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Sommario

In una serie di articoli [2], [3] pubblicati tra il 1981 e il 1983, Igor Batalin e Grigory
Vilkovisky svilupparono una procedura per quantizzare le teorie di gauge tramite un
approccio basato sull’integrazione funzionale. Al giorno d’oggi questo è considerato
il metodo più potente per la quantizzazione delle teorie di gauge. Lo scopo di
questa tesi è l’applicazione del formalism BV ad alcune teorie di campo quantistiche
topologiche di tipo Schwarz. E’ presentata una formulazione BV della celebre teoria
di Chern-Simons, la quale fu la prima teoria di campo quantistica topologica ad
essere studiata da Witten nel suo famoso articolo del 1989 [30]. Di seguito viene
presentata la cosidetta teoria di campo BF (probabilmente introdotta per la prima
volta da Horowitz in [18]) su una varietà di dimensione arbitraria in una prospettiva
BV. L’ultima applicazione che consideriamo è la formulazione BV del modello Sigma
di Poisson introdotto da Cattaneo e Felder in [7]. In tutti questi modelli viene
discussa dettagliatamente la procedura di gauge fixing.
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Abstract

In a series of seminal papers [2], [3] written between the 1981 and 1983, Igor Batalin
and Grigory Vilkovisky developed a procedure to quantize gauge theories via path
integral approach. This algorithm nowadays is considered to be the most powerful
quantization method for gauge theories. The aim of this thesis is the application of
the BV formalism to some topological quantum field theories of Schwarz type. A BV
formulation of the Chern-Simons theory, the celebrated topological quantum field
theory first studied by E. Witten in his famous 1988 paper [30], is presented. Next,
the so called BF field theory (Probably introduced for the first time by Horowitz in
[18]) on manifolds of any dimension is studied in a BV perspective. The last topic we
consider is the BV formulation of the Poisson sigma model introduced by Cattaneo
and Felder in [7]. In all these model, we discuss in depth the implementation of the
gauge fixing procedure.

III



IV



Contents

1 The Batalin-Vilkovisky quantization method 1
1.1 The roots of the formalism . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 BV geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 BV algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 BV quantum master equation

and gauge fixing procedure . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Chern-Simons Theory 10
2.1 Elements of topological quantum field theory . . . . . . . . . . . . . . 10
2.2 Ordinary Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Classical action and Symmetries . . . . . . . . . . . . . . . . . 11

2.3 BV Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Geometrical framework and superfield formalism . . . . . . . . 12
2.3.2 Chern-Simons BV action . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Classical BV equation . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Quantum BV equation . . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Nilpotence and Invariance . . . . . . . . . . . . . . . . . . . . 18
2.3.6 Gauge fixing of the BV Chern-Simons theory . . . . . . . . . . 20
2.3.7 The gauge fermion . . . . . . . . . . . . . . . . . . . . . . . . 21

3 BF theory 24
3.1 Ordinary BF theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Classical action and symmetries . . . . . . . . . . . . . . . . . 24
3.1.3 Deformations of the BF theory . . . . . . . . . . . . . . . . . 25

3.2 BV BF theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Geometrical framework . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 BV BF action . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Nilpotence and Invariance . . . . . . . . . . . . . . . . . . . . 30
3.2.5 Quantum BV BF theory . . . . . . . . . . . . . . . . . . . . . 32
3.2.6 BV BF theory in 2d . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.7 BV BF theory in 3d . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.8 BV BF theory in 4d . . . . . . . . . . . . . . . . . . . . . . . 44

V



4 Poisson Sigma Model 50
4.1 Ordinary Poisson Sigma Model . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Geometrical framework . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Classical Action and symmetries . . . . . . . . . . . . . . . . . 51
4.1.3 BRST formalism . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 BV Poisson Sigma Model . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Geometrical framework and superfield formalism . . . . . . . . 54
4.2.2 BV symplectic form . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 BV action and BV quantum master equation . . . . . . . . . . 55
4.2.4 BV Action in field components . . . . . . . . . . . . . . . . . 57
4.2.5 Gauge fixing for the BV Poisson Sigma Model . . . . . . . . . 59

Outlook and Open problems 62

A Supergeometry/Graded geometry 64
A.1 The fundamental idea behind

supergeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.2 Z2-linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.1 superspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.2.2 Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2.3 Lie superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2.4 Supermanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 Integration theory for supermanifolds . . . . . . . . . . . . . . . . . . 68
A.3.1 Berenzin integral . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.4 Z-graded linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.4.1 Z-graded vector space . . . . . . . . . . . . . . . . . . . . . . 71
A.4.2 Graded manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 73

B BV bracket 74
B.1 BV bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.2 BV bracket in field components . . . . . . . . . . . . . . . . . . . . . 76

Acknowledgements 78

Bibliography 79

VI







Chapter 1

The Batalin-Vilkovisky
quantization method

In this chapter we provide a summary history of the development of the Batalin-
Vilkovisky formalism, then we discuss the method in detail introducing BV ge-
ometry, BV algebras and present the quantization scheme and the gauge fixing
procedure.

1.1 The roots of the formalism

Fundamental interactions of nature are described by gauge theories. A gauge sym-
metry has a crucial role nowadays because signals that the related theory is described
in a redundant way. In particular there are some degrees of freedom which do not
enter in the lagrangian. A theory like that possesses local invariance. From a theo-
retical point of view we can eliminate this gauge degrees of freedom, but in practice,
for many reasons (e.g. manifest covariance, locality of interactions or simply for cal-
culation convenience), we do not do this. The gauge invariance problem was quoted
for the first time by Richard P. Feynman in a conference held in a small town near
Varsaw in 1962. In his talk titled ”Quantum theory of gravitation”, Feynman pre-
sented the problem of gauge invariance in Yang-Mills theory and in the gravitation.
He proposed some heuristic methods to treat this question. In the following years
other scientists introduced more sophisticated techniques to study these theories.
There are many problems in the quantization methods of gauge theories. In the
abelian case the procedure is in the most of the cases well understood. In contrast
the situation is more complicated in the non-abelian case. In order to perform the
quantization procedure we must introduce ghost fields. Therefore the gauge fixing
method is necessary to render dynamical all the degrees of freedom, in this way
the unitary is preserved. A further improvement about this topic was developed by
L.D. Faddeev and V.Popov, and today is known as Faddeev-Popov method. It con-
sists in an functional integral approach to the quantization in which the presence
of auxiliary fields called ghosts is considered as a sort of measure effect. In fact,
dividing out the volume of the gauge group, a Jacobian measure contribution arises.
This factor is generated by introducing quadratic terms in the lagrangian for ghosts.
The lagrangian with the gauge fixing contribute retains a global symmetry which
was not broken by quantization. This property was discovered by Becchi,Rouet,
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Stora and Tyutin in 1974. A property of the BRST symmetry is that for closed
theories the transformation law for the original fields has the same behavior of a
gauge transformation where the gauge parameters are replaced by ghost fields. In
order to develop a formulation of the gauge theories which contains ghost fields and
incorporate the BRST symmetry was developed the field-antifield formulation. The
advantage of this formalism is to consider the previous symmetry as a fundamental
principle and use sources to deal with it. In 1975 J. Zinn-Justin studied the problem
of the renormalization in the Yang-Mills theories. He introduced the sources for the
BRST transformations and a symplectic structure denoted by (·, ·) in the space of
fields and sources. Thanks to his idea he wrote the Slavnov-Taylor identity in the
following compact form

(Z,Z) = 0, (1.1)

where Z is the generating functional of one-particle-irreducible diagrams. Contem-
porary the proof of the renormalizability of the gauge theories using the Feynman
rules was proposed by t’Hooft and Veltman. Parallel to the development of the
lagrangian formalism was developed also the hamiltonian formalism, which gained a
lot of importance after the discovery of the BRST symmetry. A group of physicists
including Igor Batalin, E.S Frakdin and Grigorij Vilkovisky studied the problem of
the phase space integral quantization of the gauge theories. This problem was solved
in 1977 for closed algebras, and thanks to Frakdin and Fradkina for the open alge-
bras. Finally, we arrived to the Batalin-Vilkovisky formalism that was developed
in many seminal series of papers written between 1981 and 1983. These physicists
further developed the Zinn-Justin approach, generalizing the symplectic structure
and the sources for the BRST transformation. They called them antibracket and an-
tifield respectively. Due to their contributions this quantization procedure is called
Batalin-Vilkovisky formalism (or BV for short). Nowadays is recognized as the
most powerful method to treat gauge theories. The geometrical aspects of the BV
formalism were studied later by Schwarz in [29]

1.2 BV geometry

In this section we present the geometry of Batalin-Vilkovisky quantization algo-
rithm. let U be a domain of a graded manifold M parametrized with coordinates
(x1, ...xn, ξ1...ξn). Let F and G be functions on U , then we define a degree -1 Poisson
bracket as follows

{F,G} =
∂RF

∂xi
∂LG

∂ξi
− ∂RF

∂ξi

∂LG

∂xi
, (1.2)

where ∂R and ∂L denote the right derivative and the left derivative respectively.
We define the transformations of the domain of a superspace preserving the bracket
(1.2) as P-transformations. They are an odd version of the symplectic transforma-
tions. Furthermore, if we impose the condition that the Jacobian is equal to one,
we obtain the so called SP-transformations.

The graded manifold M is equipped with a degree -1 symplectic form. It has,
in a general local coordinate system (z1, .., z2n), the following expression

ω =
1

2
dziωijdz

j, (1.3)
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and is closed as expected, i.e
dω = 0. (1.4)

Using the invertible matrix ωij(z), which inverse determines (1.3), we can express
bracket (1.2) as follows

{F,G} =
∂RF

∂zi
ωij(z)

∂LG

∂zj
, (1.5)

where as in (1.2), F and G are defined on the graded space of functions.

We introduce some useful definitions:

Definition 1.1 A P-manifold is a standard supermanifold M pasted together from
(n|n)-dimensional superdomanins by means of P-transformations.

Definition 1.2 A SP-manifold is a standard supermanifold M pasted together from
(n|n)-dimensional superdomanins by means of SP-transformations.

Using an important result of the standard symplectic geometry we can construct
a unique vector field KH (Hamiltonian vector field) corresponding to a function H
(hamiltonian) on a P-manifold M by the following equation

Ki
H = ωij(z)

∂LH

∂zj
. (1.6)

If the function H is odd, then KH is even and viceversa.
We can provide now an invariant form for definition 1.1 and 1.2.

Definition 1.3 A P-manifold is a graded manifold M endowed by a non-degenerate
degree -1 closed 2-form ω.

Definition 1.4 A SP-manifold is a graded manifold M endowed by non-degenerate
closed degree -1 2-form ω and by a density function ρ(z).

There are three important remarks about the previous definitions:

Remark 1.1 Definition 1.1 is equivalent to definition 1.3 as consequence of Dar-
boux’s theorem, which states that a non degenerate closed odd 2-form ω can be
locally written as follows

ω = dxidξi, (1.7)

using an appropriate choice of coordinates (x1...xn, ξ1, ..., ξn)- Darboux coordinates.
(1.7) is the coordinate berezinian of the all Darboux charts of an atlas of the mani-
fold M .

Remark 1.2 In the definition (1.4) there is the density function ρ(z). It is not
arbitrary. We require that in the neighbourhood of every point in M , we can choice
appropriately the Darboux coordinates such that ρ(z) = 1.
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Remark 1.3 There is not a classical analogous of P-manifold and SP-manifold
because always symplectic matrix has a determinant equal to one.

We consider a SP-manifold with a berezinian of the form (1.7). We can introduce
the following degree 1 second order differential operator

∆ : C∞(M) −→ C∞(M), (1.8)

which is the Batalin-Vilkovisky laplacian. Locally we can express it in Darboux
charts as

∆ =

∫
M

∑
i

∂R
∂xi

∂L
∂ξi

(1.9)

BV laplacian is a degree +1 odd second order operator and is nilpotent, i.e

∆2 = 0 (1.10)

Proof of relation (1.10)

∆2 =
∑
ij

∂R
∂xi

∂L
∂ξi

∂R
∂xj

∂L
∂ξj

=
∑
ij

(−1)|x
i| |ξj |+|xi| |xj |+|ξi| |ξj |+|ξi| |xj | ∂R

∂xj
∂L
∂ξj

∂R
∂xi

∂L
∂ξi

=
∑
ij

(−1)(|xi|+|ξi|)(|xj |+|ξj |) ∂R
∂xj

∂L
∂ξj

∂R
∂xi

∂L
∂ξi

(1.11)

Using the property that xi and ξi have opposite parity, we have |xi|+ |ξi| = −1, for
any i. Indeed we obtain

∆2 = −∆2, (1.12)

then, we get relation (1.10). �

We can introduce the BV laplacian in another way. Consider a P-manifold with
µ a general berezinian of the manifold M . We can define the second order operator

∆µ : C∞(M) −→ C∞(M), (1.13)

by setting

∆µ(H) :=
1

2
divµKH , (1.14)

where divµ is a degree 0 first order differential operator uniquely defined by the
following property ∫

M

µKHF = −
∫
M

µ divµKHF, (1.15)

and KH is the vector field introduced in (1.6).
Locally in a Darboux chart (xi, ξi) on the manifold M, we assume that the berezinian
has a local form

µ = ρ(x, ξ)dx1...dxndξn...dξ1, (1.16)
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where ρ(x, ξ) is a local density function.
Imposing the condition ρ(x, ξ) = 1, (1.16) has the following form

µ = dx1...dxndξn...dξ1 (1.17)

We can formulate (1.14) as follows

∆µ(H) =
∑
i

∂R
∂xi

∂L
∂ξi

H +
1

2
{log ρ,H} (1.18)

The BV laplacian in equation (1.18) is not necessary nilpotent. It squares to zero if
and only if the Berezinian has the form (1.17). In this case (1.18) is equivalent to
(1.9).

Lagrangian Submanifold

We introduce now the relevant notion of lagrangian submanifold

Definition1.5 Let M a graded manifold and ω a degree -1 symplectic form. We
can define the natural injection iL as the following application

iL : L −→M, (1.19)

where L is a submanifold of M . L is a lagragian submanifold if

iL
∗ω = 0. (1.20)

There exists a berezinian µ|L
1
2 on L, which is a tensor square root of the restriction

of µ to L.

Definition 1.6 Let M a graded manifold with a berezinian (1.17) and a degree
-1 symplectic form ω, we define a BV integral as follows∫

L⊂M
F
√
µ|L, (1.21)

with L ⊂M is the lagrangian submanifold and F ∈ C∞(M) is a function satisfying
∆µF = 0.

We present now the BV version of the Stokes’ theorem:

Theorem 1.1 (Batalin-Vilkovisky-Schwarz) Let M be a graded manifold en-
dowed with a Berezinian (1.17) and and a degree -1 symplectic form ω.

(i) For any G ∈ C∞(M) and L ⊂M is a lagrangian submanifold, we obtain∫
L

∆µG
√
µ|L = 0 (1.22)
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(ii) Let L and L′ lagrangian submanifolds of a SP manifold M , whose are in the
same homology class. Therefore∫

L

F
√
µ|L =

∫
L′
F
√
µ|L′ , (1.23)

where F ∈ C∞(M) is a function satisfying ∆µF = 0.

1.3 BV algebras

The aim of this section is introducing the BV algebras and present some of their
properties.

Definition 1.7 Let V a commutative graded algebra. V is called a Gerstenhaber
algebra if is equipped with bilinear bracket of the form (1.2) with the following
properties:

{F,G}+ (−1)(|F |+1)(|G|+1) {G,F} = 0 (1.24)

{F, {G,H}} = {{F,G} , H}+ (−1)(|F |+1)(|G|+1) {G, {F,H}} (1.25)

{F,GH} = {F,G}H + (−1)(|F |+1)|G|G {F,H} (1.26)

{FG,H} = F {G,H}+ (−1)|G|(|H|+1) {F,H}G (1.27)

where F,G,H ∈ V .
The degree of the bracket {·, ·} is 1. We can verify the properties (1.24)-(1.25)-
(1.26)-(1.27) using the definition (1.2). An example of Gerstenhaber algebra is
C∞(T ∗[−1]N).

Definition 1.8 A BV algebra is a Gerstenhaber algebra equipped with a degree
+1 linear map

∆ : V −→ V (1.28)

which is nilpotent and generates the bracket

{F,G} = (−1)|F |∆(FG) + (−1)(|F |+1)(∆F )G− F∆G. (1.29)

Where (1.28) is called BV laplacian or odd laplacian.
The space of functions C∞(T ∗[−1]N) is a BV algebra V with ∆ defined in (1.18),
with a choice of the volume form.

Definition 1.9 A BV manifold is a graded manifold such that the space of functions
C∞(M) is equipped with the structure of a BV algebra.
For example T ∗[−1]N is a BV manifold.

We can provide the definition of a BV algebra proposed by E. Getzler (see [12])
in 1994 which is equivalent to the previous one.

Definition 1.10 A BV algebra V is a Gerstenhaber algebra equipped with a degree
+1 linear map

∆ : V −→ V, (1.30)
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that is nilpotent and satisfies the following relation

∆(FGH) = ∆(FG)H + (−1)|F |F∆(GH) + (−1)(|F |−1)|G|G∆(FH)+

−∆(F )GH − (−1)|F |F∆(G)H − (−1)|F |+|G|FG∆H.
(1.31)

BV bracket generalizes the Schouten bracket defined on polyvector fields, viz. con-
trovariant tensor.

1.4 BV quantum master equation

and gauge fixing procedure

In this section we discuss the gauge fixing procedure, then we obtain the BV quan-
tum master equation.

Consider now the following integral ∫
N

Φ
√
µ (1.32)

where µ is the berezinian (1.17) and N = T ∗[−1]F is the space of fields and anti-
fields. We assume that Φ has the following form

Φ = Xe
i
~S, (1.33)

where S is the quantum action.
We need a lagrangian submanifold L in order to use the definition of BV integral
(1.21). To choose L we use the gauge fixing procedure. The gauge fixing paves
the way to the quantization of the gauge theories via the path integral approach,
and the most important data is the gauge fixing fermion, an odd functional of fields
with ghost number -1. We can exemplify the importance of the gauge fixing in the
following way. Consider a model which is described by some classical fields ϕ(0)i (in
a 4d gauge theory are the usual gauge field Aµ). Now we introduce ghosts c in order
to obtain the fields ϕi. The action of the model S[ϕi] is ill-defined, so we need a
new ones to quantize the theory using the path integral technique. To do this we
use the BV formalism. We add antifields ϕ∗i and we have a BV action S[ϕi, ϕ∗i ] for
the model, which possesses a gauge invariance, so we cannot use it to implement
the path integral in equation (1.32). We can set the antifields to zero, but in this
way, we reduce the action to the classical one that cannot be used to perform a
quantization procedure because is ill-defined. Usually we eliminate the antifields by
using a gauge fixing fermion Ψ via

ϕ∗i =
∂Ψ

∂ϕi
, (1.34)

where ϕi and ϕ∗i denote the fields and antifields respectively. The gauge fixing
fermion ψ is a degree -1 functional which depends only by the fields.
Thanks to (1.34) we select a lagrangian submanifold L

L←→
{
ϕ∗i =

∂Ψ

∂ϕi

}
(1.35)
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We denote the gauge fixed action as S|L = SL.

