
Alma Mater Studiorum · Università di Bologna
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Abstract

The nature of dark matter is still today one of the biggest mysteries in physics. Most
of the efforts made in the last decades focused on explaining it in terms of non-baryonic
particles but, to date, any attempt to detect them has failed. In this thesis we will study
a different interpretation of dark matter in terms of Primordial Black Holes (PBHs),
i.e. black holes that are believed to form when large density perturbations, produced
during the inflationary epoch, reenter the horizon and collapse because of their own
gravitational force. Black holes produced in this way are referred to as “Primordial”
since their production mechanism has a primordial origin during inflation. These large
density fluctuations are produced if the inflationary potential V possesses enough tuning
freedom to feature a slow-roll plateau followed by a near inflection point that greatly
enhances the power spectrum of scalar perturbations. We examine PBH formation during
a radiation dominated (RD) epoch and during a matter dominated (MD) epoch driven
by a gravitationally coupled scalar field ϕ (modulus) which decays before Big Bang
Nucleosynthesis in order to preserve its successful predictions. We will require in both
cases that the produced PBHs constitute 100% of dark matter today. In the MD case,
we find that the mass mϕ of the scalar field affects the enhancement required in the
curvature power spectrum: for large modulus masses, this enhancement turns out to be
smaller than the one in the RD case, meaning that in the case of horizon reentry during
moduli domination the potential requires less tuning to produce the same amount of
PBHs. Therefore, we focus on PBH production during a MD epoch. We then introduce
a model of string inflation called “Fibre Inflation”, that works particularly well for our
purposes since it naturally leads to a post-inflationary epoch of MD driven by an axion-
like modulus. In this model the inflationary potential has enough tuning freedom to
induce a period of ultra slow-roll that enhances the density perturbations at the required
PBH scales: we employ this potential to obtain a numerical estimate of the scalar power
spectrum and the other inflationary observables.
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Chapter 1

Inflation and PBH Dark Matter

1.1 Dark Matter: a brief introduction

Dark Matter (DM) is defined as hypothetical matter that results invisible (i.e. “dark”)
in the entire electromagnetic spectrum: it does not interact with electromagnetic waves,
regardless of their energy, making its gravitational effects on the surroundings the only
way to detect it indirectly.

The hypothesis of DM has a long history that we will briefly summarize (see Ref.
[1] for details); it has its roots in two main astronomical anomalies, initially observed
decades ago:

1. Flat galaxies rotation curves. A galaxy rotation curve is a plot of the galaxy’s
stars (and gas) orbital velocity versus their radial distance from the center of the
galaxy. The firsts observations on rotation curves were made in the ’60s, after the
development and improvement of radio astronomy, but it was in the early ’70s that
the studies became enough to reveal a strange feature: rotation curves tend to be
flat. To understand why this feature was, and still is, quite surprising, we need to
imagine our galaxy as a non-solid disk made of stars and gas, where most of the
mass is concentrated in the center: the rotational curve of such a disk is expected to
decrease with the square root of the radial distance, similarly to what happens with
the planets of our Solar system1. If, instead, velocity is constant with the radius,
as flat rotation curves imply, the mass should increase linearly with the distance
from the center, which is in contrast with our observations of galaxies’ baryonic
matter2. Today, the most accepted explanation of this observational discrepancy

1And this is why this behaviour is often referred to as “Keplerian”.
2In nuclear physics, “baryonic matter” refers to matter made out of baryons, such as protons, neutrons

and all other objects that are formed by a combination of these two particles. However, cosmologists
often broaden the definition to indicate all of the matter that is made out of atoms, hence including
electrons (which are leptons, not baryons!); we will use the term “baryonic matter” in this enlarged way.

2



is DM: the matter in galaxies actually increases with the radius, but we cannot
notice it since most of it is dark. However in the ’70s, when the first flat rotation
curves where found, what these implied was quite uncertain and not seen as very
urgent; yes, some astronomers like Morton Roberts and Arnold Rots advanced in
their works the hypothesis of invisible matter present at large distances from the
center of galaxies, but no one suggested that this was a sensational nor crucial
discovery.

2. High velocities dispersion in galaxy clusters. The astronomer Fritz Zwicky was the
first one to find out this anomaly: in the early ’30s, studying the Coma cluster, he
observed that the velocity dispersion of the galaxies in it is so high, compared to
the total baryonic mass, that it should not be stable. Since a bigger mass would
stabilize the system, Zwicky claimed that the cluster’s stability was due to addi-
tional invisible matter in it. When years later, in the late ’50s, the astronomical
community acquired a bigger interest in galaxy clusters, mass discrepancies analo-
gous to the one in Coma were found in many other clusters. As interest grew, ideas
on how to solve the problem started to flourish, and DM became just one among
them: conferences were organized to discuss various hypothesis about the nature
of the discrepancy between clusters’ masses and their velocities dispersions; even
if Zwicky’s explanation in terms of additional dark mass was taken into account,
it did not look more appealing nor less problematic than any of the alternatives
proposed.

Hence, we can state that these two phenomenological anomalies we just discussed are
what made the scientific community think about DM for the first time. However, none
of these observations at this point was employed to support evidence for the presence
of extra matter or to falsify any other hypothesis: the experimental and theoretical
constraints available at that time where still too few to allow a single interpretation of
these anomalies.

Things changed years later, when discovery and observations of Quasars suggested
that our Universe is not a fixed and unchanging stage for the events to take place, but it
evolves over time: General Relativity (GR) ceased being a purely mathematical theory
and met with astronomy, leading, in the late ’60s, to modern cosmology. Scientists
started to look at Friedmann’s equations with great interest; these equations tell us
that our Universe can be open, flat or closed, depending on how gravitational pull and
cosmological expansion are balanced. At that time there was a priori theoretical belief,
later supported by observations and experiments, that our Universe should be flat; since
Einstein’s cosmological constant was believed to be Λ = 0, this implied that the energy
density of our Universe should be ρcrit ∼ 10−26 kg/m3. Suddenly, the total mass of the
Universe became one of the most important parameters: measurements on the average
masses of galaxies, made by considering luminous matter only, produced for our Universe
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an energy density ρ ∼ 10−28 kg/m3, a value two orders of magnitude inferior to the one
needed for flatness.

A search for extra matter begun and, in 1974, a very important paper was published
by the physicist James Peeble and the astronomers Jeremiah Ostriker and Amos Yahil. In
it, the authors stated that the reason the measured density of the Universe was so inferior
to the critical one was that the masses of galaxies were strongly underestimated; in fact,
supposing that galaxies have a component of dark matter and that this latter is well more
than 10 times the amount of baryonic matter, one can obtain Ω = ρ/ρcrit = 1. In support
of their hypothesis, the authors brought galaxies rotation curves and clusters’ velocities
dispersion: the two anomalies went from being two apparently different problems with
uncertain solutions, to being interpreted as the evidence for the existence of dark matter.
Many papers similar to this latter were published by different research groups in the
following months, and the existence of DM quickly became accepted by most of the
scientific community.

For our current understanding of the Universe, DM should constitute roughly 85%
of all matter there is, and about 25% of the total energy. Nevertheless, we should
be careful: although the existence of DM is today generally accepted, we should refer
to it as a hypothesis since, to date, its nature is still not clear. Most of the efforts
made in the last decades focused on explaining it in terms of new elementary particles,
such as weak interacting massive particles (WIMPs), axions, gravitationally interacting
massive particles (GIMPs) and so on. However, to date, any attempt to detect these
theoretical non-baryonic particles has failed. Also, we should at least mention that
a minority of astrophysicists and theoretical physicists are not convinced by the DM
hypothesis: they support theories of modified gravity on cosmological scales, such as
MOND (Modified Newtonian dynamics) or TeVeS (Tensor–vector–scalar gravity). These
theories successfully explain the flatness of galaxies rotation curves and a variety of
galactic phenomena that are difficult to interpret in terms of DM; however, unlike this
latter, MOND and TeVeS do not explain anomalies observed in galaxy clusters, and
cosmological models built around them are very problematic. Moreover, none of these
theories has been experimentally tested yet.

The purpose of this dissertation is to study an alternative explanation to DM, that
does not rely on elementary particles nor modifications to general relativity: Primordial
Black Holes (PBHs). However, before proceeding to explain this alternative solution, we
should take a detour to review the basics of inflation.
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1.2 Inflation

1.2.1 Problems of the Hot Big Bang Model

In the ’70s, the Hot Big Bang (BB) Model was already considered the best theory of
the origin and evolution of the Universe by the majority of the scientific community.
Nonetheless, the model presented problems3 of various nature, three of them being:

1. The Cosmological Horizon problem. Our Universe satisfies the Cosmological Prin-
ciple: it is homogeneous and isotropic on scales where galaxies appear point-like,
which are the scales relevant in Cosmology. This can be noticed in many ways,
mainly by observations of the Cosmic Microwave Background (CMB), which tell
us that our universe is in thermal equilibrium at T ∼ 2.7 K everywhere. However,
in a BB model this should not be the case, since the singularity at the beginning of
time automatically implies that the region causally connected to any observer, i.e.
the particle horizon, is finite. To better understand this, we are going to build an
example that reproduces the situation. Let us pick a direction: since information
does not propagate instantaneously, the most distant objects that we are able to
observe in that direction are those whose photons emitted at decoupling time just
arrived in our position. Let us call (A) the distant region where these objects are
located, and assume that the CMB observations tell us that T(A) ∼ 2.7 K. Now,
let us look in the opposite direction: once again, the most distant objects in that
direction are the ones whose photons emitted at decoupling time just reached us;
let us call (B) the region where these objects are located and assume that, even in
(B), T(B) ∼ 2.7 K. To reach thermal equilibrium, different regions of a system must
be able to interact, so that inhomogeneities and anisotropies can be dissipated. But
interactions require the exchange of signals, like light signals, that cannot travel
instantaneously from a region to the other, and hence two regions can be at thermal
equilibrium only if they have had enough time to exchange information. However,
this last statement does not seem to apply to the two regions of the Universe we
considered, and this is the so-called “Horizon problem”: having the same average
temperature, which is also the same of the rest of the universe, we can affirm that
the two distant regions (A) and (B) are in thermal equilibrium; but we can also
state that it is impossible that (A) and (B) have been able to exchange signals,
since they are so far apart that the most ancient light signals emitted from these
regions just arrived to us, and we are only half-way between the two.

2. The Cosmological Flatness problem. The Friedmann’s equations tell us that there
are three possible local geometries for our Universe, depending on the value of the

3Two of these problems, the evolution of the Universe before the Planck time and the so-called
“coincidence problem”, are still unsolved up to date.
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so-called density parameter Ω = ρ/ρcrit: spherical geometry Ω > 1, hyperbolic
geometry 0 ≤ Ω < 1 and flat geometry Ω = 1. A spherical Universe is over-
dense since ρ > ρcrit and, because of this, gravitational attraction wins against
cosmological expansion: sooner or later the Universe will cease its expansion and
begin to contract until a Big Crunch occurs; because of this, the more time passes
the bigger Ω gets and, consequently, the more spherical our universe becomes.
Conversely, in a hyperbolic Universe we find ρ < ρcrit, and cosmological expansion
wins against gravitational pull: our Universe expands forever, and the more time
passes the faster this expansion gets; this implies that Ω→ 0 and, consequently, our
hyperbolic Universe becomes more and more hyperbolic each instant. At last, in a
flat Universe, we find ρ = ρcrit, that implies a perfect balance between gravity and
cosmic expansion; differently from the spherical and hyperbolic cases, that happen
for infinite values of Ω, the flat universe only occurs for the specific value Ω = 1. The
value of the density parameter today, Ω0, can be inferred in many ways, for example
by observations of the very little anisotropies (i.e. variations with direction) in the
CMB; these studies tell us that |Ω−1

0 − 1| ≈ 0.01, hence our Universe today looks
practically flat. From the Friedmann’s equations, one could show that the Universe
can be this flat today only if, at Planck time, |Ω−1

p − 1| ≈ 10−62. This last result is
exactly what constitutes the “Flatness Problem”: the only way for the Universe to
be this flat today is that it was born with a curvature parameter that differed at
most of 10−62 from 1 at Planck time; but, since Ωp can potentially assume values
in the range [0,+∞[, the idea that the Universe is born with an Ωp so close to 1
appears like an enormous fine-tuning.

3. The Magnetic Monopole problem. The Grand Unification Theory (GUT) is a model
of Quantum Field Theory (QFT) which essentially states that once, when the
energy in our Universe was extremely high, the strong, weak and electromagnetic
interactions were merged into a single force. This force had its own coupling
constant and possessed a larger gauge symmetry compared to the ones we observe
in today’s fundamental interactions, consequently it had more force carriers. Then,
at T ∼ 1015 GeV, a phase transition occurred: this large symmetry spontaneously
broke, and the unified force split into the strong interaction and electroweak (EW)
interaction. The GUT theory looks very elegant and we would like to include it in
the early history of our Universe. Unfortunately, this seems impossible to realize
because the theory implies, during the early times in which it is supposed to hold,
the production of very exotic particles such as magnetic monopoles. This is the
“Magnetic Monopole problem”: these monopoles are heavy and stable and it can
be estimated, if the GUT era happened, that today their numerical density should
approximately be equal to the numerical density of photons, which of course is
ridiculous considering that we are literally surrounded by photons but we have
never observed such monopoles in the history of physics.
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The three problems we just listed are quite serious; the only one that seems to have
an immediate solution is the third since, to eliminate it, it is sufficient to say that the
GUT theory does not apply to reality. However, in this way we are renouncing to an
elegant and logical interpretation of the early universe while the problems of the horizon
and the flatness still remain unsolved.

1.2.2 An elegant solution: Inflation

These three problems have all been solved in the early ’80s by admitting the existence
of an additional epoch, between the GUT and EW symmetry breaking, during which
the universe went through an accelerated expansion that allowed it to increase at least
e60 ≈ 1026 times along each direction. How can this additional epoch, called inflation,
solve all of these different problems at once?

