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�La Rettorica ha detto tanto bene di Dante, che io ebbi la vaghezza di sapere

che cosa ne pensasse l'Aritmetica, chiamata con verità dal Gibbon la nemica

naturale della Rettorica. E l'Aritmetica ne dice meglio che mai; com'ebbi a

ragionarne all'Accademia dei Lincei, e come più distesamente ne ho scritto in

questo libretto, che forse non riuscirà disutile per la scienza e l'arte.�

Filippo Mariotti, Dante e la statistica delle lingue





Contents

Abstract 1

Introduction 5

1 Mathematical background 9

1.1 Introduction to probability theory . . . . . . . . . . . . . . . . . . 9

1.1.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Graphs and Markov chains . . . . . . . . . . . . . . . . . . 17

1.2.3 Shannon's entropy . . . . . . . . . . . . . . . . . . . . . . 30

2 Word-frequency laws and the classical models 41

2.1 Zipf's law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Ferrer i Cancho and Solé's model . . . . . . . . . . . . . . 43

2.1.2 Simon's model for Zipf's law . . . . . . . . . . . . . . . . . 46

2.2 Heaps' law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.1 Correlation between Zipf's and Heaps' laws . . . . . . . . 51

2.2.2 Simon's model for Heaps' law . . . . . . . . . . . . . . . . 53

2.3 The Zipf changing slope . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Altmann and Gerlach's model . . . . . . . . . . . . . . . . 55

3 Sample-space-varying models 61

3.1 SSR processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Simple SSR processes . . . . . . . . . . . . . . . . . . . . . 62

i



Contents ii

3.1.2 Noisy SSR processes . . . . . . . . . . . . . . . . . . . . . 65

3.1.3 SSR cascades . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.4 A unifying model for the SSR process . . . . . . . . . . . . 69

3.2 Urn models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Polya's urn . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.2 Urn model with triggering . . . . . . . . . . . . . . . . . . 77

4 Network of words 85

4.1 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 The Zifp's law on the sample . . . . . . . . . . . . . . . . 89

4.2 Construction of the network . . . . . . . . . . . . . . . . . . . . . 92

4.3 Analysis of the network . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Topological distance . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Weighted distance . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.3 Mean distance . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.4 Centrality measures . . . . . . . . . . . . . . . . . . . . . . 104

4.3.5 Components of the network . . . . . . . . . . . . . . . . . 109

Conclusions 117

Bibliography 123



Abstract

In questo elaborato ci siamo occupati della legge di Zipf sia da un punto di

vista applicativo che teorico. Tale legge empirica, osservata per la prima volta

da Estoup ma formalizzata da Zipf nel 1936 [26], a�erma che il rank in frequenza

delle parole di un testo seguono una legge a potenza con esponente -1. Nello steso

modo è stato osservato che molteplici altri fenomeni seguono la stessa legge, per

esempio il numero di abitanti delle città o la magnitudine dei terremoti. Essendo

così di�usa, tale legge potrebbe essere legata a qualche proprietà fondante della

natura o al nostro modo di indagare i fenomeni che ci circondano.

Vengono richiamate alcune nozioni di probabilità e di teoria dei gra� necessarie

alla comprensione della trattazione. Successivamente ci siamo occupati di intro-

durre le leggi di Zipf e di Heaps, due leggi legate tra loro ma che trattano di

argomenti diversi. Infatti, mentre la legge di Zipf tratta del rank di frequenza la

seconda si occupa della legge di crescita del vocabolario. In particolare, la legge

di Heaps a�erma che il numero di novità di alcuni sistemi cresce seguendo una

seconda legge a potenza il cui esponente può essere legato a quello della power-

law che approssima il rank in frequenza dello stesso sistema.

Abbiamo a�rontato l'analisi di queste leggi richiamando anzitutto alcuni dei mod-

elli che classicamente sono stati ideati per dare una spiegazione dell'onnipresenza

delle leggi a potenza in una vasta classe di fenomeni naturali. In seguito abbi-

amo trattato in modo più approfondito due classi di modelli in grado di ricreare

power-laws nella loro distribuzione di probabilità. La caratteristica principale

di questi processi risiede nella caratteristica variazione nel tempo dello spazio

dei possibili risultati. In particolare, abbiamo considerato delle generalizzazioni

1



Abstract 2

delle urne di Polya il cui spazio si espande con il tempo e i sample space re-

ducing (SSR) processes il cui spazio al contrario si riduce progressivamente con

l'evoluzione del sistema. Di questi ultimi abbiamo dato una formalizzazione in

termini di Markov chain. In�ne abbiamo proposto un modello di dinamica delle

popolazioni capace di uni�care e riprodurre i risultati dei tre SSR presenti.

Successivamente siamo passati all'analisi quantitativa dell'andamento del rank

in frequenza sulle parole di alcuni testi. Infatti in questo caso si osserva questo

non segue una pura legge a potenza ma ha un duplice andamento che può essere

rappresentato da una legge a potenza che cambia esponente. Il nostro intento era

quello di legare l'analisi dell'andamento del rank in frequenza con le proprietà

topologiche di un network. In particolare, a partire da un corpus di testi abbiamo

costruito un network di adiacenza dove ogni parola era collegata tramite un link

alla parola successiva. Infatti nella nostra interpretazione il grafo doveva avere

una struttura topologica particolare che abbiamo chiamato daisy. Tale con�g-

urazione è formata da una parte centrale e tanti petali esterni e sarebbe legata

alle capacità e limitazioni della mente umana. Infatti nella nostra ipotesi la

parte centrale della daisy è popolata dalle parole più frequenti e comuni, mentre

i petali constano di parole rare e speci�che raggruppate in base al contesto a cui

si riferiscono. Questa struttura è suggerita da alcuni limiti della mente umana,

infatti ci aspettiamo che gli esseri umani conoscano approfonditamente solo al-

cuni argomenti e quindi i loro scritti possono popolare solo alcuni petali della

daisy. Al contrario, la parte centrale del network è presente in ogni testo perché è

caratterizzata dalle parole più comuni e di signi�cato generale. Di conseguenza,

le componenti interna ed esterne sarebbero legate al cambiamento di slope del

rank di potenza. Notiamo che uno shu�e dei testi originerebbe a una struttura

del grafo che presenta ancora una parte centrale e una esterna, quindi la doppia

power-law sarebbe conservata, ma non sarebbe caratterizzato da parti esterne

più e meno dense, cioè i petali non sarebbero più osservabili. Perciò pensiamo

che il network abbia una duplice struttura: una forte legata solo alla frequenza

delle parole e una più debole legata anche al loro signi�cato.

Inizialmente, un primo studio della topologia del network ci ha confermato che
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la sua struttura topologica potesse essere legata in qualche modo alla frequenza

delle parole e al cambio di pendenza del rank in frequenza. Ispirati da questi

risultati, successivamente abbiamo introdotto un metodo nuovo per individuare

alcune componenti del network in base alla densità dei loro link. Applicando

questa tecnica al grafo semplice e confrontando i risultati con quelli ottenuti sul

network costruito sullo shu�e dei testi abbiamo trovato che alcune delle compo-

nenti sono legate all'ordine delle parole nel testo mentre altre sembrano essere

legate soltanto alla frequenza. Perciò l'ipotesi iniziale di una struttura del net-

work a forma di daisy sembra essere plausibile.

In conclusione, in questo elaborato abbiamo analizzato alcuni modelli capaci di

ricreare leggi a potenza con un ampio range di esponenti. Abbiamo formalizzato

alcuni di questi e mostrato come le catene di Markov e il teorema di Perron-

Frobenius siano utili al �ne di studiare le loro proprietà. Successivamente abbi-

amo studiato un network e correlato le sue proprietà topologiche al cambiamento

di pendenza della legge a potenza che descrive il rank in frequenza delle parole

trovando un risultato degno di nota: il network sembra avere una struttura in

qualche modo legata sia all'ordine delle parole che alla loro frequenza. Questo

risultato può portare ad alcuni sviluppi nell'ambito dello studio del linguaggio

e della mente umana. Inoltre, siccome la struttura del network presenterebbe

alcune componenti che raggruppano parole in base al loro signi�cato, un appro-

fondimento di questo studio potrebbe condurre ad alcuni sviluppi nell'ambito del

text mining.





Introduction

Quantitative linguistics is a �eld of linguistics that applies statistical methods

to the study of texts. It originated in the 19th century, when the �rst scholars

started to count language elements of texts. For example, in Italy Filippo Mar-

iotti studied the most important Italian poem, the Divina Commedia by Dante

Alighieri applying basic statistical methods [14]. In his works he deepened the

knowledge of the Italian language with the purpose of improving the emergent

method of stenography.

With the same aim of optimizing stenography, at the beginning of the 20th cen-

tury stenographers dusted o� the quantitative studies of language deepening it.

Worth mentioning is J.B. Estoup who studied the relationship between frequency

and rank of words �nding the result today known as Zipf's law [13]. G.K. Zipf

gave a mathematical formula for Estoup's discovery and an interpretation of it

based on the principle of the least e�ort [26, 25]. More in detail, he stated that

the frequency rank distribution of words in texts follows a power-law with expo-

nent -1. Eventually, the validity of Zipf's law was deeply studied by Mandelbrot,

who brought new interest on it [12]. This revived activity was conveyed in �nd-

ing new �elds were Zipf's law could hold. It was discovered that it could be

applied not only to linguistic but also to the population of cities, magnitude of

earthquakes, the peak of gamma-ray intensity of solar �ares and many others

[17].

Meanwhile, the techniques applied to the study of texts and language became

more complex and the simple count of words was supported by more re�ned

mathematical methods. Stochastic processes started to take part into the lin-
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guistics analysis, driven by Yule that used them for explaining the origins of

power-laws [22]. Markov himself applied the stochastic process he de�ned, the

Markov chains, to the linguistic study of Eugene Onegin by Aleksander Puskin

[15].

In the meantime computational linguistics was emerging as a new science. It

originated in the 50s in the USA with the purpose of machine translation and

in few years it spread all over the world. Computers were showing their fast

calculation skills and it was thought that they could be used to study also lan-

guage. Since the mechanical translations did not achieve the expected results,

the computational linguistics left the translations for the quantitative study of

language. Applied to the calculation of Zipf's law, the computational power of

computers allowed a wider and deeper study of the frequency rank distribution

on a large scale of texts. It was proved that Zipf's law holds for texts written

in di�erent languages and dealing with di�erent topics. However, it was found

that it does not hold on every text length. In fact, on long texts the power-law

known as Zipf's law has a change in its slope [10]. This evidence is observable on

corpus with more than 104 di�erent words, reason why it has not been detected

before the use of computers.

Based on the application of mathematical methods, quantitative linguistics has

kept growing with the development and re�nement of those tools. In recent years

it bene�ted from the studies of graph theory. As many other �elds in mathemat-

ics, graph theory was originated from a problem that was posed by Euler in 1735.

It is known as the Königsberg bridges problem and concerns the possibility of

�nding a path through all the seven bridges of the town of Königsberg without

crossing any bridge twice [6]. From that moment on, the newborn �eld of graph

theory was expanded and many correlations with other branches of mathemat-

ics were discovered. For example, the topological representation of graphs and

the study of their geometric properties led to the birth of the topological graph

theory.

Born of a problem, graph theory has been used to solve other problems in many

�elds. Since texts and language in general establish relations among words and
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topics, graph theory has been useful to represent those links and to study their

properties. For example, the semantic relations between concepts can be repre-

sented using a network, i.e. the semantic network. The study of it can lead us

to the deepening of natural language analysis and text mining, with a possible

consequent development of arti�cial intelligence and other natural language ap-

plications [19]. A second relation that leads to the de�nition of a graph is the

order in which words appear in texts, i.e. the co-occurrence of words. The study

of this second type of graph can help us outline the dynamics that lay under

sentences construction and communication. For example, if the network built

basing on a text presents substantial di�erences from the average probably the

author of the text su�ers from a language disorder. Therefore, the study of this

kind of graphs can help in understanding the origins of some de�cits [8].

t For example, if substantial di�erences in the structure of a network are observed

a network structurally di�erent from the usual one means that the author of the

text su�ers from some language disorders. Therefore, the study of it can help in

understanding the origins of those de�cits [8].

This thesis deals with Zipf's law in the context of language. The �rst chapter

is intended as a recall of the needed elements of elementary probability, Markov

chains and graph theory. In the second chapter we introduce two of the main

laws of quantitative linguistics: Zipf's and Heaps' laws. As already mentioned,

Zipf's law deals with the frequency of words in a text and states that the fre-

quency rank distribution of the words follows a power-law with exponent -1. The

same relation is found considering the number of new words with respect to the

length of a text and it is called Heaps' law [11]. We explain the relationship

between those two laws and recall Zipf's explanation in order to justify their

omnipresence in several �elds of science. We then introduce a model for that law

that was clearly inspired by Zipf's principle of least e�ort [7]. Subsequently, we

present a classical and trivial stochastic model, Simon's model, that is able to

recall both laws [18]. Moreover we introduce the evidence of the changing slope

of Zipf's law and recall a model that has been displayed to explain better this
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double nature [10].

In the third chapter we de�ne and analyze di�erent stochastic models for gener-

ating Zipf's law. We take into account models that present an expansion in their

sample space (the Urn models [20]) and a reduction of it (the SSR models [3, 4]).

We write those models in terms of Markov chains and study their properties.

Moreover, for the SSR models we also give an interpretation in terms of linear

operators and show that this way it is possible to unify the three SSR processes

under the same model.

Finally in the fourth chapter we apply the network theory for studying texts

in relation with Zipf's changing slope. We build a network of co-occurrence of

words and analyze it with the help of topological quantities, centrality measures

and components detection. At last we try to link the measured quantities to a

particular structure of the network that is related to Zipf's changing slope and

the dynamics of sentences building.



Chapter 1

Mathematical background

This chapter is intended as a recall of all the mathematical concepts and

results that will be used later on in our dissertation. It is divided in two main

topics: the theory of probability and the theory of graphs. Since we are inter-

ested in studying some phenomena from the point of view of stochastic processes,

the �rst section of this chapter will deal with main ideas and results of proba-

bility theory. We will start from the de�nition of a probability space, de�ne the

concepts of random variables, stochastic processes, entropy and Markov chains.

Subsequently, we will get to the heart of the concept of Markov chains, recalling

their properties and establishing a connection between them and their represen-

tation as graphs.

1.1 Introduction to probability theory

In order to understand the following dissertation, we need to introduce some

classical ideas and result from the probability theory. We will start from the

de�nition of the environment which every of the following concepts belongs to,

the probability space. This concept is useful for modeling a particular class of

real-world processes (or experiments).

De�nition 1.1 (σ-algebra). Let Ω be a set. A σ-algebra A on Ω is a collection

of subsets A, A∈ Ω s.t.

9



10 1. Mathematical background

• Ω ∈ A;

• if A ∈ A ⇒ Ac ∈ A;

• if Ai ∈ A ⇒
⋃∞
i=1Ai ∈ A.

Remark 1. It is easy to prove that the power set of Ω, P(Ω), is a σ-algebra on

Ω. If not speci�ed, from now on we will use P(Ω) as σ-algebra.

De�nition 1.2 (Probability measure function). Let A be a σ-algebra on Ω. A

probability measure function P on (Ω,A) is a function P: A −→ [0, 1] s.t.

• P (A) ≥ 0 ∀A ∈ A;

• P (Ω) = 1;

• P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai), Ai ∈ A∀i Ai ∩ Aj = ∅ if i 6= j.

De�nition 1.3 (Probability space). A probability space is a triple (Ω,A, P )

where Ω is a non-empty set called sample space, A is a σ-algebra on Ω and P a

probability measure function on (Ω,A).

In other words, a probability space is constituted by a set Ω of all the possi-

ble outcomes of the experiment we want to model, a collection of subsets of Ω,

the σ-algebra A, that characterizes groups of outcomes and a function, P, that

assigns to every outcome or group of outcomes a number, its probability. For

example, with this construction it is easy to model the experiment of tossing a

fair coin. In fact, in this case Ω = {Head, Tail} because those are all the possible
outcomes. We take A = P(Ω), that has cardinality |P(Ω)| = 2|Ω| = 22 = 4. In

fact, A = {∅, {H}, {T}, {H,T}} where H is for Head and T is for Tail. Ob-

viously, the function P is de�ned on the elements of A as follows: P (∅) = 0,

P ({H}) = P ({T}) = 1
2
, P ({H,T}) = 1.

Every element ω ∈ Ω is called elementary event, while the elements A ∈ A are

called events. As we already said, given a probability space (Ω,A, P ) it is pos-

sible to compute the probability of every event and elementary event. However,

sometimes it could be useful to calculate the probability of an event knowing that
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another event has happened. This probability is di�erent from the probabilities

of the events but depends on them.

De�nition 1.4 (Conditional probability). Let A be a σ-algebra on Ω, if A,B ∈
A, P (A) > 0 we de�ne the conditional probability of A given B:

P (B|A) =
P (A ∪B)

P (A)

Remark 2. Note that under the hypothesis of the de�nition, i.e. A ∈ A and

P (A) > 0, P (·|A) is a probability measure function.

De�nition 1.5 (Independent events). In (Ω,A, P ) two events A,B ∈ A are

independent if P (A ∪B) = P (A)P (B).

Remark 3. As we said before, the conditional probability is a way of measuring

the correlation between two events. More precisely, it follows from de�nitions 1.4

and 1.5 that if A and B are independent, P (B|A) = P (B) and P (A|B) = P (A).

Proposition 1.1.1 (Bayes' formula). Let (Ω,A, P ) be a probability space. If

A,B ∈ A, P (A) > 0

P (B|A) =
P (B)P (A|B)

P (A)

Proof. The probability of the event A ∩B can be written in two di�erent ways:

P (A ∩ B) = P (A|B)P (B) and P (A ∩ B) = P (B|A)P (A). Now, with a simple

algebraic passage it is possible to �nd Bayes' formula.

We de�ned the probability of an event in A using a function, the probability

measure function. If Ω is numerable, we can denote the probability of the events

in A using a vector that shows some properties:

De�nition 1.6 (Probability vector). Let Ω be a numerable set with elements

ω ∈ Ω. A function p : Ω −→ [0, 1] s.t.
∑

ω p(ω) = 1 is a probability vector.

From now on we may consider only �nite sample spaces Ω.

Notation-wise, we will write ~p = (p1 . . . pn) = (p(ω1) . . . p(ωn)) where Ω =

{ω1 . . . ωn}.
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Being only a change in notation, it is obvious that the de�nition of probability

using the probability measure functions and using the probability vectors are the

same. More formally, it is possible to construct a bijection between the former

and the latter.

Proposition 1.1.2. There is a bijection between probability measure functions

on numerable sets and probability vectors, i.e. if Ω is a numerable set, ~p a

probability vector on Ω and P a probability measure function on (Ω,P(Ω)), then

~p and P are equivalent.

Proof. Let ω be elements in a subset A of Ω, hence P (A) =:
∑

ω∈A p(ω). Vice

versa, given a probability space (Ω,A, P ) the probability vector ~p is de�ned as:

p(ω) := P ({ω}).

1.1.1 Random variables

Now we are introducing a key concept in our dissertation and more in general

in the probability theory, the random variables. Random variables are functions

which have the set of possible outcomes as domain. They are used to model

several phenomena that are governed by probability laws.

De�nition 1.7 (Random variable). Let (Ω, A, P ) be a probability space, χ a

non-empty set and F a σ-algebra on χ. The function X: Ω −→ χ is a random

variable if ∀A ∈ F , X−1(A) ∈ A.

In general, given the function X, we take χ as its image.

Remark 4. A random variable X induces a probability measure function PX on

(χ,F): if A ∈ F PX(A) := P ({ω ∈ Ω|X(ω) ∈ A}) = P (X−1(A)). Therefore

(χ,F , PX) is a probability space and PX is called law or distribution of the

stochastic variable X. We call ~pX the correspondent probability vector.

Notation-wise, sometimes we will write ~pX = PX .

Recalling the example of the tossing of a coin, we can model it using a random

variable. We take Ω = {0, 1} and P s.t. P ({0}) = 1
2
, P ({1}) = 1

2
. The random
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variable that models the experiment is:

X(ω) =

T if ω = 0

H if ω = 1

This random variable induces a probability on its image χ = {T,H}: PX(T ) = 1
2
,

PX(H) = 1
2
.

De�nition 1.8 (Identically distributed variables). Let X,Y be random variables.

If they have the same distribution they are identically distributed.

