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Abstract

Nella tesi viene affrontato il problema dell’entanglement da un punto di vista
geometrico, usando sia la geometria differenziale che la geometria algebrica. Parti-
colare attenzione viene data al problema della separabilità: ovvero il distinguere se
uno stato è entangled o separabile. Nel primo capitolo si introduce il formalismo
geometrico che verrà usato per analizzare la struttura della meccanica quantistica
e dell’entanglement: vengono presentati elementi di geometria differenziale com-
plessa, geometria proiettiva e geometria algebrica. Nel secondo capitolo, dopo un
breve riepilogo sulla meccanica quantistica, vengono usati gli strumenti introdotti
nel capitolo precedente per costruirne ed analizzarne la struttura differenziale. Nel
terzo capitolo l’entanglement viene studiato con alcuni esempi ed applicazioni con
metodo tradizionale, dopo di che anche gli aspetti geometrici vengono analizzati.
Infine, nell’ultimo capitolo viene proposto un nuovo approccio di tipo algebrico
derivato dalla dualità di Schur - Weyl.
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1

Introduction

About thirty years passed from the birth of Quantum Mechanics to its almost com-
plete mathematical formalization in 1932, year of the pubblication of Von New-
mann’s work "Mathematical Foundations of Quantum Mechanics" (originally titled
"Mathematische Grundlagen der Quantenmechanik" ).

Three years later Einstein, Podolsky and Rosen, analysing the mathematical
structure of this theory, came to the conclusion that Quantum Mechanics might
not be a complete theory [11]. The main motivation that led them to this con-
clusion was that the quantum formalism permits to know exactly the state of a
compound system leaving unknown the states of its single parts. Their paper was
the starting point of a intense debate in the physicist world: While Einstein refused
this conclusion and proposed the hidden variable theory, Schrödinger accepted this
phenomenon and called it "Verschränkung" (translated in English by Schrödinger
himself with the term Entanglement) [36]. This debate never came to an end and
many results, both experimental and theoretical, were obtained from its start.

In this work we will analyse from a geometrical point of view the open problem
of quantum entanglement, and in particular we will focus on the separability prob-
lem, which consists in understanding if a composite state is formed by individual
subsystems’s states.

Nowadays entanglement is no more a purely theoretical debate, it has become
a resource: in fact entangled states have a great importance in Quantum Infor-
mation Theory, Quantum Computation, Quantum Cryptography and many other
fields. One of the first experimental results was obtained in 1982 [3] when cou-
ples of entangled photons were created for the first time, the idea to use quantum
entanglement for communications was proposed in 1993 [6] using a sort of telepor-
tation. Nowadays the reached frontier is the experiment performed in 2016 by a
research group based in China, who put into orbit a communication satellite using
entanglement to communicate over more then 1200 km [2]. A second perspective
is quantum computation, born as an idea of Richard Feynman [13] in 1982. Now
it has become one of the main frontier in computation: in 2001 the first quantum
computer was born and it was formed by a system with seven qubits, this year
Google Quantum Al Lab has announced a quantum processor with 72 qubits called
"Bristlecone".

The geometrical approach to Quantum Mechanics is needed to explain many
effects that arise in quantum theory and which have a geometrical explanation (as
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the topological quantum effects); and one of the goals of this approach is standard-
izing the framework between most of the classical theories (such as the General
Relativity) and Quantum Mechanics. It does not have big formal difficulties in the
finite dimensional systems and it yields interesting results.

Without a geometrical frame many quantum effects cannot been explained so
this perspective inevitably enriches our knowledge of the quantum world. The ne-
cessity of a geometrical and topological approach to quantum mechanics is evident
in the treatment of topological phase of quantum matter, the quantum Hall effect
[33], which is strictly correlated to the topological approach, and the well known
Berry phase.

The state of the art of the geometrical description of quantum mechanics de-
scribes the Hilbert space of a system not to be the real arena of quantum mechan-
ics, in fact a state is represented by a ray in the Hilbert space [12]; this evidence
leads to a splitting of this space in equivalence classes that form a Projective Space.
The geometrical structure of the Projective Spaces is well known both differential
(it is a Kähler manifold) and algebraic points of view. The passage from the pure
states to the mixed states is not trivial and it gives rise to a rank stratification of the
set of Hermitian operators each of which is endowed with a submanifold structure
inherited from the manifold of Hermitian operators [19].

The set of separable pure states is described by the Segre Embedding which
rises only thanks to the Projective Structure [18] of the set of pure states; this de-
scription is particularly simple and characterized by a series of quadratic equations.
The separability problem for the density states is not easy as the pure case: a com-
plete description is known only for low dimensional systems [35] such as a system
with two qubits or a system with a qubit and a qutrit. For higher dimensional sys-
tem there are many characterizations provided by many criteria but no one is able
to describe in a complete way the set of the separable mixed states, moreover it was
proved that the separability problem is NP-hard [16].

In the first chapter we present the mathematical tools that are needed to un-
derstand this problem from this point of view. We introduce the main definitions
that characterize complex manifolds in order to arrive at the description of Kähler
manifolds that own a rich geometrical structure. Subsequently fibre bundles are in-
troduced: they are object that locally, but not globally, can be considered Cartesian
products of spaces. At the end of this first chapter we present some fundamental
notions of algebraic geometry and projective geometry, that help to understand the
entanglement in its mathematical construction.

In the second chapter, the mathematical elements of the first chapter are used
to give a formal geometrical description of the objects which play a role in quan-
tum mechanics. After a brief review of the traditional mathematical formalism of
Quantum Mechanics, we show how a principal bundle structure on the original
Hilbert space arises with the use of the postulates. This construction is followed by
a differential description of the pure states space and the density states space which
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gives rise to a peculiar structure of a convex set formed by sub-manifolds. In order
to have a geometrical treatment we deal with the orbit method, which classifies
the possible density matrices on the basis of the action of the unitary group and
consequently on eigenvalues.

In the third chapter the leading argument is finally quantum entanglement. An
introduction of this effect that addresses the nature, some application to entangle-
ment and some elements about the separability criteria are followed by the geo-
metrical description of the quantum entanglement, that this time uses also alge-
braic geometry and in particular the Segre Embedding, a map between Projective
Spaces. A large part of this chapter is dedicated to the simplest system in which
entanglement effects appear: a two qubits system, that is also one of the few sys-
tems that are completely solved. We present first a treatment of entanglement of
the pure states and then the entanglement that arises in the case of mixed states.

In the last chapter we will draw some conclusions, by presenting also the out-
line of a new algebraic approach to the separability problem, which tackles this
question via representation theory of the symmetric group and the Weyl-Schur du-
ality. This approach needs to be further pursued before it can yield original results,
but we hope it can provide new powerful techniques of investigation.
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Chapter 1

The Geometrical Framework

The main aim of this chapter is to introduce the reader into the mathematical frame-
work of this thesis: in the first part elements of complex differential geometry, sym-
plectic spaces and Kähler manifolds will be introduced; in the second part the main
topic will be fibre bundles with particular attention for principal bundles. A good
review of preliminary notions, such as Riemannian geometry or calculus on mani-
fold, is presented in [34], from which most of the content of this chapter come from.
In the last part some algebraic geometry notion will be introduced to understand
entanglement from this perspective, which we will discuss in chapter 3; [23] and
[25] will be followed for this section.

1.1 Complex Manifolds

In order to analyse the complex differential structures let’s recall the Cauchy Rie-
mann conditions that characterize homomorphic functions.

Definition 1.1. A complex valued function:

f : Cn →C; (1.1)

xν + iyν → f (xν + iyν) = u(xν + iyν) + iv(xν + iyν) {1 ≤ ν ≤ n}; (1.2)

is holomorphic if:
∂u
∂xν

=
∂v
∂yν

;
∂u
∂yν

= − ∂v
∂xν

. (1.3)

This definition can be easily generalized to functions:

F = ( f1, . . . , fm) : Cn → Cm; (1.4)

by requiring that all f j : Cn → C are holomorphic.

Now we can pass to the geometry formalism of complex structures.

1.1.1 First Definitions

Definition 1.2 (Complex manifold). M is an m-dimensional complex manifold if:
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1. M is a topological space;

2. There exists a set {(Ui, φi)}i of analytic charts:

φi :Ui → Cm; (1.5)

p 7−→ φ(p) = {zµ(p)} {1 ≤ µ ≤ m}; (1.6)

called atlas of the manifold: moreover the atlas form a complete overlap of the mani-
fold: ⋃

i

Ui = M. (1.7)

3. If there are two charts: (U, φ) and (V, ψ) with a non trivial intersection U ∪V 6= ∅;
the compatibility function:

χUV = φ−1 ◦ ψ : M→ M; (1.8)

is holomorphic.

Thus a complex manifold is locally homeomorphic to Cn and this leads to the
identification of n as the complex dimension of the manifold; moreover the passage
from a local system of coordinates to another is holomorphic and this ensures the
preservation of the same complex structure of the manifold in all charts.

While the first example of complex manifold is Cn, a more interesting example
is the two dimensional sphere, S2.

Example 1. A first example of a complex manifold is S2, which can be identified with
C2 ∪ {+∞} [34]. This object is first of all a differential manifold (see definition B.1); and
two stereographic projections can be used as charts to give an atlas that covers S2. The first
map is the projection from a point P(x, y, z) = (X1, X2) ∈ S2 \ {NorthPole}, and can be
written as:

(X0, X1) =

(
x

1− z
,

y
1− z

)
; (1.9)

the second map can be built up in similar way considering the open set S2 \ {SouthPole}:

(Y0, Y1) =

(
x

1 + z
,
−y

1 + z

)
. (1.10)

Now it is time to see the complex structure of this manifold: on the open sets previously
introduced we can define complex coordinates:

Z = X0 + ıX1 Z = X0 − ıX1 (1.11)

W = Y0 + ıY1 W = Y0 − ıY1 (1.12)

It can be seen that the change of coordinates is holomorphic:

W =
x

1 + z
+ ı

(−y)
1 + z

=
x− ıy
1 + z

=
1− z
1 + z

(X0 − ıX1) =
1
Z

; (1.13)
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that proves the holomorphic propriety on the intersection of the two open sets.

1.1.2 Almost complex structure

It has already been shown in the previous example that a complex manifold is also
a differential manifold, in order to see it is enough to compare the definition 1.2 of a
complex manifold and the definition B.1 of a real differential manifold. In practice
this identification comes from the diffeomorphism between Cn and R2n (it can be
seen also in the example 1 where we use the differential structure of S2 to build up
its structure as complex manifold). So let M be a complex manifold of dimC = m
and p a point of it, with local coordinates:

p = (z1, . . . , zm) where zµ = xµ + iyµ; (1.14)

the tangent space in this point TpM is spanned by:{
∂

∂xµ
,

∂

∂yµ

}
, 1 ≤ µ ≤ m; (1.15)

therefore we have that the tangent space is a differential manifold.
It is possible to pass to complex coordinates also for the tangent space, that

correspond to the 2m vectors:

∂

∂zµ
=

1
2

(
∂

∂xµ
− i

∂

∂yµ

)
(1.16)

and its complex conjugates; the 2m vectors form a basis for the complex vector
space TpMC and it gives a complex structure to the tangent space.

The same holds true for the dual T∗p M, which is spanned by:

{dxµ, dyµ} , 1 ≤ µ ≤ m. (1.17)

that with their complex conjugates form a basis for T∗p MC. A similar procedure can
be repeated to define:

dzµ = dxµ + idyµ. (1.18)

That construction is equipped with the canonical duality relations:〈
dzµ,

∂

∂zν

〉
= δ

µ
ν ; (1.19)〈

dz̄µ,
∂

∂zν

〉
= 0. (1.20)

Remark 1.1. Let us remark that the tangent and the cotangent spaces of a complex manifold
are constructed from its real structure, while its complex structure is inherited from the
original complex manifold.
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Definition 1.3 (Almost Complex Structure). Let be M a complex manifold there is a
map:

Jp : TpM→ TpM, (1.21)

that acts as:
Jp

(
∂

∂xµ

)
=

∂

∂yµ
Jp

(
∂

∂yµ

)
= − ∂

∂xµ
. (1.22)

It is clear that:
J2
p = −idTp M; (1.23)

and moreover it is independent on the chart taken.
It is possible to define a smooth tensor field that in every point takes the form of

the map defined in 1.3, and this tensor J defines completely the complex structure
of the manifold.

We can write the Jp in complex coordinates:

Jp = dzµ ⊗ ∂

∂zµ
− dz̄µ ⊗ ∂

∂z̄µ
; (1.24)

that leads to an important propriety of the action of the almost complex structure:
the complex tangent space TpMC is splitted in two parts:

TpM+ =
{

Z ∈ TpMC|JpZ = iZ
}

, (1.25)

TpM− =
{

Z ∈ TpMC|JpZ = −iZ
}

, (1.26)

the two parts are disjoint:

TpMC = TpM+ ⊕ TpM−. (1.27)

For the vectors fields the same splitting holds:

χ(M)C = χ(M)+ ⊕ χ(M)−. (1.28)

1.2 Complex differential forms

A complex manifold, as it was already shown, is a differential manifold, therefore
we can define the space of the complex differential forms. Let be ω, ξ ∈ Ωq

p(M)

two differential form in the point p ∈ M; a complex q-form can be defined as:

η = ω + iξ; (1.29)

the vector space of the complex differential form is denoted as Ωq
p(M)C. If now an

almost complex manifold will be considered, it is useful to recall the splitting of
TpMC:

TpMC = TpM+ ⊕ TpM−. (1.30)
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Now we are ready to see that this splitting leads to a different labelling of the vector
space of the differential forms Ωq

p(M)C:

Definition 1.4. Let be M a complex manifold with dimC(M) = m. Let be η ∈ Ωq
p(M)C

with q ≤ 2m and consider two indexes r + s = q. Let’s define q vectors Xi ∈ TpM that
can be in TpM+ or TpM−. If the evaluation:

η(X1, . . . , Xq) 6= 0, (1.31)

only for r vectors in TpM+ and s vectors in TpM−, then η is called differential form of
bidegree (r,s). The set of (r, s)-form at p ∈ M is denoted by Ωr,s

p (M), if a form can be
defined on the whole manifold this space is denoted Ωr,s(M).

The structure of Ωq
p(M)C derived form the labelling introduced in definition 1.4

is described in the following proposition.

Proposition 1.1. If ξ and η are two complex differential form on a complex manifold M.

• If ξ ∈ Ωq,r
p (M) then ξ ∈ Ωr,q

p (M).

• If we have two forms: ξ ∈ Ωq,r
p (M) and η ∈ Ωq′,r′

p (M), then:

ξ ∧ η = Ωq+q′,r+r′
p (M). (1.32)

• A ξ ∈ Ωq
p(M) can be written in a unique way as:

ξ = ∑
r+s=q

ξr,s; (1.33)

where ξ(r, s) ∈ Ωr,s(M). Furthermore the following decomposition holds:

Ωq
p(M)C =

⊕
r+s=q

Ωr,s
p (M). (1.34)

1.2.1 Dolbeaut operators

Let us consider ω to be a (r, s)-form:

ω = ωµ1...µr ,ν1 ...νs dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs ; (1.35)

the exterior derivative of this object can be calculated in local coordinates and it
takes the form (here and in the following we use the notation in which repeated
indices imply summation):

dω =
1

r!s!

(
∂

∂zλ
ωµ1...µr ν̄1 ...ν̄s dzλ +

∂

∂z̄λ
ωµ1...µr ν̄1 ...ν̄s dz̄λ

)
dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs

(1.36)
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that is a mixture of a (r + 1, s) and a (r, s + 1) form. This splitting allows us to
define two operators: the first maps a (r, s) form to a (r + 1, s) form, while the
second maps a (r, s) form to a (r, s + 1) form.

Definition 1.5 (Doubeault Operators). The action of the external derivative can be sep-
arated into:

d = ∂ + ∂̄; (1.37)

and the actions of ∂ and ∂ are given by:

∂ω =
1
r!

(
∂

∂zλ
ωµ1 ...µr ν̄1...ν̄s dzλ

)
dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs (1.38)

∂ω =
1
s!

(
∂

∂z̄λ
ωµ1 ...µr ν̄1 ...ν̄s dz̄λ

)
dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs ; (1.39)

This operators will be important when closed forms will be studied, in particu-
lar the Kähler one. The holomorphic forms can be now defined:

Definition 1.6. An η ∈ Ωr,0 such that ∂η = 0 is called holomorphic r-form.

1.3 Hermitian and Kähler Manifolds

Now the metric structure of the complex manifold will be studied, let’s start by
recalling the definition of a Riemannian metric.

Definition 1.7 (Riemannian Metric). Let be M a differential manifold, a Riemannian
metric g is a two form that at each point is a map:

gp : TpM× TpM→ R (1.40)

with the proprieties:

• gp(X, Y) = gp(Y, X) where X, Y ∈ TpM;

• gp(X, X) ≥ 0;

• gp(X, X) = 0 ⇐⇒ X = 0.

