); if x is
the fraction of the hadronic momentum carried by a parton, f(x) tell us the prob-
ability that the parton has a momentum xP , where P is the hadronic momentum.
The PDF is specific for every hadron, i.e. they does not depend on the process
taken in consideration; it is only necessary to measure it since it is still not possible
to obtain it from from the elementary theory, and use the data to make prediction
with the theory. In addition the conservation of the total hadronic momentum holds,∫ 1

0

dx
∑
i

xfi(x) = 1, (1.76)

where i runs over the partons flavor. In this sense the differential cross section for
this process can be written as,

dσ(p) =
∑
i

∫ 1

0

dz fi(z)dσ̂(zp). (1.77)

An important consequence of this model is that it is valid only at very high energies
because if the parton carries hadron’s momentum fraction means that,

p̂ = xp ⇒ m̂2 = x2m2. (1.78)

where ·̂ indicate partonic variables. The second relation means that the mass on
the parton, an elementary particle, is not constant; it depends on the fraction of
energy carried by the parton, this has no sense, but in the limit where the mass
can be neglected the equality holds and the model can be applied, furthermore
this assumption is in accordance with the request that the hadronic characteristic
internal time is negligible compared to the time of interaction indeed if the mass
is negligible the characteristic partonic time is very dilated and we can consider
the partons as frozen during the interaction, then it is possible to go back to the x
variable after the detection.

Luckily this model can be approximately derived from QCD. To show it, it is
more convenient to take into account the DIS, where an hadron is probed by an
electron. Consider the following process,

e−(k) +H(p)→ e−(k′) +X(p′), (1.79)

where e− is an electron, H the initial hadron and X the final cluster of hadrons;
through the exchange of a virtual photon with momentum Qµ = pµ − p′µ, and we
defines,

x = − Q2

2pQ
, y =

pQ

pk
, s = (p+ k)2 = −Q

2

xy
, (1.80)

where all the mass are neglected except for the hadronic final state. The y variable
varies in the region 0 ≤ y ≤ 1 while x is limited by the positiveness of the final
hadronic invariant mass,

M2
X = (p+ q)2 = Q2 + 2pQ = −Q2 1− x

x
≥ 0, (1.81)
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than 0 ≤ x ≤ 1. The electron it is used to probe the internal structure of the
hadron, i.e. to define the structure function. The differential cross section for this
process can be written separating the leptonic part from the hadronic ones, i.e.

σ ∝ LµνH
µν , (1.82)

where Lµν is the leptonic tensor and Hµν the hadronic one. The leptonic tensor it
is completely determined by QED and its form is well known,

Lµν = 2

(
2kµkν + kµQν + kνQµ + gµν

Q2

2

)
; (1.83)

the hadronic tensor is instead completely unknown, but some informations can be
extrapolated from it. Inside the hadronic tensor there are all the information on
how the electromagnetic field interact with it; these can be understood writing the
tensor in a more convenient form taking advantage of the electromagnetic current
conservation (QµH

µν = QνH
µν = 0) and the symmetry in the exchange of the ten-

sorial indices. Then the hadronic tensor that satisfy these two requirements can be
written as;

Hµν(p,Q) =

(
gµν − QµQν

Q2

)
H1(x,Q2) +

(
pµ +

1

2x
Qν

)(
pν +

1

2x
Qµ

)
H2(x,Q2),

(1.84)

then the differential cross section reads,

dσ =
1

2s
Lµν(k, k

′)Hµν(p,Q)dΦX =
4πα2

Q4

[
y2H1(x,Q2) +

1− y
x

H2(x,Q2)

]
dQ2dx

=
4πα2

Q4
F (x, y,Q2)dQ2dx. (1.85)

The phase space can be easily written in terms of Q2 and x using the relation (1.80)
and setting the reference frame as the hadronic center of mass frame. Consider now
the partonic sub-process:

e−(k) + q(p̂)→ e−(k′) + q(p̂′), (1.86)

where q(·) is a quark that carry a momentum p̂ = zp. The differential cross section
for this process is similar to (1.85) with the difference that in this case the functions
Hi(x,Q

2) are completely known because the quark does not have an internal struc-
ture, they are point like object, and are completely determined from QCD; thus the
partonic tensor, “dual” of the hadronic tensor, is;
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Ĥµν(p̂, Q) =
e2
q

8π

∫
d3p̂′

(2π)32p̂′0
(2π)4δ(4)(p̂+Q− p̂′)

∑
pol

ū(p̂′)γµu(p̂)ū(p̂)γµu(p̂′)

= e2
qδ(1− x̂)

[
−1

2

(
gµν − QµQν

Q2

)
+

2x̂

Q2

(
p̂µ +

1

2x̂
Qµ

)(
p̂ν +

1

2x̂
Qν

)]
,

(1.87)

where x̂ = Q2/2p̂Q. The differential partonic cross section thus reads;

dσ̂ =
4πα2

Q4
Lµν(k, k

′)Ĥµν(p̂, Q)
y2

2Q2
dQ2dx̂. (1.88)

The two cross section are linked through the parton model formula (1.77), than it
is possible to link Hµν to Ĥµν

Hµν(p,Q) =
∑
q

∫ 1

x

dz

z
fq(z)Ĥµν(zp,Q), (1.89)

where the sum is done over all the quark flavor activated in the process. The lower
extreme of integration is constrained by the relation,

(zp+Q)2 ≥ 0 ⇒ z ≥ − Q2

2pQ
= x. (1.90)

Putting the (1.84) and (1.87) in the (1.89), is it possible to write a relation for the
Hi(x,Q

2), indeed,

H1(x,Q2) =
1

2

∑
q

e2
i fq(x), (1.91)

H2(x,Q2) =
∑
q

e2
ixfq(x). (1.92)

The structure function of the hadron is completely determined by the PDF. Further-
more the relations (1.91) and (1.92) prove the Callan-Gross relation for a 1/2-spin
particle. The Callan-Gross relation states that the ratio between the longitudinal
and the transversal cross section is:

σL
σT

= 1− F2(x,Q2)

2xF1(x,Q2)
, (1.93)

where Fi(x,Q
2) is the structure function of the studied object. A null ratio means

that the longitudinal and transversal part are not linked and as consequence, that
the object is a 1/2-spin particle. Indeed the relations (1.91) and (1.92) produce a
null ratio;

H2(x,Q2)− 2xH1(x,Q2) = 0. (1.94)

This is a proof that the constituent of an hadron are 1/2-spin particles; this is not
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exactly true because there is a sea of virtual particles, antiparticles and gluons that
not alter the overall characteristic of the hadron, in fact, the Callan-Gross relation
fails at low x.

With this model it is still possible to do prediction using QCD, also if in the
process appear only hadrons. An important consequence of the parton model is
the scaling behavior, also known as the Bjorken scaling. It is a direct proof that
the partons, inside the hadron, are essentially free, in fact, the structure functions
(1.91) and (1.92) don’t depend on Q2, i.e. the internal structure is the same at
each energy it is observed, it only depends on adimensional quantities. This is the
most important property of this model. Anyway this is true only for the leading
order of the QCD perturbative expansion, the other terms will break the scaling
because they will introduce soft and collinear singularities; the tentative to remove
it introduce dependence on the energy scale. Let’s see how this dependence arise.

Defining the Born cross section for the DIS, where the initial quark has momen-
tum p̂;

Ĥµν
(0)(p̂, Q) =

1

2
Mµ(p̂) /̂pMν

(p̂), (1.95)

where C is a constant specific for the process. Than consider an initial state gluon
emission where the emitted gluon has momentum l. Since we are interested to the
infrared and collinear singularities it is convenient to write the gluon momentum
using the Sudakov parametrization;

lµ = (1− x)p̂µ + lµT + ξηµ, (1.96)

where η is an arbitrary longitudinal (ηp̂ = 1) vector with null mass. Choose as
reference frame the c.o.m. along the z axes, such that,

p̂ = p̂(1, 0, 0, 1), η =
1

2p̂
(1, 0, 0,−1), lT = (0,~lT , 0), (1.97)

as consequence it is possible to define ξ,

ξ =
|l2T |

2(1− x)
, (1.98)

that goes to zero as |l2T | does. The terms proportional to ξ can be neglected as long
as only the divergent part is required.

The matrix element for the initial state emission with the above parametrization
of the emitted gluon momenta is;

gsMµ(p̂− l) /̂p− /l
(p̂− l)2

γµu(p̂)ερ(l)

= gsMµ(p̂− l)2xlµT + (1− x)/lTγµ
|lT |2

γµu(p̂)εµ(l), (1.99)

where the equation of motion (lµεµ(l) = 0, /̂pu(p̂) = 0) has been used. The phase
space of the outgoing gluon has an important property, it is divergent itself in the
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soft region, in fact it can be written,

d2l

(2π)32|l| =
d2lT

2(2π)3

dx

(1− x)
. (1.100)

It is interesting to note that in the matrix element there isn’t trace of the soft
singularity, it arises only in the phase space, this suggest that to understand this
kind of divergence a detailed structure of the phase space at any order is needed,
but, cause the momentum conservation, the structure of it is not trivial.

The square matrix element of the gluon emission mediated over the polarization
than is;

Ĥµν
R (p̂, Q, |lT |2) = g2

s

1

|lT |2
(1 + x2)Mµ(p̂− l) /̂pMν

(p̂− l), (1.101)

in the limit of soft gluon emission the argument of the matrix element can be written
as xp̂, in fact, p̂− l = xp̂− l⊥ − ξη ≈ xp̂, than the cross section reads,

Ĥµν
R (p̂, Q) =

2αs
3π

∫
dl2T
l2T

dx

x

1 + x2

1− x Ĥ
µν
(0)(xp̂, Q), (1.102)

that present soft x → 1 and collinear |l⊥|2 → 0 divergencies. At this order must
take into account also the virtual emission that summed with the (1.102) gives the
total first order correction for the real emission,

Ĥµν
(1)(p̂, Q) =

2αs
3π

∫
dl2T
l2T

dx

x

1 + x2

1− x [Ĥµν
(0)(xp̂, Q)− Ĥµν

(0)(p̂, Q)]. (1.103)

It is clear that virtual contribution cancels the divergence at x = 1 while the collinear
one it’s still in. This not happen for example in process of e+e− annihilation where
the hadrons are present only in the final state; in this case the gluon emission in
the final state factorize a Born cross section that depends on p̂ instead of zp̂, this
remove the entire divergent term and a complete cancellation of the infrared and
collinear divergencies happen.

The presence of divergencies seems to break the parton model but it do not scare
us because in quantum field theory is usual to find physical object that present
divergent terms. This situation can be arranged by redefining quantities that must
be measured, like in the case of the running coupling constant, to get a finite result;
we can do the same procedure also in the parton model redefining the PDFs, that are
not predicted by any theory, because we can only use it through data interpolation,
then we consider that the real PDF that is measured is the redefined one.

When the gluon is emitted it is still inside the hadron; this means that, because
the confinement, the energy of the gluon can not be too small, thus it is reasonable
to put a lower cut off in the transverse momentum integration of order Λ, in such a
way the integration produce a logarithmic dependence on the energy scale. In this
context is useful to introduce the plus distribution (for more detail on the ·+ see
Appendix B), and define the so called Altarelli-Parisi splitting function:

Pqq(x) =
4

3

[
1 + x2

1− x

]
+

, (1.104)
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that is a universal function of a pure quark initial state; moreover, in order to lighten
the notation, it is convenient to express the results through the convolution product;

f(x) = (f1 ⊗ f2 ⊗ · · · ⊗ fn) (x) =

=

∫
dx1dx2 . . . dxn f1(x1)f2(x2) . . . fn(xn)δ(x− x1x2 . . . xn), (1.105)

for which the following properties are true:

(I⊗ f)(x) = f(x), (1.106)

(f1 ⊗ f2)(x) = (f2 ⊗ f1)(x) (1.107)

((f1 ⊗ f2)⊗ f3)(x) = (f1 ⊗ (f2 ⊗ f3))(x) = (f1 ⊗ f2 ⊗ f3)(x) (1.108)

then the complete form for next to leading order approximation to the partonic
tensor, using the notation (1.104) and (1.105) is:

Ĥµν(p̂, Q) =

(
I +

αs
2π
Pqq log

Q2

µ2

)
⊗
(
I +

αs
2π
Pqq log

µ2

Λ2

)
⊗ Ĥµν

(0)(p̂, Q), (1.109)

where the logarithm has been separated introducing an arbitrary scale µ and the
terms of order O(α2

s) has been neglected. With this formalism can be written the
hadronic tensor (1.89),

Hµν(p,Q) =
∑
q

fq ⊗ Ĥµν(p,Q)

=
∑
q

fq ⊗
(
I +

αs
2π
Pqq log

µ2

Λ2

)
⊗ Ĥµν

(0)(p,Q)⊗
(
I +

αs
2π
Pqq log

Q2

µ2

)
=
∑
q

fq(µ
2)⊗ Ĥµν(p,Q2/µ2), (1.110)

where,

fq
(
µ2
)

= fq ⊗
(
I +

αs
2π
Pqq log

µ2

Λ2

)
, (1.111)

Ĥµν
(
p,Q2/µ2

)
= Ĥµν

(0)(p,Q)⊗
(
I +

αs
2π
Pqq log

Q2

µ2

)
, (1.112)

where the PDF and the partonic tensor have been redefined acquiring the depen-
dence on the arbitrary scale µ. This is the same consequence that we have in the
case of the ultraviolet divergencies, removed redefining the coupling constant and
make it acquire a dependence on arbitrary energy scale. In the form (1.110) the
parton model is known as the QCD-improved parton model, the possibility to use
perturbation theory and the parton model together is open. The logarithm has been
separated in that way to absorb the collinear divergence in the PDFs. To remove
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the divergence has been used a low energy cut-off Λ, it can be interpreted with the
Heisenberg indetermination principle to say that in the PDF are hidden contribu-
tions from something happened long before the interaction, when the hadron were
a free moving body. The choice to put the dependence on the low energy cut-off in
the PDFs have sense since the PDFs are universal functions and that describe an
intrinsic property of the hadron. Furthermore the large contribution from log µ2/Λ2

it is no longer a problem because it is impossible to give a precise mathematical form
to this functions then, as already said, they con only be used from the interpolation
of experimental data. The partonic tensor, instead, take into account only what
happen at “short distances”, thus chosen µ2 sufficiently near to Q2, to do not make
large contribution appear, the process can be studied via perturbation theory. The
scale µ2 introduced here is not the same the one introduced in the renormalization
procedure, this one is called “factorization scale” and it’s usually indicated with µ2

F .

Can be shown, through not trivial step [15] that (1.110) is valid at all order in
perturbation theory; this result is called the “factorization theorem” and the direct
calculation of perturbative orders can be done as an alternative proof to the theorem.

Also if the PDFs are not theoretically calculable their scale dependence can still
be found, in fact, Hµν(p,Q) is independent of µ because its product with the lep-
tonic (scale independent) tensor is proportional to the hadronic (observable) cross
section; then it is possible to write:

µ2 ∂

∂µ2
Hµν(p,Q) = 0 ⇒

[
µ2 ∂

∂µ2
fq(µ

2)

]
⊗Ĥµν(p, µ2)+fq(µ

2)⊗
[
µ2 ∂

∂µ2
Ĥ(p, µ2)

]
= 0

(1.113)

then using the equation (1.112) at the order αs the second relation in (1.113) can
be written as:

µ2 ∂

∂µ2
fq(µ

2) =
αs(µ

2)

2π
fq(µ

2)⊗ Pqq, (1.114)

since the hard process is arbitrary. The equation(1.114) in its extended form is:

µ2 ∂

∂µ2
fq(z, µ

2) =
αs
2π

∫ 1

z

dx

x
Pqq

(z
x

)
fq(x, µ

2), (1.115)

known as the GLAP (Gribov-Lipatov-Altarelli-Parisi) equation. In this form the
GLAP equation is valid only at the first order in perturbation theory and for pro-
cess where are involved initial quark state and the emission of a gluon. A more
detailed derivation of the GLAP equation shows that the splitting functions can be
written as a power series in αs(µ

2), where a the first order it is valid the (1.115).
The general form of the GLAP equation, taking in consideration also all possible
splitting situation is:

µ2 ∂

∂µ2
fi(z, µ

2) =

∫ 1

z

dx

x

∑
j

Pij

(z
x
, αs(µ

2)
)
fj(x, µ

2), (1.116)

where the indices i and j run over the partonic flavor and,
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Pij
(
x, αs(µ

2)
)

=
αs(µ

2)

2π
Pij(x) +

(
αs(µ

2)

2π

)2

P
(2)
ij (x) + . . . . (1.117)

The component of the splitting matrix Pij (x, αs(µ
2)), at the first order, are:

Pqq(x) = Pq̄q̄(x) =
4

3

[
1 + x2

1− x

]
+

(1.118)

Pqg(x) = Pq̄g(x) =
1

2

[
x2 + (1− x)2

]
(1.119)

Pgq(x) = Pgq̄(x) =
4

3

[
1 + (1− x)2

x

]
(1.120)

Pgg(x) = 6

{
x

[
1

1− x

]
+

+
1− x
x

+ x(1− x) +

(
11

12
− nf

6

)
δ(1− x)

}
. (1.121)

Not all of this splitting function arise in the calculation of the NLO of some process,
like for the DIS where the lowest perturbative correction can only have a quark state
from the hadron that emit a gluon or a gluon state that decay in a quark-antiquark
pair, i.e. the equations (1.118), (1.119) and (1.120), while at the NNLO the initial
partonic state can also be a gluonic state that decay in other gluons, i.e. appear the
(1.121).

To end this section it is important to remark that at high energies the parton
model has good comparison with the experiments and show the correct scaling be-
havior experimentally observed; the most important property of the model. Adding
perturbative correction the scaling behavior break down but the way it is broken at
every perturbative order can lead to a big violation of it, it has been proved that
the way QCD breaks the scaling it is acceptable such that we can still use the model
in the perturbative framework. Furthermore, the divergent quantities are used to
redefine the PDFs that, like in the case of the coupling constant in the renormaliza-
tion procedure, will be experimentally defined and we can use it as a finite function.
The difficulty of giving a precise mathematical form to these functions lies in the
fact that they are connected to the confinement of the quarks, a problem that is
still open in quantum chromodynamics.
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Chapter 2

Drell Yan Process

H1(p1)

H2(p2)

X

l

l̄

X

H1(p1) +H2(p2)→ l + l̄ +X (2.1)

The parton model is the main way to predict an event in high energy particle physics
involving hadrons and due to the recent successful prediction such as the discovery
of the Higgs boson or more older one like the discovery of the Z and W bosons,
the Drell-Yan mechanism is a powerful tool to probe new physics and to reach
better understanding of the already known phenomena. This is possible thanks to
the production of two not colored fermions that carry information about hard sub-
process. For this reason, this mechanism has been chosen in this work as an example
to show how observables, like the cross-section, are affected by infrared singularities
and how these can be handled to give a finite result for the hadronic cross section.
This mechanism comprises the production of high invariant lepton-pair mass called

Drell-Yan pair, M2 =
(
l + l̄

)2 � 1 GeV2, in a hadron-hadron collision.
To use the parton model we must working in the high energy regime M2 � Λ2

QCD

(whereM2 is the transfer momentum and the ΛQCD is the typical strong interaction’s
energy scale of about 100 MeV), i.e. it is possible to neglect the masses of all the
particle involved in the process.

The hadronic cross section for this kind of process in the parton model formula-
tion can be written as follow

σ =
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa(x1)fb(x2) σ̂qq̄→ll̄, (2.2)

where the sum runs over the hadron constituents that can take place in the hard
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subprocess, fa(x1) and fb(x2) are the parton distribution function, σ̂qq̄→ll̄ is the hard
partonic cross section. In the following we evaluate the first perturbative order of
the hard sub-process in the case where the particle exchanged is a virtual-photon
with transferred momentum M , and we show how to handle the soft and collinear
divergences to get a finite result for the hadronic cross section.

2.1 The hard sub-process

In the partonic process are involved two partonic initial state that carries hadron
momentum’s fraction, called in the usual literature notation p̂1 = x1p1 and p̂2 =
x2p2, that annihilate into an electroweak boson with momentum Q that successively
decay in the leptonic final state with momentum l1 and l2. To produce a ll̄ pair at
the lowest order in α = e2/4π only the Z0 boson and a virtual photon are possible
exchanged particle, for this reason the expression given in this section are valid
for only these two cases. The study of this process can be simplified separating the
quark part by the leptonic part in |M(p̂1, p̂2; l1, l2)|2 and integrating over the leptonic
tensor, in such way we can write the partonic cross section as follow

dσ̂ =
1

4p̂1p̂2

[
1

(Q2 −M2
B)2

HµνLµν

]
dΦLdΦS, (2.3)

where the term MB represent the mass of the boson exchanged, i.e. for the photon
the mass is 0 and for the Z0 boson is about 91.19 GeV. In this case is not im-
portant which gauge is chosen in the electroweak propagator because the leptonic
tensor is still gauge invariant and the tensorial part of the propagator reduces to
the Minkowski metric tensor. The term dΦS takes into account of the degrees of
freedom due to the emission of soft-gluons that are associate to the hadronic part.
For example in the case of a single emission,

dΦS =

∫
dM2

2π

[
d~k

(2π)32|~k|
d ~Q

(2π)32ω ~Q
(2π)4δ(4) (p̂1 + p̂2 − k −Q)

]
. (2.4)

Where ω2
~Q

= | ~Q|2 + M2. Multiple gluons emission are more difficult to work with

because the momenta are linked to each other by the momentum conservation then
it impossible to find a factorize form. This situation can be avoided working in the
Mellin space and in the limit of soft-emission.