In the case the codomain of a random variable χ is a subset of R we can

de�ne the expected value of that variable. This concept can be interpreted as

the average outcome of the variable.

De�nition 1.9 (Expected value). Let X be a real random variable, X : Ω 7−→
χ ⊆ R. The expected value of X is de�ned as follows:

E(X) =
∑
x∈χ

p(x)x

It is important to note that the random variable X must have real values,

otherwise the product p(x)x is not de�ned. Using the notion of expected value

we can de�ne:

De�nition 1.10 (Variance). Let X be a real random variable, X : Ω 7−→ χ ⊆ R.
We can de�ne the variance of it as

var(X) = E((X − E(X))2)

In other words, the variance of a random variable is the expectation of the

squared deviation from its mean.

De�nition 1.11 (Joint probability). Let (Ω,A, P ) be a probability space and

X, Y random variables, X : Ω −→ X , Y : Ω −→ Y , X ,Y �nite sets. Then the
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joint probability is

P(X,Y )(x, y) := P (X−1(x) ∩ Y −1(y)) x ∈ X , y ∈ Y

We will use the notation p(x, y) = P(X,Y )(x, y).

Remark 5. Knowing the joint probability P (X, Y ) of two random variables X

and Y it is possible to calculate the probability associated to each of them, P (X)

and P (Y ):

p(x) =
∑
y∈Y

p(x, y) p(y) =
∑
x∈X

p(x, y)

It is possible to de�ne the concept of independence also on random variables:

De�nition 1.12 (Independence). Let X,Y be stochastic variables on Ω, X :

Ω −→ χ with σ-algebra FX , Y : Ω −→ Y with σ-algebra FY . X and Y are

independent if ∀A ∈ FX ,∀B ∈ FY

P (X−1(A) ∩ Y −1(B)) = P (X−1(A))P (Y −1(B))

Remark 6. Due to remark 4 and de�nition 1.11 we can rewrite the condition

above: P(X,Y )(x, y) = PX(x)PY (y) or p(x, y) = p(x)p(y) ∀x, y.

De�nition 1.13 (iid variables). If X and Y are two independent and identically

distributed random variables, they are called iid variables.

We can now generalize the conditional probability to the case of two random

variables.

De�nition 1.14 (Conditional distribution). Let X,Y be random variables on

(Ω,A, P ) and p(x, y) the joint distribution. Then we de�ne the conditional dis-

tribution

p(x|y) =
p(x, y)

p(y)
=
P (X−1(x) ∩ Y −1(y))

P (Y = y)

Remark 7. Using the de�nition 1.12, if X and Y are independent the conditional

probability is:

p(x|y) =
p(x, y)

p(y)
=
p(x)p(y)

p(y)
= p(x)
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1.2 Stochastic processes

We are now de�ning one of the key concepts of probability theory: the

stochastic processes. The stochastic processes are a collection of random vari-

ables that are usually used to model phenomena that vary in a random manner.

For example, if we index the variables by time, they could represent numerical

values of some system randomly changing over time.

De�nition 1.15 (Stochastic process). A stochastic process is a sequence of ran-

dom variables {Xi}i∈N, Xi : Ω −→ χ.

Notation-wise, we will write p(x1, x2 . . . xn) = P (Xi1 = x1, Xi2 = x2 . . . Xin =

xn) = P (X−1
1 (x1) ∩X−1

2 (x2) ∩ . . . ∩X−1
n (xn)) where {x1, x2 . . . xn} ∈ χn ∀n.

De�nition 1.16. The conditional distribution of n random variables is:

p(xn|x1 . . . xn−1) =
p(x1 . . . xn)

p(x1 . . . xn−1)

Remark 8. As a consequence of the previous de�nition,

p(x1, x2 . . . xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1 . . . xn−1)

Since a stochastic process is de�ned giving p(x1, x2 . . . xn), from remark 8 fol-

lows that a stochastic process is fully de�ned knowing p(x1) and p(xj|x1 . . . xj−1) ∀j.
Being a stochastic process a collection of random variables, all the results and

de�nitions that hold for random variables can be extended to stochastic pro-

cesses.

De�nition 1.17. Let {Xn}n∈N be a stochastic process. The process is identically

distributed if Xn are identically distributed ∀n.

De�nition 1.18 (iid process). If {Xn}n∈N is a stochastic process s.t. the random

variables Xn are independent and identically distributed ∀n, {Xn}n∈N is called

iid process.



16 1. Mathematical background

De�nition 1.19 (Stationarity). A stochastic process is stationary if it is invari-

ant under translations of time:

P (Xi1 = x1, Xi2 = x2 . . . Xin = xn) = P (Xi1+h = x1, Xi2+h = x2 . . . Xin+h = xn)

∀n ∀i1 . . . in ∀x1 . . . xn ∀h.

In other words, a stochastic process is stationary if it models a sequence of

repeatable experiments. In particular, from de�nition 1.19 follows that p(X1 =

x1) = p(X1+h = x1+h), that means that the probability of obtaining a particular

outcome does not depend on the time .

Remark 9. Let {Xi}i∈N stochastic process iid with probability vector ~p, hence:

P (Xi1 = x1, Xi2 = x2 . . . Xin = xn) = P (Xi1 = x1)P (Xi2 = x2) . . . P (Xin = xn) =

= p(x1)p(x2) . . . p(xn).

Therefore if we have an iid stochastic process, we only need the probability vector

~p to de�ne the process.

1.2.1 Markov chains

A particular type of stochastic process is the Markov chain. It is a stochastic

model that describes a sequence of possible events in which the probability of

each event depends only on the state attained in the previous event.

De�nition 1.20 (Markov chain). A stochastic process de�ned by the probability

~p = p(x1 . . . xn)∀n is a Markov chain if p(xj|x1 . . . xj−1) = p(xj|xj−1) ∀j.

Remark 10. Since a stochastic process is fully de�ned knowing p(x1) and p(xj|x1, x2 . . . xj−1) ∀j,
a Markov chain is fully de�ned by p(x1) and p(xj|xj−1) ∀j.

De�nition 1.21 (homogeneity). A Markov chain is (temporally) homogeneous

if

P (Xj = a|Xj−1 = b) = P (X2 = a|X1 = b) ∀j a, b ∈ χ

. That is, P (Xj = a|Xj−1 = b) does not depend on j ∀j.
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In other words, the probability of obtaining a particular outcome depends

only on the previous outcome.

Notation-wise, we will write: p(a|b) = P (Xj = a|Xj−1 = b).

Note that every iid process is a Markov chain.

Proof. From de�nitions 1.16 and 1.18 follows that p(xj) = p(xj|x1 . . . xj−1).

It is easy to prove by induction that p(xj|xj−1) = p(xj), therefore the process is

a Markov chain.

In the following we shall always consider homogeneous Markov chains.

It is important to note that a Markov chain could be expressed in terms of

matrices and vectors. These algebraic entities can be easily represented using

graphs. In this sense, the algebraic representation of a Markov chain connects

probability theory with graph theory.

1.2.2 Graphs and Markov chains

As already advanced, it is possible to convert all the features of Markov chains

in terms of matrices and vectors. This is useful because all the characteristic el-

ements of a Markov chain are written using algebraic entities that are easy to

work with.

Due to remark 10, for identifying a Markov chain we need to know p(x1) and

p(xj|xj−1) ∀j > 2. Therefore in order to give an algebraic transcription of a

Markov process we have to rewrite those quantities in terms of matrices and

vectors.

Starting with p(x1), if we de�ne µj = p(X1 = j) ∀j then obviously ~µ =

(µ1 . . . µn) is a probability vector.

Notation-wise, given the set of outcomes χ = {x1 . . . xn} we identify it with

the set of the �rst n natural numbers {1, 2 . . . n}. Therefore, with this nota-

tion P (Xk = xik) is P (Xk = ik). For the �rst random variable, we will write

p(j) instead of P (X1 = j). Moreover, we put P (Xn = j|Xn−1 = i) = p(j|i) = pij.



18 1. Mathematical background

Remark 11. Supposing to have an homogeneous Markov chain, hence:

P (Xn = in|Xn−1 = in−1) = p(in|in−1) =
∑

i1...in−2

p(in|i1 . . . in−1) =

=
∑

i1...in−2

p(i1)p(i2|i1) . . . p(in|i1 . . . in−1) =
∑

i1...in−2

p(i1)p(i2|i1) . . . p(in|in−1) =

=
∑

i1...in−2

µi1p(i2|i1) . . . p(in|in−1) =
∑

i1...in−2

µi1pi1i2 . . . pinin−1

Therefore from remarks 10 and 11 follows that the Markov chain repre-

sented by the graph is fully de�ned knowing ~µ and the conditional probabilities

p(ij|ij−1) ∀j.
Now we try to represent the conditional probabilities in terms of matrices.

De�nition 1.22 (Stochastic matrix). A stochastic matrix {Pij}i,j is a matrix

s.t. Pij ≥ 0 ∀i, j and
∑

j Pij = 1.

An example of stochastic matrix is the transition probability matrix. We will

use it to represent the transition probabilities of the Markov chain.

De�nition 1.23 (Transition probability matrix). Let {Xi}i∈N be a Markov chain

on χ with probability vector ~p. Suppose |χ|=n. The transition probability matrix

of that Markov chain is a nxn matrix

P =

 p(j|i)

 i-th row

j-th column

Note that with the notation p(j|i) = pij, pij is exactly the element Pij of the

matrix.

As a consequence of remark 11, using the probability vector ~µ and the transition

probability matrix P we can represent the Markov chain in terms of algebraic
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entities.

Now we introduce the concept of graph and reconnect it to the probability vectors

and matrices just de�ned. This way we can see the properties of the Markov

chain as properties of the graph and we can have a graphic representation of the

process.

De�nition 1.24 (Graph). A graph is an ordered pair G = (V , E) where V is the

set of vertices or nodes and E is a set of links, E = {(i, j), i, j ∈ V , i is connected to j}.
If the set E is constituted by ordered pairs the graph is called directed, i.e. the

links have directions. Graphically, the links of this kind of graph are drawn as

arrows that indicate the only direction allowed. If the pairs of E are not ordered,
the graph is called undirected and every link allows moves in both directions.

De�nition 1.25 (Strong connection). A directed graph is strongly connected if

there is a path between all the pair of vertices.

Every strongly connected component of a graph is called strongly connected

component or SCC.

De�nition 1.26 (Neighbours). Considering the vertex i, its neighbours are all

the vertex that are connected to i by an edge, regardless of the direction of

the links (if they have one). In the case of a directed graph, we can divide

the neighbours in in-neighbours and out-neighbours. The in-neighbours are the

vertices that are connected to i with an exiting link, i.e. the link enters in i, and

the out-neighbours are the vertices that are connected to i with an entering link,

i.e. the link exits from i.

For example, considering the directed graph of �gure 1.1, the neighbours of

the vertex 2 are the vertices 1, 3, 4 and 5. While 3, 4 and 5 are its out-neighbours,

1 is its only in-neighbour.

We will use weighted directed graphs to represent Markov chains. The set of

the nodes V is the set of the values in χ = {x1, x2 . . . xn} and the set of the links

is E = {(xi, xj), xi, xj ∈ χ, p(xj|xi) 6= 0}. The weight of the link that connects

the vertex xj−1 with the vertex xj is the transition probability p(xj|xj−1).

Note that in general if p(xj|xj−1) 6= 0 it is not guaranteed that p(xj−1|xj) 6= 0,



20 1. Mathematical background

Figure 1.1: Right panel: example of an undirected graph. The lines represent
the links and the numbers represent the vertex. It is allowed to move in both
the directions of the links. For example, it is permitted to go from vertex 2 to
vertex 4 and vice versa. Left panel: example of a directed graph. The links
are represented by arrows with a direction. For example, in this graph it is
allowed to move from vertex 2 to vertex 4 but not vice versa. In the case of the
representation of a Markov chain with a directed graph, the arrows connect the
previous result of the process with the current outcome.

i.e. it is allowed to move from vertex xj−1 to vertex xj but not in the opposite

direction. As a consequence, the graph that represent a Markov chain has to be

directed.

For example, the graph in �gure 1.2 is the graphic representation of a Markov

Figure 1.2: Example of a weighted directed graph. The labels on the arrows
represent the weight of every link.
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chain with |χ| = 4 and with transition probability matrix:

P =


0 1 0 0

0.3 0 0 0.7

0 1 0 0

1 0 0 0


Note that being conditional probabilities the sum of the terms in every row of

the conditional probability matrix has to be 1. This means that the sum of the

weights of the links that start from a certain vertex has to be 1.

A path on a graph is a possible realization of the Markov chain represented by

the graph: a n-steps path on the graph corresponds to a sequence of n+1 vertices

that correspond to a realization of the Markov chain. In other words, considering

the graph a sequence of vertices (xi1 , xi2 . . . xin) represents the path that starts

from the vertex xi1 , passes trough the vertices xi2 , xi3 . . . and ends in the ver-

tex xin . This corresponds to a realization of the Markov chain with probability

p(xi1 , xi2 . . . xin) = P (X1 = xi1 , X2 = xi2 . . . Xn = xin).

Proposition 1.2.1. P is a stochastic matrix ⇔ ∀~µ stochastic vector, ~µP is a

stochastic vector.

Proof.

⇒ The elements of the vector ~µP are ≥ 0 because they are obtained multiplying

two numbers that are ≥ 0.

Now we have to prove the second condition, that is
∑n

i=1 (~µP )i = 1:

n∑
i=1

(~µP )i =
n∑
i=1

(
n∑
j=1

µjPji

)
=

n∑
j=1

(
n∑
i=1

µjPji

)
=

n∑
j=1

µj

(
n∑
i=1

Pji

)
=

=
n∑
j=1

µj = 1

Therefore ~µP is a stochastic vector.

⇐ We choose ~µ = δk where δk = (δ1k . . . δnk) = (0 . . . 1 . . . 0) is the stochastic
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vector with 1 in the k-th position and 0 elsewhere. In other words

µj = δjk =

0 if j 6= k

1 else

Therefore (~µP )i =
(∑

j µjPji

)
=
(∑

j δjkPji

)
= Pki ≥ 0 ∀k, i because ~µP

stochastic vector.

Now we have to prove the second condition, so that
∑

i Pki = 1. For hypoth-

esis,
∑

i (µP )i = 1, therefore
∑

i Pki =
∑

i

(∑
j δjkPji

)
=
∑

i

(∑
j µjPji

)
=∑

i (µP )i = 1.

Applying several time the proposition 1.2.1 we �nd the following

Corollary 1.2.2. ~µP 2, ~µP 3 . . . ~µP k ∀k are stochastic vectors.

Proposition 1.2.3. Given an homogeneous Markov chain identi�ed by (~µ, P ),

it holds:

1. P (Xk = j) = (~µP k−1)j ∀k > 1

2. P (Xk = j|X1 = i) = (P k−1)ij ∀k > 1

3. P (Xk+h−1 = j|Xh = i) = (P k−1)ij ∀k > 1

Proof.

1. P (Xk = j) is the probability of being in the j-th vertex at time k.

P (Xk = j) =
∑

i1,i2...ik−1

P (X1 = i1, X2 = i2 . . . Xk = j) =

=
∑

i1,i2...ik−1

P (X1 = i1)P (X2 = i2|X1 = i1)P (X3 = i3|X2 = i2) . . .

. . . P (Xk = j|Xk−1 = ik−1) =
∑

i1,i2...ik−1

µi1Pi1i2Pi2i3 . . . Pik−1j = . . .

. . . =
∑
i1

µi1(P
k−1)i1j = (µ1 . . . µn)(P k−1) = (~µP k−1)j
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2. P (Xk = j|X1 = i) is the probability of arriving in the j-th vertex in exactly

k − 1 steps, starting from the i-th vertex.

P (Xk = j|X1 = i) =
∑

i2...ik−1

P (X2 = i2|X1 = i)P (X3 = i3|X2 = i2) . . .

. . . P (Xk = j|Xk−1 = ik−1) =
∑

i2...ik−1

Pii2Pi2i3 . . . Pik−1j = (P k−1)ij

Where in the last equivalence we followed the procedure of proof 1.

3. P (Xk+h−1 = j|Xh = i) is the probability of leaving from the i-th vertex at

time h and arriving in the j-th vertex after k steps.

P (Xk+h−1 = j|Xh = i) = P (Xk = j|X1 = i) = (P k−1)ij

Where in the �rst equivalence we used the de�nition of homogeneity and

in the second equivalence the previous proof.

Proposition 1.2.4. Let (~µ, P ) be an homogeneous Markov chain. It is stationary

if and only if ~µ = ~µP

This means that ~µ is a left eigenvector of the matrix P with eigenvalue 1.

Proof.

⇒ Suppose that the Markov chain is stationary. Then

(~µP )j = P (X2 = j) = P (X1 = j) = ~µj ∀j ⇒ ~µ = ~µP

where we applied the �rst point of theorem 1.2.3 and the de�nition of homogene-

ity.
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⇐ We suppose that ~µ = ~µP and we prove that the Markov chain is stationary

P (X1+k = i1, X2+k = i2 . . . Xn+k = in) =

=
∑

j1,j2...jk

P (X1 = j1, X2 = j2 . . . Xk = jk, X1+k = i1, X2+k = i2 . . . Xn+k = in) =

=
∑

j1,j2...jk

µj1Pj1j2Pj2j3Pjk−1jkPjki1Pi1i2 . . . Pin−1in =

=

(∑
j1

µj1
(
P k−1

)
j1i1

)
Pi1i2 . . . Pin−1in =

=
(
~µP k−1

)
i1
Pi1i2Pi2i3 . . . Pin−1in=̂µi1Pi1i2Pi2i3 . . . Pin−1in =

= P (X1 = i1, X2 = i2 . . . Xn = in)

where the hypothesis ~µ = ~µP was used in the equivalence marked with ̂ .
For example, we observed that an iid process is a Markov chain, therefore we

can represent it with a graph or with the pair (~µ, P ). ~µ is the probability vector

of the random variables Xi. It is well de�ned because the variables of the process

are identically distributed.

Moreover, since the process is independent P (X = i|Y = j) = P (X = i) i.e.

Pij = µi. Therefore the transition probability matrix P has this form:

P =


| | |
~µ ~µ ~µ

| | |


Is this process stationary? Using proposition 1.2.4 we need to calculate ~µP :

~µP = ~µ


| | |
~µ ~µ ~µ

| | |

 = µ1~µ+ µ2~µ+ . . .+ µn~µ = (µ1 + µ2 + . . .+ µn)~µ =

= 1 · ~µ = ~µ

Therefore we proved that an iid process is an homogeneous and stationary
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Markov chain.

De�nition 1.27. A non-negative matrix P is irreducible if ∀i, j ∃k s.t.
(
P k
)
i,j
6=

0.

Remark 12. We de�ne the adjacency matrix M = (Mij)i,j=1...N where

Mij =

1 if Pij 6= 0

0 otherwise

Since P is non-negative, P is irreducible if and only if M is irreducible.

We can associate to M a graph, G = (V , E) where V = {1, 2 . . . N} and E =

{(i, j), i, j ∈ V ,Mij 6= 0}. M is irreducible if and only if exists always a path

long k steps that connects every pair of vertices of the graph.

Note that if P is a stochastic matrix it is irreducible if and only if exists always

a path long k steps that connects every pair of vertices of the graph associated

with P .

De�nition 1.28. Let P be a n × n matrix, P ≥ 0. The period of a state i is

de�ned as the GCD{k ∈ N : (P k)ii > 0}. If the period is 1 then A is called

aperiodic, otherwise it is periodic.

Theorem 1.2.5 (Perron-Frobenius for regular stochastic matrices). If P is a

regular stochastic matrix ∃! ~π,

1. ~π = ~πP

2. ∀i = 1 . . .m limn→∞ (P n)ij = πj

That is, exists only one set of initial conditions that makes the Markov chain

de�ned by (~µ, P ) stationary. The second point states that if the transition proba-

bility matrix of a Markov chain is regular, the process converges to its stationary

distribution.

To prove this theorem we need to de�ne a distance on the stochastic vectors

space

Sn =

{
~µ = (µ1, µ2 . . . µn), µi ≥ 0,

∑
i

µi = 1

}
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.

De�nition 1.29. Let ~µ, ~µ′ be vectors in Sn, we de�ne the distance

d(~µ, ~µ′) =
1

2

n∑
i=1

|µi − µ′i|

Now we prove that the previous is a distance:

Proof. 1. d(~µ, ~µ′) ≥ 0 because |µi − µ′i| ≥ 0 ∀i and the sum of non-negative

quantities is non-negative.