Let M be a complex manifold endowed by a Riemannian metric g; if complex
coordinates are used and by taking two vectors Z, W ∈ TpM, which can be ex-
pressed as in equation (1.11):

Z = X + iY W = U + iV; (1.41)

then we will have:

gp(Z, W) = gp(X, U)− gp(Y, V) + i
[
gp(X, V) + gp(Y, U)

]
; (1.42)
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and from this expression the components of the metric can be calculated in local
coordinates:

gµν = gp

(
∂

∂zµ
,

∂

∂zν

)
gµ̄ν̄ = gp

(
∂

∂z̄µ
,

∂

∂z̄ν

)
;

gµ̄ν = gp

(
∂

∂z̄µ
,

∂

∂zν

)
gµν̄ = gp

(
∂

∂zµ
,

∂

∂z̄ν

)
.

Now it is the time to introduce a particular kind of metric, that is useful for our
mathematical framework.

Definition 1.8 (Hermitian Metric). Let M be a complex manifold and g be a Riemannian
metric on it that satisfies for all X, Y ∈ TpM and for all p ∈ M:

gp
(

JpX, JpY
)
= gp (X, Y) (1.43)

then g is called Hermitian Metric.

The action of the almost complex structure on a vector X creates another vector
JpX, clearly the last one is orthogonal of the first one under a Hermitian metric:

gp
(

JpX, X
)
= gp

(
J2
pX, JpX

)
= −gp

(
JpX, X

)
= 0. (1.44)

This construction is not so uncommon as can be thought, the following statement
ensures that a Hermitian structure can be built over every complex manifold [34].

Theorem 1.1. Any complex manifold admits a Hermitian metric.

The component of a Hermitian metric can be calculated using the previous pro-
prieties, and it can be seen that:

gµν = g
(

∂

∂zµ
,

∂

∂zν

)
= g

(
J

∂

∂zµ
, J

∂

∂zν

)
= −g

(
∂

∂zµ
,

∂

∂zν

)
= 0; (1.45)

and consequently the structure of the metric is:

g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν. (1.46)

Let us now introduce the Kähaler form on a Hermitian manifold (M, g). It is
the tensor field Ω that acts on TpM:

Ωp (X, Y) = gp(JpX, Y); (1.47)

from its construction the skew-symmetry of Ω is trivial.
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Definition 1.9 (Kähler form). A Kähler form Ω is a two-form associated to a Hermitian
metric, with the proprieties:

Ω(X, Y) = g(JX, Y) = g(J2X, JY) = −g(Jy, X) = −Ω(Y, X) (1.48)

Ω(JX, JY) = g(J2X, JY) = g(J3X, J2Y) = Ω(X, Y) (1.49)

It is possible to express the Kähaler form in the complex base in order to see
better its components:

Ω = gµν̄dzµ ⊗ dz̄ν − gµ̄νdz̄µ ⊗ dzν = gµν̄dzµ ∧ dz̄ν = −Jµν̄dzµ ∧ dz̄ν (1.50)

The Kähler form and the Riemannian metric can be combined and give rise a
rich differential structure on a manifold called Kähler manifold.

Definition 1.10 (Kähler Manifold). A real manifold M with dimR M = 2m is called
Kähler manifold, denoted by (M, J, g, Ω), if it is equipped with:

1. An almost complex structure J as in definition 1.3;

2. and a Hermitian Metric;

3. A Kähler form Ω which is dΩ = 0, and satisfies:

Ω(X, JY) + Ω(JX, Y) = 0. (1.51)

It is possible to verify [9] that on a manifold a Kähler structure can be con-
structed using the following statement.

Theorem 1.2. Let (M, g, J) be a Hermitian manifold such that:

∇µ J = 0, (1.52)

where ∇µ is the Levi Civita connection associated to g. Then (M,g,J) is a Kähler manifold.

In a Kähler manifold dΩ = (∂ + ∂̄)Ω = 0 so it is possible to deconstruct this
condition using the Dolbeaut operators:

(∂ + ∂̄)igµν̄dzµ ∧ dz̄ν = (1.53)

i∂λgµν̄dzλ ∧ dzµ ∧ dz̄ν + i∂λ̄gµν̄dz̄λ ∧ dzµ ∧ dz̄ν (1.54)
1
2

i
(
∂λgµν̄ − ∂µgλν̄

)
dzλ ∧ dzµ ∧ dz̄ν +

1
2

i
(
∂λ̄gµν̄ − ∂ν̄gλµ̄

)
dz̄λ ∧ dzµ ∧ dz̄ν; (1.55)

that leads to the conditions:

∂gµν̄

∂zλ
=

∂gλν̄

∂zµ

∂gµν̄

∂z̄λ
=

∂gλ̄µ

∂z̄ν
. (1.56)
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Example 2 (Complex Euclid Space). If we consider Cn as a complex manifold, its struc-
ture as differential manifold can be reconstructed with the usual identification:

zµ = xµ + iyµ; (1.57)

that leads to Cn ' R2n. On R2n can be introduced the Euclidean metric (that is a Rieman-
nian metric):

g
(

∂

∂xν
,

∂

∂xµ

)
= g

(
∂

∂yν
,

∂

∂yµ

)
= gµν; (1.58)

while:
g
(

∂

∂xν
,

∂

∂yµ

)
= 0. (1.59)

The action of the almost complex structure on this manifold is easy to see:

J
(

∂

∂xν

)
=

∂

∂yν
; (1.60)

and consequently g is a Hermitian metric. If we recall the complex coordinates, we can
write the action of the Euclidean metric on the complex tangent space as:

g
(

∂

∂zν
,

∂

∂zµ

)
= g

(
∂

∂zµ ,
∂

∂zν

)
=

1
2

gµν; (1.61)

while:
g
(

∂

∂zν
,

∂

∂zµ

)
= g

(
∂

∂zµ ,
∂

∂zν

)
= 0. (1.62)

Now the Kähler form can be calculated using the compatibility relations of definition 1.9:

Ω =
i
2

dzµ ∧ dzµ =
i
2

dxµ ∧ dyµ; (1.63)

Clearly dΩ = 0; so Cn, endowed by the Euclidean metric, is a Kähler manifold.

1.4 Fibre Bundle

In this section the main features of fibre bundles will be explained, following also
[9] in addition to [34] that has been the main reference until this moment. For
useful notions on Lie groups see the relative section of Appendix B, while for a
more detailed treatment see [39] or [37].

1.4.1 Main Definitions

Roughly speaking a fibre bundle is a topological space that locally can be seen as
a Cartesian product of two spaces, all the the product spaces are fibre bundles but
these special cases are called trivial bundles.

Definition 1.11. A fibre bundle (E, π, M, F, G) is a collection of object:
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Bundle
Base Space

Fibre

FIGURE 1.1: Fibre Bundle

1. A manifold E called total space;

2. A manifold M called base space;

3. A manifold F called fibre;

4. A surjective map π : E→ M called projection, the image of the inverse of π−1(p) =
Fp ' F, called fibre in the point p. (The relation Fp ' F can be an homeomorphism
or a diffeomorphism depending on the structure of the fibre bundle, where it will be
not specified it will be assumed to be diffeomorphism).

5. A group G called structure group, that acts on F on the left (usually it will be taken
to be a Lie Group, unless specified differently).

6. A set of couples {Ui, φi} formed respectively by open sets and maps (called local
trivialization), such that:

φi : Ui × F → π−1(Ui); (1.64)

with the proprieties: π ◦ φi(p, f ) = p. Note that the inverse φ−1
i maps π−1(Ui) to

the product Ui× F (also in this case φi can be a homeomorphism or a diffeomorphism,
and this "choice" has to be coherent with the previous one).

7. Let us denote φi(p, f ) = φi,p( f ); the map:

φi,p : F → Fp; (1.65)

is a diffeomorphism. Let us consider two couples (Ui, φi) and (Uj, φj) with a non
trivial intersection; we require the existence of:

G 3 tij(p) = φ−1
i,p ◦ φj,p : F → F; (1.66)

and so the two trivializations are related by:

tij : Ui ∩Uj → G; (1.67)

called transition function.
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The transition functions have a group structure, and fulfil the so called compat-
ibility relations:

• tii(x) = id if x ∈ Ui

• tij(x) = (tji(x))−1

• tij(x)tjk(x) = tik(x) if x ∈ Ui ∩Uj ∩Uk

The choice of the transition functions is not uniquely defined; if two different
bundle E and E′, with the same base space (M), same fibre (F), and same group
structure (G); are considered, it is possible to take the couples (Ui, φi), related to E,
and (Ui, ψi) related to E′; and construct the map:

φi ◦ ψ−1
i : Ui × F → Ui × F; (1.68)

fixing a point x ∈ Ui there is a homomorphism λi(x) of bundles; which is also an
element of the structure group G. The transition functions of the two bundles are
related by the homomorphism:

t′ij = λ−1
i tijλj. (1.69)

In order to study a bundle it is common to consider a map from the base space
M and the total space E.

Definition 1.12 (Cross Section). Let be (E, M, π) (for brevity) a bundle. A cross section
is a smooth map:

s : M→ E; (1.70)

such that π ◦ s = idM.

In this map obviously s(p) = s|p is an element of the local fibre Fp = π−1(p),
the set of all section of a bundle is Γ(M, F). If we consider an open set U of M it can
be possible to define a lots of local sections, but it is not common to have a section
define over the whole bundle.

Example 3 (Tangent Bundle). An useful example of a fibre bundle is the tangent bundle,
usually denoted by TM. Let us consider a differential manifold M, and an atlas {Ui, φi}; if
we consider a point p on M, its local coordinates in the open Ui will be given by xµ = φi(p);
consequently a an element of TUi =

⋃
p∈Ui

TpM is a couple (p, V), with V ∈ TpM. The
projection is given by:

π(p, V) = p; (1.71)

and does not depend on the choice of the local map, so it can be defined globally. An im-
portant remark has to be done: the tangent space TpM takes now the role of the fibre of this
bundle, while M is the base space; the usual local structure of the manifold (M ' Rn) and
of its tangent space (TpM ' Rn), allow us to identify GL(n, R) as the Lie group involved
in this construction.
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(A) Torus.
(B) Klein Bottle.

FIGURE 1.2: Plots of example 4.

G E

M

FIGURE 1.3: The usual structure of a principal Bundle

Example 4 (Klein Bottle). A more curious fibre bundle is the Klein Bottle [34]. By con-
sidering initially the manifold T2 = S1 × S1, the torus (figure 1.2a), looking on its product
global structure we can see it as a trivial bundle; the structure group is the trivial group.
The Klein Bottle (figure 1.2b) can be seen as a twisted torus: the base space and the fibre are
both identified by S1 but the structure group is now defined by Z2.

In a similar way the Möbius strip can be constructed.

1.4.2 Principal Bundle

Principal bundles are a special class of bundles with less object involved but they
maintain the same rich structure.

Definition 1.13. A principal Bundle, denoted by (E, π, M, G), is a structure:

1. A manifold E called total space;

2. A manifold M called base space;

3. A surjective and continuous function π:

π : E→ M (1.72)

called projection.

4. A lie Group G called fibre.

It is called also a G bundle over M.

Recalling the definition 1.12, we can study the triviality (global product struc-
ture) of a principal bundle [34]:

Theorem 1.3. A principal bundle is trivial ⇐⇒ ∃ a global section.
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1.5 Orbit Method

The action of a group is important, not only because it permits the construction
of a bundle over a manifold; but also because it could create a stratification into
equivalence classes. In this section elements of Orbit Method will be presented
following [29]; for complements on Lie groups and Lie algebras see appendix B.

Let M be a differential manifold and G a Lie Group with a Lie algebra g that
corresponds to the TeG the tangent space in the identity in G.

Definition 1.14 (Left Action). For any g ∈ G, τ(g) : M→ M is a diffeomorphism such
that:

τ(g1g2) = τ(g1) ◦ τ(g2); (1.73)

τ(e)p = p ∀p ∈ M. (1.74)

Moreover the action is smooth.

Sometimes is more useful to define the action as:

τ :G×M→ M; (1.75)

(g, p) 7→ τ(g)p. (1.76)

Remark 1.2. It will be denoted a general action of a group with τ(g)p = gp.

In the same way one can define a right action with the same proprieties. For
our purposes we will denote:

Lg p = gp Left Action; (1.77)

Rg p = pg−1 Right Action. (1.78)

There are various types of action that can be classified in the following way:

Definition 1.15. • An action is called Transitive if ∀p1, p2 ∈ M, ∃g ∈ G such that:

gp1 = p2; (1.79)

• An action is called Free if ∀g 6= e ∈ G if @p ∈ M such that:

gp = p; (1.80)

that is the lack of any fixed point for every element of G different from the identity.

• An action is called Effective if identity of the group is the only with a trivial action,
that is ∀p ∈ M than:

gp = p ⇐⇒ g = e ∈ G. (1.81)
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Remark 1.3. It is important to emphasize that every free action is also effective, but the
converse is not true: a simple example is given by the action of Z2 = {1,−1} on the
real number realized by the usual multiplication, this action is effective but not free since
g = −1 has p = 0 as fixed point.

Now let us have closer look at the action of a group on a manifold M. If the
action is transitive then gp, by varying g ∈ G, becomes all possible points on M.
In general the set of all possible points reached with the action of a group is called
Orbit of the group:

Definition 1.16 (Orbit). Given a point p ∈ M the orbit of p is defined as:

Op = {q ∈ M|gp = q∀g ∈ G} . (1.82)

Clearly Op ⊆ M.

Definition 1.17 (Stabilizer). Let G be a Lie group that acts on a manifold M. The stabilizer
of p, H(p) is the set:

H(p) = {g ∈ G|σ(g, p) = p} . (1.83)

The stabilizer has many interesting proprieties:

• H(p) is a subgroup of G;

• If G is a Lie Group, then H(p) is a Lie subgroup;

• If the action of G is effective the stabilizer of all points are trivial.

Let us specify this construction for the action of G on its algebra g. The internal
operation of g is provided by the commutator of vectors:

[·, ·] :g× g→ g (1.84)

(X, Y) 7→ [X, Y] = XY−YX (1.85)

The action of G on itself is transitive and can be made with Lg, Rg or an their com-
bination called conjugation:

Cjg = Lg ◦ Rg : h 7→ ghg−1; (1.86)

that leaves e in itself. This leads to an automorphism of the algebra.

Definition 1.18 (Adjoint Action). The adjoint action Ad is a map:

Adg : g→ g; (1.87)

and so we can define an homomorphism between G and Aut(g) (all the isomorphism from
g to it self) defined as:

g 7→ Adg. (1.88)
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H(p) G

O(p)

FIGURE 1.4: The principal bundle structure of the group G.

This is called adjoint representation of the Lie group G on its algebra g.

The adjoint action can be differentiated (see Appendix B) and it is possible to
define another action.

Definition 1.19. The map:
ad := (dAd)e (1.89)

is homomorphism from the Lie algebra g to the Lie algebra of the automorphism of g.

Proposition 1.2. Let X, Y ∈ g, then:

ad(X)Y = [X, Y] (1.90)

In an analogous way we can consider g∗ the dual of the algebra of G.

Definition 1.20. A linear representation of G on g∗ is analogous to the adjoint and it is
defined as the map:

g 7→ Ad∗g = (Adg); (1.91)

and considering a ξ ∈ g∗, its action can be expressed as:

〈Ad∗gξ, X〉 = 〈(Adg)ξ, X〉 = 〈ξ, Adg−1 X〉; (1.92)

where with 〈·, ·〉 is denoted the scalar product.

Recalling the concepts of orbit and stabilizer it is possible to see the construc-
tion, for a p ∈ g:

O(p) ' G/H(p). (1.93)

and the algebra of the stabilizer can be denoted with hp. This structure, considering
the transitive action of G on the orbit, gives rise to a structure of a principal bundle
with the total space G, the orbit O(p) as the base space and with the fibre given
by the stabilizer H(p)(see figure 1.4), in this case the projection is given by the
coadjoint action:

π : g 7→ Ad∗g p (1.94)
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1.6 Projective Spaces

The projective space was introduced in the XVI century to explain the space seen
by the human eye and introduced in mathematics in the first years of XVII century
by Desargues.

Let’s start with a formal description:

Definition 1.21. A projective space Pn(K) over a field K, is the set in the one dimensional
subspaces in the vector space Kn+1.

We will deal mainly with complex projective spaces, so we will specify all the
following for this structure.

Definition 1.22. Let V ' Cn be a complex vector space, the associated projective space is:

Pn−1C = (Cn \ {0}) / ∼; (1.95)

where the equivalence relation is defined by:

(x0, . . . , xn−1) ∼ (y0, . . . , yn−1) ⇐⇒ (x0, . . . xn−1) = λ(y0, . . . , yn−1); (1.96)

in which λ ∈ C0 (the set of complex numbers without the 0).

A point in the projective space is then an equivalence class, sometimes denoted
by [x0, . . . , xn−1]. This description in a geometrical view is equivalent to consider
any different straight line passing through the origin in the original space as a point
of the new projective space.