The leptonic tensor is,

Lµν = e2 Tr
[
/l 2γν(g1 − g2γ

5)/l 1γµ(g1 − g2γ
5)
]

(2.5)

dΦL =
d~l1

(2π)32|~l1|
d~l2

(2π)32|~l2|
(2π)4δ(4) (Q− l1 − l2) , (2.6)

where e is the positron charge and the constant g1 and g2 depends on the flavour of
the fermions and the boson exchanged. For the Z0 boson they are

g1 =
T3 − 4el sin

2 θW
2 sin θW cos θW

, g2 =
T3

2 sin θW cos θW
,
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with T3 = σ3/2 third generator of the SU(2) group, θW the weak mixing angle
and el the electric charge’s fraction of the lepton. For the photon the constants are
g1 = −1 and g2 = 0.

Using the equation (2.5) and (2.6) we can see that is possible to integrate
pver the leptonic tensor contribution. To this purpose is useful to write the lep-
tonic tensor using its property such as tensorial symmetry and the Ward identity1

(QµLµν = 0 = QνLµν), thus,

Lµν = Agµν +BQµQν . (2.7)

This is the most general form for a two degrees of freedom tensor satisfying the above
properties in fact, for a [4,4] tensor, 6 degrees are solved by the symmetry property
and 8 degrees are solved by the gauge invariance, leaving only 2 free degrees.

To determine the coefficient A and B we need two find two equation to fix the
two free degrees; an handy choice is to solve the following system of two equations,

{
QµLµν = AQν +BQ2Qν = 0,

Lµ µ = 4A+M2B = −4e2(g2
1 + g2

2)Q2.

The solution of this system gives the expression the the leptonic tensor

Lµν =
4

3
e2(g2

1 + g2
2)
(
−gµνQ2 +QµQν

)
. (2.8)

To perform the integration over the leptonic phase space it is enough to evaluate the
volume of the phase space since the leptonic tensor, as write in the Eq.(2.8), does not
depend explicitly on the leptonic momenta but just on the transferred momentum.
The volume of the leptonic phase space is 1/(8π), thus the leptonic tensor is

Lµν =
e2(g2

1 + g2
2)

6π

(
−gµν +

QµQν

Q2

)
Q2. (2.9)

It is interesting to note that the tensor part of the Eq.(2.9) have the same form
of the sum over the polarization of a massive spin-1 boson, like in the case of an
off-shell photon where,

∑
pol

εaµ( ~Q)ε∗aν ( ~Q) = −gµν +
QµQν

Q2
. (2.10)

1The Ward identity is still valid for the weak boson until the leptons are massless.
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This similarity permit us to write the cross section as follow

dσ̂ =
e2(g2

1 + g2
2)

6π

Q2

4p̂1p̂2

[
1

(Q2 −M2
B)

2H
µν

(
−gµν +

QµQν

Q2

)]
dΦS

=
e2(g2

1 + g2
2)Q2

6π (Q2 −M2
B)

2

[
dΦS

4p̂1p̂2

∑
pol

Hµνεaµ( ~Q)ε∗aν ( ~Q)

]

=
e2(g2

1 + g2
2)Q2

6π (Q2 −M2
B)

2 dσ̂H . (2.11)

In this way we just need to study the diagram in Figure 2.1 to evaluate the hadronic
cross section.

In the rest of the chapter we evaluate the first perturbative chromodinamic cor-
rection for the differential and double differential partonic cross section. In the case
of the double differential partonic cross section we will be focused on the rapidity
distribution, defined as:

y =
1

2
log

Q0 +Q3

Q0 −Q3
. (2.12)

The sub-process examined is, for simplicity, the annihilation of a quark pair in a
virtual photon.
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p̂2

Q

1

(a) Born
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Q

k
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p̂2

Q
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(b) Real

p̂1

p̂2

Q

1

(c) Virtual

p̂1

p̂2

Q

p̂1

p̂2

Q

1

(d) External leg correction

Figure 2.1
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2.2 Leading order calculation

Let’s show a direct calculation of the NLO; the first diagram in the Figure 2.1. The
amplitude of the process is

M(p̂1, p̂2;Q) = −ieeq v̄(p̂2)/ε∗(Q)u(p̂1), (2.13)

so we can write the square matrix element

M(p̂1, p̂2;Q)M(p̂1, p̂2;Q) = (eeq)
2
(
v̄(p̂2)γµu(p̂1)

)(
ū(p̂1)γνv(p̂2)

)
εµ(Q)ε∗ν(Q).

(2.14)

Now we average over the initial polarization of the quark and their colour and sum
over the final polarization of the virtual photon, thus we obtain∑

pol

|M(p̂1, p̂2;Q)|2 =
1

12
(eeq)

2Tr [/̂p2γ
µ/̂p1γ

ν ] (−gµν) =
1

3
(eeq)

2ŝ (2.15)

for the sake of clarity it is good to specify the operation done in the above expres-
sion. The average over the initial polarization gives us a 1/4 factor and the trace of
the spinor matrix, because

∑
σ=1,2

ū(p̂1;σ)u(p̂1;σ) = /̂p1, (2.16)∑
σ=1,2

v̄(p̂2;σ)v(p̂2;σ) = /̂p2, (2.17)

from this relation follow the trace above. The average over the color of the quark
gives a factor 1/3 because the electro-weak vertex does not change the color, in fact
the electro-weak vertex, in the simple case of a virtual photon, is

− ieeqγµδab, (2.18)

where a and b are color index with three possible value. The average over the color
is then the total number of colored states over the sum of possible colored states
of each quark, i.e. 3/9 → 1/3. In this way the total averaging procedure gives the
factor 1/12. The sum over the photon polarization is reduced to the metric tensor
cause the gauge invariance indeed can be trivially shown that

QµQνTr [/̂p2γ
µ/̂p1γ

ν ] = 0. (2.19)

In the last term of the equation (2.15) is the square energy of the partonic process
ŝ = (p̂1 + p̂2)2 = 2p̂1p̂2.

At this level all the outgoing momenta has already been integrated, thus the
expression (2.11) is not the differential cross section but it is the total cross section:

σ̂H =
1

2ŝ
|M(p̂1, p̂2;Q)|2 =

(eeq)
2

6
, (2.20)
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and the total hadronic cross section reads

σ̂ =
4πα2

3ŝ

e2
q

3
=
e2
q

3
σ0(ŝ), (2.21)

where α is the famous fine-structure constant defined as α = e2/4π in natural unit
and we have defined σ0(ŝ) = 4πα2/3ŝ.

It is useful to write the differential cross section for the lepton pair mass,

dσ̂

dM2
= σ0(M2)

e2
q

3
δ(ŝ−M2), (2.22)

while the double differential cross section for the rapidity and the transverse mo-
mentum at the partonic level reads respectively,

d2σ̂

dM2dY
= σ0(M2)

e2
q

3
δ(ŝ−M2) δ(Y − y) (2.23)

d2σ̂

dM2dQT

= σ0(M2)
e2
q

3
δ(ŝ−M2) δ(QT ). (2.24)

With these expression we can write the LO of the parton-model differential cross
section for this process. It is important to recall that the partonic momenta are a
fraction of the hadronic one; p̂1 = x1p1 and p̂2 = x2p2 such that ŝ = x1x2s, in this
way:

dσ

dM2
=
σ0(M2)

3

∑
q

∫ 1

0

dx1

∫ 1

0

dx2 fq(x1)fq̄(x2) e2
q δ(x1x2s−M2). (2.25)

From this expression it easy to see that to multiply the equation (2.25) by M4 in-
troducing the variable τ = M2/s, the cross-section exhibit a scaling behavior in the
τ variable:

M4 dσ

dM2
=

4πα2

9
τ
∑
q

∫ 1

0

dx1

∫ 1

0

dx2 fq(x1)fq̄(x2) e2
q δ(x1x2 − τ)

=
4πα2

9
τF (τ). (2.26)

This result is analogue to the approximate Bjorken scaling observed in the deep in-
elastic scattering that, together with the concepts of partons, has been a first hint of
the asymptotic freedom property of the strong interacting particle that conducted to
the formulation of quantum chromodynamics. In fact, the scaling means that when
we are at high energies, or better, at energies greater than the typical hadronic scale
(ΛS ∼ 100 MeV), the cross section written in terms of adismensional kinematical
variables like τ show an energy dependence like its canonical dimension, in fact, the
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(2.26) can be written as

dσ

dτ
=

4πα2

9M2
τF (τ), (2.27)

this means that the cross section goes to zero as the energy increase, then if we probe
the hadron deeper and deeper we will only see a sea of non-interacting elementary
particle, the partons. The possible interaction energy between them would give a
cross section that will not go exactly to zero but has some mass energy structure,
then the observation of the scaling phenomenon is a proof of the asymptotic freedom
of the strong interaction. This is an amazing property because permits us to probe
the hadronic structure as deep as we want. However, this scaling can be violated by
the perturbative treatment of the theory as shown in the previous chapter. Will be
shown in this chapter that the scale is broken also for the Drell-Yan process already
at the first perturbative order.

To end this section we give also the form of the hadronic double differential cross
section in the invariant mass and rapidity variable. To write the rapidity distribution
is useful to express the Eq. (2.12) in the center of momentum of the two hadrons, i.e.

2Qµ =
√
s(x1 + x2, 0, 0, x1 − x2) (2.28)

y =
1

2
log

x1

x2

. (2.29)

The rapidity distribution is

d2σ

dM2dy
=
σ0(M2)

3s

∑
q

e2
q fq

(√
τ ey

)
fq̄
(√

τ e−y
)
. (2.30)

Using this distribution it is in principle possible to measure the parton distribution
function for the quark and the relative anti-quark, anyway the best method is still
to measure it thought the deep inelastic scattering.

p̂2 p̂2 � k p̂2

k

1

Figure 2.2: Contribution to the quark self energy by strong interaction.
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2.3 External leg correction

The last two diagrams in Figure 2.1d do not give contribution to the final result
because they are identically zero until we are at energy high enough to have vanishing
quarks masses. We show as example the direct calculation of the first diagram in
Figure 2.1d with the loop momentum set like in Figure 2.2.

The matrix element of this correction is;

M(p̂1, p̂2;Q) = v̄(p̂2)
(
−igstAγµ

)(
i

∫
d4k

(2π)4

/k − /̂p2

(k2 + iη)
(
(p̂2 − k)2 + iη

))×
× (−igstAγµ)

i/̂p2

p̂2
2 + iη

(−ieeqγρ)u(p̂1)ε∗ρ(Q)

= eeqv̄(p̂2)
(
− iΣ(p̂2)

) /̂p2

p̂2
2 + iη

/ε∗(Q)u(p̂1). (2.31)

Now we show that the term −iΣ(p̂2) is proportional to /̂p2, thus for the equation of
motion v̄(p̂)/̂p = 0 it makes vanish the matrix element. The corrective term is

Σ(p̂2) = g2
sCF

∫
d4k

(2π)4

γµ(/k − /̂p2)γµ

(k2 + iη)
(
(p̂2 − k)2 + iη

) . (2.32)

We can use the property of the gamma matrices in the numerator of the integrand
to get γµ/pγµ = −2/p, and use the Feynman trick to simplify the denominator, we
also omit the iη term to lighten the notation, then we get,

1

k2(p̂2 − k)2
=

∫ 1

0

dx
1

(k2 − 2xp̂2k)2
=

∫ 1

0

dx
1

(k − xp̂2)4
(2.33)

l = k − xp̂2 ⇒
∫ 1

0

dx
1

l4
, (2.34)

with these operation we have;

2g2
sCF

∫ 1

0

dx

∫
d4l

(2π)4

(1− x)/̂p2 − /l
l4

= /̂p2 g
2
sCF

∫
d4l

(2π)4

1

l4
, (2.35)

where, in the numerator, the integral of the term proportional to /l is zero because
it is an odd function integrated over an even domain.

From this result the proportionality to the external momentum is clear, and the
matrix element is proved to be zero. Someone can ask how the divergent integral
in the (2.35) affect the result, indeed it can be shown that, if regularized with di-
mensional regularization (for the main aspect of the dimensional regularization see
Appendix A), the integral is null; indeed with the dimensional regularization, i.e.
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passing from a 4-dimensional space-time to a d = 4− 2ε dimensional one, and intro-
ducing also a mass regulator µ in the denominator in order to get its limit µ → 0
after the integration we have,∫

ddl

(2π)d
1

(l2 − µ2)2
∼
(

1

µ

)ε
. (2.36)

The limit µ→ 0 makes the integral vanish only for ε < 0 while it would be divergent
everywhere else, but continue analytically the solution we can say that the integral is
zero everywhere. This result is true also for the other leg. The fact that the integral
of a generic power of the momentum, integrated over the whole domain, is zero.
This is an important and also convenient property of the dimensional regularized
integrals.

Now we show an example that highlights the vanishing of an integral like the
one in (2.35). we use the dimensional regularization on the integral,∫

ddl

(2π)d
M2

l2(l2 −M2)
=

∫
ddl

(2π)d

[
1

l2 −M2
− 1

l2

]
. (2.37)

The integral on the left side of the equation can be solved using the Feynman
parameters in order to write it in a more convenient form;

M2

∫
ddk

(2π)d

∫ 1

0

dx
1

(k2 − xM2)2
= − i

(
M

4π

) d
2

Γ(ε)

∫ 1

0

dx x−ε

= − i
(
M

4π

) d
2 Γ(ε)Γ(1− ε)

Γ(2− ε)

= i

(
M

4π

) d
2

Γ(ε− 1). (2.38)

This is the same solution as the first integral on the right side of the (2.37), in fact it is∫
ddl

(2π)d
1

l2 −M2
= i

(
M

4π

) d
2

Γ(ε− 1), (2.39)

the general formula to solve this integral is reported in Appendix A.
These results show that the dimensional regularization take into account that

integrals like the one in (2.35) are null. This is an intrinsic feature of this regular-
ization scheme. The generalization to any other power of the integrated momentum
it is not straightforward that we will not report it here, a detailed explanation can
be found in [16].
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Figure 2.3: Correction due to the exchange of a virtual gluon.

2.4 Virtual contribution

This diagram is already of order αs indeed its contribution enter by interference with
the Born level diagram weighted by a factor 2 for symmetry. The loop momentum
is set as in Figure 2.3. The contribution from the virtual process is;

∑
pol

|M(p̂1, p̂2;Q)|2 =
∑
pol

2
[
v̄(p̂2)(−igstAγρ)

∫
d4k

(2π)4

−i(/̂p2 + /k)

(p̂2 + k)2 + iη
(−ieeqγµ)

i(/̂p1 − /k)

(p̂1 − k)2 + iη

−i
k2 + iη

(−igstAγρ)u(p̂1)
][
ū(p̂1)(ieeqγ

ν)v(p̂2)
]
(−gµν)

= −1

6
(eeq)

2 Tr[/̂p2Γµ(p̂1, p̂2)/̂p1γµ], (2.40)

where Γµ(p̂1, p̂2) is

Γµ(p̂1, p̂2) = ig2
sCF

∫
d4k

(2π)4
γρ

(/̂p2 + /k)

(p̂2 + k)2 + iη

γµ

k2 + iη

(/̂p1 − /k)

(p̂1 − k)2 + iη
γρ. (2.41)

The factor 1/6 in front of this expression, we are taking into account the sum over
the colors of the two quarks. Differently from the Born cross section, where the only
electroweak vertex conserves the color charge, we have also two qqg (quark-quark-
gluon) vertex that could not conserve the color, in fact, the qqg vertex have also a
Gell-Mann matrix inside (the infinitesimal generators of the SU(3) group) instead
of a colour delta; but if two qqg vertex are linked by the same gluon propagator the
gluonic charge is conserved then we have

tAab δ
AB tBbc = Tr[tAabt

A
bc] = CF δac =

4

3
δac, (2.42)

then the sum over the color states become the same as the Born cross section where
the delta in the last expression preserve the quark color.



45 Drell Yan Process 2

In this process the gauge invariance for the electromagnetic interaction is triv-
ially respected because it is respected for the Born level diagram; the sum over the
photon polarization is reduced to −gµν ;

QνMν

real = 0 (2.43)

Mµ
virtual

(
−gµν +

QµQν

Q2

)
Mν

real =Mµ
virtual(−gµν)M

ν

real. (2.44)

The propagator for the virtual gluon has been chosen in the Feynman gauge to
simplify the calculation; in any case, other choices of the gauge do not change the
result. In fact for a generic gauge the gluon propagator reads,

Dµν(k) =

[
−gµν + (1 + ξ)

kµkν

k2 + iη

]
i

k2 + iη
. (2.45)

The second term in the propagator gives a contribution to the corrected vertex pro-
portional to

Γµ ∝ γµ
∫

d4k

(2π)4

1

k4
. (2.46)

This integral gives a null contribution in the dimensional regularization scheme, that
will be later used to regularize the divergencies of the integral, as explained in the
previous section. This can be seen as a proof that the dimensional regularization
does not break the gauge invariance, and thus it is a very powerful regularization
scheme.

Now our purpose is to evaluate the corrected vertex Γµ(p̂1, p̂2). The first thing
to note is that the final result will be proportional to the Born cross section because
the massless quark and the electromagnetic gauge invariance constrain the corrected
vertex to be proportional to γµ, in fact we can see from the numerator of the inte-
grand in (2.40) that

γρ(/̂p2 + /k)γµ(/̂p1 − /k)γρ = −2(/̂p1 − /k)γµ(/̂p2 + /k)− 2ε/kγµ/k

= 4(1− ε)kµ/k + 2(ŝ+ 2(p̂1 − p̂2)k − (1− ε)k2)γµ, (2.47)

where just the first term is not proportional to γµ, but we will show using the Feyn-
man parameters that, for symmetry, also that term is proportional to the gamma
matrices.

In the equation (2.47) we have omitted the terms proportional to /̂p1, /̂p2, pµ1 and
pµ2 because they give null contribution to the final result cause the zero mass of the
particles, in fact massless particles have /̂p/̂p = 0. The calculation has been done
in dimensional regularization, extending the dimensions from 4 to d = 4 − 2ε with
ε ∈ C. For a complete list of gamma matrices property in dimensional regularization
see Appendix A.
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A regularization scheme is necessary because the integral is obviously divergent.
Thus once regularized we can give a well defined finite part to it that in order to get
physical information and to write the singular terms component in a more convenient
way such that they do not affect the physical meaning of the solution.

To perform the integration (2.41) we write the integrand’s denominator in a
more efficient way using the Feynman parameters. We omit the term iη during the
calculation to simplify the notation;

1

k2(k2 − 2p̂1k)(k2 + 2p̂2k)
= 2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
δ(1− x− y − z)(

zk2 + y(k2 + 2p̂2k) + x(k2 − 2p̂1k)
)3

= 2

∫ 1

0

dx

∫ 1−x

0

dy
1(

(k + yp̂2 − xp̂1)2 + xyŝ
)3

l = k + yp̂2 − xp̂1, ∆ = −xyŝ ⇒ 2

∫ 1

0

dx

∫ 1−x

0

dy
1(

l2 −∆)3
. (2.48)

Now we can write the Eq. (2.41) in terms of the Feynman parameters and the
shifted momentum lµ in the dimensional regularization scheme;

Γµ(p̂1, p̂2) = 4i
g2
sCF
µd−4

γµ
∫ 1

0

dx

∫ 1−x

0

dy

∫
ddl

(2π)d
F (l)

(l2 −∆)3
, (2.49)

where

F (l) = (1− ε)
(

2

d
− 1

)
l2 + ŝ(1− y − x+ xy(1− ε)). (2.50)

To get the function F (l) in this form we used the relation lµlν ∼ gµνl2/d. This
relation is true until the integration is performed over the whole Minkowski space,
in fact, the denominator of the integrand is an even function while the numerator
is an odd one for the terms outside the trace of lµlν ; thus we can say, in sense of
integration, the two expressions are equivalent.