2. d(~µ, ~µ′) = d(~µ′, ~µ). In fact d(~µ, ~µ′) = 1
2

∑n
i=1 |µi − µ′i| =

1
2

∑n
i=1 |µ′i − µi| =

d(~µ′, ~µ).

3. d(~µ, ~µ′) ≤ d(~µ, ~ν) + d(~ν, ~µ′). In fact since |µi − µ′i| ≤ |µi − νi| + |νi − µ′i|,
d(~µ, ~µ′) = 1

2

∑n
i=1 |µi − µ′i| ≤

1
2

∑n
i=1 |µi − νi|+

1
2

∑n
i=1 |νi − µ′i| = d(~µ, ~ν) +

d(~ν, ~µ′).

Remark 13. Note that 0 ≤ d(~µ, ~µ′) ≤ 1

Proof. d(~µ, ~µ′) ≥ 0 because it is a distance and d(~µ, ~µ′) ≤ 1 because
∑

i µi =∑
i µ
′
i = 1.

Proposition 1.2.6. Let
∑+

i αi be the sum of all the positive αi. Then d(~µ, ~µ′) =∑+
i (µi − µ′i)

Proof. It is possible to prove that the sum of the positive addends is equal to

the sum of the negative addends: 0 = 1 − 1 =
∑

i µi −
∑

i µ
′
i =

∑
i(µi − µ′i) =∑+

i (µi − µ′i)−
∑+

i (µ′i − µi)⇔
∑+

i (µi − µ′i) =
∑+

i (µ′i − µi).
Then d(~µ, ~µ′) = 1

2

∑n
i=1 |µi − µ′i| = 1

2

∑+
i (µi − µ′i) + 1

2

∑+
i (µ′i − µi) =

∑+
i (µi −

µ′i).

Lemma 1.2.7. Let P be a stochastic matrix and ~µ, ~µ′ ∈ Sn, then:

1. d(~µP, ~µ′P ) ≤ d(~µ, ~µ′)
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2. If ∃α s.t. Pij ≥ α ∀i, j ⇒ d(~µP, ~µ′P ) ≤ (1− α)d(~µ, ~µ′)

Proof. 1. Using the proposition 1.2.6 we have:

d(~µP, ~µ′P ) =
∑
j

+
((~µP )j − (~µ′P )j) =

∑
j

+

(∑
i

µiPij −
∑
i

µ′iPij

)
=

=
∑
j

+

(∑
i

(µi − µ′i)Pij

)
≤
∑
j

+∑
i

+
(µi − µ′i)Pij =

∑
i

+
(µi − µ′i)

∑
j

+
Pij.

Since
∑

j
+Pij ≤ 1,

d(~µP, ~µ′P ) ≤
∑
i

+
(µi − µ′i)

∑
j

+
Pij ≤

∑
i

+
(µi − µ′i) = d(~µ, ~µ′)

.

2. We just proved that d(~µP, ~µ′P ) ≤
∑

i
+(µi − µ′i)

∑
j
+Pij. Now we observe

that in this formula
∑

j 6=
∑

j
+, then ∃j0 such that

∑
j
+ excludes this

index. Pij ≥ α ∀i, j ⇒
∑

j
+Pij ≤ 1 − α. Then d(~µP, ~µ′P ) ≤

∑
i
+(µi −

µ′i)
∑

j
+Pij ≤ (1− α)d(~µ, ~µ′).

Remark 14. If P and Q are two stochastic matrices then P · Q is a stochastic

matrix.

Proof. Obviously (P ·Q)ij = PikQkj ≥ 0 ∀i, j because Pik ≥ 0 ∀i, k,Qkj ≥ 0∀j, k.

∑
j

(P ·Q)kj =
∑
j

(∑
i

PkiQij

)
=
∑
i

Pki

(∑
j

Qij

)
=
∑
i

Pki = 1

Now we are ready to prove the Perron-Frobenius theorem.

Proof. Supposing P is a regular matrix with k=1, we prove the �rst point. Let's

put ~µ(n) = ~µP n, consequently ~µ(n+l) = ~µP n+l = ~µ(l)P n. We want to prove

that
{
~µ(n)

}
n
is a Cauchy sequence with respect to the distance d(·, ·) de�ned
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above. Since P is a regular matrix with k=1, we can use the lemma 1.2.7 with

α = mini,j Pij ≥ 0.

d(~µ(n+l), ~µ(n)) = d(~µ(l)P n, ~µP n) ≤ (1− α)n d(~µ(l), ~µ) ≤ (1− α)n −−−→
n→∞

0

Where in the last inequality we used the fact that d(·|·) ≤ 1. Observe that we

could use lemma 1.2.7 because as a consequence of remark 14, if P is a stochastic

matrix then also P n is a stochastic matrix.

We proved that
{
~µ(n)

}
n
is a Cauchy sequence, then it has a limit, i.e. ∃~π ∈ Sn

s.t.
{
~µ(n)

} d−−−→
n→∞

~π.

We observe that ~µ(n+1) = (~µP n)P −−−→
n→∞

~π but also ~µ(n+1) = (~µP n)P −−−→
n→∞

~πP .

Therefore ~πP = ~π.

Now we have to prove that ~π is unique. If ∃~π1,∃~π2 s.t. ~π1 = ~π1P,~π2 = ~π2P then

d(~π1, ~π2) = d(~π1P,~π2P ) ≤ (1− α)d(~π1, ~π2)

Since P is regular, α > 0. Then d(~π1, ~π2) < d(~π1, ~π2) that is absurd. For the prove

of the second point we observe that d(~µP n, ~πP n) ≤ (1− α)n d(~µ, ~π) ≤ (1− α)n.

In particular d(~µP n, ~π) ≤ (1− α)n because ~π is a left eigenvector, i.e. ~πP n = ~π.

Now we take ~µ = (0 . . . 1 . . . 0) i.e. ~µi =

0 if i 6= k

1 if i = k
. Then

(~µP n)j =
∑
i

µiP
n
ij =

∑
i

δikP
n
ij = P n

kj −−−→
n→∞

πj

Where we used the fact that d(~µP n, ~π) −→ 0.

Now we suppose k 6= 1. As a consequence of remark 14, Q = P k is a regular

stochastic matrix. We need to prove that ~µ(n) is a Cauchy succession and then

we can use the previous procedure for �nishing the proof.

We use two indices n1, n2 s.t. n2 ≥ n1 = qk + r.

d(~µ(n2), ~µ(n1)) = d(~µP n2−n1+kq+r, ~µP kq+r) = d(~µ(n2−n1+r)P kq, ~µ(r)P kq) =

= d(~µ(n2−n1+r)Qq, ~µ(r)Qq)
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Since we de�ned Q = P k, Q is regular with k = 1. We de�ne α = mini,j Qij ≥ 0

and using the previous proof we �nd that d(~µ(n2), ~µ(n1)) = d(~µ(n2−n1+r)Qq, ~µ(r)Qq) ≤
(1− α)q.

We observe that if n1 → ∞ ⇒ n2 → ∞. n1 → ∞ ⇔ q → ∞ ⇒ (1 − α)q → 0.

Therefore ~µ(n) is a Cauchy succession and we can prove the theorem as we did

in the previous case.

The vector ~π de�ned in the previous theorem has a peculiar shape in the case

of bistochastic matrices.

De�nition 1.30. A matrix P is bistochastic if it is stochastic and

∑
i

Pij = 1

.

Proposition 1.2.8. The matrix P is bistochastic if and only if ~π s.t. ~π = ~πP is

a uniform vector i.e. ~π =
(

1
n
, 1
n
. . . 1

n

)
.

Proof.

⇒ Suppose P is bistochastic. We want to prove that ~πP = ~π, i.e. (~πP )i =

~πi ∀i.
(~πP )i =

∑
j

πjPji =
1

n

∑
j

Pji =
1

n
= ~πi ∀i

⇐ Let ~π be a uniform vector ~π =
(

1
n
, 1
n
. . . 1

n

)
, we want to prove that P is

bistochastic.

Since ~πi = (~πP )i we have:

1

n
=
∑
j

πjPji =
1

n

∑
j

Pji ⇒
∑
j

Pji = 1 ∀i

The Perron-Frobenius theorem can be formulate in a more general way. In

particular, we report the version that applies to irreducible non-negative matrices

(see [16] for other versions of the theorem and their proofs).
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Theorem 1.2.9 (Perron-Frobenius theorem for irreducible non-negative matri-

ces). Let P = (aij) ≥ 0 be a irreducible n × n matrix with period h. We write

the set of the eigenvalues of P as Λ := λ1, . . . , λn such that ρ(P ) = |λ1| ≥ |λ2| ≥
. . . ≥ |λn|. Then

1. λ1 ∈ R+ (Perron root)

2. λ1, λ2 = λ1e
2πi 1

h , λ3 = λ1e
2πi 2

h . . . λh = λ1e
2πih−1

h ∈ Λ; they all have alge-

braic multiplicity 1 and, obviously, λ1 = |λi| ∀i = 1 . . . h.

3. ∃~v > 0 and ~w > 0 such that A~v = λ1~v and ~wTA = λ1 ~w
T .

4. If ~vi (or equivalently ~wi) is a right (left) eigenvector associated to λi and

~vi > 0 (~wi > 0) ⇒ i ∈ 1 . . . h.

5. If h = 1 then limk→∞
Pk

λk1
= ~v ~wT =: µ where ~v and ~w are normalized such

that ~wT~v = 1.

Theorem 1.2.10. Let P = (aij) ≥ 0 be a irreducible n × n matrix and ~v be a

left eigenvector of P . ~v ≥ 0 if and only if it is the eigenvector associated to the

maximum eigenvalue.

1.2.3 Shannon's entropy

We now introduce a function that is strictly related to information: the en-

tropy. Shannon's entropy could be seen as the average rate at which information

is produced by a stochastic source of data. For instance, when a low-probability

event occurs it carries more information than an high-probability event. The

reason lies in the fact that its happening is more surprisingly.

Shannon's entropy could be de�ned using the following

Theorem 1.2.11 (Shannon's entropy). Let X be a discrete random variable on

χ = {x1, x2 . . . xM} with distribution ~p = (p1, p2 . . . pM). Exists a function unique

up to a multiplicative constant that satis�es:

1. Monotonicity, i.e. f(M) = HM

(
1
M
, 1
M
. . . 1

M

)
is increasing;
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2. Extensivity, i.e. ∀L,M ≥ 1 f(LM) = f(L) + f(M);

3. Decomposition, i.e. let ~q = (qA, qB) be a probability vector, qA =
∑r

i=1 pi qb =∑M
i=r+1 pi r < M ,

HM(~p) = H2(~q) + qAH

(
p2

qA
,
p2

qA
. . .

pr
qA

)
+ qBH

(
pr + 1

qB
,
pr + 2

qB
. . .

pM
qB

)
;

4. Continuity.

The function that satis�es the previous properties is:

H(~p) = −c
M∑
i=1

pi log pi (1.1)

where c is a constant. It is called Shannon's entropy.

From now on we assume that 0 log 0 = 0.

Proof.

We put f(M) = HM

(
1
M
, 1
M
. . . 1

M

)
.

1. Monotonicity:

f(M) = HM

(
1

M
,

1

M
. . .

1

M

)
= −c

M∑
i=1

1

M
log

1

M
= −c log

1

M
= c logM

It is increasing because logM is increasing as a function of M .

2. Extensivity:

f(LM) = HLM

(
1

LM
,

1

LM
. . .

1

LM

)
= −c

LM∑
i=1

1

LM
log

1

LM
=

= −c log
1

LM
= c log(LM) = c(log(L) + log(M)) = HM +HL =

= f(L) + f(M)
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3. Decomposition

HM(~p) = −c
M∑
i=1

pi log pi

H2(~q) + qAH

(
p2

qA
,
p2

qA
. . .

pr
qA

)
+ qBH

(
pr + 1

qB
,
pr + 2

qB
. . .

pM
qB

)
=

= qA log qA + qB log qB + qa

r∑
i=1

pi
qA

log
pi
qA

+ qb

M∑
i=r+1

pi
qB

log
pi
qB

And with some easy algebraic passages it is possible to pass from the �rst

to the second equation and vice versa.

4. It is continuous because the logarithmic function is continuous.

Now we prove the uniqueness of the function. ∀M,k ≥ 1 it holds

f(Mk) = f(M ·Mk−1) = f(M) + f(Mk−1)

where we used the property 2. Recursively we obtain:

f(Mk) = kf(M) (1.2)

Now we prove by induction that ∀M ≥ 1 integer, ∃C s.t. f(M) = C logM :

If M = 1 f(1) = f(1 · 1) = f(1) + f(1) = 2f(1)⇒ f(1) = 0 = C log 1

Now we need to prove it for M > 1. Notice that, since Mk is increasing as a

function of k,

∀r ≥ 1 ∃k s.t. Mk ≤ 2r ≤Mk+1 (1.3)

Since the function f(M) is monotonic, using property 2. we have:

f(Mk) ≤ f(2r) ≤ f(Mk+1)⇒ k · f(M) ≤ r · f(2) ≤ (k + 1) · f(M)
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Therefore
k

r
≤ f(2)

f(M)
≤ k + 1

r
(1.4)

Applying the logarithmic function to equation 1.3 we also �nd

Mk ≤ 2r ≤Mk+1 ⇒ k logM ≤ r log 2 ≤ (k + 1) logM

Therefore
k

r
≤ log 2

logM
≤ k + 1

r
(1.5)

From equations 1.4 and 1.5 we have:∣∣∣∣ f(2)

f(M)
− log 2

logM

∣∣∣∣ ≤ 1

r
(1.6)

In the limit r → 0,
f(2)

f(M)
=

log 2

logM

Therefore

f(M) =
f(2)

log 2
logM = C logM (1.7)

The next passage is to extend the previous result to a general probability vector.

Let ~p be a rational probability vector, pi = ri
M

i = 1 . . . N . We consider the

uniform probability vector
(

1
M
, 1
M
. . . 1

M

)
and divide it into subvectors of length

ri i = 1 . . . N . Using the property 3.,

f(M) = H

(
1

M
,

1

M
. . .

1

M

)
= H(p1, p2 . . . pN) +

∑
i

piHri

(
1

ri
. . .

1

ri

)
=

= H(p1, p2 . . . pN) +
∑
i

pif(ri)
(1.8)

From equation 1.7 we have that f(M) = C logM and f(ri) = C log(ri). There-
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fore equation 1.8 becomes:

H(p1 . . . pN) = C

(
logM −

∑
i

pi log(ri)

)
= C

(
−

N∑
i=1

pi log
ri
M

)
=

= −C
N∑
i=1

pi log pi

(1.9)

Therefore we proved the theorem for uniform and rational probability vectors.

Because of the continuity we can extend the result also to irrational probability

vectors.

Remark 15. In the de�nition of Shannon's entropy (theorem 1.2.11) the base of

the logarithm is not speci�ed. The reason lies in the fact that it is possible to

use every base consequently adjusting the constant C. When it is not speci�ed

we are considering log2 and C = 1.

Since Shannon's entropy is a measurement for information, it is important

to know its lower and upper bounds, that is the entropy associated to the most

rare and surprisingly event and to the most common event.

Proposition 1.2.12. H(~p) reaches its maximum value when ~p is the uniform

vector.

Proof. Let h be the function h : ~p −→ H(~p) = −
∑M

i=1 pi log pi, where ~p is a

probability vector, ~p = (p1, p2 . . . pM).

Since ~p is a probability vector, it must satisfy φ(~p) =
∑M

i=1 pi− 1 = 0. Using the

method of Lagrange multiplier,

∂pj(H(~p+ λφ(~π)) = 0⇒ − log pj −
1

ln2
+ λ = 0⇒ − log pj = λ+ ln 2 (1.10)

Therefore ∀j pj constant because it does not depend on j. Since it has to be a

probability vector,
∑

j pj = 1⇒ pj = 1
M
.

Remark 16. Let ~p = (p1, p2 . . . pM) be the uniform probability vector. We want

to calculate the entropy of this vector, that is the maximum value that entropy
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can reach.

H(~p) = −c
M∑
i=1

pi log pi = −c
M∑
i=1

1

M
log

1

M
= log(M)

It is important to note that the maximum of Shannon's entropy is a function

that varies with the cardinality of the probability space Ω.

Proposition 1.2.13. H(~p) reaches its minimum value when ~p = (pi)i=1...M is

s.t. ∃!j, j = 1 . . .M pj = 1

pi = 0 ∀i = 1 . . .M, i 6= j

Proof. We note that pi ≥ 0 ∀i = 1 . . .M because ~p is a probability vector. From

the de�nition of Shannon's entropy (theorem 1.2.11) follows that H(~p) ≥ 0 ∀~p.
If ~p has one entry 1 and the others 0, H(~p) = 0 log 0+. . .+1 log 1+. . .+0 log 0 = 0,

therefore this is the minimum.

The two previous results are in line with intuition: the most uncertain case

is when all the outcomes are equiprobable, while the event that carries the least

surprise is a certain event.

Using the concept of entropy, we can introduce a new function, the Kullback-

Leibler divergence. It is also called Kullback-Leibler distance because it is a

measure of how one probability distribution is di�erent from a second, reference

probability distribution.

De�nition 1.31 (Kullback-Leibler divergence). Let ~p and ~q be probability vec-

tors, we de�ne the Kullback-Leibler distance as:

DKL(~p||~q) = −
∑
x

p(x) log q(x) +
∑
x

p(x) log p(x) =
∑
x

p(x) log
p(x)

q(x)

With the conventions 0 log 0
q

= 0 if q 6= 0, 0 log 0
0

= 0, 0 log p
0

=∞.

It is important to remark that in spite of the name this is not a distance because
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Figure 1.3: Entropy H(X) of a coin �ip. Pr(X = 1) represent the probability of
obtaining head. It is clear that the maximum is obtained when Pr(X = 1) = 1

2

that is when the probability vector is uniform. The uniform vector describe the
case of a fair coin and in this case the maximum is H(X) = log |Ω| = log 2 = 1.

it is not symmetric and does not satisfy the triangle inequality.

Now we introduce a classical result of probability theory: Jensen's inequality. We

will use it to prove some fundamental properties of Kullback-Leibler divergence.

De�nition 1.32. A function f : R 7−→ R is convex if ∀λ, 0 ≤ λ ≤ 1, ∀x1, x2 ∈
R f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Figure 1.4: An example of convex function. In this representation, t has the
same role of λ in the de�nition.

Proposition 1.2.14 (Jensen's inequality). Let f : R 7−→ R be a convex function

and X a random variable. It holds that E(f(X)) = f(E(X)).

Where the expected value is calculated on the random variable f(X) = f ◦X.
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Proof. We proceed by induction on the codomain of X, |χ|. If |χ| = 2, ~pX =

(p1, p2) = (λ, 1− λ) where we put p1 = λ. Being f convex we have:

E(f(X)) = p1f(x1)+p2f(x2) = λf(x1)+(1−λ)f(x2) ≥ f(λx1+(1−λ)x2) = f(E(X))

Now we suppose the Jensen's inequality to be true for every ~p = (p1, p2 . . . pn−1)

and we prove it for ~p = (p1, p2 . . . pn). Putting λ = pn we �nd:

If λ = 1, X(ω) = x1 or X(ω) = x2 with probability 1 that is X is the trivial

random variable. In this case we have

E(f(X)) =
n∑
i=1

pif(xi) = pnf(xn) = λf(xn) = f(xn) = f(E(X))

If λ 6= 1,

E(f(X)) = pnf(xn) +
n−1∑
i=1

pif(xi) = λf(xn) + (1− λ)
n−1∑
i=1

p′if(xi)

where p′i = pi
1−λ .

∑
i p
′
i =

∑
i
pi

1−λ = 1, therefore (p′1, p
′
2 . . . p

′
n) is a probability vec-

tor. Because of the induction hypohtesis, f(Ek−1(X)) ≤ Ek−1(f(X)), therefore:

E(f(X)) = λf(xn) + (1− λ)
n−1∑
i=1

p′if(xi) ≥ λf(xn) + (1− λ)f

(
n−1∑
i=1

p′ixi

)
≥

≥ f

(
λxn + (1− λ)

n−1∑
i=1

p′ixi

)
= f

(
λxn +

k−1∑
i=1

pixi

)
= f(E(X))

Now we we can prove some of the most important properties of the Kullback-

Leibler divergence:

Proposition 1.2.15.