There is another geometrical description for the projective space PnC as all the
points of intersection of any straight lines in Cn+1 including the point at infinity; in
this way its straightforward to see that parallel lines have intersection.

Example 5. While the projective space associated to C is trivial (equivalent to a single
point), the first useful example for our purpose analyses P1C as all the equivalence classes
in the form [x0, x1].

Now we can see that the projective space, by its construction, inherits a complex
manifold structure. Let z = [z0, . . . , zn−1] ∈ Pn−1C the homogeneous coordinates;
a chart Uµ ⊂ (Cn \ {0}) in which zµ 6= 0 so we can use the inhomogeneous coordi-
nate:

φν
(µ) =

zν

zµ
(1.97)

associated to the chart (Uµ, φ(µ)). The compatibility function between the two
charts Uµ and Uλ in their intersection is:

ψµλ =
zλ

zµ
φν
(λ) (1.98)

and it is holomorphic.
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The differential structure of the projective space is deeper then the one seen
so far, and as a matter of fact it is also a Kähler manifold. If we consider a chart
(Uµ, φ(µ)) with the inhomogeneous coordinates, it’s possible to define a function:

Kµ(p) =
m+1

∑
ν=1

∣∣∣∣ zν

zµ

∣∣∣∣; (1.99)

and if a point p ∈ Uµ ∩Uα the two K functions are related each other by:

Kµ(p) =
∣∣∣∣ zα

zµ

∣∣∣∣2Kα(p). (1.100)

Taking the logarithm of the two sides we get:

log(Kµ(p)) = log(Kν(p)) + log
(

zµ

zν

)
+ log

(
zµ

zν

)
. (1.101)

For the holomorphic proprieties we know that:

∂∂̄Kµ = ∂∂̄Kν; (1.102)

and so the closed two form Ω is:

Ω = i∂∂̄ log
(
Kµ

)
; (1.103)

and a Hermitian metric can be constructed with the Kähler form just defined con-
sidering two vectors X, Y ∈ TpPn−1C and defining a metric g(X, Y) = Ω(X, JY).
The proof of the Hermitian propriety can be found in [34]. This is called Fubini-
Study metric of Pn−1C.

1.7 Algrebric Geometry

Let be K a closed algebraic field (every not constant polynomial with coefficients
in the field has a root in K). There are particular subsets on a projective spaces
(definition 1.21) that have an important structure.

Definition 1.23 (Projective Varieties). A projective varieties X ⊂ Pn is the locus of a
collection of homogeneous polynomials Fα.

For locus we mean the set defined as all zeros of the set of Fα; this acquires a
sophisticated structure when we find that the set of polynomial, and also the set of
homogeneous polynomials, is a ring (a Field without the inverse for the multiplica-
tive operation, e.g. Z).

For the purpose of this thesis work, the algebraic fields that will be considered
are R and C; obviously dealing with R is not easy because is not algebraically
closed. To understand these abstract construction we can study some examples.
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Example 6 (Twisted Cubic). Let us consider the map:

φ : [x0, x1] 7→ [x3
0, x2

0x1, x0x2
1, x3

1]; (1.104)

clearly it is a map from P1 to P3. If we are in P1C, and choosing the inhomogeneous
coordinates (imposing x0 6= 0) this map can be rewritten:

φ : t 7→ (t, t2, t3). (1.105)

To see how it can be a projective variety a set of polynomials has to be found. Let us consider
P3C, a point of it has the coordinates (z0, z1, z2, z3). The image of the map is given by the
points with:

z0 = x3
0

z1 = x2
0x1

z2 = x0x2
1

z3 = x3
1;

which are the locus of the polynomials:

P0 = z0z2 − z2
1;

P1 = z1z3 − z2
2;

P2 = z0z3 − z1z2;

as it can be seen with a simple algebraic calculation. The locus is a curve which is called
twisted cubic.

In order to visualize better this curve is convenient to pass from C to R. In figure 1.5
the real twisted cubic is plotted.

Example 7 (Normal Rational Curve). A rational normal curve C ⊂ Pn is defined to be
the image of the map:

vn : P1 → Pn (1.106)

[Z0, Z1] 7→ [Zn
0 , Zn−1

0 Z1, . . . , Z1
0Zn−1

1 , Zn
1 ] = [Y0, ..., Yn] (1.107)

C is the common zero locus of the polynomials:

YiYj −Yi−1Yj+1. (1.108)

Clearly the twisted cubic represent the normal rational curve with d=3.

There is an important connection between an algebraic variety and a complex
manifold: we have already shown that the complex projective space is a Kähler
manifold, this imply that if X is a projective variety in PnC then it is also a compact
Kähler manifold. In general it is not true that a Kähler manifold is a projective
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FIGURE 1.5: Twisted cubic for a real parameter: z2 − z2
1 = 0 in Yel-

low, z3 − z3
1 = 0 in Green, z3

2 − z2
3 = 0 in Blue and the twisted cubic

in Red.

algebraic variety; there is a theorem that gives some condition to say if a Kähler
manifold is a projective algebraic variety or not [24].

1.7.1 Determinantal Variety and Segre Varieties

Let us recall Example 7. There is a particular way to express the polynomials that
describes the locus of a rational normal curve, which is important for our propose,
it is the determinantal representation. The polynomials of that type of curve em-
bedded in Pn can be recovered considering the minors of a matrix; fixing an integer
k (0 < k < n) it is possible to define a matrix (k + 1)× (n− k + 1) of the type:

Y0 Y1 . . . Yk

Y1 Y2 . . . Yk+1
...

...
. . .

...
Yn−k Yn−k+1 · · · Yn

 (1.109)

where the Yi are the homogeneous coordinates of the Projective space Pn.

Example 8 (Determinantal Representation of Twisted Cubic). Let us reconsider the
examples 6 and 7. The twisted cubic is the map:

v3 : P1 → P3. (1.110)
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We can choose k uniquely equal to 1 or 2; this leads to the matrices:Y0 Y1

Y1 Y2

Y2 Y3

 and

(
Y0 Y1 Y2

Y1 Y2 Y3

)
; (1.111)

the two matrices has the very same three minors that leads to the polynomials:

P0 = Y0Y2 −Y2
1 ;

P1 = Y1Y3 −Y2
2 ;

P2 = Y0Y3 −Y1Y2.

that are the same of the example 6.

Sometimes it is possible to generalize this representation for a variety X ⊂ Pn,
if it can be done then X is called a determinantal variety. For this propose let
A = Pnm−1 the projective space associated to the space Mnm of n × m matrices.
Fixing an integer r that represents the rank of a matrix in Mnm we can define a pro-
jective variety, Ar, as the subset of all the matrices of rank r or less; it can be seen,
imposing that all the r-minors be zero, as a subset of a projective variety defined by
homogeneous polynomial and so Ar needs to be a projective variety.

One of the first examples that can be made are the Segre varieties: which are the
image of the so called Segre map:

σ : Pn ×Pm → P(n+1)(m+1)−1; (1.112)

that is defined by the equation:

Pn ×Pm 3 ([X], [Y]) σ7−→ [. . . , XiYj, . . . ] ∈ P(n+1)(m+1)−1. (1.113)

Remark 1.4. It is important to emphasise that if we consider the projective space over a
numerical field as C or R, the Segre map become, using the complex field for example:

CPn ×CPm → CP(n+1)(m+1)−1; (1.114)

where PnC is the complex projective space associated to the complex space Cn+1, PmC,
in analogy, is the complex projective space associated to the complex space Cm+1 and
P(n+1)(m+1)−1C is associated to C(n+1)(m+1). The fundamental remark is that:

C(n+1) ⊗C(m+1) ' C(n+1)(m+1); (1.115)

and this propriety has a big consequence when we deal with quantum mechanics that will
be treated in the chapter 3.
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FIGURE 1.6: Plot of Segre embedding in a real projective space.

The Segre variety is the common zero locus of polynomial of the type:

Zi,jZk,l − Zi,lZk,j (1.116)

where Zi,j = XiYj. This is enough to introduce the following proposition [25]:

Proposition 1.3 (Segre Embedding). The product Pm(K)×Pn(K) is a projective alge-
braic variety and can be realized as the locus in Pmn+m+n(K) of the 2x2 minors of:

Z00 . . . Z0n
...

. . .
...

Zm0 . . . Zmn

 ; (1.117)

vanishes. It is important to see Pmn+m+n(K) as the projective space of every (m + 1)×
(n + 1) matrix, this leads to an embedding that maintains the matrix structure.

The collection of polynomials that define this projective variety are described
by the determinant map of the all possible minor of size 2 and so represents all
possible matrix of rank 1. The total number of this kind of minors is:(

m
2

)(
n
2

)
. (1.118)

Example 9. The first example of this construction is:

σ : P1 ×P1 → P3 (1.119)

([x0, x1], [y0, y1]) 7→ [x0y0, x0y1, x1y0, x1y1]; (1.120)

the equation in P3 is:
Z00Z11 − Z10Z01 = 0. (1.121)

In order to see this variety it is convenient to choose the field of real numbers, so let us
consider:

σ : P1R×P1R→ P3R; (1.122)

the homogeneous coordinates of P3R, that are [Z0, Z1, Z2, Z3], can be parametrized in the
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following way:

Z0 = X + U;

Z1 = X−U;

Z2 = V + Y;

Z3 = V −Y.

Then equation (1.121) leads to:

Z0Z3 − Z1Z2 = X2 + Y2 −U2 −V2 = 0; (1.123)

and going to the inhomogeneous coordinates, "fixing" V=1, the equation becomes:

X2 + Y2 −U2 = 1; (1.124)

that is the equation of a hyperboloid, as shown in figure 1.6. It is important to emphasise
that the projection of the original projective spaces onto the Segre Varieties leads to linear
subspaces (that holds also in general, not only in this example as can be seen in [5]).

In the following chapters these elements will be used to analyse the differential
structure of quantum mechanics.
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Chapter 2

Quantum Mechanics

In this first chapter we will first review some fundamental concepts of quantum
mechanics with particular attention to the reformulation of its postulates using the
density matrix; then we will discuss the space from a geometric point of view, first
the pure state space, seen as a Khäler manifold, and second the space of mixed
states: D(H). We will follow [17] and [22] for first section, while for the second and
the third ones [12], [18] and [5].

2.1 Brief Review

In this first section the traditional mathematical formalism of quantum mechanics
will be reviewed in order to define all the structure that will be seen with a geomet-
rical view in the following sections.

2.1.1 Hilbert Space

Quantum mechanics, in the usual formulation, is based on five postulates that char-
acterize the correspondence between mathematical framework and physical mean-
ing. The arena of quantum mechanics is the Hilbert space:

Definition 2.1 (Hilbert space). A Hilbert Space H is an inner product space that is also
a complete metric space with respect to the distance function induced by the inner product.

The main Hilbert space used in quantum mechanics is L2 the square integrable
function space defined on a domain Ω ⊂ RN whose scalar product is:

(ψ(x), φ(x)) =
∫

Ω
ψ∗(x)φ(x)dnx.

In many examples we will see the case of H = Cn as an n-dimensional Hilbert
space with the usual scalar product. The usual formalism in quantum mechanics is
due to Dirac bracket in which: |ψ〉 ∈ H and 〈ψ| ∈ H∗ (H∗ represent the dual space
of the original Hilbert space). In this case the scalar product and the norm are given
by:

〈ψ|φ〉 ; 〈ψ|ψ〉 = |ψ|2 (2.1)
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2.1.2 Postulates

In this section we presents the five postulates in the Schrödinger picture as it is
presented in [17] and [22]; but there isn’t a unique choice of the postulates that
characterize the quantum theory.

Postulate 1 (Physical State). A physical state is represented by a unit vector on a Hilbert
space. If |ψ〉,|φ〉 ∈ H are two vectors and |ψ〉 = c |φ〉 for some c ∈ C0, then the two states
are equal.

Due to the structure of the Hilbert space as a vector space we know that if |ψ〉
and |φ〉 are vectors in the Hilbert space also λ1 |ψ〉+ λ2 |φ〉 is a vector in the Hilbert
space (λ1, λ2 ∈ C).

It is clear that the first postulate reduces the set of the possible space from the
Hilbert space H to a subset of normalized vectors with phase invariance; this pro-
priety has a fundamental importance in the context of the next sections.

Postulate 2 (Measurement Process). An observable Ô of a quantum system is a Hermi-
tian operator defined on H. The possible outcomes are the eigenvalues λi of the operator. If
the state is |ψ〉 we decompose:

|ψ〉 = ∑ ci |ei〉 , (2.2)

with the condition ∑|ci|2 = 1 and where the vectors |ei〉 are the eigenvector of the observ-
able. The measure λi has the probability Pλi = |ci|2. After the measure the wave function
collapse in the correspondent state (Destructive Measure).

The second postulate in combination with the spectral theorem for Hermitian
operators allows us to find an orthonormal base {ei}i formed only by eigenvectors
of the Operator: in practical way it makes us able to decompose the action of Ô in
couples of subspaces (represented by a projector) and eigenvalues (P̂λi , λi).

The mean value of a measure is given by the sum of all the measures weighted
on the probability:

〈Ô〉 = ∑ λiPλi = ∑ λi|ci|2 = 〈ψ|Ô|ψ〉 . (2.3)

Postulate 3 (Time Evolution). The time evolution of a state of a quantum system (in
absence of measurement process) is given by the Schrödinger equation:

ih̄
d |ψ〉

dt
= Ĥ |ψ〉 ; (2.4)

in which Ĥ is the Hamiltonian of the system.

The usual situation is a time independent Hamiltonian (observable of Energy)
Ĥ, in this situation the solution of (2.4) is easy to find:

|ψ(t)〉 = e
−iĤt

h̄ |ψ0〉 ; (2.5)
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where |ψ0〉 is the initial state of the system defined by the fourth postulate. We
notice that the probability is conserved: in fact the evolution operator is unitary.
The scalar product is conserved:

〈ψ(t)|φ(t)〉 = 〈ψ0|e
iĤt

h̄ e
−iĤt

h̄ |φ0〉 = 〈ψ0|φ0〉 . (2.6)

Postulate 4 (Preparation of a System). A quantum system is said prepared if a complete
commutating set of observables are diagonalized.

The last postulate links respectively Bosons and Fermions with their spin val-
ues.

Postulate 5 (Spin). Bosons are identified with a symmetric wave-function and an integer
value of spin. Fermions are identified with an anti-symmetric wave-function and a half-
integer value of spin.

2.1.3 Density Matrix and reformulation of Postulates

The formulation of quantum mechanics in the Hilbert space has some limits: ex-
perimentally either it is impossible to build up a complete set of observables or we
cannot observe all particles of a system; in this way we will have some probabil-
ities p1, ..., pn (∑i pi = 1 for a statistical reason) that the system is in a particular
normalized state |i〉, such a statistical mixture can build up in the following way:

ρ = ∑
i

pi |i〉 〈i| (2.7)

where no additional proprieties, a part from normalization (〈i|i〉 = 1), are required
for the set of the possible state.

Remark 2.1. It is important to remark the fact that no orthogonality between the states is
required. Nevertheless, being ρ a Hermitian operator it can be diagonalized and rewritten
as sum of orthogonal projectors.

Is trivial to observe that a general density state ρ cannot be written as a vector
state of an Hilbert space as we can see in the following example.

Example 10. Lets consider a density matrix:

ρ =
1
2
|1〉 〈1|+ 1

2
|2〉 〈2| ;
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where in this case 〈i|j〉 = δi,j. If there were a corresponding vector state |ψ〉 = c1 |1〉+
c2 |2〉 that leads to ρ means that:

ρ̃ = |ψ〉 〈ψ|
=(c1 |1〉+ c2 |2〉)(c∗1 〈1|+ c∗2 〈2|)
=|c1|2 |1〉 〈1|+ c1c∗2 |1〉 〈2|+ c2c∗1 |2〉 〈1|+ |c2| |2〉 〈2|
6=ρ;

for any choice of c1 and c2.

So the set of the density states D(H) is bigger than the Hilbert space of the sys-
tem and it is natural to rewrite the postulates in order to make them consistent with
the new mathematical framework [22]. The states that can be written as elements
of the original Hilbert space and so in the form ρ = |ψ〉 〈ψ| are called pure state.

Postulate 6. A physical state of a system is represented by a density matrix ρ: i.e. a semi-
positive Hermitian matrix with unitary trace. A pure state of a system is represented by a
density matrix ρ with the further request: ρ2 = ρ.

A pure state is represented by a projector, as it can be easily seen by looking
at equation (2.7). The state now is an operator, so the natural way to see its time
evolution is similar to the Heisenberg picture of evolutions of observables.

Postulate 7 (Time Evolution). The time evolution of a quantum state is given by the
equation: [

ρ, Ĥ
]
= ih̄

dρ

dt
(2.8)

whose solution is:
ρ(t) = e−iĤt/h̄ρ0eiĤt/h̄ (2.9)

where ρ0 is the density matrix at initial time (t = 0).