Let us suppose that we have an observer located in the point O. We define the particle
horizon4 as the set of points capable of sending light signals that could have been received
by the observer up to some generic time t5; this set of point is located inside a sphere
centered upon O, whose proper radius can be derived from the Friedmann-Robertson-
Walker metric (FRW) as

RH(t) = a(t)

∫ t

0

dt′

a(t′)
(1.2.1)

where we have used the units ~ = c = 1, that we will employ for the rest of the
dissertation. We also define the Hubble radius Rc as the proper distance from O of an
object moving with the cosmological expansion at the velocity of light with respect to O

Rc(t) =
1

H(t)
(1.2.2)

where H(t) = ȧ/a is the Hubble parameter; the content of the spherical surface with
radius Rc is called Hubble sphere, or proper cosmological horizon. The two radii above
are not the same, essentially because the particle horizon is a quantity that takes all the
past history of the observer into account, while the Hubble radius is defined instanta-
neously. For example, a point can be outside an observer’s Hubble sphere, but inside
his particle horizon; also, once a point is inside the particle horizon it stays within this
horizon forever, while the Hubble sphere can shrink and expand so that it crosses the
same point multiple times. At early times t ∼ 0 however, one could demonstrate that
RH(t ∼ 0) = Rc(t ∼ 0) and, since from this moment onward we are going to consider
early times, we will use the mathematical expression (1.2.2) and refer to the cosmological

4Also referred to as the observer horizon.
5The set of points in question can be said to have the possibility to be causally connected with the

observer in O at time t.
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horizon. An observer in O however does not measure Rc but its comoving version6

rc =
Rc

a
=

1

aH
(1.2.3)

which is the radius of the comoving cosmological horizon; its derivative results

ṙc = − ä

ȧ2
(1.2.4)

which means that rc(t) increases in the early times of a BB model, since the condition
for the existence of the singularity is that ä < 0.

Consider an observer Alice, situated in the origin O, and a comoving scale l0 that
enters her cosmological horizon at a time t1, so that rc(t1) = l0: from this time onward,
processes can causally connect this region, hence it can reach thermal equilibrium, homo-
geneity and isotropy with the smaller scales that were already causally connected. Now
suppose that, for a time interval [tin, tend] with t1 < tin < tend, the Universe goes through
an accelerated expansion ä > 0: equation (1.2.4) tells us that the cosmological horizon
shrinks in this epoch and, if it lasts enough, at some time t2 such that tin < t2 < tend

Alice will measure rc(t2) = l0. In other words the scale l0 is now escaping the cosmo-
logical horizon7. After tend we suppose that the Universe resumes its usual decelerated
expansion: Alice’s comoving cosmological horizon starts to grow once again and, at some
time t3 > tend, the scale l0 will enter her horizon a second time, this time being already in
thermal equilibrium with the rest of the universe and, hence, homogeneous and isotropic!
In fact, for times t2 < t < t3 the scale l0 was not causally connected with the others,
hence no observed physical process could change its proprieties. Everything is clear to
Alice, because she has been in the origin O since before t1; but a second observer, say
Bob, that appears in O after tend, is surprised: at t3 he believes that the scale l0 is
entering the horizon for the first time, but the fact that this scale is already at thermal
equilibrium with the others makes him claim that the BB model has a cosmological
horizon problem. Today, we are in the same situation as Bob in the example, where l0
are the CMB scales: by admitting that in the early universe there has been an epoch
of accelerated expansion called inflation, we can affirm that the CMB scales already en-
tered the comoving cosmological horizon in the past, and this is why we observe them
homogeneous and isotropic as the rest of the Universe.

Of course, inflation solves the horizon problem only as long as today’s scales are
included in the ones that exited the horizon, i.e. rc(t0) ≤ rc(tin). We also do not want
the inflation solution to be a fine-tuning, hence the condition we should really impose is
rc(t0)� rc(tin). With some algebra, this last condition can be translated into a condition
for the scale factor

a(tend) = a(tin) eN , N � 60 (1.2.5)

6From now on, we will often omit time dependencies.
7We stress out that the cosmological horizon, differently from the particle one, can be abandoned.
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where N is the so-called “number of e-foldings”.
The problem of flatness is solved by requiring that Ω today is closer to 1 than it was

at the beginning of inflation; this translates, once again, in a condition for the number
of e-foldings

Ω−1
in − 1

Ω−1
0 − 1

≥ 1 ⇔ N ≥ 60 (1.2.6)

that is just a weaker version of the condition (1.2.5); hence, the flatness problem is
automatically solved by imposing N � 60, necessary for the horizon problem to be
solved.

Finally, the problem of magnetic monopoles can be solved by simply imposing that
the inflation era begins after the GUT transition, during which the unified force gets
split. Now new monopoles cannot be produced anymore, and the pre-existing ones get
smeared during inflation on a volume that becomes at least e180 times bigger than the
initial one: their numerical density quickly goes to zero, and this is why we have not
observed a single magnetic monopole here on Earth and, probably, will never be able to.

1.2.3 Inflation from scalar fields

At this point we have understood why inflation is needed in our BB model, but we have
not explained the physics behind it yet: how can we achieve this early epoch of accelerated
expansion? Many different versions of the inflationary mechanism have been proposed
during the years. The first one, dating back to 1981, is Guth’s “False Vacuum Inflation”:
in this model the Universe undergoes a first-order phase transition8 triggered by the
cooling due to cosmic expansion. The Universe hence passes from a metastable false
vacuum, whose non-zero energy drives inflation, to a true vacuum at lower energy, and
this transition ends inflation: the energy released in the process expands the Universe.
However this model was quickly discarded because of bubble nucleation, a process that
occurs in every first-order phase transition: when the temperature reaches a critical
value, the system begins to stochastically form and dissolve little regions (bubbles) where
the transition has already occurred. This process continues until an unusually large
region forms: it is so big that its probability to shrink is low, and over time it absorbs
all the other little regions, growing until its dimensions are comparable to the system,
which marks the end of the transition. If the thermodynamic system is the Universe,
bubble nucleation cannot occur because of cosmic expansion: the bubbles are taken
away from each other, making their nucleation almost impossible, which produces a
highly chaotic Universe that does not match our current observations. Even if Guth’s
model was discarded, inflation captured a lot of attention and many other inflationary
models were proposed in the following years. A class of models that is affirmed today is

8First-order phase transitions are characterized by a metastable state and the release of a finite
amount of energy all at once.
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the so-called “Slow-roll Inflation”, and it was introduced by Linde in 1983; we are now
going to explain this mechanism of inflation.

In slow-roll inflation (also called “chaotic inflation”) our Universe is endowed with
a scalar field φ, called inflaton, whose non-zero energy V (φ) permeates the Universe.
Immediately after the Planck time, φ is just a component among others, contributing to
the total energy density of the Universe with its effective energy density ρφ; but if we
admit that, some time after the GUT transition, φ becomes the dominant component
and also ρφ ∼ V (φ) ∼ const, the result is that the Universe expands exponentially and
for enough time to explain the homogeneity and isotropy of the CMB scales. After this
epoch, the field dissipates the energy left by decaying into Standard Model particles,
reheating the Universe, and the usual decelerated expansion takes place again.

The action of the slow-roll inflation class of models describes a scalar field minimally
coupled to gravity

S =

∫
d4x
√
−g
[

1

16πG
R+ LΦ

]
(1.2.7)

where R is the 4-dimensional Ricci scalar derived by the metric gµν with signature
(−,+,+,+), and

LΦ =
1

2
gµν∂µΦ∂νΦ + V (Φ) (1.2.8)

is the inflaton Φ(t,x) Lagrangian density. It is convenient to use a perturbative approach
to the problem, writing

Φ(t,x) = φ(t) + δφ(t,x) (1.2.9)

gµν(t,x) = ηµν + δgµν(t,x) (1.2.10)

where φ(t) is the background/homogeneous part of the field, δφ(t,x) represents its fluc-
tuations δφ � φ, ηµν is the Minkowski metric and δgµν(t,x) its local perturbations.
We will now study the background field, whose time evolution can be derived by the
Euler-Lagrange equations of motion for a classical relativistic wave field9

∂α
δ(L0a

3)

δ∂αφ
− δ(L0a

3)

δφ
= 0 (1.2.11)

where we decomposed the Lagrangian density (1.2.8) as

LΦ = L0(φ, ηµν) + L1(δφ, δgµν) + L2(δφ, δgµν) + . . . (1.2.12)

The solution to (1.2.11), which describes the dynamic of the inflaton, is the Klein-Gordon
equation

φ̈+ 3Hφ̇+ V ′ = 0 (1.2.13)

9L0a
3 represents the Lagrangian of the system.
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where the dot indicates derivative over t, while the prime derivative over φ. But φ is
not the only dynamical component of our study, since the geometry of spacetime on
cosmological scales also evolves: the equations describing the behaviour of our Universe
are the Friedmann’s equations10

Ḣ +H2 = −4πG

3
(ρ+ 3p) (1.2.14)

H2 +
k

a2
=

8πG

3
ρ (1.2.15)

where k = 0, ±1 is the parameter that discriminates between the three possible kinds
of universe, while ρ and p are the energy density and pressure of the content of the
Universe.

We have said that inflation is an era during which the comoving Hubble radius de-
creases; for (1.2.3), inflation implies

d

dt
(aH)−1 < 0 (1.2.16)

or, analogously, ä > 0. We now define the parameter

ε ≡ − Ḣ

H2
= − 1

H

dH

dN
(1.2.17)

where, in the last step we employed, Hdt = a−1da = d ln a = dN ; this parameter tells
us the fractional change of the Hubble parameter per e-folding. By evaluating the left
term of (1.2.16) we can see that inflation can occur if and only if ε < 1, i.e. if the Hubble
parameter changes slowly during inflation. To sum up:

Inflation ⇔ d

dt
(aH)−1 < 0 ⇔ ä > 0 ⇔ ε < 1

To solve the horizon problem, it is necessary that inflation occurs, but it is not sufficient:
as we saw, inflation must last at least for 60 e-foldings. Inflation lasts for long if, once
started, ε stays below 1 and does not change sensibly. To make sure this happens, we
introduce another new parameter

η ≡ ε̇

Hε
=

1

ε

d ε

dN
(1.2.18)

where in the last step we employed the same relation we used above. η represents the
fractional change of ε per e-folding: for |η| < 1 we find that ε does not change significantly
over time and inflation persists.

10These equations are just Einstein’s equations with the FRW metric.
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The energy-momentum tensor of any scalar field can be characterised by an effective
energy density and an effective pressure; for the homogeneous part of the inflaton

ρφ =
1

2
φ̇2 + V (φ) (1.2.19)

pφ =
1

2
φ̇2 − V (φ) = L0 (1.2.20)

We have introduced φ in our model of the Universe because we want it to govern the
energy density of the Universe so that it can produce inflation; this is achieved by simply
substituting these last two expressions into (1.2.14) and (1.2.15)

Ḣ +H2 = −4πG

3
(2φ̇2 − 2V ) (1.2.21)

H2 =
4πG

3
(φ̇2 + 2V ) (1.2.22)

where, in the second equation, we also put k = 0 since, as we explained before, during
inflation the space-time gets strongly flattened. Substituting (1.2.22) into (1.2.21) gives

Ḣ = −4πGφ̇2 (1.2.23)

that leads to a new expression for ε

ε = 4πG
φ̇2

H2
(1.2.24)

Now, using (1.2.22)

ε =
3φ̇2

φ̇2 + 2V
(1.2.25)

and we find that ε < 1 ⇔ φ̇2 < V (φ): this means that inflation occurs only when the
kinetic energy of the background field is subleading to its potential. We now define a
third parameter

δ ≡ − φ̈

Hφ̇
= −1

φ̇

dφ̇

dN
(1.2.26)

where we used the usual relation for the most right term; this last parameter measures
the fractional change of φ̇ per e-folding. The parameters ε, η and δ are called Hubble
slow-roll parameters. If we now evaluate ε̇ from (1.2.24) and substitute into (1.2.18),
making use of the parameter δ we find

η = 2(ε− δ) (1.2.27)
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This last equation tells us another condition for inflation in terms of the inflaton field,
even though it is not immediate to notice it. We understood that, during inflation, we
must have ε < 1, but it is even better to require that ε � 1. For this reason, the only
way we could have |η| � 1 (necessary for inflation to last long enough) is if |δ| � 1 too;
for (1.2.26), this last condition implies that |φ̈| � H|φ̇|. To sum up, the two conditions
necessary to obtain inflation and solve the horizon problem, are

ε� 1⇒ φ̇2 � V (φ), |δ| � 1⇒ |φ̈| � H|φ̇| (1.2.28)

Up to this point, we have studied the conditions to obtain inflation, but we still have
not solved the equations of motion (1.2.13), (1.2.21) and (1.2.22); to do so, we will now
use the conditions (1.2.28) to simplify the problem. This passage is called the slow-
roll approximation, since equation (1.2.13) is analogous to the classical equation that
describes the motion of a marble under the force −V ′ with friction 3Hφ̇: the condition
|φ̈| � H|φ̇| simplifies (1.2.13) into

3Hφ̇ ≈ −V ′ (1.2.29)

that is the equivalent of requiring that the rolling of the marble occurs at approximately
constant speed even in the presence of the force, due to the high friction that is present.
Using φ̇2 � V (φ), (1.2.22) becomes

H2 ≈ 8πG

3
V (1.2.30)

Thanks to these last two approximated equations, we can find out which are the con-
straints that our inflationary potential V must satisfy in order for φ to obey (1.2.28) and
produce inflation. From (1.2.24), first using (1.2.29) and then (1.2.30), we find

ε ≈ 1

4πG

(
V ′

V

)2

≡ εV (1.2.31)

Furthermore, taking the time derivative of (1.2.29) and using the chain rule on V ′ gives

3Ḣφ̇+ 3Hφ̈ ≈ −V ′′φ̇ (1.2.32)

which can be used along with (1.2.30) to get

δ + ε ≈ 1

8πG

V ′′

V
≡ ηV (1.2.33)

The parameters defined in (1.2.31) and (1.2.33) are called slow-roll parameters, and their
relation to the Hubble slow-roll parameters previously defined11 implies that our model
produces inflation if its potential V (φ) is such that

εV ≡
1

4πG

(
V ′

V

)2

� 1, ηV ≡
1

8πG

V ′′

V
� 1 (1.2.34)

11We stress out that ε ≈ εV and η ≈ ηV is valid only in the slow-roll regime.

13



for a certain range of values of φ that we call inflationary epoch. The conditions (1.2.34)
are the ones used to test models of inflation.

The enhancement of the scale factor during inflation is measured by the number of
e-foldings

N ≡
∫ aend

ain

d ln a =

∫ tend

tin

H(t) dt (1.2.35)

where ε(tin) = ε(tend) = 1, i.e. these two times mark the interval of inflation. Now, to
use the inflaton φ as clock, we use (1.2.29) and (1.2.30) to write

Hdt =
H

φ̇
dφ ≈ −3H2

V ′
dφ ≈ −8πG

V

V ′
dφ ≈ −

√
16πG

εV
dφ

hence

N = −
√

16πG

∫ φend

φin

dφ
√
εV
� 60 (1.2.36)

where φin and φend are the inflaton values corresponding to the times tin and tend. From
the last equation we can see that, the flatter is the potential, the greater is N and,
therefore, the longer is the inflationary epoch.