1. DKL(~p||~q) ≥ 0∀~p∀~q

2. DKL(~p||~q) = 0⇔ ~p = ~q
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Proof.

1. We de�ne the set A = {x ∈ χ|p(x) > 0}. Since the logarithm is a convex

function, using Jensen's inequality we �nd

−DKL(~p||~q) = −
∑
x∈χ

p(x) log
p(x)

q(x)
= −

∑
x∈A

p(x) log
p(x)

q(x)
=
∑
x∈A

p(x) log
q(x)

p(x)
≤

≤ log

(∑
x∈A

p(x)
q(x)

p(x)

)
= log

(∑
x∈A

q(x)

)
≤ log

(∑
x∈χ

q(x)

)
= 0

Hence, −DKL(~p||~q) ≤ 0⇒ DKL(~p||~q) ≥ 0

2.

DKL(~p||~q) = 0⇔
∑
x

log
p(x)

q(x)
⇔ p(x)

q(x)
= 1⇔ p(x) = q(x)

Using the Kullback-Leibler divergence it is possible to de�ne a new quantity

connected to information, the mutual information.

De�nition 1.33 (Mutual information). Let X, Y be random variables on Ω and

p(x, y) their joint probability. We put q(x, y) = p(x)p(y), so that q(x, y) would

be the joint probability if the random variables X, Y were independent. The

mutual information of the two variables X and Y is de�ned as

I(X;Y ) = DKL(p(x, y)||q(x, y)) = DKL(p(x, y)||p(x)p(y))

.

In other words, the mutual information measures the distance between the

true law of the two variables and the law they would have if they were inde-

pendent. As an automatic consequence we have that I(X;Y ) = 0 ⇔ X, Y

are independent. This is one of the most important properties of the mutual

information:

Proposition 1.2.16. The mutual information has the following properties:
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1. I(X;Y ) = 0⇔ X, Y are independent;

2. I(X;Y ) = I(Y ;X);

3. I(X;X) = H(X).

Proof.

1. Using the properties of the Kullback-Leibler divergence,

I(X;Y ) = 0⇔ DKL(p(x, y)||p(x)p(y)) = 0⇔ ~p = ~q ⇔ p(x, y) = p(x)p(y)

And by de�nition this happens if and only if X and Y are independent.

2. I(X;Y ) = DKL(p(x, y)||q(x, y)) =KL (q(x, y)||p(x)p(y)) = DKL(q(x, y)||p(x, y)) =

I(Y ;X)

3. Let's suppose Y = X. Hence

p(x, y) =

p(x) if y = x

0 otherwise

Therefore

I(X;X) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
=
∑
x

p(x) log

(
p(x)

p(x)p(x)

)
=

=
∑
x

p(x) log
1

p(x)
= −

∑
x

p(x) log p(x) = H(X)





Chapter 2

Word-frequency laws and the

classical models

We are now introducing the most famous and classical word frequency laws,

Zipf's and Heaps' laws. Both are empirical laws that have been discovered while

investigating texts features, but they can be applied to several �elds of knowledge,

such as population analysis, biology, music.

2.1 Zipf's law

Zipf's law is an empirical law that historically deals with the frequency of

words in the written language. In the �rst formulation of his law, Zipf considered

the number of words that occurred exactly n times in a text, N(n) and found:

N(n) ∼ n−ς (2.1)

Where exponent ς varies from text to text but it is approximately 2. Equation

2.1 points out that the number of words that occur n times in a text is related

to the number of its occurrences in the same sample.

A second formulation of his law involves the occurrence ranking of words: sup-

pose to rank the words in the sample in decreasing order by their number of

occurrences, so that the most frequent word has rank 1, the second most fre-

41
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quent has rank 2 and so on. Let r be the rank of a word and n the number of

its occurrences, then

n(r) ∼ r−z (2.2)

where usually z ≈ 1. That is, the relation between the occurrence of a word and

its rank follows with a power-law with exponent -1.

Remark 17. The latter version of Zipf's law can be reformulated in terms of

the frequency of words as a function of rank, f(r) = n(r)
N

where N is the total

number of words of the sample. Having divided n(r) by a constant, relation 2.2

still holds:

f(r) ∼ r−z (2.3)

Since z ≈ 1, we can write f(r) ∼ 1
r
. This means that the frequency of any

word is inversely proportional to its rank in frequency, i.e. the �rst ranked word

occurs approximately twice as often as the second ranked word that occurs three

times more than the third, etc.

It is interesting to note that Zipf's law holds in texts written in di�erent language.

Zipf himself gave examples of his law in English, Latin and Peiping Chinese di-

alect.

Zipf gave an explanation of this law applying the principle of least e�ort to the

e�ort the speaker and the hearer put into a conversation in order to communicate

e�ciently. From the speaker's perspective the most e�cient vocabulary consists

of only one word that covers all the possible meanings, but it could be impos-

sible for the hearer to determinate the particular meaning of the word in that

speci�c context. The struggle between the speaker's inclination to reduce the

vocabulary and the hearer's tendency to expand it ends with the development of

a vocabulary where a few words are used very frequently while most words occur

just a few times.

For better understanding the mechanisms that lead to Zipf's law, several re-

searchers have proposed models for it. One of them has a peculiarity: it was

inspired by Zipf's least e�ort interpretation.
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Figure 2.1: Zipf's law for the words of Aeneid (in Latin), Don Quijote (in Span-
ish) and David Copper�eld (in English). In the �gure, straight lines have the
slopes that �t each data set and the slopes are indicated in the labels. A re-
lation of the type 1

rz
is called power-law and in a log-log plot is represented by

a straight line. Being an empirical law, the power-law dependence develops for
intermediate values of r, as seen in the �gure.

2.1.1 Ferrer i Cancho and Solé's model

Ferrer i Cancho and Solé used Zipf's least e�ort interpretation to build a

mathematical model for Zipf's law. They tried to quantify the process by which

a vocabulary diversi�es as communication evolves under the pressure of the prin-

ciple of least e�ort on both speaker and hearer. In their model, the process of

communication implies the exchange of information about a collection of k ob-

jects {m1,m2 . . .mk}, the meanings, and a set of l words {w1, w2 . . . wl}. A binary

l × k matrix A = {aij}ij is created as follows:

aij =

1 if word wi is used to refer to meaning mj

0 otherwise
(2.4)

It establishes the connections between words and meaning. We now observe

that it is allowed to have more than one word referring to the same meaning,

so that there may be several aij = 1 for the same value of j. The sum σj =
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∑
i aij is the number of synonyms referring to meaning mj. Let p(wi,mj) be the

joint probability that word wi is used when the communication is referring to

the meaning mj, and assume that all meanings are referred to with the same

probability, i.e. p(mj) = 1
k
∀j. The conditional probability to see the word wi

knowing that the meaning of the communication is mj is p(wi|mj) =
aij
σj
. Using

Bayes formula we have:

p(wi) =
∑
j

p(wi,mj) =
∑
j

p(mj)p(wi|mj) =
1

k

∑
j

aij
σj

(2.5)

The entropy associated to this probability,

Hspeaker = −
l∑

i=1

p(wi) logl p(wi) (2.6)

is a suitable de�nition for the speaker's communication e�ort because its mini-

mumHspeaker = 0 is reached on a single-word vocabulary, i.e. ~µ = (p(w1), p(w2) . . . p(wl)) =

(1, 0 . . . 0) and its maximum Hspeaker = 1 is reached when every word is equiprob-

able, i.e. ~µ =
(

1
l
, 1
l
. . . 1

l

)
.

The conditional probability p(mj|wi) is the probability that a person that hears

the word wi will infer the meaning mj, p(mj|wi) =
p(wi,mj)

p(wi)
. The weighted sum of

the entropies associated with the distribution p(mj|wi) over all the words heard
is an indicator of the hearer's e�ort:

Hhearer = −
l∑

i=1

p(wi)
k∑
j=1

p(mj|wi) logk p(mj|wi) (2.7)

Hhearer varies between zero and one and it can be interpreted as a measure of

the average noise (or indeterminacy) with which information reaches the hearer.

Now we de�ne the total cost of communication as the weighted sum of both the

e�orts:

Ω(λ) = λHhearer + (1− λ)Hspeaker (2.8)
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where λ ∈ (0, 1) is a parameter.

If Zipf's hypothesis were valid, the probabilities p(wi) would converge to a dis-

tribution compatible with the inverse relation between frequency and rank for

some intermediate value of λ.

The mutual information between the probability distributions of words and

meanings could be a measure for communication accuracy:

I(w,m) =
k∑
j=1

p(mj)
l∑

i=1

p(wi|mj) logl p(wi|mj)−
l∑

i=1

p(wi) logl p(wi) (2.9)

as well as the relative lexicon size, L, de�ned as the ratio between the number

of e�ectively used words and the total number of available words l. In �gure 2.2

Figure 2.2: Left panel: mutual information I(w,m) as a function of λ. Right
panel: relative lexicon size L as a function of λ. Two distinct regimes are clearly
identi�ed, separated by a sharp transition at λ ≈ 0.41.

it is possible to see that both the indicators change when λ changes. In partic-

ular, there is a sharp transition in correspondence of the value of λ, λ∗ = 0.41.

For λ < λ∗ there is practically no informational correlation between words and

meanings, therefore communication fails. Accordingly, the relative lexicon size

L is zero. For λ > λ∗ both I(w,m) and L have signi�cant levels, and approach

their maximal values for λ → 1. As a consequence, human language appears

to have been tuned by the principle of least e�ort at the edge of the transition
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between unworkable and feasible communication.

As already said, several models of Zipf's law have been created in order to un-

derstand the reasons that lie under this evidence. Some of them are based on

mathematical assumptions and rely on the theory of stochastic processes. One

of the �rst models of this type was created in the 1950s by Herbert Simon, a

sociologist and economist. He proposed a mathematical model that conceives

text production as a stochastic process. It is based on a few simple dynamical

rules that explain the appearance of algebraic relation such as Zipf's law in many

other phenomena.

2.1.2 Simon's model for Zipf's law

For his model, Simon considered the process of text generation as a sequence

of events where one word is added at every step. Let Nt(n) be the number of

di�erent words that appear exactly n times when the text has reached the length

of t words. For example, if there are 354 words that have occurred exactly once

each in the �rst t words Nt(1) = 354. The subsequent step follows these rules:

1. Let α be a constant, 0 ≤ α ≤ 1. With probability 1 − α at step t + 1 a

word that already appeared in the text is added. The word is chosen with a

probability proportional to nNt(n), that is the total number of occurrences

of all the words that have appeared exactly n times.

2. With probability α at step t+ 1 is added a new word.

The second rule leaves open the possibility that, among the words that occurred

exactly n times, the probability of recurrences of some words may be higher than

some others. These rules describe a stochastic process in which the probability

of writing one word at the next step depends on the probability of the words

previously written and on a constant α. From 1. follows that

E [Nt+1(n)]−Nt(n) = C(t) [(n− 1)Nt(n− 1)− nNt(n)] ∀n = 2 . . . t+1 (2.10)
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because if the (t+1)-th word is chosen among the words that occurred n−1 times,

then Nt+1(n) will increase and the probability of this choice is proportional to

the number of words that occurred exactly n−1 times, (n−1)Nt(n−1). Instead

if the (t + 1)-th word is chosen among the words that occurred n times, i.e.

Nt+1(n) will decrease. This choice will happen with probability nNt(n). In the

other cases, Nt+1(n) = Nt(n).

Similarly, for n=1 we �nd:

E [Nt+1(1)]−Nt(1) = α− C(t)Nt(1) (2.11)

Approximating E [Nt(n)] by Nt(n), the previous equations become:

Nt+1(n)−Nt(n) = C(t) [(n− 1)Nt(n− 1)− nNt(n)] ∀n = 2 . . . t+ 1 (2.12)

Nt+1(1)−Nt(1) = α− C(t)Nt(1) (2.13)

Now we want to evaluate the factor of proportionality C(t). Since C(t)nNt(n) is

the probability that the (t+ 1)-th word is one that previously occurred n times,

we have:
t∑

n=1

C(t)nNt(n) = C(t)
t∑

n=1

nNt(n) = 1− α

Now we observe that
∑t

n=1 nNt(n) = t because is the total number of words at

step t, hence

C(t) =
1− α
t

(2.14)

Therefore the recursive relation is:

Nt+1(1)−Nt(1) = α− 1− α
t

Nt(1) (2.15)

Nt+1(n)−Nt(n) =
1− α
t

[(n− 1)Nt(n− 1)− nNt(n)] ∀n = 2 . . . t+ 1 (2.16)

Equations 2.15 and 2.16 do not have an asymptotic, t-independent solution.

However, a steady-state solution can be found assuming that for large t holds
Nt+1(n)
Nt(n)

= t+1
t
∀n, t, that is all the frequencies grow proportionately with t.
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Under this hypothesis it is possible to �nd a stationary pro�le P (n) for Nt(n)

such that Nt(n) = tP (n).

P (n) =
α

1− α
B(n, ζ) (2.17)

Where B(n, ζ) is the Beta function and ζ = 1 + (1− α)−1.

For small values of α (. 0.1) and for all n ≥ 1 the solution for the pro�le P (n)

is well approximated by the power-law function

P (n) ≈ α

1− α
Γ(ζ)n−ζ (2.18)

where Γ(ζ) is the Gamma function. Then N(t) has the form of Zipf's law as

written in equation 2.1 or in equation 2.2 with z = 1− α.
Since the probability of appearance of new words must be larger than 0, z < 1

and the characteristic value z = 1 is obtained for α → 1, i.e. when the appear-

ance of new words becomes extremely rare. In real texts this condition happens

when texts are long. However, there are some samples of natural language where

the best �tting of the frequency-rank relation yields z > 1, for example Don

Quijote and David Copper�eld, as shown in Fig. 2.1. In the original form Si-

mon's model is not able to explain power-law exponents z larger than one, but

extensions of this model that work for larger values of z have been proposed.

Remark 18. Note that Nt(n) = tP (n) with P (n) given by equation 2.18 is an

exact solution of Simon's model equations 2.15 and 2.16 with the initial condition

Nt0(n) = t0P (n), but it is not the general solution.

The constitutive equations of Simon's model, equations 2.15 and 2.16, can be

seen as the average evolution law deriving from a special case of a very general

additive-multiplicative stochastic process

nt+1 − nt = at + btnt (2.19)
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where nt is the number of occurrences of a word at step t and at and bt are random

variables drawn, at each step, from suitably chosen probability distributions f(a)

and g(b). In fact, rule 2. de�nes an additive process by which the number of

words with n = 1 grows stochastically, at a constant average rate α. Rule 1.

describes a stochastic reinforcement in the occurrence of words: words that have

already appeared a large number of times are more likely to be used again than

those that are rarer. Let pt(n) be the probability that at step t the stochastic

variable has value n which, in our context, is proportional to the number of words

with exactly n occurrences. Supposing f(a) 6= 0, for large t and for a wide range

of values of n, we have:

pt(n) ∼ n−1−γ

where γ is determined by ∫
g(b)(1 + b)γdb = 1

This points out that power-law distributions are inherent to generic additive-

multiplicative stochastic processes, hence is not so surprisingly to �nd them in a

large variety of disparate systems, as long as they are driven by random events.

The process of creation any meaningful text is obviously not a sequential random

choice of words, but a long chain of words, even though grammatically correct,

is comprehensible only knowing the context which the sentence is referring to.

Context emerges whit the growth of the text: as words are successively added

to the text, a context is built up which favors the later appearance of some

words, in particular those that have already been used and inhibits the use of

others. This behaviour is expressed through Simon's model equations 2.15 and

2.16. Therefore even if the process of text creation is is not driven by random

choices, Simon's model is able to capture its main features in order to represent

it.
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2.2 Heaps' law

Heaps' law is one of the most famous word frequency laws and deals with the

dependence of the number of di�erent words on the length of a given text. It

states that if V is the number of di�erent words and T the length of the text,

then

V ∼ T ν (2.20)

with 0 ≤ ν ≤ 1. Therefore this relation is still a power-law relation and its

representation on a log-log plot is a straight line. This law could be extended to

the way in which the total number of di�erent words grows as a text progresses.

Within this interpretation, Heaps' law states that the rate of appearance of new

words α decays with the text length

α(t) = α0t
ν−1 (2.21)

where α0 < 1 is a constant.

Intuitively there is a correlation between Zipf's law exponent z and Heaps' law

Figure 2.3: Heaps' law for the words of Aeneid, Don Quijote and David Cop-
per�eld. Straight lines have the slopes that �t each data set and the slopes are
indicated in the labels.
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exponent ν: large values of z correspond to small ν and vice versa. For instance in

a Latin text there will be much more di�erent words than in an English text of the

same length, because Latin has noun declension and di�erent verb conjugations

while in English the same verb form is used for several forms and tenses, the

same noun for di�erent cases and so on. Considering for example AEneid and

David Copper�eld we note that while the lexicon of the Latin poem is larger

that that of the English poem by 15%, the latter work is almost six times longer

than the former. Due to the structure of the language, it is expected that the

number of di�erent words grows faster than in English, so Heaps's law exponent

ν will be larger. On the other hand, the total number of word of the Latin

poem is distributed among a larger number of di�erent words and, therefore, the

frequency-rank distribution has a �atter pro�le. Hence, Zipf's law exponent z

should be smaller.

This evidence could lead us to think that Zipf's and Heaps' laws are strictly

correlated. Actually, under some hypothesis of random-sampling it is possible to

derive Heaps' law from Zipf's law.

2.2.1 Correlation between Zipf's and Heaps' laws

Supposing that the frequency-rank distribution has a strict power-law be-

haviour f(r) ∼ r−z, we can derive Heaps' law knowing only Zipf's law. For this

purpose we construct a sequence of elements by randomly sampling from this

Zipf distribution f(r). We can calculate f(r) from the following approximated

integral: ∫ rmax

0

f(r̃)dr̃ = 1 (2.22)

Distinguishing two cases basing on the values of z we have:

f(r) =
1− z

r1−z
max − 1

r−z if z 6= 1 (2.23)

and

f(r) =
1

log(rmax)
r−1 if z = 1 (2.24)
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Considering equation 2.23, if z > 1 we can neglect the term r1−z
max and if z < 1 we

can write r1−z
max − 1 ∼ r1−z

max. Therefore:

if z > 1, f(r) ' (z − 1)r−z

if z = 1, f(r) ' r−1

ln(rmax)

if 0 < z < 1, f(r) ' (1− z)
r−z

r1−z
max

(2.25)

For deriving Heaps' law we have to estimate the number of distinct elements

V appearing in the sequence as a function of its length T . Let's suppose that

after the entrance in the sequence of a new element (never appeared before) the

number of distinct elements is V . This new element will have a rank rmax = T

and frequency f(rmax) = 1
V
. From equation 2.25 we have:

if z > 1, f(V ) ' (z − 1)V −z =
1

T

if z = 1, f(V ) ' 1

V lnV
=

1

T

if 0 < z < 1, f(V ) ' 1− z
V 1−z V

−z =
1

T

(2.26)

Inverting these relations we �nd:

if z > 1, V ' T ν with ν =
1

z

if z = 1, V ' T

lnT
with ν ' 1

if 0 < z < 1, V ' T with ν = 1

(2.27)

Therefore, supposing f(r) ' r−z we �nd Heaps' law V (T ) ∼ T ν with the follow-

ing relation between the exponents z and ν:

if z > 1, ν =
1

z

if 0 < z ≤ 1, ν = 1
(2.28)

It is interesting to notice that also a generalized version of Simon's model is
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capable to explain this inverse relation between the exponents ν and z.

2.2.2 Simon's model for Heaps' law

Generalizing Simon's model it is possible to establish a relation between the

Zipf and the Heaps exponents, �nding the intuitive result just explained. More-

over, admitting that the probability of occurrence of new words can vary along

the text, i.e. α = α(t) the model can also predict that the Zipf exponent z could

be larger than 1.