Postulate 8 (Measurement Process). The expectation value of an observable Ô is:

Tr
[
ρÔ
]
= 〈Ô〉 . (2.10)

This is consequently from (2.3) and the cyclic propriety of the trace.
The last axiom describes the collapse of the wave function:

Postulate 9 (Wave Function collapse). If at given moment the quantum system is de-
scribed by the density matrix ρ and it is performed a measurement of the observable Ô with
the outcome o, the density matrix will become ρ′:

ρ′ =
1

Tr[PoρPo]
PoρPo; (2.11)

where Po is the projector to the eigenspace ofH with eigenvalue o ∈ R of the observable Ô.
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R+ H ' Cn

U(1) S2n−1

PH ' Pn−1C

FIGURE 2.1: Fibration of the Hilbert space due to the equivalence
classes.

Is straightforward to see that the only possible outcomes of a measurement of
the observable Ô are the ones with PoρPo 6= 0.

2.2 Geometrization of Hilbert Space

Now we will use the differential geometry notions of the chapter 1 to describe
quantum mechanics. The quantum systems that will be analysed are finite dimen-
sional in order to avoid the difficulties due to the passage to the infinite dimensional
Hilbert spaces; after this requirement we are able to identify the Hilbert space of the
system with Cn.

Until now we have used the bracket notation for quantum mechanics, in which
a vector is denoted by |a〉 while the same object in differential geometry formalism
is denoted by aµ, we will pass from a notation to another when its convenient to
understand the concept.

We will start by studying the geometrization of the Hilbert space H that can be
done by using the first postulate: this construction gives rise to a principal fibration.

2.2.1 Fibration

After a complete measurement of the system the state remains undefined for a real
scalar and for a phase: a measurement identify only a ray in the Hilbert space.

The real scalar, identified as the norm, has to be fixed to one for the probabilistic
meaning of the scalar product (see postulate 2).

In the geometrical formalism this leads to an equivalence class of vectors in the
Hilbert space of the system, that takes the form of a principal bundle, as in the
definition 1.13, of the type in the figure 2.1 with base PH, and fibre C0 = R+ ×
U(1).

The final space in which the quantum mechanics of pure states is played is a
projective Hilbert space: a projective space (definition 1.22) with a Hermitian inner
product inherited from the original Hilbert space.

Now we are ready to identify an element of PH with an element of D1
1(H), the

space of rank one projectors of trace one (a projector with rank one needs to have
trace one):

[|ψ〉] ⇐⇒ |ψ〉 〈ψ|
〈ψ|ψ〉 = ρψ (2.12)
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This identification will be further examined in the next section.
To understand better this fibration is convenient to do an simple example that

involves the typical object of quantum information: the qubit.

Example 11. The choice to consider a qubit isn’t casual: it is the one of the elementary
systems with an important role in quantum information and the study of entanglement,
beside this fact it is the simplest quantum system.

Let’s consider only the spin freedom of an electron (the momentum and any other "co-
ordinates" will be neglected), so the correspondent Hilbert space will be isomorphic to C2.
Now, removing the origin, it is possible to consider the fibre C0 ' R+ ×U(1) as we have
just seen in the general situation. In the qubit cases this is an example of Hopf fibration (see
figure 2.2).

R+ C2

U(1) ' S1
S3

PH ' S2

FIGURE 2.2: Fibration of the Hilbert space of a qubit an example of
Hopf fibration.

Remark 2.2. In general this procedure leads to a particular results called Adam’s theorem,
[1], which states that the only possible Hopf fibrations are:

• S0 ↪→ S1 → S1

• S1 ↪→ S3 → S2 The qubit case.

• S3 ↪→ S7 → S4

• S8 ↪→ S15 → S8

We can now try to visualize geometrically this situation, this is the so called Block
Sphere [5], which is plotted in figure 2.3. The block sphere will be used as the optimal choice
of coordinates for a qubit in following chapters.

If the generators of su(2) (see Appendix C) will be used as a basis of D(C2), that are:

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.13)

The most general density matrix can be written in the form:

ρ =
1
2

1 +~τ ·~σ =

(
1
2 + z x− iy
x + iy 1

2 − z

)
, (2.14)

with the condition:
det[ρ] ≥ 0⇔ x2 + y2 + z2 ≤ 1

4
; (2.15)
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ϕ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

FIGURE 2.3: Rappresentation of the phase space of a qubit: The
Block Sphere

that guarantees the non-negativity.
The pure states that are points in PC1 that need to have rank one, therefore the deter-

minant of ρ has to be zero; this condition leads to the equation of pure states:

x2 + y2 + z2 =
1
4

; (2.16)

it represents the surface of S2 as we have seen with the fibration method. Now we can
consider this surface and using the constraint given by equation (2.16) it is possible to
parametrize the density matrix (2.14) using the standard spherical coordinates:

ρ =

(
1
2 + z x− iy
x + iy 1

2 − z

)
=

1
2

(
1 + cos(θ) sin(θ)e−iφ

sin(θ)eiφ 1− cos(θ)

)
. (2.17)

We want to emphasize that while the pure states are on the boundary of the three dimen-
sional ball and the internal points are the mixed states for the qubit case, the boundary are
not only the pure states for higher dimensional systems [18].

2.2.2 Kähler structure of the projective Hilbert space

Now the main goal is to build up a differential structure for the projective Hilbert
space, some notions of differential structures on the projective spaces are already
been introduced in chapter 1. Let H be a n dimensional Hilbert space, with a Her-
mitian product 〈x, y〉H (the convention that we will use is the same of the previous
section: linear in the second argument and anti-linear in the first one), and let us
consider the unitary group U(H) (all operator A ∈ GL(H) such that AA† = 1) and
its action on the Hilbert space that preserves the Hermitian product:

〈Ax, Ay〉 = 〈x, y〉 . (2.18)

The realification of such Hilbert space is the starting point of the geometrical ap-
proach for quantum mechanics. ConsiderHR (see appendix A.5 for the realification
procedure) and see it as a Kähler manifold (HR, J, g, ω) where:
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• J is the complex structure:

J : THR → THR; (2.19)

• g is a Riemannian metric:
g = < (〈·, ·〉) ; (2.20)

• ω is a symplettic form:
ω = = (〈·, ·〉) ; (2.21)

which fulfil the relation of the definition 1.9, as can be seen in [18]. Its tangent
bundle is: THR = HR ×HR, so the structures are so identified:

J(X) = iX, (2.22)

〈X, Y〉 = g(X, Y) + iω(X, Y). (2.23)

It is useful to define also the inverses of the previous tensors: G = g−1 is the
controvariant metric tensor and Ω = ω−1 is the Poisson tensor; their combination
form another Hermitian product:

〈φ, ψ〉H∗ = G(φ, ψ) + iΩ(φ, ψ); (2.24)

where φ and ψ are elements of the dual of the real Hilbert space (with J∗ as complex
structure).

If H∗R (the dual space) is identified with HR, we can introduce two brackets for
smooth functions onHR:

• Riemann-Jordan bracket: {r, s}g = G(dr, ds);

• Poissson bracket: {r, s}ω = Ω(dr, ds);

They can be combined and extended to complex functions in order to form the total
bracket:

{r, s}H = 〈dr, ds〉H∗ = {r, s}g + i{r, s}ω. (2.25)

Choosing a basis for H induces the identification H ' Cn and consequently for all
structures:

〈a, b〉 = ākbk; (2.26)

with the Einstein convention of the repeated indexes. The groups acting on the
Hilbert space become groups of matrices:

• U(H) ' U(n);

• u(H) ' u(n);

• u∗(H) ' u∗(n).
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The global coordinates, chosen a basis {ek}k inH, are (qk, pk), they are defined by:

〈ek, x〉H = qk + ipk; (2.27)

and so the complex structure becomes:

J = ∂pk ⊗ dqk − ∂qk ⊗ dpk (2.28)

where ek becomes ∂qk and iek becomes ∂pk .
Introducing the notation a ∧ b = a ⊗ b − b ⊗ a and a ∨ b = a ⊗ b + b ⊗ a, the

Rimannian tensor and the sympletic tensor can be written as (for the definition of
∨ see Appendix A):

g =
1
2
(dqk ∨ dqk + dpk ∨ dpk) ; (2.29)

ω =dqk ∧ dpk. (2.30)

Using the same procedure for the inverses, we find:

G =
1
2
(
∂qk ∨ ∂qk + ∂pk ∨ ∂pk

)
, (2.31)

Ω =∂qk ∧ ∂pk. (2.32)

Using complex coordinates, the total Hermitian products can be rewritten as:

g + iω = dz̄k ⊗ dzk; (2.33)

G + iΩ = 4∂zk ⊗ ∂z̄k . (2.34)

Let us back to linear operators, for each A ∈ gl(H) it is possible to define a quadratic
form fA using the Hermitian product of the Hilbert space:

fA = 〈x, Ay〉H ; (2.35)

it is easy to see that this function is real only if A ∈ u∗(H) is a Hermitian oper-
ator. We identify u∗(H) as the Hermitian operators on H and of skew-Hermitian
operators with u(H); this can be done trough the relation:

〈A, B〉 = i
2

Tr [AB] . (2.36)

(In appendix B is presented the relation between Lie algebras and Lie groups that
gives rise to the previous relation.)

In order to pass from the algebra to the dual is needed to define an isomor-
phism: T 7→ iT. Due to this isomorphism, also the dual becomes an algebra with
the bracket:

[A, B] = −i (AB− BA) , (2.37)
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and with the scalar product derived from equation (2.36):

〈A, B〉u∗(H) =
1
2

Tr[AB]. (2.38)

We can also consider another bracket: the anticommutator; or the Jordan-Riemann
bracket, denoted with [·, ·]+, this and the usual commutator are compatible with
the scalar product, i.e.:

〈[A, B], C〉u∗ = 〈A, [B, C]〉u∗ , (2.39)

〈[A, B]+, C〉u∗ = 〈A, [B, C]+〉u∗ , (2.40)

that leads to the clear identification of the skew-Hermitian operator as the covec-
tors of the Hermitian operators manifold. This construction induce the adjoint and
coadjoint action (see definition 1.18): AdUT = UTU†.

2.2.3 Momentum Map

Now we can study the passage form the realified Hilbert space to the projective
Hilbert space. Let be f a smooth function onHR, to it can be associated two vector
fields:

• Gradient: grad f ; that fulfils:

g(·, grad f ) = d f or grad f = G(d f , ·); (2.41)

• Hamiltonian: Ham f ; that fulfils:

ω(·, Ham f ) = d f or Ham f = Ω(d f , ·); (2.42)

in this way an A ∈ gl(H) induces a vector field Â on the Hilbert space.

Proposition 2.1. If A is a Hermitian operator the gradient and the Hamiltonian vector
field associated to it are:

grad fA = Â (2.43)

Ham fA = iÂ (2.44)

where fA is the quadratic function defined before.

Proposition 2.2. For two operators A, B ∈ gl(H), the following relations hold:

{ fA, fB}H = f2AB; (2.45)

{ fA, fB}g = f[A,b]+ ; (2.46)

{ fA, fB}ω = f[A,B]. (2.47)
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The action of U(H) is unitary and Hamiltonian [18] and defines the so called
momentum map:

µ : HR → u∗(H). (2.48)

Let us recall the associated vector field to iA ∈ u(H) (with A ∈ u∗(H)):

d
dt

∣∣∣∣
t=0

e−
t
i A(x) = iA(x). (2.49)

The Hamiltonian vector field associated to fA is iA and consequently the momen-
tum map can be defined as:

〈µ(x),−iA〉 = fA(x) =
1
2
〈x, Ax〉H (2.50)

=
i
2

Tr [µ(x)(−i)A] =
1
2

Tr [µ(x)A] (2.51)

⇒ 〈x, Ax〉H = Tr [µ(x)A]⇒ µ(x) = |x〉 〈x| ; (2.52)

the last expression is written in the Dirac notation. Before studying the structure
of the image of the momentum map is important to focus the attention to the dual
forms of the metric and the Hermitian product, fA is the pullback by µ of iA since:

fA = µ∗((−i)A) = (−i)A ◦ µ, (2.53)

and it leads to the cotangent bundle T∗u∗(H), in this way G and Ω can be related
to the controvariant tensors of u∗(H):

• R the Riemann- Jordan:

R(C)(−iA,−iB) = 〈C, [A, B]+〉u∗ =
1
2

Tr [C[A, B]+] ; (2.54)

• Λ the sympletic:

Λ(C)(−iA,−iB) = 〈C, [A, B]〉u∗ =
1
2

Tr [C[A, B]] ; (2.55)

combining together these two tensors, we get the dual of the Hermitian product
trough the momentum map:

µ∗(G + iΩ) = R + iΛ. (2.56)

If we consider an element |x〉 ∈ H0, µ maps it to |x〉 〈x|; so the image of this
map in u∗(H) correspond to the non negative Hermitian operators of rank one
denoted by P1(H). If we consider P(H) instead of the entire Hilbert space the
image becomes only the non negatively Hermitian operators of rank 1 with trace 1
denoted by S = {x ∈ H| 〈x, x〉H = 1}. The action of the unitary group U(H) on
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this space is the coadjoint one:

(U, ρ) 7→ UρU†; (2.57)

that foliates P1(H) into:

D1
r (H) = {|x〉 〈x| |‖x‖ = r}; (2.58)

with the obvious condition r > 0. Now we will see that D1
1 is a Kähler manifold,

and that x ∈ SH is mapped to ξ ∈ D1
1.

Let us consider a coadjoint orbit O in the space of the Hermitian operators.
The vectors form the tangent space of O (the U(H)) orbit). The Poisson structure
previously defined:

Λ(C)(−iA,−iB) = 〈C, [A, B]〉u∗H = 〈[C, A], B〉 , (2.59)

induces a map from one forms to the vector fields:

Λ̃C(−iA) = [C, A]; (2.60)

and we will denote the inverse of this with ηC([C, A]) = −iA. This inverse tensor
leads to the definition of a 2-form:

ηC ([A, C], [B, C]) = 〈[A, C], B〉 = − 〈C, [A, B]〉 . (2.61)

Proposition 2.3. The restriction of ηC on the orbit O of the unitary group has the property:

ηO
C ([A, C], [B, C]) = 〈[A, C], B〉 = − 〈C, [A, B]〉 . (2.62)

More over the same construction can applied to the Riemann tensor and it defines a partial
tensor σ with the property:

σξ ([A, C]+, [B, C]+) = 〈[A, C]+, B〉 = 〈C, [A, B]+〉 . (2.63)

Now we can combine the restrictions of σ and η on D1
r to induce on it a Kähler

structure. The proofs of the following results can be found in [18].

Proposition 2.4. The restriction of σ on the unitary orbit D1
1 through ξ = |x〉 〈x| (with

〈x|x〉 = 1) is the scalar product on u∗(H).

Definition 2.2. Let be ξ ∈ D1
1 a rank one projectors, and A an Hermitian operator of

u∗(H) then Jξ(A) is a (1,1) tensor defined as:

Jξ(A) = [A, ξ]. (2.64)

Proposition 2.5. The tensor Jξ(A):
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• fulfil J3 = −J;

• induce a complex structure on D1
1;

• is compatible with a Kähler structure in the definition 1.9: (D1
r (H), J, σ, η).

It is important to emphasize that this structure come from the original Kähler
structure of the realified Hilbert space: the symplectic structure originates from the
reduction of the analogous structure (HR, ω); and the same holds for the Rieman-
nian structure.

2.3 Geometrical Structure of Mixed States

As it was shown in the first part of this chapter there is a necessity to consider the
density states instead of the pure ones. The non-negatively Hermitian operators
(the set P(H)) on gl(H) can be written in the form:

ρ = T†T; (2.65)

in which T ∈ gl(H). The set of density states D(H) are embedded in the previous
set by the equation Tr[ρ] = 1, imposed for probabilistic reasons. Thus:

D(H) ↪→ P(H) ↪→ u∗(H). (2.66)

The rank of these operators are important, so it is useful to decompose the positive
operators into the spaces P k of operators of fixed rank k:

P k(H) = {ρ ∈ P(H)|Rank(ρ) = k}; (2.67)

and consequently from the definition of the density states:

Dk(H) = D(H) ∩ P k(H). (2.68)

The set of the density states take the form of a convex cone in the space of
Hermitian operators, so every density state can be written as a convex combination
of rank 1 projectors: for these reasons the pure states are the extremal points of
D(H).

The structure of D(H) will be investigated through the coadjoint orbits of the
unitary group and their classifications; extending this analysis to the set of the Her-
mitian operators u∗(H) it is possible to give and calculate explicitly the metric ten-
sor, the symplectic tensor and the complex structure [18].

Now the foliation due to the coadjoint action of the unitary group reappears
also in the the set of the density matrix:
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Proposition 2.6. Let ρ1, ρ2 ∈ D(H) withH ' Cn; then ρ1 and ρ2 are unitary equivalent:

ρ1 = Tρ2T†, (2.69)

with T ∈ U(n) iff ρ1 and ρ2 has the same spectrum with the same molteplicity.