We can check that (1.35) represents a lagrangian submanifold

dϕi ∧ dϕ∗i = dϕi ∧ dϕj ∂2Ψ

∂ϕi∂ϕj
= 0

where we used the property that a contraction of a symmetric tensor with an anti-
symmetric tensor vanishes.

Now we are interested in this BV integral∫
L⊂M

Φ
√
µ|L, (1.36)

where
√
µ|L is the berezinian restricted to the lagrangian submanifold L Selecting

a suitable Ψ for a given model is a matter of skill, does not exist an algorithm or a
theorem that states how to choose a gauge fermion.
There are two important remarks about the gauge fixing procedure

Remark 1.4 Usually we choose the gauge fermion Ψ in order to have a non de-
generate theory. It means that when the action is expanded about a solution of the
equation of motion, propagators exist. Such Ψ is called admissible.

Remark 1.5 When the classical action S0 is local is preferable that the gauge
fermion be a local functional of the fields, in order to preserve the locality of the
gauge-fixed action.

Now we obtain the BV quantum master equation.
To discuss a quantum theory we construct a path integral which contains constraint
(1.35) in a delta function form as follows

ZΨ(X) =

∫
dϕdϕ∗δ

(
ϕ∗i −

δΨ

δϕi

)
exp

(
i

~
S[ϕ, ϕ∗]

)
X(ϕ, ϕ∗), (1.37)

where X[ϕ, ϕ∗] is a correlation function and S[ϕ, ϕ∗] is the quantum action which
depends from fields and antifields. We denote the integrand in (1.37) by Z[ϕ, ϕ∗].
The freedom in the choice of the parameter Ψ corresponds to the gauge fixing
procedure. The final result obtained by the model should be independent from
the gauge fixing, so we determine under which conditions this happens. Consider a
deformation of the gauge fermion of an infinitesimal quantity, then

ZΨ+δΨ(X)− ZΨ(X) =∫
dϕ

(
Z

[
ϕ,
∂Ψ

∂ϕ
+
∂δΨ

∂ϕ

]
−Z

[
ϕ,
∂Ψ

∂ϕ

])
=

=

∫
dϕ
∂RZ

∂ϕ∗
∂LδΨ

∂ϕ
+O

(
(δΨ)2

)
,

after an integration by parts we have∫
dϕ∆ZδΨ +O((δΨ)2).
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According to the previous equation, the integral (1.37) is infinitesimally independent
of Ψ iff

∆Z = 0. (1.38)

We have the following theorem

Theorem 1.2 Let the function Φ as in (1.33) with X = 1, we have the follow-
ing quantum master equation

{S, S}BV − 2i~∆S = 0, (1.39)

where the BV bracket has the form

{S, S}BV = ∆(S2)− S∆S − (∆S)S (1.40)

Sketch of the proof of theorem 1.2
Using (1.33) in (1.38) we have

∆

(
exp

{
i

~
S

})
= ∆

(
∞∑
n=0

1

n!

in

~n
Sn

)
=
∞∑
n=0

1

n!

in

~n
∆Sn (1.41)

We must evaluate (1.41) for different n in order to find a relation for a general
expression. In this calculation we repetitively use the following relation

∆(S2) = (∆S)S + S∆S + {S, S}BV . (1.42)

Therefore, for a generic n, the following relation holds true

in

~n

[
nSn−1∆S +

1

2
n(n− 1)Sn−2 {S, S}BV

]
. (1.43)

Now substituting (1.43) in (1.41) and after splitting the sum, (1.39) holds true.
�

theorem 1.3 Let Φ as in (1.33), now with a non vanishing X, so we have

{S,X}BV − i~∆X = 0, (1.44)

where S is the BV action which satisfies (1.39).

Proof of theorem 1.3.
Using (1.33) in (1.38), we have

0 = ∆
(
Xe

i
~S
)

= ∆e
i
~S X + e

i
~S∆X +

{
e

i
~S, X

}
BV

=

= e
i
~S

(
∆X +

i

~
{S,X}BV

)
,

then, we obtain

∆X +
i

~
{S,X}BV = 0, (1.45)

which is another form of (1.44). �
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Chapter 2

Chern-Simons Theory

In this chapter we present the application of the BV formalism to some models of
topological field theory. In the first section we provide some fundamental notions of
topological field theory and related properties, then we present the ordinary Chern-
Simons theory and using the BV algorithm we quantize it.

2.1 Elements of topological quantum field theory

we define a field theory to be topological if it contains a set of operators Oi called
observables whose correlation functions do not depend on the metric chosen on M .
Formally we have:

δ

δgµν
〈Oi1 ...Oin〉 = 0, (2.1)

where gµν is the metric defined on M and Oi are the observables of the theory.
Topological field theories are very important because are non trivial field theories
which they are not renormalizable, and so in some cases are completely solvable.
Renormalization is not necessary because a topological theory is metric independent,
therefore the ideas of points extremely closed or extremely far, from which ultraviolet
and infrared divergences come, lost their meaning.
Topological field theories are very important not only for physics, but they are
topological relevant in mathematics, because they provide an analytic expression
for topological invariants in low dimensions.
We can group topological field theories in two classes:

I Schwarz type

II Cohomological type (or Witten type)

We describe the main differences briefly:

I Schwarz theories are gauge theories with a metric indipendent classical ac-
tion. In this case the gauge fixing procedure is necessary in order to provide
the quantum theory.

II Cohomological theories are supersymmetric theories which are not mani-
festly metric indipendent at classical level. They have a nilpotent odd operator
denoted as Q. Physical observables are Q-cohomology classes and amplitudes

10



involving these observables are metric independent because of decoupling of
BRST trivial degrees of freedom. An example of such theories is the Donalds-
Witten theory, which is the twisted N = 2 supersymmetric version of the
Yang-Mills theory

In this thesis only topological quantum field theory of Schwarz type are considered.
First we analyze the Chern-Simons theory from an ordinary and a BV perspective.

2.2 Ordinary Chern-Simons theory

2.2.1 Introduction

As a first example of Schwarz type topological field theory we present the Chern-
Simons theory. This model gained its popularity with the famous paper written by
Witten [30] in 1989. Witten understood that the Chern-Simons theory is quantiz-
able and solvable in the appropriate sense. Indeed he showed the connection with
topology an knot theory.

2.2.2 Classical action and Symmetries

First of all we introduce the geometrical framework we need to describe the Chern-
Simons theory.
Consider a principal G−bundle P on a 3-fold M . G is a compact semisimple Lie
group. We assume a trivial principal bundle, P = M ×G.
The dynamic fields are connections A ∈ Ω1(M, g), where g is the gauge Lie algebra
of the group G.
The Chern-Simons action for A is defined as follows

SCS(A) =
k

4π

∫
M

(
A, dA+

1

3
[A,A]

)
, (2.2)

where k ∈ R is the coupling constant and (·, ·) is an invariant bilinear form on g.
If we consider this form to be realized by the trace over some representation of the
Lie algebra g, we can write the action in the following well-known form

SCS(A) =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.3)

The action (2.3) is topological because it does not depend on a choice of a metric
on M .
Let is calculated the equation of motion. From the Euler-Lagrange equation one
finds

δSCS(A)

δA
=

k

2π
FA = 0 (2.4)

Equation (2.4) corresponds to the condition of flatness for the connection A.
Now we discuss the integration over the base manifold M . The Chern-Simons action
is invariant under gauge transformation of the gauge field A. This invariance does
not hold completely.
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Consider indeed a gauge transformation g ∈ Map(M,G), where Map(M,G) is the
group of continuous maps M −→ G acting on the connection A as

A −→ A′ = gAg−1 − dgg−1 (2.5)

The Chern-Simons lagrangian varies as

LCS(A′) = LCS(A)− k

12π
Tr(g−1dgg−1dgg−1dg)− k

4π
dTr(Ag−1dg) (2.6)

The last term in equation (2.6) is exact, indeed can be neglected when we integrate
on the compact manifold M , therefore does not affect the action. There are no
reasons for the second term of equation (2.6) to vanish somehow, and this leads
to a gauge non-invariance of the theory. Note that the second term can be scaled
and in this way the invariance holds only up to integers. This determines that the
action SCS(A) can be defined as a functional taking R/Z or simply R values. With
a suitable choice of k it is possible to enforce that the variation of the action due to
a gauge transformation is 2πk, with k ∈ Z. Therefore, the fundamental quantity

eiSCS(A) (2.7)

will be well defined, leading to a sensible quantum theory.
Consider the following integral

w(g) =
1

24π2

∫
M

Tr(g−1dgg−1dgg−1dg), (2.8)

for g : M −→ G is called the winding number of the map g in topology.
It is a classical result that w(g) is an integer.
We can restrict k to be

K =
k

4π
, (2.9)

with k ∈ Z. To restrict the gauge anomaly of the Chern-Simons action generated
by the term

K

3
Tr(g−1dgg−1dgg−1dg) (2.10)

to 2π times on integer k remains a free parameter which is called the level of the
theory.

2.3 BV Chern-Simons theory

2.3.1 Geometrical framework and superfield formalism

We apply the BV formalism to the Chern-Simons theory in three dimensions. In
this model the geometrical framework is the following:

(i) An oriented smooth compact 3-fold M

(ii) A principal G−bundle P over M . Here G is a compact Lie group

12



In this model we adopt the superfield formalism. The base of this theory is the
degree +1 shifted tangent bundle of M , T [1]M .
In this case the related bundle projection is

Π : T [1]M −→M (2.11)

We consider now the degree +1 shifted adjoint bundle of P , AdP [1].
One has AdP [1] = M×G

g[1], where g[1] is the degree +1 shifted Lie algebra of G.
AdP [1] is a vector bundle over M , then Π∗AdP [1] is a vector bundle over T [1]M .
The superfield content of this model consists of the following superfield

a ∈ Γ (T [1]M,Π∗AdP [1]) . (2.12)

a can be decomposed in homogeneous components of defined T [1]M and AdP [1]
degree, called form and ghost degree respectively, yielding the form-ghost bidegree

a = −c+ a+ a† − c†, (2.13)

where:
c (0, 1) (2.14)

a (1, 0) (2.15)

a† (2,−1) (2.16)

c† (3,−2) (2.17)

The superfield a can be decomposed as follows

A = A0 + a. (2.18)

Where A0 is an ordinary background connection of P viewed as a locally defined
field of form-ghost bidigree (1, 0).

We discuss now the integration of superfields. We can perform this integration
using the standard supermeasure µ of T [1]M , µ has T [1]M degree -3.
If ϕ is a superfield, one has: ∫

T [1]M

µϕ =

∫
M

ϕ(3), (2.19)

where ϕ(3) is the component of ϕ of T [1]M which has standard form degree 3.

BV symplectic form

This theory it is characterized by a symplectic form which is relevant in this de-
scription

ΩBV =
1

2

∫
T [1]M

µTr(δAδA), (2.20)

using relation (2.18), we have

1

2

∫
T [1]M

µTr
[
δ(A0 + a)δ(A0 + a)

]
= (2.21)
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Since δ(A0) = 0, then

ΩBV =
1

2

∫
T [1]M

µTr(δaδa). (2.22)

The symplectic form in the previous equation has degree -1 and is closed as required.
We can try to workout a BV formulation of the model. The BV antibracket reads
as follows

{F,G}BV =

∫
T [1]M

µTr

(
δRF

δa

δLG

δa

)
. (2.23)

Using the equation (2.13), we can express (2.22) as

ΩBV =

∫
M

µTr(δc†δc+ δa†δa). (2.24)

So we have

{F,G} =

∫
M

µTr

[
δRF

δc

δLG

δc†
− δRF

δc†
δLG

δc
+
δRF

δa

δLG

δa†
− δRF

δa†
δLG

δa

]
(2.25)

2.3.2 Chern-Simons BV action

The Chern-Simons action in a BV formulation is formally:

SBV = k

∫
T [1]M

µTr

[
AdA+

2

3
AAA

]
. (2.26)

Using the decomposition (2.18), we formulate the BV Chern-Simons action as

SBV = k SCS(A0) + k

∫
T [1]M

µTr

[
2a FA0

+ aDA0a+
2

3
aaa

]
, (2.27)

where SCS(A0) is the Chern-Simons action of A0

SCS(A0) = k

∫
M

Tr

(
A0dA0 +

2

3
A0A0A0

)
. (2.28)

Proof of relation (2.27)
First of all consider equation (2.26) and use relation (2.18)

Tr

(
AdA+

2

3
AAA

)
=

= Tr

(
(A0 + a)d(A0 + a) +

2

3

{
(A0 + a)(A0 + a)(A0 + a)

})
=

= Tr
(
A0dA0 + A0da+ adA0 + ada+

+
2

3

{
A0A0A0 + 3A0

2a+ 3a2A0 + aaa
})

=
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= Tr
(
A0dA0 +

2

3
A0A0A0 + a(dA0 + 2A0

2)+

+ A0da+ a(da+ 2aA0) +
2

3
aaa
)

=

= Tr

(
A0dA0 +

2

3
A0A0A0 + aFA0 + aA0

2 − d(A0a)+

+ adA0 + a(da+ A0a+ aA0) +
2

3
aaa

)
=

Integrating the previous lagrangian over the graded manifold T [1]M one gets

=

∫
T [1]M

µTr

[
A0dA0 +

2

3
A0A0A0 − d(A0a)

]
+

+

∫
T [1]M

µTr

[
2aFA0 + aDA0

a+
2

3
aaa

]
.

(2.29)

Consider now the first integral in the equation (2.29) and using a sort of Stokes’
theorem we can eliminate the term d(A0a), which is not globally defined∫

T [1]M

µTr

[
A0dA0 +

2

3
A0A0A0 − d(A0a)

]
=

=

∫
M

µTr

[
A0dA0 +

2

3
A0A0A0

]
,

(2.30)

that corresponds to equation (2.28). �
The integrand in equation (2.28) is not globally defined, and so the integration is to
be understood in the Cheeger-Simons character sense.
Leaving aside the problem to giving the meaning of (2.30), we quantize the theory
with BV algorithm.

2.3.3 Classical BV equation

We can demonstrate the classical BV equation, namely

{SBV , SBV }BV = 0 (2.31)

Proof of relation (2.31).
In order to demonstrate the above relation we calculate the following directional
derivatives

d

dt
SBV (a+ tb)|t=0 =

d

dt
{kSCS(A0) + kSCS(a+ tb)} (2.32)

Since the fact k d
dt
SCS(A0) = 0, we have

d

dt
k

∫
T [1]M

µTr

[
2(a+ tb)FA0

+ (a+ tb)DA0
(a+ tb)+

+
2

3
(a+ tb)(a+ tb)(a+ tb)

]
=

= k

∫
T [1]M

µTr
{

2bFA0 + aDA0
b+ bDA0

a+ 2aab
}

=
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we can rewrite the above relation as follows

k

∫
T [1]M

µTr
{

2bFA0 + aDA0
b+DA0

ab−DA0
(ab) + 2aab

}
=

= 2k

∫
T [1]M

µTr
{
bFA0 + bDA0

a+ baa
}

=

= 2k

∫
T [1]M

µTr
{
b
(
FA0 +DA0

+ aa
)}

.

Hence
δLSBV
δa

=
δRSBV
δa

= 2k
(
FA0 +DA0

a+ aa
)

(2.33)

From equations (2.23)

{SBV , SBV }BV =

∫
T [1]M

µTr

[
δRSBV
δa

δLSBV
δa

]
.

Using (2.33), we have∫
T [1]M

µTr[2k
(
FA0 +DA0

a+ aa
)

2k
(
FA0 +DA0

a+ aa
)
] =

= 4k2

∫
T [1]M

µTr[
(
FA0 +DA0

a+ aa
) (
FA0 +DA0

a+ aa
)
] =

= 4k2

∫
T [1]M

µTr[FA0
FA0

+ FA0
DA0

a+ FA0
aa+DA0

aFA0
+

+DA0
aDA0

a+DA0
aaa+ aaFA0

+ aaDA0
a+ aaaa] =

= 4k2

∫
T [1]M

µTr[FA0
FA0

+ 2FA0
DA0

a+ 2aaFA0
+

+ 2aaDA0
a+DA0

aDA0
a+ aaaa] =

= 4k2

∫
T [1]M

µTr[FA0
FA0

] + 4k2

∫
T [1]M

µTr[2FA0
DA0

a+ 2aaFA0
+

+ 2aaDA0
a+DA0

aDA0
a+ aaaa] =

= 4k2

∫
T [1]M

µTr[FA0
FA0

] + 4k2

∫
T [1]M

µTr[2FA0
(DA0

a+ aa)+

+ (aa+DA0
a)(aa+DA0

a)].

Now, we consider

dTr

[
2aFA0

+ aDA0
+

2

3
aaa

]
=

= Tr

[
DA0

(2aFA0
+ aDA0

a+
2

3
aaa)

]
=

= Tr
[
2DA0

aFA0
− 2aDA0

FA0
+DA0

aDA0
a+

−DA0
DA0

a+
2

3

(
DA0

aaa− aDA0
aa+ aaDA0

a
)]

=
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= Tr[2FA0
DA0

a+DA0
aDA0

a− a(FA0
a− aFA0

) + 2aaDA0
a+ aaaa] =

= Tr[2FA0
DA0

a+DA0
aDA0

a+ aaDA0
a+DA0

aaa+ aaaa+ 2FA0
aa] =

= Tr[2FA0
(DA0

a+ aa) + (DA0
a+ aa)(DA0

a+ aa)].

Where we used the well-known relation

DA0
FA0

= 0 (2.34)

called Bianchi identity.
We also used the Ricci identity

DA0
DA0

a = FA0
a− aFA0

, (2.35)

and the following algebraic relation

Tr(aaaa) = 0.