Considering the variables t and n of equations 2.15 and 2.16 as continuous quan-

tities and denoting Nt(n) = N(n, t), we have:

∂N

∂t
(1, t) = α(t)− 1− α(t)

t
N (1, t) (2.29)

∂N

∂t
(n, t) = −1− α(t)

t

∂

∂n
[nN(n, t)] ∀n = 2 . . . t+ 1 (2.30)

The solution of the �rst equation is:

N(1, t) = N(1, t0)ε(t) + ε(t)

∫ t

t0

α(t′)

ε(t′)
dt′ (2.31)

where

ε(t) = e
−

∫ t
t0

1−α(t′)
t′ dt′

Assuming that the probability of the occurrence of new words is given by the

Heap's law, as in equation 2.21, then α decays following a power law. Hence,

for large values of t we have 1− α(t) ≈ 1. In this limit, the general solution for

equation 2.29 is

N(1, t) = At−1 +
α0

ν + 1
tν (2.32)

with A an arbitrary constant. Therefore the dominant contribution is a growing

power of t, N(1, t) ≈ α0

1+ν
tν .
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The general solution of equation 2.30 is

N(n, t) =
1

n
H
(n
t

)
(2.33)

whereH(n
t
) is an arbitrary function. We can use the solution of the �rst equation,

equation 2.31, as a boundary condition for the solution of the second, in the limit

n→ 1. Within this limit, the solution of equation 2.30 is:

N(n, t) =
α0

ν + 1
tνn−1−ν (2.34)

Taking into account thatN(n, t) and n(r) are related according to r =
∫∞
n
N(y, t)dy,

the Zipf exponent resulting from equation 2.34 are ζ = 1 + ν and z = 1
ν
. Con-

sequently, the frequency-rank Zipf exponents z is larger than 1 and exhibits a

simple inverse relation with the Heaps exponent ν.

It is important to note that the same stochastic dynamical rules may be use-

ful to portray many of the phenomena which display power-law distributions in

their statistical properties. In fact, from an abstract perspective Simon's model

describes the growth in size of certain object classes, with a growth rate propor-

tional to the class size itself. Therefore it could be applied to every �eld that have

a sort of vocabulary that can be divided in classes. For instance the vocabulary

could correspond to people and the class could be the country of origin of every

person. The stochastic multiplicative growth is added with a random process by

which new classes are created at a �xed rate.

2.3 The Zipf changing slope

As already mentioned, deviations of Heaps' and Zipf's laws are observed in

the tails of Heaps' and Zipf's plots (respectively for large T and r). For example,

with regard to Zipf's law formulated in equation 2.3, the scaling of this law has

to break for large r because of the divergence of the harmonic series. In fact, if r

is large enough
∑N

r=1 f(r) > 1, but the sum of the frequency can never be larger

than one.
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Several models have been created for �tting also the tails of the plots and two

researchers, Gerlach and Altmann proved that for English the distribution with

two power laws is the best �t for all databases with more than 109 words. More-

over they proposed a stochastic growth model for �tting those power-laws that

needs only two free parameters. A particular feature of the model is that its pa-

rameters depend only on the language, therefore the universality of the original

Zipf's law is preserved. In fact several models have been developed for �tting

particular databases but they have parameters that depend on some peculiarity

of the texts, as the topic, the size or date of publication.

2.3.1 Altmann and Gerlach's model

As already said, the best �t for English is the distribution with two power-

laws (double power-law, dp):

fdp(r; γ, b) = C

r−1 if r ≤ b

c(b, γ)r−γ if r > b
(2.35)

where C = C(b, γ) is the normalization constant and b, γ are free parameters.

The critical rank r = b determines a transition from Zipf's original law to a

second power law with exponent γ.

As we showed in the previous section, the Zipf and the Heaps exponent are

inverse. We can use this correlation to adjust equation 2.35 for �tting Heaps'

law:

Vdp(T ; γ, b) = Cn

T if T � Tb

T
1− 1

γ

b T
1
γ if T � Tb

(2.36)

where Tb is the number of words such that V (Tb) = b and Cn is the scaling

constant, Cn = C
n
, C ≈ f(1) is the frequency of the most common word. The

previous equations 2.35 and 2.36 where inferred from empirical analysis. At

a later time, Gerlach and Altmann created a generative model for giving an

interpretation of their empirical �ndings. Firstly, they divided words in two

classes, core and non-core vocabularies. The total number of word is V = Nc+Nc,
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Figure 2.4: The double scaling behaviour of the rank-frequency distribution on
the Google Ngram database in English. In red, the best �tting distribution with
two power laws. b∗ is the critical rank that determines the transition from the
�rst power-law to the second.

where Nc is the number of core words and Nc is the number of non-core words.

At every step a word (i.e. word token) is drawn and attributed to one of the

distinct words (i.e. word type) depending on a probability. With probability

pnew the word token is a new type and with probability 1 − pnew is an already

existing type (see �gure 2.6). In the latter case, a previously used word type is

attributed to the word token at random with a probability proportional to the

number of times this word type has occurred before. In the former case, with

probability pc the new word type originate from a �nite set of Nmax
c core words

and with probability 1− pc can come from a potentially in�nite set of non-core

words.

In a �rst approximation, we consider pc constant, pc . 1, pc = 0 only if all

non-core words were drawn (Nc = Nmax
c ):

pc(Nc) =

p0
c if Nc < Nmax

c

0 if Nc = Nmax
c

(2.37)

We also choose pnew and pc to depend on Nc and Nc̄ (and therefore on V ) because

an increase in V necessarily re�ects that fewer undiscovered words exist. On the

contrary an increase in T is strongly a�ected by repetitions of frequently used
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Figure 2.5: Vocabulary as a function of database size (Heaps' plot) on the Google
Ngram database in English (left panel) and in other four languages (right panel).
It is important to remark that the model is valid for databases that change in
time (left panel) and for di�erent languages (right panel).
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Figure 2.6: Scheme of the Gerlach and Altmann's model.

words. Moreover we put pnew = pnew(Nc̄) because by de�nition core words are

necessary in the creation of any text. Therefore the usage of a new core word

should be expected and should not a�ect the probability of using a new (non-

core) word type in the future. On the other hand, if a non-core word is used for

the �rst time, the combination of this word and the previously used words leads

to a combinatorial increase in possibilities of expression of new ideas with the

already used vocabulary and thus to a decrease need for additional new words,

i.e. pnew should decrease with Nc̄.

After a new occurrence of a new non-core word we update pnew:

pnew 7→ pnew

(
1− α

Nc̄ + s

)
(2.38)

with α > 0 decay rate and s� 1 constant that softens the reduction of pnew for

small Nc̄ (we use s = Nmax
c ).

It is possible to recover equations 2.35 and 2.36 from this model. For example at

the very beginning, when N � Nmax
c (so Nc � Nmax

c and Nc̄ � Nmax
c ), we can

assume that it is much more probable to draw core words than non-core words,
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i.e. 1 − p0
c � 1 because at the very beginning of vocabulary growth most of

the new word types belongs to the set of core words. Therefore it follows from

equations 2.38 and 2.37 that pnew ≈ const, hence V ∼ T .

In this chapter we introduced two of the most important word frequency laws,

explaining the reasons why researchers focused on the creation of mathematical

models for them. In addition to this we analyzed some classical proposes that

take into account di�erent aspects: Ferrer i Cancho and Solé's model is based on

the least e�ort principle, Simon's model relies on stochastic processes and Ger-

lach and Altmann's model is connected to the process of formation of texts. In

the next chapter we will present and study some other models that use stochastic

processes to interpret the creation of texts and more generally try to �nd a prob-

ability structure in language manifestations. In particular, we will talk about

models for Zipf's and Heaps' laws that consider expanding sample probability

space.





Chapter 3

Sample-space-varying models

This chapter focuses on modern stochastic models that reproduce power-laws

in general and Zipf's and Heaps' laws in particular. As already mentioned in the

previous chapter, several models have been proposed to understand the dynamics

that lie under the emergence of power-laws in nature. We already introduced a

classic stochastic model, Simon's model, that reproduces Heaps' and Zipf's laws.

In this chapter we present some more recent stochastic models that have the

sample space changing (reducing or expanding) as main feature. Those models

are based on the idea of modeling a process that changes his possible states with

time, reducing it (SSR processes) or expanding it (generalization of Polya's urn

model). Those two antithetical ideas were born from the observation of two

di�erent kinds of phenomena: the reducing space originates to recreate a system

that has constraints that become tighter with time, while the expanding space

models a phenomena whose possibilities of expanding grow with time.

First, we describe three models characterized by the reduction of their sample

space that reproduce the power-laws with di�erent exponents. Subsequently we

give a formalization that uni�es those three models and perform its theoretical

study. Eventually we introduce the works by Tria et al. showing that they recall

both Zipf's and Heaps' laws.

61
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3.1 SSR processes

The SSR processes have been inspired by history-dependent systems charac-

terized by the reduction of their sample space. In other words, the set of the

possible outcomes of these phenomena changes over time, reducing as they age.

One example of history-dependent system with sample space reduction is the

creation of sentences: while the �rst word of a sentence can be chosen from the

space of almost all the existing words, the choice of the second has grammar

and contextual constraints that become stronger the more the text length grows.

This is the main idea behind the sample space reducing (SSR) processes, a class

of models that are able to represent the features of history-dependent processes

and that leads to power-laws in the rank distribution of their outcomes.

The discussion of the SSR processes follows the lines of the works by Corominas-

Murtra et al. [3, 4], reference also for the �gures of this section.

3.1.1 Simple SSR processes

The simple sample space reducing (SSR) process could be illustrated by a set

of N fair dice with di�erent number of faces. The �rst has one face, the second

has two faces and so on to the N-th that has N faces. To start the process we

take the dice with N faces and throw it, getting a result K. Then we throw the

dice with K-1 faces getting a new result. Once we reach the dice with one face

we restart the process by throwing the N-faced dice again (see �gure 3.1).

In an equivalent way, we can interpret the process considering a staircase with

N steps: imagine a ball that randomly falls downstairs but never can climb to

higher levels. The ball �rst hits any of the N steps with uniform probability,

PN(i) = 1
N
∀i = 1 . . . N . Then it can only fall down to a lower level with

uniform probability and so on until it reaches the bottom step. Once landed on

the �rst step, it restart jumping randomly to any of the steps (see �gure 3.2).

Therefore, if at time t the ball is in the i-th step i 6= 1, at time t+1 all lower levels

j < i can be reached with the same probability. It is forbidden to go upstairs,

hence P (j|i) = 0 if j > i.
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Figure 3.1: Representation of a SSR process with N=20. If the process is repeated
many times, the distribution of face-values (rank-ordered) gives Zipf's law.

Now we are interested in the occupation probability, i.e. how often a given site

i is occupied on average. The probability of jumping on the level i depends on

the probability of being on an higher level. In other words

P (i) =
N∑
j=1

P (i|j)P (j)

We want to prove that P (i) = c1
i
∀i = 1 . . . N . From the previous equation we

have

P (i) =
N∑

j=i+1

P (i|j)P (j) + P (i|1)P (1) =

= c
1

N

1

N − 1
+ c

1

N − 1

1

N − 2
+ . . .+ c

1

i+ 1

1

i
+ c

1

N
=

= c

(
1

N − 1
− 1

N
+

1

N − 2
− 1

N − 1
+ . . .+

1

i
− 1

i+ 1
+

1

N

)
=
c

i

(3.1)

Therefore P (i) ∝ 1
i
, i.e. this process exhibits an exact Zipf's law, the power-law

with exponent -1, in the occupation probabilities.

It is possible to generalize the process in order to recall a power-law with a wider



64 3. Sample-space-varying models

Figure 3.2: Representation of the simple SSR process in the interpretation of a
ball that bounces downward on a staircase. Once it reaches the lower lever, it
restarts jumping to any step. The process tends to a distribution that is a power
law P (i) = c

i
where c is the normalization constant.
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range of exponents. This generalization is called noisy SSR process and it is

obtained perturbing the simple SSR process by noise.

3.1.2 Noisy SSR processes

This model is inspired by the behaviour of many real systems, whose sample

space from time to time can expand or reduce during the process. Considering

the simple SSR process, we can generalize it allowing upward moves from time

to time. Therefore the previous process φ is perturbed by noise.

In particular, we consider a superposition of the simple SSR process φ and an

unconstrained random walk φR with mixing ratio λ. We de�ne the noisy SSR

process φ(λ) as follows:

φ(λ) = λφ+ (1− λ)φR (3.2)

In the analogy of the staircase this process can be seen as a ball that bounces on

any step of the staircase with uniform probability, while φ(λ) can be interpreted

in terms of a ball that jumps downward on a staircase. Every time the ball hits

a step it can move downstairs with probability λ and with probability (1 − λ)

it can jump to any position, therefore upward moves are allowed (see �gure 3.3

for a graphic representation). Every time the ball hits the last step it jumps

randomly to any step.

Note that being a mixing ratio, 0 ≤ λ ≤ 1. Moreover, if λ = 0 the process

corresponds to the unconstrained random walk φR while if λ = 1 it is the simple

SSR process φ.

As a consequence of 3.2 we have that the probability of jumping from level i to

level j is

P (j|i) =


λ
i−1

+ 1−λ
N

if j < i

1−λ
N

if j ≥ i > 1

1
N

if j ≥ i = 1

(3.3)



66 3. Sample-space-varying models

Figure 3.3: Representation of the SSR process with noise. With probability λ
the ball can only jump downwards and with probability (1 − λ) it can jump to
any step with uniform probability, therefore upwards moves are allowed.

In the same way as before we can look for the stationary distribution that gives

the probability of �nding a ball on the i-th step at equilibrium.

P (i) =
N∑
j=1

P (i|j)P (j) =
1− λ
N

+
N∑

j=i+1

λ

j − 1
P (j) +

1

N
P (1) (3.4)

Therefore the recursive relation

P (i+ 1)− P (i) = −λ
i
P (i+ 1) (3.5)

holds, from which one obtains

P (i)

P (1)
=

i−1∏
j=1

(
1 +

λ

j

)−1

= exp

[
−

i−1∑
j=1

log

(
1 +

λ

j

)]
∼ exp

(
−

i−1∑
j=1

λ

j

)
∼

∼ exp(−λ log(i)) = i−λ

(3.6)

Since P (1) is given by the normalization condition
∑

i P (i) = 1, we �nd

P (i) ∝ i−λ (3.7)
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3.1.3 SSR cascades

A third model has been introduced in order to explain power laws with a

di�erent range of power-law exponents.

Recalling the model of the ball that jumps on a staircase, to de�ne the SSR

cascades process we set a value λ and suppose that at every time every ball is

split in λ new balls. In other words, at time t = 0, we have λ balls jumping to any

state. At time t = 1 each of these λ balls divide into λ new balls which all jump

to any state below the original state. Whenever a ball hits the bottom step, it

is eliminated from the system (see �gure 3.4). In this way we are superimposing

a multiplicative process that is characterized by the parameter λ. If λ < 1 our

process is the SSR noisy process described in the previous section, and if λ = 1

no new elements are created, hence the process is the simple SSR process.

Considering one ball at the time we can write the probability of jumping from

Figure 3.4: Representation of the SSR cascades process with λ > 1. Whenever
a ball hits a state it creates λ balls which continue their random jumps.

step i to j, P (j|i).

P (j|i) =

 1
i−1

if j < i

0 if j ≥ i
(3.8)

In addition to this, if an element is on the j-th step at time t, there are λ trials

to reach any state i < j at t+ 1. Now we take into account the expected number
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of jumps from j to i. Since the jumps from j to i of each ball is independent,

the expected number of jumps from j to i, n(j → i) can be approximated as

n(j → i) = λP (i|j) (3.9)

We consider the expected number of elements that will hit state i in a given SSR

cascade and denote them by ni ∀i. Up to a factor, the sequence n1, n2 . . . nN is

identical to the histogram of visits. From equations 3.9 and 3.8 we get:

ni =
∑
j>i

n(j → i)nj = λ
∑
j>i

nj
j − 1

(3.10)

Therefore, the recursive relation

ni =

(
1 +

λ

i

)
ni+1 (3.11)

holds, from which one can �nd

ni =
∏

1<j≤i

(
1 +

λ

1− j

)−1

n1 (3.12)

Using the same procedure of equation 3.6, we obtain that

∏
1<j≤i

(
1 +

λ

1− j

)−1

∼ i−λ

Therefore we have

ni ∼ i−λ (3.13)

that is, the multiplication factor λ becomes the scaling exponent.

Now we approach the problem of the theoretical formalization of the SSR pro-

cesses. We will rewrite the �rst two processes in terms of Markov chains and

show that this method does not apply to the SSR cascades process. Eventually

we give a di�erent interpretation that is able to recall all the processes and their

results.
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3.1.4 A unifying model for the SSR process

We �rst start with a simple observation: the noisy SSR process can be recast

in terms of Markov chains.

De�nition 3.1. Let φ(λ) = {Xt}t∈N Xt : Ω 7−→ χ = [1, 2 . . . N ] be a homoge-

neous Markov chain, with P (X1 = i) = 1
N
∀i and

P (j|i) =


λ
i−1

+ 1−λ
N

if j < i

1−λ
N

if j ≥ i > 1

1
N

if j ≥ i = 1

where

De�nition 3.2. Let φ = {Xt}t∈N Xt : Ω 7−→ χ = [1, 2 . . . N ] be a homogeneous

Markov chain, with P (X1 = i) = 1
N
∀i and

Pij = P (j|i) =


1
i−1

if j < i

0 if j ≥ i > 1

1
N

if j ≥ i = 1

and

De�nition 3.3. Let φR = {Xt}t∈N Xt : Ω 7−→ χ = [1, 2 . . . N ] be a iid process

de�ned by the probability vector P (Xt = i) = 1
N
∀i = 1 . . . N ∀t ∈ N.

We can seeXt = i as the event that at time t the ball is in the level i, therefore

considering the interpretation of the staircase this Markov chain is equivalent to

the noisy SSR process.

Note that if λ = 1 φ(λ) = φ and it is the simple SSR process.

Now we want to compute the vector ~π that makes the process stationary. First

we prove that the transition probability matrix is regular.
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Lemma 3.1.1. The transition probability matrix P associated with the process

φ(λ) is regular, ∀0 ≤ λ ≤ 1.

Proof. If 0 ≤ λ < 1 upward moves are allowed, hence it is always possible to

jump from a step of the staircase to any other.If λ = 1, since every level is linked

to the lower step and the lower step is connected to all the levels it is always

possible to connect two steps with a path of length at most 2.

As a consequence, we can use the Perron-Frobenius theorem to �nd the prob-

ability distribution to which the process converges. The vector ~π is a probability

vector s.t. ~πP = ~π. Therefore we have

~πi =
N∑
j=1

P (i|j)~πj (3.14)

Using the de�nition 3.1, the previous becomes

~πi =
1− λ
N

+
N∑

j=i+1

λ

j − 1
~πj +

1

N
~π1 (3.15)

We can compute the recursive relation

~πi+1 − ~πi = −λ
i
~πi+1 (3.16)

This equation is equal to 3.5, therefore we have

~πi ∝ i−λ (3.17)

As a consequence, in the case of the noisy SSR process it is possible to rewrite

it in terms of Markov chain and recall the principal results. On the other hand,

the same reasoning does not hold for the cascades process. In particular, since

the number of balls is not conserved the transition probability matrix P is not a

stochastic matrix. To solve this problem, we give a slightly di�erent formalization

of the whole class of the SSR models that allows to recast the three models in a

single unifying picture.
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We introduce a vector ~nt that represents the number of balls on every step at

time t. Every time the balls at level i > 1 are redistributed in the lower levels

using the same rules de�ned in the previous models with the only di�erence that

their number (in the continuous limit) is rescaled by a factor λ. Moreover, the

balls that hit the lower step are redistributed uniformly on all steps rescaled by a

factor c. The proper choice of constant c ensure the conservation of the number

of balls. In particular, if λ = 1 the number of balls is preserved at each time

steps, if λ > 1 it grows and if 0 < λ < 1 it decreases. As a consequence, if λ < 1

the constant c is bigger than 1 and if 0 < λ < 1 c is smaller than 1. We will

show that the system admits a stationary a stationary solution ~n if and only if c

and λ are conveniently related.

De�nition 3.4. Let ~nt = ~nt−1A where A is a N × N matrix A = (Aij)i,j=1...N ,

Aij =


λ
j−1

if i < j;

0 if i ≥ j 6= 1;

c
N

if i ≥ j = 1.

(3.18)

where c is a constant and λ ∈ [0,+∞[.

Now we note that this model reproduces the results of the SSR processes

presented before.

Theorem 3.1.2. The matrix A has a left eigenvector with eigenvalue 1 if and

only if

c =
N−1∏
j=1

(
1 +

λ

j

)−1

N

Proof. Let ~n be the left eigenvector, ~n = ~nA. Therefore considering the de�nition

3.4, the previous equation becomes:

~ni =
N∑

j=i+1

λ

j − 1
~nj +

c

N
~n1
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Hence the following recursive relation

~ni =

(
1 +

λ

i

)
~ni+1 (3.19)

holds, from which one obtains

~ni =
i−1∏
j=1

(
1 +

λ

j

)−1

~n1 (3.20)

In the same way, we have

~ni =
N−1∏
j=i+1

(
1 +

λ

j

)
~nN =

N−1∏
j=i+1

(
1 +

λ

j

)−1
c

N
~n1 (3.21)

Where we used ~nN = c
N
~n1 because AN1 = c

N
. From equations 3.20 and 3.21

c =
N−1∏
j=1

(
1 +

λ

j

)−1

N (3.22)

follows.