The Proposition 2.6 has many consequences:

• the orbit Oρ is determined by its spectrum;

• every orbit can be seen as an equivalence class, represented by a diagonal
matrix;

• if ρ1, ρ2 are two density matrices in the same orbit then the following relation
hold true:

Tr[ρp
1 ] = Tr[ρp

2 ] ∀p ∈N. (2.70)

It is common to order the eigenvalues that define the orbit in decreasing order
of values:

λi > λj i < j; (2.71)

in order to have a unique representation of every orbit; therefore U(n) foliates
D(H) in infinitely many different orbits (called also strata). The structure of these
strata are related to the group structure of the unitary group and the orbit theory
[29].

Proposition 2.7. If G is a Lie compact group acting on an Hausdorff space X, and H(p)
is the stabilizer of p ∈ X, then there exists a homomorphism:

φ : G/H(p)→ Op. (2.72)

Using this proposition one can prove the following theorem [18].

Theorem 2.1. Let ρ ∈ D(H) with r eigenvalues λi with multiplicity ni (∑r
i=1 λini = 1),

its orbit is homomorphic to the manifold:

U(n)/ [U(n1)× ...×U(nr)] ; (2.73)

with dimension n2 −∑r
i=1 ni.

The first consequence is that the Hibert projective space (pure states) is homeo-
morphic to U(n)/ [U(1)×U(n− 1)].

Now it is convenient to study the geometry of u∗(H) in order to understand
better the forms of these orbits. The set u∗k+,k−(H) will be defined as the Hermitian
matrix with k+ positive eigenvalues and k− negative eigenvalues, obviously we
have the relation:

rank(A) = k+(A) + k−(A), (2.74)
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and also is clear that:
P k(H) = u∗k,0(H). (2.75)

After the usual passage fromH to Cn, we define a diagonal marix:

Υk+,k− = diag(+1, . . . ,+1︸ ︷︷ ︸
k+times

,−1, . . . ,−1︸ ︷︷ ︸
k− times

); (2.76)

and with it we can build up a pseudo-Hermitian product in Cn denoted by 〈·, ·〉k+,k−:
so taking two vectors a, b ∈ Cn:

〈a, b〉 = āi [Υk+,k−]
ij bj; (2.77)

after these definitions we can reconsider the ideas presented at the beginning of
this section.

Proposition 2.8. Every A = (aij) ∈ u∗k+,k−(n) can be written as A = T†Υk+,k−T, with
T ∈ GL(n, C).

Now we can built up in details the smooth structures, of P(H), the following
theorem characterizes the various u∗k+,k−(n).

Theorem 2.2. The collection of subspaces:

u∗k+,k−(n); (2.78)

with k+ + k− ≤ n, is the family of the orbits of the smooth adjoint action of GL. So every
u∗k+,k− is a connected submanifold with elements B of tangent space of the form:

〈Bx, y〉H = 0 ∀x, y ∈ ker(ξ); (2.79)

for a ξ ∈ u∗k+,k− and B ∈ Tξu
∗
k+,k− .

For a particular choice of k− and k+, the same of the equation (2.75) (that is
k− = 0); the following theorem can be proved [18] which ensures the smoothness
of P(H):

Theorem 2.3. The following conditions are equivalent:

• u∗k+,k− = P k(H);

• u∗k+,k− ⊂ P(H);

• k− = 0;

• u∗k+,k− intersects P(H).

The proprieties of curves on the positive Hermitian operators can be useful to
describe the border of D(H).
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Definition 2.3 (Border of D(H)). If H is a n-dimensional Hilbert space, the border of
D(H) is:

∂D(H) =
⋃
k<n

Dk(H); (2.80)

Let us start with a theorem that characterize some proprieties of the smooth
curves in this particular manifold.

Theorem 2.4. Let be γ a smooth curve on P(H) ⊂ u∗(H) if:

γ ⊂ P k(H), (2.81)

then:
γ̇(t) ∈ Tγ(t)P kH. (2.82)

So all curves on P(H) cannot cross any P kH in a transversal way. MoreoverD(H) is the
level set of the function trace with the value 1.

The trace function leads to the identification of the topological structure of
P(H) thanks to the invariance for homoteties (multiplication by a positive real
number):

P k(H) ' R×Dk(H). (2.83)

So we are ready to describe in its entirety the smooth structure of the strata in the
density states set [18].

Theorem 2.5. Every DhH are smooth submanifolds of u∗(H), moreover if γ ⊂ D(H) is
a smooth curve and if:

γ ⊂ DkH, (2.84)

then
γ̇(t) ∈ Tγ(t)DkH; (2.85)

and the stratification is maximal (the orbits cannot intersect each other and smooth curves
of matrices cannot pass from a orbit to another).

The last element is the characterization of the border ofD(H) built in Definition
2.3.

Theorem 2.6. The border of D(H) is not a sub-manifold of u∗(H) if the dimension n is
greater then 2.

This describe exhaustively the differential structure of the density states, all the
proofs can be found in [12], [18] and [19].
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Chapter 3

Entaglement and its differential
structure

Entanglement is one of the most important non classical effect of quantum mechan-
ics: analysed as a consequence of the mathematical formulation of quantum me-
chanics by Einstein, Podolski and Rosen in [11] and called originally "Verschränkung"
by Schrödinger in his paper [36]. This effect have given rise to a debate between
who, as Einstein, believed in the non completeness of quantum mechanics and
therefore in the theory of the hidden variables and the supporters of the usual for-
mulation of quantum theory. This debate had a theoretical breakthrough in 1964
when Bell published [4]; between that time and now no experiment have violated
the inequalities derived from Bell’s theorem, but despite of these progresses the
debate is still open.

In this chapter we will introduce Entanglement following [28] and after it we
will recall elements from the last section of [18] and from [19] in order to introduce
the geometrical structure of entanglement.

3.1 Introduction to Entanglement

The Entanglement is a non classical effect that comes out when a quantum com-
posite system is considered: while the composite classical systems have a phase
space that is the Cartesian product of the single system phase space, the structure
of quantum mechanics needs a composite Hilbert space that is the tensor product
of the single Hilbert space. It is clear that this different construction leads to the
possibility that a generic state of a quantum system cannot be written as a product
state: no-product states are entangled states.

Remark 3.1. A composite classical system has as dimension the sum of the dimensions of
the single parts while in the quantum case the dimension is the product of the dimensions
of the single parts.
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3.1.1 Entanglement and Pure States

Let H =
⊗n

i=1Hi be a finite dimensional Hilbert space, then a pure state in the
composite space can be written in the form[28]:

|ψ〉 = ∑
in

cin |in〉 ; (3.1)

where in = i1, . . . , in is a multiindex, and the |in〉 = |i1〉 ⊗ · · · ⊗ |in〉 is a single prod-
uct state: the composite state is a linear combination of product states, following
the proprieties of the tensor product of vector spaces (see appendix A).

The pure states of a composite quantum system can be divided in two classes:
separable states and entangled states. It is not simple to discern if a state is separa-
ble or entangled and it is called separability problem. It has been proved that the
separability problem has a NP complexity in [20] and [16]. In order to face up this
problem there are two main approaches [28]: the algorithmic approach, that comes
from the quantum information world, and the criterion approach.

In order to analyse this problem let’s start enunciating some important defini-
tions.

Definition 3.1 (Separable Pure States). A pure state |ψ〉 ∈ H = H1 ⊗ · · · ⊗ Hn is
called separable iff it can be written in the form:

|ψ〉 = |ψ〉1 ⊗ · · · ⊗ |ψ〉n ; (3.2)

in which the states |ψ〉i belong respectively to each Hi (one of the Hilbert spaces in the
decomposition of the composite system).

The other type of states are the entangled ones, and they are defined in contra-
position with the separable states.

Definition 3.2 (Entangled Pure States). The states in H = H1 ⊗ · · · ⊗ Hn which are
not separable are called entangled.

In general a composite state cannot be written as a product of states of the single
partitions; these states, as it has just been seen, are the entangled ones. The experi-
mental construction of a composite entangled state can be made using a projective
measurement (postulate 2) on the whole system or leaving the system to evolve
with a non separable Hamiltonian (usually an Hamiltonian with interactions) [28].

A first example in which entanglement appear can be build up considering a
composite system consisting of two two-level system.

Example 12. Let us consider a bipartite system:

H = HA ⊗HB; (3.3)

with dimension dimH1 = dimH2 = 2 (the dimension of the composite system in this
case is dimCH = 4). Following the definition of tensor product (appendix A), it is possible
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to choose a basis {|0〉A , |1〉A} for HA and {|0〉B , |1〉B} for HB, and consequently to give
a natural basis toH (called also computational basis), that is:{

|0〉A ⊗ |0〉B , |0〉A ⊗ |1〉B , |1〉A ⊗ |0〉B , |1〉A ⊗ |1〉B
}

. (3.4)

It is possible to use the action of the unitary group (in this case U(4), that preserve the
Hermitian product) to change the base of H from the computational basis to the so called
Bell states basis, or simply Bell basis:

|φ±〉 = 1√
2

(
|0〉1 ⊗ |0〉2 ± |1〉1 ⊗ |1〉2

)
, (3.5)

|ψ±〉 = 1√
2

(
|0〉1 ⊗ |1〉2 ± |1〉1 ⊗ |0〉2

)
; (3.6)

these are entangled pure states and it is easy to verify that are linearly independent. More-
over the vectors of the Bell basis have an even more interesting propriety: they are the pure
states that maximize entanglement [28], in fact if the composite system stays in one of these
states and a projective measurement operation is performed on one of the two subsystems,
the result state found in the other system could be with equal probability the state or |0〉 or
|1〉; in this case we can say that we know all about the composite system, but nothing about
the subsystems: it is a classical ensemble of two states with equal weight. Bell states can be
generalized also for higher dimensional Hilbert spaces, i.e. if we consider a bipartite system
of the type: dimH1 = dimH2 = d; and so one of the maximally entangled pure states is
in the form [28]:

|φ+〉 = 1√
d

d

∑
i=1
|i〉 ⊗ |i〉 . (3.7)

A last remark has to be done in this example: the passage from the natural basis given by the
tensor product to the maximally entangled Bell basis is an unitary operation that in general
is an element of the group U(H); so it is easy to see that this group does not preserve the
entanglement of a state, we will discuss later the operation that preserves the separability.

We want now to define the notion of a reduced state, and in particular what is a
partial trace. If ρ represents a density matrix of a composite system, we can define
an operation called partial trace that is a map from the set of the density matrix
(D(⊗iHi)) of the composite system to the set of the density matrix of a subsystem
(D(Hj)). To simplify the notation, we give the following definition for a bipartite
system.

Definition 3.3 (Partial Trace). Let ρ be a density matrix of a bipartite systemHA ⊗HB,
the partial trace over the subsystem A is a map:

TrA : D(HA ⊗HB)→ D(HB). (3.8)

that corresponds at choosing a basis of HA and performing the trace with this basis on ρ.
The result of this operation is a density matrix ρB called reduced state. Obviously it can be
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defined analogously also TrB that maps ρ to D(HB).

Remark 3.2. It is important to emphasize that the trace is an operation independent from
the choice of the basis [30].

For the multipartite systems the various trace operations that can be defined
on (depending on the number of the subsystems) are interchangeable, or rather
commutes [10]:

Tri[Trj[ρ]] = Trj[Tri[ρ]]; (3.9)

where Tri means the trace over the i-th subsystem.
The relation between a pure separable state and the reduced states can be ex-

plained by the following proposition, that has an important role also in the open
system.

Proposition 3.1. If ρ represents a density matrix of a pure state of the composite system
its any reduced state is in general a mixed state. If the two subsystems stay both in a pure
state then the state of a composite system is pure and separable.

For composite systems there is an important theorem that describes the struc-
ture of the pure states, it is the Schmidt’s decomposition theorem [28].

Theorem 3.1 (Schmidt’s decomposition). Every pure state of a bipartite system can be
written in the form:

|φ〉 =
M

∑
i=1

√
qi |ei〉 ⊗ | fi〉 ; (3.10)

where |ei〉 and | fi〉 are elements of two orthonormal basis respectively of the first and the sec-
ond Hilbert space; moreover the following inequality holds: M ≤ min(dimH1, dimH2).

This theorem restricts a lot the possible forms of the states: given the equation
(3.1), which describes a pure state of a multipartite system, in a bipartite system the
statement can be reduced to:

|ψ〉 = ∑
i1

∑
i2

ci1i2 |i1〉 ⊗ |i2〉 ; (3.11)

comparing this equation with the equation (3.10) it is possible to note some dif-
ferences: first, the Schmidt theorem reduce the number of sums from two to one,
second, the coefficients that characterize the state are listed in a vector (Schmidt
coefficients vector) instead of in a matrix as in (3.1).

The coefficients qi are called Schmidt’s coefficients and they fulfil the following
two conditions:

• ∑i qi = 1;

• qi ≥ 0.
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These conditions are due to the constraints of the states of the two subsystems:
the normalization (the trace of any density state has to be equal to one) and the
positivity of the density matrices.

This theorem has a corollary which can be useful for the entanglement detec-
tion, in order to reach this result it is useful to give the following definition.

Definition 3.4. The number s of the non-zero Schmidt’s coefficients qi of a given state is
called Schmidt’s rank of the state.

And after the definition we are now able to enunciate the corollary.

Corollary 3.1.

• The Schmidt rank s is equal to the usual rank of the reduced density matrices.

• If s > 1 the state is entangled.

This great theorem has a big limit: it cannot be generalized to multipartite sys-
tems, even if there is a similar statement for three qubits systems [28].

The second point of the previous corollary allow us to determine if a state is
entangled or not and it is linked with the concept of Reduced Density matrix, pre-
viously introduced. Recalling the previous chapter a pure state has a density matrix
in the form:

ρ = |ψ〉 〈ψ| ; (3.12)

where |ψ〉 ∈ H with 〈ψ|ψ〉 = 1. Computing the partial trace on subsystem A:

∑
i
〈ei| |ψ〉 〈ψ| |ei〉 = TrA [|ψ〉 〈ψ|] = ρB ∈ D(HB). (3.13)

If the result is a pure state then the original state is a separable pure state (conse-
quence of theorem 3.1).

Nowadays entanglement has importance also in a number of applications, in
particular in the fields of quantum information and quantum cryptography. Let us
introduce an application in quantum teleportation.

Example 13 (Quantum Teleportation of a qubit). Let us consider two experimental
physicists that, for sake of simplicity, we will call respectively Alice and Bob. Alice wants
to send the state of a unknown qubit:

|χ〉 = a0 |0〉A1 + a1 |1〉A1 ; (3.14)

to Bob. Let us suppose that Alice and Bob share a entangled two qubits system that is in
one of the Bell’s states: |ψ+〉. The state of the composite system formed by the unknown
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qubit and the two entangled qubits is:

|χ〉 ⊗ |ψ+〉 =

= (a0 |0〉A1 + a1 |1〉A1)⊗
1√
2
(|0〉A2 |1〉B + |1〉A2 |0〉B) =

=
1√
2

(
a0 |0〉A1 |0〉A2 |1〉B + a0 |0〉A1 |1〉A2 |0〉B

+ a1 |1〉A1 |0〉A2 |1〉B + a1 |1〉A1 |1〉A2 |0〉B
)
=

= |ψ+〉 (a0 |0〉B + a1 |1〉B) + |ψ−〉 (a0 |0〉B − a1 |1〉B)
+ |φ+〉 (a1 |0〉B + a0 |1〉B) + |φ−〉 (a1 |0〉B − a0 |1〉B)

in which from the second line and on the tensor product symbol has been omitted to get a
simpler notation.

Obviously Bob can observe only the qubit labelled by B, while Alice can observe both the
qubits labelled by A1 and A2 individually or considering them as a composite system. Alice
can now perform a projective operation on her system (HA1 ⊗HA2), and consequently her
system collapses in one of the Bell’s states. The situations that can rise now are four:

• Collapsed state is |ψ+〉; Bob receives a0 |0〉B + a1 |1〉B;

• Collapsed state is |ψ−〉; Bob receives a0 |0〉B − a1 |1〉B;

• Collapsed state is |φ+〉; Bob receives a1 |0〉B + a0 |1〉B;

• Collapsed state is |φ−〉; Bob receives a1 |0〉B − a0 |1〉B;

consequently Alice can send with classical method only two bits (two bits can represent the
number from zero to three) that are in bijection with the possible results of Alice’s measure-
ment previously listed. After the receiving of that information Bob can perform a unitary
operation (usually turning on a external field) on his qubit to restore the initial unknown
state.

There are some highlights:

• Alice does not need to know the original state |χ〉: she cannot perform any measure-
ment without losing the information of the state that she wants to send;

• after the teleportation the entangled qubits couple becomes the two qubits in Alice’s
laboratory: Bob’s qubit is now un-entangled; it means that in this way the entangle-
ment is transported but not created.