It follows that:∫
T [1]M

µTr[2FA0
(DA0

a+ aa) + (DA0
a+ aa)(DA0

a+ aa)] =

=

∫
T [1]M

µdTr

[
2aFA0

+ aDA0
a+

2

3
aaa

]
= 0

(2.36)

By Stokes’ theorem.
Next, one has ∫

T [1]M

µTr
[
FA0

FA0

]
= 0. (2.37)

Since the integrand of equation (2.37) is of form degree 4.
Using (2.36) and (2.37), one gets (2.31). �

2.3.4 Quantum BV equation

We now discuss quantum BV Chern-Simons theory.
From the theory of the BV formalism we know that action (2.27) satisfies the Quan-
tum BV master equation, namely

{SBV , SBV } − 2i~∆BV SBV = 0 (2.38)

Since SBV obeys to the classical BV master equation, we can rewrite (2.38) as

2i~∆BV SBV = ∆BV SBV = 0, (2.39)

where ∆BV is the BV laplacian. It has the following form

∆BV =
1

2

∫
T [1]M

µTr

(
δ2
L

δAδA

)
(2.40)
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Proof of relation (2.39)
Using the BV action (2.26) we have

∆BV SBV = ∆BV k

∫
T [1]M

µTr

[
AdA+

2

3
AAA

]

Recalling that
δLSBV
δA

=
δRSBV
δA

= 2FA (2.41)

then, we have

k

∫
T [1]M

µTr

(
δL
δA

FA

)
=

= k

∫
T [1]M

µTr[DA(δ(0)1g)] =

= dimg δ(0) k

∫
T [1]M

µTr[DA1] = 0

Where δ(0) is the Dirac delta function evaluated in 0 and dimg is the dimension of
the Lie algebra g. We impose a cut-off in order to regularize the divergence that
comes from the Dirac delta function.
In a suitable regularization scheme, this result is supposed to be valid before remov-
ing the regularization, in spite of the fact that δ(0) tends to infinity. �

2.3.5 Nilpotence and Invariance

We introduce the BV field variations as follows

δBV a =
1

2k
(SBV , a) = FA0

+DA0
a+ aa. (2.42)

We can write the action (2.27) in field components using the decomposition (2.13).
One has:

SBV = kSCS(A0) + k

∫
M

µTr
[
2aFA0 + aDA0a+

+
2

3
aaa− 2a†(DA0c+ [a, c])− 2c†cc

]
,

(2.43)

and we have
δBV c = cc (2.44)

δBV a = DA0c+ [a, c] (2.45)

δBV a
† = FA0 +DA0a+ aa−

[
a†, c

]
(2.46)

δBV c
† = −DA0a

† −
[
c, c†

]
−
[
a, a†

]
(2.47)

The BV field variations (2.42) enjoys the nilpotence property, i.e.

δ2
BV a = 0 (2.48)
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Proof of relation (2.48). Using equation (2.42), we have

δ2
BV a = δBV

(
1

2k
{SBV , a}BV

)
=

= δBV (FA0
+DA0

a+ aa) =

= −DA0
δBV a+ δBV aa− aδBV a.

Using again equation (2.42), we have

= −DA0
(FA0

+DA0
a+ aa) + (FA0

+DA0
a+ aa)a− a(FA0

+DA0
a+ aa) =

= −DA0
FA0
−D2

A0
a−DA0

aa+ aDA0
a+ FA0

a+

+DA0
aa+ +aaa− aFA0

− aDA0
a− aaa =

= −FA0
a+ aFA0

+ FA0
a− aFA0

= 0.

The action (2.27) is invariant under the BV field variations (2.42), namely

δBV SBV = 0 (2.49)

Proof of relation (2.49):

δBV SBV = δBV

{
kSCS(A0) + k

∫
T [1]M

µTr

[
2aFA0

+ aDA0
a+

2

3
aaa

]}
.

Since δBV SCS(A0) = 0, we obtain

k

∫
T [1]M

µTr
[
2δBV aFA0

+ δBV aDA0
a+ aDA0

δBV a+
2

3
(δBV aaa− aδBV aa+ aaδBV a)

]
.

Using the relation (2.42)

k

∫
T [1]M

µTr
[
2(FA0

+DA0
a+ aa)FA0

+ (FA0
+DA0

a+ aa)DA0
a+ aDA0

(FA0
+DA0

a+ aa)+

+
2

3

{
(FA0

+DA0
a+ aa)aa+ a(FA0

+DA0
a+ aa)a+ aa(FA0

+DA0
a+ aa)

}]
=

= k

∫
T [1]M

µTr[2(FA0
+DA0

a+ aa)FA0
+ (FA0

+DA0
a+ aa)DA0

a+

+ aDA0
(FA0

+DA0
a+ aa) + 2aa(FA0

+DA0
a+ aa) =

k

∫
T [1]M

µTr[2FA0
FA0

+ 2DA0
FA0

+ 2aaFA0
+ FA0

DA0
a+DA0

aDA0
a+ aaDA0

a+

+aDA0
FA0

+ aDA0
DA0

a+ aDA0
aa+ 2aaFA0

+ 2aaDA0
a+ 2aaaa] =

= k

∫
T [1]M

µTr[2FA0
FA0

+ 4aaFA0
+ 4FA0

DA0
a+DA0

aDA0
a+ 4aaDA0

+ aDA0
DA0

a+ 2aaa =

=k

∫
T [1]M

µ
(
− dTr

{
FA0

a+ aDA0
a+ aaa

}
+ 2Tr[FA0

FA0
+

+ 2FA0
(DA0

a+ aa) + (DA0
a+ aa)(DA0

a+ aa)]
)

=

=2k

∫
T [1]M

µTr[FA0
FA0

+ 2FA0
(DA0

a+ aa) + (DA0
a+ aa)(DA0

a+ aa)]

19



The last expression was shown to vanish earlier, indeed one gets (2.49). �

(2.49) corresponds to the classical master equation (2.31).

2.3.6 Gauge fixing of the BV Chern-Simons theory

In this section we discuss the gauge fixing procedure, that is necessary to quantize
the Chern-Simons theory. First of all we introduce trivial pairs of fields and antifields

∼
c ∈ Γ(M,AdP [+1])

∼
c
†
∈ Γ(M,Λ3T ∗M ⊗ AdP [0]) (2.50)

∼
γ ∈ Γ(M,AdP [0])

∼
γ
†
∈ Γ(M,Λ3T ∗M ⊗ AdP [−1]) (2.51)

The auxiliary BV symplectic form is

ΩBV aux =

∫
M

µTr
[
δ
∼
c
†
δ
∼
c + δ

∼
γ
†
δ
∼
γ
]

(2.52)

The corresponding auxiliary BV bracket are

{F,G}BV aux =

∫
M

µTr

[
δRF

δ
∼
c

δLG

δ
∼
c
† −

δRF

δ
∼
c
†
δLG

δ
∼
c

+
δRF

δ
∼
γ

δLG

δ
∼
γ
† −

δRF

δ
∼
γ
†
δLG

δ
∼
γ

]
(2.53)

Auxiliary BV action

We can introduce the auxiliary BV action as follows

SBV aux = −2

∫
M

Tr
(
∼
c
†∼
γ
)

(2.54)

From a direct inspection the following relation holds true

{SBV aux, SBV aux}BV aux = 0, (2.55)

that is the BV classical master equation for auxiliary action (2.54).
We introduce the auxiliary BV variation as follows

δBV aux =
1

2
(SBV aux, ·)BV aux . (2.56)

We apply (2.56) to fields and antifields introduced in equations (2.50) and (2.51),
then

δBV aux
∼
c = −∼γ (2.57)

δBV aux
∼
γ = 0 (2.58)

δBV aux
∼
c
†

= 0 (2.59)

δBV aux
∼
γ
†

= −∼c
†

(2.60)

As expected (2.56) enjoys the nilpotence property, namely

δ2
BV aux(·) = 0 (2.61)
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Proof of relation (2.61)

δ2
BV aux(

∼
c,
∼
c
†
,
∼
γ,
∼
γ
†
) = δBV aux(−

∼
γ, 0, 0,−∼c

†
) = 0

thanks to (2.58) and (2.59), (2.61) holds true. �

The auxiliary BV action (2.54) is invariant under auxiliary BV variations (2.56),
namely

δBV auxSBV aux = 0, (2.62)

which corresponds to the BV classical master equation (2.55) for the auxiliary BV
action (2.54).

Proof of relation (2.62)

δBV auxSBV aux = δBV aux

(
−2k

∫
M

Tr
(
∼
c
†∼
γ
))

=

= −2k

∫
M

Tr
(
δBV aux

∼
c
†∼
γ +

∼
c
†
δBV aux

∼
γ
)

Using the relation (2.58) and (2.59), one gets equation (2.62). �

2.3.7 The gauge fermion

The gauge fermion for the BV 3d Chern-Simons theory is

Ψ =

∫
M

Tr
(
∼
cDA0 ? a

)
, (2.63)

where ?, as usual, is the Hodge operator.
Using (2.63) we can define a lagrangian submanifold L in the field space as follows

ϕ†A =
δlΨ

δϕA
. (2.64)

One finds

c† =
δlΨ

δc
= 0 (2.65)

a† =
δlΨ

δa
= ?DA0

∼
c (2.66)

∼
c
†

=
δlΨ

δ
∼
c

= DA0 ? a (2.67)

∼
γ
†

=
δlΨ

δ
∼
γ

= 0 (2.68)

Thanks to the gauge fermion (2.63) we can define the gauge fixed action as follows:

I = (SBV + SBV aux)|L =

= (kSCS(A0) + kSCS(a) + SBV aux) |L =
(2.69)

21



=

{
kSCS(A0) + k

∫
M

Tr

[
2aFA0 + aDA0a+

2

3
aaa

]
− 2k

∫
M

Tr
(
∼
c
†∼
γ
)} ∣∣∣∣∣

L

=

Using (2.64)

= kSCS(A0) + k

∫
M

Tr
[
2aFA0 + aDA0a+

2

3
aaa+

− 2
∼
γDA0 ? a+ 2DA0

∼
c ? (DA0c+ [a, c])

] (2.70)

We can introduce now the BRST operator

s = δBV |fields, (2.71)

such that:
sc = δBV c = cc (2.72)

sa = δBV a = DA0c+ [a, c] (2.73)

s
∼
c = δBV aux

∼
c = −∼γ (2.74)

s
∼
γ = δBV aux

∼
γ = 0 (2.75)

Operator (2.71) is nilpotent, i.e
s2 = 0. (2.76)

This is a trivial relation because the BRST formalism works for this model.

Proof of relation (2.76).

Consider s2 acting on the fields a, c,
∼
c,
∼
γ, then

δBV (δBV a+ δBV c+ δBV
∼
c + δBV

∼
γ)

Using relations (2.72),(2.73),(2.74) and (2.75), we obtain

δBV (DA0c+ [a, c] + cc− ∼γ)

Using again the previous relations, we have

−DA0(δBV c) + [δBV a, c] + [a, δBV c] + δBV cc− cδBV c =

= −DA0(cc) + (DA0c)c+ [a, c]c− c(DA0c) + c[a, c]+

− acc+ cca+ ccc− ccc =

= −DA0(cc) + (DA0c)− cac− c(DA0c) + cac = 0

relation (2.76) holds true. �

The gauge fixed action (2.69) is invariant under the BRST operator, namely

sI = 0 (2.77)

22



Proof of relation (2.77)

sI = s(SBV + SBV aux)|L =

= s kSCS(A0) + s k

∫
M

Tr
[
2aFA0 + aDA0a+

+
2

3
aaa+ 2DA0

∼
c ? (DA0c+ [a, c])− 2γDA0 ? a

]
Since sSCS(A0) = δBV SCS(A0) = 0, we have

= s k

∫
M

Tr
[
2aFA0 + aDA0a+

2

3
aaa+

+ 2DA0

∼
c ? (DA0c+ [a, c])− 2γDA0 ? a

]
=

= k

∫
M

Tr[2saFA0 + saDA0a+ aDA0sa+ 2saaa+

− 2DA0s
∼
c ? (DA0 + [a, c])− 2DA0

∼
c ? (−DA0sc+

+ [sa, c]− [a, sc])− 2sγDA0 ? a− 2γDA0 ? sa] =

= k

∫
M

Tr[2(DA0c+ [a, c])FA0 + (DA0c+ [a, c])DA0a+

+ aDA0(DA0c+ [a, c]) + 2aa(DA0c+ [a, c])+

+ 2DA0γ ? (DA0c+ [a, c])− 2DA0

∼
c ? (DA0(cc)+

− [DA0c+ [a, c], c]− [a, cc]) + 2γDA0 ? ((DA0c+ [a, c]))] =

= k

∫
M

Tr[2DA0γ ? (DA0c+ [a, c])− 2DA0γ ? (DA0c+ [a, c])+

− 2DA0

∼
c ? (DA0cc− cDA0c−DA0cc+ cDA0c− (ac+ ca)c+

+ c(ac+ ca) + acc− cca) + 2FA0(DA0c+ [a, c])+

+DA0a(DA0c+ [a, c]) +DA0a(DA0c+ [a, c]) + 2aa(DA0c+ [a, c])] =

= 2k

∫
M

Tr[FA0(DA0c+ [a, c]) + (DA0a+ aa)(DA0c+ [a, c])]

Now, one has

0 =

∫
M

dTr [(FA0 +DA0a+ aa)c] =

=

∫
M

Tr {DA0 [(FA0 +DA0a+ aa)c] + [a, (FA0 +DA0a+ aa)c]} =

=

∫
M

Tr[DA0FA0c+ FA0DA0c+DA0DA0ac+DA0aDA0c+DA0aac+

− aDA0ac+ aaDA0c+ [a, FA0 ]c+ FA0 [a, c] + [a,DA0a]c+DA0a[a, c]+

+ [a, aa]c+ aa[a, c]] =

=

∫
M

Tr[FA0DA0c+ [FA0 , a]c+DA0aDA0c− [a,DA0a]c+ aaDA0c+

− [FA0 , a]c+ FA0 [a, c] + [a,DA0a]c+DA0a[a, c] + aa[a, c]] =

=

∫
M

Tr[FA0(DA0c+ [a, c]) + (DA0a+ aa)(DA0c+ [a, c])]

From the previous relation, (2.77) follows.
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Chapter 3

BF theory

3.1 Ordinary BF theory

3.1.1 Introduction

In this chapter we provide an introduction to the so called BF theory, probably
introduced by Horowitz in [18]. This is an important topological quantum field
theory of Schwarz type because its deformations have a relevant role in studies
about the gravity quantization.

3.1.2 Classical action and symmetries

In this section we introduce BF theory, begging with some elements of its geometry.

Consider a G-bundle P −→ M , where M is a connected, orientable and closed
manifold of dimension m ≥ 2. G is a compact simple Lie group with a Lie algebra
g. We assume the bundle to be trivial, P = M ×G. We denote by Ω(M) the space
of differential forms on M and by Ω(M,AdP ) the space of differential forms on M
with values in the adjoint bundle AdP = P ×Ad g (which are g-valued forms on M).
The field content of the BF theory is the following

(i) A connection A ∈ Ω1(M,AdP ) which plays the role of dynamical field. Its
curvature denoted by FA is a form in Ω2(M,AdP ).

(ii) A form B ∈ Ωm−2(M,AdP ).

Using these fields, we can construct the action of the model

SBF = k

∫
M

〈B,FA〉 , (3.1)

where k ∈ R is a constant and 〈·, ·〉 is an invariant, non singular, bilinear form on g.
If we consider this form to be realized by the trace over some representation of the
Lie algebra g, we can rewrite (3.1) as follows

SBF = k

∫
M

Tr(BFA). (3.2)
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Let’s calculate now the equations of motion. From the Euler-Lagrange equation,
one finds:

δSBF
δB

= kFA = 0 (3.3)

δSBF
δA

= kDAB = 0. (3.4)

Eq. (3.3) corresponds to the condition of flatness for the connection A.
Next we discuss the symmetries of the BF theory.
Action (3.2) is invariant under the finite gauge transformations

A −→ gA = gAg−1 + dgg−1 (3.5)

B −→ gB = gBg−1, (3.6)

where g ∈Map(M,G), the group of continuous maps M −→ G.
We can provide an infinitesimal form for the previous gauge transformations, namely

δA = −DAε (3.7)

δB = −([B, ε] +DAτ), (3.8)

where ε ∈ Ω0(M,AdP ) and τ is an element of Ωm−3(M,AdP ).

3.1.3 Deformations of the BF theory

We discuss now all the possible deformations of the BF theory. To obtain them is
necessary add to the action (3.2) a topological term which is invariant under gauge
transformations (3.5) and (3.6). We don’t consider Chern-Simons terms, which exist
only in odd dimensions and are invariant under transformation (3.7). Imposing that
B be a (m− 2)-form which takes value in the adjoint bundle, we have the following
theorem:

Theorem 3.1 Exists topological, gauge invariant and non-singular deformations
of the BF theory only for m = 2, 3, 4. They have the following form

S
(2)
BF =

∫
M

Tr(f(B)FA) m = 2 (3.9)

S
(3)
BF =

∫
M

Tr

(
B ∧ FA +

Λ

3!
B ∧B ∧B

)
m = 3 (3.10)

S
(4)
BF =

∫
M

Tr

(
B ∧ FA +

Λ

2
B ∧B

)
m = 4 (3.11)

where k ∈ R and f(B) is an analytic function on the space Ω0(M,AdP ).

Proof of the theorem 3.1
Consider the general form for a deformed action defined on a m−dimensional man-
ifold M , which is invariant under transformations (3.5) and (3.6), namely

S
(m)
BF =

∫
M

∑
r≥0,s≥0

Dr
AB

s (3.12)
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In order to obtain a topological action we require

r + (m− 2)s = m (3.13)

with r, s positive integers.
To solve (3.13) we can consider many cases, namely

(I) For m=2, (3.13) has trivially one solution for s = 0 and r = 2. Since
D2
Aa = aFA, we have action (3.9) with f(B) =

∑∞
s=0 αsB

s,where αs are arbi-
trary constants.

(II) For m≥ 2 we can rewrite (3.13) as

s =
m− r
m− 2

(3.14)

it has solution if r = 0, 1, 2,m. In what follows each solution is considered
singularly.

(a) r=m. In this case s = 0. Since D2
Aa = aFA, the we obtain F

m
2 if m is

even, while, if m is odd, we have DAF
m−1

2 which vanishes thanks to the
Bianchi identity.

(b) r=2. In this case s = 1, then we have the ordinary BF term.

(c) r=1. In this case s = m−1
m−2

which has a solution only for m = 3. We
obtain the term BDAB.