1.2.4 Perturbations during inflation

Up until now we studied the dynamics of the homogeneous part of the inflaton field,
that is the main part of the inflationary mechanism and explains the high grade of ho-
mogeneity and isotropy of the CMB; nonetheless, the CMB presents small temperature
fluctuations δT/T ∼ 10−5. These can be traced back to density perturbations δ = δρ/ρ
of the same magnitude, that were present in our universe when the scales corresponding
to the CMB, kCMB exited the comoving horizon during inflation. These density pertur-
bations, in turn, were seeded by inflaton perturbations δφ(t,x), that caused the Universe
to inflate by different amounts in different regions. Therefore, it is time to study these
perturbations that, as we will discuss in the next Section, play a crucial role in the new
explanation of dark matter we are proposing.

A priori, we have five different scalar modes to deal with, four of which are metric
perturbations (δg00, δg0i, δgii, δgij) and one is the scalar field perturbation δφ. However,
not all of these modes are physical degrees of freedom: two modes are removed because
of the gauge invariance of (1.2.7) under time and space translations, while other two
are removed because of Bianchi identities. Hence, only one scalar mode of the initial
five is physical; to derive the action for this mode, we make use of the comoving gauge,
defined by the vanishing value of the momentum density δT0i = 0. Only in the slow-roll
approximation, this gauge fixing can be written as

δφ = 0 (1.2.37)
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which means that the fluctuations of the field have been moved in the metric, that can
be written as

δgij = a2(1− 2ζ)δij + a2hij (1.2.38)

where the physical degrees of freedom are hij, a traceless (hii = 0), transverse (∇ih
ij = 0)

tensor, and the scalar ζ. ζ represents the curvature perturbations, that translate to
density perturbations δ when the inflaton decays during the reheating epoch; δ and ζ
are proportional, as we will see in (2.1.3). hij represents the primordial Gravitational
Waves (GW) produced by inflation perturbations.

The non-dynamical perturbations δg00 and δg0i can also be expressed in terms of ζ:
by doing so and substituting into (1.2.7) we arrive to the quadratic action for ζ12

S =
1

2

∫
dtdx a3 φ̇

2

H2

[
ζ̇2 − 1

a2
(∂iζ)2

]
+ . . . (1.2.39)

where we put 8πG = 1 and the ellipses denote that there are higher order corrections that
we are ignoring. To express this last action in canonical form, we define the Mukhanov-
Sasaki variable

v ≡ zζ (1.2.40)

where

z2 ≡ a2 φ̇
2

H2
= 2εa2 (1.2.41)

where in the last step we employed (1.2.24). Switching to comoving Hubble time, we get

S =
1

2

∫
dτdx

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
(1.2.42)

where the prime, from this moment onward, stands for derivative over τ . This latter is
the normalized action for the scalar field v(τ,x), which is massive since we can recognize
a quadratic mass term −1

2
m2

effv
2, where the mass is:

m2
eff(τ) ≡ −z

′′

z
= −H

aφ̇

∂2

∂τ 2

aφ̇

H
(1.2.43)

Since the background φ rolls towards the minimum of the potential over time, φ̇ also
changes over time and so does the effective mass meff. Aside for this particular mass,
the action (1.2.42) is analogous to the one for the usual massive free scalar field. The
Euler-Lagrange equations (1.2.11) give

v′′ −∇2v − z′′

z
v = 0 (1.2.44)

12A quadratic action similar to (1.2.39) can be derived for hij , meaning that at this order ζ and hij
are independent variables with decoupled equations of motion; since we are not interested in hij for the
purposes of this dissertation, we will ignore it from now on.
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Now, defining the Fourier modes13

v(τ,x) ≡
∫

dk

(2π)3/2
eik·x vk(τ) (1.2.45)

we obtain the so-called Mukhanov-Sasaki equation

v′′k +

(
k2 − z′′

z

)
︸ ︷︷ ︸

ω2
k(τ)

vk = 0 (1.2.46)

The fact that z(τ) depends on the background, φ(t) a(t), makes it difficult to generally
solve the Mukhanov-Sasaki equation. This is the reason why, up to the end of this
Section, we will discuss the case of a de Sitter space a = (Hτ)−1, a peculiar background
that allows to find approximated analytical solutions. If an analytical approach is too
difficult one can always solve the equation numerically, which is what we are going to do
in Chapter 3 in order to compute the power spectrum of curvature perturbations. For a
de Sitter background, the effective frequency ω2

k(τ) reduces to

ω2
k(τ) = k2 − 2

τ 2
(1.2.47)

Before proceeding to the solution of the equation, let us consider the two limits to
(1.2.46). If k2 � |z′′/z|2 ∼ τ−2 = (aH)2, this means that we are on sub-horizon scales
λ� rc, and the equation reduces to

v′′k + k2vk = 0 (1.2.48)

whose solutions are oscillatory, vk ∼ e±ikτ . The opposite to this is the limit of super-
horizon scales, k2 � |z′′/z|2, that leads to

v′′k −
z′′

z
vk = 0 (1.2.49)

whose solutions are v ∼ τ−1 and v ∼ τ 2. Only the growing solution is of interest in the
study of perturbations; τ runs from large negative values to zero, hence this solution
is the former. Translating this last result to the curvature perturbations ζk = z−1vk
highlights a very important propriety

lim
k�aH

ζ̇k = 0 (1.2.50)

13We should stress that this decomposition is three-dimensional, i.e. the time variable does not change
transferring to the Fourier space.
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i.e. curvature perturbations freeze on super-horizon scales14. This means that, to study
the CMB predictions, one can completely ignore the physics from the moment the scale
kCMB exited the horizon and today, because essentially nothing happened on that scale
during this enormous energy gap.

The most general solution of (1.2.46) is written as a mode expansion

vk = a−k vk(τ) + a+
−kv

∗
k(τ) (1.2.51)

where vk(τ) and v∗k(τ) are complex conjugates and linearly independent solutions of
(1.2.46); the subscript k indicates that these two functions, called mode functions, are
the same for every mode with |k| = k, and their normalization is chosen so that their
Wronskian gives −i

W [vk, v
∗
k] = v′kv

∗
k − vkv∗k

′ ≡ −i (1.2.52)

Instead, the a±k are two time-independent integration constants such that

a−k =
W [v∗k, vk]

W [v∗k, vk]
, a+

k = (a−k )∗ (1.2.53)

where the relation between a+
k and a−k comes from the reality of v(τ,x), that can now be

written as

v(τ,x) =

∫
dk

(2π)3/2
[a−k vk(τ) + a+

−kv
∗
k(τ)] eik·x

=

∫
dk

(2π)3/2
a−k vk(τ) eik·x + c.c. (1.2.54)

We now proceed to the canonical quantization of the theory: the scalar field v and
its conjugate momentum π ≡ v′ are promoted from real valued distributions defined on
our spacetime to operatorial valued distributions v̂, π̂ on the same spacetime that satisfy
the standard equal-time commutation relations

[v̂(τ,x), π̂(τ,y)] = iδ(x− y), (1.2.55)

[v̂(τ,x), v̂(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0 (1.2.56)

This means that the integration constants (1.2.53) also become operators â±k and the
field operator v̂(τ,x) is expanded as

v̂(τ,x) =

∫
dk

(2π)3/2

[
â−k vk(τ)eik·x + â+

k v
∗
k(τ)e−ik·x

]
(1.2.57)

14We will see in Chapter 3 that, in regime of ultra slow-roll, this is not true anymore and perturbations
can grow even on super-horizon scales

17



Substituting this last expression into (1.2.55) and (1.2.56) we get the following commu-
tation relations

[â−k , â
+
p ] = δ(k− p), [â−k , â

−
p ] = [â+

k , â
+
p ] = 0 (1.2.58)

which imply that â±k are creation and annihilation operators. These operators act on the
Hilbert space of one particle states H1

H1 = {|k〉 = â+
k |0〉, k ∈ R3} (1.2.59)

where the vacuum is defined as
â−k |0〉 = 0 (1.2.60)

It can be shown from (1.2.58) and (1.2.60) that these states are normalized and satisfy
the completeness relation

〈k|p〉 = δ(k− p),

∫
dk|k〉〈k| = I1 (1.2.61)

Many particle states, belonging to Hn = H⊗n1 , are obtained by repeated application of
creation operators15, e.g.

|mk1, nk2, . . .〉 =
1√

m!n! . . .
(â+

k1)m(â+
k2)n . . . |0〉 (1.2.62)

The space on which the operator distributions v̂(τ,x) and π̂(τ,x) act is the Fock space

F = C⊕H1 ⊕H2 ⊕ . . .⊕Hn ⊕ . . . (1.2.63)

that contains all the possible single and many particle states.
Our construction, however, is not unique: consider the following functions

uk(τ) = αkvk(τ) + βkv
∗
k(τ) (1.2.64)

where αk and βk are complex constants. Being a linear combination of solutions, the
uk(τ) are solutions of (1.2.46); imposing that |αk|2 − |βk|2 = 1, i.e. W [uk, u

∗
k] ≡ −i,

these functions become a new set of mode functions, different from the vk(τ) previously
defined. Hence, we can expand the quantized scalar field in terms of these new mode
functions

v̂(τ,x) =

∫
dk

(2π)3/2

[
b̂−kuk(τ)eik·x + b̂+

ku
∗
k(τ)e−ik·x

]
(1.2.65)

where the b̂±k are a new set of creation annihilation operators satisfying (1.2.58). By
comparing (1.2.65) with (1.2.57), one can find the following transformations between the
two different sets, called Bogolyubov transformations

â−k = α∗kb̂
−
k + βkb̂

+
−k

â+
k = αkb̂

+
k + β∗k b̂

−
−k (1.2.66)

15This is propriety is known as cyclic propriety of the vacuum state.
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Of course, both set of operators can be use to build a base of H1, defining two different
vacua

â−k |0〉a = 0, b̂−k |0〉b = 0 (1.2.67)

b-states are different from a-states, as can be inferred by evaluating the b-void expecta-
tion value of the number operator of the a-particles

b〈0|N̂ (a)
k |0〉b = b〈0|â+

k â
−
k |0〉b

= bb〈0|(αkb̂+
k + β∗k b̂

−
−k)(α∗kb̂

−
k + βkb̂

+
−k)|0〉b

= |βk|2 δ(0) (1.2.68)

where the divergent factor δ(0) is due to the fact that we are considering an infinite
volume; however, the mean density of a-particles in the b-vacuum is finite and not zero.
In other words, our definition of vacuum is ambiguous: |0〉a/b are not physical vacua
since they describe excited states of the other base, and thus we require some additional
physical input to define the true vacuum. This additional input, for a de Sitter spacetime,
is given by the Bunch-Davies (BD) initial conditions for the mode functions

lim
τ→−∞

vk(τ) =
1√
2k

e−ikτ (1.2.69)

Since these are exactly the mode functions that define the physical vacuum in a Minkowski
spacetime, condition (1.2.69) is equivalent to require that the evolution of the perturba-
tions v̂ in de Sitter spacetime is the same as in flat spacetime for scales deep inside the
horizon, i.e. when k � aH (sub-horizon). This defines a preferable set of modes and a
unique physical vacuum, the Bunch-Davies vacuum.

We will now apply the formalism we just reviewed to de Sitter spacetime: using the
expression for effective frequencies in de Sitter (1.2.47), we can solve the Mukhanov-
Sasaski equation (1.2.46) analytically, obtaining

vk(τ) = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
(1.2.70)

The BD conditions for the vacuum uniqueness impose vk ∼ e−ikτ , so that α = 1 and
β = 0

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
(1.2.71)

At super-horizon scales the dynamics is

lim
kτ→0

vk(τ) =
e−ikτ

i
√

2
· 1

k3/2τ
(1.2.72)
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We now introduce an observable quantity, the power spectrum Pv(k), by evaluating
the two-point correlation function

〈v̂kv̂p〉 = 〈0|v̂kv̂p|0〉
= 〈0|(â−k vk + â+

−kv
∗
k)(â

−
pvp + â+

−pv
∗
p)|0〉

= vkv
∗
p〈0|â−k â

+
−p|0〉

= vkv
∗
p〈0|[â−k , â

+
−p]|0〉

= |vk|2δ(k + p)

≡ Pvδ(k + p) (1.2.73)

On super-horizon scales, (1.2.72) tells us that

Pv =
1

2k3

1

τ 2
=

1

2k3
(aH)2 (1.2.74)

This power spectrum is referred to the canonically-normalized field; the one for curvature
perturbations can simply be obtained for this latter by dividing for z2

Pζ =
1

z2
Pv (1.2.75)

Given any point in time and any momentum scale k, which can be sub/super-horizon
depending on the Hubble radius (aH)−1 at that time, the power spectrum Pζ tells us
the variance (or variability) of the density on that scale, i.e. it tells us the amplitude of
the fluctuations on that scale. We should mention that, strictly speaking, the curvature
fluctuations ζ = z−1v are ill-defined in the de Sitter spacetime, since z2 ∼ ε vanishes in
this limit and, therefore, V is flat and inflation has no end. Hence de Sitter spacetime is
just an idealization: our spacetime deviates from it during inflation because ε assumes
little but finite values. Because of this little deviation, we refer to our Universe as
quasi-de Sitter.

In a quasi-de Sitter spacetime ζ is well defined and the curvature power spectrum
(1.2.75) results

Pζ =
1

z2
Pv =

1

4k3

H2

ε
(1.2.76)

where in the second step we made use of (1.2.41). As we have said, at a certain point in
time, one can compute the power spectrum for any scale k. However, only one scale at
each time is interesting to us, and it is the one that crosses the horizon at that particular
time. For example, we are interested in a particular scale kCMB: when kCMB > aH,
i.e. kCMB is sub-horizon, the curvature perturbations on this scale can still evolve and,
therefore, they are not the same we measure today through temperature observations.
When kCMB = aH however, the scale crosses the horizon and the curvature perturbations
freeze out: from this moment until horizon reentry, that for the CMB scales in particular
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is today, perturbations on that scale cannot evolve anymore. This implies that the
fluctuations we observe today through the measurement of temperature fluctuations, are
the same that were present in an epoch far away in the past, when the energy of the
universe was 19 orders of magnitude bigger than today.