From this change of variable one can note that the corrected vertex is propor-
tional to γµ as required by the zero mass of the quark. To perform the integral
over the momentum we need to pass to the euclidean space performing the Wick
rotation, loE = −il0, then

− i
∫

ddlE
(2π)d

(1−ε)2

2−ε l
2
E − ŝ(1− y − x+ xy(1− ε))

(l2E + ∆)3
, (2.51)

then we can write ∫
ddlE
(2π)d

A l2E
(l2E + ∆)3

+

∫
ddlE
(2π)d

B

(l2E + ∆)3
, (2.52)

with

A = −(1− ε)2

2− ε , B = ŝ(1− y − x+ xy(1− ε)). (2.53)



47 Drell Yan Process 2

The two integral can be solved using the expressions in the Appendix A;

∫
ddlE
(2π)d

A l2E
(l2E + ∆)3

=
1

2

1

(4π)2

(
4π

∆

)ε
Γ(ε) (ε− 2)A (2.54)∫

ddlE
(2π)d

B

(l2E + ∆)3
=

1

2

1

(4π)2

(
4π

∆

)ε
Γ(ε)

ε

∆
B. (2.55)

The final result of the integration over the momentum is

1

2

i

(4π)2

(
− 4π

xyŝ

)ε
Γ(ε)

[
ε

xy
(1− y − x+ xy(1− ε))− (1− ε)2

]
. (2.56)

The corrected vertex then reads;

Γµ(p̂1, p̂2) =− αs
2π
CFγ

µ

(
−4πµ2

ŝ

)ε
Γ(ε)×

×
∫ 1

0

dx

∫ 1−x

0

dy [ε (x−1−εy−1−ε − x−1−εy−ε − x−εy−1−ε + x−εy−ε(1− ε))−

− (1− ε)2x−εy−ε]. (2.57)

To perform the integration over the Feynman parameters is convenient to use the
Euler beta function defined as follow,

β(α1, α2) =

∫ 1

0

dx xα1−1(1− x)α2−1 =
Γ(α1)Γ(α2)

Γ(α1 + α2)
. (2.58)

The integral over the Feynman parameters can be generalized as,∫ 1

0

dx xα
∫ 1−x

0

dy yβ =
1

β + 1

∫ 1

0

dx xα(1− x)β+1 =
1

β + 1

Γ(α + 1)Γ(β + 2)

Γ(α + β + 3)
.

(2.59)

The dependence in the Γµ(p̂1, p̂2) on the quark momentum enters only through the
squared energy of the partonic process, thus from now it is convenient to write it as
an only function of it, i.e. Γµ(ŝ).
Using the expression (2.59) we can finally evaluate the Eq.(2.57);

Γµ(ŝ) =− αs
2π
CFγ

µ

(
−4πµ2

ŝ

)ε
Γ(ε)

[
− Γ(−ε)Γ(1− ε)

Γ(1− 2ε)
+

Γ2(1− ε)
Γ(1− 2ε)

−

− ε

1− ε
Γ(−ε)Γ(1− ε)

Γ(2− 2ε)
− (1− 2ε)

Γ(1− ε)Γ(2− ε)
Γ(3− 2ε)

]
=− αs

4π
CFγ

µ

(
−4πµ2

ŝ

)ε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
2

ε2
+

3

ε
+ 8

)
. (2.60)
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Where we used the Laurent expansion of the gamma function

Γ(ε) =
1

ε
− γ +

ε

12
(6γ2 + π2) +O(ε2) (2.61)

Γ(−ε) = −1

ε
− γ − ε

12
(6γ2 + π2) +O(ε2), (2.62)

where γ is the Eulero-Mascheroni constant γ = 0.5772 . . . , and the factorial gamma
function property

Γ(1− ε) = −ε Γ(−ε). (2.63)

Then in the equation (2.60) we can simplify the following term using the above
expansions,

Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
=

1

Γ(1− ε)
(
1 +O(ε3)

)(
1 +

π2

6
ε2 +O(ε3)

)
=

1

Γ(1− ε)
(
1 +

π2

6
ε2 +O(ε3)

)
, (2.64)

and expand the term (−1)ε;

(−1)ε = 1 + iπε− π2

2
ε2, (2.65)

but since we have only the real part of this contribution we can forget about the
term iπε, and get

Γµ(ŝ) =− αs
4π
CFγ

µ

(
4πµ2

ŝ

)ε
1

Γ(1− ε)

(
2

ε2
+

3

ε
+ 8− π2

)
.

=− αs
4π

V (ŝ; ε)γµ, (2.66)

where,

V (ŝ; ε) =

(
4πµ2

ŝ

)ε
CF

Γ(1− ε)

(
2

ε2
+

3

ε
+ 8− π2

)
. (2.67)

Inserting Eq. (2.66) in Eq. (2.40) we have the final form of the square matrix ele-
ment of this diagram;

∑
pol

|M|2 =
αs
2π

V (ŝ; ε)

(
(eeq)

2

12
Tr[/̂p2γ

µ/̂p1γµ]

)
=− αs

2π
V (ŝ; ε)M2

0, (2.68)
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where

M2
0 =

1

3
(eeq)

2(1− ε)ŝ, (2.69)

that is the Born level square matrix element dimensionally regularized, in fact it has
the same form of the Eq. (2.15). At the Born level we do not take into account the
term (1− ε) because there are no poles; thus in the limit ε→ 0 that term approach
unity.

The total partonic cross section of the virtual diagram is proportional to the
Born cross section and it reads;

σ̂V = −σ0(ŝ)(1− ε)e
2
q

3

αs
2π
V (ŝ; ε). (2.70)

This contribution does not add any new information to the differential cross section
for neither the partonic level nor the hadronic one. The total partonic cross section
can be wrote by adding this contribution to the Born level cross section;

σ̂ = σ0(ŝ)
e2
q

3

(
1− αs

2π
V (ŝ; ε)(1− ε) +O(α2

s)
)

= σ0(ŝ)
e2
q

3

∞∑
i=0

(αs
2π

)i
σ̂i, (2.71)

where we identify,
σ̂1 = −V (ŝ; ε)(1− ε) (2.72)

and the phase space is made by Dirac deltas. The above expression it is not measur-
able because the term V (ŝ; ε) is divergent in the infrared region but the Kinoshita-
Lee-Nauenberg (KLN) theorem stated that any observables must be infrared finite,
in fact, this divergence will be removed by taking into account also the possibility
that an initial state quark emits a gluon before the collision. We close this section
with the expression for the differentials partonic cross section;

dσ̂

dM2
= σ0(M2)

e2
q

3

(
1 +

αs
2π
σ̂1 +O(α2

s)
)
δ(ŝ−M2), (2.73)

d2σ̂

dM2dy
= σ0(M2)

e2
q

3

(
1 +

αs
2π
σ̂1 +O(α2

s)
)
δ(ŝ−M2) δ(y − Y ). (2.74)

p̂2 � k

p̂1

p̂2

Q

k

+ p̂1 � k

p̂1

p̂2

k

Q

1

Figure 2.4: Real gluon emission from initial state quarks
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2.5 Real emission

We need to take into account this process for two reason; first, its squared matrix
element is of order O(αs); second, we cannot know if the quark has radiates gluons
before the annihilation and since we are inclusive all the possible hadronic final state
we must take it in consideration.

We start by writing the matrix element for these process;

M(p̂1, p̂2, k;Q) = v̄(p̂2)
[
(−igstAγρ)

−i(/̂p2 − /k)

(p̂2 − k)2 + iη
(−ieeqγµ)+

+ (−ieeqγµ)
i(/̂p1 − /k)

(p̂1 − k)2 + iη
(−igstAγρ)

]
u(p̂1) ε∗ρ(k)ε∗µ(Q)

= − ieeqgstA [Mµρ
1 −Mµρ

2 ] ε∗ρ(k)ε∗µ(Q). (2.75)

At this order quantum chromodynamics have a behavior similar to quantum electro-
dynamics because there are not contributions from the self-interaction of the gluons;
this means that the Ward identity for the external gluon is trivially valid and the
sums over the gluon polarization reduce to the electrodynamic case;

∑
pol

ερ(k)ε∗σ(k) = −gρσ. (2.76)

It is important to specify that the Ward identity is valid only for the sum of the
two amplitudes, Mµρ

1 and Mµρ
2 , but and not for the two amplitudes individually.

At this order it is easy to show the validity of the Ward identity both for the ex-
ternal photon and for the external gluon. The external photon carries a momentum
Q = p̂1 + p̂2 − k, thus the identity can be proved as follows;

Qµ(Mµρ
1 −Mµρ

2 ) = v̄(p̂2)

[
γρ

(/̂p2 − /k)

(p̂2 − k)2
/Q− /Q

(/̂p1 − /k)

(p̂1 − k)2
γρ
]
u(p̂1)

= v̄(p̂2)

[
γρ

(/̂p2 − /k)

(p̂2 − k)2
(/̂p2 − /k)− (/̂p1 − /k)

(/̂p1 − /k)

(p̂1 − k)2
γρ
]
u(p̂1),

= v̄(p̂2)

[
γρ

(p̂2 − k)2

(p̂2 − k)2
− (p̂1 − k)2

(p̂1 − k)2
γρ
]
u(p̂1)

= 0 (2.77)

where we have used the equations of motion /̂p2v̄(p̂2) = 0 and /̂p1u(p̂1) = 0 and the
gamma matrix properties /A /A = A2. Thus the gauge invariance is respected by the
emitted virtual photon. We now show that it is also true for the radiated gluon:
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kρ(Mµρ
1 −Mµρ

2 ) = v̄(p̂2)

[
/k

(/̂p2 − /k)

(p̂2 − k)2
γµ − γµ (/̂p1 − /k)

(p̂1 − k)2
/k

]
u(p̂1)

= v̄(p̂2)

[
/k/̂p2

(p̂2 − k)2
γµ − γµ /̂p1

/k

(p̂1 − k)2

]
u(p̂1)

= v̄(p̂2)

[
−2kp̂2

2kp̂2

γµ + γµ
2kp̂1

2kp̂1

]
u(p̂1)

= 0, (2.78)

We still used the equation of motion and the zero mass of the on-shell gluon, i.e.
/k/k = 0. The identity for the external gluon is then proved.

We can now proceed with the evaluation of the squared matrix element perform-
ing the sum over the final bosons polarization and mediating over the initial fermion
polarization;

∑
pol

|M(p̂1, p̂2, k;Q)|2 =
(eeq)

2g2
s

12
CF
[
Mµρ

1 M∗
1µρ +Mµρ

2 M∗
2µρ − 2Re(Mµρ

1 M∗
2µρ)
]

=
(eeq)

2g2
s

12
CF [M1 +M2 −M3] . (2.79)

We can now calculate the M1 and M3 terms. We omit the calculation of the M2

term because it is the same for the M1 terms, and from the definition of Mµρ
1 and

Mµρ
2 we can see that we can get the the Mµρ

2 form by the exchange p̂1 ↔ p̂2.
The term M1 reads,

M1 =
∑
pol

[
v̄(p̂2)γρ

/̂p2 − /k
(p̂2 − k)2 + iη

γµu(p̂1)

] [
ū(p̂1)γµ

/̂p2 − /k
(p̂2 − k)2 + iη

γρv(p̂2)

]
=Tr

[
/̂p2γρ

/̂p2 − /k
(p̂2 − k)2 + iη

γµ/̂p1γ
µ /̂p2 − /k

(p̂2 − k)2 + iη
γρ
]
. (2.80)

In the calculation we neglect the term iη and we work in the dimensional regular-
ization scheme. First of all we have to calculate the trace;

Tr [/̂p2γρ(/̂p2 − /k)γµ/̂p1γ
µ(/̂p2 − /k)γρ]

=4(1− ε)2Tr [/̂p2(/̂p2 − /k)/̂p1(/̂p2 − /k)]

=4(1− ε)2Tr [/̂p2
/k/̂p1

/k] = 32(1− ε)2(p̂1k)(p̂2k). (2.81)

The same result is be obtained for the M2 term. The expression (2.81) can be
express in term of cinematic invariant such as the Mandelstam variable;

ŝ = (p̂1 + p̂2)2 = 2p̂1p̂2, (2.82)

t̂ = (p̂2 − k)2 = −2p̂2k, (2.83)

û = (p̂1 − k)2 = −2p̂1k, (2.84)

ŝ+ t̂+ û = M2. (2.85)
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In therm of the Mandelstam variable the M1 term reads:

M1 = 8(1− ε)2 û

t̂
. (2.86)

While the M2 term;

M2 = 8(1− ε)2 t̂

û
. (2.87)

Now it is the time to evaluate the M3 term. The procedure to evaluate the trace is
very long thus we jump some trivial algebraic operations. The M3 term became,

M3 = 2
∑
pol

[
v̄(p̂2)γρ

/̂p2 − /k
(p̂2 − k)2

γµu(p̂1)

] [
ū(p̂1)γρ

/̂p1 − /k
(p̂1 − k)2

γµv(p̂2)

]
= 2 Tr

[
/̂p2γµ

/̂p1 − /k
(p̂1 − k)2

γρ/̂p1γ
µ /̂p2 − /k

(p̂2 − k)2
γρ
]

=
2

t̂û
Tr [/̂p2γµ(/̂p1 − /k)γρ/̂p1γ

µ(/̂p2 − /k)γρ]

= − 4

t̂û

(
Tr [/̂p2/̂p1γρ(/̂p1 − /k)(/̂p2 − /k)γρ]− εTr[/̂p2γρ(/̂p1 − /k)γρ/̂p1(/̂p2 − /k)γρ]

)
= − 4

t̂û

(
2ŝTr[(/̂p1 − /k)(/̂p2 − /k)]− 2ε(ŝ+ t̂)Tr[/̂p1(/̂p2 − /k)] + 2ε2Tr[/̂p2

/k/̂p1
/k]
)

= − 16

t̂û

(
ŝ(1− ε)M2 − t̂û(1− ε)ε

)
, (2.88)

where we have used the contraction of the gamma matrices in the dimensional
regularization as reported in the Appendix A and in the final step the property of
the Mandelstam variables (2.85).

By adding all the three contributes we get the final expression for the squared
matrix element;

∑
pol

|M(p̂1, p̂2, k;Q)|2 =
2

3
(eeq)

2g2
sCF (1− ε) ŝ

t̂û

(
(1 + z2)ŝ− ε(1− z)2ŝ− 2

t̂û

ŝ

)
,

(2.89)

where z = M2/ŝ, that is the fraction of the total energy taken by the lepton pair.
The squared matrix element is manifestly Lorentz invariant, thus to continue the
calculation we can put the system in any inertial frame we desire without affect the
solution; for simplicity it can be chosen as the partonic center of momentum frame.
The presence of t̂û in the denominator produces collinear singularity. We can note
that a this level there is no trace of infrared singularity, necessary to remove the one
produced from the virtual contribution, indeed it is a property of the phase space
as stated by the KLN theorem; we show its validity for this perturbative order here
below. The cancellation of the collinear singularity in a similar way the infrared one
cancels is not possible, in fact, to remove it, the only way is to redefine the PDFs
in order to incorporate it, like for the renormalization of the coupling constant.
The cancellation of infrared divergencies are very important because it can generate
terms that can spoil the perturbative aspect of the series then we are forced to find
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a resummed form for these large terms. This is the purpose of any resummation
techniques.

Now we define the cinematic of this process as the partonic center of momentum:

p̂µ1 =

√
ŝ

2
(1,~0, 1), p̂µ2 =

√
ŝ

2
(1,~0,−1), kµ = (k0, ~kT , k

3). (2.90)

In this frame the Mandelstam variables reads:

t̂ = −
√
ŝ(k0 − k3), (2.91)

û = −
√
ŝ(k0 + k3), (2.92)

using this expressions we get

|kT |2 =
t̂û

ŝ
. (2.93)

To calculate the cross section we need to define properly the phase space using
dimensional regularization. From the relation (2.93) we can note that the square
matrix element for the real emission depends only on the variables z and |kT |2 thus
we can express the phase space in terms of these variables. Using the Eq. (2.4) in
d = 4− 2ε dimensions the phase space is

dΦS =
1

Γ(1− ε)

(
4πµ2

|kT |2
)ε( √

ŝ√
ŝ(1− z)2 − 4|kT |2

)
dz

16π2
d|kT |2. (2.94)

As anticipated, the infrared singularity (z → 1) is introduced by the phase space, in
fact, the infrared limit costrains the transverse momentum to go to zero, then the
singularity for z = 1 appear.

The differential partonic cross section for the real emission reads;

dσ̂R

dz d|kT |2
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

1

zŝ|kT |2
(
(1 + z2)ŝ− ε(1− z)2ŝ− 2|kT |2

)
×

× 1

Γ(1− ε)

(
4πµ2

|kT |2
)ε( √

ŝ√
ŝ(1− z)2 − 4|kT |2

)
. (2.95)

To write the rapidity distribution we need to link the transverse momentum and the
rapidity; to this purpose we can express the energy and the z-direction momentum
of the virtual photon in terms of the rapidity using the definition (2.12):{

Q0 = mT cosh y

Q3 = mT sinh y,
(2.96)

where m2
T = M2 + |kT |2. The energy of the virtual photon as function of the variable

z is; (
Q0
)2

=
ŝ

4
(1 + z)2 (2.97)
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then the dependence of |kT |2 from the rapidity follow, and it is,

|kT |2 =
ŝ

4

[
1 + z2 − 2z cosh 2y

cosh2 y

]
. (2.98)

It is possible to write the double differential cross section for the real emission in
terms of the rapidity and the transferred momentum’s energy fraction inserting
(2.98) in (2.95), and we get,

dσ̂R

dzdy
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

1 + z

z cosh2 y

(
(1 + z)2(tanh2 y + 1)− 2ε(1− z)2

)
×

× 1

Γ(1− ε)

(
16πµ2

ŝ

)ε(
cosh2 y

1 + z2 − 2z cosh 2y

)1+ε

. (2.99)

This distribution does not have a best mathematical form one can desire, but we
need it for two reasons; the rapidity it’s easy to measure in experiments and it’s
invariant under Lorentz boost making it a useful mathematical quantity.

From the expressions (2.98), (2.99) we can get information on the rapidity vari-
able. The first expression give us information about the domain of the it, in fact;

|kT |2 ≥ 0 ⇒ y ∈
[
−1

2
log

1

z
;

1

2
log

1

z

]
, (2.100)

while from the last term of the (2.99) we can see that the divergence of this process
sits on the boundaries of the region, in fact, that term is singular in y = ± log(

√
z).

To end this section we give the expression for the energy distribution. We do
not give the expression for the total cross section because we need the virtual con-
tribution to cancel the infrared singularity.

The energy distribution is obtained integrating over the transverse momentum
the (2.95):

dσ̂R

dz
= −σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

(
4πµ2

ŝ

)ε
Γ(1− ε)
Γ(1− 2ε)

2

zε

1 + z2

(1− z)1+2ε
, (2.101)

where we have neglected the terms of order O(ε). We can do an additional step by
introducing the so called plus distribuiton. This distribution help to handle diver-
gence that arise from the limit z → 1 of (1 − z)−1−2ε let them appear like poles in
the complex plane of ε. The distribution can be introduces as follow;

∫ 1

0

dz
f(z)

(1− z)1+2ε
=

∫ 1

0

dz
f(z)− f(1)

(1− z)1+2ε
+ f(1)

∫ 1

0

dz
1

(1− z)1+2ε
, (2.102)

where f(z) is a test function. The idea is to separate the divergent part from the
finite one; in this way the first integral is finite and it contains every information
about f(z). The whole divergence is given by the second integral. The denominator
of the first integral can be expand in power of ε to get a more handle ε-dependence,
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while the last integral can be simply solved using the beta function producing a pole
1/ε as we expected. Thus the integrand of the equation (2.102) can be written as;

∫ 1

0

dz
f(z)

(1− z)1+2ε
=− 1

2ε

∫ 1

0

dzf(z)δ(1− z) +

∫ 1

0

dzf(z)
∞∑
n=0

(−2ε)n

n!

[
log(1− z)n

1− z

]
+

=

∫ 1

0

dzf(z)

{
− 1

2ε
δ(1− z) +

[
1

1− z

]
+

− 2ε

[
log(1− z)

1− z

]
+

+O(ε2)

}
.

(2.103)

Inserting (2.103) in (2.101) and expanding the gamma function,

Γ2(1− ε)
Γ(1− 2ε)

= 1− π2

6
ε2 +O(ε3) (2.104)

we get ;

z
dσ̂R

dz
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

(
4πµ2

ŝ

)ε
1

Γ(1− ε)×

×
{(

2

ε2
− π2

3

)
δ(1− z)− 2

ε

1 + z2

[1− z]+
+ 4(1 + z2)

[
log(1− z)

1− z

]
+

}
.

(2.105)

2.6 Final remarks

To end this section we sum the real and virtual contribution to get the Drell-Yan
cross section and its rapidity distribution. We start with the simplest case, the en-
ergy distribution. This is the simplest case because the divergencies are already in
form of poles, thus the two expression, virtual and real contributions, are consistent
each other. The NLO correction of the Drell-Yan partonic sub-process is:

dσ̂

dz
=

dσ̂R

dz
+

dσ̂V

dz
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

(
4πµ2

ŝ

)ε
1

Γ(1− ε)
1

z
×

×
{(

2

3
π2 − 8

)
δ(1− z)− 2

ε

(
1 + z2

[1− z]+
+

3

2
δ(1− z)

)
+ 4(1 + z2)

[
log(1− z)

1− z

]
+

}
.