Theorem 3.1.3. Let A be the matrix of de�nition 3.4 and c as in theorem 3.1.2.

Let the ~n be the left eigenvector of the matrix A. We have

~ni ∝ i−λ

Proof. Recalling the recursive relation 3.20 we obtain

~ni
~n1

=
i−1∏
j=1

(
1 +

λ

j

)−1

= exp

[
−

i−1∑
j=1

log

(
1 +

λ

j

)]
∼ exp

(
−

i−1∑
j=1

λ

j

)
∼

∼ exp(−λ log(i)) = i−λ

(3.23)

Therefore we have

~ni ∝ i−λ (3.24)
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That is, the same results of the SSR processes are recalled.

Now we want to apply the Perron-Frobenius theorem to the matrix A. First

we need to prove that the matrix is non-negative, irreducible, aperiodic and its

maximum eigenvalue is 1. From the de�nition 3.4 follows that A is non-negative.

Now we prove that also the other properties hold.

Proposition 3.1.4. Let A be the matrix of de�nition 3.4 and c as in theorem

3.1.2. The maximum eigenvalue is λ1 = 1.

Proof. From theorem 3.1.3 follows that the eigenvector relative to the eigenvalue

λ1 = 1 is ~n and ~n ≥ 0. Therefore λ1 is the maximum eigenvalue.

Proposition 3.1.5. Let A be the matrix of de�nition 3.4 with c as in theorem

3.1.2. A is irreducible.

Proof. We consider the adjacency matrix M = (Mij)i,j=1...N associated with A

and the graph associated with M . Every node of the graph is connected to the

node 1 and the node 1 is linked to every node. As a consequence, a path of length

2 that connects two nodes exists always. Therefore A2
ij 6= 0 ∀i, j = 1 . . . N .

Proposition 3.1.6. Let A be the matrix of de�nition 3.4 with c as in theorem

3.1.2. A is aperiodic.

Proof. From de�nition 3.4 follows that A11 6= 0 and Aij = 0 ∀i, j 6= 1. More-

over, from the proposition 3.1.5 follows that A2
ij 6= 0 ∀i, j. Since GCD{2, 1} = 1

the period of A is 1.

Therefore we can apply the Perron-Frobenius theorem for irreducible non-

negative matrices and �nd:

Theorem 3.1.7. Let A be the matrix of de�nition 3.4 and c as in theorem 3.1.2.

Therefore

lim
k→∞

~mAk = c~n ∀~m ≥ 0
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Therefore every initial distribution of balls converges to the stationary distri-

bution ~n. From the theorem 3.1.3 follows that this distribution is a power-law

with exponent λ, λ ∈ [0,+∞[.

Note that if λ > 1 this model is equivalent to the cascades model, if 0 < λ < 1 it

reproduces the results of the noisy model and if λ = 1 it is the simple SSR model.

In this last case the matrix A is equal to the conditional probability matrix P

for the simple SSR process given in de�nition 3.2 if and only if c = 1. In fact

from theorem 3.1.2, if λ = 1 we have

c

N
=

N−1∏
j=1

(
1 +

λ

j

)−1

N =
1

2
· 2

3
. . .

N − 2

N − 1
· N − 1

N
=

1

N

Therefore this process is a generalization of the SSR models and it is able to

recall the same results on the probability distribution of those processes.

3.2 Urn models

A new model that generates Zipf's law is based on the observation of the

dynamics of correlated novelties [20]. The correlated novelties model, a general-

ization of Polya's urns model, was inspired by the process of exploring a space

(physical, biological or conceptual) that enlarges whenever a novelty occurs. This

model predicts statistical laws for the rate at which novelties happen (Heaps' law)

and for the probability distribution on the space explored (Zipf's law).

The correlated novelties model mimics the process by which one novelty sets the

stage for another, in the sense that once a novelty is discovered, the space of our

possibilities (the adjacent possible) grows. In other words, the adjacent possible

consist of all those things that are one step away from what actually exists, and

hence can arise from incremental modi�cations and recombinations of existing

material. Whenever something new is created in this way, part of the formerly

adjacent possible becomes actualized, and is therefore substituted by a fresh ad-

jacent possible. In this sense, every time a novelty occurs, the adjacent possible
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expands.

We de�ne novelties as everything that is new to the subject. They include inno-

vations (something that is created for the �rst time, hence new for everybody)

and discoveries for the subject. In this sense innovations are novelties for ev-

eryone. For example, a novelty could be a concept new to the subject. This

discovery may induce the subject to search for further information and therefore

could lead to the expansion of the personal adjacent possible.

3.2.1 Polya's urn

Since the correlated novelties model is based on a generalization of the Polya's

urns, we �rst introduce the latter. In the classical (and simplest) version of this

Figure 3.5: Representation of the classical Polya's urn model. Whenever a red
ball is withdrawn, the ball is placed back in the urn and a certain number of
new balls of the same color are added (in the example, 2 new balls). The same
happens if the brown ball is withdrawn.

model, balls of two di�erent colors are placed in an urn. A ball is withdrawn at

random and placed back in the urn along with a certain number of new balls of

the same color, thereby increasing that color's likelihood of being drawn again in

later rounds (see �gure 3.5 for a visual representation). In particular, suppose to
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have a urn with balls of two di�erent color, say black and red. At time 0 in the

urn there are 2 balls, one red and one black. Every time a black ball is drawn

from the urn, it is put back in the urn along with a second black ball. In the

same way, if a white ball is drawn, it is put back in the urn together with a new

white ball. Obviously that the number of balls in the urn at time t is Nt = t+ 2.

Note that the number of black balls in the urn at time t depends only on the

composition of the urn at time t− 1. In fact, the probability of drawing a black

ball from the urn at time t depends only on the number of balls of that color in

the urn at the previous time. Therefore we can de�ne a Markov chain B that

indicates the number of black balls in the urn.

De�nition 3.5. Let B be a Markov chain, B = {Bt}t∈N , Bt : Ω 7−→ χ = Nr{0},
with P (B1 = 1) = 1 and

P (Bt = k|Bt−1 = h) =


h
t+1

if k = h+ 1;

t−h+1
t+1

if h = k;

0 if k 6= h

∀t ∈ N>1

where the random variable Bt indicates the number of black balls in the urn

at time t. Since the conditional probability depends on the time t the process is

not homogeneous.

If we de�ne in the same way the Markov chain {Rt}t∈N associated with the

number of red balls in the urn at time t, P (Bt = k) = P (Rt = t+ 2− k) because

at time t there are t + 2 balls in the urn. Therefore the Markov process Bt is

enough to represent the number of both the black and the red balls.

Now we consider a more general version of the Polya's urn model. Suppose to

have in the urn N0 balls at time 0, α red and β black. Thus, N0 = α+ β. Every

time a red ball is drawn from the urn, it is replaced in the urn together with a

red balls and b black ones. If the drawn ball is black, it is replaced into the urn
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together with c red and d black balls. To represent the model, we can de�ne

R =

(
a c

b d

)
, U0 =

(
α

β

)

where U0 is called the initial composition vector and R the replacement matrix.

Now suppose that the �rst ball drawn is red, hence the composition of the urn

at time 1 is

U1 = R

(
1

0

)
+

(
α

β

)
On the contrary, if the extracted ball is black the composition of the urn at time

1 is

U1 = R

(
0

1

)
+

(
α

β

)
Therefore the stochastic process {Un}n∈N describes the composition of the urn.

A version of this model can be used to represent the dynamic of novelties and

to recall Zipf's and Heaps' laws in this context. We think of the urn as the

space of possibilities and the sequence of ball that are withdrawn represents the

history that is actually realized. The Polya's urn model can be generalized to

allow for novelties to occur and to facilitate the appearance of further novelties.

This way we can model phenomena that are characterized by the expansion of

their possibility space.

3.2.2 Urn model with triggering

We consider an urn U containing N0 distinct elements, represented by balls

of di�erent colors. These elements represent human experiences and products

of human creativity. The sequence S of elements generated through successive

extractions from the urn represents a series of inventions or experiences. To model

the expansion of the adjacent possible when something new occurs the content

of the urn itself is assumed to enlarge whenever a new element is withdrawn.
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In more detail, at each time step t an element st is selected at random from U
and recorded in the sequence. Then the element is put back in the urn along

with ρ additional copies of itself. The parameter ρ represent the reinforcement

process, i.e. the more likely use of an element in a given context. If the element

st appears to be novel, ν + 1 brand new distinct elements are put in the urn.

These new elements represent the set of new possibilities triggered by the novelty

st. Hence ν + 1 is the size of the new adjacent possible made available once we

have a novel experience.

In other words, at each time step the following procedure is implemented:

1. an item is randomly extracted from U with uniform probability and added

to S;

2. the extracted element is put back into U together with ρ copies of it;

3. if the extracted element has never been used before in S (it is a new ele-

ment), then ν + 1 brand new distinct elements are added to U .

Note that the number of elements of the sequence S, |S|, equals to the number

of times t we repeated the above procedure.

We can de�ne the process using the replacement matrix and the initial compo-

sition vector. We divide the balls in the urn in two classes: the balls that have

already appeared in the sequence S, i.e. the balls that have already been ex-

tracted, and the balls that do not appear in S, i.e. the balls that have not been
extracted yet. At the beginning all the N0 balls are new. We have:

U0 =

(
N0

0

)
, R =

(
ν 0

1 + ρ ρ

)
.

Now we show that this model yields to Zipf's law for the frequency distribution of

distinct elements and Heaps' law for the growth of the number of unique elements

as a function of the total number of elements. Let D be the number of distinct

elements that appear in S, then the total number of elements in U after t steps

is

|U|t = N0 + (ν + 1)D + ρt (3.25)
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We also consider a second model in which the reinforcement does not act when

an element is chosen for the �rst time. Hence, point 2. will be changed into:

2a. the extracted element is put back in U together with ρ copies of it only if it

is not new to the sequence.

Therefore the replacement matrix becomes:

R =

(
ν 0

1 ρ

)

while the initial composition vector U0 remains the same. In this version of the

model, equation 3.25 becomes:

|U|t = N0 + (ν + 1)D + ρ(t−D) = N0 + (ν + 1− ρ)D + ρt (3.26)

We call UD(t) the number of elements in the urn that at time t have not yet

appeared in S, and U(t) = |U|t the total number of elements in the urn at time

t. Considering the �rst version of the model and recalling equation 3.25, it is

obvious that UD(t) = N0 + νD where the term νD comes from the fact that

each time a new element is introduced in the sequence UD(t) is increased by

ν elements (since ν + 1 brand new elements are added to U , while the chosen

element is no longer new). Therefore the time dependence of the number D of

di�erent elements in the sequence S obeys the following di�erential equation:

dD

dt
=
UD(t)

U(t)
=

N0 + νD

N0 + (ν + 1)D + ρt
(3.27)

In the same way, for the second version of the model:

dD

dt
=
UD(t)

U(t)
=

N0 + νD

N0 + (ν + 1− ρ)D + ρt
(3.28)

If we put α ≡ ν + 1 for the �rst model and α ≡ ν + 1− ρ for the second we can

analyze both versions simultaneously.

Since we are interested in the behaviour of the equation at large times t � N0,
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we approximate the equations 3.27 and 3.28 by

dD

dt
=

νD

αD + ρt
(3.29)

And the asymptotic behaviour of D(t) for large t is:

1. If ν < ρ D ∼ (ρ− ν)
ν
ρ t

ν
ρ , i.e. D(N) ∼ N

ν
ρ ;

2. if ν > ρ D ∼ ν−ρ
a
t, i.e. D(N) ∼ N ;

3. if ρ = ν D logD ∼ ν
α
t→ D ∼ ν

a
t

log t
, i.e. D(N) ∼ N

logN
.

This result proves that it is possible to predict Heaps' law from both the models.

Moreover, the balance between reinforcement of old elements and triggering of

new elements a�ect this prediction. Now we show that the same holds for Zipf's

law.

We call ni the number of occurrences of an element i in the sequence S. Therefore

dni
dt

=
niρ+ 1

N0 + αD + ρt
(3.30)

Two cases can be distinguished:

1. If ν ≤ ρ, when limt→+∞
D
t

= 0. Considering only the leading term for

t→ +∞,
dni
dt
' ni

t

Let ti denote the time at which the element i occurred for the �rst time

in the sequence, then the solution ni(t) starting from the initial condition

ni(ti) = 1 is given by

ni =
t

ti

Considering the cumulative distribution P (ni < n), from equation 1 we can

write

P (ni < n) = P (ti ≥
t

n
) = 1− P (ti <

t

n
)
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Therefore we can estimate

P

(
ti <

t

n

)
'
D
(
t
n

)
D(t)

= n−
ν
ρ (3.31)

2. If ν > ρ when D ' ν−ρ
a
t. Considering t� N0,

dni
dt
' ρni(

ρ+ aν−ρ
a

)
t

=
pni
νt

(3.32)

which yields the solution

ni =

(
t

ti

) ρ
ν

(3.33)

Proceeding as the previous case, we �nd P (ni < n) = P (ti ≥ tn−
ν
ρ ) =

1− P (ti < tn−
ν
ρ ) and thus

P
(
ti < tn−

ν
ρ

)
'
D
(
tn−

ν
ρ

)
D(t)

= n−
ν
ρ (3.34)

Obtaining the same result of the previous case.

The probability density function of the occurrences of the elements in the se-

quence is therefore

P (n) =
∂P (ni < n)

∂n
∼ n−(1+ ν

ρ) (3.35)

which correspond to a frequency-rank distribution

f(R) ∼ R−
ρ
ν

A model with semantics

Now we show that with an easy modi�cation, the models just explained could

be correlated to text formation, therefor they could explain the correlation be-

tween texts and Zipf's and Heaps' laws. We simply endow each element with a

label, representing its semantic group, and we allow for the emergence of dynam-

ical correlations between semantically related elements. We consider the same
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Figure 3.6: Representation of the simple urn model with triggering (a) and (b),
and of the urn model with semantic triggering (c), (d). The �rst half represents
the case in which an element (the gray ball) that had been previously drawn is
drawn again and the second half the case in which the ball drawn is new.

urn U with N0 elements, but we divide those elements into N0

ν+1
groups. The

element in the same group share a common label. To construct the sequence S
the �rst element is randomly chosen from the urn. Then at each step t (see �gure

3.6):

1. we give a weight 1 to:

(a) each element in U with the same label (say A) as st−1;

(b) the element that triggered the entry into the urn of the elements with

label A;

(c) the elements triggered by st−1;

A weight η ≤ 1 is assigned to all the other elements in U .

2. we choose an element st from U with a probability proportional to its weight

and write it in the sequence;

3. we put the element st back in U along with ρ additional copies of it;

4. if and only if the chosen element st is new we put ν + 1 brand new distinct

elements in U , all with a common brand new label. These ν + 1 new
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elements are given a weight η = 1 at the next time step t+1 and each time

the same mother element st is picked.

Note that with η = 1 this model reduces to the simple urn model with triggering

introduced earlier.

This extended model can again reproduce both Heaps' and Zipf's laws. We start

from the estimate of the Heap's law exponent as function of the parameters ν,

ρ and η. Supposing that the last element added to S has label s, therefore the

probability of drawing a new ball is equal to the probability of drawing a new

ball with label s plus the probability of drawing a new ball with a di�erent label.

Formally,

P (new) = P (new, label = s) + P (new, label 6= s) =

= P (new|label = s)P (label = s) + P (new|label 6= s)P (label 6= s)
(3.36)

therefore, if we call N s(t) the number of elements with label s, N s
D(t) the number

of new (never used in the sequence S) elements with label s, N s̄(t) the number

of elements with label di�erent from s and N s̄
D(t) the number of new elements

with label di�erent from s that are present in U at time t, we have:

dD(t)

dt
=

N s(t)

N s(t) + ηN s̄(t)

N s
D(t)

N s(t)
+

ηN s̄(t)

N s(t) + ηN s̄(t)

N s̄
D(t)

N s̄(t)
=
N s
D(t) + ηN s̄

D(t)

N s(t) + ηN s̄(t)
(3.37)

The following relations hold:

νD(t) = N s
D(t) + ηN s̄

D(t) (3.38)

and, calling U(t) the number of total elements in the urn,

U(t) = N s(t) +N s̄(t) (3.39)

Note that if η = 1 one recovers equation 3.27.

On the contrary, if we do not know the label of the last added element, we can
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write the general equation for D(t):

dD(t)

dt
=
∑
k

P (k)
νDk(t)

Uk(t)
=
∑
k

P (k)
Nk
D(t) + ηN k̄

D(t)

Nk(t) + ηN k̄(t)
=

=
∑
k

P (k)
Nk
D(t) + η(νD(t)−Nk

D(t))

Nk(t) + η(U(t)−Nk(t))

(3.40)

where the sum is over all the labels k present at time t in U , P (k) is the probability

that the last added element to the sequence S at time t had the label k. Now

we have to estimate Nk(t) and Nk
D(t). Note that Nk

D(t) ≤ ν + 1, therefore

this term can be neglected for large t with respect to D(t). The problem of

calculating Nk(t) is complex, and to avoid it we calculate the probability P (n)

that Nk(t) ≡ n. We can rewrite the equation 3.40 substituting the sum over k

with the sum over the labels with the same number of occurrences n in the urn.

Therefore, asymptotically the following equation holds:

dD(t)

dt
=
∑
n

P (n)
ηνD(t)

n(1− η) + ηU(t)
(3.41)

Now we consider two cases:

1. We keep in the sum only the terms n ' U(t). This approximation is

su�ciently good when the frequency-rank distribution for the elements in

S is su�ciently steep, corresponding to a high Zipf's exponent. Solving

the previous equation within this approximation, we obtain the result for

Heaps' exponent β = min
(
ην
ρ
, 1
)
.

2. When the probability P (n) is large only for n � U(t), we can neglect

the term n(1− η) with respect to ηU(t). Solving the equation within this

approximation we obtain β ' min
(
ν
ρ
, 1
)
.

Summarizing, we have obtained lower and upper bounds for β, min
(
ην
ρ
, 1
)
≤

β ≤ min
(
ν
ρ
, 1
)
. Thus, the hypothesized mechanism of a relentlessly expanding

of the adjacent possible is consistent with the dynamics of correlated novelties.



Chapter 4

Network of words

In the previous chapters we introduced and studied some models that recreate

the features of Zipf's law and try to explain it. Most of them are built starting

from assumptions on the dynamics of the phenomena they want to explain. A

di�erent approach consists in studying the structure of written texts in order to

deepen the understanding of natural language and give an explanation of the

appearing of Zipf's law in this context.

From this perspective, we focused on the study of the English language creating

a network of words on the basis of the structure of some texts, then we studied

its features trying to link them to Zipf's law and in particular to its changing

slope. The main idea was to convey the structure of texts in the features of a

network in order to study it with respect to Zipf's slope change. Since we are

interested in getting information about the structure of the network, we applied

a topological study of its features.

Similar networks of words have already been used to study the feature of texts. In

particular, they have been used in the context of authorship attribution ([2],[1]),

while others underlined some of the properties of such graphs relating their ab-

sence to language disorders ([8]). Our aim is to connect the feature of the network

to the change in slope of Zipf's law. More in particular, we think that the net-

work would have the following structure: a central part constituted by the most

frequent words, i.e. the words that populate the �rst slope of Zipf's law and a

85
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peripheral area inhabited by rare words, the ones that correspond to the second

slope. The most frequent words are connecting words (such as and, but, the . . . )

and words that are related to common topics, while the rare words deal with the

speci�c topics. In our idea, the outer part of the graph is constituted by areas

where words with the same topic are aggregated. Every topic area is connected

to the central part and some of them can be connected one to another with rare

links. Therefore we could depict it with a daisy structure (see Fig. 4.1(a)).

4.1 The dataset

In order to study Zipf's law and its slope in relation with language, we used

a dataset of texts written in English collected from the Gutenberg Project ebook

collection (see table 4.1). We studied 13 di�erent texts chosen on the basis of

the length. The length of the texts is important because it is necessary to be

able to detect the changing slope of Zipf's law, which is not appreciable when

the corpus is larger than 104 words. To have a general idea of language, we chose

a various dataset: the texts deal with di�erent subjects and include both prose

and poetry.