For the curvature perturbations at horizon crossing, the power spectrum becomes
just a function of k

Pζ(k) =
1

4k3

H2

ε

∣∣∣∣
k=aH

(1.2.77)

This last expression has the dimensions [length]−3; its dimensionless version is defined
as

∆2
s(k) ≡ k3

2π2
Pζ(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

(1.2.78)

A little dependence on time, via H and ε, is present in a quasi-de Sitter Universe, and
causes the power spectrum to deviate from the scale-invariant form ∆2

s ∼ k0. To quantify
this deviation with respect to the perfect de Sitter limit, one introduces the scalar spectral
index

ns − 1 ≡ d ln ∆2
s

d ln k
(1.2.79)

and, with some algebra, it is possible to show that

ns − 1 = −2ε− η (1.2.80)

1.3 Primordial Black Holes as Dark Matter

As we have said, today the existence of DM is commonly accepted; nevertheless, its
nature is still one of the biggest problem remained open in physics, and neither new non-
baryonic particles nor theories of modified gravity have been proven to be the answer to
this problem. However, there is a third possible way to explain DM that we have not
discussed yet, and it appears is quite simple compared to the others: Black Holes.

A Black Hole (BH) is a region where spacetime got extremely bent by the theoretically
infinite energy density of its singularity, situated at its center; the gravitational pull
resulting from this deformation of spacetime is so extreme that anything that gets closer
to the singularity than a certain radial distance, called Schwarzschild radius, will fall
into it without possibility of escape. This implies that not even the fastest signal in the
Universe, a light signal, can escape a BH once its Event Horizon, i.e. the surface with
radius equal to the Schwarzschild radius, has been crossed. Hence BHs look “dark”, as
their name suggests, and this makes them valid candidates for DM16.

16Actually, in principle BHs can be detected because they emit radiation at very low temperature.
However this effect will be take into account in Fig. 1.1 and we will notice that it does not exclude all
possible masses of BHs.
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To date, the gravitational collapse of stars is the only mechanism to produce BHs
that we have been able to observe. Nonetheless it is believed that there is another way to
form BHs, tied to the evolution of the early Universe: it was first theorized by Hawking
in 1971 [2], and we are now going to explain it.

Looking at our Universe on cosmological scales, where galaxies appear like particles
of a cosmological fluid, we can associate to it an average energy density ρ̄. We can now
consider a particular scale of length from our position, k = λ−1, and evaluate the medium
density of the Universe on this scale, ρk: the quantity δρk = ρk− ρ̄ tells us the deviation,
from the total average, for this region. Today, our measurements on the scales of the
Cosmic Microwave Background (CMB) establish that δρCMB ∼ 10−5ρ̄; however we will
show in the following chapters that, during inflation, it is theoretically possible to have
an inflationary potential such that, on momentum scales kPBH bigger than the current
ones kCMB, fluctuations of δρ ∼ 0.1ρ̄ or even larger can be produced. In this way, when
after inflation the scales kPBH reenter the horizon, these large fluctuations could collapse
due to their strong internal gravitational force, producing the so called Primordial Black
Holes (PBHs). There are two important differences between PBHs and astrophysical
ones to keep in mind:

• Astrophysical BHs have a mass bound M > 3M�, that comes from the fact that
only very massive stars can collapse into BHs. PBHs do not have such a bound: we
could theoretically produce stellar/super-massive PBHs as well as very light ones.
However, below we will see that there is a series of observational constraints that
limits the amount of PBHs that can be produced for each mass.

• Astrophysical BHs surely cannot have been produced at before the first stars were
born, i.e. before the Universe was 200 million years old. Instead PBHs can be
produced in post-inflationary epochs before the Big Bang Nucleosynthesis and, in
principle, even after; in this latter case however they would destroy the BBN model
and, therefore, we assume that all the PBHs are produced before BBN occurs.

PBHs and their proprieties have been theoretically studied since Hawking’s paper
back in the ’70s. However, the idea that they could be the main constituents of DM is
quite recent: it descends from LIGO detections of Gravitational Waves (GWs) emitted
by binary BH mergers [3–7], that triggered a renewed interest in them. Initially, this
renewed interest in PBHs was limited to the solar mass range because the merging BH
masses, that span from 7 to a few tens of M�, turned out to be larger than expected; this
led to the publication of several articles aimed at explaining the nature of these binary
systems, some of which (see Ref. [8–10]) point out that the inferred mass range can
be explained by the cohalescence of PBHs, without violating the bound that the PBH
abundance today has to be equal to or less than the total DM abundance. After that, this
same bound has gained the attention of the astrophysical and theoretical community, that
started wondering if these BHs originated from large primordial fluctuations produced
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during inflation could constitute a significant amount of the present DM content of the
Universe.

The mass of a PBH depends only on the scale k at which the perturbations that
seed its formation cross the horizon: the relation has been found in [11] as (for PBH
formation in an epoch of radiation dominance)

Mk ' 5γ · 1018

(
k

7 · 1013 Mpc−1

)−2

g (1.3.1)

where γ is a numerical factor between 0 and 1, whose value depends on the details of
the gravitational collapse, and measures the efficiency of the process (for the moment,
we will not assign a value to it). Since inflation involved all the range of scales k that
are currently observable, there is a vast interval of masses Mk that are a priori possible
for PBHs contributing to the amount of DM. However, the fractional abundance of
PBHs over the total DM content at present time, fPBH(Mk) = ΩPBH,0(Mk)/ΩDM,0, has
an upper limit due to constraints of various nature on this wide range of masses Mk.
For example, due to Hawking’s radiation, PBHs lighter than 10−18M� cannot be part
of current DM, because they are completely evaporated by now (see Ref. [12]); hence,
fPBH(Mk ≤ 10−18M�) = 0.

Figure 1.1 illustrates all the constraints on fPBH, showing its upper limit for differ-
ent values of Mk. The bounds have been derived under the assumption that fPBH is
monochromatic, an appropriate approximation for narrow mass distributions like the
one that we will consider, and all of them have been explained in great detail in [13];
also, they all come with a certain degree of uncertainty, due for example to various
assumptions made on cosmological parameters in order to estimate them.

In Chapter 2, we will consider a particular PBH mass Mf in the interval 10−16M� ≤
Mf ≤ 10−11M�, since this latter results to be the only window where constraints of Fig.
1.1 allow PBHs to constitute a significant fraction of the total DM abundance. Imposing
fPBH(Mf) = 1, i.e. imposing that PBHs with mass Mk constitute 100% of the DM today,
we will find, via the Power Spectrum Pk ∼ (δρ/ρ)2, the enhancement of the fluctuations
necessary for that mass Mf. This procedure will be done in two different cases: in the
first case, the scale corresponding to the enhanced fluctuations reenters the horizon in an
epoch of Radiation Domination (RD), while in the second case the same scale reenters
in an epoch of Matter Domination (MD). This last epoch is assumed to occur because of
a temporary domination of heavy scalar particles, like the moduli originated from String
Theory. As we already mentioned, since the BBN model has been tested experimentally
and works really well, this new matter dominated epoch that we are going to consider
has to end before the BBN time.

After all this, in Chapter 3, we will examine a particular single-field model of string
inflation, called “Fibre Inflation” (see Ref. [23]), and tune its potential in order to re-
produce the features of the Power Spectrum previously estimated in the MD Section of
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Figure 1.1: Experimental constraints on the fraction of PBHs with mass MPBH over the
total DM. In yellow, the observations of extra-galactic γ-ray background [14]; in green,
dynamical constraints from White Dwarfs and Ultra-Faint Dwarf galaxies [15]; in blue,
micro- and milli-lensing observations from EROS [16], Kepler [17] and Subaru HSC [18];
in orange, constraints from the CMB observations [19–21]. This figure was adapted from
the one in [22] to be in agreement with the most recent observations.

Chapter 2. As we have already mentioned, the inflationary potential V needs to be tuned
so that the fluctuations turn out to be enhanced on a particular scale k and produce
PBHs at horizon reentry. If we assume that V is approximately constant during inflation,
which is the case of standard slow-roll, we can write Pk ∼ H2/εV

17, where εV ∼ (V ′/V )2

is the slow-roll parameter that measures the flatness of the potential18. Then, one might
think that Pk can be enhanced simply by taking εV → 0, i.e. imposing V to be flat on
the momentum scales k where we want the amplification to take place. Unfortunately
things are more complicated than this: Ref. [24] showed that a single-field inflationary
potential that produces a PBH population capable of accounting for a significant portion
of the total DM today, must feature a near-inflection point after the slow-roll plateau.
The authors of [25] pointed out that, close to this near-inflection point, the slow-roll ap-
proximation ceases to be valid and our system enters an ultra slow-roll regime, where the
inflaton decelerates. In this regime the approximated expression of Pk that we mentioned

17See (1.2.76).
18See (1.2.31).
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above is not valid anymore, and that calls for a more careful analysis of our model, where
the observables will be computed from solutions to the Mukhanov-Sasaki equation, with
a numerical approach.
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Chapter 2

PBH Production

PBHs are produced by the gravitational collapse of very large density perturbations
which reenter the horizon. We will examine the reentry of these perturbations in two
post-inflationary epochs: Radiation1 Domination (RD), and Matter2 Domination (MD)
driven by a gravitationally coupled scalar field. Notice that this last epoch is assumed
to be post-inflationary and to end before Big Bang Nucleosynthesis (BBN) since this
model does not have theoretical problems and is in agreement with observations. Before
we start, let us introduce some important quantities in our study of PBH production:

• fPBH(Mf) is the energy density of PBHs with mass Mf over the total Dark Matter
(DM) energy density at present time. One of our objectives is to determine an
expression for this quantity in terms of the power spectrum Pζ(k), which is our
main observable quantity. This is crucial because imposing fPBH = 1, i.e. that
PBHs constitute all of the DM today, we can find out how big the amplitude of
the density perturbations (δρ/ρ)2 ∼ Pζ(k) has to be at horizon reentry in order to
produce enough PBHs with mass Mf to explain all of the DM today.

• β(Mf) is the energy density of PBHs with mass Mf over the total energy density
at the time of formation.

• γ is a numerical factor between 0 and 1 which represents the fraction of the hori-
zon mass that collapses due to gravitational force, forming a black hole; its value
depends on the details of the gravitational collapse.

• ∆NPBH
CMB is the distance, in e-foldings, between the following two events that oc-

curred during inflation: the horizon exit of the scale kCMB, corresponding to the

1In the context of this cosmological dissertation, the term “radiation” refers to a fluid of ultra-
relativistic particles, whose kinetic energy is such that p = 1

3ρ.
2Analogously, the term “matter” refers to a fluid of non-relativistic particles, whose kinetic energy

is completely negligible compared to the energy due to mass. Therefore, its equation of state is p = 0.
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perturbations we observe today in the CMB, and the exit of the scale kPBH, that
corresponds to the large density perturbations that collapsed into PBHs at horizon
re-entry.

2.1 PBH formation in Radiation Domination

Let us begin our study of PBH production by searching for an expression for βRD(Mf):
since it represents the fraction of total energy density in PBHs with mass Mf evaluated
at the time of PBH formation3, we could simply write it as

βRD(Mf) ≡
1

γ

ρPBH(Mf)

ρtot

∣∣∣∣
f

(2.1.1)

However βRD(Mf) can also be interpreted as the probability that large enough density
fluctuations collapse into PBHs. Assuming spherical collapse and that the density per-
turbations δ reentering the horizon follow a Gaussian distribution, in RD we get

βRD(Mf) =

∫ ∞
δc

1√
2π σ(Mf)

e
− δ2

2σ(Mf)
2 dδ

∼ 1√
2π

σ(Mf)

δc

e
− δ2c

2σ(Mf)
2 (2.1.2)

where δc ≈ 0.41 represents the minimum fluctuation needed for a fraction γ of the
horizon mass MH to undergo gravitational collapse and produce PBHs; the last step in
the expression above is a good approximation if σ(Mf) � δc, and we will show below
that this holds in our case. The width of this Gaussian distribution is set by the power
spectrum of density perturbations, i.e. σ(Mf)

2 ∼ 〈δδ〉 ∼ Pδ(kf), where in the comoving
gauge (1.2.37) δ can be expressed in terms of the curvature perturbations ζ as

δ = 2
1 + w

3w + 5
ζ

RD
===⇒
w=1/3

δ =
4

9
ζ (2.1.3)

Being that δ ∼ ζ, density and curvature perturbations are practically the same quantity.
For this reason, even if from this moment onward our calculations will be done in terms
of ζ, we will often refer to perturbations as density fluctuations.

Now, before studying fPBH, we are going to take a detour and review some cosmology.
We begin by reminding that, for the horizon mass

MH = ρtotV =
4π

3

ρtot

H3
=

4π

3

3H2M2
p

H3
= 4π

M2
p

H
(2.1.4)

3We will always make the assumption that the formation of PBHs occurs exactly at horizon reentry.
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where Mp = (8πG)−1/2 is the reduced Planck mass, in units ~ = c = 1, and we used the
Friedmann equation (1.2.15) for a flat universe, i.e. ρtot = 3H2M2

p . When a sufficiently
large density perturbation reenters the horizon, it collapses under its own gravity and
forms a black hole, whose mass at formation Mf is just a fraction γ (depending on the
detail of the gravitational collapse) of the horizon mass; hence

Mf = γMH,f = 4πγ
M2

p

Hf

(2.1.5)

The energy density for a gas of ultra-relativistic particles (i.e. radiation) at temperature
T is (see Ref. [26])

ρrad =
π2

30
g∗(T )T 4 (2.1.6)

where g∗(T ) represents the total relativistic degrees of freedom of the fluid. Since our
universe is very flat we have ρcrit ≡ 3H2M2

p ' ρtot and therefore

Ωi ≡
ρi
ρcrit

' ρi
ρtot

(2.1.7)

for any component i of the Universe. Then, using ρrad = Ωrad ρtot = 3 ΩradH
2M2

p in
(2.1.6) we find that the temperature of the cosmological fluid behaves as

T =

(
90 Ωrad

π2g∗(T )

)1/4√
HMp (2.1.8)

The entropy density s of a system of relativistic particles in thermal equilibrium is

s =
ρrad + p

T
=

4

3

ρrad

T
(2.1.9)

where we used the equation of state for radiation prad = 1
3
ρrad. The conservation of

comoving entropy sa3 = const, which holds assuming that there is no entropy production,
can be combined with (2.1.9), (2.1.6) and (2.1.8), so that

g∗(T ) a3 T 3 = const ⇔ g∗(T )1/4 a3 Ω
3/4
rad H

3/2 = const (2.1.10)

Using this last expression, the Hubble parameter at formation Hf can be related to the
one at present time H0 as

Hf = H0

(
g∗0
g∗f

)1/6(
a0

af

)2(
Ωrad,0

Ωrad,f

)1/2

' H0

Ω
1/2
rad,0

a2
f

(
g∗0
g∗f

)1/6

(2.1.11)

In the last step we have used the fact that we are assuming PBH formation occurs
during RD, hence Ωrad,f ' 1; we have also set a0 = 1. We can now write the PBH mass
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at formation Mf using (2.1.5), (2.1.11), the horizon crossing relation k = aH and then
(2.1.10); we get

Mf ' 4π
M2

p

H0

γ Ω
−1/2
rad,0

(
g∗f
g∗0

)1/6(
afkf

a0k0

)2(
k0

kf

)2

= γ MH,0 Ω
−1/2
rad,0

(
g∗f
g∗0

)1/6(
a2

fHf

a2
0H0

)2(
k0

kf

)2

' γ MH,0 Ω
1/2
rad,0

(
g∗0
g∗f

)1/6(
k0

kf

)2

(2.1.12)

We should now clarify that this relation is valid only for the fraction of the horizon mass
that collapses in PBHs, Mf; a more general version of (2.1.12), valid for the horizon
mass MH,* at any momentum scale k during RD, can be obtained from this latter simply
dividing by γ.