(2.106)

As it is aspected the quadratic pole has been removed, this means that the infrared
divergence have been canceled, but there are still collinear divergencies. We can
identify the quadratic pole as the infrared divergence because the soft limit imply
the collinear one, then we have a pole of degrees two. The collinear divergence
can be absorbed in the PDF as the factorization theorem states. This operation
is similar to the procedure of the renormalization of the coupling constant, i.e. a
renormalization scheme is needed. In this context is used the MS scheme because
it works well with the dimensional regularization. The dimensional regularization
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produces extra universal constant that we link to the divergent part in order to do
not get their contribution in the finite part.

Defining;

Pqq(z) = CF

(
1 + z2

[1− z]+
+

3

2
δ(1− z)

)
(2.107)

Dq(z) = CF

[(
2

3
π2 − 8

)
δ(1− z) + 4(1 + z2)

[
log(1− z)

1− z

]
+

− 2
1 + z2

1− z log z

]
, (2.108)

where Pqq(z) is the Altarelli-Parisi splitting function. The hadronic energy distribu-
tion follows;

z
dσ

dz
=
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa(x1)fb(x2)σ0(x1x2s)
e2
q

3
×

×
{
δ(1− z) +

αs
2π
Dq(z)− αs

π
Pqq(z)

[
1

ε
+ log

(
µ2

M2

)]}
. (2.109)

Where µ2 is taken in the MS scheme, thus it is convenient to change the definition
of the energy reference scale, µ2 → 4πµ2/eγE .

The first and the last terms in the curly brackets can be taken together to rede-
fine the PDF giving to it a dependence on the scale of the process; in fact, neglecting
the O(α2

s) terms, it is possible to rewrite the PDF as follows,

fq(x1,M
2/µ2) = fq(x1)− αs

2π

[
1

ε
+ log

(
µ2

M2

)]
Pqq(z)fq(x1) +O(α2

s), (2.110)

With this two definition the Drell-Yan energy distribution has a form similar to the
one of the parton model with some little but important differences. The energy
distribution in terms of the variable τ and “renormalized” PDF, reads;

τ
dσ

dτ
=
∑
q

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

fq(x1,M
2/µ2)fq̄(x2,M

2/µ2)σ0(x1x2s)
e2
q

3
×

×
[
δ

(
1− τ

x1x2

)
+
αs
2π
Dq

(
τ

x1x2

)]
. (2.111)

In this form the cross section is safe from divergences and can be used to predict
events. Anyway the “renormalized” PDF now depends on the scale chosen to study
the process, this means that the scaling property is violated. However the way QCD
effects break the scaling is not dangerous in fact, QCD effects add mass dependence
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through logarithms of the ratio of M2 and µ2 but since there is no constrain on the
choice of the scale µ2 it can be chosen high enough to preserve the asymptotically
freedom property of QCD. Inside the renormalized PDF there is the contribution of
the long distance interaction, but more important, the renormalized PDF has the
same form of the one obtained in the DIS; this prove the universality of the PDF,
i.e. the independence of the PDF from the process under study, as stated from the
factorization theorem. Unfortunately there is still no way to calculate it by first
principle, the only way is to get it in a phenomenological way. However QCD can
predict very well the short distance interaction through the perturbative approach;

σ̂ = σ̂0 +
αs
2π
σ̂1 +

(αs
2π

)2

σ̂2 + . . . . (2.112)

We can recognize the first two terms in this expression as the correction to the Born
cross section in the expression (2.111);

τ
dσ̂0

dτ
= σ0(x1x2s)

e2
q

3
; (2.113)

τ
dσ̂1

dτ
= σ0(x1x2s)

e2
q

3
Dq

(
τ

x1x2

)
. (2.114)

The coefficients for the perturbation series of the partonic cross section are not easy
to obtain cause the multitude of process due to the self-interaction of the gluons
in fact, for the for the Drell-Yan rapidity distribution these are known up to the
NNLO. The expression for the NNLO has been calculated in the article [17] but
they are not reporter here because of their length.

To sum the real and virtual contribution of the rapidity distribution it is impor-
tant that the two expression are consistent each other, i.e. the divergencies must be
expressed in the same formalism to make the cancellation possible; thus it is useful
to let them manifest as poles in the real contribution. The virtual contribution has
already the divergencies in that form.

To write the (2.99) in a more practical form it is convenient to write the double
differential cross section in terms of the variable;

v =
1 + cos θ

2
, (2.115)

that reads;

z
d2σ̂R

dzdv
=σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

1

Γ(1− ε)

(
4πµ2

M2

)ε
×

× zε
[

(1 + z2)− (1− z)2ε

(1− z)1+2ε
v−1−ε(1− v)−1−ε − 2(1− z)

]
, (2.116)

where θ is the angle between the direction of the partons and the virtual photon.
The rapidity can be written as function of this variable because the third component
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of the virtual photon is Q3 = |Q| cos θ, where |Q| =
√
ŝ(1−z)/2. The rapidity reads;

y =
1

2
log t, where t =

z + (1− z)v

1− (1− z)v
. (2.117)

To simplify the notation it is convenient to use the variable t instead of y.
We can now perform the integration of the equation (2.116) over the v variable

adding the constrain of the rapidity to get the final expression in terms of it. The
equation (2.116) became;

z
d2σ̂R

dzdt
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

1

Γ(1− ε)

(
4πµ2

M2

)ε
×

×
∫ 1

0

dv δ

(
t− z + (1− z)v

1− (1− z)v

)
zε
[

(1 + z2)− (1− z)2ε

(1− z)1+2ε
v−1−ε(1− v)−1−ε − 2(1− z)

]
,

(2.118)

The term v−1−ε(1− v)−1−ε can be expressed using the plus distribution as follows;

1

v1+ε(1− v)1+ε
=

1

v1+ε(1− v)ε
+

1

vε(1− v)1+ε

=− 1

ε
δ(v) +

1

[v]+
− ε
([

log v

v

]
+

+
log(1− v)

v

)
+ (v ↔ (1− v)).

(2.119)

When the rapidity constrain is multiplied by the δ(1−z) we get a delta independent
of v, δ(t− z); this happen specially for the terms:[

log v

v

]
+

+

[
log(1− v)

1− v

]
+

+
1

ε

(
1

[v]+
+

1

[1− v]+

)
, (2.120)

that gives zero contribution, and for the terms

log(1− v)

v
+

log v

1− v , (2.121)

that integrated gives −π2/3.
Finally we get the real part of the rapidity distribution with the divergences

expressed as poles of ε,

z
d2σ̂R

dzdt
= σ0(ŝ)(1− ε)e

2
q

3

αs
2π
CF

1

Γ(1− ε)

(
4πµ2

M2

)ε [
− 2

1 + z

(1 + t)2
+

+

(
δ(t− z) + δ

(
t− 1

z

))(
δ(1− z)

(
1

ε2
+
π2

3

)
− 1

ε

1 + z2

[1− z]+
− 1 + z2

1− z log z+

+2(1 + z2)

[
log(1− z)

1− z

]
+

+ 1− z
)

+
1 + z

(1 + t)2

1 + z2

[1− z]+

([
1 + t

t− z

]
+

+

[
1 + t

zt− 1

]
+

)]
.

(2.122)
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It is possible now to write down the total double differential partonic cross section
adding to the (2.122) the virtual and the Born terms (2.74),

z
d2σ̂

dzdt
= σ0(ŝ)(1− ε)e

2
q

3

{
δ(1− z)δ(1− t) +

αs
2π
Dq(z, t)

− αs
2π
Pqq(z)

[
1

ε
+ log

(
µ2

M2

)](
δ(t− z) + δ

(
t− 1

t

))
,

}
(2.123)

where and µ2 it is expressed in the MS scheme while Dq(z, t) is:

Dq(z, t) = CF

(
δ(t− z) + δ

(
t− 1

z

))(
δ(1− z)

(
π2

3
− 4

)
+ 2(1 + z2)

[
log(1− z)

1− z

]
+

−

− 1 + z2

1− z log z + 1− z
)

+
1 + z

(1 + t)2

1 + z2

[1− z]+

([
1 + t

t− z

]
+

+

[
1 + t

zt− 1

]
+

)
−

− 2
1 + z

(1 + t)2
. (2.124)

The divergent part has the same form of the more inclusive case exposed above. i.e.
the mass invariant distribution; thus, for the factorization theorem, also in case it
can be absorbed in the PDF to get a finite result. In this way the rapidity distri-
bution for the finite hadronic cross section can be integrated over the variables z
and v instead of x1 and x2 performing a simple change of variables and expressing
the double differential hadronic cross section as function of the hadronic variables
τ = M2/s and T , the logarithm of the hadronic rapidity, that are:

T =
x1

x2

t , τ = zx1x2 ⇒


x1 =

√
τT
zt

x2 =
√

τt
zT

(2.125)

where T is the hadronic rapidity. Than the double differential hadronic cross section
reads;

2τT
d2σ

dτdT
=
∑
q

∫ 1

τ

dz

z

∫ 1/z

z

dt

t
fq(x1,M

2/µ2)fq̄(x2,M
2/µ2) σ0

(τ
z
s
) e2

q

3
×(

δ(1− z)δ(1− t) +
αs
2π
Dq(z, t)

)
. (2.126)

Also, in this case, it has been possible to put the divergences in the PDF to get a
finite result, and the finite perturbative correction modifies the leading order parton
model cross section.
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We did not consider every possible diagram at this order in fact, the partons
from the hadrons can not only be a pair of quark-antiquark states but they can also
be gluonic states; then partonic process like qg → γ∗g are possible to happen and
must be taken into account. The reason why we did not expose its calculation is
because that processes at this order do not present any infrared singularity, they
only produce collinear singularity that are innocuous since we are free to redefine the
PDFs. The infrared singularity is not so innocuous because the cancellation between
the real and virtual contribution left their trace in a finite contribution expressed
terms of logarithms of the radiated gluons energy. This terms, when we approach to
the threshold region (z ∼ 1), i.e. when the energy of the radiated gluons goes to zero,
can became sufficiently large to spoil the perturbative aspect of the series making the
perturbative approach unreliable. For this reason we have focused out attention on
the calculation of the quark-antiquark annihilation to understand how these terms
arise. In the expression (2.124) we can identify this term by [log(1− z)/(1− z)]+.

It is interesting to note that in processes that involved initial gluonic state there
are not only the absence of soft singularities but also this kind of processes at this
order do not present virtual correction, unlike the annihilation of a quark-antiquark
pair. The virtual contribution is needed to cancel the soft singularities if these
are present; if they are not present also the virtual diagram will not be. Usually
the number of bremsstrahlung process and the virtual process at a certain order
compensate each other to perform a complete cancellation of the soft singularity,
leaving their trace as large logarithmic terms.

We do not show the entire calculation to get the initial gluon states contribution
but we just give the form of the finite part and the equivalent of the Altarelli-Parisi
splitting function for the quark-antiquark process that will be added to the redefi-
nition of the PDF in a similar way we do with Pqq. The finite part is:

D(1)
g (z, t) = δ(t− z)

[(
z2 + (1− z)2

)(
log

(1− z)2

z

)
+ 2z(1− z)

]
+

+
1 + z

(1 + t)2

(
z2 + (1− z)2

) [1 + t

t− z

]
+

+
(1− z)2

1 + z
(t− z − 2z(1 + t))

(2.127)

D(2)
g (z, t) = δ

(
t− 1

z

)[(
z2 + (1− z)2

)(
log

(1− z)2

z

)
+ 2z(1− z)

]
+

+
1 + z

(1 + t)2

(
z2 + (1− z)2

) [ 1 + t

zt− 1

]
+

+
(1− z)2

1 + z
(zt− 1− 2z(1 + t)) .

(2.128)

In this case, we have two finite contributions because we are considering that the
initial gluonic state can came both from the first hadron or from the second. In the
parton model formula the two contribution must be multiplied to the correct PDF:

∑
a

∫ 1

0

dx1

∫ 1

0

dx2(fg(x1)fa(x2)D(1)
g (z, t) + fa(x1)fg(x2)D(2)

g (z, t)). (2.129)

The gluon splitting function is:
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Pqg = TF
[
z2 + (1− z)2

]
(2.130)

where TF = 1/2 is got mediating over the possible initial gluon.
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Chapter 3

Resummation

In the previous section has been shown how the cancellation procedure of the soft
and collinear divergencies leaves terms that grow like double logarithms. Espe-
cially in the threshold region, these terms can produce a significant contribution,
thus breaking the perturbative treatment of the series. This happens because the
cancellation of the soft divergence, get by adding the real and virtual contribution
together is unbalanced at the threshold energy regime, i.e. when the collision is
near the elasticity (z → 1) and the soft real emission is strongly suppressed, such
that the virtual term gives space to large contribution. An all order resummation of
these large logarithms is necessary to obtain accurate predictions for the experiments
thus, in this section, we will review the main step to building up the resummation
formula enlightening the main problem and difficulties. A lot of literature is present
on this subject, see for example two milestone articles [1, 2]. The all order resum-
mation formula has been used in many different processes and situations confirming
its validity.

The terms that produce such large correction are of the form αnS[logm(1−z)/(1−
z)]+ with m ≤ 2n − 1. It is not possible to find an explicit resummed formula of
these logarithm in the physical z-space because it is not possible to factorize the
phase space, while it can be naturally factorized in the Mellin moment space (or
N -space). We will show that in this space the resummation is straightforward. In
the Mellin space the large logarithms in z become large logarithms in N for which
the threshold limit is recovered by pushing N to infinity. This limit permits us
to neglect sub-leading terms simplifying the exponentiation formula and giving an
easier expression with which go back in the z space. An important problem of the
resummed expression is that its inverse does not exist because of the presence of
the Landau singularity. To circumvent this issue, a well-defined prescription must
be used when we go be to the physical space. The main prescription used is the
minimal prescription (MP) proposed in the article [5] by Catani and Trentadue, that
consist on setting the real value of N at which we go back to the z space between
the rightmost singularity before the Landau pole and the Landau pole itself; in this
way the resummed formula in the z space do not diverge and, if we truncate the
series, the error done neglecting higher order terms is suppressed by a factor that is
stronger than any power suppression.

63
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3.1 Drell-Yan Resummation Formula

To build up a resummation formula for the Drell-Yan process let is start considering
the partonic annihilation process with a single gluon emission;

q(p̂1) + q̄(p̂2)→ γ∗(Q) + g(k), (3.1)

in the limit of soft emission the matrix element can be obtained from equation (2.75)
setting k → 0, then we have:

Mµ(p̂1, p̂2; k,Q) = −igseeqtAv̄(p̂2)γµu(p̂1)

[
p̂ρ2
p̂2k
− p̂ρ1
p̂1k

]
ε∗ρ(k)

= gst
AMµ

0(p̂1, p̂2;Q)Jρ(p̂1, p̂2; k)ε∗ρ(k), (3.2)

whereMµ
0(p̂1, p̂2;Q) is the Born level matrix element and Jρ(p̂1, p̂2; k) is the eikonal

current. It is called eikonal because we are describing the emission of n-gluons like
n copies of the single emission. We can see from the Eq. (3.2) the contribution of
the soft emission perfectly factorizes the Born cross section, this feature is very im-
portant because it is true at every perturbative order, in fact, for a generic multiple
soft emission with n final soft gluons we have;

Mµ
n(p̂1, p̂2;K, kn, Q) = gst

Av̄(p̂2)

[
S̃µn−1(p̂1, p̂2;K,Q)

/̂p1 − kn
(p̂1 − kn)2

γρn−

− γρn /̂p2 − kn
(p̂2 − kn)2

S̃µn−1(p̂1, p̂2;K,Q)

]
u(p̂1)ε∗ρn(kn)

= gst
AMµ

n−1(p̂1, p̂2;K,Q)Jρn(p̂1, p̂2; kn)ε∗ρn(kn), (3.3)

where v̄(p̂2)S̃µn−1(p̂1, p̂2;K,Q)u(p̂1) =Mµ
n−1(p̂1, p̂2;K,Q) that take into account the

matrix element for the emission of n − 1 soft gluons. Then the square matrix ele-
ment for the emission of n soft gluons, summed over the final gluons polarization
and mediating over the initial quark color, is:

|Mn(p̂1, p̂2;K, kn, Q)|2 =
4

3
g2
s |Mn−1(p̂1, p̂2;K,Q)|2J2(p̂1, p̂2; kn)

=
4

3
g2
s |M0(p̂1, p̂2;Q)|2

n∏
i=1

J2(p̂1, p̂2; ki) (3.4)

where the sum over the n-th gluon polarization has been taken in the same way as in
the previous section, see Eq. (2.76), and K =

∑n−1
i=1 ki is the total momentum of the

more internal soft gluons emitted. From Eq. (3.4) we can see that the probability
of the emission of n soft gluons is the probability of zero gluon emission times the
squared eikonal current for each gluon and since they do not change the color state
of the emitting particle and are soft, the probability emission of n soft gluons from
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p̂

z1p̂ z1 . . . znp̂

(1− z1)p̂ (1− z2)z1p̂ (1− zn)z1 . . . zn−1p̂

Figure 3.1

a single line can be written as

σ0dWn(K) = |Mn(p̂1, p̂2;K,Q)|2dΦn(K) ' σ0

n!

n∏
i=1

dW1(ki), (3.5)

where dW1(k) is the one soft gluon emission differential probability, and the factor n!
is needed not to overcount the possible final gluons state configuration, i.e. identical
boson states. Eq. (3.5) is very useful because we need to know only the single
soft emission diagram, but it still presents some difficulties, in fact, the phase space
constrain of n final soft gluons it is not obvious and easy to work with.

In the semi-inclusive case where we are interested only on the energy distribution
then the phase space constraint can be written as [1],

δ
(
Q2 −M2

)
= δ

(
(p̂1 + p̂2 −K)2 −M2

) ki→0' δ(z − z1 . . . zn), (3.6)

where z = M2/ŝ and zi is the fraction of the parton energy after the emission of the
i-th soft gluon, as shown in Figure 3.1.

A method to simplify the phase space (3.6) is to work directly in the Mellin
moment space, in fact the transform of the phase space constraint is,∫ 1

0

dz zN−1δ(z − z1 . . . zn) = zN−1
1 . . . zN−1

n . (3.7)

The factorization of the phase space together with the factorization of the n soft
gluons emission differential probability permits us to write the partonic cross section
for the emission of n soft gluons in the Mellin moment space, i.e.

W (N,αs) =

∫
zN−1dWn(K,αs) =

[
1 +

1

n!

∞∑
n=1

(∫
dW1(k, αs)z

N−1

)n]

= exp

{∫
dW1(k, αs)z

N−1

}
. (3.8)

In this space has been possible to get a simple expression to resum the multiple soft
gluons emission studying only the case of single emission. Other step must be done,
in fact, dW1(k) has an infrared singularity that can be removed by adding the con-
tribution of the virtual diagram and thanks to the exponentiation and factorization
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of the single emission it is enough to study what happen at the NLO1.

At the first perturbative order the virtual contribution in the soft limit is,

Mµ
V (p̂1, p̂2;Q) = −igstAMµ

0(p̂1, p̂2;Q)

∫
d3k

(2π)3
dk0 p̂1p̂2

k2(p̂1k)(p̂2k)

= gst
AMµ

0(p̂1, p̂2;Q)

∫
d3k

(2π)32k0

[
p̂1p̂2

(p̂1k)(p̂2k)
− 2k0

k3|kT |2
]
, (3.9)

where the second integrand of the last expression is a pure imaginary term that
cancel when we take the square modulus of the amplitude, while the first one is
exactly the opposite of the integrated squared eikonal current, that is,

J2(p̂1, p̂2; k) = − p̂1p̂2

(p̂1k)(p̂2k)
. (3.10)

Collecting the soft and virtual contributions of the cross section we get;

σ̂(1)(z) = g2
s

4

3
σ0

∫
dW1(k)(δ(1− z)− δ(x− z)), (3.11)

whose Mellin transform gives us,

σ̃(1)(N) = −g2
s

4

3
σ0

∫
dW1(k)(xN−1 − 1), (3.12)

and the one gluon soft emission differential probability is,∫
dW1(k) = −

∫
d3k

(2π)3k0

p̂1p̂2

(p̂1k)(p̂2k)
= − 1

π

∫ 1

0

dz
1

1− z

∫ (1−z)M2

µ2
F

dq2

q2
, (3.13)

where has been introduced an infrared cut-off (µ2
F ) for the virtuality of the parton

after the emission of the gluon and we have performed the variable change with the
following relations,

k3 =
ŝ

4
(1− z)

√
1− 2(1− z)

q2

ŝ
' ŝ

4
(1− z)

(
1− (1− z)

q2

ŝ

)
(3.14)

q2 = (p̂i − k)2 ' k2
T

1− z . (3.15)

We used the soft limit such that k2
T/(1− z)2 � 1.