(d) r=0. In this case s = m
m−2

. It has a solution only for m = 3 and m = 4.
We obtain s = 3 and s = 2 respectively.
We have terms B ∧B ∧B and B ∧B which appear in (3.10) and (3.11).
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3.2 BV BF theory

3.2.1 Introduction

In this section we discuss the BF theory in a BV perspective. First of all we introduce
the geometrical framework for a BV BF theory in a arbitrary dimension m, then
we define the action of the model and we demonstrate the BV master equation.
Next we will take a specific dimension and we face the problem of the gauge fixing
procedure..

3.2.2 Geometrical framework

In this model the geometrical framework is constituted by the following components:

(1) An oriented, smooth, compact m-fold M

(2) A principal G bundle P over M . G is a compact Lie group

In this model we adopt the superfield formalism. The base in this example is the
degree +1 shifted tangent bundle of M , T [1]M .
In thid case the related bundle projection is

Π : T [1]M −→M. (3.15)

We consider the adjoint bundle of P , AdP , which is a vector bundle over M , while
ΠAdP is a vector bundle over T [1]M .
The superfield content of this model consists in the following fields

A− A0 ∈ Γ(T [1]M,AdP ) (3.16)

B ∈ Γ(T [1]M,AdP ), (3.17)

which are respectively a 1-form and a (m−2)-form of adjoint type. A0 is an ordinary
background connection of the bundle P . We denote with Γ the internal sections of
the bundle P .
We can decompose (3.16) and (3.17) in field components as follows:

A− A0 = −c+ a+ (−1)mb† +
m−2∑
k=1

(−1)mτ †k (3.18)

B =
m−2∑
k=1

τk + b+ a† − c† (3.19)

Each component in (3.18) and (3.19) has a definite form-ghost bidegree, namely
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A B
c (0, 1) τk (0,m− 2)
a (1, 0) τk−1 (1,m− 3)
b† (2,−1) τk−2 (2,m− 4)

τ †1 (3,−2) ... ...

τ †2 (4,−3) τ1 (m− 3, 1)

τ †3 (5,−4) b (m− 2, 0)
... ... a† (m− 1,−1)

τ †k (m,−m+ 1) c† (m,−2)

We briefly discuss now the integration of superfields. We can perform this inte-
gration using the standard supermeasure µ of T [1]M , which as T [−1]M degree −m.
Given ϕ a superfield, one has the following relation∫

T [1]M

µϕ =

∫
M

ϕ(m), (3.20)

where ϕ(m) is the component of ϕ of T [1]M which has standard form degree m.

BV symplectic form

In this theory is relevant the following symplectic form

ΩBV =

∫
T [1]M

µTr(δBδA), (3.21)

which has degree -1 and is closed as required, namely

δΩBV = 0. (3.22)

The related BV bracket reads as follows

{F,G}BV =

∫
T [1]M

µTr

(
δRF

δA

δLG

δB
− (−1)m

δRF

δB

δLG

δA

)
(3.23)

We can formulate (3.21) in field components. Using (3.18) and (3.19), we get

ΩBV =

∫
M

Tr

[
δa†δa+ δb†δb+ δc†δc+

m−2∑
k=1

δτ †kδτk

]
. (3.24)

we can rewrite (3.23) in field components as follows

{F,G}BV =

∫
M

Tr

[
δRF

δa

δLG

δa†
− δRF

δa†
δLG

δa
+
δRF

δb

δLG

δb†
− δRF

δb†
δLG

δb
+

+
δRF

δc

δLG

δc†
− δRF

δc†
δLG

δc
+

m−2∑
k=1

δRF

δτk

δLG

δτ †k
− δRF

δτ †k

δLG

δτk

] (3.25)
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3.2.3 BV BF action

The action for the BF theory in a BV perspective is formally

SBV = k

∫
T [1]M

µTr(BFA), (3.26)

where the curvature FA has the well-known form:

FA = dA+
1

2
[A,A] (3.27)

BV Classical master equation

We can demonstrate the classical BV equation, namely

{SBV , SBV }BV = 0 (3.28)

Proof of equation (3.28)
In order to demonstrate the previous relation we have to calculate directional deriva-
tives for both the superfields. Consider first the superfield A, then we determine the
following relation

d

dt
SBV (A+ ta), (3.29)

where a ∈ Ω1(M,AdP ).
Using (3.26) in (3.29), we obtain

d

dt
k

∫
T [1]M

µTr[BdA+ (−1)m−1tdBa+BAA+ t((−1)m−1ABa+BAa) + t2Baa]

∣∣∣∣∣
t=0

=

=
d

dt
k

∫
T [1]M

µTr[BdA+BAA+ (−1)m−1t(dB + [A,B])a+ t2Baa]

∣∣∣∣∣
t=0

=

= (−1)m−1k

∫
T [1]M

µTr[(dB + [A,B])a]

Hence
δRSBV
δA

= (−1)m−1 δLSBV
δA

= (−1)m−1DAB (3.30)

For the superfield B, we have to calculate

d

dt
SBV (B + tb)

∣∣∣∣∣
t=0

. (3.31)

Using (3.26) in (3.31), we have

d

dt
k

∫
T [1]M

µTr[(B + tb)FA] =

∫
T [1]M

µTr[bFA]

Hence
δLSBV
δB

=
δRSBV
δB

= FA (3.32)
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Substituting (3.30) and (3.32) in (3.28), we have

{SBV , SBV } = 2

∫
T [1]M

µTr

[
δRSBV
δA

δLSBV
δB

]
= 2k2

∫
T [1]M

µTr[FADAB] =

= 2k2

∫
T [1]M

µTr[DA(FAB)]− 2k2

∫
T [1]M

µTr[DAFAB] = 0

where the second term vanishes thanks to the Bianchi identity

DAFA = 0, (3.33)

while the first term vanishes thanks to the Stokes’ theorem, therefore relation (3.28)
holds true. �

3.2.4 Nilpotence and Invariance

In this section we introduce the BV field variations and their properties.
We define the BV field variations as follows

δBV (·) =
1

k
{SBV , ·}BV , (3.34)

where {·, ·}BV is the BV bracket introduced in (3.23).
For the superfields A and B we have the following relation

δBVA =
1

k
{SBV , A}BV = FA (3.35)

δBVB =
1

k
{SBV , B}BV = −DAB (3.36)

Proof of relation (3.35) Considering the following test function

〈A,ϕ〉 =

∫
T [1]M

µTr(Aϕ) (3.37)

Substituting (3.37) in (3.34) we have

− δA = −{SBV , 〈A,ϕ〉}BV = −(−1)−m 〈{SBV , A}BV , ϕ〉 =

= −(−1)−m
∫
T [1]M

µTr

[
δRSBV
δA

δL 〈A,ϕ〉
δB

− (−1)m
δRSBV
δB

δL 〈A,ϕ〉
δA

]
=

=

∫
T [1]M

µTr[FAϕ]

then (3.35) holds true. �

Proof of relation (3.36).
As in the previous proof we can consider the following test function

〈B,ψ〉 =

∫
T [1]M

µTr[Bψ] (3.38)
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Substituting (3.38) in (3.34) we have

− {SBV , 〈B,ψ〉}BV = (−1)−(m+1) 〈{SBV , B}BV , ψ〉 =

= −
∫
T [1]M

µTr

[
δRSBV
δA

δL 〈B,ψ〉
δB

]
= (−1)m−2

∫
T [1]M

µTr[DABψ]

then (3.36) holds true. �

(3.34) enjoys the nilpotence property, namely

δ2
BV (·) = 0 (3.39)

In the case of the superfields A and B, we have

δ2
BV (A) = 0 (3.40)

δ2
BV (B) = 0 (3.41)

Proof of relation (3.40)

δ2
BV (A) = δBV δBV (A) = δBV FA = −DAδBVA = −DAFA = 0

we used the Bianchi identity (3.33). Then (3.40) holds true. �

Proof of relation (3.41)

δBV (δBVB) = −δBVDAB =

= (DAδBVB − [δBVA,B]) = +D2
AB − [FA, B] = 0

Where we used the well-known Ricci identity

DADAB = FAB −BFA. (3.42)

Then (3.41) holds true. �

The BV action (3.26) is invariant under the BV field variations, namely

δBV SBV = 0 (3.43)

Proof of relation (3.43)

δBV SBV = δBV k

∫
T [1]M

µTr[BFA] = k

∫
T [1]M

µTr[δBVBFA +BδBV FA] =

= k

∫
T [1]M

µTr
[
−DABFA +BDAFA

]
= 0

The last expression vanishes thanks to Bianchi identity (3.33) and Stokes’ theorem,
therefore equation (3.43) holds true. �
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3.2.5 Quantum BV BF theory

In this section we discuss the quantum BV master equation. From the theory of the
BV formalism we know that the BV action must satisfy the BV master equation,
namely

{SBV , SBV } − 2i~∆BV SBV = 0 (3.44)

Since the fact the classical BV equation holds true, we check the Quantum master
equation, namely

∆BV SBV = 0 (3.45)

where the BV laplacian has the following form

∆BV = (−1)m+1

∫
T [1]M

µTr

(
δL
δA

δL
δB

)
(3.46)

Proof of relation (3.45)

∆SBV = ∆BV k

∫
T [1]M

µTr(BFA) =

= (−1)m+1k

∫
T [1]M

µTr

[
δLFA

δA

]
=

= (−1)m+1k

∫
T [1]M

µTr [DAδ(0)1g] =

= (−1)m+1dimg δ(0) k

∫
T [1]M

µDA1 = 0

where δ(0) is an infinite constant. In order to have a finite one we impose a cut-off.
In an opportune regularization scheme, this result is supposed to be valid before
removing the cut-off, in spite of the fact that the Dirac Delta function tends to
infinity. �
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3.2.6 BV BF theory in 2d

From now, unless stated otherwise, we assume m = 2. In this section we study the
2d BV BF model and related gauge fixing procedure.

Geometrical framework

The geometrical framework is constituted by the following elements

(I) An oriented, smooth, compact 2-fold Σ

(II) A principal G−bundle P over Σ. Here G is a compact Lie group

We adopt the superfield formalism. The superfield content of this model consists
in the following fields

A− A0 ∈ Γ(T [1]Σ,AdP ) (3.47)

B ∈ Γ(T [1]Σ,AdP ), (3.48)

which are respectively a 1-form and a 0-form of adjoint type. We recall that A0 is an
ordinary background connection of the bundle P which can be viewed as a locally
defined field of form-ghost bidegree (1,0).
We can decompose (3.47) and (3.48) in homogeneous components fields as follows

A− A0 = −c+ a+ b† (3.49)

B = b+ a† − c† (3.50)

Every component has a T [1]Σ degree and AdP degree, namely

A B
c (0,1) b (0,0)
a (1,0) a† (1,-1)
b† (2,-1) c† (2,-2)

In what follows, unless stated otherwise, we assume A0 = 0.

2d BV action

The BV action for the 2d BF theory is formally

SBV = k

∫
T [1]Σ

µTr
(
B FA

)
(3.51)

we can explicit the action (3.51)on the manifold Σ in field components as follows

k

∫
Σ

Tr
[
bFa − a†Dac+ b†[b, c]− c†cc

]
(3.52)

Proof of relation (3.52)
Substituting (3.49) and (3.50) in (3.52) we obtain

k

∫
Σ

Tr
[
(b+ a† − c†)d(−c+ a+ b†) + (b+ a† − c†)(−c+ a+ b†)(−c+ a+ b†)

]
=

= k

∫
Σ

Tr
[
bda+ baa− a†(dc+ ca+ ac) + b†(bc− cb)− c†cc

]
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Using the usual definitions of curvature and exterior covariant derivative, then (3.52)
holds true. �

We have the following BV variations

δBV a = Dac (3.53)

δBV b = [b, c] (3.54)

δBV c = cc (3.55)

δBV a
† = Dab+ [c, a†] (3.56)

δBV b
† = Fa + [c, b†] (3.57)

δBV c
† = −Daa

† + [c, c†] + [b†, b] (3.58)

Gauge fixing for BV BF theory in 2d

We present now the gauge fixing procedure for the 2d BV BF theory. First of all
we introduce trivial pairs of fields and antifields, namely

∼
c ∈ Γ(Σ,AdP [1])

∼
c
†
∈ Γ(Σ,Λ2T ∗Σ⊗ AdP [0]) (3.59)

∼
γ ∈ Γ(Σ,AdP [0])

∼
γ
†
∈ Γ ∈ (Σ,Λ2T ∗Σ)⊗ AdP [−1]) (3.60)

∼
τ ∈ Γ(Σ,AdP [0])

∼
τ
†
∈ Γ(Λ2T ∗Σ⊗ AdP [−1]) (3.61)

∼
λ ∈ Γ(Σ,AdP [1])

∼
λ
†
∈ Γ(Λ2T ∗Σ⊗ AdP [0]) (3.62)

The related BV symplectic form is

ΩBV aux =

∫
Σ

Tr
[
δ
∼
c
†
δ
∼
c + δ

∼
γ
†
δ
∼
γ + δ

∼
τ
†
δ
∼
τ + δ

∼
λ
†
δ
∼
λ
]

(3.63)

The associated BV bracket have the following expression

{F,G}BV aux =

∫
Σ

Tr

[
δRF

δ
∼
c

δLG

δ
∼
c
† −

δRF

δ
∼
c
†
δLG

δ
∼
c

+
δRF

δ
∼
γ

δLG

δ
∼
γ
† −

δRF

δ
∼
γ
†
δLG

δ
∼
γ

+

+
δRF

δ
∼
τ

δLG

δ
∼
τ
† −

δRF

δ
∼
τ
†
δLG

δ
∼
τ

+
δRF

δ
∼
λ

δLG

δ
∼
λ
† −

δRF

δ
∼
λ
†
δLG

δ
∼
λ

] (3.64)

Auxiliary BV action

We introduce the auxiliary BV action which reads as follows

SBV aux = −
∫

Σ

Tr

(
∼
c
†∼
γ +

∼
λ
†∼
τ

)
. (3.65)

From a direct inspection one has

{SBV aux, SBV aux}BV aux = 0. (3.66)
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Equation (3.66) corresponds to the classical master equation for the auxiliary action
(3.65).
We define the auxiliary BV variation as follows

δBV aux(·) = {SBV aux, ·}BV aux . (3.67)

Let us calculate auxiliary field variations for fields/antifields introduced in (3.59),(3.60),
(3.61) and (3.62) which correspond to

δBV aux
∼
c = −∼γ δBV aux

∼
c
†

= 0 (3.68)

δBV aux
∼
γ = 0 δBV aux

∼
γ
†

= −∼c
†

(3.69)

δBV aux
∼
λ = −∼τ δBV aux

∼
λ
†

= 0 (3.70)

δBV aux
∼
τ = 0 δBV aux

∼
τ
†

= −
∼
λ
†

(3.71)

As expected, the auxiliary BV field variations (3.67) enjoys the nilpotence property,
namely

δ2
BV aux = 0. (3.72)

Proof of relation (3.72)

δ2
BV aux(

∼
c,
∼
c
†
,
∼
γ,
∼
γ
†
,
∼
λ,
∼
λ
†
,
∼
τ ,
∼
τ
†
) =

= δBV aux

(
−∼γ, 0, 0,−∼c

†
,−∼τ , 0, 0,−

∼
λ
†)

= 0

then (3.72) holds true. �

Auxiliary BV action (3.65) is invariant under auxiliary BV field variations, namely

δBV auxSBV aux = 0 (3.73)

Proof of relation (3.73)

δBV auxSBV aux = δBV aux

(
−
∫

Σ

Tr

[
∼
c
†∼
γ +

∼
λ
†∼
τ

])
=

= −
∫

Σ

Tr

[
δBV aux

∼
c
†∼
γ +

∼
c
†
δBV aux

∼
γ + δBV aux

∼
λ
†∼
τ +

∼
λ
†
δBV aux

∼
τ

]
= 0,

indeed (3.73) holds true. �

The gauge fermion

The gauge fermion for the BV BF theory in 2d is

Ψ =

∫
Σ

Tr
(
∼
cDA0 ? a+

∼
τDA0 ? a

†
)

(3.74)

35



where ?, as usual, is the Hodge star.
Using (3.74) we select a lagrangian submanifold L in the field space as follows

ϕ†A =
δLΨ

δϕA
. (3.75)

Then, one finds:
a† = ?DA0

∼
c (3.76)

b† = 0 (3.77)

c† = 0 (3.78)

∼
c
†

= DA0 ? a (3.79)

∼
λ
†

= 0 (3.80)

∼
τ
†

= DA0 ? a
† (3.81)

∼
γ
†

= 0 (3.82)

Using the gauge fermion (3.74), we can define the gauge fixed action

I = (SBV + SBV aux)|L (3.83)

Using (3.52) and (3.65) we have{
k

∫
Σ

Tr

[
bFa − a†Dac+ b†[b, c]− c†cc− ∼c

†∼
γ −

∼
λ
†∼
τ

]} ∣∣∣∣∣
L

=

= k

∫
Σ

Tr
[
bFa − ?DA0

∼
cDac−DA0 ? a

∼
γ
]

We introduce now the BRST operator, i.e

s = δBV |fields (3.84)

One finds:
sa = Dac (3.85)

sb = [b, c] (3.86)

sc = cc (3.87)

s
∼
c = −∼γ (3.88)

s
∼
γ = 0 (3.89)

s
∼
λ = −∼τ (3.90)

s
∼
τ = 0 (3.91)

Operator (3.83) is nilpotent, namely

s2 = 0 (3.92)
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Proof of relation (3.92)

Consider s2 acting on a, b, c,
∼
c,
∼
γ,
∼
λ,
∼
τ , then

s2(a+ b+ c+
∼
c +

∼
γ +

∼
λ+

∼
τ ) = s(sa+ sb+ sc+ s

∼
c + s

∼
γ + s

∼
λ+ s

∼
τ ) =

= s(+dc+ [a, c] + [b, c] + cc− ∼γ − ∼τ ) =

= −d(sc) + [sa, c] + [a, sc] + [sb, c] + [b, sc] + scc− csc− s∼γ − s∼τ =

= −d(cc) + dcc− cdc+ [[a, c], c] + acc− cca+ [[b, c], c] + bcc− ccb+ ccc− ccc = 0

then the nilpotence property for the BRST operator holds true. �

The gauge fixed action I is invariant under the operator (3.84), i.e.

sI = 0 (3.93)

Proof of relation (3.93)

s

(
k

∫
Σ

Tr
[
bFa − ?DA0

∼
cDac−DA0 ? a

∼
γ
])

=

= k

∫
Σ

Tr
[
sbFa − bsFa − ?DA0s

∼
cDac− ?DA0

∼
csDac−DA0 ? sa

∼
γ
]

=

= k

∫
Σ

Tr
[
[b, c]Fa + b(d(Dac) + [a,Dac]) + ?DA0

∼
γDac+

− ?DA0

∼
c(−d(cc) + [Dac, c] + [a, cc])− ?DA0

∼
γDac

]
=

= k

∫
Σ

Tr
[
[b, c]Fa + bDaDac

]
= 0

where the last expression vanishes thank to Ricci Identity (3.42). Then (3.93) holds
true. �
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3.2.7 BV BF theory in 3d

From now, unless stated otherwise, we assume m = 3. In this section we provide a
BV formulation of the 3d BF model and we also study the gauge fixing procedure.