3.1.2 Density Matrix and Entanglement

Let us now focus on the set of the density matrices D(H), the definition of Entan-
glement is not the same of the pure states.
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Definition 3.5 (Separable Mixed State). A separable ρ ∈ D(H) of a n dimensional
quantum system is called separable if can be written as a convex combination of product
states [28]:

ρ =
M

∑
i

piρ
i
1 ⊗ · · · ⊗ ρi

n; (3.15)

where the single ρi
j ∈ D(Hj) and 0 ≤ pi ≤ 1 with ∑i pi = 1.

It is important to underline that now product states are separable, but it is not
true that all separable states are product states. It can be proved that the two def-
initions of separable states (definition 3.1 and definition 3.5) are equivalent for the
pure states [5] [28].

Let us focus only on the finite dimensional bipartite system (in which it is pos-
sible to create a isomorphism between the Hilbert spaces and the complex Cn):
H = HA ⊗HB; with the respectively dimension N, NA and NB. A bipartite separa-
ble state is:

ρ =
M

∑
i=1

piρ
i
A ⊗ ρi

B; (3.16)

where ρi
j ∈ D(Hj), but it is important to underline that this decomposition is not

unique as it was explained in the Chapter 2.
Another important highlight is that the separability problem differs a lot from

the eigenproblem: there is the possibility that ρ has entangled eigenvectors (non-
product eigenstates), while ρ is separable; the following example shows it.

Example 14. Let us define a density matrix on a 2 qubits system, we use the spectral
decomposition with two entangled projectors:

ρ =
1
2
|φ+〉 〈φ+|+ 1

2
|φ−〉 〈φ−| =


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 . (3.17)

from the eigenproblem entangled eigenvectors can be found, but making a different choice
of basis (as we have done in the matrix representation), ρ can be written as sum of separable
projectors, and so in the form given by equation (3.15):

ρ =
1
2
|00〉 〈00|+ 1

2
|11〉 〈11| . (3.18)

The Caratheodory theorem limits the minimum value of the cardinality (the
minimum number of addenda needed to reconstruct the state, M in equation (3.15))
of a separable state: M ≤ (NA)

2(NB)
2 (this can be seen in [38] and [27]). In specific

cases of particular systems there are other bound on cardinality that will be cited
in the various situations.

We will see in the section 3.3 that the set of separable density matrices (the set
of all the ρ in the form (3.15)) is convex, compact and invariant under the action of
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D(H)

PPT states

Separable states

FIGURE 3.1: Structure of the set of the density states respect the PPT
states and the separable states.

unitary matrices that can be written in the form:

UA ⊗UB; (3.19)

with Ui ∈ U(Hi), these operations are called separable operations (often called
SO).

The state of art provide a lot of criteria for deciding if a state is entangled or not;
in general they are categorized in three classes [5]:

• Sufficient and necessary conditions but with a not easy usage;

• sufficient but not necessary with a easy usage;

• only necessary with an easy usage;

but there not exist any criterion that solve completely this problem.
A classical example of criterion is the PPT criterion [35].

Theorem 3.2. If ρTA � 0 then ρ is entangled.

The operation TA is called partial transpose of the subsystem A and acts in
general on a separable bipartite state in the following way:

ρTA = (T ⊗ 1)(ρ) = ∑
i

pi(ρ
i
A)

TA ⊗ ρB
i . (3.20)

This operation divides D(H) in the PPT states and the non PPT states, as can be
seen in figure 3.1. It can be also proved that in global systems with dimH ≤ 6 this
condition is both sufficient and necessary, so Theorem 3.2 become an iff [26]. This
last statement has for us an important consequence: for a couple of two qubits or a
qubit and a qutrit, this characterizes completely the separable states.

3.2 Multipartite Entanglement

Let us now go back to multipartite systems with a fixed decomposition:

H = H1 ⊗ · · · ⊗Hn; (3.21)
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in literature there is a distinction between the states that fulfil the definition 3.5 that
from now we will call full separable states (a more restrictive condition), and the
partial separable states [28].

3.2.1 Full Separability

The definition of full separability is the same of definition 3.5; also in this case the
Caratheodory theorem fixes a superior limit for M ≤ (dim(H))2.

The structure of the set of the full separable entangled states is peculiar, it is the
convex envelope of the separable pure states for definition and it is a closed set (is
a set with a boundary) over the trace norm (called also Frobenious norm that was
introduced in chapter 2); and last the set is invariant under separable operators
actions (SO are maps that send a separable state to another separable state).

For the pure states of a multipartite system definition 3.1 remains true but more
complications rise up from the structure of the system: the Schmidt’s decomposi-
tion is not still valid [28], only a few states admit a sort of generalization of Schmidt
decomposition.

The most useful condition remains the one defined by the reduced matrix[28].

Proposition 3.2. A pure state is fully separable if and only if the reduced density matrices
of elementary subsystems are pure.

For the density states there are not generalizations of the PPT condition (Theo-
rem 3.2); a lot of criteria exist but they don’t give any complete characterization of
entanglement and it makes the problem still open.

3.2.2 Partial Separability

There are many generalizations of separability which have a lot of applications,
the simpler is the notion of separability with respect to partitions. If we consider a
multipartite system it is possible to create a disjoint partition of J = {1, ..., n}:

P = {J1, ...Jk} , (3.22)

where J is the set of the index of the Hilbert spaces involved in the multipartite
system.

Definition 3.6 (Separability Respect a Partition). A density state ρ of a multipartite
system is called separable with respect to a partition P such that:

k⋃
j=1

Jj = J, (3.23)

iff:

ρ =
N

∑
i

piρ
i
1 ⊗ · · · ⊗ ρi

k, where ρj ∈ D(
⊗
l∈Ij

Hl). (3.24)
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The number of possible partitions in a multipartite system rises exponentially
with respect to the cardinality of J. One of the most notable types of the partial
separability are the semiseparable states, that are the states which are separable
under all (1, n− 1) possible partitions, that are partitions of the type:

Hi ⊗

⊗
j 6=i

Hj

 . (3.25)

This does not guarantee the full separability of the state [28], an example can be
found considering a 3-qubit system in the teleportation configuration (see example
13).

Let us change the point of view: in n-partite systems it could be interesting to
impose that the maximum entangled particles are in a fixed number (for example
s); this condition creates a stratification of the entanglement [28]: a mixture of states
is created which is separable only with respect to some fixed partition, where the
set of index has the fixed cardinality s.

3.3 Differential Structure of Entanglement

In this section we will present a sort of generalization of the last part of [18] in order
to consider also multipartite systems; we will focus only on the full separability
that has a rich geometrical structure. The missing proofs in this section can be
found in the aforementioned paper or in [19]. We will use the geometrical methods
introduced in chapter 1, and also the application on quantum mechanics that are
presented in chapter 2.

Let’s consider a quantum composite system with the fixed decomposition:

H = H1 ⊗ · · · ⊗Hn; (3.26)

associated to it there is a canonical Segre embedding (see section 1.7.1):

Seg : PH1 × · · · ×PHn → P (H1 ⊗ · · · ⊗Hn) ; (3.27)

[. . . , x1i, . . . ] , . . . ,
[
. . . , xnj, . . .

]
7→
[

. . . ,
n

∏
j=1

xij, . . .

]
; (3.28)

that can be expressed also in coordinate free form:

Seg : PH1 × · · · ×PHn → P (H1 ⊗ · · · ⊗Hn) ; (3.29)

[x1], . . . , [xn] 7→ [v1 ⊗ · · · ⊗ vn]. (3.30)

The elements of the imagine of this map are called pure separable states with re-
spect to the fixed decomposition presented in equation (3.26); it’s trivial to see that
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this construction is analogous to the definition 3.1. This embedding solve com-
pletely the separability problem for the pure states, it is enough to check the value
of the minors of the associated matrix as consequence of the proposition 1.3.

Example 15. Let us consider a composite system formed by two qutrits:

H = C3 ⊗C3 = C9; (3.31)

and let us consider the following state:

|ψ〉 =
√

2
2
|1〉 ⊗ |3〉+

√
2

2
|2〉 ⊗ |1〉 ; (3.32)

it is easy to check with the Corollary 3.1 that |ψ〉 is entangled, if its density state is built
up:

ρψ =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1

2
1
2 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


; (3.33)

and performing the partial trace over the first subsystem the reduced density matrix that
we obtain is:

TrA[ρψ] = ρψB =
1
2
|3〉 〈3|+ 1

2
|1〉 〈1| ; (3.34)

and now we have the certainty that |psi〉 is entangled. Now let us to use the criterion given
by the Segre embedding; |ψ〉 in coordinates of the computational basis is given by:

〈ψ| =
(

0 0
√

2
2

√
2

2 0 0 0 0 0
)

; (3.35)

that it can be written in the matrix form as:

〈ψ| 7→

 0 0
√

2
2√

2
2 0 0
0 0 0

 . (3.36)

If we compute all the nine possible 2-minors of (3.36) we find all equal to zero except for the
one:

det

[(
0

√
2

2√
2

2 0

)]
= −1

2
, (3.37)

that confirm the fact that |ψ〉 is entangled.
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This embedding is in relation to the representation of the unitary groups of the
single parts of the total system:

U(H1)× · · · ×U(Hn) 3 (σ1, . . . , σn) 7→ σ1 ⊗ · · · ⊗ σn ∈ U(H) (3.38)

with the scalar product defined in equation (A.3); in this way we can generalize the
Segre embedding to:

Seg : u∗(H1)× · · · × u∗(Hn)→ u∗(H); (3.39)

with a particular attention to the set of the density states, and we provide the fol-
lowing proposition:

Proposition 3.3. The Segre immersion maps positive definite operators of rank ki into
positive definite operators of the composite systems, it acts as:

P k1(H1)× · · · × P kn(Hn)→ P∏i ki(H1 ⊗ · · · ⊗Hn) (3.40)

and it is the density states of the same rank acts as:

Dk1(H1)× · · · × Dkn(Hn)→ D∏i ki(H1 ⊗ · · · ⊗Hn) (3.41)

Proof. Let Ai ∈ P ki(Hi) with spectrum:

Ai |j〉i = λij |j〉i . (3.42)

A particular attention should be put on indexes: i is the index of the particular
Hilbert Space, while j is the index of the basis element. We can construct the
computational basis of the total Hilbert space from such class of states, namely:
|j1〉1⊗ · · · ⊗ |jn〉n, moreover this vectors are also eigenvectors of the tensor product
operator

⊗
i Ai; the spectrum of the composite operator is then:

⊗
i

Ai |j1〉1 ⊗ · · · ⊗ |jn〉n =

(
∏
i=1

λij

)
|j1〉1 ⊗ · · · ⊗ |jn〉n . (3.43)

Obviously the newly built operator is not negative (the eigenvalues are the product
of not negative numbers) and of rank ∏i1 ki. If all of Ai are with trace 1 then:

∑
i

λij = 1⇒ ∑
j1,...,jn

λj1 . . . λjn = ∏
j=1

∑
ji

λi = 1 (3.44)

and so
⊗

i Ai ∈ D∏i ki(H1 ⊗ · · · ⊗Hn).

Now it is possible to define the various state sets: we will denote the image of
the Segre embedding, namely Seg

(
Dk1(H1)× · · · × Dkn(Hn)

)
with Sk1,...,kn(H).

This embedding, when we deal with rank fixed density states, leads to the com-
plete description of the product states of the composite system.
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Example 16. Let us consider in the Example 15 a compound system formed by two qutrits.
The possible generalized Segre embeddings which give rise to the product states are:

Seg(D1 ×D1) Seg(D1 ×D2) Seg(D1 ×D3)

Seg(D2 ×D1) Seg(D2 ×D2) Seg(D2 ×D3)

Seg(D3 ×D1) Seg(D3 ×D2) Seg(D3 ×D3)

This construction leads to an important remark: if the rank of a density matrix of the com-
pound system is 5,7 or 8 this means that it cannot be a product state because the aforemen-
tioned embeddings do not have image in these strata. This is a result that comes out directly
from the geometrical structure of the Segre embedding.

The sets of the pure separable state, rank one projectors acting on H will be
denoted simply as S1(H). The set of separable states are denoted S(H) and cor-
respond to the convex envelop of Seg (D(H1)× · · · × D(Hn)) (see of Preposition
3.4).

Definition 3.7. The set of the entangled density states are defined by the quotient:

E(H1 ⊗ . . .Hn) = D(H1 ⊗ . . .Hn)/S(H1 ⊗ . . .Hn). (3.45)

Proposition 3.4.

• S(H) is the convex envelop of S1(H);

• S1(H) is the set of the extremal points of S(H);

• S1(H) is invariant under the action of:

U(H1)× · · · ×U(Hn) (3.46)

with the adjoint action:

(T1, . . . , Tn) ◦ A ◦ (T1, . . . , Tn)
† (3.47)

Proof. Let’s start showing that the envelope of S1(H) contains the image of the
Segre embedding:

Seg (D(H1)× · · · × D(Hn)) ⊆ S(H). (3.48)

If D1(Hi) is the set of the extremal points of D(Hi) for all subsystem, and Ai ∈
D(H) then we can write:

Ai = ti
sρ

i
s ρi

s ∈ D1(Hi); (3.49)

while a generic product state is:

⊗
i

Ai = ∑
{si}

t1
s1

. . . tn
sn

ρ1
s1
⊗ · · · ⊗ ρn

sn︸ ︷︷ ︸
D1(H)

, (3.50)
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and it is extremal for D(H). It cannot be written as trivial linear combination of
elements of D(H) but of a smaller set: S(H).

The invariance is trivial.

Now it is clear how the definition of separable states given in the previous
proposition is coherent with the definition 3.5, but we have some new elements
now: the set of extremal points of D(H) is isomorphic to the Segre embedding of
the projective Hilbert spaces of the subsystems. There is a remark, the last part of
the previous theorem ensure that entanglement is invariant under separable uni-
tary operation of the two subsystems, moreover it can be proved (see [19]) that this
invariance is true in bipartite case also for the action of GL(H1) × GL(H2). The
preservation of the separability over the action (adjoint action in our case) of a Lie
group brings us to recall the Orbit Method. This approach will be used in the next
section in the qubit example.

We have now proved that the separable states are a convex set, the next step is
to deal with the closeness.

Proposition 3.5. Let V an n-dimensional real vector space and x a convex combination of
point of V; then x = ∑i aixi is a convex combination of at most n+1 point of xi.

And at last the compactness:

Proposition 3.6. Let E a compact subset of a real vector space V; then the convex hull of
E is compact.

We have shown that the set of the separable state (the convex hull of the pure
separable states) is a convex, closed and compact subset of u∗(H); as already antic-
ipated in the previous sections.

3.4 An Important Example: Two Qubits

As it can be seen in the previous sections the most simple system in which the phe-
nomena of entanglement can be studied is the two qubits system. For this example
we will follow mainly [5] and [8].

3.4.1 Pure States

The identification of C2 ⊗ C2 as the total Hilbert space is straightforward, and the
corresponding space of pure state can be identified as P3C, with a generic point
[Z0, Z1, Z2, Z3]. This gives rise to a fibration similar to the one presented in the
previous chapter (see figure 3.2). The set of separable pure states as we have already
seen is provided by the Segre Embedding:

σ : P1C×P1C→ P3C; (3.51)
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R+ C2 ⊗C2

U(1) ' S1
S7

P3C

FIGURE 3.2: Fibration of the qubit case for pure states.

which provides the equation of the states in a polynomial form:

Z0Z3 − Z1Z2 = 0; (3.52)

therefore, considering that the real dimension of C3P is 6 (see figure 3.2); equation
(3.52) reduces the dimensionality of the space of the pure separable states to 4. This
can be seen in many different ways; this method can be generalized but for this
propose we will focus only on two qubits systems. Let us focus on the Schmidt
decomposition of the general pure state (see theorem 3.1):

|ψ〉 =
2

∑
i=1

√
qi |φi〉A |χ

i〉B ; (3.53)

the Schmidt coefficients determine uniquely the state |ψ〉; so in our case the Schmidt
vector can be:

1. (a, b) with generic a 6= b;

2. (1, 0);

3. ( 1
2 , 1

2 );

these three cases correspond respectively to a general pure state, a pure separable,
and to a maximum entangled state. Now from here we can compute the different
orbits on P3C.

To do this let consider a bigger system in order to have a generalized treatment:

HN ⊗HK = HNK; (3.54)

of the respectively dimensions: N, K and NK (for the sake of simplicity we assume
that N ≤ K); therefore the correspondent Schmidt vector in this case has N compo-
nents (N-1 independent components):

~q = (q1, . . . , q1︸ ︷︷ ︸
n1-times

q2, . . . , q2︸ ︷︷ ︸
n2-times

, . . . , qj, . . . , qj︸ ︷︷ ︸
nj-times

, 0, . . . , 0︸ ︷︷ ︸
n0-times

); (3.55)
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where nk is the multiplicity of the value of qk, and the following relation holds true:

J

∑
j=0

nj = N. (3.56)

The group that leaves the entanglement invariant (it preserves the separability) is
a subgroup of SU(NK) that acts as:

|φ〉′ = (UN ⊗UK) |φ〉 ; (3.57)

with UN ∈ SU(N) and UK ∈ SU(K). The local orbit generated by that action has a
structure of a principal bundle (that is not trivial in general); it has as base space:

U(N)
/
[U(n0)× · · · ×U(nj)] ; (3.58)

and as fibre:
U(N)

/
[U(n0)×U(1)] (3.59)

and the corresponding dimension of the local orbit is computable from the equa-
tion:

2N2 − 1− 2n2
0 −

j

∑
i=1

n2
i . (3.60)

If we come back to our case of 2 qubits we have three cases:

1. (a, b) with 0 6= a 6= b 6= 1
2 the local orbit has the local structure:(

U(2)
/
[U(1)×U(1)]

)
×
(

U(2)
/

U(1)
)

; (3.61)

with the consequent real dimension 5. As last remark we want to emphasise
that this fibration can be written in the form:

F2 ×P3R, (3.62)

where F2 is a flag manifold (see appendix C).