We decided to apply a stemmatizer to the corpus of texts in order to aggregate

words and to make it possible to see Zipf's changing slope at lower ranks. The

stemming process is a process that reduces in�ected (or derived) words to their

word stem, base or root form. In simple words, it deletes the -s from plurals

of words and third person of verbs, the ending -ly from adjectives, the ending

-ing from verbs and so on. For example, the stemmer aggregates the words tree

and trees, the verbs see and sees, and the adjective slow and the adverb slowly.

Considering the �rst lines of the book Pelle the conqueror by M. A. Nexø, the

unstemmed (plain) text is: 'It was dawn on the �rst of May, 1877. From the sea

the mist came sweeping in, in a gray trail that lay heavily on the water', while

the stemmed counterpart is: 'It wa dawn on the �rst of Mai, 1877. From the sea

the mist came sweep in, in a grai trail that lai heavili on the water'.

This process is useful because it reduces the number of words in the sample with-
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(a) Hypothesized con�guration of the net-
work of words co-occurrences: the daisy
structure. It is composed by a central part
populated by frequent words and leaves for
the rare words, aggregated on the basis of
the topic they deal with. Every pair of links
can communicate with rare links (dashed in
the picture).

(b) Structure of the network after a shu�e of the texts. The inner
and outer parts are still recognizable because of the density of their
links but the most rare words are not aggregated on the basis of
their topic.

Figure 4.1: Graphical representation of the network on the sample (a) and on
the shu�ed sample (b). The distinction in inner and outer part holds also for
the shu�ed graph but not the aggregation of the rare words on the basis of their
topic.
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Table 4.1: The corpus sorted by number of total words of the texts. It is com-
posed by 13 non-copyrighted ebooks available at the Gutenberg Project ebook
collection. All the books are in English and three of them are translations of
non-English books. The total number of words is ∼ 9 × 107, while the number
of di�erent words is ∼ 7.6× 104. We applied a stemming process to the texts in
order to reduce the total number of di�erent words, reaching a value of ∼ 5×105

di�erent words.
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out losing meaning or information on the structure of the texts. In Tab. 4.1 it is

possible to compare the number of di�erent words of every text, considering both

the stemmed and unstemmed versions. On average, the stemmed texts have 40%

less di�erent words than the original ones. Obviously after the stemming process

the total number of words remains the same.

Another way of aggregating words is to use a lemmatizer. This process is more

re�ned than the stemmatizer because it aggregates words considering their real

roots. The correct root of a word is tied to the context, for example the word

saw could have two meanings: it could be the past tense of the verb to see or

the noun for a working tool and its meaning can be inferred only from the topic

of the section of text it is used in. Since it is not a mechanical removal of the

endings of words basing on speci�ed rules, the lemmatizer is more e�cient than

the stemmatizier in aggregating words according to their meaning. For example,

considering the �rst two sentences of Pelle the conqueror, a lemmatizer would

have recognized the word was as the past tense of the verb to be, while the

stemmatizer only deleted the last 's'. On the other hand, being less elaborate

a stemmatizer is faster. Because of all the advantages they lead to, stemma-

tizers and lemmatizers are frequently used in text analysis ([2],[9]). Since ours

is a quantitative study, we do not need an accurate lemmatization of the texts,

therefore we decided to use a stemmatizer.

A stemmatizer does not only reduce the number of words without losing infor-

mation on the structure of the text. Another advantage lies in the fact that on a

stemmed sample the changing slope of Zipf's law is visible with a smaller number

of words. In fact, since the words are aggregated on the basis of their stems the

corpus still conserves all its features but counts less di�erent words, which are

the ones used to build the frequency rank of the sample.

4.1.1 The Zifp's law on the sample

Since we aim to study the characteristics of the texts in relation with the

slope of Zipf's law, we need to know if the sample presents a changing slope in
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its frequency-rank distribution. It is also important to know where the change

occurs in terms of ranking. Fig. 4.2 shows the frequency-rank plot on both the

stemmed and unstemmed corpus. The change in slope is visible in both cases,

but it appears earlier (rank-wise) on the stemmed corpus. In fact, the change

happens around 2 × 103 and the angle between the two power-laws is sharper

than the angle on the unstemmed texts.

From now on we will only consider the stemmed corpus.

Figure 4.2: Frequency-rank (Zipf's law) log-log plot on the stemmed and un-
stemmed corpus. Considering the stemmed sample, the slope changes earlier
and the angle is sharper for the stemmed texts than for the unstemmed ones.

Ascertained that the changing slope is visible in our sample, we can start ana-

lyzing the relation between the corpus and Zipf's double slope. For studying the

features of written texts we decided to create a structure that could be represen-

tative of it and that could be studied in a rigorous way. In order to make this

possible, we used the words of the sentences and their order to de�ne a network.

Note that Zipf's law does not depend on the order of the words in the texts but

only on their frequency. As a consequence, Fig. 4.2 would be observed also for

the shu�ed sample. On the other hand, the network we are going to build is

based on the order of words, therefore a shu�e of the text would change com-

pletely the topology of the graph. Our idea is that with a shu�ing the daisy

structure would be lost, while the distinction between a central part and an outer

part would be conserved. In other words, the outer part would not be divided in
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di�erent areas on the basis of the topic but it would still be recognizably di�erent

from the central part (see Fig.4.1(b) for a graphical representation).

As we said, after a shu�e of the text Zipf's law will not change but the topology

of the network will be completely di�erent. However, we decided to study the

network because we think it is related to Zipf's law on a deeper level. In fact,

the only thing that distinguishes the real text from its shu�es is the dynamic

of the building of sentences, that is the order according to which sentences are

created. We think that Zipf's law is related to the human limitations: if humans

were omniscient, there is reason to think that they would not distinguish a set

of common words and a set of rare ones but use all of them indistinctly. Under

this assumption, the changing slope of Zipf's law would probably not appear.

Therefore the evidence of a power-law distribution in the frequency rank of texts

leads us to think that the creation of texts, and more in general the human lan-

guage, has some constraints that are related to our mind. In fact, since everyone

is experienced in some �eld of the human knowledge, every book and human

speech deal only with few of the possible topics. As a consequence, every mean-

ingful text populates only some petals of the daisy structure, while every of them

presents the central component. Therefore, considering di�erent texts as we did

in our analysis, the structure of the network will present several petals that are

strongly connected to the central part of the graph and weakly connected one

with the other.

To sum up, we study the topology of the graph because we think it is related

to Zipf's law on a deeper level: Zipf's law does not depend on the order of the

words, but it is related to the human capacities and mind. Also the network's

topological structure depends on the mechanisms of sentence construction and

it is reasonable to think that it mirrors all the constraints imposed by the hu-

man nature to the language. Therefore studying the network we will gather

information also on the Zipf's law.
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4.2 Construction of the network

The network had to conserve the main features of the texts considered, there-

fore we decided to construct it according to the sentences structure.

Supposing to have a written text, we �rst deleted the punctuation and sym-

bols such as commas, brackets, and so on. We decided not to delete numbers,

full stops, question and exclamation marks. We left the numbers because they

have the same role as words in sentences. We did not remove the exclamation

marks, question marks and full stops because having a stopping function they

are important to the structure of the network. Since they have the same role, we

considered question and interrogative marks the same as full stops.

After cleaning the sample, we de�ned a network where every vertex corresponds

to a di�erent word of the corpus and the links connect one word with the follow-

ing word in the sentence. Since the full stops are at the beginning and ending

of every sentence, every �rst and last word of a sentence is connected to the full

stop (we arti�cially added a full stop at the beginning of every text). Therefore

we can consider the full stop the central vertex of the network and we call it ρ.

More formally,

De�nition 4.1. Let G = (V , E) be a network, where V is the set of all the words

that appear at least once in the sample and E = {(i, j), i, j ∈ V , i precedes j in the text}.

Note that from this de�nition follows that the graph we are de�ning is di-

rected. In fact, since usually in sentences with meaning the order is important,

we could have (i, j) ∈ E but (j, i) /∈ E .
Notation-wise, we call i 7→ j the link (i, j). We will write i1 → in = i1 7→ i2+i2 7→
i3 + . . .+ in−1 7→ in for the concatenation of the links (i1, i2), (i2, i3) . . . (in−1, in).

We will call i1 → in the path that connects i1 with in.

For example, considering the simple sentence 'I went to the o�ce while John

went to the store to buy potatoes' we can construct the network G:
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.

I

went to the
o�ce

while

John

store
buy

potatoes

Where every vertex is labeled with the word it is associated with.

Note that some words occurred more than once but this evidence is not recorded

in the graph. In our �rst approach to the study of the network we will only take

into account the di�erent words that are used in the text but not their number

of occurrences.

4.3 Analysis of the network

Having de�ned the network, the next step is to study it. We started analyzing

some simple features, as the number of nodes of the network. We wanted to

understand the structure and the shape of the graph. More in detail, we wanted

to check if the topological structure of the network could be related to Zipf's

law. In order to do this, we de�ned some distances and analyzed the graph in

relation to them.

4.3.1 Topological distance

Initially, we considered the plain topological distance, i.e. the distance be-

tween the nodes u and v is the minimum number of links that connects them.

For instance, considering the previous example, the distance between the nodes

the and to is 2. There is more than one path that connects the two words, for

example the blue and the red ones, but the blue is the shortest and it is long 2.
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.

I

went to the
o�ce

while

John

store
buy

potatoes

Note that this de�nition of distance takes into account the direction of the links.

In fact, if we were not considering it, the shortest path would be the link to 7→ the

that is long 1.

In more formal words,

De�nition 4.2. Let i1, in ∈ V , i1 → in the oriented path that connects the

vertices i1 with in. Let i1 → in = i1 7→ i2 + i2 7→ i3 + . . .+ in−1 7→ in. We de�ne

the length of the path as

`(i1 → in) = |{i1, i2 . . . in}|

Remark 19. The graph is constituted by one strongly connected component

(SCC).

Proof. We have to prove that if u, v ∈ V , a path u→ v in G exists always. Due

to the structure of the network G, a path that connects u with the full stop ρ,

u → ρ exists ∀u ∈ V . For the same reason, a path ρ → v exists ∀v ∈ V . Since
u→ v = u→ ρ+ ρ→ v we have the thesis.

De�nition 4.3 (Topological distance). Let u, v ∈ V

d(u, v) = min
u→v

`(u→ v)

Note that mathematically speaking this is not a distance. In fact, it is always

larger or equal to 0 and d(u, v) = 0 if and only if u = v. Moreover it satis�es the
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triangle inequality but, since the graph is directed, the symmetry property does

not hold.

Remark 20. d(u, v) ∈ N ∀u, v ∈ V .

Proof. As a consequence of de�nition 4.2, `(u → v) ∈ N ∀u, v ∈ V , therefore
also d(u, v) ∈ N ∀u, v ∈ V .

As advanced, the stopping function of the full stop is a peculiar role in the

structure of the sentences. All the other words of the sample can occupy di�erent

positions in sentences while the full stop is always found at the beginning and

at the end of them. Hence, the full stop has a remarkable peculiarity in respect

to the positioning of words in the sentence. Since the network had to represent

all the features of the sample, we took into account this evidence constructing

the graph in such a way that the node ρ associated with the full stop can be

considered the center of the network. For these reasons, we are interested in

calculating the distance of every vertex from ρ. Moreover, because of the tri-

angle inequality the distance of every word from the full stop can lead to an

upper bound for the distance between every pair of words. Therefore we com-

pute d(ρ, u) ∀u ∈ V , u 6= ρ.

The distance de�ned above takes into account only the minimum length of the

paths, therefore it leads to an aggregating phenomenon. For example, a word

that once appeared at the beginning of a sentence has distance 1, no matter of

the position of its other occurrences. This feature a�ects the maximum distance

and the population of the distances according to the rank of the vertices. In fact,

from Fig. 4.3 it is possible to see that due to the de�nition of the network the

maximum distance is quite low. While the maximum length of a sentence in the

sample is about 1500 words, it is always possible to connect one word to the full

stop with a path shorter or equal to 8.

Moreover, due to the structure of the network there are many links that enter

and exit from a frequent word. This is because a frequent word is usually used

in di�erent sentences, hence it is followed by di�erent words. This evidence com-
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Figure 4.3: Number of nodes as a function of the topological distance. Due to
the structure of the network and the de�nition of this distance, the maximum
distance is much smaller than the maximum length of sentences and most of the
words have a distance lower or equal to 2.

Figure 4.4: Log-log plot of the rank of the words divided on the basis of their
topological distance. The more the distance grows, the more the words are rare.
The y-axis is the absolute frequency rank of the words while the x-axis is the
relative rank, that is the frequency rank of the words with respect to the distance
they belong to.
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bined with the aggregation feature brings to the fact that a frequent word has

more chances to be at a low distance. In fact some sentence could start with

it or, if it is never used at the beginning of a sentence, at least one of its links

connects it to a word with low distance. This eventuality has an high likelihood

for frequent words because they are connected to many words. Hence, at low

distances we expect to �nd most words and the most frequent.

Moreover, frequent words trigger a multiplying e�ect. In fact, since a frequent

word is usually at low distance, a word connected to it most likely has a low

distance. Having many links, the frequent words let many other words have a

low distance. For instance, it is highly probable to �nd in the sample a sentence

that starts with the word the, therefore the vertex associated with that word has

distance 1. As a consequence, all the words that follow the in every sentence of

the sample have distance at most 2.

In Fig. 4.3 it is possible to see that the higher number of vertices is at distance

2, therefore the multiplying e�ect is strong only at the beginning, while the ag-

gregating component takes over from distance 3 on.

As shown in Fig. 4.4, the most frequent words have distance less than to 3 while

the rare words populate the other distances. In fact, distance 3 is populated by

words that have rank higher than 3 × 104 while distance 1 and 2 are rank-wise

uniformly populated, i.e. they host frequent words as well as rare words.

As we advanced, this de�nition of distance does not take into account the occur-

rences of every link, hence the frequency of the word is not fully represented.

To make the analysis more accurate, we gave a second de�nition of distance that

also considers the number of occurrences of links.

4.3.2 Weighted distance

This second de�nition deals with probabilities. We consider the weight of

every link as the estimated probability of crossing that particular link. In other

words, if a link connects the word a with the word b, its weight is the probability

of choosing the word b starting from a. More formally,
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De�nition 4.4. We de�ne the weight of the link i 7→ j as:

Wi,j =
wi,j∑

{k|(i,k)∈E}wi,k

where wi,k is the number of occurrences of the link i 7→ k.

Therefore the weight of the link u 7→ v corresponds to the measured transi-

tion probability of going from u to v.

Considering the previous example, the weighted graph would be:

.

I

went to the
o�ce

while

John

store
buy

potatoes

2
3

1
2

1
2

1
3

Where we only indicated the links with weight 6= 1.

Now de�ne a new distance on the weighted graph:

De�nition 4.5. Let i1, in ∈ E , i1 → in the oriented weighted path that connects

the vertices i1 with in. Let i1 → in = i1 7→ i2 + i2 7→ i3 + . . . + in−1 7→ in. We

de�ne

`W (i1 → in) =
n−1∑
j=1

Wij ,ij+1

that is, the length of a path is the sum of the weight of its intermediate links.

De�nition 4.6 (Weighted distance). Let u, v ∈ E

dW (u, v) = min
u→v

`W (u→ v)

As we did with the topological distance, we consider dW (ρ, u) ∀u ∈ V , u 6= ρ

and therefore we calculate the distance of every word from the center of the net-

work.
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Note that d(u, v) ≥ 0∀u, v ∈ V and d(u, v) = 0⇔ u = v, but the symmetry and

Figure 4.5: Weighted distance as a function of the rank of the words (log-lin
scale). Words that populate the �rst part of Zipf's law have weighted distance
∼ 0, while words that populated the second part have on average larger distance.

triangle inequality do not hold for this distance, therefore this is not a mathemat-

ical distance. Moreover, since every link has weight ≤ 1, the simple topological

distance is an upper bound for the weighted distance. In fact, as shown in Fig.

4.5, the maximum of the weighted distance is ∼ 6.

Remark 21. d(u, v) ∈ Q+ ∀u, v ∈ V .

Proof. As a consequence of de�nition 4.5, `W (u → v) ∈ Q+ ∀u, v ∈ V . Since

d(u, v) is a sum of rational numbers, d(u, v) ∈ Q+ ∀u, v ∈ V .

Including the notion of frequency in the de�nition of distance helps us to �nd

the correlation between the structure of the network and Zipf's double slope. In

fact, Fig. 4.5 shows that the distance takes values larger than 0 only for words

whose rank is larger than 2 × 103. That is, the words that populate the second

part of the frequency-rank plot have on average distance larger than 0, while the

distance of all the other words is ∼ 0. Therefore the weighted distance could

be seen as a way to distinguish rare and frequent words without counting their

occurrences.
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Since we de�ned the weight of a link as the estimated transition probability of

going from the �rst vertex to the second, we can apply the de�nition of entropy

to every word of the graph.

Remark 22. The entropy associated to the vertex v ∈ V is

E(v) = −
∑

{u|(v,u)∈E}

Wv,u log(Wv,u)

In Fig. 4.6(a) it is possible to see that the entropy just de�ned is higher for

low-ranked words. That is because, as already discussed, usually frequent words

have an higher number of exiting links. On the contrary, if a word is rare it

will have few outneightbors and the entropy associated to it will be low. For

example, if one word has only one outneighbour, the link will have probability 1

and the entropy associated to that vertex will be 0.

Since, as already discussed, the value of the entropy increases with the number

of outneightbours of the vertex considered, we consider the normalized entropy,

that is the entropy divided by the number of exiting links.

De�nition 4.7 (Normalized entropy). The normalized entropy associated with

the vertex v ∈ V is

E(v) = −
∑
{u|(v,u)∈E}Wv,u log(Wv,u)

log kv

where kv is the number of outneighbours of the vertex v.

In Fig. 4.6(b) it is possible to see that the normalized entropy grows with the

rank. Its behaviour is opposite to the entropy one, which means that the number

of exiting links was a prevalent factor in the computation of the entropy. More

in detail, the positive correlation between normalized entropy and rank seems to

be stronger on words with rank larger than 103. In fact, words with rank larger

than 103 have a wider range of entropy levels, while more frequent words seem

to be more stable according to the entropy range. Note that some words have

entropy 0 because they have only one exiting link.

To sum up, since the weighted distance takes into account the occurrences of the
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(a) Entropy as a function of the rank (log-lin scale).
Words with higher rank have a lower entropy, therefore
they are negatively correlated.

(b) Normalized entropy as a function of the rank (log-
lin scale). The entropy raises at the growing of the rank
and this positive correlation seems to be stronger on
words that have rank larger than 103.

Figure 4.6: Entropy and normalized entropy as functions of the rank (log-lin
scale). The di�erence in behaviour is due to the fact that entropy takes into
account the number of exiting links. If we normalize it by dividing by the log-
arithm of the number of exiting links, we �nd a value of entropy that does not
depend on the number of the links.
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links it seems to be more useful than the plain topological distance to study the

relation between the structure of texts, i.e. the feature of the network, and the

double slope of Zipf's law. Obviously this is because both the weighted distance

and Zipf's law deal with the frequency of the words. Once we took into account

the frequency of the words by means of their occurrences we have been able to

detect the features of the network that are related to the rank in frequency of

those words.

On the other hand, the aggregating factor seems to hide some of the properties of

the texts. In fact, as already discussed, if once a word appears at the beginning of

a sentence it has low distance, no matter the other occurrences. To help solving

this problem, we de�ned a distance that takes into account both the occurrences

of the words and their position in the sentences.

4.3.3 Mean distance

We de�ned a third distance as the average position occupied by a word in

the sentence. This way we take into account the repetitions of the word and the

position that the word has in the sentence with respect to the starting full stop.

De�nition 4.8. Let v ∈ V a vertex associated with a word that occurs n times

in the sample. Every occurrence is linked with a number di of the words that

stand in between v and the preceding full stop. We de�ne the distance

dM(v) =

∑n
i=1 di
n

Note that this de�nition takes into account both the number of occurrences of

the word and their distance from the center of the network. On the contrary, for

the other two de�nitions of distance this was not important: they only took into

account the minimum of the distance, that corresponds to only one occurrence.