Now let us go back to search an expression for the fraction of the total DM energy
density in PBHs with mass Mf today, fPBH(Mf). It is defined as

fPBH(Mf) ≡
ρPBH,0(Mf)

ρDM,0

=
ΩPBH,0(Mf)

ΩDM,0

=
Ωrad,0

ΩDM,0

ρPBH,0(Mf)

ρrad,0

(2.1.13)

To express fPBH(Mf) in terms of our observable quantity Pζ(k) ≡ Pk, we will write it in
terms of βRD(Mf). We recall that the energy density redshifts as

ρ ∼

{
a−4 for radiation

a−3 for matter
(2.1.14)

Using the fact that PBHs redshift as matter, we can determine their abundance today

ρPBH,0(Mf) = ρPBH,f(Mf)

(
af

a0

)3

= γ βRD(Mf) ρtot,f

(
af

a0

)3

' γ βRD(Mf) ρrad,f

(
af

a0

)3

(2.1.15)

where we also used (2.1.1) and the fact that we are assuming reentry in RD, hence
ρtot,f ' ρrad,f. Now, using this last result with (2.1.6) and (2.1.10), the relation (2.1.13)
becomes

fPBH(Mf) ' γ βRD(Mf)
Ωrad,0

ΩDM,0

ρrad,f

ρrad,0

(
af

a0

)3

= γ βRD(Mf)
Ωrad,0

ΩDM,0

(
g∗fa

3
f T

3
f

g∗0a3
0T

3
0

)
Tf

T0

= γ βRD(Mf)
Ωrad,0

ΩDM,0

Tf

T0

(2.1.16)
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We can express (2.1.16) in terms of the mass Mf: using in order (2.1.10), k = aH, (2.1.4),
(2.1.5) and (2.1.12), we arrive at

Tf

T0

=

(
g∗f
g∗0

)−1/3
a0

af

=

(
g∗0
g∗f

)1/3
Hfk

−1
f

H0k
−1
0

=

(
g∗0
g∗f

)1/3
γ MH,0

Mf

k0

kf

'
(
g∗0
g∗f

)1/3
γ MH,0

Mf

γ−1/2

Ω
1/4
rad,0

(
Mf

MH,0

)1/2(
g∗0
g∗f

)−1/12

=

(
g∗0

g∗f Ωrad,0

)1/4(
γ MH,0

Mf

)1/2

(2.1.17)

that, substituted into (2.1.16), leads us to the expression of fPBH in terms of the PBH
mass Mf in the case of formation during RD:

fPBH(Mf) ' γ3/2 βRD(Mf)
Ω

3/4
rad,0

ΩDM,0

(
g∗0
g∗f

)1/4(
MH,0

Mf

)1/2

(2.1.18)

We can now quickly estimate the amplification required in Pk for PBHs with mass
Mf to constitute 100% of DM today. We assume that only the Standard Model (SM)
degrees of freedom are present, so that g∗0 = 3.38 and g∗f = 106.75 (see Ref. [26], page
55); today we have ΩDM,0 ≈ 0.23, Ωrad,0 ≈ 8.24 · 10−5 and H0 ≈ 6.363 · 10−61Mp

4, so that
using (2.1.4) we find MH,0 ≈ 4.35 · 1022M�; setting γ = 1, fPBH(Mf) = 1 and a PBH
mass of Mf = 10−15M�, which according to Fig. 1.1 is a value in the mass window that
allows 100% of DM as PBHs, eq. (2.1.18) gives βRD(Mf) ≈ 9.6 · 10−17. This, substituted
in the approximated version of (2.1.2), leads to σ ≈ 0.049 and, therefore, ζ ≈ 0.11; this
value is � ζc justifying our use of the approximated expression of βRD(Mf). Finally,

Pk ' ζ2 ≈ 1.26 · 10−2 (2.1.19)

Today, i.e. at CMB scales kCMB, we measure Pk ≈ 2 ·10−9. This means that the only way
PBHs of mass 10−15M� produced during a RD era could explain the 100% of the DM
today is that, during inflation, the power spectrum underwent a 7 orders of magnitude
enhancement. It is easy to understand that a very specific inflation potential is required
to realize a power spectrum with such an enhancement, especially considering that the
peak value is not the only constraint on the power spectrum.

4This value for H0 was obtained using H0 = 72.5 (km/s)/Mpc and the conversion table [27].
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During inflation the fluctuations on the CMB scales, kCMB, leave the horizon be-
fore the enhanced fluctuations, that are produced when the scale kPBH > kCMB leaves
the horizon; but what is the distance in e-foldings ∆NPBH

CMB between these two horizon
crossings? This is not a free parameter, and can be determined as follows.

First of all, we recall that the scale factor at a time t can be casted in terms of the
number of e-foldings at that same time, N(t), as

a(t) = a0 e
N(t) (2.1.20)

In our case of interest, this leads to the definition of ∆NPBH
CMB

aPBH = aCMB e
∆NPBH

CMB ⇒ ∆NPBH
CMB ≡ ln

(
aPBH

aCMB

)
(2.1.21)

If we now multiply and divide by Hend, where the subscript indicates the end of inflation,
in the slow-roll approximation H ' const we find

∆NPBH
CMB = ln

(
aPBH Hend

aCMBHend

)
= ln

(
aPBH HPBH

aCMBHCMB

)
= ln

(
kPBH

kCMB

)
The mode kPBH, which left the horizon when inflation was almost over is the one that,
reentering the horizon during RD, triggers the PBHs formation ⇒ kPBH = kf = afHf .
Then

∆NPBH
CMB = ln

(
kf

kCMB

)
We can now write ∆NPBH

CMB as a function of Mf by employing (2.1.12)

∆NPBH
CMB = ln

(
k0

kCMB

)
+

1

4
ln Ωrad,0 +

1

2
ln γ − 1

12
ln

(
g∗f
g∗0

)
− 1

2
ln

(
Mf

MH,0

)
(2.1.22)

Using k0 = H0 ≈ 2.4 · 10−4Mpc−1, kCMB ≈ 0.05, Ωrad,0 ≈ 8.24 · 10−5 and MH,0 ≈
4.35 · 1022M�, the expression above simplifies to

∆NPBH
CMB ' 18.4 +

1

2
ln γ − 1

12
ln

(
g∗f
g∗0

)
− 1

2
ln

(
Mf

M�

)
(2.1.23)

that, for the values of γ, g∗0, g∗f and Mf listed above (2.1.19), gives

∆NPBH
CMB ≈ 35.3 (2.1.24)

i.e., kPBH leaves the horizon approximately 35 e-foldings after the CMB modes.
The power spectrum constraints that we found, (2.1.19) and (2.1.24), are quite strong.

As we briefly explained in Section 1.3, in order to obtain such a high peak in Pk the
inflationary potential must exhibit a plateau followed by a near-inflection point, which
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leads the inflaton into an ultra slow-roll regime. In this regime the inflation decelerates,
enhancing the power spectrum of scalar perturbations and triggering efficient black hole
production with a peaked mass distribution. Such a particular shape of the inflationary
potential requires a very high tuning freedom, which is the big downside behind the
apparently simple idea of dark matter as PBHs. Some interesting examples of articles
that examined PBH production in RD with great detail, with the objective of explaining
all of the DM today, are [28] and [29]. The latter in particular was written by my thesis
supervisors, Michele Cicoli and Francisco Gil Pedro, and examines PBH production by
a single-field inflationary string model named Fibre Inflation [23], which we will briefly
present in Chapter 3.

The question we should ask ourselves at this point is: is it possible to lower the
amount of fine-tuning required in the inflationary potential and make PBH production
more “natural”? What if, for example, we suppose PBHs to be produced during a Matter
Dominated (MD) era before BBN?

2.2 Matter Domination due to Heavy Scalars

We already mentioned that, aside from RD, we would like to study PBH production in
an epoch dominated by matter. We have also mentioned how, in order to preserve the
well working BBN model, this MD epoch has to occur before Nucleosynthesis. These
two aspects seem apparently incompatible, because we are used to think to matter as
the combination of baryonic matter and dark matter: baryonic matter cannot decouple
from radiation before BBN, and if we want to explain all of the dark matter in terms of
PBHs it is nonsensical to assume that the MD epoch in which we are trying to study
the PBH production is driven by dark matter. However we recall that, in cosmology, the
term “matter” has a broader meaning than this latter: it refers to anything that has an
equation of state p = 0, so that its energy density redshifts as ρ ∼ a−3. Gravitationally
coupled scalar fields (moduli) have this equation of state and, admitting their existence,
we will now see the process by which these fields temporarily dominate the energy density
of the Universe after inflation.

Let us consider a generic massive scalar field (modulus) ϕ; its potential can be ap-
proximately expressed as

V (ϕ) ∼ 1

2
m2
ϕ(ϕ− ϕ0)2 −H2(ϕ− ϕ0)2 +

1

M2n
p

(ϕ− ϕ0)4+2n (2.2.1)

where ϕ0 is the true vacuum-expectation-value of the field (i.e. its value today), mϕ is its
mass, H is the Hubble parameter and n takes the number of dimensions into account.
During inflation H � mϕ and, therefore, the last two terms dominate. Hence, the
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minimum of the potential is situated at

〈ϕ〉inf ∼ ϕ0 +Mp

(
Hinf

Mp

)1/(1+n)

, H � mϕ (2.2.2)

where Hinf ' const is the value of the Hubble parameter during inflation. This last
result holds assuming that the induced squared-mass parameter of ϕ during inflation is
negative.

After the end of inflation H ceases to be constant and starts to decrease; this causes
the first term of (2.2.1) to dominate over the others, and the minimum of the potential
can now be found at

〈ϕ〉0 ∼ ϕ0, H � mϕ (2.2.3)

Therefore, because of inflation, a shift of the minimum occurred between the inflationary
epoch and today, whose entity is

|∆ϕ| ≡ |〈ϕ〉0 − 〈ϕ〉inf| ∼Mp

(
Hinf

Mp

)1/(1+n)

.Mp (2.2.4)

Now, the evolution of the moduli after inflation is described by the following equation

ϕ̈+ (3H + Γϕ)ϕ̇+
∂V

∂ϕ
= 0 (2.2.5)

where, in the friction term, the modulus decay rate appears

Γϕ = Dϕ

m3
ϕ

M2
p

(2.2.6)

This last expression reflects the fact that the modulus is gravitationally coupled (Γϕ ∼
M−2

p ∼ G); Dϕ is a constant depending on the model, whose value is close to unity.
During inflation, the minimum is (2.2.2), and the modulus is positioned on it. Then,

as we already mentioned, after the end of inflation H decreases as t−1 and this causes the
minimum to start moving towards (2.2.3). However, the modulus does not immediately
follow the minimum: immediately after inflation H is still important, and the friction
term in (2.2.5) is not negligible at all. The decay ratio is Planck suppressed, and the
equation becomes

ϕ̈+O(1)
1

t
ϕ̇+

∂V

∂ϕ
= 0 (2.2.7)

where we employed the fact that, in the epochs after inflation5, H ∼ t−1. Because of
this, in the first moments after inflation ϕ moves so slow towards the new minimum that

5During the reheating epoch we have matter domination driven by oscillation of the inflaton field,
hence H ∼ 2

3t . After the inflaton decay, the thermalization induces a RD era, hence H ∼ 1
2t .
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it can be almost considered stationary. This goes on until the time t−1
osc ∼ H ∼ mϕ: now

all the terms in the potential have the same weight, and H is so small that the friction
term in (2.2.7) has not the same impact as before and can be ignored. Therefore the
field starts moving towards the new minimum, and the initial displacement causes it to
freely oscillate around ϕ0. This is described by

ϕ̈+
∂V

∂ϕ
= 0 (2.2.8)

These oscillations make the field evolve as pressure-less matter, with an energy density
ρϕ = 1

2
m2
ϕf

2
ϕ ∼ a−3, where fϕ is the amplitude of the oscillations. The time tosc occurs

not long after the inflaton reheating, when the universe is dominated by radiation; since
this last component redshifts faster than matter (ρrad ∼ a−4), if enough energy is initially
stored in the scalar condensate it will quickly grow to dominate the total energy density,
leading to a MD era. This MD era driven by moduli ceases at the time when H ' Γϕ,
i.e. when the age of the Universe becomes compatible with the lifetime of the modulus.
At this point the modulus decades into Standard Model particles, a new reheating occurs
and the radiation returns the dominant component of the Universe. As we will notice
in Chapter 3 while studying Fibre Inflation, moduli fields are a natural consequence of
string inflationary models.

2.3 PBH formation in Matter Domination

Now that we explained how an epoch of Matter Domination (MD) can take place before
BBN, thanks to scalar fields lighter than the inflaton (moduli) that temporarily dominate
the energy density of the Universe, we are going to assume that the mode corresponding
to the peak in the power spectrum Pk reenters the horizon in a MD era. We will show
below that the expressions of fPBH(Mf) and ∆NPBH

CMB are different from their RD coun-
terparts, the main difference being the appearance of the field mass mϕ, an additional
parameter beside the PBH mass Mf . We will find out that this additional parameter
can help reducing the amount of enhancement required to explain all of the DM today
in terms of PBHs.