1The possibility to see only what happen at the first perturbative order it is not a theorem but
a suggestion to understand how to resum the large contribution, in fact, at higher perturbative
order are present a lot of diagrams that are not taken into account by this procedure but they are
indispensable to fix the coefficients of the higher logarithmic order.
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Finally a complete all order resummation in the N -space is done and we have,

σ̃(N) = σ0 exp

{
αs

8

3π

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)M2

µ2
F

dq2

q2

}

= σ0 exp

{
αs

8

3π

∫ 1

0

dz zN−1

([
log(1− z)

1− z

]
+

+
1

[1− z]+
log

M2

µ2
F

)}
. (3.16)

The equation (3.16) show that the probability of soft emission produce exactly the
large logarithm behavior we are looking for. It is the same we identified at the end
of the previous chapter as the one that breaks the perturbative aspect of the series
in the soft limit. Solving the integrals in the (3.16) we can see that large logarithms
in the z space became large logarithms in the N space, in fact,∫ 1

0

dz zN−1

[
log(1− z)

1− z

]
+

=
1

2

(
ψ

(0)2
N + 2γEψ

(0)
N − ψ

(1)
N + ζ(2) + γ2

E

)
, (3.17)

∫ 1

0

dz zN−1

[
1

1− z

]
+

= −
(
ψ

(0)
N + γE

)
, (3.18)

where ψ
(n)
N is the polygamma function, that in the large N limit became,

σ̃(N) = σ0 exp

{
αs

4

3π

(
log2N + 2

(
γE − log

M2

µ2
F

)
logN + ζ(2) + γ2

E

)}
. (3.19)

In Ref. [18] is showed that in the large N limit the integrals like (3.17) and (3.18) can
be computed in the NLL approximation by the change zN−1−1→ −θ(1−N0/N−z)
where N0 = e−γE , in fact we can see from the (3.17);

−
∫ 1−N0/N

0

dz
log(1− z)

1− z = log2

(
N0

N

)
= log2N + γ2

E + 2γE logN, (3.20)

that the correct logarithmic forms has been produced. This method can be gen-
eralized to any logarithmic accuracy by adding a new term in the change exposed
above, that is as follows,

zN−1 − 1→ −Γ

(
1− ∂

∂ logN

)
θ(1− 1/N − z) +O

(
1

N

)
(3.21)

with,

Γ

(
1− ∂

∂ logN

)
= 1 + γE

∂

∂ logN
+

1

2

(
γ2
E + ζ(2)

)( ∂

∂ logN

)2

+
1

6

(
γ3
E + 3γEζ(2) + 2ζ(3)

)( ∂

∂ logN

)3

+ . . . , (3.22)

where each term of the series represent a logarithmic accuracy, i.e. the first term
represents the LL, the second represents the NLL, the third represents the NNLL
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and so on. As example we can see that the expansion (3.22) produce all the terms
got from the direct calculation of the (3.17), i.e.

− Γ

(
1− ∂

∂ logN

)∫ 1−1/N

0

dz
log(1− z)

1− z =
1

2

(
log2N + 2γE logN + ζ(2) + γE

)
.

(3.23)

The expression (3.16) is complete for the massless QED; than the only way large
logarithms can arise is through soft emission from external fermionic legs; in the case
of QCD the situation is more intricate because the self interaction of the gluons that,
at any order, can produce sub-leading terms, i.e. like αns logm(1 − z)/(1 − z) with
m ≤ n. The expression (3.16) can be generalized including the running coupling
effect [19] to resum also the less dominant power of logN getting the well-known
resummed partonic cross section;

σ̃res(N,αs) = σ0 exp

{
2

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)M2

µ2
F

dq2

q2
A
(
αs((1− z)q2)

)
+ 2

∫ 1

0

dz
zN−1 − 1

1− z B
(
αs((1− z)M2)

)}
, (3.24)

where the function A(αs) is the anomalous cusp dimension and it is an intrinsic
function of the soft gluons emission, i.e. it is universal, and B(αs) is a process de-
pendent function. Both functions are expressed as power series of αs and reads;

A(αs) =
∞∑
n=0

(αs
π

)n
A(n),

A(1) =
4

3
, A(2) = 2

(
67

18
− π2

6

)
− 10

9
nf ,

A(3) = 28

[
9

(
245

24
− 67

54
π2 +

11

6
ζ(3) +

11

180
π4

)
− 4

3
nf

(
55

24
− 2ζ(3)

)

+3nf

(
10

54
π2 − 209

108
− 7

3
ζ(3)

)
− n2

f

(
1

27

)]
,

B(αs) =
∞∑
n=0

(αs
π

)n
B(n). (3.25)

The expression (3.24) can be written in a more convenient form using the beta func-
tion and the (3.22); then we can write,
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log
σ̃res(N,αs)

σ0

= 2Γ

(
1− ∂

∂ logN

)[∫ 1

1/N

dz

z

∫ zM2

µ2
F

dq2

q2
A
(
αs(zq

2)
)

+

∫ 1

1/N

dz

z
B
(
αs(zM

2)
) ]

= 2Γ

(
1− ∂

∂ logN

)[∫ αs(M2)

αs(M2/N)

dα′

α′β(α′)

∫ α′

α′(µ2
F )

dα

αβ(α)
A(α)+

+

∫ αs(M2)

αs(M2/N)

dα

αβ(α)
B(α)

]
= Φ(λ, αs), (3.26)

where λ = αsβ0 logN and Φ(λ, αs) is the resummed function that can be expressed
as a series of αs in the following way,

Φ(λ, αs) = logNg1(λ) +
∞∑
n=0

αns gn+2(λ). (3.27)

The function gi(λ) are known up to the fourth order. In a more conventional form
the (3.26) it is written as;

σ̃res(N,αs) = σ0e
Φ(λ,αs). (3.28)

It is important to point out that in this way we are trying to predict the form, at
least in the Mellin space, of the terms that make the series a divergent one in the z
space; but since we are not able to know exactly the form of each perturbative order
and we are limited in the knowledge of just few of it there is somewhat freedom in
the choice on which terms keep and which not. Different choice are called prescrip-
tion and the most famous one is the minimal prescription, exposed in the article [1],
that we are going to expose in the next section. However the resummed cross section
is an approximation of the series studied via Feynman diagrams method then if we
are able to know the fixed order solution of a certain process it is wise to combine
knowledge of an exact expression with our ability to predict large contribution at all
orders with the resummation formula subtracting from the resummed formula the
exactly known perturbative order. The combination of the two contribution gives
the following partonic cross section;

σ̃N
kLL+NpLO(N,αs) = σ̃res(N,αs) +

p∑
j=0

(αs
π

)j
σ̃j(N)−

p∑
j=0

αjs
j!

[
djσ̃(N,αs)

dαs

]
αs=0

,

(3.29)

where the NkLL approximation it is provided by the expansion of the function
A((1− z)q2) until the αks and the function B((1− z)M2) the order αk−1

s .
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3.2 Minimal Prescription

From the equations (3.24) we can note the first problem of the N space resummation
formula, i.e. the integration of both integrals hit the Landau pole at z = 1−Λ2/M2

making σ̃res(N,αs) divergent for everyN , however if we take the resummed exponent
in the form (3.27) we have a finite expression that is divergent up to the very large
point NL = exp{1/(2αsβ0)}. To give an idea of the magnitude of NL we have for
the coupling evaluated at the Z-boson energy scale, αs(MZ) ' 0.118 and with 5
flavor activated, NL ' 1038.

The branch-cut present in (3.27) is due to the simplification zN−1− 1→ −θ(1−
z − 1/N) with which we have exluded the Landau pole from the integration for
N < NL. We must underline that using the theta function we are neglecting sub-
leading terms in the large-N limit and then the finiteness of the (3.27) means that
the divergences in (3.24) are due to sub-leading terms that are removed by other of
the same nature who are themselves sub-leading in the large-N limit.

The branch-cut along the positive real axis of the N -plane that go from NL to∞
is due to the dependence on N through αs(M

2/N) of the resummed exponent, as we
can see from the expression (3.26), which expansion in power of αs(M

2) converges
only for N < NL. This means that σ̃res(N,αs) has no convergence abscissa and
then it can not be the Mellin transform of any function, nevertheless if we expand
the σ̃res(N,αs) in power of αs(M

2) we can perform the inverse transform, terms
by terms, because they are simply polynomials of logN . Hence the partonic cross
section in the z-space can be written as,

σ̂res(z, αs) =
∞∑
n=0

(αs
π

)n
σ̂n(z), (3.30)

where,

σ̂n(z) =

∫ N̄+i∞

N̄−i∞

dN

2πi
z−N σ̃n(N), (3.31)

and σ̃n(N) the coefficients of the expansion in αs(M
2) of σ̃res(N,αs). At this point

another problem arise, the series (3.30) do not converge because the terms (3.31)
integrated with the PDF provides the hadronic cross section with a factorial growing
behavior [5], it can not be possible because it must be finite. To give an example
we can take the double logarithm approximation, i.e. Φ(λ) = αs log2N , then the
partonic cross section in the z-space is,

σ̂res(z, αs) =

∫
dN

2πi
z−Neαs log2N = − d

dx

(
θ(1− x− ε)eαs log2(1−z)

)
+ NLL, (3.32)

a complete derivation of this formula can be found in the article [5], then the total
cross section is,

σres(τ, αs) =

∫ 1

τ

dz eαs log2(1−z) d

dz
L
(τ
z

)
, (3.33)
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where,

L(z) =

∫ 1

z

dx

x
f
(z
x

)
f(x), (3.34)

is the luminosity. The expression (3.33) is divergent for every τ because the expo-
nential diverge faster then any power when z → 1 and if we expand the total cross
section in power of αs we can see that the series has a factorial divergence, in fact,
since L(z) is a smooth function in z ' 1 the nature of the divergence is totally
encoded in the exponential, thus for sake of example we can see that the integral of
the exponential only has a factorial divergence, i.e.∫ 1

0

dz eαs log2(1−z) =
∞∑
n=0

αns
n!

∫ 1

0

dz log2n(1− z) =
∞∑
n=0

αns (2n)!

n!
, (3.35)

that is an asymptotic series that for large n grows like (4αs)
nn!. The only way to

deal with an asymptotic series is to truncate it when the next term is of the same
size of the current one. In the article [5] is shown that the same result that one get
truncating the series can be achieved insterting an unphysical cut-off in the upper
bound of integration.

The factorial growth has nothing to do with IR renormalon, that cause the same
growth in the perturbative expansion, indeed this situation is not possible since
the physical cross section must be finite. Conceptually this problem reflect that a
complete resummation of the large logarithms in the z-space is impossible cause the
conservation of momentum, that factorize in the Mellin space, but when we try to go
back to the physical space, i.e. the z-space, we are forcing the resummed expression
in the N -space to became a resummed expression in the z-space, this operation
violates the conservation of the momentum infinite times giving a divergent results.
To be more specific the factorial growth in the physical result arise because in
the expression (3.26) we have neglected sub-leading terms, that kept, would have
produced factorial growing terms necessary to cancel the the one produced by the
dominant logarithms. It is then important to underline that a good resummation
program does not only have to give a complete resummed form but it also have to
deal with these other problem that arise when we try to go back to the physical
space, and make sure that the precision of the prediction must not be so much
influenced by the choice of the logarithmic accuracy.

A way to handle sub-leading terms such that the hadronic cross section is finite
is exposed in the article [5], where Catani et al. show that

σ(τ, αs) =
1

2πi

∫ C+i∞

C−i∞
dN τ−Nf 2

N σ̃res(N,αs)

=
1

2πi

∞∑
n=0

αns

∫ C+i∞

C−i∞
dN τ−Nf 2

N Pn(logN), (3.36)

where Pn(logN) are the polynomials of logN , is convergent if C is taken at left of
the Landau pole NL and at right of all the other singularities. They also show that
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in that strip of convergence no spurious factorial growing term are produced and
the error of truncating the expansion at the minimum, cause it is an asymptotic
expansion, is of order

e−H
M(1−τ)

Λ (3.37)

where H is a slowly varying positive function. It is interesting to note that when
M(1−τ)→ Λ the argument of the exponential approaches to 1, that means that the
mass of the radiation is approaching the Landau energy Λ spoiling the perturbative
treatment of the problem as we would expect.

Also with this prescription it is very hard or quite impossible to fine an explicit
resummed formula in the physical space, then the only way to get σ(τ, αs) is by
numerical computation.

This prescription is widely used to implement the threshold effects in fixed order
prediction for different process like, for example, the Drell-Yan process, Jet cross
section, heavy flavor cross section.



Chapter 4

Resummation of the Rapidity
Distribution

In the previous section we have shown how to include the contribution of the loga-
rithmically enhanced terms that are present at any order for the semi-inclusive cross
section and the related problems that arise in the conversion of the Mellin transform,
which can only be performed on the basis of some prescription.

In this Chapter, we consider the resummation for the double semi-inclusive Drell-
Yan cross section in the energy and rapidity variable. We will study two different
way to approach the problem. The two main way are exposed in the articles [4, 20].
The main difference between the two approaches lies in the conjugated space where
the large logarithms are resummed. In the first article a Mellin-Fourier transform
of the partonic cross section is performed, with respect to the variables z and y,
respectively the energy fraction of the virtual photon or Z boson and the rapidity
of the pair in the partonic center-of-mass frame, as defined in (2.12), while in the
second article a double Mellin transform in x1 and x2, the momentum fractions
carried by the incoming partons, is performed.

4.1 Double Mellin Transform Resummation

In Ref. [3] the authors present a new way to get a general resummed formula; the
method was developed for the first time in Ref. [21, 22], while in Ref. [3] it is
extended to less inclusive processes. In this section we review the main steps of
their way to build a resummed formula.

In the approach of Ref. [3] the partonic cross section is written in terms of the
variables z1 and z2, defined as:

z1 =

√
x0

1

x1

eY (4.1)

z2 =

√
x0

2

x2

e−Y , (4.2)

where τ = x0
1x

0
2 and Y = log

√
x0

1/x
0
2. With these variables the threshold region

corresponds to zi → 1, with i = 1, 2. This method is based on the use of the

73
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renormalization group invariance of certain quantities, mass factorization and the
resummation concepts exposed in the previous chapter as guiding principles. An
interesting point is that they work directly in d = 4 + 2ε dimensions, i.e. in the
dimensional regularization scheme; this choice permits to work with ordinary func-
tions, avoiding the ambiguities that can arise by the direct use of distributions,
especially if with more than one variable.

The differential cross section for the Drell-Yan process has the well known form:

d2σ

dτdY
(x0

1, x
0
2,M

2) = σ̂0(x0
1, x

0
2)
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa(x1, µ
2
F )fb(x2, µ

2
F )×

×
∫ 1

0

dz1

∫ 1

0

dz2 δ(x
0
1 − x1z1)δ(x0

2 − x2z2)∆d(z1, z2,M
2, µ2

F , µ
2
R),

(4.3)

where µF is the factorization scale. It is called factorization scale because it takes
into account the energy separation between the short distance part and the long dis-
tance one that are factorized in these processes; while µR is the scale dependence that
arises from the renormalization procedure. In (4.3), ∆d(z1, z2,M

2, µ2
F , µ

2
R) represents

the partonic differential cross section; the subscript “d” is for doubly differential (as
in the case of the energy-rapidity distribution).

To get an infrared safe hadronic cross section also the partonic cross section must
be. In Chapter 2 it has been shown that an infrared safe result can be obtained
by summing the real and virtual contributions. The partonic cross section can be
written separating the contribution from the soft and virtual (SV ) part as follows:

∆d(z1, z2,M
2, µ2

F , µ
2
R) = ∆hard

d (z1, z2,M
2, µ2

F , µ
2
R) + ∆SV

d (z1, z2,M
2, µ2

F , µ
2
R), (4.4)

where the hard part contains everything that it is not generated by the cancellation
between the real and virtual contributions, while the SV part is the subject of the
resummation procedure that we are going to discuss. In the articles [23, 24] it is
shown how to get the hard part by direct calculation of the fixed orders. It is well
known that the resummed formula of the large logarithmic terms has an exponential
form in the conjugated space; then we ask for the the soft and virtual part of the
partonic cross section to have the following form:

∆SV
d (z1, z2,M

2, µ2
F , µ

2
R) = C exp

{
Ψd(z1, z2,M

2, µ2
F , µ

2
R, ε)

} ∣∣∣
ε=0
, (4.5)

where ε is the dimensional regularization parameter, while C means convolution, i.e.

Cef(z1,z2) = δ(1− z1)δ(1− z2) +
∞∑
n=1

1

n!

[
n⊗
i=1

f(z1, z2)

]
, (4.6)

with the outer product as the double Mellin convolution product, see Eq. (1.105),
i.e. the functions convoluted with respect to the variables z1 and z2 separately. After
the limit ε → 0 is taken, the function Ψd(z1, z2,M

2, µ2
F , µ

2
R, ε) is a combination of

distributions of the type δ(1 − zi) or [logn(1− zi)/(1− zi)]+. This choice is due to
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the fact that the delta distributions are always present for phase space constrains
while the plus distributions of those functions must be taken into account because
they are the responsible for the logarithms enhancement.

The function Ψd(z1, z2,M
2, µ2

F , µ
2
R, ε) has four different contributions that can

be written as follow

Ψd(z1, z2,M
2, µ2

F , µ
2
R, ε)=

[
log
(
Z(α̂S, µ

2, µ2
R, ε)

)2
+ log

(
F̂ (αS,M

2, µ2, ε)
)2
]
×

× δ(1− z1)δ(1− z2) + 2Φd(α̂s,M
2, µ2, z1, z2, ε)−

− C log Γqq(α̂s, µ
2, µ2

F , z1, ε)δ(1− z2)−
− C log Γqq(α̂s, µ

2, µ2
F , z2, ε)δ(1− z1), (4.7)

where α̂s is the bare coupling constant and

◦
∣∣F̂ (αS,M

2, µ2, ε)
∣∣2 is the bare squared form factor of the the Drell-Yan process,

◦ Z(αS, µ
2, µ2

R, ε) is the overall operator renormalisation constant, which, for
lepton pair production, is unitary,

◦ Φd(αs,M
2, µ2, z1, z2, ε) is the soft distribution function, free of collinear singu-

larities; all the logarithmic enhancement is contained in this term,

◦ Γqq(αs, µ
2, µ2

F , zi, ε) is the mass factorization kernel in the MS scheme. This
function factorizes the collinear singularity; the qq subscript refers to the Drell-
Yan process with a quark-antiquark pair in the initial state.

All of these functions can be expanded in powers of the bare coupling constant,
that in the dimensional regularization scheme, i.e. in d = 4 + 2ε dimensions, can be
written as

Sεα̂s = Z(µ2
R)αs(µ

2
R)

(
µ2

µ2
R

)ε
, (4.8)

where

Sε = exp{ε(γE − log 4π)}, (4.9)

is the so-called spherical factor.
Since the bare coupling constant is independent of the renormalization scale, we

can write the renormalization group equation in d dimensions as

µ2
R

d

dµ2
R

logαs(µ
2
R) = ε− β(αs(µ

2
R))

αs(µ2
R)

. (4.10)

This relation will be crucial in the following to capture the correct singular behavior.
What we have to do now is to understand the structure of the above functions in

order to enlighten the form of the soft contribution in the Φd(α̂s,M
2, µ2, z1, z2, ε)
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function. Let us start with the form factor F̂ (α̂s,M
2, µ2, ε). Since it is non-

renormalized, it satisfies the following Sudakov-type integro differential equation:

q2 d

dq2
log F̂ (α̂S, q

2, µ2, ε) =
1

2

[
K

(
α̂s,

µ2
R

µ2
, ε

)
+G

(
α̂s,

q2

µ2
R

,
µ2
R

µ2
, ε

)]
. (4.11)

This statement follows from gauge and renormalization group invariances, as shown
in Ref. [25, 26, 27]. The function K (α̂s, µ

2
R/µ

2, ε) contains all the poles in ε while
G (α̂s, q

2/µ2
R, µ

2
R/µ

2, ε) all the terms that that are regular as ε → 0. Since the bare
form factor does not depend on the renormalization scale, the following differential
equations hold:

µ2
R

d

dµ2
R

K

(
α̂s,

µ2
R

µ2
, ε

)
= −A

(
αs(µ

2
R)
)

(4.12)

µ2
R

d

dµ2
R

G

(
α̂s,

M2

µ2
R

,
µ2
R

µ2
, ε

)
= A

(
αs(µ

2
R)
)
, (4.13)

where the function A(αs(µ
2
R)) is the cusp anomalous dimensions and can be ex-

panded in power of αs(µ
2
R):

A(αs(µ
2
R)) =

∞∑
n=0

α̂ns (µ2
R)An, (4.14)

then the equation (4.12) and (4.13) can be solved in powers of the bare coupling
constant, i.e. writing

K

(
α̂s,

µ2
R

µ2
, ε

)
=
∞∑
n=1

α̂ns

(
µ2
R

µ2

)nε
SnεKn(ε) =

∞∑
n=1

α̂ns (µ2
R)Zn(αS, µ

2, µ2
R, ε)Kn(ε).