Geometrical framework

The geometrical framework is constituted by the following data:

(I) An oriented, smooth, compact 3-fold Θ

(II) A principal G-bundle P over Θ. Here G is a compact Lie group

We adopt the superfield formalism. The superfield content in this model consists in
the following superfields

A− A0 ∈ Γ(T [1]Θ,AdP ) (3.94)

B ∈ Γ(T [1]Θ,AdP ) (3.95)

which are both a 1-form of adjoint type.
A0 is an ordinary background connection of the bundle P which can be viewed as a
locally defined field of form-ghost bidegree (1,0).
We can decompose (3.94) and (3.95) in homogeneous field components as follows

A = −c+ a− b† − τ †1 (3.96)

B = τ1 + b+ a† − c† (3.97)

All the components have a definite T [1]Θ degree and AdP degree, namely

A B
c (0,1) τ1 (0,1)
a (1,0) b (1,0)
b† (2,-1) a† (2,-1)

τ †1 (3,-2) c† (3,-2)

In what follows, unless stated otherwise, we assume A0 = 0.

3d BV action

The action of the 3d BV BF theory is formally

SBV = k

∫
T [1]Θ

µTr(BFA) (3.98)

We can explicit action (3.98) in field components, i.e.

SBV = k

∫
Θ

Tr
[
bFa − a†Dac − τ1Dab

† + τ1[c, τ †1 ] + b†[b, c]− c†cc
]

(3.99)
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Proof of equation (3.99).
Substituting (3.96) and (3.97) in (3.98) we obtain

SBV = k

∫
Θ

Tr
[
(τ1 + b+ a† − c†)d(−c+ a− b† − τ †1)+

+ (τ1 + b+ a† − c†)(−c+ a− b† − τ †1)(−c+ a− b† − τ †1)
]

=

= k

∫
Θ

Tr
[
− τ1db

† + bda− a†dc+ τ1(cτ †1 + τ †1c)− τ1(ab† + b†a)+

+ b(cb† + b†c) + baa− a†(ca+ ac) + c†cc
]

=

= k

∫
Θ

Tr
[
− τ1db

† + bda− a†dc+ τ1[c, τ †1 ]− τ1[a, b†]+

+ b[c, b†] + baa− a†[c, a]− c†cc
]

Using the standard definitions of curvature and exterior covariant derivative, then
(3.99) holds true. �

We have the following BV field variations

δBV a = Dac (3.100)

δBV b = Daτ1 + [b, c] (3.101)

δBV c = cc (3.102)

δBV τ1 = [τ1, c] (3.103)

δBV a
† = Dab+ [c, a†] + [τ1, b

†] (3.104)

δBV b
† = Fa + [b†, c] (3.105)

δBV c
† = −Daa

†−[c, c†]+[b†, b]−[τ †1 , τ1] (3.106)

δBV τ
†
1 = [c, τ †1 ] (3.107)

Gauge fixing for the 3d BV BF theory

Now we discuss the gauge fixing procedure for the 3d BV BF theory. First of all is
necessary we introduce trivial pairs of fields/antifields, namely

∼
c ∈ Γ(Θ,AdP [1])

∼
c
†
∈ Γ(Θ,Λ3T ∗Θ⊗ AdP [0]) (3.108)

∼
λ1 ∈ Γ(Θ,AdP [1])

∼
λ1

†
∈ Γ(Θ,Λ3T ∗Θ⊗ AdP [0]) (3.109)

∼
γ ∈ Γ(Θ,AdP [0])

∼
γ
†
∈ Γ(Θ,Λ3T ∗Θ⊗ AdP [−1]) (3.110)

∼
τ1 ∈ Γ(Θ,AdP [0])

∼
τ1

†
∈ Γ(Θ,Λ3T ∗Θ⊗ AdP [−1]) (3.111)

The related BV symplectic form reads as follows

ΩBV aux =

∫
Θ

Tr
[
δ
∼
c
†
δ
∼
c + δ

∼
γ
†
δ
∼
γ + δ

∼
τ1

†
δ
∼
τ1 + +δ

∼
λ1

†
δ
∼
λ1

]
(3.112)
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The associated BV bracket has the following form

{F,G}BV aux =

∫
Θ

Tr

[
δRF

δ
∼
c

δLG

δ
∼
c
† −

δRF

δ
∼
c
†
δLG

δ
∼
c

+
δRF

δ
∼
γ

δLG

δ
∼
γ
† −

δRF

δ
∼
γ
†
δLG

δ
∼
γ

+

+
δRF

δ
∼
τ1

δLG

δ
∼
τ1

† −
δRF

δ
∼
τ1

†
δLG

δ
∼
τ1

† +
δRF

δ
∼
λ1

δLG

δ
∼
λ1

† −
δRF

δ
∼
λ1

†
δLG

δ
∼
λ1

] (3.113)

Auxiliary BV action

We can introduce the following auxiliary BV action

SBV aux = −
∫

Θ

Tr

(
∼
c
†∼
γ +

∼
λ1

† ∼
τ1

)
(3.114)

From a direct inspection, one has

{SBV aux, SBV aux}BV aux = 0 (3.115)

Equation (3.115) corresponds to the classical master equation for the auxiliary action
(3.114).
We introduce now the auxiliary BV variations as follows

δBV aux(·) = {SBV aux, ·}BV aux (3.116)

Let us calculate the auxiliary BV variations for fields/antifields introduced in (3.108),
(3.109),(3.110) and (3.111). We have the following results

δBV aux
∼
c = −∼γ δBV aux

∼
c
†

= 0 (3.117)

δBV aux
∼
γ = 0 δBV aux

∼
γ
†

= −∼c
†

(3.118)

δBV aux
∼
λ1 = −∼τ1 δBV aux

∼
λ1

†
= 0 (3.119)

δBV aux
∼
τ1 = 0 δBV aux

∼
τ1

†
= −

∼
λ†1 (3.120)

the auxiliary field variations enjoys the nilpotence property, i.e.

δ2
BV aux(·) = 0 (3.121)

Proof of relation (3.121)

δ2
BV aux

(
∼
c,
∼
c
†
,
∼
γ,
∼
γ
†
,
∼
λ1,

∼
λ1

†
,
∼
τ1,
∼
τ1

†
)

=

= δBV aux

(
−∼γ, 0, 0,−∼c

†
,−∼τ1, 0, 0,−

∼
λ1

†)
= 0

Then (3.121) holds true.

Auxiliary BV action (3.114) is invariant under auxiliary BV variations, namely

δBV auxSBV aux = 0 (3.122)
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Proof of relation (3.122)

δBV aux

(
−
∫

Θ

Tr

(
∼
c
†∼
γ +

∼
λ1

† ∼
τ1

))
=

= −
∫

Θ

Tr
[
δBV aux

∼
c
†∼
γ +

∼
c
†
δBV aux

∼
γ + δBV aux

∼
λ1

† ∼
τ1 +

∼
λ1

†
δBV aux

∼
τ1

]
= 0

Eq. (3.122) holds true. �

The gauge fermion

The gauge fermion for the 3d BV BF theory is

Ψ =

∫
Θ

Tr
(
∼
cDA0 ? a+

∼
λ1DA0 ? b

)
(3.123)

where ?, as usual, is the Hodge star operator.
Using (3.123), we can select a lagrangian submanifold L in the field space as follows

ϕ†A =
δLΨ

δϕA
. (3.124)

One finds:
a† = ?DA0

∼
c (3.125)

b† = ?DA0

∼
λ1 (3.126)

c† = 0 (3.127)

τ †1 = 0 (3.128)

∼
c
†

= DA0 ? a (3.129)

∼
λ1

†
= DA0 ? b (3.130)

∼
τ1

†
= 0 (3.131)

∼
γ
†

= 0 (3.132)

Using the gauge fermion (3.123) we can define the gauge fixed action

I = (SBV + SBV aux)|L. (3.133)

Substituting the relations (3.99) and (3.114), we obtain(
k

∫
Θ

Tr
[
bFa − a†Dac− τ1Dab

† + τ1[c, τ †1 ]+

+ b†[b, c]− c†cc− ∼c
†∼
γ −

∼
λ1

† ∼
τ1

]) ∣∣∣∣∣
L

=

= k

∫
Θ

Tr
(
bFa − ?DA0

∼
cDac− τ1Da ? DA0

∼
λ1+

+ ?DA0

∼
λ1[b, c]−DA0 ? a

∼
γ −DA0 ? b

∼
τ1

)
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We can introduce now the BRST operator denoted by s as follows

s = δBV |fields, (3.134)

then, we have
sa = Dac (3.135)

sb = Daτ1 + [b, c] (3.136)

sc = cc (3.137)

sτ1 = [τ1, c] (3.138)

s
∼
c = −∼γ (3.139)

s
∼
γ = 0 (3.140)

s
∼
λ1 = −∼τ1 (3.141)

s
∼
τ1 = 0 (3.142)

Operator (3.134) is nilpotent, i.e.
s2 = 0 (3.143)

Proof of relation (3.143).

s
(
sa+ sb+ sc+ sτ1 + s

∼
c + s

∼
γ + s

∼
λ1 + s

∼
τ1

)
=

= s
(
Dac+Daτ1 + [b, c] + cc+ [τ1, c]−

∼
γ − ∼τ1

)
=

= −dcc+ cdc+ [dc, c] + [[a, c], c]− d([τ1, c]) + [dc, τ1]+

+ [[a, c], τ1] + [a, [τ1, c]] + [dτ1, c] + [[a, τ1], c]+

+ [[b, c], c] + [b, cc] + ccc− ccc+ [[τ1, c], c]− [τ1, cc] = 0

Therefore (3.143) holds true. �

the gauge fixed action (3.133) is invariant under the BRST operator (3.134), namely

sI = 0 (3.144)

Proof of equation (3.144)

k

∫
Θ

Tr
(
sbFa + bsFa − ?DA0s

∼
cDac+ ?DA0

∼
csDac− sDaτ1 ? DA0

∼
λ1+

+Daτ1 ? DA0s
∼
λ1 −DA0s

∼
λ1[b, c] + ?DA0

∼
λ1([sb, c] + [b, sc])− ?DA0sa

∼
γ+

− ?DA0as
∼
γ + ?DA0sb

∼
τ1 − ?DA0bs

∼
τ1

)
=

= k

∫
Θ

Tr
(

(Daτ1 + [b, c])Fa + b(d(Dac) + [Dac, a]) + (−d(cc) + [Dac, c]+

+ [a, cc]) ? DA0

∼
c +Dac ? DA0

∼
γ + (−d([τ1, c]) + [Dac, τ1] + [a, [τ1, c]]) ? DA0

∼
λ1+

+Daτ1 ? DA0

∼
τ1 + ?DA0

∼
τ1[b, c] + ?DA0

∼
λ1([Daτ1, c] + [[b, c], c] + [b, cc])+

−Dac ? DA0

∼
γ − ?DA0

∼
τ1(Daτ1 + [b, c])

)
=

= k

∫
Θ

Tr
(

(Daτ1 + [b, c])Fa + bDaDac
)

= 0
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where the last expression vanishes thanks to Ricci identity and Stokes’ theorem.
Then (3.144) holds true.
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3.2.8 BV BF theory in 4d

From now, unless stated otherwise, we assume m = 4. In this section we provide a
BV formulation of the 4d BF model and we also study the gauge fixing procedure.

Geometrical Framework

The geometrical framework for this model is constituted by the following data:

(I) An oriented, smooth, compact 4-fold Π

(II) A principal G bundle P over Π. Here G is a compact Lie group.

We adopt the superfield formalism. The superfield content of this model consists in
the following superfields

A− A0 ∈ Γ(T [1]Π,AdP ) (3.145)

B ∈ Γ(T [1]Π,AdP ) (3.146)

which are respectively a 1-form and a 2-form of adjoint type.
We recall that A0 is an ordinary background connection of the bundle P which can
be viewed as a locally defined field of form- ghost bidegree (1, 0).
We can decompose (3.145) and (3.146) in homogeneous component fields as follows

A− A0 = −c+ a+ b† + τ †1 + τ †2 (3.147)

B = τ2 + τ1 + b+ a† − c† (3.148)

every component has a definite T [1]Π degree and a AdP degree, namely

A B
c (0,1) τ2 (0,2)
a (1,0) τ1 (1,1)
b† (2,-1) b (2,0)

τ †1 (3,-2) a† (3,-1)

τ †2 (4,-3) c† (4,-2)

In what follows, unless stated otherwise, we assume A0 = 0.

4d BV action

The action for the 4d BV BF theory is formally

SBV = k

∫
T [1]Π

µTr
(
BFA

)
(3.149)

We can express action (3.149) in field components as follows

SBV = k

∫
Π

Tr
(
τ2Daτ

†
1 + τ1Dab

† − a†Dac+ bFa + τ2b
†b†+

− τ1[c, τ †1 ]− b[c, b†]− τ2[c, τ †2 ]− c†cc
) (3.150)
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Proof of relation (3.150).
Using (3.147) and (3.148) in (3.149) we obtain

k

∫
Π

Tr
[ (
τ2 + τ1 + b+ a† − c†

)
d
(
−c+ a+ b† + τ †1 + τ †2

)
+

+
(
τ2 + τ1 + b+ a† − c†

) (
−c+ a+ b† + τ †1 + τ †2

)(
−c+ a+ b† + τ †1 + τ †2

) ]
=

= k

∫
Π

Tr
[
τ2

(
dτ †1 + [a, τ †1 ] + b†b† − [c, τ †2 ]

)
+ b
(
Fa − [c, b†]

)
+

+ τ1

(
db† − [c, τ †1 ] + [a, b†]

)
− a†

(
dc+ [a, c]

)
− c†cc

]
Using the standard definitions of exterior covariant derivative and curvature (3.150)
holds true.

We have the following BV field variations, namely

δBV a = Dac (3.151)

δBV b = Daτ1 + [b, c] + [τ2, b
†] (3.152)

δBV c = cc (3.153)

δBV τ1 = Daτ2 − [τ1, c] (3.154)

δBV τ2 = [τ2, c] (3.155)

δBV a
† = [τ †1 , τ2]− [b†, τ1 + [a†, c]−Dab (3.156)

δBV b
† = Fa − [c, b†] (3.157)

δBV c
† = [c, c†]−Daa

† + [τ1, τ
†
1 ]+

− [b†, b] + [τ †2 , τ2] + [b†, b]
(3.158)

δBV τ
†
1 = Dab

† + [c, τ †1 ] (3.159)

δBV τ
†
2 = Daτ

†
1 − [c, τ †2 ] + b†b† (3.160)

Gauge fixing for the 4d BV BF theory

We discuss the gauge fixing procedure for the 4d BV BF theory. First of all we
introduce trivial pairs of fields/antifields, namely

∼
c ∈ Γ(Π,AdP [1])

∼
c
†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [0]) (3.161)

∼
λ1 ∈ Γ(Π,AdP [1])

∼
λ1

†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [0]) (3.162)

∼
λ2 ∈ Γ(Π,AdP [2])

∼
λ2

†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [1]) (3.163)

∼
γ ∈ Γ(Π,AdP [0])

∼
γ
†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [−1]) (3.164)

∼
τ1 ∈ Γ(Π,AdP [0])

∼
τ1

†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [−1]) (3.165)

∼
τ2 ∈ Γ(Π,AdP [−1])

∼
τ2

†
∈ Γ(Π,Λ4T ∗Π⊗ AdP [−2]) (3.166)
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The auxiliary BV symplectic form this model is

ΩBV aux =

∫
Π

Tr
(
δ
∼
c
†
δ
∼
c + δ

∼
γ
†
δ
∼
γ + δ

∼
λ1

†
δ
∼
λ1+

+ δ
∼
τ1

†
δ
∼
τ1 + δ

∼
λ2

†
δ
∼
λ2 + δ

∼
τ2

†
δ
∼
τ2

) (3.167)

while the associated BV bracket reads as follows

{F,G}BV aux =

∫
Π

Tr

[
δRF

δ
∼
c

δG

δ
∼
c
† −

δRF

δ
∼
c
†
δLG

δ
∼
c

+
δRF

δ
∼
γ

δG

δ
∼
γ
† −

δRF

δ
∼
γ
†
δLG

δ
∼
γ

+

+
δRF

δ
∼
λ1

δG

δ
∼
λ1

† −
δRF

δ
∼
λ1

†
δLG

δ
∼
λ1

+
δRF

δ
∼
τ1

δG

δ
∼
τ1

† −
δRF

δ
∼
τ1

†
δLG

δ
∼
τ1

+

+
δRF

δ
∼
λ2

δG

δ
∼
λ2

† −
δRF

δ
∼
λ2

†
δLG

δ
∼
λ2

+
δRF

δ
∼
τ2

δG

δ
∼
τ2

† −
δRF

δ
∼
τ2

†
δLG

δ
∼
τ2

] (3.168)

Auxiliary BV action

We can introduce the auxiliary BV action as follows

SBV aux = −
∫

Π

Tr

(
∼
c
†∼
γ +

∼
λ1

† ∼
τ1 +

∼
λ2

† ∼
τ2

)
(3.169)

From a direct inspection the following relation holds true

{SBV aux, SBV aux}BV aux = 0 (3.170)

Equation (3.170) corresponds to the classical master equation for the auxiliary ac-
tion (3.169).

We introduce now the auxiliary BV variations as follows

δBV aux(·) = {SBV aux, ·}BV aux (3.171)

Let us calculate the auxiliary BV variations for the fields and antifields introduced
previously. We have the following results

δBV aux
∼
c = −∼γ δBV aux

∼
c
†

= 0 (3.172)

δBV aux
∼
γ = 0 δBV aux

∼
γ
†

= −∼c
†

(3.173)

δBV aux
∼
λ1 = −∼τ1 δBV aux

∼
λ1

†
= 0 (3.174)

δBV aux
∼
τ1 = 0 δBV aux

∼
τ1

†
= −

∼
λ1

†
(3.175)

δBV aux
∼
λ2 = −∼τ2 δBV aux

∼
λ2

†
= 0 (3.176)

δBV aux
∼
τ2 = 0 δBV aux

∼
τ2

†
= −

∼
λ2

†
(3.177)
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As expected, we have the nilpotence property for the auxiliary field variations
(3.171), i.e.