We begin by studying βMD(Mf), whose definition is the same as in RD

βMD(Mf) ≡
1

γ

ρPBH(Mf)

ρtot

∣∣∣∣
f

(2.3.1)

However, in MD an analogous of (2.1.2) does not exist: a detailed expression of the
fluctuations threshold in terms of w6 has been found in [30] and shows that, for w = 0,

6w is the cosmological parameter used to express the cosmological fluid equation in the compact form
p = wρ, c = 1; for matter w = 0, for radiation w = 1

3 .
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ζc → 0, i.e. any perturbation can collapse into PBHs, no matter how little it is; this
result does not make any sense, which means that (2.1.2) is not a correct expression for
βMD. The correct relation that links βMD with the fluctuations has been obtained in [31]:

βMD(Mf) = 0.2055σ(Mf)
13/2 (2.3.2)

where, again, σ(Mf) represents the density fluctuations; this expression was found in
a semi-analytical way by studying in detail the gravitational collapse of PBHs and its
non-spherical effects, inhomogeneity and anisotropy, that play an important role in MD.
Since we want to work in terms of the curvature perturbations ζ we make use of (2.1.3)
with w = 0, which tells us that σ(Mf)

2 ∼ Pδ ∼ (2
5
)2Pζ , and finally get

βMD(Mf ) ' 5.3236 · 10−4 P
13/4
ζ (2.3.3)

Before analyzing the fPBH expression, let us explain with some detail the non-standard
cosmological history that we are assuming to occur

1. Inflation (t < tend): Our Universe is dominated by a scalar field, the inflaton φ,
which causes it to expand faster than the speed of light while its energy density
ρtot = 3H2M2

p ' const. This epoch, needed to solve various problem in the hot
Big Bang model, ceases at tend.

2. Reheating (tend < t < trh): This is an epoch of matter domination ρtot ' ρm ∼ a−3

that occurs after the end of inflation, driven by the oscillations of the inflaton field
around the minimum of its potential.

3. First radiation dominated era (trh < t < tdom): The standard hot Big Bang theory
begins when the inflaton decays into Standard Model particles. We assume that
an instantaneous thermalisation of these particles occurs at time trh, so that they
form a thermal bath which immediately starts to dominate the energy density of
the Universe. Like in any radiation epoch, ρtot ' ρrad ∼ a−4g

−1/3
∗ .

4. Moduli dominated era (tdom < t < tdec): At some point tdom the energy density
of a scalar field ϕ, called modulus field, starts to dominate over radiation. Our
Universe experience a matter dominated era because of the oscillations of this field
around its new minimum. We assume that PBHs are produced at some time tf
during this epoch. At tdec the oscillations of the modulus cease: an instantaneous
decay of the modulus field occurs, ending the matter dominated epoch.

5. Second radiation dominated era (tdec < t < teq): The modulus decays in Standard
Model particles and triggers a second thermalisation of the Universe: the radiation
regains energy density, becoming the dominant component of the Universe once
again. However this cannot last forever, since matter redshifts slower than radia-
tion: at the time teq the baryonic matter produced by BBN has the same weight
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of radiation on the energy balance of the Universe and, after that, the ordinary
matter dominated era occurs.

E

end

rh

dom

dec

eq

0

Reheating epoch

1st Radiation epoch

Matter epoch (via modulus domination)

2nd Radiation epoch

Figure 2.1: Scheme of the epochs between the end of inflation (“end”) and today (“0”),
on the energy axis; time’s arrow is reversed respect to this axis. Formation of PBHs, i.e.
the moment when the mode corresponding to the peak in Pk reenters the horizon, occurs
somewhere between tdom and tdec.

Now, our starting expression for fPBH is always (2.1.13), that we report here for
convenience

fPBH(Mf) =
Ωrad,0

ΩDM,0

ρPBH,0(Mf)

ρrad,0

(2.3.4)

Since PBHs redshift exactly as the background during the modulus-dominated era, using
(2.1.1) we have

γ βMD(Mf) =
ρPBH,f(Mf)

ρtot,f

=
ρPBH,dec(Mf)

ρtot,dec

' ρPBH,dec(Mf)

ρrad,dec

(2.3.5)
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which implies
ρPBH,dec(Mf) ' γ βMD(Mf)ρrad,dec (2.3.6)

Then, following the exact same steps of (2.1.15)-(2.1.16), we arrive at expression

fPBH(Mf) ' γ βMD(Mf)
Ωrad,0

ΩDM,0

Tdec

T0

(2.3.7)

which is very similar to the expression obtained in RD, with the decay temperature of the
moduli Tdec instead of the temperature at formation Tf. This little difference reflects the
fact that, when produced in a moduli dominated era, the PBHs do not start to redshift
with respect to the background since the formation time, but only after the MD epoch
is over.

Before studying (2.3.7), let us take a detour to express fPBH in terms of the mass at
formation Mf. Since ρtot = 3H2M2

p is valid in every scenario, (2.1.14) determines that

H ∼

{
a−2 in RD

a−3/2 in MD
(2.3.8)

(2.1.5) is also background-independent, hence

Mf = 4πγ
M2

p

Hf

= 4πγ
M2

p

Hdec

Hdec

Hf

= γ MH,dec
Hdec

Hf

= γ MH,dec

(
af

adec

)3/2

and rewriting the scale factor ratio in terms of the wave-number

kdec

kf

=
adecHdec

afHf

=
adec

af

(
adec

af

)−3/2

=

(
af

adec

)1/2

we obtain

Mf = γ MH,dec

(
kdec

kf

)3

(2.3.9)

MH,dec is not an observable quantity, so we want to remove it from our formula by
expressing it in terms of MH,0. This can be done by using (2.1.12), which holds7 because
tdec can be considered a moment of radiation domination. The result is:

Mf ' γ MH,0 Ω
1/2
rad,0

(
g∗0
g∗dec

)1/6(
k0

kdec

)2(
kdec

kf

)3

(2.3.10)

= γ MH,0 Ω
1/2
rad,0

(
g∗0
g∗dec

)1/6(
k0

kdec

)2(
kdec

kdom

)3(
kdom

kf

)3

7As long as we subtract the γ factor, as explained under the aforementioned expression.
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where we also multiplied and divided by k3
dom in the last step. We now define NMD the

duration in e-foldings of the moduli dominated era, and Nf the distance in e-foldings
between tdom and the moment tf when the peak in Pk crosses the horizon. Relation
(2.3.8) implies

k ∼

{
a−1 in RD

a−1/2 in MD
(2.3.11)

and, therefore, we can use (2.1.20) as follows:

adec = adome
NMD ⇒ kdec

kdom

= e−
1
2
NMD (2.3.12)

af = adome
Nf ⇒ kdom

kf

= e
1
2
Nf (2.3.13)

so that (2.3.10) becomes

Mf = γ MH,0 Ω
1/2
rad,0

(
g∗dec

g∗0

)−1/6(
k0

kdec

)2

e−
3
2

(NMD−Nf) (2.3.14)

Now let us take a look at the temperature ratio in (2.3.7): the first steps are analogous8

to the ones done in (2.1.17), because for tdec < t < t0 we are in a RD era. This leads to

Tdec

T0

=

(
g∗dec

g∗0

)−1/3
a0

adec

=

(
g∗0
g∗dec

)1/3
Hdeck

−1
dec

H0k
−1
0

=

(
g∗0
g∗dec

)1/3
MH,0

MH,dec

k0

kdec

that, expressing the momentum ratio using (2.3.10) and MH,dec using (2.3.9), gives

Tdec

T0

'
(
g∗0
g∗dec

)1/3
MH,0

MH,dec

γ−1/2

(
Mf

MH,0

)1/2

Ω
−1/4
rad,0 ×

×
(
g∗0
g∗dec

)−1/12

e
3
4

(NMD−Nf)

=

(
g∗0

g∗dec Ωrad,0

)1/4(
γ MH,0

Mf

)1/2

e−
3
4

(NMD−Nf) (2.3.15)

Finally, substituting into (2.3.7), we get

fPBH(Mf) ' γ3/2βMD(Mf)
Ω

3/4
rad,0

ΩDM,0

(
g∗0
g∗dec

)1/4(
MH,0

Mf

)1/2

e−
3
4

(NMD−Nf) (2.3.16)

8With (2.1.12) divided by γ, because it is used for the horizon mass MH,dec.
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Examining the exponential term above we can see that the greater is the difference
NMD − Nf, i.e. the earlier PBHs form during the moduli-dominated era, the smaller is
this factor and, hence, the greater is the peak required in Pk to obtain fPBH(Mf) = 1.
The reason a term like this, that acts as a “dilution” factor9 for PBHs, is present in MD,
is that both the PBHs and the background behave as matter: PBH energy density does
not increase relatively to the background energy density as it happens when radiation
dominates. How can we lower this “dilution” effect so that the peak in the power
spectrum and, consequentially, the amount of fine tuning in the potential can be reduced?
Looking at the exponent expression, it seems that the best way to do so is to shorten
the modulus dominated epoch; this can be done by increasing the field decay rate, as we
will now show.

Given that a generic modulus ϕ couples democratically to all degrees of freedom with
gravitational strength, at its decay it generally produces both visible (“vis”) and hidden
(“hid”) sector particles, with decay rates respectively:

Γϕ→vis = cvisΓ0 and Γϕ→hid = chidΓ0 (2.3.17)

where

Γ0 =
1

48π

m3
ϕ

M2
p

(2.3.18)

The total decay rate of ϕ is simply

Γtot
ϕ = (cvis + chid)Γ0 ≡ ctotΓ0 (2.3.19)

(we refer to Γtot
ϕ as “total decay width”); therefore, to reduce “dilution” as much as

possible and lower the amount of enhancement required, we should choose the heaviest
modulus mass mϕ allowed by our inflationary model.

The equation (2.3.16) was useful to explain this latter aspect of PBH production
in MD driven by moduli, but it is useless in order to evaluate the peak in the power
spectrum, since we obviously do not know the values of NMD and Nf ; thus, we go back
to equation (2.3.7).

To make use of (2.3.7) we need to determine the decay temperature of the modu-
lus Tdec. At decay, the modulus energy density gets transferred into visible degrees of
freedom, which thermalise, and hidden sector degrees of freedom, which we assume to
be relativistic particles with only gravitational couplings (like ultra-light axions which
generally emerge in 4D string models). Hence, visible sector particles reach thermal

9The reason we are writing the word dilution between commas is that the term is used improperly: it
should indicate decrease of energy density by entropy production but this is not what is happening here.
However, one could demonstrate that the exponential factor in (2.3.16) can be written proportional to
(sgen/sini)t=Γ−1 , which is exactly the definition of dilution factor (see Ref. [32]); this is why we are using
the word dilution anyways.
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equilibrium at an energy:

ρvis =
cvis

ctot

ρtot = 3
cvis

ctot

H2
decM

2
p =

π2

30
g∗decT

4
dec (2.3.20)

Thus

Tdec =

(
90

π2g∗dec

cvis

ctot

)1/4√
HdecMp (2.3.21)

The decay of ϕ occurs when the age of the Universe is approximately equal to the modulus
lifetime. Since the these two times are inversely proportional to H and Γtot

ϕ respectively,
we find (see Ref. [33]) that the decay of the modulus occurs when 3H ' 4Γtot

ϕ /3. Thus,
we can express Tdec from the total decay width:

Tdec =

(
40 cvis ctot

π2g∗dec

)1/4√
Γ0Mp (2.3.22)

We have not talked about the couplings cvis and chid yet. The hidden sector degrees of
freedom give an extra contribution ∆Neff to the effective number of neutrinos Neff as
[33]:

∆Neff =
43

7

chid

cvis

(
g∗ν
g∗dec

)1/3

(2.3.23)

where g∗ν = 10.75 is the number of relativistic degrees of freedom at neutrino decoupling.
Present observational bounds fix a stringent upper bound on (2.3.23) of order ∆Neff .
0.6. This, in turn, imposes an upper bound on the ratio of the two couplings:

chid

cvis

=
7

42

(
g∗dec

g∗ν

)1/3

∆Neff . 0.2 for g∗dec . 106.75 (2.3.24)

In what follows we shall set cvis = 40 and chid = 1, so that ∆Neff ≈ 0.07 and observations
are not contradicted. Now, using (2.3.18) on (2.3.22), we determine the expression for
the decay temperature in terms of mϕ:

Tdec ' 0.115

(
c2

vis

g∗dec

)1/4

mϕ

√
mϕ

Mp

(2.3.25)

The modulus mass has both an upper and a lower limit to its value: the upper limit
mϕ . mφ is due to the fact that the modulus ϕ has to be lighter than the inflaton
φ (in the Fibre Inflation model we will describe in the next Section, mφ ' 5 · 1013

GeV); the second bound is imposed by the fact that the beginning of BBN is located at
TBBN ' 3 MeV and, if we do not want to spoil the model, we must have that Tdec & TBBN,
that for our values of the couplings implies10 mϕ & 50 TeV.

10For Tdec ' 3MeV, Ref. [26] tells us that g∗dec = 10.75.
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If we now combine (2.3.7) and (2.3.25), we get:

βMD(Mf) ' 1.28 · 10−7γ−1g
1/4
∗dec

(
50 TeV

mϕ

)3/2

fPBH(Mf) (2.3.26)

where we used ΩDM,0 = 0.23, Ωrad,0 = 8 ·10−5, T0 = 9.645 ·10−32Mp and cvis = 40. Notice
how this last expression is almost independent on the PBH mass Mf.

If we focus on the case where the whole DM content of the Universe today is given
by PBHs with a definite mass Mf, i.e. fPBH = 1, and we set γ = 1 and g∗dec = 106.75
(which is correct for Tdec & 30 GeV ⇔ mϕ & 3.5 · 107 GeV), the expression (2.3.26)
combined with (2.3.3) gives the required enhancement of the power spectrum in terms
of the modulus mass:

Pζ ' 16.3 ·
(

1 GeV

mϕ

)6/13

for mϕ & 3.5 · 107GeV (2.3.27)

We can easily see that, the greater is the modulus mass, the smaller is the peak required,
which is in agreement with our previous discussion on the duration of the modulus
epoch. A plot of this last expression is shown in Fig. 2.2; for mϕ = 3.5 · 107 GeV we
obtain Pζ ≈ 5·10−3, while mϕ = 1·1013 GeV gives Pζ ≈ 2·10−5. Even if the enhancement
required can be up to 1000 times smaller than the one in radiation dominance (2.1.19),
the near-inflection point after the slow roll plateau in the potential is still necessary.