(4.15)

For example the first term in the (4.15) is easily found; in fact, the differential equa-
tion (4.12) at the lowest order is

K1µ
2
R

d

dµ2
R

logαs(µ
2
R) = −αs(µ2

R)A1, (4.16)

and using the renormalization group equation (4.10) at the lowest order we find

K1 = −1

ε
A1, (4.17)

and as stated it contains a singular term in ε.
The function G (α̂s,M

2/µ2
R, µ

2
R/µ

2, ε) is given by

G

(
α̂s,

q2

µ2
R

,
µ2
R

µ2
, ε

)
= G(αs(q

2), 1, ε) +

∫ 1

q2/µ2
R

dλ2

λ2
A(αs(λ

2µ2
R)), (4.18)

where the finite function G(αs(q
2), 1, ε) can be expanded in powers of αs(q

2) with
coefficients Gn(ε) that are finite function of ε. Collected these two results, it is now
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possible to integrate the differential equation (4.11) and express the form factor as
a series in α̂s,

log F̂ (α̂s, q
2, µ2, ε) =

∞∑
n=1

α̂s

(
q2

µ2

)nε
Snε F̂ (n)(ε), (4.19)

where for example at the first order the coefficient F̂(ε) for the Drell-Yan process is

F̂ (1)(ε) =
1

2

[
A1

ε

(
µR
q

)2ε(∫
dλ

λ1−ε −
1

ε

)
+

1

ε
G1(ε)

]
(4.20)

The coefficients Gn(ε) can be found in Ref. [28]. They are expressed in terms of two
other functions, the first one is indicated by Bn and are flavor independent terms,
i.e. they are the same of every process; the second is indicated by fn and it is an
analogous of the cusp anomalous dimension, in fact, they are necessary to predict
the single pole of the logarithm of the form factors up to two-loop level. Finally,
even if not every value of the coefficient An, Bn, fn are known, we are able to predict
the pole structure for the form factor at every order in α̂s.

To factorize the collinear contribution is requested to find the structure of the
function Γqq(α̂s, µ

2, µ2
F , zi, ε). This function satisfies a DGLAP-like equation:

µ2
F

d

dµ2
F

Γqq(α̂s, µ
2, µ2

F , zi, ε) =
1

2
Pqq(zi, µ

2
F )⊗ Γqq(α̂s, µ

2, µ2
F , zi, ε), (4.21)

where Pqq(zi, µ
2
F ) is the Altarelli-Parisi splitting function that can be expanded as a

power series in αs(µ
2
F ):

Pqq(zi, µ
2
F ) = 2

∞∑
n=1

αns (µ2
F ) [Bn+1δ(1− zi) + An+1D0(zi)] + P (n)

qq,reg(zi), (4.22)

where it is clear thatD0(zi) gives the main collinear structure to log Γqq(α̂s, µ
2, µ2

F , zi, ε),
and the constants An and Bn are the same introduced above for the form factor.
Also in this case we give as an example the first order in αs(µ

2
F ) for the mass fac-

torization kernel:

Γqq(zi, µ
2
F , ε) = δ(1− zi) +

∞∑
n=1

αs(µ
2
F )Γ(n)

qq (z1, ε), (4.23)

where,

Γ(1)
qq (zi, ε) =

1

ε

(
2 (B1δ(1− zi) + A1D0(zi)) + P (1)

qq,reg(zi)
)
. (4.24)

It is straightforward that to get a finite and soft form for the SV part of the par-
tonic cross section the function Φd(α̂s,M

2, µ2, z1, z2, ε) must contain the terms that
will remove the non-finite and non-soft contribution arising from the other func-
tion. It must contain only the soft structure of the process then every term in
Φd(α̂s,M

2, µ2, z1, z2, ε) proportional to D0 will remove the one coming from the
mass factorization kernel.
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In Ref. [22] to study of the form of Φd(α̂s,M
2, µ2, z1, z2, ε) is required that it

must satisfy a Sudakov-type integro-differential equation as the previous one used
to study the structure of the form factor (4.11), i.e. it satisfies

q2 d

dq2
Φd(α̂s, q

2, µ2, z1, z2, ε) =
1

2

[
K

(
α̂s,

µ2
R

µ2
, z1, z2, ε

)
+G

(
α̂s,

q2

µ2
R

,
µ2
R

µ2
, z1, z2, ε

)]
.

(4.25)

Also in this case the function K (α̂s, µ
2
R/µ

2, z1, z2, ε) contains all the poles in ε while
G (α̂s, q

2/µ2
R, µ

2
R/µ

2, z1, z2, ε) has only positive powers of ε. The procedure to find
the structure of this function is the same as done for the form factor with the only
difference that in this case the K and G functions depends also on z1 and z2, then
it is asked for them to satisfy the following two renormalization group equations,

µ2
R

d

dµ2
R

K

(
α̂s,

µ2
R

µ2
, z1, z2, ε

)
= −A

(
αs(µ

2
R)
)
δ(1− z1)δ(1− z2), (4.26)

µ2
R

d

dµ2
R

G

(
α̂s,

q2

µ2
R

,
µ2
R

µ2
, z1, z2, ε

)
= A

(
αs(µ

2
R)
)
δ(1− z1)δ(1− z2). (4.27)

If Φd(α̂s, q
2, µ2, z1, z2, ε) contains the right terms to remove the poles from the other

functions, A (αs(µ
2
R)) must be the opposite of the cups anomalous dimension of the

form factor A (αs(µ
2
R)), i.e. A (αs(µ

2
R)) = −A (αs(µ

2
R)) and then the solution of the

(4.27) is,

G

(
α̂s,

q2

µ2
R

,
µ2
R

µ2
, z1, z2, ε

)
= G

(
αs(q

2), 1, z1, z2, ε
)
−

− δ(1− z1)δ(1− z2)

∫ 1

q2/µ2
R

dλ2

λ2
A
(
αs(λ

2µ2
R)
)
, (4.28)

where the second term is exactly the opposite of the one found in the form factor.

As done for the form factor we can write the soft function in powers of the
bare coupling constant. Using the renormalization group invariance and changing
q2 → q2(1− z1)(1− z2) also Φd(α̂s, q

2(1− z1)(1− z2), µ2, ε) will be a solution of the
Sudakov-type integro-differential equation (4.25). Then we can write the expansion
of the solution as follows,

Φd(α̂s, q
2(1− z1)(1− z2), µ2, ε) =

∞∑
n=1

α̂ns

(
q2(1− z1)(1− z2)

µ2

)εn
Snε ×

×
(

εn

4(1− z1)(1− z2)

)[
K

(n)
(ε) +G

(n)
(ε)
]
, (4.29)

where the functions G
(n)

(ε) only contain finite contributions for ε → 0 and are un-
known. Ravindran et al. showed in Ref. [21] that the (4.29) can be recast in the
more useful form:
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Φd(α̂s, q
2, µ2, z1, z2, ε) =

1

2
δ(1− z2)

[
1

1− z1

(∫ q2(1−z1)

µ2
R

dλ2

λ2
A
(
αs(λ

2)
)

+G(αs(q
2(1− z1), ε)

)]
+

+

[
1

4(1− z1)(1− z2)

(
A(αs(q

2(1− z1)(2− z2)))

+
dG (αs (q2(1− z1)(1− z2)) , ε)

d log(q2(1− z1)(1− z2))

)]
+

+
1

2
δ(1− z1)δ(1− z2)

∞∑
n=1

α̂ns

(
q2

µ2

)εn
Snε

[
K

(n)
(ε) +G

(n)
(ε)
]

+
1

2
δ(1− z1)

[
1

1− z2

]
+

∞∑
n=1

α̂ns

(
µ2
R

µ2

)εn
SnεK

(n)
(ε)

+ (z1 ↔ z2), (4.30)

with,

G(αs(q
2f(z1, z2)), ε) =

∞∑
n=1

α̂ns

(
q2f(z1, z2)

µ2

)εn
Snε G

(n)
(ε)

=
∞∑
n=1

α̂ns (q2f(z1, z2))G(n)
(ε) (4.31)

Quite surprisingly, in Eq. (4.30) we can find the same expression found by Catani and
Trentadue in their original article [1] but still not Mellin transformed. This means
that with this method we are able to capture the structure of the soft behavior of the
partonic cross section and the generality of the method permits to find similitude
between well known processes like the Drell-Yan process and a more tough one like
the Higgs production in hadronic collisions.

From the Eq. (4.30) we can see that in the fifth line has been produces the cor-
rect pole structure to eliminate the one coming from the form factor and the deltas
part of the ass factorization kernel, while the collinear contributions are correctly
removed by the terms of the sixth line. We finally have the expression for the expo-
nentiated function of the soft and virtual contribution of the partonic cross section
in the limit ε→ 0:
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Ψd(z1, z2, q
2, µ2) = δ(1− z2)

[
1

1− z1

(∫ q2(1−z1)

µ2
F

dλ2

λ2
A
(
αs(λ

2)
)

+G(αs(q
2(1− z1))

)]
+

+

[
1

2(1− z1)(1− z2)

(
A(αs(q

2(1− z1)(2− z2)))

+
dG (αs (q2(1− z1)(1− z2)))

d log(q2(1− z1)(1− z2))

)]
+

+
1

2
δ(1− z1)δ(1− z2) log(g0(αs(µ

2
F )))

+ (z1 ↔ z2), (4.32)

where we have set µR = µF . Several ways on how to evaluate the coefficients of the
expansion of the function G(αs(q

2f(z1, z2)) can be found in the articles [21, 29, 30].
We can now perform the double Mellin transformation of the soft and virtual

partonic cross section:

∆̃SV
d (ω) =

∫ 1

0

dz1z
N1−1

∫ 1

0

dz2z
N2−1∆SV

d (z1, z2,M
2, µ2

F , µ
2
R)

= g0(αs) exp [g(αs, ω)] , (4.33)

where ω = αsβ0 log(N1N2) and N i = eγENi according with the article [31]; this
result will be proved in the section 4.3. The function g(αs, ω) can be expanded in
power of αs in the usual way:

g(αs, ω) = g(ω) log(N1N2) +
∞∑
n=0

αns gn+1(ω). (4.34)

Using the results of the above discussion it is possible to evaluate the resummed
coefficients for the Drell-Yan rapidity distribution; in Ref. [20, 3] this method has
been used to evaluate the function g(αs, ω) up to NNLO+NNLL respectively for the
production of a Higgs scalar boson and for the Drell-Yan process. Below we report
the first three terms in the expansion of g(αs, ω) in order to match it with the one
that we will get in the next section for the Mellin-Fourier resummation,

g1(ω) =
A1

β0ω
[(1− ω) log(1− ω) + ω],

(4.35)

g2(ω) =
A2

β2
0

[(−ω)− log(1− ω)] +
A1

β0

[log(1− ω)LQR + ωLFR] +
G1

β0

log(1− ω)

+
A1β1

β2
0

[
1

2
log2(1− ω) + log(1− ω) + ω

]
, (4.36)
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g3(ω) =
1

2β3
0

(A3 − A1β2 + A1β
2
1 − A2β1)

−ω2

1− ω

+
A1β

2
1

β3
0

log(1− ω)

1− ω

[
1 +

1

2
log(1− ω)

]
+
A1β2 − A1β

2
1

β3
0

log(1− ω)

−
(
A2β1

β3
0

− G1β1

β2
0

)[
ω

1− ω +
log(1− ω)

1− ω

]
+

(
A1β2

β3
0

+
G2

β2
0

)
ω

1− ω +

[(
A2 − A1β1

β2
0

− G1

β0

) −ω
1− ω +

A1β1

β2
0

log(1− ω)

1− ω

]
LQR

+
A2

β2
0

ωLFR +
A1

2β0

[
−ωL2

FR +
ω

1− ωL
2
QR

]
. (4.37)

where we have defined LQR = logQ2/µ2
R and LFR = log µ2

R/µ
2
F .

4.2 Mellin-Fourier Transform Resummation

The Mellin-Fourier approach discussed in this section is based on the classical ap-
proach of the resummation technique expressed in the article [1], where the re-
summation is performed, for the semi-inclusive case, in the Mellin space, this is
due to the fact that the resummation of the rapidity distribution mainly consist in
the observation that the Mellin-Fourier transform of the partonic cross section, in
the limit z → 1 can factorize the contribution of the rapidity trough a delta, i.e.
∆(z, y) ' δ(y)∆(z), and then we have the possibility to perform the resummation of
the rapidity integrated partonic cross section in the well known semi-inclusive case.
This intuitive approach was proposed for the first time in the article [32] were Lae-
nen and Sterman showed, via the phase space constraint, the possibility to factorize
the z and y contribution trough a δ(y) in the case of a single soft gluon emission.
To appreciate how this factorization works let us starts from the hadronic rapidity
distribution;

dσ

dτdY
(τ, Y,M2) =

∑
a,b

∫ 1

x0
1

dx1

x1

∫ 1

x0
2

dx2

x2

fa(x1, µ
2
F )fb(x2, µ

2
F )×

× dσ̂

dzdy

(
z, y, αs(µ

2
R),

M2

µ2
R

,
M2

µ2
F

)
, (4.38)

and since there is no ambiguity we omit to write the dependence of the differential
partonic cross section from the running coupling, the renormalization and the fac-
torization scales; in such a way it is useful to rename the differential partonic cross
section as,

C(z, y) =
dσ̂

dzdY
(z, y) (4.39)

and operate Mellin-Fourier transform in the hadronic variables τ and Y such that,
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∫ 1

0

dτ τN−1

∫ ∞
−∞

dY eibY
dσ

dτdY
(τ, Y,M2)

=
∑
a,b

∫ 1

x0
1

dx1 x
N+ ib

2
1 fa(x1, µ

2
F )

∫ 1

x0
2

dx2 x
N− ib

2
2 fa(x1, µ

2
F )

×
∫ 1

0

dz zN−1

∫ − log
√
z

log
√
z

dy eibyC(z, y), (4.40)

where the hadronic and parotnic rapidity are linked by the following relation:

Y − y =
1

2
log

x1

x2

(4.41)

where the term log
√
x1/x2 is the hadronic rapidity in the center of momentum

frame. The the boundaries limits in the y and z integration are due to kinematical
constraints. The reason for the boundary constraints in the rapidity integration is
exposed in the Chapter 2.

In this case we are only interested on the partonic resummation, we then just
analyze,

C(N, b) =

∫ 1

0

dz zN−1

∫ − log
√
z

log
√
z

dy eibyC(z, y). (4.42)

In the article [4] is shown that if we take only the Fourier transform of the parton
rapidity distribution and we expand the exponential we find

C̃(z, b) =

∫ − log
√
z

log
√
z

dy eibyC(z, y) =

∫ − log
√
z

log
√
z

dy C(z, y) [1 +O(y)]

= C(z) [1 +O(1− z)] , (4.43)

where C(z) is the rapidity integrated partonic cross section, obtained because in the
limit z → 1 the integration region collapse to 0 and the terms of the expansion of
the exponential goes as log |z| = 1 − z + O ((1− z)2), then C̃(z, b) is independent
from the parameter b up to correction of order O(1 − z). The factorization of the
delta is straightforward by taking the inverse Fourier of C(z), in fact,

C(z, y) =

∫ ∞
−∞

db

2π
e−ibyC̃(z, b) = C(z)δ(y)[1 +O(1− z)] (4.44)

then up tu subdominant terms the partonic rapidity distribution in the Mellin-
Fourier space can be written as,

C(N, b) =

∫ 1

0

dz zN−1C(z)[1 +O(1− z)], (4.45)



83 Resummation of the Rapidity Distribution 4

and then the resummed partonic cross section is performed in the usual way,

Cres(αs, N) = g0(αs) exp[g(αs, λ)], (4.46)

with,

g(αs, λ) =
1

2αsβ0

g1(λ) + g2(λ) + 2αsβ0g3(λ) + . . . (4.47)

where, as anticipated, C(αs, N) is the Mellin transform of the rapidity integrated
partonic cross section.

We conclude this section giving the first three terms of the expansion of the
resummed function,

g1(λ) =
2A1

β0

[(1 + λ)log(1 + λ)− λ],

(4.48)

g2(λ) =
A2

β2
0

[λ− log(1 + λ)] +
A1

β0

[log(1 + λ)LQR − λLFR]− 2
A1

β0

γElog(1 + λ)

+
A1β1

β2
0

[
1

2
log2(1 + λ) + log(1 + λ)− λ

]
,

(4.49)

g3(λ) =
1

4β3
0

(A3 − A1β2 + A1β
2
1 − A2β1)

λ2

1 + λ

+
A1β

2
1

2β3
0

log(1 + λ)

1 + λ

[
1 +

1

2
log(1 + λ)

]
+
A1β2 − A1β

2
1

2β3
0

log(1 + λ)

+

(
A1β1

β2
0

γE +
A2β1

2β3
0

)[
λ

1 + λ
− log(1 + λ)

1 + λ

]
−
(
A1β2

2β3
0

+
A1

β0

(γ2
E + ζ2) +

A2

β2
0

γE −
D̄2

4β2
0

)
λ

1 + λ

+

[(
A1

β0

γE +
A2 − A1β1

2β2
0

)
λ

1 + λ
+
A1β1

2β2
0

log(1 + λ)

1 + λ

]
LQR

− A2

2β2
0

λLFR +
A1

4β0

[
λL2

FR −
λ

1 + λ
L2
QR

]
. (4.50)

4.3 Comparison of the Two Approaches

In this section we analyze the difference between the two approaches showing that
they differ for next-to-next-to-leading power, i.e. terms suppressed by (1− z)2. This
equality teach us a very important lesson because in the Mellin-Fourier approach we
have a resummed exponent that is independent from the Fourier variable making
the partonic cross section to depend on the rapidity in the threshold regime only
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through a Dirac delta as shown in the previous section. Then in the threshold region
the dependence on the rapidity is entirely given by the PDF, indeed, we can see from
the fixed order calculation in Chapter 2, that the non-trivial term in the equation
(2.124) that depends on the rapidity is,

CF
1 + z2

[1− z]+

([
1 + t

t− z

]
+

+

[
1 + t

tz − 1

]
+

)
=

(
Pqq(z)− 3

2
CF δ(1− z)

)([
1 + t

t− z

]
+

+

[
1 + t

tz − 1

]
+

)
= Pqq(z)

([
1 + t

t− z

]
+

+

[
1 + t

tz − 1

]
+

)
+ 3CF δ(1− z)

1 + t

[1− t]+
+ 3CF δ(1− z)δ(1− t),

(4.51)

where the third term is harmless, the first factorize the Altarelli-Parisi splitting func-
tion and can be absorbed in the PDF definition, carrying with him correction due to
the collinear terms, and the second term vanish when we perform the Mellin-Fourier
transformation, in fact, we can see that

∫ 1

0

dz zN−1δ(1− z)

∫ − log
√
z

log
√
z

dy eiby
1 + e−y

[1− e−y]+
= 0, (4.52)

because the region of integration of the rapidity is reduced to a point by the action
of the delta, and since the integrand of the rapidity integration is a regular function
the whole operation is well defined and the contribution from this terms is null.

We can now start with the analysis of the two approaches. In the previous
sections we gave the expressions for the resummed coefficients (4.35)-(4.37) and
(4.48)-(4.50), got from the two methods, in order to make the comparison easier at
first sight, in fact, we can easily observe that they differ only for constant terms
that depend on the definition of the expansion coefficients of the D(αs) function
and the definition of the resummed variable, in fact, we can see that performing the
substitution ω ↔ −λ the functions gi(·), with i 6= 0, have the same structure.

We first analyze the equality of the logarithmic structure of the two approaches
starting by demonstrating the not trivial result (4.33). We derive the resummed ex-
ponent (4.33) omitting the constant function, i.e. the g0(αs) function, and the G(αs)
since both of them do not change the following result and we can use a lighter nota-
tion. The result can be easily extended to the G(αs) function. The Double-Mellin
transform of Eq. (4.32) is,

g(αs, N1, N2) =

∫ 1

0

dz1
zN1−1

1 − 1

1− z1

∫ (1−z1)q2

µ2
F

dλ

λ
A(αs(λ))

+

∫ 1

0

dz2
zN2−1

2 − 1

1− z2

∫ (1−z2)q2

µ2
F

dλ

λ
A(αs(λ))

+

∫ 1

0

dz1

∫ 1

0

dz2
zN1−1

1 − 1

1− z1

zN2−1
2 − 1

1− z2

A(αs((1− z1)(1− z2)q2)),

(4.53)
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and using the usual relation (3.21) to solve the integral in the large Ni limit, with
i = 1, 2, the expression (4.53) became,

g(αs, N1, N2) =

= −Γ

(
1− ∂

∂ logN1

)
Γ

(
1− ∂

∂ logN2

)[∫ 1

1/N1

dx1

x1

∫ x1q2

µ2
F

dλ

λ
A(αs(λ))

+

∫ 1

1/N2

dx2

x2

∫ x2q2

µ2
F

dλ

λ
A(αs(λ))−

∫ 1

1/N1

dx1

x1

∫ 1

1/N2

dx2

x2

A(αs(x1x2q
2))

]
. (4.54)

The last term in the above expression can be written in more convenient way as
follows,

1

2

∫ 1

1/N1

dx

x

[∫ xq2

µ2
F

−
∫ xq2/N2

µ2
F

]
dλ

λ
A(αs(λ)) + (N1 ↔ N2), (4.55)

where λ = x1x2q
2. Then we put the (4.55) in the (4.54) getting,

− 1

2
Γ

(
1− ∂

∂ logN1

)
Γ

(
1− ∂

∂ logN2

)[∫ 1

1/N1

dx

x

∫ xq2

µ2
F

dλ

λ
A(αs(λ))

+

∫ 1/N1

(N1N2)−1

dx

x

∫ xq2

µ2
F

dλ

λ
A(αs(λ)) + (N1 ↔ N2)

]
, (4.56)

thus since we are in the large N1, N2 limit we have that (Ni)
−1 > (N1N2)−1, with

i = 1, 2, and then we can join the integration domain of the first integral to get the
form we are looking for; we put it directly in a more useful form

− Γ

(
1− ∂

∂ logN1

)
Γ

(
1− ∂

∂ logN2

)∫ αs(q2)

αs
(

q2

N1N2

) dα′

α′β(α′)

∫ α′

αs(µ2
F )

dα

αβ(α)
A(α).