δ2
BV aux(·) = 0 (3.178)

Proof of relation (3.178)

δ2
BV aux

(
∼
c,
∼
c
†
,
∼
γ,
∼
γ
†
,
∼
λ1,

∼
λ1

†
,
∼
τ1,
∼
τ1

†
,
∼
λ2,

∼
λ2

†
,
∼
τ2,
∼
τ2

†
)

=

= δBV aux

(
−∼γ, 0, 0,−∼c

†
,−∼τ1, 0, 0,−

∼
λ1

†
,−∼τ2, 0, 0,−

∼
λ2

†)
= 0

Then relation (3.178) holds true. �

Auxiliary BV action (3.169) enjoys the property of invariance under Auxiliary BV
variations (3.171) , namely

δBV auxSBV aux = 0 (3.179)

Proof of relation (3.179)

δBV aux

(
−
∫

Π

Tr

(
∼
c
†∼
γ +

∼
λ1

† ∼
τ1 +

∼
λ2

† ∼
τ2

))
applying the variations on the fields and antifields we have

−
∫

Π

Tr
(
δBV aux

∼
c
†∼
γ +

∼
c
†
δBV aux

∼
γ + δBV aux

∼
λ1

† ∼
τ1+

+
∼
λ1

†
δBV aux

∼
τ1 + δBV aux

∼
λ2

† ∼
τ2 +

∼
λ2

†
δBV aux

∼
τ2

)
= 0

then (3.179) holds true. �

The gauge fermion

The gauge fermion for the 4d BV BF theory is formally

Ψ =

∫
Π

Tr
(
∼
cDA0 ? a+

∼
λ1DA0 ? b+

∼
λ2DA0 ? τ1

)
, (3.180)

where ? denotes, as usual, the Hodge star operator.
Using (3.180), we can select a lagrangian submanifold L in the field space as follows

ϕ†A =
δLΨ

δϕA
(3.181)

One finds:
a† = ?DA0

∼
c (3.182)

b† = ?DA0

∼
λ1 (3.183)

c† = 0 (3.184)

τ †1 = ?DA0

∼
λ2 (3.185)
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τ †2 = 0 (3.186)

∼
c
†

= DA0 ? a (3.187)

∼
γ
†

= 0 (3.188)

∼
λ1

†
= DA0 ? b (3.189)

∼
λ2

†
= DA0 ? τ1 (3.190)

∼
τ1

†
= 0 (3.191)

∼
τ2

†
= 0 (3.192)

Using the gauge fermion (3.180) we can define the gauge fixed action, namely

I = (SBV + SBV aux) |L (3.193)

Using (3.150) and (3.169) in (3.193), then we have

I =

(
k

∫
Π

Tr
(
τ2Daτ

†
1 + τ1Dab

† − a†Dac+ bFa + τ2b
†b† + τ †1 [τ1, c]+

+ b†[b, c]− τ2[c, τ †2 ]− c†cc− ∼c
†∼
γ −

∼
λ1

† ∼
τ1 −

∼
λ2

† ∼
τ2

)) ∣∣∣∣∣
L

=

= k

∫
Π

Tr
(
τ2Da ? DA0

∼
λ2 + τ1Da ? DA0

∼
λ1 − ?DA0

∼
cDac+ bFa+

+ τ2 ? DA0

∼
λ1 ? DA0

∼
λ1 + ?DA0

∼
λ2[τ1, c] + ?DA0

∼
λ1[b, c]+

−DA0 ? a
∼
γ −DA0 ? b

∼
τ1 −DA0 ? τ1

∼
τ2

)
We can introduce now the BRST operator as follows

s = δBV

∣∣∣
fields

, (3.194)

then we have
sa = Dac (3.195)

sb = Daτ1 + [b, c] (3.196)

sc = cc (3.197)

sτ1 = Daτ2 − [τ1, c] (3.198)

sτ2 = [τ2, c] (3.199)

s
∼
c = −∼γ (3.200)

s
∼
γ = 0 (3.201)

s
∼
λ1 = −∼τ1 (3.202)

s
∼
λ2 = −∼τ2 (3.203)
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s
∼
τ1 = 0 (3.204)

s
∼
τ2 = 0 (3.205)

The BRST operator (3.194) is nilpotent only on shell, namely, for the field b, we
have

s2b = [Fa, τ2] 6= 0 (3.206)

Proof of relation (3.206)
Using relation (3.196) we have

s2b = s(Daτ1 + [b, c]) = s(dτ1) + [a, τ1] + [b, c]) =

= −d(dτ2 + [a, τ2]) + d([τ1, c]) + [dc, τ1] + [[a, c], τ1] + [a, dτ2]+

+ [a, [a, τ2]]− [a, [τ1, c]] + [dτ1, c] + [[a, τ1], c] + [[b, c], c] + [b, cc] =

= τ2(da+ 2[a, a])− (da+ 2[a, a])τ2 = [τ2, Fa] 6= 0

then relation (3.206) holds true. �

while, for the other fields, we have

s2 = 0 (3.207)

Proof of relation (3.207)
We consider s2 acting on the fields a, c, τ1 and τ2, then

s2(a+ c+ τ1 + τ2) = s (Dac+ cc+Daτ2 − [τ1, c] + [τ2, c]) =

= −d(cc) + [Dac, c] + [a, cc] + ccc− ccc+ d([τ2, c]) + [Dac, τ2]+

+ [a, [τ2, c]]− [Daτ2, c] + [[τ1, c], c] + [τ1, cc] + [[τ2, c], c] + [τ2, cc] = 0

then (3.207) holds true. �
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Chapter 4

Poisson Sigma Model

In this chapter we present a very important example of topological field theory: The
Poisson Sigma Model. It was introduced by Noriaki Ikeda in [20] and later Strobl and
Schaller unified several models of gravity and they recast them in a common form in
Yang-Mills theory [28]. Cattaneo and Felder in [8] provided a BV formulation of this
model. The Poisson Sigma model consists in a bi-dimensional field theory defined
on a manifold possibly with boundary. In the first section we provide a description
of the ordinary Poisson sigma model studying its action and related symmetries and
applying the BRST formalism on it. Then, in the second section, we introduce the
BV version of the same model in order to study the gauge-fixing procedure.

4.1 Ordinary Poisson Sigma Model

4.1.1 Geometrical framework

We present now the essential geometrical elements necessary to introduce the clas-
sical action of this model.

Let M be a Poisson manifold which is a smooth, paracompact, finite-dimensional
manifold endowed with a Poisson structure. We can define a structure like that con-
sidering a bivector α ∈ C∞(M,Λ2T [1]M) that can be seen as contravariant tensor
α of rank 2, satisfying the following Jacobi Identity

αil∂lα
jk + αjl∂lα

ki + αkl∂lα
ij = 0 (4.1)

or shortly
αi[j∂iα

kl] = 0 (4.2)

Using the Poisson bivector field, we can define the Poisson Bracket as follows

{f, g} = αij∂if∂jg, (4.3)

where f and g are smooth functions. (4.3) enjoys the following property:

-Antisymmetry
{f, g}+ {g, f} = 0 (4.4)
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-Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (4.5)

-Leibnitz rule
{f, gh} = {f, g}h+ {f, h} g (4.6)

The Poisson Sigma model is a sigma model whose worldsheet is a connected, smooth
bidimensional manifold Σ (with boundaries) and whose target is a (m-dimensional)
Poisson manifold (M,α).

Remark 4.1 Note that the space of functions F(M) defined on a manifold M
endowed with a Poisson structure {·, ·} is an infinite-dimensional Lie algebra.

4.1.2 Classical Action and symmetries

Action

The field content of this model is constituted by the following elements:

(i) A bosonic field X : Σ −→M , also called embedding field

(ii) A bosonic field η which is a 1-form on Σ taking values in the pull-back by X
of the cotangent bundle of M

Using the previous fields we can define the classical action as follows

S(X, η) =

∫
Σ

〈η, dX〉+
1

2
〈η, (α ◦X)η〉 , (4.7)

where we denoted with 〈·, ·〉 the pairing between the cotangent and tangent space
at a point of the manifold M .
The eventually boundary conditions for (4.7) are the following

η(v)u = 0 v ∈ ∂Σ u ∈ Tv(∂Σ) (4.8)

The two bosonic fields can be expressed in local coordinates as follows:

(i) X is given by m functions X i(v)

(ii) η is given by d differential 1-forms ηi(v) = ηi,µ(v)dvµ

Using the previous expressions for the fields we can express action (4.7) in the
following way, viz.

S(X, η) =

∫
Σ

ηidX
i +

1

2
αij(X)ηiηj. (4.9)

In the case of a manifold with boundaries we have for η, v ∈ ∂Σ, while for ηi(v)
vanishes on tangent vectors to ∂Σ.

51



Let us calculate the field equations. Using the Euler-Lagrange equation we obtain

δS(X, η)

δηi
= dX i + αij(X)ηj (4.10)

and
δS(X, η)

δX i
= dηi +

1

2
∂iα

kj(X)ηkηj (4.11)

Symmetries

The action (4.9) is invariant under the following infinitesimal gauge transformations

δβX
i = αij(X)βj (4.12)

δβηi = −dβj − ∂iαjk(X)ηjβk (4.13)

where βi is an infinitesimal parameter, which is a section of X∗(T ∗[1]M) and vanishes
on the (eventually) boundary conditions of the manifold.
We have a special case when we impose the condition α = 0, so the action (4.9)
reads as follows

S(x, η) =

∫
Σ

ηi(v) ∧ dX i(v). (4.14)

The action (4.14) is invariant under the following transformations

η −→ η +
∼
η, (4.15)

where
∼
η is an exact one-forms on Σ.

Another important symmetry arises when we consider αij as an invertible matrix.
In this case after integrating formally over the field η we recover the action

S(X) =

∫
Σ

X∗ω =
1

2

∫
Σ

ωij(x)dxidxj (4.16)

where ω is the symplectic form which generates the bivector α. In this peculiar case
the differential condition (4.1) implies that ωij is a closed 2-form. Now action (4.16)
in invariant under the following transformations

X i −→ X i + ξi (4.17)

with ξi(v) = 0 on the eventually boundary of the manifold Σ.

Proof of the symmetry of the action under the transformations (4.17)

δS = δ

∫
Σ

X∗ω =

∫
Σ

1

2
∂kωijξ

kdxidxj + d
(
ωijξ

idxj
)
− ∂iωkdxiξk =

=
1

2

∫
Σ

[∂kωij + ∂iωjk + ∂jωik] ξ
kdxidxj =

=
1

2

∫
Σ

(dω)ijkξ
kdxidxj = 0
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Then the action is invariant under the transformation (4.17). �

We can assume now M as a vector space and α a linear function on M . In this case
M is the dual space to a Lie algebra g = M∗. Given two linear functions f, g ∈M∗

we can construct the Lie bracket which corresponds to the ordinary Poisson bracket
whose is again a linear function on M .
The classical action (4.9) can be viewed as a function of a field X taking values in
the adjoint lie algebra of g and a connection d+ η on a principal bundle on Σ which
we assume to be trivial.
Integrating by parts, the action (4.9) can be written in the same form of the BF
theory action (cit), namely

S =

∫
Σ

〈X,Fη〉 =

∫
Σ

Xdη +X(η ∧ η) (4.18)

4.1.3 BRST formalism

We can apply the BRST formalism to the Poisson sigma model promoting the in-
finitesimal parameter βi to an anticomutting ghost field (with appropriate boundary
conditions). We can introduce the BRST operator s, which is an odd derivation on
the functions X, η, β, such that the following relations hold true

sX i = αijβj (4.19)

sηi = −dβi − ∂iαkl(X)ηkβl (4.20)

sβi =
1

2
∂iα

jk(X)βjβk (4.21)

The BRST operator is nilpotent only on shell, namely

s2X i = 0 (4.22)

s2βi = 0 (4.23)

s2ηi = −1

2
∂i∂kα

qsβqβs(dX
k + αkj(X)ηj) (4.24)

We recognize in (4.24) the field equation (4.10).

We assign a ghost number to the fields. Considering also the form degree we have
the following form-ghost bidegrees for the fields

X i (0, 0)

βi (0, 1)

ηi (1, 0)

The BRST operator has ghost number 1.
We have already seen that s squares to zero only on shell. A problem arises with
this formalism. When we try to calculate the path integral to determine a physical
observables this does not work because we do not have a well-defined cohomology. In
order to solve this problem and to quantize this model we use the Batalin-Vilkovisky
formalism, that is a generalization of the BRST ones.
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4.2 BV Poisson Sigma Model

In this section we present a BV formulation of the Poisson sigma model presented
in the previous section. We also study the gauge fixing procedure in order to obtain
the quantum theory for this model.

4.2.1 Geometrical framework and superfield formalism

The geometrical data for this model are the following

I An oriented bidimensional manifold Σ (possibly with boundaries)

II A space of bundle maps from T [1]Σ to T ∗[+1]M of a Poisson manifold M . We
denote such bundle map by pair (X, η), where X : Σ −→M is the base map and
η is the map between fibers, is a section in Γ(Σ, Hom(T [1]Σ), X∗(T ∗[+1]M))

In this model we adopt the superfield formalism. Superfields combine fields
and antifields. The superfields content in this model consist in a total degree zero

superfield
∼
X i, which can be decomposed as follows:

∼
X i = X i + θµηi†µ −

1

2
θµθνβi†µν . (4.25)

We also have a total degree one odd superfield
∼
ηi, which can be decomposed as

follows:
∼
ηi = βi + θµηi,µ +

1

2
θµθνX†i,µ,ν . (4.26)

We recall shortly the integration of superfields. We can perform this integration
using the standard supermeasure µ of T [1]Σ, µ has T [1]Σ degree -2.
If ϕ is a superfield, one has ∫

T [1]Σ

µϕ =

∫
Σ

ϕ(2), (4.27)

where ϕ(2) is the component of T [1]Σ which has standard form degree 2.

4.2.2 BV symplectic form

In this theory is relevant the following symplectic form

ΩBV =

∫
T [1]Σ

µδ
∼
ηiδ

∼
X i (4.28)

The BV symplectic form (4.28) has degree -1 and is closed as required

δΩBV = 0 (4.29)

The associated BV bracket for this model reads as follows

{F,G} =

∫
T [1]Σ

µ

[
δRF

δ
∼
X i

δLG

δ
∼
ηi
− δRF

δ
∼
ηi

δLG

δ
∼
X i

]
(4.30)
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Using (4.25) and (4.26) we can express (4.28) in field components as follows

ΩBV =

∫
Σ

(
δβi†δβi + δηi†δηi + δX†i δX

i
)

(4.31)

The associated BV bracket in field components has the following form

{F,G} =

∫
Σ

[
δRF

δβi

δLG

δβi†
− δRF

δβi†
δLG

δβi
+
δRF

δηi

δLG

δηi†
+

− δRF

δηi†
δLG

δηi
+
δRF

δX i

δLG

δX†i
− δRF

δX†i

δLG

δX i

] (4.32)

4.2.3 BV action and BV quantum master equation

The action of the BV Poisson Sigma model is formally

S

[ ∼
X i,

∼
ηi

]
=

∫
T [1]Σ

µ

(
∼
ηid

∼
X i +

1

2
αij
∼
ηi
∼
ηj

)
, (4.33)

where
∼
X i and

∼
ηi are the superfields introduced in (4.25) and (4.26).

Classical BV master equation

We can demonstrate the classical BV equation, i.e.

{SBV , SBV }BV = 0 (4.34)

We can write action (4.33) in the following form

SBV = S0 + S1, (4.35)

where S0 and S1 are the two terms in equation (4.33). Indeed, we can split the
classical master equation (4.34) in the following form

{S0, S0}BV + 2 {S0, S1}BV + {S1, S1}BV = 0 (4.36)

Proof of relation (4.34)
In order to study the terms in (4.36) we need to calculate the following directional

derivative. For the superfield
∼
X i, we have

d

dt
SBV (

∼
X i + tbi)

∣∣∣∣∣
t=0

(4.37)

Substituting (4.33) in (4.37) and we have

d

dt

∫
T [1]Σ

µ

(
∼
ηid

( ∼
X i + tbi

)
+

1

2
αij
∼
ηi
∼
ηj

) ∣∣∣∣∣
t=0

=

=

∫
T [1]Σ

µ bi
(
d
∼
ηi +

1

2
∂iα

jk ∼ηj
∼
ηk

)
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Hence

δRS(
∼
X i + tbi)

δ
∼
X i

=
δLS(

∼
X i + tbi)

δ
∼
X i

= d
∼
ηi +

1

2
∂iα

jk ∼ηj
∼
ηk (4.38)

The directional derivative for the superfield
∼
ηi corresponds to

d

dt
SBV (

∼
ηi + tξi)

∣∣∣∣∣
t=0

(4.39)

Substituting (4.33) in (4.39) and we have

d

dt

∫
T [1]Σ

µ

(
(
∼
ηi + tξi)d

∼
X i +

1

2
αij(

∼
ηi + tξi)(

∼
ηj + tξj)

) ∣∣∣∣∣
t=0

=

=

∫
T [1]Σ

µ ξi(d
∼
X i + αij

∼
ηi)

Hence
δRS(

∼
ηi + tξi)

δ
∼
ηi

=
δLS(

∼
ηi + tξi)

δ
∼
ηi

= d
∼
X i + αij

∼
ηj (4.40)

We study the first term in (4.36)

{S0, S0}BV = 2

∫
T [1]Σ

µ d

(
∼
ηid

∼
X i

)
= 0

For the second term we have

2 {S0, S1} = 2

∫
T [1]Σ

µ

(
δRS0

δ
∼
X i

δLS1

δ
∼
ηi
− δRS0

δ
∼
ηi

δLS1

δ
∼
X i

)
=

= 2

∫
T [1]Σ

µ

(
d
∼
ηkα

kj ∼ηj −
1

2
d
∼
Xk∂kα

ij ∼ηi
∼
ηj

)
=

=

∫
T [1]Σ

µ d
(
∼
ηiα

ij ∼ηj

)
+ dαij

∼
ηi
∼
ηj − d

∼
Xk∂kα

ij ∼ηi
∼
ηj = 0

For the last term we have

{S1, S1}BV = 2

∫
T [1]Σ

µ
(
αil∂lα

jk ∼ηi
∼
ηj
∼
ηk

)
=

=
2

3

∫
T [1]Σ

µ
(
αil∂lα

jk ∼ηi
∼
ηj
∼
ηk + αjl∂lα

ki ∼ηj
∼
ηk
∼
ηl + αil∂lα

jk ∼ηk
∼
ηi
∼
ηj

)
=

=
2

3

∫
T [1]Σ

µ
(
αil∂lα

ik + αjl∂lα
ki + αkl∂lα

ij
)
∼
ηi
∼
ηj
∼
ηk = 0

where the last expression vanishes thanks to (4.1). Indeed, (4.36) holds true. �
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Quantum BV master equation

From the theory of the BV formalism we know that the action (4.33) satisfies the
quantum master equation, namely

{SBV , SBV }BV − 2i~∆BV SBV = 0 (4.41)

Since the action (4.33) is closed; i.e. it obeys to relation (4.34), we write the previous
equation as follows

2i~∆BV SBV = ∆BV SBV = 0 (4.42)

where ∆BV is the BV laplacian whose has the following form

∆BV =

∫
T [1]Σ

µ

(
δL

δ
∼
X i

δL

δ
∼
ηi

)
(4.43)

For the Proof of relation (4.42), we remind to the next section where we perform
this calculation using the action in field components.