As in RD, we shall determine the second constraint on the power spectrum, the
distance in e-foldings between the moments of CMB modes kCMB exit and peak exit
kPBH, ∆NPBH

CMB. The first steps are exactly the same we did in RD, thus we start directly
by

∆NPBH
CMB = ln

(
kf

kCMB

)
= ln

(
kf

kdec

)
+ ln

(
kdec

k0

)
+ ln

(
k0

kCMB

)
(2.3.28)

The first term can be expanded using (2.3.10), so that

∆NPBH
CMB = ln

(
k0

kCMB

)
+

1

3
ln

(
kdec

k0

)
+

1

3
ln γ +

1

6
ln Ωrad,0+

−1

3
ln

(
Mf

MH,0

)
− 1

18
ln

(
g∗dec

g∗0

)
(2.3.29)

The ratio kdec/k0 in the above equation can also be expanded using (2.1.11) and (2.1.10)

kdec

k0

=
adecHdec

a0H0

=

(
g∗dec

g∗0

)1/6(
Ωrad,0

Ωrad,dec

)1/2
Tdec

T0

(2.3.30)

where Ωrad,dec ' 1; substituting into (2.3.29) we obtain

∆NPBH
CMB ' ln

(
k0

kCMB

)
+

1

3
ln

(
Tdec

T0

)
+

1

3
ln Ωrad,0 +

1

3
ln γ − 1

3
ln

(
Mf

MH,0

)
(2.3.31)
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Figure 2.2: Plot of the power spectrum as a function of the modulus mass in the mass
range 3.5·107 GeV ≤ mϕ ≤ 1·1013GeV to explain all of the dark matter today in terms of
PBHs with mass Mf. The enhancement required in the power spectrum greatly reduces
by increasing the modulus mass mϕ (i.e. by shortening the duration of the modulus
epoch).

At this point, we make use of (2.3.25) to express Tdec in terms of the modulus mass.
Summing all the constant factors we get

∆NPBH
CMB ' 16.8 +

1

3
ln γ − 1

12
ln g∗dec +

1

2
ln
( mϕ

50 TeV

)
− 1

3
ln

(
Mf

M�

)
(2.3.32)

where k0 = 2.4 · 10−4 Mpc−1, kCMB = 0.05 Mpc−1, Ωrad,0 = 8.24 · 10−5, MH,0 = 4.35 ·
1022M�, T0 = 9.645·10−32Mp. Equation (2.3.32) shows that, as anticipated, the distance
in e-foldings is a function of both the PBH mass Mf and the modulus mass mϕ.

If we now set γ = 1, g∗dec = 106.75 (i.e. mϕ & 3.5 · 107 GeV) and Mf = 10−15M�, a
value for which it is possible to have 100% of DM as PBHs, we find

∆NPBH
CMB ' 27.9 +

1

2
ln
( mϕ

50 TeV

)
for mϕ & 3.5 · 107GeV (2.3.33)

i.e. the greater is the modulus mass, the greater is the distance in e-foldings between the
peak and the CMB modes exit. Fig. 2.3 shows a plot of (2.3.33); for mϕ = 3.5 · 107 GeV
we obtain ∆NPBH

CMB ≈ 31.2, while mϕ = 1 · 1013 GeV gives ∆NPBH
CMB ≈ 37.5.

The relations (2.3.27) and (2.3.33) represent the two constraints that the power spec-
trum of curvature perturbations Pζ must satisfy so that all of the dark matter today can
be constituted of PBHs with mass Mf produced during a matter dominated era driven
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by a modulus with mass mϕ. We are now going to examine a particular class of string
inflationary models called “Fibre Inflation” and, subsequently, we will derive the entire
power spectrum and all the other inflationary observables from its inflationary potential.

Figure 2.3: Plot of ∆NPBH
CMB = ∆NPBH

CMB(Mf,mϕ) in the mass range 3.5 · 107 GeV ≤ mϕ ≤
1 · 1013GeV and for a PBH mass Mf = 10−15M�. The distance in e-foldings increases
with the mass of the modulus mϕ.
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Chapter 3

PBHs from Fibre Inflation

In this chapter we shall study PBH formation within the framework of a particularly
promising string inflationary model called Fibre Inflation. Before discussing the details,
we present a very brief summary of the features of the 4-dimensional supergravity effec-
tive action.

3.1 Supergravity effective action

It is probably fair to claim that type IIB string compactifications are the best tools to
make string theory in contact with observations. In fact, type IIB models manage both
to stabilise the moduli and to build Standard Model-like constructions via systems of
intersecting branes. The moduli in the 4-dimensional effective supergravity theory which
are relevant for our discussion are the so-called Kähler moduli. These fields descend from
the 10-dimensional metric and parametrize deformations of the extra dimensions in size.
They are complex scalar fields defined as:

Ti = τi + i bi, i = 1, ..., h1,1(X) (3.1.1)

where h1,1(X) is a Hodge number of the Calabi-Yau threefold X which is used as our
compactification manifold1. The fields bi are axions which enjoy perturbative shift sym-
metries, while the τi are saxions, the supersymmetric counterparts of the axions, which
control the size of internal 4-cycles.

Now we consider a particular Calabi-Yau manifold which is suitable to derive inflation,
and define its dimensionless volume V as:

V =
√
τ1τ2 − τ 3/2

3 (3.1.2)

1The reason why X is a Calabi-Yau manifold is to obtain an effective theory with N = 1 supersym-
metry (after orientifolding) which can be chiral, and so compatible with observations.
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and, introducing the string length

ls = 2π
√
α′ (3.1.3)

we can define the Calabi-Yau 6-dimensional volume V as

V = V l6s = V (2π)6 α′3 (3.1.4)

Our supersymmetric low-energy 4D theory is described by a Kähler potential K and a
superpotential W ; the starting Kähler potential is

K = −2 ln

(
V +

ξ

2

)
' −2 lnV − ξ

V
+ . . .

= −2 lnV − ξ

V
(2π)6 α′3 + . . .

= Ktree +Kα′ + . . . (3.1.5)

where in the second step we assumed ξ
V � 1, where ξ is an O(1) constant determined by

the topological properties of the underlying Calabi-Yau manifold. Ktree is the classical
part of K, while Kα′ represents the leading order quantum correction, related to the
length of the string. In the limit α′ → 0 the length of string goes to zero, i.e. strings
become point-like, and Kα′ also vanishes. Therefore Kα′ takes into account the fact
that, even if we are in a low-energy 4-dimensional theory where all fundamental particles
appear point-like, they are strings at the fundamental level and this produces small
corrections to the behaviour predicted by the classical theory.

The starting superpotential is instead:

W = W0 + A3 e
−a3T3 = Wtree +Wnp (3.1.6)

where W0 is a constant tree-level contribution while Wnp represents non-perturbative
corrections with both A3 and a3 O(1) constants. The superpotential receives no contri-
butions at any finite order in α′ and gs, i.e. it cannot receive perturbative corrections.
There can be higher non-perturbative corrections to W that, for the moment, we ignore.

From K and W we can compute the potential of our supergravity theory VF
2 as

follows:
VF = eK

(
Ki ̄DiW D̄W − 3|W |2

)
(3.1.7)

where the covariant derivarive is

DiW ≡ ∂iW +W∂iK (3.1.8)

2Actually, this is the F-term scalar potential in supergravity.
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and ∂i indicates the derivative with respect to the moduli (3.1.1), while Ki̄ is the inverse
of the Kähler metric, defined as

Kı̄j = ∂ı̄ ∂jK (3.1.9)

Calculating the potential, one finds out that it is a function VF = VF (τ3, b3,V). However,
since τ3 is way smaller3 than τ1 and τ2, the volume can be approximated as

V '
√
τ1τ2 for τ3 � τ1, τ2 (3.1.10)

This means that, at this level of approximation, only τ3, b3 and the combination V '√
τ1τ2 have mass4. Hence, since there is no potential for the other fields, we find mb1 =

mb2 = mχ = 0, where χ is the precise combination of τ1 and τ2 that is orthogonal to V .
Massless particles are generally quite problematic, since they mediate forces that

have never been observed5, which modify the gravitational interaction at long range.
Axions however are peculiar particles, whose interactions depend on spin. Since gravity
has always been tested on macroscopic systems (e.g. stars, planets etc.), that have no
spin because they are constituted of many particles with random spins that cancel each
others, we can admit the existence of axions without contradicting our observations on
gravity. This is not true for the saxions τi, whose interactions are spin-independent.
Therefore, the only way to cancel fifth forces mediated by the massless saxion χ is to
add an additional correction Kgs � Kα′ to the Kähler potential

K ' Ktree +Kα′ +Kgs(τ1, τ2) (3.1.11)

called “string loop correction”, that has the effect of generating a subleading potential
Vsub = V (χ)6; this causes χ to acquire a mass mχ 6= 0, mχ � mV < mb3 ∼ mτ3 .

3.2 Inflationary potential

As we have seen in Chapter 1, to produce inflation one needs an approximately flat
potential, similar to a cosmological constant. In string theory we have many fields in our
potential: to obtain single-field inflation we need a potential that, considering only first
order corrections, is flat along one particular direction (i.e. a field which is at leading
orde massless). This is the case of χ: this field does not acquire a mass from the Kα′

corrections, hence the potential looks completely flat along its direction at this level of
approximation; but adding the second order correction Kgs , the potential gets slightly
lifted along the χ direction, that now is not flat anymore but only much less steep

3For this reason, in the literature it is also referred to as “tau-small” τs.
4The actual physical fields are different from τ3, b3 and V since they have to be canonically normalized.
5Also known as “Fifth forces”.
6To be precise, Vsub is also a function of V; however, V has already been fixed at leading order, so it

behaves like a constant in Vsub.
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than the previously lifted directions. Therefore, χ constitutes a good inflaton, the only
problem with it being that it is not canonically normalized. Hence, the actual inflaton is
the canonical version of χ, called φ. When in the previous chapters we said that we need
to tune the inflationary potential so that all of the dark matter today can be explained in
terms of PBHs, we were not referring to the whole string model potential V = Vlead +Vsub

with all fields which evolve dynamically, but just to the part of it along φ when all the
other fields are fixed at their minimum, i.e. to V = V0 + Vsub. Thus, from this moment
onward we will refer to this potential as Vinf.

Computing the inflationary potential via (3.1.7), one finds that (see Ref. [29], [23])

Vinf(χ) =
W 2

0

V3

[
Cup

V1/3
− CW√

χ
+

AW√
χ−BW

+
χ

V

(
DW −

GW

1 +RW
χ3/2

V

)]
(3.2.1)

where we considered both α′ and gs corrections to the Kähler potential. Cup, CW,
AW, BW, DW, GW and RW are the coefficients that measure the weight of the various
contributions to the inflationary potential, and they depend on microscopic parameters
of string theory. Let us take a closer look at these contributions: the first term is just
a constant that takes into account that we are in the minimum of VF (τ3, b3,V); the
second and the third term dominate at small field values, while the fourth term, being
proportional to χ, dominates at large field values and is responsible for destroying the
slow-roll plateau for large values of χ; the fifth term, that is proportional to −χ for small
field values and to −χ−1/2 for large field values, is the one that is responsible for the
near inflection point and, thus, for the production of amplified scalar perturbations that
will collapse forming PBHs at horizon reentry. The potential above can be expressed in
term of the inflaton φ, the canonically normalized counterpart of χ, as

χ = e
2√
3
φ

= 〈χ〉e
2√
3
φ̂

(3.2.2)

where in the second step we have expanded φ around its minimum as φ =
√

3
2

ln〈χ〉+ φ̂.
Substituting this result in the expression above of the inflationary potential, one finds
that

Vinf(φ̂) = V0

[
C1 − e−

1√
3
φ̂

(
1− C6

1− C7e
− 1√

3
φ̂

)
+ C8e

2√
3
φ̂

(
1− C9

1 + C10e
√

3φ̂

)]
(3.2.3)

This potential has enough tuning freedom to induce a slow-roll plateau (necessary
for inflation to occur) and a near-inflection point such that no more than 5-6 e-foldings
of inflation occur on it; this last requirement is important, because otherwise the CMB
scales would also be enhanced, which is not in agreement with observations. To produce
all of these features and obtain a potential like the one shown in Fig. 3.1, the coefficients
should be such that (C1 has to be adjusted to obtain a nearly Minkowski vacuum after
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the end of inflation)

C6 =
AW

CW

∼ O(1), C7 =
BW

ε1/3V1/3
∼ O(1), C8 = ε

DW

CW

� 1,

C9 =
GW

DW

∼ O(1), C10 = εRW � 1 . (3.2.4)

where we have also defined ε by parameterising the inflaton minimum as 〈χ〉 ≡ εV .

Figure 3.1: Solid line: Inflationary potential featuring a slow-roll plateau followed by
a near-inflection point which enhances the scalar power spectrum and triggers PBH
formation at horizon reentry; it has been obtained from the parameter set P2 of Tab.
3.1. The arrows indicate where the inflaton is located when the modes corresponding to
CMB and PBHs exit the horizon. Dashed line: potential that has been obtained from the
solid one by setting GW = 0, i.e. by canceling the term responsible for the near-inflection
point; for this reason, it cannot lead to PBH production.

3.3 Reheating and Dark Radiation

After the end of inflation the inflaton oscillates around the minimum of its potential
Vsub(φ) and, once the minimum has been reached, φ decays into particles that get ther-
malised, forming an ultra-relativistic gas that begins to dominate the energy density of
the Universe. In a non-stringy model, these particles are just the Standard Model parti-
cles we are familiar with; however, in our string inflationary scenario, φ could also decay
into the massless axions b1 and b2. Being that mb1 = mb2 = 0 and that they do not inter-
act with standard radiation, hence contributing to the effective number of neutrinos Neff,
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these particles are often referred to as “dark radiation”. The quantity ∆Neff measures
the deviation of Neff from 3, and it is observationally bounded to be ∆Neff � 0.6. How
many of these massless axions are produced, i.e. how much they influence Neff, depends
on the branching ratios associated to the inflaton decay width into these hidden sector
particles Γφ→hid = Γφ→b1,b1 + Γφ→b2,b2 . This has been obtained in a recent article (see
Ref. [33]): depending on the presence of absence of gauge fluxes on D7-brane wrapping
the inflaton 4-cycle, this ratio goes to zero and the dark radiation does not give an extra
contribution to Neff, while in other situations too many of these particles are produced
and the deviation ∆Neff from the observed value is too big.