(4.57)

The running coupling depend on the two Mellin variables through the logarithm of
their product then the integration is a function of logN1 + logN2 and then we can
simplify the action of the Gamma function like,

− Γ2

(
1− ∂

∂ logN1N2

)∫ αs(q2)

αs
(

q2

N1N2

) dα′

α′β(α′)

∫ α′

αs(µ2
F )

dα

αβ(α)
A(α). (4.58)

If we replace γE → 2γE and ζ(n) → 2ζ(n) we recover the same resummed coef-
ficients get in the (3.26) because, Taylor expanding the logarithm of the Gamma
function we can write,

Γ2

(
1− ∂

∂ logN1N2

)
= exp

{
2γE

∂

∂ logN1N2

+
∞∑
n=2

2ζ(n)

n

(
∂

∂ logN1N2

)n}
.

(4.59)
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Finally we can write the resummed exponent as a function of logN1N2 as used in
the article [20].

We can now turn our attention on the Mellin-Fourier approach. First of all let us
derive the relation between the two set of the conjugated variables, to this purpose
we need the relations between the physical variables, that are,

z = z1z2, (4.60)

y =
1

2
log

z1

z2

, (4.61)

then the double Mellin variables and the Mellin-Fourier variables are linked in the
following way,

∫ 1

0

dz1 z
N1−1
1

∫ 1

0

dz2 z
N2−1
2 =

∫ 1

0

dz

∫
R

dy
(√

zey
)N1−1 (√

ze−y
)N2−1

=

∫ 1

0

dz

∫
R

dy z
N1+N2

2
−1e(N1−N2)y

=

∫ 1

0

dz

∫
R

dy zN−1eiby; (4.62)

we see that the variables of the Mellin-Mellin space are complex numbers in the
Mellin-Fourier variables,

{
N1 = N + ib

2
,

N2 = N − ib
2
,

(4.63)

since N1, N2, N ∈ C we can say that the Fourier variable act just like a translation in
the imaginary direction of the complex Mellin variable N . The resummed variable
of the Mellin-Mellin approach can be written in terms of the variables (N, b) and we
can see that if b is finite, the large-N limit let the two approaches be the same, in fact,

log(N1N2) = log

(
N2 +

b2

4

)
= logN2 + log

(
1 +

b2

4N2

)
' logN2 +O

(
b2

4N2

)
,

(4.64)

then in the large N limit the result seems to be independent on b. We can do a
better estimation of the neglected terms, in fact, the logarithms resummed in the in
Mellin-Mellin approach are like,

αns
logm1(1− x1)

1− x1

logm2(1− x2)

1− x2

, (4.65)

where m1 +m2 ≤ 2n. The Mellin-Mellin transform of these logarithms expressed in



87 Resummation of the Rapidity Distribution 4

the (N, b) variables is

αns

∫ 1

0

dx1 x
N+i b

2
−1

1

logm1(1− x1)

1− x1

∫ 1

0

dx2 x
N−i b

2
−1

2

logm2(1− x2)

1− x2

(4.66)

then we are free to expand the variable exponentiated by b around xi = 1, thus we
get,

αns

(
∞∑
k1=0

(−1)k1

(
i b

2

i
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0

dx1 x
N−1
1

logm1(1− x1)

(1− x1)1−k1

)
×

×
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(−1)k2

(−i b
2

k2

)∫ 1

0

dx2 x
N−1
2

logm2(1− x2)

(1− x2)1−k2

)

= αns

∫ 1

0

dx1

∫ 1

0

dx2 x
N−1
1 xN−1

2

[
logm1(1− x1)

1− x1

logm2(1− x2)

1− x2

+O
(
b2

4
logm1(1− x1) logm2(1− x2)

)]

= αns logm1+m2+2 N +O
(

b2

4N2
logm1+m2+2N

)
(4.67)

where the resummation of the first term in the last expression give the same re-
summed function get in the Mellin-Fourier approach, while the neglected terms to
get the Mellin-Fourier approach result from the Mellin-Mellin one are next-to-next-
to-leading power terms.

The above relation is true only if we take the large-N limit before that any action
on the Fourier variable is done, in fact, if we keep both N and b it is not obvious
that the Fourier variable does not give any contribution, especially when we perform
the Fourier inverse transformation. At this point it is no longer obvious the equality
of the two approaches because the possibility to neglect the Fourier variable in the
large-N limit is not obvious itself. We have to understand better the structure of
the large logarithms in the (N, b) space.

Now we show a way to recover the Mellin-Fourier approach from the Mellin-
Mellin results. We express the resummed partonic cross section of the Mellin-Mellin
approach in terms of the Mellin-Fourier variables, getting,

σ̂(z, y) = g0(αs)e
g
(
αs,N2+ b2

4

)
= g0(αs)e

b2

4
∂

∂N2 eg(αs,N
2). (4.68)

Through the double inverse transformation we can see that the result of the Mellin-
Fourier approach can be reached, in fact,

σ̃(N, b) = − i

4π2
g0(αs)

∞∑
n=0

1

n!

∫
R

db e−iby
(
b

2

)2n ∫ c+i∞

c−i∞
dN z−N

(
∂

∂N2

)n
eg(αs,N

2),

(4.69)
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in the integral over the Mellin variable we can perform n-times an integration by
parts passing the n derivative from the resummed function to the z−N term, this
operation will generate non trivial boundary terms that will vanish only in the soft
limit, in fact, the integration by parts will produce the following terms,

z−N logk−1z

(
∂

∂N2

)n−k
eg(αs,N

2)
∣∣∣c+i∞
c−i∞

z→1−−→
{
k = 1

(
∂

∂N2

)n−1
eg(αs,N

2)
∣∣∣

k 6= 1 0
, (4.70)

where 1 ≤ k ≤ n and n > 0. For k 6= 1 the boundary terms go to zero because
of the log z, while for k = 1 the boundary terms are analytic at the infinity point,
thus,

lim
L→∞

(
∂

∂N2

)n−1

eg(αs,N
2)
∣∣∣iL
−iL

= 0. (4.71)

This show that the boundary terms can be neglected only at the threshold limit
otherwise the evaluation of the resummed function at the boundary of the integration
will contribute to the final results since it do not go to zero at imaginary infinity.

The rest of the Eq. (4.69) after the integration by parts is,

σ̂(z, y) = − i

4π2
g0(αs)

∞∑
n=0

1

n!

∫
R

db e−iby
(
b

2

)2n ∫ c+i∞

c−i∞
dN z−N logn zeg(αs,N

2)

= − i

4π2
g0(αs)

∫
R

db e−iby+ b2

2
log
√
z

∫ c+i∞

c−i∞
dN z−N logn z eg(αs,N

2)

= − i

4π2
g0(αs)

√
4π

log 1/z
e−

y2

log 1/z

∫ c+i∞

c−i∞
dN z−N logn z eg(αs,N

2), (4.72)

in the last expression we can see that in the soft limit the delta of the rapidity
appear, in fact, √

4π

log 1/z
e−

y2

log 1/z
z→1−−→ 2πδ(y), (4.73)

recovering the result of the previous section, i.e.

σ̂(z, y) = g0(αs)δ(y)

∫ c+i∞

c−i∞
dN z−Neg(αs,N

2). (4.74)

With this procedure we have shown that the two approaches are the same in the
soft limit but they can be very different if we move away from it. We can assert that
the two approaches differ for collinear terms, in fact, at the beginning of this section
we have proved that is possible to factorize the delta of the rapidity at the first
perturbative order by putting the collinear contribution in the PDF definition. This
calculation also confirm that the contribution of the Fourier variable come mainly
from the PDFs giving us the possibility to simplify the problem by taking the soft
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partonic cross section of the form,

σ̂S(z, y) = δ(y)σ̂S(z), (4.75)

where σ̂S(z) is the soft partonic cross section for the mass invariant distribution.
At the beginning of this section, we mentioned a difference between the two ap-

proaches that rely on the choice of the resummed variable, eγEN or simply N . We
have to underline that the choice of the resummed variable does not depend on the
approach used but only from the logarithmic accuracy required, in fact at the LL
and NLL the Mellin integral is solved using zN−1 − 1 → −θ(1 − z − e−γE/N) to
recover the correct result that we get by the whole integration, i.e. without using
the theta function, as shown at the end of the section 3.1, while at the NNLL the
method used to get resummed coefficients is independent from the choice of the re-
summed variable. This situation can be understand by the following example. Take
the αs order in the perturbation theory, i.e.

αs

∫ 1

0

dz (zN−1 − 1)
log(1− z)

1− z (4.76)

then we have, respectively, at the LL, NLL, NNLL, using N ,

αs log2N

αs(log2N + 2γE logN)

αs
(
log2N + 2γE logN + γ2

E + ζ(2)
)
, (4.77)

while, using eγEN , the LL already has a NNLL structure,

log2(eγEN) = log2N + 2γE logN + γ2
E, (4.78)

in fact, at a generic perturbative order the LL of eγEN gives the LL, αns logmN with
n < m ≤ 2n, NLL with n = m and NNLL with m < n in the variable N . This
means that the two choice produce different results at the LL and NLL while are
the same at the NNLL up to constant terms that can be adjusted by redefining the
coefficients of g0(αs). For example we can see how the two choice affect the first

perturbative order of the resummed partonic cross section. The coefficient g
(1)
0 of

the expansion g0(αs) =
∑∞

n=0 α
n
s g

(n)
0 is, respectively in the N and eγEN case,

A1

(
4ζ(2)− 4 + 2γ2

E

)
(4.79)

A1 (4ζ(2)− 4) (4.80)

and the first perturbative order of the σ̃(ω) is,

σ̃(ω) = g0(αs)e
αsS+... = 1 +

(
S + g

(1)
0

)
αs + . . . . (4.81)
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The difference of the first perturbative order |σ̃ (logN2)− σ̃ (e2γE logN2)| in the two
cases are

LL A1γE (γE + 2 logN) (4.82)

NLL A1γ
2
E (4.83)

NNLL 0. (4.84)

There is no difference in the NNLL accuracy while at lowest order the two case are
not comparable especially at the LL order. This situation also affect the prediction
of the theory, indeed in a recent article [3] has been shown a numerical comparison
of the two cases, more precisely in that article the authors show that there is a nu-
merical differences between the Mellin-Mellin approach and Mellin-Fourier approach
ascribing to this differences the difference nature of the terms we are resumming in
the two approaches, in fact, since in the second approach we are resumming over
the rapidity integrated partonic cross section, cause the presence of the δ(y) in the
(4.75), it is reasonable the idea that we have different logarithms and then the
prediction of the two approaches can present some differences but in that analysis
there is hidden also the numerical difference between the two choice of N , in fact,
the comparison has been made taking into consideration the results from the article
[4] where they resum large logN , while the authors of [3] resum large log eγEN . The
numerical results, see Figure (4.1), exactly show the behavior exposed above, i.e. at
the LO+LL the two approaches produce very different correction to the fixed order
prediction while tends to be the same for NLO+NLL and they are also more similar
for the NNLO+NNLL.

8

y ( µR
MZ

, µF
MZ

) LO LLM-F LLM-M NLO NLLM-F NLLM-M NNLO NNLLM-F NNLLM-M

0.0 (2, 2) 72.626 +0.988 +3.219 73.450 +1.639 +1.796 70.894 + 0.630 +0.646

0.0 (2, 1) 63.197 +0.768 +2.595 70.625 +0.761 +1.017 70.360 +0.292 +0.317

0.0 (1, 2) 72.626 +1.095 +3.577 73.535 +1.912 +1.760 70.509 +0.510 +0.395

0.0 (1, 1) 63.197 +0.851 +2.887 71.395 +0.858 +0.901 70.537 +0.248 +0.167

0.0 (1, 1/2) 53.241 +0.621 +2.216 67.581 + 0.156 +0.140 69.834 - 0.001 - 0.094

0.0 (1/2, 1) 63.197 +0.953 +3.278 72.355 +0.945 +0.681 70.266 +0.091 - 0.015

0.0 (1/2, 1/2) 53.241 +0.695 +2.504 69.259 +0.102 - 0.154 70.283 - 0.039 - 0.146

TABLE I. Comparison of resummed results between M-F and M-M approach in the minimal prescription scheme at y = 0 for
various choices of scales.

up to NNLO in the left panel and to NNLO+NNLL in the
right panel along with the respective K-factors. The K-
factor at a given perturbative order, say at NnLO (NnLO
+ NnLL), is defined by the cross section at that order
normalised by the same at LO (LO+LL) at the central
scale µR = µF = MZ . We have made this choice for the
scales because the fixed order perturbative prediction is
well behaved around this scale [64]. The symmetric band
at each order is obtained by varying µR and µF between
[MZ/2, 2MZ ] around the central scale µR = µF = MZ

with the constraint 1/2  µR/µF  2, by adding and
subtracting to the central scale the highest possible un-
certainties originating from all the scale combinations.
We find that the magnitude and the sign of the resummed
contribution are sensitive to the order of perturbation as
well the exact values of y and the scales µR, µF . For ex-
ample, if we choose µR = MZ/2 and µF = MZ instead of
µR = µF = MZ as the central scale, we obtain a negative
contribution from NNLL terms for all values of rapidity.

Fig. 3 also demonstrates that the inclusion of NnLL
contributions increase the cross section at every order
for a wide range of rapidity values. In addition, the
overlap among various orders is larger for the resummed
case compared to the fixed order ones, because the un-
certainty band at each order in the resummed case is
bigger compared to fixed order. As far as fixed order
results are concerned, in particular at NNLO level, sev-
eral partonic channels open up, e↵ectively reducing the
scale uncertainty considerably. On the other hand, re-
summed contributions come only from quark anti-quark
initiated channels to all orders in perturbation theory as
other channels do not give threshold logarithms of the
type that is resummed. We confirm this through Fig. 4,
where we have studied the e↵ects of resummation over
the fixed order contributions, by considering a) only qq̄
channel at NNLO and b) all the channels at NNLO. We
perform our analysis for y = 0 and set µF = MZ while
varying µR between MZ/2 to 2MZ . For the qq̄ channel

the resum contributions arising from the two extreme
scales are of opposite sign and their individual contribu-
tions are such that the NNLO+NNLL (qq̄) curve shows a
stable behaviour as compared to NNLO (qq̄). While the
fixed order decreases by 2.36% from MZ/2 to 2MZ , the
corresponding decrease for NNLO+NNLL (qq̄) is 1.53%.
This confirms the reduction of scale dependence upon
adding resummed terms to the fixed order contributions.
However the scenario entirely reverses when we consider
all the channels at NNLO. We find that the di↵erential
cross section at NNLO (all) increases by 0.29% in the
entire range of µR values; the corresponding increase for
NNLO+NNLL (all) is 1.29%. This reduction of the scale
dependence at NNLO is due to cancellations among dif-
ferent partonic channels. However the resummation ef-
fects come only from qq̄ channel which adds to the fixed
order in such a way that the resummed uncertainty in-
creases. This explains the increase of the scale uncer-
tainty at each resummed order depicted in Fig. 3. Fur-
thermore an incomplete cancellation of the factorization
scale dependence against the PDFs which do not con-
tain resummed threshold logarithms also increases the
band. For the fixed order, the K-factor at NLO varies
between 1.3 and 1.2 and at NNLO between 1.37 and
1.3 over the entire rapidity region. On the other hand,
the K-factors at both NLO+NLL and NNLO+NNLL
significantly overlap with each other over most of the
regions of rapidity and stay around 1.2. This demon-
strates a better perturbative convergence for resummed
case compared to the fixed order. In Table II, we have
presented the cross section for benchmark rapidity val-
ues along with the percentage scale uncertainties. Note
that the di↵erential cross-section at NNLO+NNLL level
for the central scale is well approximated by the same
at NLO+NLL. In fact, NNLO+NNLL increases approx-
imately by 0.8% with respect to NLO+NLL; the corre-
sponding number for NNLO over NLO is approximately
3%. From the trend that resummed results give, we an-

Figure 4.1: In the Figure is reported the comparison of resummed results between Mellin-
Mellin approach and Mellin-Fourier approach using the minimal prescription scheme at y
= 0 for various choices of the scales.

In the table 4.1 are reported the absolute value of the difference of the correction
to the fixed order calculation given from the resummation procedure in the two ap-
proaches. We have called, δNkLL = |εMF − εMM |, where obviously εMF and εMM

correspond to the resummation contribution to the fixed order. We can see from
this Table that the mean difference between the correction of the fixed order given
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(µR/M, µF/M) δLL δNLL δNNLL

(2,2) 2.231 0.157 0.016
(2,1) 1.827 0.256 0.025
(1,2) 2.482 0.152 0.115
(1,1) 2.036 0.043 0.081

(1,1/2) 1.595 0.016 0.093
(1/2,1) 2.325 0.264 0.106

(1/2,1/2) 1.809 0.256 0.107
Mean Difference 2.043 0.163 0.078

Table 4.1

by the resummation procedure of the two approaches decrease when the logarith-
mic accuracy increase. This can be take as a proof that the main difference of the
two approaches used in the article [4] and [3] resides in the choice of the resummed
variable more than the approach itself. In fact, in this section the equality of the
two approaches in the soft limit has been proved and we have stressed that a con-
siderable difference can arise from different choice of the resummed variable, like
in this case where two approaches has been compared using different choice of the
resummed variable.
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Conclusion

In this work we have studied two different approaches to the resummation of the
large logarithms that arise by the cancellation of the soft and collinear singularities
for the rapidity distribution of the Drell-Yan process. This particular process is
experimentally very important because its probe, the leptonic pair, can be detected
with great accuracy; it is then very important to have precise theoretical prediction
to make possible new discoveries.

The large logarithms that are presents in the physical space, i.e. function of the
soft radiated energy fraction, can be resummed to all orders in the conjugated Mellin
space, because only upon Mellin transformation the cross section (squared amplitude
and phase space measure) take a factorized form that leads to exponentiation of the
leading contributions. In the case studied in this thesis the large logarithms are
functions of the soft radiated energy fraction and the rapidity; hence it is necessary
to take an integral transform in both variables to obtain a resummed formulation.
In a recent work [3] a resummed formula for this observable was proposed, which
relies on a Mellin-Mellin transformation. The result has been numerically compared
with the result of a previous work [4] where the resummation is performed in a
Mellin-Fourier space.

In ref. [3] an interesting difference between the two approaches is shown, at dif-
ferent logarithmic accuracy; the results reported in Table 4.1 show that the two
methods differ sizeably at the leading logarithmic accuracy, but the difference tends
to reduce with increasing logarithmic accuracy; at the next-to-next-to-leading loga-
rithm accuracy the two methods give essentially the same result. The authors of the
ref. [3] associate this difference to the different kind of logarithms that are resummed
or to a simply accidental coincidence.

In this thesis we have investigated this discrepancy in greater detail, and we have
obtained a first mathematical answer to this question. In fact we have shown that
the logarithms that are resummed in the two approaches differ for next-to-next-to-
leading power, i.e. terms that are suppressed by terms that go to zero as the square
of the radiated energy in the soft limit. It is unlikely that such terms originate
the discrepancy found in [3] since such terms are systematically neglected in the
calculation of the soft partonic cross section.

The bulk of the numerical difference in Table 4.1 can be instead traced back to the
argument of the logarithms which are resummed. Indeed, while the resummation
of ref. [4] considers logarithms of the Mellin variable N , the Authors of ref. [3]
resum a rescaled version of their Mellin variables. At any given logarithmic order,
the resummation of rescaled and un-rescaled logarithms clearly differ by subleading
terms. Thus, if we compare the LL resummation of ref. [4] versus the LL one of
ref. [3], we find that the two differ by sizeable NLL contributions. Analogously,
the two NLL resummations differ by NNLL contributions, and so on. Thus, we
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expect the difference between the two approaches to grow smaller as the logarithmic
accuracy of the calculation is increased. This is indeed what we observe. Finally,
let us note that in related contexts, rescaling the argument of the logarithms by
an arbitrary factor is used as a way of estimating theoretical uncertainties due to
missing higher logarithmic contributions.