4.2.4 BV Action in field components

We can express the BV action (4.33) in field components using the decomposition
of the superfields (4.25) and (4.26). The final result is the following

SBV =

∫
Σ

[
− ηi†dβi + ηidX

i + αij(X)X†i βj +
1

2
αij(X)ηiηj+

− 1

2
βk†∂kα

ij(X)βiβj − ηk†∂kαij(X)ηiβj −
1

4
ηk†ηl†∂k∂lα

ij(X)βiβj

] (4.44)

Proof of relation (4.44)
Using (4.25) and (4.26) in (4.33) we have∫

Σ

[ (
βi + ηi +X†i

)
d
(
X i + ηi† − βi†

)
+

+
1

2

(
αij(X) + ∂kα

ij(X)
(
ηk† − βk†

)
+ ∂k∂lα

ij(X)ηk†ηl†
)

(
βi + ηi +X†i

)(
βj + ηj +X†j

) ]
=

=

∫
Σ

(
βidη

i† + ηidX
i + αij(X)βiX

†
i +

1

2
αij(X)ηiηj+

+ ∂kα
ij(X)ηk†ηiβj −

1

2
βk†∂kα

ij(X)βiβj −
1

4
ηk†ηl†∂k∂lα

ij(X)βiβj

)
then (4.44) holds true. �

We introduce the BV field variations, namely

δBV (·) = {SBV , ·}BV , (4.45)

where {·, ·} is the BV bracket in field components introduced in (4.32).
The BV field variations for the fields are

δBV βi =
1

2
∂kα

ijβiβj (4.46)
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δBV ηi = −dβi − ∂kαij(X)ηiβj+

− 1

2
ηj†∂i∂jα

mnβmβn
(4.47)

δBVX
i = αij(X)βj (4.48)

while for the antifields we have

δBV β
i† =− dηi† − αij(X)X†j + ∂kα

ij(X)βk†βj+

+ ∂kα
ij(X)ηk†ηj +

1

2
∂j∂kα

ilηj†ηk†βl
(4.49)

δBV η
i† = −dX i − αij(X)ηj − ∂kαij(X)ηk†βj (4.50)

δBVX
†
i = dηi + ∂iα

mn(X)X†mβn +
1

2
∂iα

mnηmηn+

− 1

2
∂i∂jα

mn(X)βj†βmβn − ∂i∂kαmn(X)ηk†ηmβn+

− 1

4
∂i∂j∂kα

mn(X)ηj†ηk†βmβn

(4.51)

BV Quantum Master Equation

Using the expression for the BV action in field components (4.44) we can verify the
quantum master equation, namely

∆BV SBV = 0 (4.52)

introduced yet in section 4.2. In this case the BV laplacian in field components
reads as follows

∆BV =

∫
Σ

(
δL
δX i

δL

δX†i
− δL
δβi

δL
δβi†

+
δL
δηi

δL
δηi†

)
(4.53)

Proof of relation (4.52)
Using the definition of the laplacian in field components and the expression of the
action in field components (4.44), we have

∆BV

(∫
Σ

ηidX
i +

1

2
αij(X)ηiηj −

1

2
βk†∂kα

ijβiβj + αijX†i βj+

− ηi†(dβi + ∂iα
jk(X)ηjβk)−

1

4
ηi†ηj†∂i∂jα

mn(X)βmβn

)
Considering only the terms whose contribute to the laplacian we obtain

∆BV

∫
Σ

(
−1

2
βk†∂kα

ij(X)βiβj + αij(X)X†i βj − ηi†∂iαjk(X)ηjβk

)
=

= δ(0)

∫
Σ

(1 + 1− 2)∂iα
ij(X)βj = 0

We have regularized the Dirac Delta function evaluated in 0 imposing a cut-off. In
an adequate regularization scheme the previous result is supposed to be valid before
removing the regularization or rather when δ(0) is infinite. �
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4.2.5 Gauge fixing for the BV Poisson Sigma Model

In this section we study the gauge fixing procedure in order to quantize the model.
First of all we introduce trivial pairs of fields/antifields.(

∼
c
i
)
∈ Γ(Σ, X∗T [−1]M)

(
∼
c
†
i

)
∈ Γ(Σ,Λ2T ∗Σ⊗X∗T ∗M) (4.54)(

∼
λ
i
)
∈ Γ(Σ, X∗TM)

(
∼
λ
†

i

)
∈ Γ(Σ,Λ2T ∗Σ⊗X∗T ∗[−1]M) (4.55)

The BV auxiliary symplectic form reads as follows

ΩBV aux =

∫
Σ

(
δ
∼
c
†
iδ
∼
c
i
+ δ

∼
λ
†

iδ
∼
λ
i
)

(4.56)

The related BV bracket has the following form

{F,G}BV aux =

∫
Σ

δRF
δ
∼
c
i

δLG

δ
∼
c
†
i

− δRF

δ
∼
c
†
i

δLG

δ
∼
c
i +

δRF

δ
∼
λ
i

δLG

δ
∼
λ
†

i

− δRF

δ
∼
λ
†

i

δLG

δ
∼
λ
i

 (4.57)

Auxiliary BV action

We can introduce the Auxiliary BV action as follows

SBV aux = −
∫

Σ

∼
c
†
i

∼
λ
i

(4.58)

From a direct inspection the following relation holds true

{SBV aux, SBV aux}BV aux = 0 (4.59)

(4.59) corresponds to the classical master equation for the auxiliary BV action (4.58).

We can introduce the auxiliary BV variations as follows

δBV aux(·) = {SBV aux, ·}BV aux (4.60)

The auxiliary BV variations for the fields and antifields introduced in (4.54) and
(4.55) are

δBV aux
∼
c
i

= −
∼
λ
i

(4.61)

δBV aux
∼
c
†
i = 0 (4.62)

δBV aux
∼
λ
i

= 0 (4.63)

δBV aux
∼
λ
†

i = −∼c
†
i (4.64)

As expected we have nilpotence property for the auxiliary BV variations, namely

δ2
BV aux(·) = 0 (4.65)
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Proof of relation (4.65)

δ2
BV aux

(
∼
c
i
,
∼
c
†
i ,
∼
λ
i

,
∼
λ
†

i

)
= δBV aux

(
−
∼
λ
†

i , 0, 0,−
∼
c
†
i

)
= 0

then (4.65) holds true. �

The auxiliary BV action (4.58) is invariant under the auxiliary BV variations, ie.

δBV auxSBV aux = 0 (4.66)

Proof of relation (4.66)

δBV aux

(
−
∫

Σ

∼
c
†
i

∼
λ
i
)

= −
∫

Σ

(
δBV aux

∼
c
†
i

∼
λ
i

+
∼
c
†
iδBV aux

∼
λ
i
)

= 0

then (4.66) holds true. �

The Gauge Fermion

The gauge fermion for the BV Poisson Sigma Model is the formally

Ψ = −
∫

Σ

d
∼
c
i
? ηi (4.67)

where ?, as usual, is the Hodge star operator
Using (4.67) we can define a lagrangian submanifold L in the field space as follows

ϕ†A =
δLΨ

δϕA
, (4.68)

one finds
∼
c
†
i = −d ? ηi (4.69)
∼
λ
†

i = 0 (4.70)

ηi† = − ? d∼c
i

(4.71)

X†i = 0 (4.72)

βi† = 0 (4.73)

Thanks to the gauge fermion (4.67) we can define the gauge fixed action, namely

I = (SBV + SBV aux)|L (4.74)

Substituting in (4.33) and (4.58) in (4.74) we obtain an explicit expression for the
gauge fixed action, i.e.(∫

Σ

ηidX
i +

1

2
αij(X)ηiηj −

1

2
βk†∂kα

ijβiβj + αijX†i βj+

− ηi†(dβi + ∂iα
jk(X)ηjβk)−

1

4
ηi†ηj†∂i∂jα

mn(X)βmβn −
∼
c
†
i

∼
λ
i
) ∣∣∣∣∣

L

=

=

∫
Σ

ηidX
i +

1

2
αij(X)ηiηj + ?d

∼
c
i
(dβi + ∂iα

ij(X)ηjβk)+

− 1

4
? d
∼
c
i
? d
∼
c
j
∂i∂jα

mn(X)βmβn + (d ? ηi)
∼
λ
i

.
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The gauge fermion (4.67) is not a global well defined functional. The ghost
∼
c
i

does
not transform in a covariant way, namely

d
∼
c
i′

= d
∼
c
j ∂xi

′

∂xj
− ∼c

j
dxk

∂2xi
′

∂xk∂xj
(4.75)

A possible solution for this problem is considering a connection in the target space.
In this case we can provide a new version of the gauge fermion, i.e.

Ψ′ = −
∫

Σ

∼
c
i
∇ ? ηi = −

∫
Σ

∇∼c
i
? ηi = −

∫
Σ

(
d
∼
c
i
+ dXjΓijk

∼
c
k
)
? ηi, (4.76)

where Γijk is the connection introduced in the target space.
Using (4.76) we can select a new lagrangian submanifold L′ in the field space as
follows

ϕ†A =
δLΨ′

δϕA
(4.77)

one finds
∼
c
†
i = −∇ ? ηi (4.78)

∼
λ
†

i = 0 (4.79)

ηi† = − ?∇∼c
i

(4.80)

X†i = 0 (4.81)

βi† = 0 (4.82)

We can formulate the new gauge fixed action (4.74) using the lagrangian submanifold
L′, then we obtain

=

∫
Σ

ηidX
i +

1

2
αij(X)ηiηj + ?∇∼c

i
(dβi + ∂iα

ij(X)ηjβk)+

+
1

4
∇∼c

i
∇∼c

j
∂i∂jα

mn(X)βmβn + (∇ ? ηi)
∼
λ
i

.

(4.83)

The gauge fixed action (4.83) has a well defined kinetic terms.
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Outlook and Open problems

In this thesis, it has been presented three models in a BV perspective: 3d Chern-
Simons theory, BF theory and Poisson Sigma Model. The Batalin-Vilkovisky quan-
tization technique can be applied to many other different topological quantum field
theories. In this last section, the Courant sigma model and the related gauge fixing
problem are outlined to suggest possible future lines of research.

Courant Sigma Model

First of all we introduce Courant algebroids, then we illustrate the action of the
Courant sigma model.

Courant algebroid

Let V −→ X be a metric vector bundle. Therefore, there is a degree 2 symplec-
tic N−manifold L related to V as follows. Given the 2-shifted cotangent bundle
T ∗[2]V [1] of the 1−shifted bundle V [1], then T ∗[2]V [1] is a degree 2 symplectic
N−manifold which can be locally described by degree 0 base coordinates xi, degree
1 fiber coordinates ξa of V [1] and by related cotangent degree 2 base coordinates
pi and degree 1 fiber coordinates ηa. Furthermore T ∗[2]V [1] is endowed with the
following canonical degree 2 symplectic 2-form

ω0 = dpidx
i + dηadξ

a (5.1)

We consider, for simplicity, a local trivialization of V such that the coefficients gab
of the metric of V are constant. Thus the following covariant constraint

ηa =
1

2
gabξ

b (5.2)

defines a submanifold M of T ∗[2]V [1]. M is a degree 2 symplectic N−manifold. M
is coordinatized by the degree 0,1,2 coordinates xi, ξa, pi and is equipped with the
following degree 2 symplectic 2-form

ω = dpidx
i +

1

2
dξagabdξ

b (5.3)

yielded by the pull-back of (5.1) by the embedding M −→ T ∗[2]V [1]. Conversely, it
can be demonstrated that every degree 2 symplectic N−manifold M arises from a
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metric vector bundle V by the above construction.
Thanks to the fact that the constraint (5.2) defining the embedding into T ∗[2]V [1]
is linear, M can be identified with the 1-shift L[1] of a graded vector bundle L over
N . This is not a canonical result, but it depends on an arbitrary choice of a metric
connection of V .

The metric vector bundle V is a Courant algebroid if the graded vector bundle
L has the so called L∞-algebroid structure with the homological vector field QL of
L[1] hamiltonian with the respect to the Poisson bracket associated to the symplectic
form (5.3). In that case QL has the following form

QL = ρia(x)ξapi∂xi +

(
−∂xiρja(x)ξapj +

1

6
∂xifabcξ

aξbξc
)
∂p
i+

+ gad
(
−pid(x)pi +

1

2
fdbc(x)ξbξc

)
∂ξa

(5.4)

for a certain functions ρia and fabc. Therefore, since QL is hamiltonian, QL = {S, ·}
for some degree 3 function S on L[1] can be locally expressed as follows

S = −ρiaξapi +
1

6
fabcξ

aξbξc (5.5)

leading to (5.4).
The nilpotence ofQL is equivalent to the following equation

{S, S} = 0 (5.6)

the structure functions ρia and fabc define the Courant anchor and bracket of V
respectively. Equation (5.6) implies a set of relations that characterized V as a
Courant algebroid and that the structure functions ρia and fabc must obey.
For a Courant algebroid V , L[1] is therefore a degree 2 PQ−manifold. In [27] there
is the proof that every degree 2 PQ−manifold stems a Courant algebroid V thanks
to the above construction.

Courant sigma model

The Courant sigma model, introduced by Ikeda in [19], and treated by Roytenberg
in [27] via AKSZ formalism consists in a topological quantum field theory of Schwarz
type. The classical action of this model reads as follows

S[Aa, Bi, X
i] =

∫
M

[
1

2
AagabdA

b +BidX
i − ρia(X)AaBi +

1

6
fabcA

aAbAc
]

(5.7)

where ρia(x) and fabc are the structure constants of the Courant algebroid previously
introduced and X i, Aa and Bi are forms of degree 0,1 and 2 respectively. We can
formulate this theory in a BV perspective. Nowadays for the BV formulation of this
model there is no treatment of the gauge fixing procedure. This remains an open
problem left for future work.
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Appendix A

Supergeometry/Graded geometry

In this chapter we introduce some elements of supergeometry and graded geometry
(an extension of the ordinary geometry) and related spaces (called superspace and
graded space respectively). We also present many examples of graded manifolds and
the related theory of integration.

A.1 The fundamental idea behind

supergeometry

Supergeometry is an extension of the ordinary geometry with anticommuting coor-
dinates in addition to the usual even ones.
We consider a smooth manifold M and the algebra of smooth functions C∞(M)
over M . C∞(M) is a commutative ring. The functions which vanish on a given
subspace of M form an ideal of this ring. The maximal ideals would correspond to
the points of M. In a supergeometric context we replace the usual ring of functions,
with supercommutative ring and the supermanifold arises

A.2 Z2-linear algebra

A.2.1 superspace

The rings of functions of supermanifolds is Z2-graded. It is necessary to study Z2-
graded linear algebra. We study Z2-graded vector space V over R(or C) as a direct
decomposition:

V = V0 ⊕ V1

where V0 is called even and V1 is called odd.
Define now the space of homogeneous elements as follows:

VH = V0 ∪ V1 (A.1)

Considering an element f ∈ VH , we can define the parity for f .

Definition 1.1 we denote the parity (or degree) of an element f ∈ VH as |f |.
It’s defined as follows:
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-if f ∈ V0, so f is even, |f | = 0.
-if f ∈ V1, so f is odd, |f | = 1.

A generic element f ∈ V may doesn’t have a definite degree.

In what follows, unless explicity stated otherwise, we assume that all elements of V
belong to either V0 or V1 and have a definite degree.

Definition 1.2 Let V,W superspace. A superspace morphism is a linear map

T : V −→ W (A.2)

such that:
TV0 ⊂ W0 TV1 ⊂ W1 (A.3)

Let Hom(V,W ) denote the vector space of morphisms V −→ W .

Definition 1.3 Let V,W superspaces. A inner morphism of superspaces is a linear
map

T : V −→ W (A.4)

such that
TV0 ⊂ W0 TV1 ⊂ W1 (Inner even) (A.5)

or
TV0 ⊂ W1 TV1 ⊂ W0 (Inner odd) (A.6)

We denote the inner morphism of superspaces by Hom(V,W ).

If dim V0 = d0 and dim V1 = d1, then we adopt the following notation V d0|d1

and the combination (d0, d1) is called the superdimension of V .

A.2.2 Superalgebras

Definition 1.4 A commutative superalgebra A is a superspace equipped with a
distributive and associative multiplication

A× A −→ A (A.7)

such that:
1) For homogeneous a, b ∈ A

a b = (−1)|a||b|b a (A.8)

2)For homogeneous a, b ∈ A, a · b is homogeneous with

|ab| = |a|+ |b| (mod 2) (A.9)

Definition 1.5 A superderivation D of a commutative superalgebra A is an inner
endomorphism of the superspace A such that

D(ab) = Da b+ (−1)|D||a|a Db (A.10)

65



We discuss now an important example of supercommutative algebra, the exterior
algebra.

Example 1.1 consider purely odd superspace R0|m. Let us pick up the basis
ξi,i=1,2,...,m and define the multiplication between the basis elements satisfying
ξiξj = −ξjξi. The functions C∞(R0|m) on R0|m are given by the following expres-
sion

f(ξ1, ξ2, ..., ξm) =
m∑
l=0

1

l!
fi1i2...imξ

i1ξi2 ...ξil (A.11)

and they correspond to the elements of the exterior algebra ∧•(Rm)∗. The exterior
algebra

∧• (Rm)∗ = (∧even(Rm)∗)
⊕

(∧odd(Rm)∗) (A.12)

is a supervector space with the supercommutative multiplications given by wedge
product. In this case the wedge product corresponds to the function multiplication
in C∞(R0|m).