2. The situation (1, 0) corresponds to the separable pure state the local orbit has
the structure:(

U(2)
/
[U(1)×U(1)]

)
×
(

U(2)
/
[U(1)×U(1)]

)
; (3.63)

with the consequent real dimension 4. This fibration can be written in the
form:

P1C×P1C; (3.64)

that is clearly the Segre variety.
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3. The last situation the Schmidt’s vector is:(
1
2

,
1
2

)
, (3.65)

and represent the maximum entangled pure state (the Bell states), the conse-
quent form of the local orbit is:(

U(2)
/

U(2)
)
×
(

U(2)
/
[U(1)]

)
; (3.66)

that is isomorphic to a point for the base space and RC3 in the fibre (this
appends only in this particular system), this can be seen better with the iden-
tification of:

P3R ' SU(2)/Z2 (3.67)

as another form of this fibration; this is important because the sets of the type
SU(N)/ZN are a Lagrangian and a minimal submanifold (see Appendix B).

A general treatment of the foliation of the pure state set based on the Schmidt the-
orem (theorem 3.1)will be presented in the next remark.

Remark 3.3 (General Foliation of Pure State). In this remark we will show briefly the
previous procedure on PN2−1C: the space of the pure states of a Hilbert space: CN ⊗CN .

• For a generic state the orbit is:

O =
(

U(N)
/

UN(1)
)
×
(

U(N)
/

U(1)
)
= FN ×

(
U(N)

/
U(1)

)
; (3.68)

where FN is a flag manifold; the dimension of this orbit is N2 − N − 1.

• The separable states give rise to the Segre embedding one more time:

Osep =
(

U(N)
/

U(N − 1)×U(1)
)
×
(

U(N)
/

U(N − 1)×U(1)
)

(3.69)

=PN−1C×PN−1C; (3.70)

which has as real dimension: 4(N − 1).

• The last is the sub-set of the maximally entangled states:

O =
(

U(N)
/

U(N)

)
×
(

U(N)
/

U(1)
)
= SU(N)

/
ZN ; (3.71)

with dimension N2 − 1, the half of the total dimensionality of the total pure states.

This create a singular foliation (a foliation in which there exist leaves with measure zero of
various topology and dimensions, for more details see appendix A) of PN−1C.

Now another way to study the pure states is passing to the density matrix for-
malism: in this case a state is represented by a rank-one projector. If a state |ψ〉,
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represented by [Z0, Z1, Z2, Z3], has a density matrix ρ = |ψ〉 〈ψ| of the form:

ρ =


z2

0 z0z∗1 z0z∗2 z0z∗3
z1z∗0 z2

1 z1z∗2 z1z∗3
z2z∗0 z∗1z2 z2

2 z2z∗3
z3z∗0 z3z∗1 z3z∗2 z2

3

 ; (3.72)

If we choose to denote:

Γij = (Γ00, Γ01, Γ10, Γ11) = (Z0, Z1, Z2, Z3); (3.73)

the density matrix can be seen as a 4-index object:

ρ(ij)(kl) =
1
N

ΓijΓ∗kl ; (3.74)

Now it is easy to compute the partial trace, this operation is a good tool to deter-
mine if a state is entangled or not: if the reduced density matrix is of a pure state
than the original state is separable, otherwise it is entangled.

Remark 3.4. The Schmidt’s coefficients plays a central role because they are the eigenvalues
of the reduced density matrix indeed.

Let’s see two different cases:

• We are looking for the reduced density matrix with eigenvalues (1,0): so com-
puting the partial trace:

TrA ρ = ∑
k

ρ(kj)(kl) = ∑
k

ΓkjΓ∗kl (3.75)

• We are looking for the reduced density matrix with eigenvalues (1/2,1/2): so
computing the partial trace:

TrA ρ = ∑
k

ρ(kj)(kl) = ∑
k

ΓkjΓ∗kl =
1
2

δj,l ; (3.76)

this means that Γij is a unitary matrix and in the coordinates of P3C it is
represented by [a, b,−b∗, a∗]. This is the case of the Lagrangian sub-manifold
(see appendix B).

3.4.2 Mixed States

Let us start using the orbit method to classifying the all possible structures of the
density matrix due to the action of the unitary group U(4).

Remark 3.5. We recall from the previous sections that U(4) do not preserve entangle-
ment. The biggest group that preserves entanglement is the subgroup of GL(4) formed by
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U4(1) U(4)

U(4)/U4(1)

(A) Fibration for a system of two
qubit a situation of the type: λ1 6=

λ2 6= λ3 6= λ4.

U2(1) U(4)/U(2)

U(4)/[U2(1)×U(2)]

(B) Fibration for a system of two
qubit for a situation of the type:

λ1 6= λ2 6= λ3 = λ4.

U2(2) U(4)

U(4)/[U(2)×U(2)]

(C) Fibration for a system of two
qubit for a situation of the type:

λ1 = λ2 6= λ3 = λ4.

U2(1) U(4)/U(3)

U(4)/[U(3)×U(1)]

(D) Fibration for a system of two
qubit for a situation of the type:

λ1 = λ2 6= λ3 = λ4.

FIGURE 3.3: Fibrations of a mixed states for a system with two
qubits.

separable matrices of the form:
A⊗ B; (3.77)

with A, B ∈ GL(2).

A 4x4 density matrix (Hermitian, semi-positive, with trace one) can be written
in the form: 

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 ; (3.78)

using the adjoint action of U(4); we can divide the orbits in the following cases [8]:

1. λ1 6= λ2 6= λ3 6= λ4. In this case the possible fibration is pictured in figure
3.3a. The dimension of this sub-manifold is easy to calculate knowing that:

M1 = U(4)/[U(1)]4; (3.79)

and so dimR M1 = 12.

2. λ1 6= λ2 6= λ3 = λ4. In this case (fibration in figure 3.3b) the manifold take
the structure:

M2 = U(4)/[U2(1)×U(2)]; (3.80)

and so its dimension is dimR M2 = 10.
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3. λ1 = λ2 6= λ3 = λ4. The corresponding fibration is pictured in 3.3c. The
manifold has the structure:

M3 = U(4)/[U(2)×U(2)]; (3.81)

and so its dimension is dimR M2 = 8.

4. λ1 6= λ2 = λ3 = λ4. The manifold take the form:

M4 = U(4)/[U(3)×U(1)] ' P3C; (3.82)

and so its dimension is dimR M2 = 6. The fibration is pictured in 3.3d. This
case is fundamental because, if λ2 = λ3 = λ4 = 0, we are in the case of the
pure states: rank one projector; the final result is in fact the same of the pure
state already treated.

5. λ1 = λ2 = λ3 = λ4 = 1
4 . In this last case the orbit has the structure:

M4 = U(4)/[U(4)]; (3.83)

and so its dimension is dimR M2 = 0 and it is isomorphic to a point.

Now let us consider the general structure of a mixed state of a 2× 2 using the
base of SU(2)⊗ SU(2) (similar to the structure of the density matrix of a qbit):

ρ =
1
4

[
14 +

3

∑
k=1

εA
k0σA

k ⊗ 12 +
3

∑
s=1

εB
0s1⊗ σB

s +
3

∑
k=1

3

∑
s=1

εksσ
A
k ⊗ σB

s

]
. (3.84)

This can be extended to a bipartite system whose components have respectively
dimension N and K with the basis of SU(N)⊗ SU(K): it is called Fano’s form.

The coefficients εks represent the interaction between the two subsystems, in
particular it can be shown [5] that if they are all zero than ρ is separable; the other
way is not true as we will see. Now lets see the Fano’s form of a separable state:
recalling the definition 3.5:

ρ = ∑
i

λiρ
A
i ⊗ ρB

i (3.85)

this is a element of a subset of the manifold u∗(C4) that has the scalar product:

〈A, B〉u∗ = Tr [AB] = TrA[TrB[AB]] = TrB[TrA[AB]]. (3.86)

We can compute the coefficients using this method:

Tr[ρ1] = 1; (3.87)

that is trivial. The second step is compute the coefficients in front of the part of the
basis like σA

k ⊗ 1, in the following we denote with τi j a sort of generalized Block
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vector:

Tr[ρ(σA
k ⊗ 1)] = (3.88)

=TrB[∑
i

λiρ
B
i TrA[ρ

A
i σA

k ]] (3.89)

=TrB[∑
i

λiρ
B
i TrA[(

1
2

12 + ∑
l

τA
il σA

il )σ
A
k ]] (3.90)

=TrB[∑
i

λiρ
B
i TrA[(

1
2

σA
k + ∑

l
τA

il (δk,l12 + iεklsσs))]] (3.91)

=TrB[∑
i

λiτ
A
ik ρB

i ] (3.92)

=∑
i

λiτ
A
ik ; (3.93)

where we have used the relations presented in the sections C.1 and C.2. The same
calculation holds for the part of the basis of the form: 1⊗ σB

k :

Tr[ρ(1⊗ σB
k )] = ∑

i
λiτ

B
ik . (3.94)

The last calculations involve the part of the basis in the form: σA
k ⊗ σB

s , but also
these can be calculated in a similar way:

Tr[ρ(σA
k ⊗ σB

s )] = ∑
i

λi TrA[ρ
A
i σA

k ]TrB[ρ
B
i σB

s ]; (3.95)

but we know already the results of the single partial traces, and that leads to:

Tr[ρ(σA
k ⊗ σB

s )] = ∑
i

λiτ
A
ik τB

is . (3.96)

In conclusion the form of a separable state is:

ρ = ∑
i

λi

4

[
1 +

3

∑
k=1

τA
ik σA

k ⊗ 1 +
3

∑
s=1

τB
is 1⊗ σB

s +
3

∑
k

3

∑
s

τA
ik τB

is σk ⊗ σs

]
. (3.97)

The analysis now consist in confronting equations (3.84) and (3.97) in order to
see how the coefficients change in the two different forms.

The coefficient in front of the identity leads to the trivial relation of ∑i λi = 1,
which derives from the definition of density matrix. The other relations are:

∑
i

λiτ
A
ik = εA

k0; (3.98)

∑
i

λiτ
B
is = εB

0s; (3.99)

∑
i

λiτ
A
ik τB

is = εks; (3.100)

these relations give in the parameter manifold the equations of pure states. It is
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important to remind that the minimal number of λi is bounded as it can be seen in
the initial part of this chapter.

Let’s now recall Theorem 3.2 that in our case characterize completely the set of
separable states in the cases of systems with two qubits or with a qubit and a qutrit.
The application of the partial transpose (3.20) to a general density matrix written in
the Fano’s form (3.84) leads to the following expression:

ρTA =
1
4

[
14 −

3

∑
k=1

εA
k0σA

k ⊗ 12 +
3

∑
s=1

εB
0s1⊗ σB

s −
3

∑
k=1

3

∑
s=1

εksσ
A
k ⊗ σB

s

]
. (3.101)

Remark 3.6. Acting with T ⊗ 1 or with 1⊗ T on a density matrix is the same for our
propose: if H is a block matrix with the components:

H =

(
A B
C D

)
(3.102)

the two operations leads respectively to:

HTA =

(
A C
B D

)
and HTB =

(
AT BT

CT DT

)
; (3.103)

but hold also the relation: HTB = (HTA)T and so the two results has the same eigenvalues
and so:

HTB > 0 ⇐⇒ HTA > 0. (3.104)
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Chapter 4

Conclusions, New Perspectives
and Open Problems

In this chapter an new algebraic approach to the separability problem will be pre-
sented and the conclusion of this work will be drawn. For the mathematical notions
of the first section the main references are [15] and [14].

4.1 An algebraic approach

In this section we would like to outline some new elements for the separability
problem. The main idea is to link the representation theory of the symmetric group
Sn (it is often used when dealing with many particle symmetries) to the index
symmetries of a tensor; the mathematical framework that is needed to understand
this approach is presented in Appendix A.4.

Let us consider a vector space V with a finite dimension, with the tensor product
it is possible to built up a space:

V ⊗ · · · ⊗V︸ ︷︷ ︸
k

; (4.1)

of rank k tensors. It is well know that a rank 2 tensor tµν ∈ V ⊗ V can be decom-
posed into symmetric and skew-symmetric part:

tµν =
1
2
(
tµν + tνµ

)︸ ︷︷ ︸
symmetric part

+
1
2

(
tµν − tνµ

)︸ ︷︷ ︸
skew-symmetric part

; (4.2)

this symmetry splits the space of rank two tensor in two submodules (see A):

V ⊗V = S2(V)⊕
2∧
(V). (4.3)

This decomposition can be extended to higher dimensional tensors, but the ten-
sor space is not more splitted into symmetric and skew-symmetric parts only, the
index permutations are linked with the so called Young Symmetrizer, that gives
rise to the so called Schur functors and the IRR’s of the symmetric group [15].
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The tensor product between Schur functors is ruled by its relation to the Young
Tableaux and in literature it is a well studied subject. If we consider for example the
tensor product of two symmetric tensors of rank 2 in a vector space V the problem
is to compute:

S2(V)⊗ S2(V); (4.4)

this can be computed with the Pieri formula [15]:

S2(V)⊗ S2(V) =
⊕

0≤a≤2

S(2+a,2−a)(V) = S4(V)⊕ S(3,1)(V)⊕ S(2,2)(V). (4.5)

This constrains all the linear combination of the tensor product of symmetric matri-
ces over V, that are a subspace of the symmetric matrices over V⊗2. Let us consider
S2(V⊗2), also this subspace can be decomposed in a similar way [15]:

S2(V ⊗V) =
⊕

λ

SλV ⊗ SλV; (4.6)

where λ is any partition of 2: (1, 1) and (2, 0); so it can be expressed as:

S2(V⊗2) = S4(V)⊕ S(3,1)(V)⊕ S(2,1,1)(V)⊕ S(2,2)(V)⊕2 ⊕
4∧

V. (4.7)

It is evident that an element of S2(V)⊗ S2(V) is also an element of S2(V⊗2) but the
opposite doesn’t hold.

4.1.1 The application in the separability problem.

Let us consider a bipartite compound system:

H = H′A ⊗H′B; (4.8)

if the two subsystems are equal it is possible to write H = H′⊗2. A density matrix
of this system is formally an element of:

H⊗H∗ = (H′)⊗2 ⊗ (H′∗)⊗2; (4.9)

where with H′∗ is denoted the dual space of the original Hilbert space. We know
that the density states set is a subset of the set of the Hermitian operators, that we
have denoted as u∗(H).

The connection between the separability problem, which was introduced in the
previous chapter, and the representation theory is to combine the action of the sym-
metric group with the complex conjugation operators; in order to expand this con-
struction from the symmetric part to the Hermitian part.

This approach is strictly related to the contemporary research in algebraic ge-
ometry [7], [31] and in tensor networks [21]: it is related with an attempt to gener-
alize the singular value decomposition (which is also fundamental for the Schmidt
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Decomposition). As we have already shown a density matrix of a compound sys-
tem can be seen as high rank tensor because is a element of the set of matrices of a
tensor product space.

Example 17. For a bipartite system as the two qubits system the density matrices can be
seen as a multi-index object, fixing a base we obtain:

ρ = ρijks |ei〉 〈ej| ⊗ | fk〉 〈 fs| , (4.10)

which linearity is insured by its nature of Hermitian operator.

The state of art of this research is focusing on Unitarily Decomposable Tensors
that are a particular type of tensor that can be written with orthogonal vectors with
respect to a Hermitian product [7].

Definition 4.1. Let {Vi}i be a set of vector spaces over the field of complex number C with
an Hermitian product. An element σ of the tensor product space:

⊗
i

Vi, (4.11)

is called Unitarily Decompostable (or udeco) if it can be written in the form:

σ =
k

∑
i=1

vi1 ⊗ · · · ⊗ vid; (4.12)

where an orthogonal relations holds:

〈vsj|vkj〉Vj
= δk,s ∀j. (4.13)

We want to emphasise that the difficulties of this approach are due to the lack
of literature on this subject since it is also a new mathematical framework.

4.2 Conclusions

In this work we have seen how quantum theory can be approached with a geo-
metrical perspective, in particular we have focused on the quantum phenomena of
Entanglement in both traditional and geometrical framework in order to give the
most complete global view of the subject.