Appendix A

Dimensional Regularization

This is the best and easy methods to deal with divergent integrals that are common
in the perturbative field theories. The method consist in change the number of di-
mension from the usual Minkowski space R(1+3) to a space with d = 4−2ε dimension
with d ∈ C. With this substitution it is possible to give precise meanings to diver-
gent integrals because the divergent aspect of the integral appear as a pole with the
same degree of the divergent integral for d→ 4 while all the other informations, i.e.
the finite parts, are understood.

Changing the dimensions of the process two particular object will be more af-
fected then others, these are the Gamma matrices and the phase space measure. In
this appendix we will give their form in d dimensions. Let’s start with the Gamma
matrices. These became d × d matrices in a d-dimensional space-time with the
Minkowski signature gµν = (+,−, . . . ,−) where the only positive component is the
temporal, i.e. the component g00. The trace property needful to calculate the scat-
tering matrix elements remains the same;

Tr[γµγν ] = 4gµν (A.1)

Tr[γµγνγργσ] = 4(gµνgρσ + gµσgρν − gµρgσν). (A.2)

A great difference comes with the contractions of the Gamma matrices,

γµγργµ = −2(1− ε)γρ (A.3)

γµγργσγµ = 4gρσ − 2εγργσ (A.4)

γµγργσγνγµ = −2γνγσγρ + 2εγργσγν . (A.5)

We now analyze how the change of dimensions affect the phase space. The differen-
tial measure of a euclidean d-dimensional vector, ddpE, can be written in spherical
coordinates, namely 

p1 = p cos θ1

p2 = p sin θ1 cos θ2

...

pd−1 = p cos θ1 cos θ2 . . . cos θd−2 cosφ

pd = p cos θ1 cos θ2 . . . cos θd−2 sinφ

(A.6)
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with 0 ≤ θn ≤ π for n = 1, 2, . . . , d − 2 and 0 ≤ θn ≤ 2π while p = |pE|. Then the
measure become,

ddpE = dp pd−1 sind−2 θ1dθ1 . . . sin θd−2dθd−2dφ = dp pd−1dΩd−1, (A.7)

where dΩd−1 is the measure of a d − 1 sphere that can be evaluated with the help
of the Gamma function,

∫
dΩd = 2π

d−1∏
i=1

∫ π

0

dθi sin
d−i θi = 2π

d−1∏
i=1

∫ 1

0

dx x−1/2(1− x)ω−1−i/2

=
2πd/2Γ(1)Γ(3/2) . . .Γ(d/2− 1/2)

Γ(3/2) . . .Γ(d/2− 1/2)Γ(d/2)
=

2πd/2

Γ(d/2)
. (A.8)

For a generic final n-body phase space we can implement the dimensional regular-
ization as follows,

dΦn(P ; p1, p2, . . . , pn) = (2π)dδ(d)

(
P −

n∑
i=1

pi

)
n∏
i=1

ddpi
(2π)d−1

δ+
(
p2
i +M2

i

)
= (2π)dδ(d)

(
P −

n∑
i=1

pi

)
n∏
i=1

dpi p
d−1
i

(2π)d−22p0
i

dΩ
(i)
d−2 (A.9)

with Mi the mass of the i-th particle; it can be written in a recursive form factorizing
the 2-body phase space,

dΦn(P ; p1, p2, . . . , pn) =

∫
dQ2

2π
dΦ2(Q; p1, p2)dΦn−1(P ;Q, p3, . . . , pn), (A.10)

that can be thought like to introduce an intermediate “virtual” momentum. Then
it is important to give the explicit expression for 2-body phase space and 1-body
phase space since with this only two measure any other can be constructed. The
2-body phase space can be written easily in the C.o.M. frame, i.e. for ~Q = 0, then
we have,

dΦ2(Q; p1, p2) =
1

(2π)d−2
δ
(
M2

2 −M2
1 −Q2 + 2Qp0

1

) dp1 p
d−2
1

2p0
1

dΩ
(1)
d−2

=
1

8

(
1

2π

)d−2

Qd−4
((

1− x1 − x2)2 − 4x1x2

))(d−3)/2
dΩ

(1)
d−2, (A.11)

where x1 = M2
1/Q

2 and x2 = M2
2/Q

2, we can now evaluate the angular measure
introducing the usual variable y and integrating over the remaining angular dimen-
sions because the cross section is usually independent of those variables,

y =
1− cos θ

2
(A.12)
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dΩd−2 = dθ sind−3 θdΩd−2 = 2d−3[y(1− y)](d−4)/2dydΩd−2, (A.13)

finally the measure of a two-body phase space is,

dΦ2(Q; p1, p2) =
1

8π

(
4π

Q2

)ε
1

Γ(1− ε)

√
(1− x1 − x2)2 − 4x1x2

((1− x1 − x2)2 − 4x1x2)ε
[y(1− y)]−εdy.

(A.14)

The one-body phase space is,

dΦ1(Q; p) = 2πδ(Q2 −M2). (A.15)

To close the appendix we give a generic useful integrals solved with the dimensional
regularization,

µ2ε

∫
ddk

(2π)d
ka

(k2 + ∆)n
=

1

16π2

(4πµ2)
ε

Γ(1− ε)

∫ ∞
0

dk
kd−1+a

(k2 + ∆)n

=
1

16π2

(4πµ2)
ε

Γ(1− ε)∆
d−a

2
−nΓ

(
d+a

2

)
Γ
(
n− d+a

2

)
Γ(n)

. (A.16)

with a ≥ 0, and the integral in dk is a simply Beta function.
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Appendix B

Plus Distribution

This distribution is a useful tool to work with the soft divergencies that arise from
the bremsstrahlung diagram. It is defined as:∫ x2

x1

dx g(x)[f(x)]+ =

∫ x2

x1

dx (g(x)− g(xi)) f(x), (B.1)

where g(x) is a test function (continuous in the set [x1, x2]) and xi is the extreme
of the domain where f(x) is singular at most like a polynomial. In the following,
where will be omitted the test function and the integral to simplify the notation, it
is important to remember that the expression has sense only when it’s integrated
with some regular function.

The distribution is request because it is possible to encounter a function f(x)
that is singular in a point of integration, than to separate the divergent contribution
from the regular one it is useful to go on with the following procedure;

∫ x2

x1

dx f(x)g(x) =

∫ x2

x1

dx (f(x)g(x)− f(x)g(xi) + f(x)g(xi))

=

∫ x2

x1

dx g(x)[f(x)]+ + g(x)δ(x− xi)
∫ x2

x1

dx′ f(x′), (B.2)

now the first terms is regular and contains the information of the convolution of the
two function in the domain, excluded the divergent point, while the second one is
contains only the divergent contribution. Usually the last term is thrown away in
some measurable function. For example if f(x) = x−1−ε with ε � 1 in the region
[0, 1], we have;∫ 1

0

dx
g(x)

x1+ε
=

∫ 1

0

dx g(x)
∞∑
n=0

(−1)n
εn

n!

[
logn x

x

]
+

− δ(x)g(0)
1

ε
. (B.3)

Following this example, the distribution can be used to Laurent expand the function
f(x) around the singularity:

x−1+ε = δ(x)
1

ε
+

[
1

x

]
+

+ ε

[
log x

x

]
+

+
ε2

2

[
log2 x

x

]
+

+ . . . . (B.4)

This distribution can be defined also in more dimension for a function singular in

99



Conclusion 100

(x0
1, . . . , x

0
N) as follows;

∫
Ω

dx1 . . . dxN g(x1, . . . , xN)[f(x1, . . . , xN)]+ =

=

∫
Ω

dx1 . . . dxN f(x1, . . . , xN)
(
g(x1, . . . , xN)− g(x0

1, . . . , x
0
N)
)
.

(B.5)

This way to separate the singular term from the regular one can also be applied to
functions that are divergent over a sub-variety throwing away the contribution from
that region, instead of a single point.



Acknowledgements

To be or not to be. I
Have to be grateful to
A place where
Not to be, is the
Key to be.

You are the vessel
Over the sea haze, the
Untouchable Friend.

101



102



Bibliography

[1] S. Catani and L. Trentadue. “Resummation of the QCD Perturbative Series
for Hard Processes”. In: Nucl. Phys. B327 (1989), pp. 323–352. doi: 10.1016/
0550-3213(89)90273-3.

[2] George F. Sterman. “Summation of Large Corrections to Short Distance Hadronic
Cross-Sections”. In: Nucl. Phys. B281 (1987), pp. 310–364. doi: 10.1016/
0550-3213(87)90258-6.

[3] Pulak Banerjee et al. “Threshold resummation of the rapidity distribution for
Drell-Yan production at NNLO+NNLL”. In: Phys. Rev. D98 (2018), p. 054018.
doi: 10.1103/PhysRevD.98.054018. arXiv: 1805.01186 [hep-ph].

[4] Marco Bonvini, Stefano Forte, and Giovanni Ridolfi. “Soft gluon resummation
of Drell-Yan rapidity distributions: Theory and phenomenology”. In: Nucl.
Phys. B847 (2011), pp. 93–159. doi: 10.1016/j.nuclphysb.2011.01.023.
arXiv: 1009.5691 [hep-ph].

[5] Stefano Catani et al. “The Resummation of soft gluons in hadronic collisions”.
In: Nucl. Phys. B478 (1996), pp. 273–310. doi: 10.1016/0550- 3213(96)

00399-9. arXiv: hep-ph/9604351 [hep-ph].

[6] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field
theory. Reading, USA: Addison-Wesley, 1995. isbn: 9780201503975, 0201503972.
url: http://www.slac.stanford.edu/~mpeskin/QFT.html.

[7] Steven Weinberg. The Quantum theory of fields. Vol. 1: Foundations. Cam-
bridge University Press, 2005. isbn: 9780521670531, 9780511252044.

[8] R. Keith Ellis. “An Introduction to the QCD Parton Model”. In: 1987 The-
oretical Advanced Study Institute in Elementary Particle Physics (TASI 87)
Santa Fe, New Mexico, July 5-August 1, 1987. 1988, pp. 214–273. url: http:
//lss.fnal.gov/cgi-bin/find_paper.pl?conf-88-060.

[9] L. D. Faddeev and V. N. Popov. “Feynman Diagrams for the Yang-Mills
Field”. In: Phys. Lett. B25 (1967), pp. 29–30. doi: 10.1016/0370-2693(67)
90067-6.

[10] S. Aoki et al. “Quenched light hadron spectrum”. In: Phys. Rev. Lett. 84
(2000), pp. 238–241. doi: 10.1103/PhysRevLett.84.238. arXiv: hep-lat/
9904012 [hep-lat].

[11] H. David Politzer. “Reliable Perturbative Results for Strong Interactions?”
In: Phys. Rev. Lett. 30 (1973). [,274(1973)], pp. 1346–1349. doi: 10.1103/
PhysRevLett.30.1346.

103

https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/10.1103/PhysRevD.98.054018
http://arxiv.org/abs/1805.01186
https://doi.org/10.1016/j.nuclphysb.2011.01.023
http://arxiv.org/abs/1009.5691
https://doi.org/10.1016/0550-3213(96)00399-9
https://doi.org/10.1016/0550-3213(96)00399-9
http://arxiv.org/abs/hep-ph/9604351
http://www.slac.stanford.edu/~mpeskin/QFT.html
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-88-060
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-88-060
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1103/PhysRevLett.84.238
http://arxiv.org/abs/hep-lat/9904012
http://arxiv.org/abs/hep-lat/9904012
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346


BIBLIOGRAPHY 104

[12] William E. Caswell. “Asymptotic Behavior of Non-Abelian Gauge Theories
to Two-Loop Order”. In: Phys. Rev. Lett. 33 (4 1974), pp. 244–246. doi:
10.1103/PhysRevLett.33.244. url: https://link.aps.org/doi/10.
1103/PhysRevLett.33.244.

[13] Tanabashi M. et al. (Particle Data Group). “Review of Particle Physics”. In:
Phys. Rev. D 98 (3 2018), p. 030001. doi: 10.1103/PhysRevD.98.030001.
url: https://link.aps.org/doi/10.1103/PhysRevD.98.030001.

[14] G. ’t Hooft. “Can We Make Sense Out of “Quantum Chromodynamics”?”
In: The Whys of Subnuclear Physics. Ed. by Antonino Zichichi. Boston, MA:
Springer US, 1979, pp. 943–982. doi: 10.1007/978-1-4684-0991-8_17. url:
https://doi.org/10.1007/978-1-4684-0991-8_17.

[15] J C Collins and D E Soper. “The Theorems of Perturbative QCD”. In: Annual
Review of Nuclear and Particle Science 37.1 (1987), pp. 383–409. doi: 10.
1146/annurev.ns.37.120187.002123. eprint: https://doi.org/10.

1146/annurev.ns.37.120187.002123. url: https://doi.org/10.1146/
annurev.ns.37.120187.002123.

[16] John C. Collins. Renormalization: An Introduction to Renormalization, the
Renormalization Group and the Operator-Product Expansion. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, 1984. doi: 10.
1017/CBO9780511622656.

[17] Charalampos Anastasiou et al. “High precision QCD at hadron colliders: Elec-
troweak gauge boson rapidity distributions at NNLO”. In: Phys. Rev. D69
(2004), p. 094008. doi: 10.1103/PhysRevD.69.094008. arXiv: hep- ph/

0312266 [hep-ph].

[18] Stefano Catani et al. “Soft-gluon resummation for Higgs boson production at
hadron colliders”. In: Journal of High Energy Physics 2003.07 (2003), p. 028.
url: http://stacks.iop.org/1126-6708/2003/i=07/a=028.

[19] S. Catani, E. D’Emilio, and L. Trentadue. “The Gluon Form-factor to Higher
Orders: Gluon Gluon Annihilation at Small Q−transverse”. In: Phys. Lett.
B211 (1988), pp. 335–342. doi: 10.1016/0370-2693(88)90912-4.

[20] Pulak Banerjee et al. “Threshold resummation of the rapidity distribution for
Higgs production at NNLO+NNLL”. In: Phys. Rev. D97.5 (2018), p. 054024.
doi: 10.1103/PhysRevD.97.054024. arXiv: 1708.05706 [hep-ph].

[21] V. Ravindran, J. Smith, and W.L. van Neerven. “QCD threshold corrections to
di-lepton and Higgs rapidity distributions beyond N2LO”. In: Nuclear Physics
B 767.1 (2007), pp. 100 –129. issn: 0550-3213. doi: https://doi.org/10.
1016/j.nuclphysb.2007.01.005. url: http://www.sciencedirect.com/
science/article/pii/S0550321307000478.

[22] V. Ravindran. “On Sudakov and soft resummations in QCD”. In: Nucl. Phys.
B746 (2006), pp. 58–76. doi: 10.1016/j.nuclphysb.2006.04.008. arXiv:
hep-ph/0512249 [hep-ph].

[23] P. J. Rijken and W. L. van Neerven. “Order α2
s contributions to the Drell-Yan

cross-section at fixed target energies”. In: Phys. Rev. D51 (1995), pp. 44–63.
doi: 10.1103/PhysRevD.51.44. arXiv: hep-ph/9408366 [hep-ph].

https://doi.org/10.1103/PhysRevLett.33.244
https://link.aps.org/doi/10.1103/PhysRevLett.33.244
https://link.aps.org/doi/10.1103/PhysRevLett.33.244
https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1007/978-1-4684-0991-8_17
https://doi.org/10.1007/978-1-4684-0991-8_17
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1017/CBO9780511622656
https://doi.org/10.1017/CBO9780511622656
https://doi.org/10.1103/PhysRevD.69.094008
http://arxiv.org/abs/hep-ph/0312266
http://arxiv.org/abs/hep-ph/0312266
http://stacks.iop.org/1126-6708/2003/i=07/a=028
https://doi.org/10.1016/0370-2693(88)90912-4
https://doi.org/10.1103/PhysRevD.97.054024
http://arxiv.org/abs/1708.05706
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2007.01.005
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2007.01.005
http://www.sciencedirect.com/science/article/pii/S0550321307000478
http://www.sciencedirect.com/science/article/pii/S0550321307000478
https://doi.org/10.1016/j.nuclphysb.2006.04.008
http://arxiv.org/abs/hep-ph/0512249
https://doi.org/10.1103/PhysRevD.51.44
http://arxiv.org/abs/hep-ph/9408366


105 BIBLIOGRAPHY

[24] Prakash Mathews et al. “Next-to-leading order QCD corrections to the Drell-
Yan cross section in models of TeV-scale gravity”. In: Nucl. Phys. B713 (2005),
pp. 333–377. doi: 10.1016/j.nuclphysb.2005.01.051. arXiv: hep-ph/
0411018 [hep-ph].

[25] V.V.Sudakov. “Vertex Parts at Very High Energies in Quantum Electrody-
namics”. In: Sov. Phys. JEPT 3 (1956), p. 65.

[26] J. C. Collins. “Algorithm to compute corrections to the Sudakov form factor”.
In: Phys. Rev. D 22 (6 1980), pp. 1478–1489. doi: 10.1103/PhysRevD.22.
1478. url: https://link.aps.org/doi/10.1103/PhysRevD.22.1478.

[27] Ashoke Sen. “Asymptotic behavior of the Sudakov form factor in quantum
chromodynamics”. In: Phys. Rev. D 24 (12 1981), pp. 3281–3304. doi: 10.
1103/PhysRevD.24.3281. url: https://link.aps.org/doi/10.1103/
PhysRevD.24.3281.

[28] S. Moch, J. A. M. Vermaseren, and A. Vogt. “Three-loop results for quark and
gluon form-factors”. In: Phys. Lett. B625 (2005), pp. 245–252. doi: 10.1016/
j.physletb.2005.08.067. arXiv: hep-ph/0508055 [hep-ph].

[29] V. Ravindran, J. Smith, and W. L. van Neerven. “Two-loop corrections to
Higgs boson production”. In: Nucl. Phys. B704 (2005), pp. 332–348. doi: 10.
1016/j.nuclphysb.2004.10.039. arXiv: hep-ph/0408315 [hep-ph].

[30] S. Moch, J. A. M. Vermaseren, and A. Vogt. “The Quark form-factor at higher
orders”. In: JHEP 08 (2005), p. 049. doi: 10.1088/1126-6708/2005/08/049.
arXiv: hep-ph/0507039 [hep-ph].

[31] Stefano Catani et al. “Soft gluon resummation for Higgs boson production at
hadron colliders”. In: JHEP 07 (2003), p. 028. doi: 10.1088/1126-6708/
2003/07/028. arXiv: hep-ph/0306211 [hep-ph].

[32] Eric Laenen and George F. Sterman. “Resummation for Drell-Yan differential
distributions”. In: The Fermilab Meeting DPF 92. Proceedings, 7th Meeting
of the American Physical Society, Division of Particles and Fields, Batavia,
USA, November 10-14, 1992. Vol. 1, 2. 1992, pp. 987–989. url: http://lss.
fnal.gov/cgi-bin/find_paper.pl?conf-92-359.

https://doi.org/10.1016/j.nuclphysb.2005.01.051
http://arxiv.org/abs/hep-ph/0411018
http://arxiv.org/abs/hep-ph/0411018
https://doi.org/10.1103/PhysRevD.22.1478
https://doi.org/10.1103/PhysRevD.22.1478
https://link.aps.org/doi/10.1103/PhysRevD.22.1478
https://doi.org/10.1103/PhysRevD.24.3281
https://doi.org/10.1103/PhysRevD.24.3281
https://link.aps.org/doi/10.1103/PhysRevD.24.3281
https://link.aps.org/doi/10.1103/PhysRevD.24.3281
https://doi.org/10.1016/j.physletb.2005.08.067
https://doi.org/10.1016/j.physletb.2005.08.067
http://arxiv.org/abs/hep-ph/0508055
https://doi.org/10.1016/j.nuclphysb.2004.10.039
https://doi.org/10.1016/j.nuclphysb.2004.10.039
http://arxiv.org/abs/hep-ph/0408315
https://doi.org/10.1088/1126-6708/2005/08/049
http://arxiv.org/abs/hep-ph/0507039
https://doi.org/10.1088/1126-6708/2003/07/028
https://doi.org/10.1088/1126-6708/2003/07/028
http://arxiv.org/abs/hep-ph/0306211
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-92-359
http://lss.fnal.gov/cgi-bin/find_paper.pl?conf-92-359

	Introduction
	Theory of the Strong Interaction
	Quantum Chromodynamics
	Asymptotic Freedom
	Beyond the Perturbative Expansion
	Parton Model

	Drell Yan Process
	The hard sub-process
	Leading order calculation
	External leg correction
	Virtual contribution
	Real emission
	Final remarks

	Resummation
	Drell-Yan Resummation Formula
	Minimal Prescription

	Resummation of the Rapidity Distribution
	Double Mellin Transform Resummation
	Mellin-Fourier Transform Resummation
	Comparison of the Two Approaches

	Conclusion
	Dimensional Regularization
	Plus Distribution
	Bibliography