A.2.3 Lie superalgebras

Definition 1.6 A Lie superalgebra g is a superspace equipped with Lie superbrack-
ets, that is a bilinear degree preserving map

[−,−] : g× g −→ g (A.13)

such that
[a, b] + (−1)|a||b| [b, a] (A.14)

and
[a, [b, c]] = [[a, b] , c] + (−1)|a||b| [b, [a, c]] = 0 (A.15)

We present some examples of commutative Lie superalgebras.

Example 1.2 Let A be a commutative superalgebra.
Define [−,−] ;A× A −→ A by

[a, b] = ab− (−1)|a||b|ba (A.16)

Then, (A, [−,−]) is a Lie superalgebra gA.
If A = End(V ), then this Lie superalgebra is called gl(V )

Example 1.3 Let A a commutative superalgebra with derivation Der(A). Der(A)
is a superspace. We define the following Lie bracket:

[−,−] : Der(A)×Der(A) −→ Der(A) (A.17)

by
[D1, D2] = D1D2 − (−1)|D1||D2|D2D1 (A.18)

then Der(A) is a Lie superalgebra.
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A.2.4 Supermanifolds

Now we can construct more complicated examples of supercommutative algebras.
Consider, for example, the real superspace Rn|m and define the space of functions
on it as follows:

C∞(Rn|m) ≡ C∞(Rn)
⊗
∧•(Rm)∗ (A.19)

if we pick up an open set U0 in Rn, then we can associate to U0 the supercommutative
algebras as follows:

U0 −→ C∞(U0)
⊗
∧•(Rm)∗ (A.20)

This supercommutative algebra can be thought as the algebra of functions on the
superdomain Un|m ⊂ Rn|m, C∞(U0)

⊗
∧•(Rm)∗.

The superdomain can be characterized in terms of standard even coordinates xµ,µ =
1, 2, ..., n for U0 and the odd coordinates ξi, i = 1, 2, ...,m.

Now we can introduce the definition of smooth supermanifold:

Definition 1.7 A smooth supermanifold M of a dimension (n,m) is a smnooth
manifold M with a sheaf of supercommutative algebras, typically denoted OM or
C∞M , that is locally isomorphic to C∞(U0)⊗∧•(Rm)∗, where U0 is an open subset of
Rn.
Essentially the theory of supermanifolds mimics the standard smooth manifolds.
We can present some important examples of supermanifolds:

Example 1.4 Given a manifold M , the parity reversed tangent bundle ΠTM is
the usual tangent bundle in which the fiber is assumed to be odd (of Grassman
degree 1). Under a change of local coordinates, x and ξ transform in the usual way.

∼
x
µ

=
∼
x
µ
(x)

∼
ξ
µ

=
∂
∼
x
µ

∂xν
ξν (A.21)

where x’s are local coordinates on M and ξ’s are odd. The functions on this super-
manifold have the following expansion:

f(x, ξ) =
dimM∑
p=0

1

p!
fµ1µ2...µp(x)ξµ1ξµ2 ...ξµp (A.22)

and thus they are naturally identified with the differential forms on M, C∞(ΠTM) =
Ωeven/odd(M).

Example 1.5 Given, as in the previous example, M a smooth manifold. The parity
reversed cotangent bundle ΠT ∗M is the usual cotangent bundle in which the fiber
is assumed to be odd. Under a change o local coordinates x and ξ transform in the
usual way.

∼
x
µ

=
∼
x
µ
(x)

∼
ξµ =

∂xν

∂
∼
x
µ ξν (A.23)
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In this example x’s are local coordinates on M and ξ’s transform as ∂µ.
The functions on ΠT ∗M have the following expansion

f(x, ξ) =
dimM∑
p=0

1

p!
fµ1µ2...µp(x)ξµ1ξµ2 ...ξµp (A.24)

and thus they are naturally identified with multivectors fields, C∞(ΠT ∗M) = Γ(∧•TM).

Note that many notions and results from the standard differential geometry can
be extended to supermanifold in a straightforward way.

A.3 Integration theory for supermanifolds

In this section we shall discuss integration on supermanifolds. There’s a problem
in this procedure related to the occurance of odd variables. A natural question
arises about how to perform integration of odd variables. to solve this problem we
must understand in which way we can treat them. Before this we have to recall
some notions about integration theory for even variables and looking for indications
about how to generalize to odd ones. We know from the ordinary calculus that the
integral of a function f(x) on an interval I can be performed splitting the interval in
a very large number of small intervals Ii on which f(x) is approximately constant,
f(x) = fi and then sum up these values multiplied by the lenghts of the underlying
intervals (1.18) ∫

I

f(x)dx '
∑
i

fiIi (A.25)

When we consider odd coordinates the above definition is useless because odd di-
rections have no points and no intervals. According to the well known fundamental
theorem of calculus, one has:∫ b

a

df(x)

dx
dx = f(b)− f(a) (A.26)

This important relation offers clues about the problem we are treating. In the case
of a periodic function, it’s defined on a circle (imposing f(a) = f(b)), that integral
holds ∫

S1

df(x)

dx
dx = 0 (A.27)

It turn out that relation determines integral over the circle up to a multiplicative
constant.

The same previous relation, but for odd variables is the following:∫
df(ξ)

dξ
dξ (A.28)
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for a suitible differentiation respect to an odd variable, we discussed shortly. In a
general approach we define a set of vector fields (first order differential operators).

Da = via(x)
∂

∂xi
(A.29)

such that,given a manifold M ∫
M

µDaf = 0 (A.30)

Where µ is some integration measure which nature made precise below.
Note that the differential operators (1.21) form a Lie algebra.

A.3.1 Berenzin integral

Felix Berenzin understood in which sense odd variables may be treated as the even
ones.
Consider for example the space R1|1, coordinatized by (x, ξ). Since ξ2 = 0, the most
general function f(x, ξ) has the form

f(x, ξ) = f0(x) + ξf1(x) (A.31)

The most natural derivative relations respect the odd and the even coordinate are:

even
∂

∂x
f(x, ξ) =

df0(x)

dx
+ ξ

df1(x)

dx
(A.32)

odd
∂

∂ξ
f(x, ξ) = f1(x) (A.33)

An important remark about relation (1.33). There two type of derivatives called
right and left. The difference between them is the following:

Right
∂R
∂ξ
f(x, ξ) =

→
∂

∂ξ
f(x, ξ) = f1(x) (A.34)

Left
∂L
∂ξ
f(x, ξ) =

←
∂

∂ξ
f(x, ξ) = −f1(x) (A.35)

We can now integrate the previous relations, mimicking (1.27), so:

even

∫
dx

∂

∂x
f(x, ξ) = f(+∞, 0)− f(−∞, 0) (A.36)

odd

∫
dξ

∂

∂ξ
f(x, ξ) = 0 (A.37)

In the integration theory we assume that f(x, ξ) falls out rapidly to be integral in
the usual sense.
A prescription for (1.37) holds in the following:∫

dξ =
∂

∂ξ
(A.38)
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Since ξ2 = 0 we have the following property:

∂2

∂ξ2
f(x, ξ) = 0 (A.39)

With this in hand, we can define a notion of integration on the space R1|1 of the
function f(x, ξ) ∫

dxdξf(x, ξ) =

∫
dx

∂

∂ξ
f(x, ξ) (A.40)

We can generalize (1.40) on the space Rn|p, which has coordinates x1x2...xn, ξ1ξ2...ξp.
Consider the following function:

f : Rn|p −→ R (A.41)

the relative expansion is:

f(x, ξ) =

p∑
k=0

1

k!
ξi1 ...ξikfi1...ik(x1...xk) (A.42)

integrating (1.42) and using the relation (1.38),we obtain∫
dnxdpξf(x, ξ) =

∫
dnx

∂

∂ξp
...

∂

∂ξ1
f(x, ξ) = (A.43)

=

∫
dnxfi1...ip(x1...xn)

Note that the integral selects the component fi1...ip .
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A.4 Z-graded linear algebra

A.4.1 Z-graded vector space

A Z-graded vector space is a vector space V with a decompostion of the form labelled
by integers:

V = ⊕
i∈Z
Vi (A.44)

If v ∈ Vi, then we say that v is a homogeneous element of V a variable degree
|v| = i. Any element of V can be decomposed in terms of homogeneous elements of
a given degree. The morphism between graded vector spaces is defined as a linear
map which preserves the grading.
The dual vector space of a Z graded is self-graded:

V ∗ = ⊕
i∈Z

(V ∗)i (A.45)

with:
V ∗i = V−i

∗ (A.46)

A k shifted vector space V is the graded vector space V [k] defined by:

V [k]i = Vk+i (A.47)

A k shifted dual vector space V is the graded vector space V [k] defined by:

V [k]∗i = V ∗[−k]i (A.48)

If the graded vector space V is equipped with the associative product which respects
the grading, then we call V a graded algebra. If we consider a graded algebra V and
consider homogeneous elements v and

∼
v therein, the following relation holds true:

v
∼
v = (−1)|v||

∼
v |∼vv (A.49)

then we call V a graded commutative algebra.

A derivation D of a grade |D| is an endomorphism of graded algebra V with Z
satisfying relation (1.10) with Z2 grading rule replaced by Z grading.
In the following, we present two of the most important examples of graded algebras
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Example 1.6 Let V be a graded vector space over R (or C). We define the graded
symmetric algebra S(V ) as the linear space spanned by polynomial functions on V∑

l

fa1a2...alv
a1va2 ...val (A.50)

we use the relation
vavb = (−1)|v

a||vb|vbva (A.51)

with va and vb are homogeneous elements of degree |va| and |vb| respectively. The
functions on V are naturally graded and multipilcation of functions is graded com-
mutative. Therefore the graded symmetric algebra S(V ) is a graded commutative
algebra.

Example 1.7 Let V be a graded vector space over R (or C). We define now
the graded antisymmetric algebra S(V ) as the linear space spanned by polynomial
functions on V ∑

l

fa1a2...alv
a1va2 ...val (A.52)

we use the relation
vavb = −(−1)|v

a||vb|vbva (A.53)

with va and vb are homogeneous elements of degree |va| and |vb| respectively. The
functions on V are naturally graded and multiplication of functions is graded commu-
tative. Therefore the graded antisymmetric algebra S(V ) is a graded commutative
algebra.
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A.4.2 Graded manifolds

In a close analogy with the section 1.2.4, we can define a graded manifold as an or-
dinary manifold coordinatized by even and odd coordinates( with a definite degree)
and we glue them by the degree preserving maps. This is an intuitive definition.
Let introduce now the formal one:

Definition 1.8 A smooth graded manifold M is a smooth manifold M with a sheaf
of graded commutative algebras, usually denoted by C∞M , which is locally isomorphic
to C∞(U0)⊗S(V ), where U0 is an open subset of Rn and V is a graded vector space.

To understand better the idea of graded manifold we can introduce the following
explicit examples.

Example 1.8 Exists a graded version of tangent bundle introduced in the exam-
ple 1.4. This is the 1-shifted tangent bundle T [1]M , whose fiber is parametrized
by degree 1 coordinates. The base coordinates x has degree 0. We have the
same coordinates transformations as shown in example 1.4. The space of functions
C∞(T [1]M) = Ω•(M) is a graded commutative algebra with the same Z-grading as
the differential forms.

Example 1.9 In the same way we can introduce the graded version T ∗[−1]M of the
odd cotangent bundle (Example 1.5). We assign grade 0 and -1 to ξ and x respec-
tively. As in the previous example the gluing rules preserve the degrees. The space
of functions C∞(T ∗[−1]M) = Γ(∧•TM) is isomorphic to algebra of differentiable
grade integers, with the opposite grading degree of multivector field.

The previous examples are very important in the BV-formalism. We’ll see this
formalism in the following chapter.
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Appendix B

BV bracket

The aim of this appendix is to present the BV bracket using superfields and field
components and provide a proof for these formulas using the standard results of the
graded symplectic geometry.

B.1 BV bracket

In this section we provide an expression for the BV bracket using superfields. To
obtain this result we can consider the following BV symplectic form

ΩBV =

∫
T [1]M

µ
(
δ̂ϕ†δ̂ϕ

)
, (B.1)

where µ is the standard measure of T [1]M , µ has T [1]M degree −m. We denote
with δ̂ the functional de Rahm operator. ϕ and ϕ† are two de Rham superfields of
degree p and m− 1− p respectively.
Given a functional f , we have

δ̂f =

∫
T [1]M

µ

(
δ̂ϕ
δLf

δϕ
+ δ̂ϕ†

δLf

δϕ†

)
+

=

∫
T [1]M

µ

(
δRf

δϕ
δ̂ϕ+

δRf

δϕ†
δ̂ϕ†
) (B.2)

We consider now the inner contraction iXf
, whose has the following form

iXf
=

∫
T [1]M

µ

(
X

δL

δδ̂ϕ†
+X†

δL

δδ̂ϕ

)
, (B.3)

where Xf is the hamiltonian vector field, which has the following form

Xf =

∫
T [1]M

µ

(
X
δL
δϕ†

+X†
δL
δϕ

)
(B.4)
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We apply (B.3) to (B.1), then

iXf
ΩBV = iXf

∫
T [1]M

µ
(
δ̂ϕ†δ̂ϕ

)
= (−1)−m(|f |+1)

∫
T [1]M

µ iXf

(
δ̂ϕ†δ̂ϕ

)
=

= (−1)−m(|f |+1)

∫
T [1]M

µ iXf
δ̂ϕ†δ̂ϕ− (−1)(|f |+1)(m−1−p)δ̂ϕ†iXf

δ̂ϕ =

= (−1)−m(|f |+1)

∫
T [1]M

µ
(

(−1)m(|f |+1+p)Xδ̂ϕ− (−1)(|f |+1)(m−1−p)+m(|f |+p+1)δ̂ϕ†X†
)

=

=

∫
T [1]M

µ
(

(−1)mpXδ̂ϕ− (−1)(|f |+1)(m+p+1)+mp+(|f |+p+1)(m+p+1)X†δ̂ϕ†
)

=

=

∫
T [1]M

µ
(

(−1)mpXδ̂ϕ−X†δ̂ϕ†
)

We use now the well-known relation

iXf
ΩBV = δ̂f (B.5)

We recall relation (B.2), then

X = (−1)mp
δRf

δϕ
(B.6)

X† = −δRf
δϕ†

(B.7)

Substituting (B.6) and (B.7) in (B.4) , we have

Xf = (−1)mp
∫
T [1]M

µ

(
δRf

δϕ

δL
δϕ†
− (−1)mp

δRf

δϕ†
δL
δϕ

)
(B.8)

In order to obtain the BV bracket in the usual form, we apply (B.8) to a functional
g, then

Xf (g) = {f, g} = (−1)mp
∫
T [1]M

µ

(
δRf

δϕ

δLg

δϕ†
− (−1)mp

δRf

δϕ†
δLg

δϕ

)
(B.9)

The BV bracket (B.9) enjoys the following properties:

-Antisymmetry
{f, g}+ (−1)(|f |+1)(|g|+1) {g, f} = 0 (B.10)

- Jacobi identity

{f, {g, h}} − {{f, g} , h} − (−1)(|f |+1)(|g|+1) {g, {f, h}} = 0 (B.11)

-Leibniz rules
{f, gh} = {f, g}h+ (−1)(|f |+1)|g|g {f, h} (B.12)

{fg, h} = f {g, h}+ (−1)|g|(|h|+1) {f, h} g (B.13)
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B.2 BV bracket in field components

In this section we provide an expression for the BV bracket in field components. To
obtain this result we can begin considering the following symplectic form

ΩBV =

∫
M

∑
i

(
δ̂ϕ†i δ̂ϕi

)
, (B.14)

where M is a m−dimensional manifold. We denoted with δ̂ the functional de Rahm
operator. The field and antifield components denoted with ϕ†i and ϕi have a ghost
bidegree (pi, gi) and (m− pi,−1− gi) respectively.
Given a generci functional f , we have:

δf =

∫
M

(∑
i

δ̂ϕi
δLf

δϕi
+
∑
i

δ̂ϕ†i
δLf

δϕ†i

)
=

=

∫
M

(∑
i

δRf

δϕi
δ̂ϕi +

∑
i

δRf

δϕ†i
δ̂ϕ†i

) (B.15)

We consider now the inner contraction iXf
whose has the following form

iXf
=

∫
M

[∑
i

Xi
δL

δδ̂ϕ†i
+
∑
i

X†i
δL

δδ̂ϕi

]
, (B.16)

where Xf is the Hamiltonian vector field, which has the form

Xf =
∑
i

Xi
δL

δϕ†i
+
∑
i

X†i
δL
δϕi

(B.17)

Now we apply the inner contraction (B.16) to the BV symplectic form (B.14), then

iXf
ΩBV = iXf

∫
M

∑
i

(
δ̂ϕ†i δ̂ϕi

)
=

=

∫
M

∑
i

(
iXf

δ̂ϕ†i δ̂ϕi − (−1)(|f |+1)(m−pi−gi−1)δ̂ϕ†i iXf
δ̂ϕi

)
We can use equation (B.16) in the previous expression, therefore

=

∫
M

∑
i

(
Xiδ̂ϕ

i − (−1)(|f |+1)(m−pi−gi−1)δ̂ϕ†iX
†
i

)
=

=

∫
M

∑
i

(
Xiδ̂ϕ

i − (−1)(|f |+1)(m−pi−gi−1)+(m−pi−gi−1)(−m+pi+gi+|f |+1)X†i δ̂ϕ
i†
)

=

=

∫
M

∑
i

(
Xiδ̂ϕ

i −X†i δ̂ϕi†
)

We recall now the following well-known relation

iXf
ΩBV = δ̂f (B.18)
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Using (B.15), we have

Xi =
δRf

δϕi
(B.19)

X†i =
δRf

δϕ†i
(B.20)

Substituting (B.19) and (B.20) in (B.17), we obtain

Xf =

∫
M

∑
i

(
δRf

δϕi

δL

δϕ†i
− δRf

δϕ†i

δL
δϕi

)
(B.21)

In order to obtain the ordinary expression for the BV bracket, we apply (B.21) to a
given functional g. Finally, we get

Xf (g) = {f, g} =

∫
M

∑
i

(
δRf

δϕi

δLg

δϕ†i
− δRf

δϕ†i

δLg

δϕi

)
(B.22)

Poisson bracket in field components (B.22) enjoys the properties (B.10), (B.11),(B.12)
and (B.13).
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