In the last two chapters it is highlighted how the geometrical approach cannot
be avoided if we want a complete description of entanglement: the main result
is the characterization of structure of the set of separable states in the Projective
Hilbert Space of a compound system as an algebraic variety using the Segre em-
bedding. The use of the orbit method in combination with the Schmidt decompo-
sition divide not only the separable and the entangled pure states but characterize
in a certain way also its measure.
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Despite this elaborate construction, the description of the separable mixed states
set isn’t complete, the problems without solution are still many: there are a lot of
criteria that characterize either sufficient or necessary conditions, and so they de-
scribe either smaller or bigger sets. The numerical approaches is followed when
we are interested to an approximation of the set because for now the separability
problem is a NP-hard problem and so these methods are usually time consuming
and expensive for higher dimensional systems.

The geometrical approach to the separability problem (which is introduced in
chapter 3) could be helpful also if we want to generalize the Proposition 3.2 to the
mixed states: there is a relation between the rank of the reduced density matrix
and the original density state due to the separability propriety? This fact becomes
evident looking at the definition 3.5 of a separable state , if a density state:

ρ = ∑
i

ξiρ
A
i ⊗ ρB

i , (4.14)

is separable then the whole orbit of ρ, which is generated by the action of the group
U(n) × U(m) ⊂ U(nm), is composed by separable states, U(n) and U(m) diag-
onalize the respective reduced density matrices, and the ranks are related to the
Determinantal variety introduced in chapter 1.

Finally the algebraic approach introduced in this last chapter could be an inter-
esting point of view which, however, is still in an early phase of development.
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Appendix A

Some complements on linear
Algebra

A.1 Tensor Product

Let be W1 and W2 two vectors spaces over a field K; the tensor product W1 ⊗W2 is
another vector space:

W1 ×W2 →W1 ⊗W2 (A.1)

(w1, w2) 7→ w1 ⊗ w2 (A.2)

If W1 and W2 have for basis respectively {ei}i and { f j}j, the basis of W1 ⊗W2 is
{ei ⊗ f j}i,j. A similar construction can be made for an arbitrary number of vector
spaces: W1 ⊗W2 ⊗ · · · ⊗Wn. It is possible to prove a series of proprieties of this
construction for example uniqueness or induction to isomorphic spaces, we refer
to the appendix B of [15]. The main proprieties of tensor product of spaces are:

• Commutativity: W1 ⊗W2 'W2 ⊗W1

• Distributivity: (W1 ⊕W2)⊗V ' (W1 ⊗V)⊕ (W2 ⊗V)

• Associativity: W1 ⊗W2 ⊗W3 ' (W1 ⊗W2)⊗W3) ' (W1 ⊗W2)⊗W3

If in every vector spaces Wi a scalar or a Hermitian product is defined then the
tensor product space W1 ⊗W2 ⊗ · · · ⊗Wn inherits a scalar or a Hermitian product
(we will use the bracket notation):

〈w1 ⊗ · · · ⊗ wn|v1 ⊗ · · · ⊗ vn〉W1⊗···⊗Wn
= 〈w1|v1〉W1

· · · 〈wn|vn〉Wn
. (A.3)

In the case of Wi = W for all i, we will denote:

W ⊗ · · · ⊗W︸ ︷︷ ︸
n-times

= W⊗n. (A.4)
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A.2 Exterior Powers

The exterior product of a vector space V is usually denoted by:

n∧
V or Altn(V). (A.5)

This set can be construct as the quotient of V⊗n from the subspaces generating by
v1 ⊗ · · · ⊗ vn where exist at least two vi = vj with i 6= j. So there is a projection π

such that:
π(v1 ⊗ · · · ⊗ vn) = v1 ∧ · · · ∧ vn. (A.6)

In a similar way the exterior product can be also constructed as a subspace of V⊗n;
the imbedding of this space is given by:

i(v1 ∧ · · · ∧ vn) = ∑
σ∈Sn

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n); (A.7)

where Sn is the permutation (symmetric) group of order n, and σ one of its ele-
ments.

A.3 Symmetric Powers

The symmetric power of a vector space V, usually denoted by SimdV or SdV; can
be constructed as the quotient of V⊗d by the subspace generated by:

v1 ⊗ · · · ⊗ vd − vσ(1) ⊗ · · · ⊗ vσ(d); (A.8)

where σ(·) permutes two successive factors. The projection π can be build up in
the following way:

π(v1 ⊗ · · · ⊗ vn) = v1 ∨ · · · ∨ vn. (A.9)

In analogy to the exterior powers we can define this set as a subspace of V⊗n with
the following imbedding:

i(v1 ∨ · · · ∨ vn) = ∑
σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n); (A.10)

where Sn is the permutation (symmetric) group of order n, and σ one of its ele-
ments.

A.4 Other Multi-linear spaces

The symmetric product and the exterior product are particular cases of a deep de-
composition linked to the partition of a integer. Let us consider a the tensor product
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of d identical spaces:
W ⊗ · · · ⊗W︸ ︷︷ ︸

d

= W⊗d; (A.11)

which has (dim W)d as dimension. The space W⊗d can be split into irreducible
representation (IRR’s) of the symmetric group Sd which dimension is related to
the Young Tableaux [15].

A.4.1 Young Tableaux and Young Symmetrizers

Before defining the Young Tableaux it is useful to explain what a partition of an
integer is; let us consider a d ∈N, there are several way to build up it as a sum:

d = d (A.12)

d = (d− 1) + 1 (A.13)
... (A.14)

d = 1 + · · ·+ 1 (A.15)

a partition λ of d is a non-increasing order vector (λ1, . . . , λs) such that ∑i λi = d; a
convenient way to represent a partition is the Young frame.

Definition A.1 (Young Frame). A young tableaux of dimension d is a collection of d
boxes left-justified that represent a particular partition of d.

Example 18. Let us consider d=4, the possible partitions and the related frames are:

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1.

When the boxes of a Young frame are being numbered the frame is called a
Young Tableaux; for our propose it is interesting only the standard (or canonical)
labelling that consists in labelling the boxes with the numbers {1, . . . , d} one time
for each number in an increasing way.
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Example 19. Let us consider example 18, the associated Young tableaux with the canonical
labelling are:

4 = 4 1 2 3 4

= 3 + 1
1 2 3
4

= 2 + 2
1 2
3 4

= 2 + 1 + 1

1 2
3
4

= 1 + 1 + 1 + 1.

1
2
3
4

Given a partition and consequently a standard Young tableaux it is possible to
construct two subgroups of the symmetric group Sd:

P = Pλ = {g ∈ Sd : g preserves each row}, (A.16)

and
Q = Qλ = {g ∈ Sd : g preserves each column}, (A.17)

with these two subgroups we can define the Young Symmetrizers that are operators
that act on W⊗d.

Definition A.2 (Young Symmetrizers). Let us consider an integer d and a partition λ of
it. To the subgroups P and Q of Sd are associated the two operators aλ and bλ such that:

aλ = ∑
g∈P

eg, bλ = ∑
g∈Q

sgn(g)eg, (A.18)

where eg represents an index permutation of an element of W⊗d with respect to the corre-
spondent element of the symmetric group. A Young Symmetrizer is an operator cλ defined
as:

cλ = aλbλ =

(
∑
g∈P

eg

)(
∑

g∈Q
sgn(g)eg

)
. (A.19)

The Young Symmetrizers are important because their action split W⊗d with re-
spect to the symmetries of indexes; we have already treated the most common sit-
uations: Sd(W) and ∧d(W).

Example 20. Let us still consider the situation of Example 18. The submodule S4(W) is
associated to the young tableaux:

1 2 3 4
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that leads to the following Young symmetrizer:

cλ(v1 ⊗ v2 ⊗ v3 ⊗ v4) = ∑
g∈S4

vg(1) ⊗ vg(2) ⊗ vg(3) ⊗ vg(4). (A.20)

A similar procedure can be made for ∧4(W) that is associated to the Young Tableaux:

1
2
3
4

and leads to skew-symmetry.

Remark A.1. It is now quite clear that in a Young Tableaux the row represents the sym-
metry while the column the skew-symmetry.

The image of the Young Symmetrizers are IRR’s of the symmetric group Sd

labelled by the partitions λ, and they are represented by: Sλ.

Definition A.3 (Schur Functor). A Schur functor Sλ associated to a partition λ of a
integer d is:

Sλ(W) = cλ(W⊗d) (A.21)

For a deeper treatment of the Young Tableaux than the one presented here and
its relation to representation theory please refer to [15].

A.5 Realification

The realification, or decomplexification, of a vector space V defined on the field of
complex number is a procedure that leads to another vector space VR defined on
the field of real numbers.

Considering V and retaining the multiplication only over R, than we get a vec-
tor field over R that is the realification of V.

Theorem A.1. 1. Let be {|j〉}j a basis of V over C, then a basis of VR over R is

{|j〉}j ∪ {ı |j〉}j. (A.22)

2. If A = B + ıB is a matrix in gl(V) in the basis {|j〉}j, where B and C are real
matrices, then the realification of A is:

AR =

(
B −C
C B

)
; (A.23)

in the base (A.22)

Now it is useful to recall how the set of operators acting on the original space
becomes in the realified space:
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• Unitary matrices (A† = A−1) become orthogonal matrices (AT = A−1);

• Hermitian matrices (A = A†) become symmetric matrices (A = AT);
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Appendix B

Complements on Differential
Geometry, Lie Groups and Lie
Algebras

In this appendix will be presented complements on Differential Geometry, Lie Groups
and Lie Algebras needed to understand the mathematical framework of this thesis.

B.1 Basic Differential Geometry

For this section the main reference is [34], but we will take elements also from [39].

Definition B.1 (Differential Manifold). M is a m dimensional differentiable (C∞) man-
ifold if:

• M is a Topological Space;

• Exist a family of {(Ui, φi)} (called atlas) such that {Ui} cover M:

⋃
i

Ui = M; (B.1)

and {φi} are homeomorphism such that:

φi : Ui → Rm. (B.2)

• If two open sets has a non trivial overlap:

Ui ∩Uj 6= ∅; (B.3)

than the map ψij = φi ◦ φ−1
j is differentiable.

In order to characterize the set inside a manifold is fundamental introduce the
concept of differential of a map.

Definition B.2 (Differential Map). Let be M and N two differential manifold and con-
sider a map:

f : M→ N; (B.4)
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Algebras

then f induces a map:
d f : TpM→ Tf (p)N. (B.5)

The differential of a map can be constructed in coordinates in the point p ∈ M as:

d f (xµ) =
∂ f (xµ)

∂xν
dxν. (B.6)

So now it is possible to define a sub manifold, an immersion and a embedding.

Definition B.3 (Submanifold, and Embedding). Let M and N be two differential man-
ifolds with respectively dimensions dim(M) = m ≤ dim(N) = n, and consider a map:

f : M→ N; (B.7)

then:

• The map f is a immersion of M in N if d f is injective.

• The map f is a embedding if it is injective and an immersion. In this case f (M) (the
image of f in N) is a sub-manifold of N.

Related to this definition there are two theorems that regard the inverse of a
function and the submersions.

Theorem B.1 (Local Inversion). Let M and N be two manifolds and f a map such that:

f : M→ N, (B.8)

then d fp 6= 0 with p ∈ M iff exist an open set U ⊂ M and an open set V ⊂ N such that:

U
F−−⇀↽−−

F−1
V; (B.9)

so that f is a local diffeomorphism.

Theorem B.2. Let M and N be two manifolds with respectively dimension m and n (with
m ≥ n); if f is a map between M and N, then its differential d fp is surjective in p iff it
exists an open set U ⊂ M and a open set V ⊂ N in which the coordinates in V are the
projection of the first n coordinates of M.

Moreover q ∈ N is a regular value of f if for all p ∈ f−1(q), d fp is surjective; then
f−1(q) is a submanifold and Tp f−1(q) = ker(d fp).

B.2 Lie Groups and Lie Algebras: some important results

In this section will be presented some important notions on Lie groups, Lie algebras
and their relations. The first thing to define is:

Definition B.4 (Lie Group). G is a Lie Group if it is a Group and a differential manifold
such that:
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• The group operation is differentiable:

G× G ∈ G (B.10)

(g, h) 7→ gh; (B.11)

• The inverse operation is differentiable:

G → G (B.12)

g 7→ g−1. (B.13)

We will deal with Lie groups with representation in Cn or Rm; this leads to
identify the group as a matrix group; for this reason is important the following
theorem due to Von Neumann [37].

Theorem B.3 (Von Neumann). If a set G is defined in MnR (the vector space of ma-
trix n× n with values in R) or in GL(n, R) through polynomial equations in the matrix
elements then G is a Lie closed subgroup of GL(n, R).

The other main structure in this section is the Lie algebra:

Definition B.5 (Lie Algebra). Let g be a vector space over field R, g is a Lie algebra if
exist a linear bracket operation:

∃[·, ·] : g× g→ g; (B.14)

which fulfil the following proprieties:

• Antisymmetry propriety: [X, Y] = −[Y, X];

• Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

The relation between Lie groups and Lie algebra will be clear after the following
proposition that uses the differential structure of a Lie group to identify its algebra.

Proposition B.1. Let be G a Lie group, the Lie algebra associated to G is isomorphic to the
tangent space of G at the identity:

Lie(G) ' TeG. (B.15)

An important remark has to be done: a Lie algebra needs a closed antisymmet-
ric bracket operation defined on it (see definition B.5), this structure is the usual
defined on the tangent space. The passage from the algebra to the associated group
is not easy and needs more requests, the statement that describes this is Ado’s The-
orem [39].

In order to describe the structure of the orbits the following theorem is impor-
tant:
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Algebras

Theorem B.4. Let G be a Lie group, then:

• if H ⊆ G is a closed Lie subgroup then there is a differential structure C∞ on G/H
such that:

G× G/H → G/H (B.16)

(g, g′h) 7→ gg′h, (B.17)

is a differentiable map, and its action is transitive (see definition 1.15).

• if S is a differential manifold, and the action of G on S:

G× S→ S; (B.18)

is transitive then there is a diffeomorphism:

G/Stabs0 → S. (B.19)

This theorem is useful to build up the quotients of a Lie Group and has impor-
tant consequences in the orbit method used in this thesis.

B.3 Other differential structures

In this section will be described other differential structures used in this thesis: the
flag manifold and the Lagrangian submanifolds.

B.3.1 Flag Manifold

Let us start by defining what a flag is in linear algebra.

Definition B.6. Let V be a vector space over a field F, a flag is an ordered sequence of
subspaces:

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V. (B.20)

A flag is called complete if the dimension of dim Vj = j for all j.

Any incomplete flag manifold can be completed, and if can be done in different
ways. Now it can be defined the flag manifold [5].

Definition B.7 (Flag Manifold). The space of all flags of a given kind is called flag mani-
fold, denoted by:

F(N)
d1,...,dr

. (B.21)

Some example of flag manifolds are:

• the projective space is the flag manifold in which are present only one dimen-
sional subspaces;
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• the Grasmannian of order k is the flag manifold in which all subspaces have
dimension k.

In this thesis we deal only with flag manifolds of the Unitary group, ans so we
define:

FN = U(N)

/
U(1)× · · · ×U(1)︸ ︷︷ ︸

N−times

= U(N)
/

UN(1) . (B.22)

B.3.2 Lagrangian submanifolds

In this subsection we define a Lagrangian submanifold [32]:

Definition B.8. Let M be a symplectic manifold and let ω be its symplectic form. A
Lagrangian submanifold of M is a submanifold L such that:

• the restriction of ω to L is vanishing;

• the dimension of L is half of the dimension of M.
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Appendix C

su(2) and su(2)⊗ su(2)

In this appendix we list the generators of su and useful relation that concern these
algebras.

C.1 Basis of su(2): sigma matrices

The generators of the algebra of SU(2) are the sigma matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
; (C.1)

that have the usual commutation relations:

[σi, σj] = 2iεijkσk. (C.2)

C.2 Basis of su(2)⊗ su(2)

The tensor product of two su(2) algebras has the following generators:

1⊗ σ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ;

1⊗ σ2 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 ; 1⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ;

σ1 ⊗ 1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ; σ2 ⊗ 1 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ;

σ3 ⊗ 1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ; σ1 ⊗ σ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ;
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σ1 ⊗ σ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ; σ1 ⊗ σ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ;

σ2 ⊗ σ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ; σ2 ⊗ σ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 ;

σ2 ⊗ σ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ; σ3 ⊗ σ1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ;

σ3 ⊗ σ2 =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 ; σ3 ⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ;

The commutation relations of these generators, that rise up the structure constant
are:

[
1⊗ σi, 1⊗ σj

]
=2i

(
1⊗ εijkσk

)
; (C.3)[

σi ⊗ 1, σj ⊗ 1
]
=2i

(
εijkσk ⊗ 1

)
; (C.4)[

σi ⊗ σk, σj ⊗ σs
]
=2iδi,jεksm (1⊗ σm) + 2iεijlδk,s (σl ⊗ 1) + (C.5)

−4εijlεksm (σl ⊗ σm) ; (C.6)
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