3.4 Solution: Axions and Matter Domination

To solve the problem we just mentioned, one can give mass to the axions by considering
two additional corrections to the superpotential:

W = W0 + A3 e
−a3T3 + A1 e

−a1T1 + A2 e
−a2T2 (3.4.1)

For the sake of simplicity, we choose mb1 = mb2 , so that we can identify b1 ∼ b2 ∼ ϕ
and 0 < mϕ < mφ � mV < mb3 ∼ mτ3 . Now that the axion ϕ is massive and that
there are no more hidden sector particles left massless, ϕ will decay only into Standard
Model particles and ∆Neff = 0. However, the fact that mϕ 6= 0 has another consequence:
this field is gravitationally coupled and, via the process explained in Section 2.2, it
will dominate over the energy density of the Universe leading to a MD epoch before
BBN7. Therefore, ϕ is our modulus field. The value of its mass is controlled by the
parameters A1, A2, a1 and a2 and can be chosen to take different values. The only
requirements are that ϕ decays before BBN, which translates into mϕ & 50 TeV, and
that this axionic field is lighter than the inflaton whose mass in Fibre Inflation is of order
mφ ' 5 · 1013 GeV > mϕ.

3.5 PBH formation

It is now time to compute our inflationary observables, starting with the power spectrum
of scalar perturbations Pk. We cannot make use of the slow-roll approximation (1.2.77)
because it does not hold during the e-foldings of ultra slow-roll (see Ref. [25]), causing
the enhancement to be underestimated. We are therefore forced to make use of the

7As we have already mentioned, the choice mb1 = mb2 has been made for simplicity, but it is not
the only way to solve the problem of effective neutrinos. In fact one could lift only one of the axions,
say b1, leaving the other massless. This reproduces the effect we just explained, but with an important
difference: at tdec the lifted axion could decay into the massless one. At this point, one should evaluate
the branching ratio Γb1→b2b2 and make sure that ∆Neff � 0.6.
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definition of Pv(k) from the two-point correlation function (1.2.73). However, to make an
appropriate comparison with observations, we will consider the dimensionless analogous
of Pv(k) for the curvature perturbation ζk, that we will indicate as Pk and can be obtained
combining (1.2.73), (1.2.75) and (1.2.78)8

Pk ≡
k3

2π2
|ζk|2 =

k3

2π2

∣∣∣vk
z

∣∣∣2 (3.5.1)

We recall that the vk = vk(τ) are the mode functions of the normalized curvature pertur-
bations, that are obtained by solving the Mukhanov-Sasaki equation (1.2.46) with the
Bunch-Davies initial conditions (1.2.69). We report the equation here for convenience

v′′k(τ) +

(
k2 − z′′

z

)
vk(τ) = 0 with lim

kτ→−∞
vk(τ) =

1√
2k

e−ikτ (3.5.2)

where τ represents the comoving conformal time τ = (aH)−1, z(τ)2 = 2εa2 and ε is one
of the Hubble slow-roll parameters

ε ≡ − Ḣ

H2
, η ≡ ε̇

Hε
, κ ≡ η̇

Hη
(3.5.3)

Since the effective mass z′′/z turns out to be dependent on τ through the Hubble pa-
rameters

z′′

z
= (aH)2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 +

1

2
ηκ

]
(3.5.4)

the solution of (3.5.2) turns out to be rather complicate, involving the Henkel functions9

of first kind

vk(τ) =

√
−πη
2

H(1)
ν (−kτ) (3.5.5)

where the index ν is determined from (3.5.4) once a given background is chosen. Now
that we have the mode functions vk we can find the expression for the dimensionless
scalar power spectrum (3.5.1) in the superhorizon limit kτ → 0, which is the only regime
of interest for us

Pk '
H2

8π2ε

22ν−1|Γ(ν)|2

π

(
k

aH

)3−2ν

(3.5.6)

On CMB scales, this expression is constrained by experimental observations:

Pk=kCMB
' 2 · 10−9 (3.5.7)

8When looking at these three equations in Chapter 1, we need to be careful: since here we are not
always in slow-roll, one shall use the expressions that are valid in every scenario and not just in the
slow-roll approximation.

9The Henkel functions of first kind are defined as H
(1)
ν = Jν + iYν , where Jν is a Bessel function of

the first kind and Yν a Bessel function of the second kind
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Moreover, since we want PBHs with mass Mf to constitute all of the DM today, we have
two more constraints on Pk: the enhancement required for perturbations to collapse in
so many PBHs to explain all of the DM, and how long before the end of inflation the
enhanced perturbations must be produced. These last two requirements depend on the
dominant component of the Universe at the moment of horizon reentry and have been
obtained in Chapter 2 for both a radiation and a modulus dominated epoch.

We will now focus on the matter case, since the case of radiation has already been
analyzed by my supervisors in [29] and clearly requires a greater amount of fine-tuning.
Being that the greater is the mass of the modulus the smaller is the enhancement required,
we assume the larger value admissible mϕ = 1 · 1013 GeV. For the PBH mass, we choose
the usual value Mf = 10−15M� based on the experimental bounds shown in Fig. 1.1.
The constraints on the spectrum for these two values of the masses are

Pk=kPBH
' 2 · 10−5, ∆NPBH

CMB ' 37.5 (3.5.8)

To obtain a spectrum that respects (3.5.7)-(3.5.8) we first tuned the potential (3.2.1) with
any of the three sets of parameters listed in Tab. 3.1. Then we solved the equation (3.5.2)
numerically, which for the parameter set P2 gave us the solid line plot shown in Fig. 3.2;
the dashed plot in this same figure shows the slow-roll estimate of this spectrum, that has
been obtained via (1.2.78). As expected, the result in the slow-roll approximation differs
significantly from the numerical one only for the enhanced modes produced during the
ultra slow-roll regime; in particular, the slow-roll spectrum seriously underestimates the
enhancement necessary for perturbations to collapse into PBHs with mass Mf at horizon
reentry.

Tab. 3.2 shows the computational values of the scalar spectral index ns, which for
all the sets results a bit too red compared to the Planck reference value. Another
observable shown in this table is the tensor to scalar ratio r, defined as the ratio between
the amplitude of tensor perturbations and the amplitude Pζ of the scalar perturbations;
the values inferred from our model of inflation are large enough to give us the hope that
they could be measured by the next generation of cosmological observations.

The ultra slow-roll regime can be seen clearly by looking at Fig. 3.3 which shows, for
the potential descending from the set P2, the behaviour of the three Hubble slow-roll
parameters during the last e-foldings of inflation. In Sec. 1.2 we explained that, in order
to obtain standard slow-roll inflation, one should have both ε < 1 and |η| < 1; as can
be seen from Fig. 3.3, this is exactly the case during the first e-foldings of inflation.
However, between 10 and 13 e-foldings before the end of inflation, the behaviour of the
parameters drastically changes because of the near inflection point in the potential: ε
rapidly decreases towards zero, a behaviour that strongly enhances the power spectrum
of curvature perturbations, while also causing |η| � 1 and a deceleration of the inflaton
field. This is exactly the ultra slow-roll regime we mentioned many times before.

In Figure 3.4 we plot the evolution of the curvature perturbations on the scales
corresponding to CMB and PBHs. In Sec. 1.2 we explained that, in a context of slow
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CW AW BW GW/〈V〉 RW/〈V〉 〈χ〉 〈V〉
P1 1/10 2/100 1 1.303355 · 10−3 6.58724 · 10−3 3.89 107.3
P2 4/100 2/100 1 3.08044 · 10−5 7.071067 · 10−4 14.30 1000
P3 1.978/100 1.65/100 1.01 9.25746 · 10−8 1.414 · 10−5 168.03 5 · 104

Table 3.1: Examples of coefficients used in the potential (3.2.1) to obtain a scalar power
spectrum that satisfies the constraints (3.5.7)-(3.5.8). GW is the parameter that influ-
ences the height of the peak, while RW affects the distance in e-foldings between the
peak and the CMB modes; many digits have been necessary in these two parameters to
obtain the correct power spectrum. In all the sets, DW = 0. The last two columns show
geometrical compactification data.

ns r ∆NPBH
CMB Pk=kPBH

P1 0.9505 0.013 37.5 2.1011 · 10−5

P2 0.9494 0.013 37.5 2.5279 · 10−5

P3 0.9502 0.013 37.5 2.4874 · 10−5

Table 3.2: Inflationary observables for each parameter set of Tab. 3.1. The spectral
index ns has been obtained numerically, evaluating the derivative of the spectrum at
CMB modes exit, while the tensor to scalar ratio r has been computed from the slow-roll
approximation, valid at CMB scales.

roll, we expect perturbations to freeze-out at horizon crossing, so that their amplitude
stays constant until their reentry occurs after the end of inflation. In our model however,
the ultra slow-roll regime takes over at approximately 13 e-foldings before the end of
inflation, causing a super-horizon growth which is determined by the ratio k

aH
evaluated

at the onset of the ultra slow-roll period. For the CMB scales this quantity is so small
that the super-horizon growth is not visible in Fig. 3.4, meaning that the slow-roll freeze
out is a very good approximation for perturbations corresponding to these scales. This
is not the case for small scales exiting the horizon immediately before the peak in the
power spectrum, which undergo a significant super-horizon growth during the e-foldings
of ultra slow-roll. Finally, let us note that even for scales reentering after the ultra slow-
roll period the super-horizon behaviour deviates from slow-roll; this occurs because, as
can be seen from Fig. 3.3, for Ne < 10, we have ε < 1 but |η| ∼ O(1).
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Figure 3.2: Solid line: Plot of the dimensionless power spectrum of curvature perturba-
tions (3.5.1) as a function of the number of e-foldings before the end of inflation, obtained
by solving (3.5.2) numerically. This spectrum descends from the potential in Fig. 3.1,
i.e. the one obtained from the parameter set P2. Dashed line: slow-roll estimate (1.2.78).
The dot corresponds to CMB scales. This plot correctly reproduces (3.5.7).

Figure 3.3: Left: Evolution of the Hubble parameters in terms of the number of e-foldings
before the end of inflation for the parameter set P2 of Tab. 3.1. This plot clearly shows
that the background evolves from slow-roll (Ne & 13) to ultra slow-roll (10 . Ne . 13).
Right: zoom on the ultra slow-roll interval. The three dashed lines correspond to the
values 1, 6 and 10.
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Figure 3.4: Left: evolution of the scalar perturbations corresponding to CMB scales,
that exit the horizon approximately 50 e-foldings before the end of inflation. This super-
horizon evolution is practically the same that follows from the slow-roll estimate (1.2.77),
represented by the dashed line. Right: evolution of the perturbations corresponding to a
scale that exits the horizon approximately 15 e-foldings before the end of inflation. We
can see that, for 10 . Ne . 13, the perturbations undergo a super-horizon enhancement
due to the ultra slow-roll behaviour of the inflaton.
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Chapter 4

Conclusions

In this thesis, we have discussed an alternative hypothesis on the nature of dark matter
that has recently gained a lot of attention. It relies on black holes that form when
large density perturbations, produced during the inflationary epoch, reenter the horizon
and collapse under their own gravitational force. These black holes are referred to as
“primordial” because this formation process has its origin in large density perturbations
produced during the inflationary epoch. These PBHs could in principle have any mass,
but experimental constraints of various nature tell us that only PBHs that at the moment
of formation have a mass 10−16M� ≤Mf ≤ 10−11M� could explain a significant fraction
(or even all) of the dark matter content of our Universe today. The post-inflationary
epoch of horizon reentry of PBH scales can be a “radiation” dominated epoch, where
the products of the inflaton decay thermalised and came to dominate the energy density,
or an epoch of “matter” domination, in which a light and gravitationally coupled scalar
field temporarily dominates the Universe via oscillations around its minimum.

In Sec. 2.1 we started studying PBH formation in the case of radiation domination.
Our results tell us that PBHs with a mass of Mf = 10−15M� constitute 100% of the
DM today if the power spectrum of curvature perturbations is of order Pζ ∼ 10−2 on the
scales that, at reentry, trigger PBH production. This is an enhancement of 7 orders of
magnitude with respect to the value measured on the CMB scales Pζ = 2 ·10−9, and only
an inflationary potential with an high tuning freedom could produce such a spectrum.

The extreme tuning required in radiation domination made us wonder if a better re-
sult could be obtained by producing PBHs during matter domination. We first reviewed
the mechanism that allows gravitationally coupled scalar fields to dominate in a post-
inflationary epoch (Sec. 2.2), and then we repeated our calculations for a modulus driven
matter dominated era (Sec. 2.3). In this latter case, we found that the required enhance-
ment in the perturbations depends on the mass of the modulus that drives the matter
dominated epoch: the greater is this mass, the smaller is the amplitude of the fluctuations
needed. Therefore we hypothesized the largest possible modulus mass mϕ = 1 ·1013 GeV
and, for the same PBH mass studied in the radiation scenario, we found that a value of
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Pζ ∼ 10−5 is necessary for perturbations reentering in a modulus dominated epoch to
form enough PBHs to explain all of the DM today. Thus, an enhancement with respect
to the perturbations on the CMB scales is still needed; however, the height of the peak
has been significantly reduced compared to the radiation case, and this implies that the
tuning of the potential required in matter domination is smaller and PBH formation is
more “natural”.

After showing that in matter domination the constraints are less stringent compared
to the radiation case, we started studying a model of single field string inflation called
Fibre Inflation. The reason we turned to string theory is that epochs of matter domina-
tion driven by scalar fields lighter than the inflaton (moduli) are a natural consequence
of string inflation. Moreover, the Fibre Inflation potential has enough tuning freedom
to feature a slow-roll plateau followed by a near inflection point; this last feature is
indispensable to produce the enhancement required in the fluctuation and trigger PBH
production at horizon reentry. In Sec. 3.1-3.4 we briefly reviewed the main characteristics
of Fibre Inflation (how inflation and modulus domination descend from the model, how
the inflationary potential is obtained and its key features). Then, we tuned the potential
to obtain, through a numerical approach, a power spectrum compatible with the requests
that PBHs have been produced during a modulus dominated era and constitute all of
the DM there is today (Sec. 3.5). The reason we employed a numerical approach is that
the slow-roll estimate of the spectrum does not hold, because of the near inflection point
which drives our inflaton into an ultra slow-roll regime.

The idea of DM in terms of PBHs is quite simple compared to other alternatives
based on new non-baryonic particles or theories of modified gravity; however, it is not
easy to implement. In the case of PBH production during radiation domination, the
tuning freedom required in the inflationary potential is so high that it excludes many
inflationary models a priori. The case of PBH production during moduli dominated
epochs requires less fine tuning. Given that these periods are a natural consequence of
4-dimensional models based on string theory, a detection of PBHs could be considered
as an interesting hint in favour of string theory because of the higher naturalness of their
production in a modulus dominated epoch compared to a radiation epoch. Moreover, we
have seen how string compactifications feature the generic presence of very light axion-
like fields. Thus we conclude that another very strong indirect evidence of string theory
would be the discovery of axion-like particles, for example via axion-photon conversion
in very intense magnetic fields.
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