To analyze the relation between the mean distance and Zipf's law we plotted the

distance as a function of the rank (Fig. 4.7). The Fig. shows that high distances

are related to high positions in the frequency rank and vice versa, but it does not

seem to be related to the changing in slope of Zipf's law. In fact, the distance
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Figure 4.7: Mean distance as a function of the rank (log-lin scale). The growing
of the distance with the rank is probably due to the unreliability of the mean of
the distance on rare words.

seems to grow with the same rate before and after the point where Zipf's slope

changes. On the other hand, for words with rank larger than 104 the distance

seems to grow faster. However, this phenomenon is probably due to the low

number of occurrences of the words. In fact, since those words occur only once

or twice in the whole text, they do not o�er a reliable �eld for analysis. This

evidence is noticeable in Fig. 4.8, where we plotted the variance of the distance

as a function of the rank. If the word is frequent, its variance is low but if the

rank of a word is larger than 103 then the variance starts to be high. This means

that the more the word is rare, the more the positions it assumes in the sentences

move away from the mean value.

In conclusion, we de�ned three di�erent distances and used them to analyze

the network with the purpose of trying to �nd a relation between the structure

of the graph and its topology. Taking into account more features such as the

number of occurrences of words and links, the position of words in the sentences

and so on, the de�nitions of distance become more accurate for bringing out the

features of the network. However, for all the three distances the more the words

get rare the more the distance grows. We could interpret this result in terms of

structure of the network and use a di�erent approach to analyze it.
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Figure 4.8: Variance of the mean distance as a function of the rank (log-lin scale).
The variance grows with the rank, which means that the mean of the distance is
not reliable for high ranks.

4.3.4 Centrality measures

One evidence of the previous analysis is that, if the distance used takes into

account some simple features of the words, it is observed to grow the more the

words become rare. Since we took into account the distance of the words from

the central vertex ρ, that evidence means that the network has a shape such

that the frequent words occupy its central part while the rare ones are in the

outer part. One interpretation of this phenomenon could be that while the most

frequent words would refer to general topics, the most rare would be specialized

words that refer to particular and niche subjects. The frequent words would

be characterized by many entering and exiting links that connect them to other

frequent words and to rare words. On the contrary, since the rare words are

specialized they would be linked to the frequent words but only to some other

rare words, the ones that refer to the same particular topic. As a consequence,

the network would be characterized by a big central component populated by

the frequent words and some remote components inhabited by rare words. The

central component would be characterized by an elevated number of links that

connect frequent words with other words, frequent or rare. On the other hand,

since rare words would be related only to frequent words or to words that refer
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to the same topic, the remote part would be divided into di�erent components

on the basis of the subject. We want to �nd out whether the network has this

structure and the best way of doing it is to use centrality measures.

Centrality measures are useful to study the con�guration of the network because

they associate every vertex of a graph with a number that represents its impor-

tance in the network. The de�nition of importance for a vertex could be related

to many features, but the one that is necessary to our survey is the relation

between the vertex and the links of the network.

Betweenness centrality

One of those measures is the betweenness centrality. Its de�nition uses the

notion of shortest paths and it ranks the vertices on the basis of their position:

the more shortest paths the vertex is in the middle of, the higher the centrality

is.

De�nition 4.9. Let v ∈ V , the betweenness centrality associated with v is:

BC(v) =
∑
s,t∈E
s,t 6=v

σst(v)

σst

where σs,t is the number of shortest paths between s and t and σs,t(v) is the

number of those shortest paths that pass through v.

In other words, the betweenness centrality of the vertex v takes into account

the fraction of shortest paths that connect two vertices of the graph and pass

through v.

We applied this measure to our network and found that the betweenness cen-

trality decreases with the growth of the rank (see Fig. 4.9). Therefore frequent

words have a central position in the network, while rare words are at the border.

However, this decrease does not seem to be related with the change in slope.

In fact, the rate of decrease of the betweenness centrality does not have any

relevant change after the threshold of 103 words. The reason of this behaviour

could lie in the fact that the de�nition of the betweenness centrality does not
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Figure 4.9: Betweenness centrality as a function of the rank (log-lin scale). It
decreases with the growing of the rank, that is the most frequent words have a
central position in the network.

take into account the weight of the links, therefore the occurrences of the words

are irrelevant to this method.

Remoteness

One other way of de�ning a centrality measure on the network is the remote-

ness. The remoteness measures the di�culty of getting from one vertex to one

other in the graph. We de�ne the remoteness of a vertex v as the sum of the

length of the shortest paths that connect v with every other vertex of the graph.

Therefore the more a vertex is well connected to all the others, the lower the

remoteness is.

Note that this measure requires the notion of length of the paths. We can use

both the length de�nitions we gave above in order to �nd the one that is the

most suitable for our analysis.

Using the �rst de�nition of length we have:

De�nition 4.10 (Remoteness). Let v ∈ V . The remoteness of the vertex v is

de�ned as

R(v) =
∑
u∈V
u6=v

min
v→u

`(v → u)
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As a consequence of the de�nition of length used, the remoteness de�ned

above does not take into account the occurrences of the words. As we expected,

the remoteness and the rank are positively correlated (see Fig. 4.10): the more

a word is rare the higher its remoteness is. This results makes sense in our inter-

Figure 4.10: Remoteness as a function of the rank (log-log scale).The remoteness
of frequent words is lower than the one of rare words, that means that the more
a word is rare the more di�cult it is to reach it.

pretation, because it con�rms that rare words are the worst connected, therefore

they are on the border of the network while frequent words are in the center.

However, in Fig. 4.10 it is possible to see that the more the rank grows the

wider the remoteness range is, i.e words with the same rank could have rather

di�erent remoteness values. Moreover, since the growth rate of the remoteness

values does not change its behaviour passing the threshold of 2 × 103 words, it

does not seem to be related with the changing slope of Zipf's law. Therefore we

found that the remoteness could be related to the rank of the words, but now we

need a more accurate de�nition of it in order to �nd a relation with the double

slope.

For �nding a de�nition of remoteness that is more suitable for our purposes we

should consider also the number of occurrences of the words. As we did for

the distance, we can adjust the de�nition of remoteness taking into account the

weight of the links. Therefore, recalling the de�nition 4.4 we can de�ne:

De�nition 4.11 (Weighted remoteness). Let v ∈ V . The remoteness of the
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vertex v is de�ned as

R(v) =
∑
t∈E
t6=v

min
v→t

`W (v → t)

Using this de�nition for analyzing the network, we can plot the remoteness

as a function of the rank of the words (Fig. 4.11). As we found for the previous

de�nition of remoteness, also the weigthed remoteness grows with the rank of the

words, therefore the rank and this version of the remoteness are related. Since

Zipf's law is based on the frequency rank of the words, this evidence is vital for

a correlation of the remoteness with Zipf's law.

The �rst di�erence with the result found with the previous de�nition is that

Figure 4.11: Weighted remoteness as a function of the rank (log-log scale). The
weighted remoteness divide the words into two components of the graph, one
more connected and one less connected. Since this phenomenon starts to be
evident from a rank value of 2× 103 it seems to be related with Zipf's law. The
�rst words in the second component are all connected to the same node. For this
reason they happen to have more or less the same value of weighted remoteness.

here the noise in the remoteness measure appears later. This evidence is a conse-

quence of the decision of considering also the occurrences of the words. In fact,

taking into account all the occurrences of the words we have a larger statistical

basis and the measure is reliable also for words with high rank. Therefore this

second de�nition is more accurate and reliable than the �rst.

Moreover, the weighted remoteness highlights an important feature of the net-
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work. In fact, in Fig. 4.11 it is possible to see that from the rank value of 2×102

the words seem to be split in two components. In the �rst component there are

words that still have a low remoteness value, while in the second there are words

that have the same rank but higher value in remoteness. The phenomenon seems

to become relevant once the rank passes the 2× 103 threshold, therefore it seems

to be related in some way to the change of Zipf's slope. In fact, only less than

10 words with rank smaller than 2 × 103 inhabit the second component, while

all the other words have rank larger than 2 × 103. Eventually, also the words

from the �rst component reach the high remoteness values of the second, but

it happens for high values of rank, hence when the words are so rare that the

remoteness measure is not reliable any more. Therefore this result shows that

the central part of the network, the more connected one, is inhabited by frequent

and less frequent words. On the other hand, some of those less frequent words

start populating another component of the graph, less connected and central

than the �rst. The important remark is that the threshold between frequent and

less frequent words is set at the rank value of ∼ 2 × 103, that is where Zipf's

law changes its slope. Note that, due to the structure of the network those two

components can not be separated.

We found that taking into account the density of the links in the network is a suit-

able way for de�ning di�erent components of the graph. Using this idea, another

way of detecting the structure of the network could be based on the de�nition

of some components with respect to the features of the links that characterize

them.

4.3.5 Components of the network

Since the components of the network seem to be related to the density of its

links, we de�ne three sets of core words, in-words and out-words on the basis of

the links of the network. Every set of words corresponds to a component of the

graph. We took inspiration from the tie structure of the web [5] for dividing the

graph into components but our de�nitions and analysis di�er from the ones by

Donato et al.
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The core words constitute the central component, the one with the higher density

of links. The density of the links is related to the length of the paths from one

word to the other, in fact the more a component is dense with links the lower the

distance between the words is. As we already advanced, in a directed graph the

main obstacle for having a low distance is the direction of the links. In fact, if the

link u 7→ v ∈ E there is not guarantee that also v 7→ u ∈ E . As a consequence,

considering the de�nition of length of a link in a graph without weights, even if

d(u, v) = 1, the length of the path v → u is potentially longer than 1. On the

contrary, not considering the direction of the links the two distances are the same:

d(u, v) = d(v, u) = 1. The same applies to the graph with weights. Therefore in

a directed graph a way of avoiding taking into account the directions of the links

is to have couples of links u 7→ v and v 7→ u. Hence we de�ne the core words as

those words that have at least one two-ways link:

De�nition 4.12. Let u ∈ V , it is a core word if ∃v ∈ V s.t. u 7→ v and v 7→ u ∈
E . We de�ne CORE= {v, v core word}.

Now we de�ne the in-words as words that connect the outer part of the

network with the core words and the out-words as the words that connect the

core words with the outer part.

De�nition 4.13. Let u ∈ V , it is a in-word if ∃v ∈ V , v core-word s.t. (u, v) ∈ E
and @v ∈ V , v core-word s.t. (v, u) ∈ E . We call IN={v, v in-word}

In other words, an in-word has at least one core word as outneighbour but

no core words as inneighbours.

De�nition 4.14. Let u ∈ V , it is an out-word if ∃v ∈ V , v core-word s.t. (v, u) ∈
E and @v ∈ V , v core-word s.t. (u, v) ∈ E . We de�ne OUT= {v, v out-word}.

Therefore an out-word is a word that has at least one core word as inneighbour

but no core words as outneighbours.

As a consequence of the previous de�nitions, the in-words and out-words have

the role of connecting the central part of the graph with the outer part.
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Figure 4.12: Rank of the words divided on the basis of the components of the
network (log-log scale). The IN and OUT components are populated by words
with rank higher than 3 × 103, while the A, B and C components start to be
populated from a rank value of 103.

To study the three units of the network we plotted the rank of the words divided

on the basis of the component they belong to (Fig. 4.12).

In that �gure it is possible to see that the core component is larger than

the other two and it is populated by words with various range in frequency, from

frequent words to rare ones. On the contrary, the other two components have the

same shape rank-wise and start to be populated from rank 3×104 on. Note that

the three components gather less than 50% of the words of the sample, therefore

they are only a minority.

We can interpret the in-words as the words that serve as connection between the

the outer part of the graph and the core words and the out-words as the one

that connect the core with the outer part. Therefore we could be interested in

knowing how the rank of the words in the outer part is distributed. We de�ne

three new components

De�nition 4.15. Let v ∈ V , v /∈ IN∪CORE, v ∈ A if ∃u in-word s.t. v 7→ u ∈ E .

Therefore A is the component of all the words that use an in-word as a link

to the core.

De�nition 4.16. Let v ∈ V , v /∈ OUT∪CORE, v ∈ B if ∃u out-word s.t.
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u 7→ v ∈ E .

As a consequence, B is the set of all the words to which the core words are

linked with links that pass through the out-words (see Fig. 4.13(a) for a graphical

representation).

(a) Graphical representation
of the de�nition of v, w ∈
B. Inverting the arrows, the
OUT component becomes the
IN component and the de�ni-
tion of A is recalled.

(b) Representation of the de�-
nition of v ∈ C. Since u 6= w,
the shortest possible loop in C
consists at least of three links.

Figure 4.13: Graphical representation of the de�nition of the three components
A, B and C. The shortest possible loop in those components consists at least of
three links.

De�nition 4.17. Let v ∈ V , v /∈CORE, v ∈ C if ∃u,w core words s.t. u 7→
v, v 7→ w ∈ E .

Note that v 6= w because otherwise v would be a core word.

From the de�nition we have that C is the set of the words that do not use in-

words or out-words as links to the core.

From the de�nitions, loops of length 2 are allowed only in the CORE. Therefore

we distinguished a dense part of the graph where 2-links loops are allowed (the

CORE) and one outside part where the shortest loops consist of at least 3 links.

The outside part is divided into other components with respect to the relation

of their vertices with the CORE (see Fig. 4.15). Note that this classi�cation

is linked to the density of links: the more the links are dense, the more 2-links

loops are probable.

Note that not all the intersections between the components are empty. More in

particular, we observe that A ∩ OUT 6= ∅, B ∩ IN 6= ∅, A ∩ B 6= ∅, C ∩ A 6= ∅
and C ∩B 6= ∅ (see Fig.4.14).
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Figure 4.14: Scheme of the intersections between the components.

Fig. 4.14 is a graphical representation of the structure of the graph considering

the components described above. The components A and B use respectively the

in-words as a link entering in the core and the out-words as a link exiting from

the core. The third component, C, is constituted by words that do not belong to

the core and do not use neither the in-words nor the out-words to be connected

to the center of the network.

In Fig. 4.12 it is possible to see that the components A and B have the same

Figure 4.15: The division of the network in the CORE, IN, OUT, A, B and C
components. The in and out components serve as links from the outer part to
the core.

composition in terms of rank and number of words, while the component C has

a larger cardinality than the previous. Note that except for the �rst two or three

words, the A, B and C components start to be inhabited by words with rank

values from 2 × 103 on. This means that the composition of those components

could be related to the changing slope of Zipf's law. In fact, since the change in
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the slope is evident but smooth, it outlines a range of ranks that are intermediate

in the change. Those intermediate ranks could be the �rst few words of the A, B
and C components. The IN and OUT components are inhabited by words with

rank larger than 3 × 103, therefore they seem to be related to the second slope

of Zipf's law. A di�erent de�nition of the components based on a more strict

and precise concept of density of the links of a graph could help outlining better

the components and could lead to more precise results in terms of ranks of the

words of the components.

To understand if the previous de�nition is signi�cant with respect to Zipf's law,

Figure 4.16: Rank of the words divided on the basis of the components of the
network of the shu�ed sample (log-log scale). The core, A, B and C components
don't change signi�cantly, while the IN and OUT components are populated by
words with higher rank.

we consider the network built on the shu�ed sample. As we advanced, the shuf-

�ing does not a�ect Zipf's law but it changes the structure of the network. As a

consequence, the graph on the shu�ed sample would be constituted by the same

inner and outer parts, but the links between them would be di�erent. More in

detail, since the rare words occupy random positions in the tests, the outer part

would not show di�erent aggregation of words on the basis of the topic they deal

with. In Fig. 4.16 it is possible to see that the IN and OUT component on the

shu�ed text are di�erent from the one of the normal sample while all the other

components do not vary. The IN and OUT words are populated by words that



4.3 Analysis of the network 115

are more rare, while all the other keep the same composition. This means that

the IN and OUT words are signi�cant to detect the structure of the network with

respect to the order of the words and their meaning, while the other components

are only related to the frequency of the words. That is, we found a structure

that does not change with the shu�ing of the texts, i.e. it is related to Zipf's

law, and a structure that depends also on the order of the words and the topic

they deal with, i.e. it is a deeper structure.

In conclusion, the de�nition of those components seem to be related to the fre-

quency rank of the words of the sample. The core components contains words

with a wide range of ranks, while the other components are more speci�cally

populated. This means that basing only on the idea of density of the links, we

found a central component of the network, the core component, and some outer

ones, the in, out, A, B and C. This evidence seems to con�rm the assumption

that the frequency of words is re�ected in the features of the network we built

and more speci�cally in the structure of its links.





Conclusions

Zipf's law manifests itself in many di�erent areas. For example, we �nd it in

the distribution of earthquake magnitudes, in the distribution of the number of

inhabitants of cities and in the energy distribution of cosmic rays, to cite a few.

In its original form, Zipf's law consists of a pure power-law relation between the

frequency of occurrence of certain events and their rank, whereas the rank is an

integer number ranking the frequencies from the highest (rank 1) to the lowest.

Generally and historically, that power-law relation has an exponent of -1.

Aim of this thesis is to deepen our understanding of power-laws in general and

Zipf's law in particular. In order to do this, we �rst studied some synthetic models

able to generate power-laws. Second, we investigated the relation between the

frequency of words and their rank in written English texts. In this case this

relation cannot be approximated by a conventional Zipf's law with constant

exponent, but at least two regimes can be observed. One regime embraces the

�rst few thousands of most frequent words with an exponent close to the canonical

-1, while the other regime found in the case of the least frequent words is slightly

less than -2.

In our theoretical approach we reformulated in a mathematical way some

models that reproduce power-laws in terms of stochastic processes. Because of

the relevance of Zipf's law, several scholars have studied it and have proposed

some interpretations for its insurgence. In those interpretations, the observation

of power-laws in the FR distribution has been related to many causes, e.g., to

the structure of language itself, to the dynamics of language formation and the

principle of least e�ort, to the human brain and its limits. In some cases model-
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ing models have been proposed.

We considered some of those models, framed them within the theory of stochas-

tic processes and studied their properties. The mathematical formalization we

performed allowed us to apply theoretical tools to the models in order to detect

their features. In particular, we considered two di�erent classes of models based

on the variation of their sample space, where the range of their possibilities grows

(generalized urns models) or decreases (SSR models) with time. We leveraged

the theory of stochastic processes. and Markov chains, which allowed us to ap-

ply the Perron-Frobenius theorem to the models. Finally,as the main result of

our theoretical mathematical approach, we introduced a brand new population

dynamics model that gives a uni�ed picture of the SSR processes, being able to

reproduce their behaviour on the full range of exponents. Such new model is of

outstanding importance because it uni�es three di�erent processes, de�ned and

treated di�erently in literature, in a unique elegant framework.

We followed this �rst theoretical analysis with a quantitative study, where we

analyzed a corpus of texts and related some of their features to the varying local

exponent of the word FR. We constructed a network of word adjacency where

word A is connected with a direct link to word B if word A precedes word B. In

order to have a minimal explanation of the existence of the double slope in the

FR distribution of words, we conjectured that the network would have a topolog-

ical structure resembling a 'daisy', i.e. a structure with a central part and some

external petals. In fact, a daisy structure of the graph would imply that the

change in slope of the FR is related to some features of the human knowledge.

We conjecture that the knowledge of everyone is subdivided into a component of

base notions shared by the whole population and a sectoral component depend-

ing on the individual that deals with more specialized topics. Since the words

that refer to the base knowledge are generally in common with any context they

are evenly used in any dissertation. As a consequence, we expect to �nd them

in the inner component of the daisy. On the other hand, since the more speci�c

words have the opposite behaviour we expect to �nd them in the outer part, ag-

gregated in petals on the basis of the topic they deal with. Being more general,
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we think that the words that populate the inner part of the daisy structure are

used more frequently in the language than the speci�c words. This hypothesis

leads us to conjecture that the inner part of the structure of the network will be

populated by the words of the �rst slope of the FR and the speci�c words of the

petals would be the ones that characterize the second slope.

Note that a reshu�ing of the texts is irrelevant for the FR while the structure of

the network, being based on the order of words, will be a�ected by it. The topo-

logical structure of the network is in�uenced by both the order and the frequency

of words, so that in such a network one has two layers: a �rst weak one related

to the order of words and a second strong one related only to their frequency. A

shu�e of the texts will a�ect the �rst layer but not the second.

Since the considered graph is of high order and size so that its thorough structural

analysis is computationally infeasible, we devised a simple and novel method to

indirectly understand whether a daisy-like structure is actually present. This

method relies on the study of reciprocal links and is based on the assumption

that a good indicator of the density of links is the length of loops. In other words,

the more a region of the network has dense links, the shorter the loops are.

Initially, we tried to check whether the assumption of a correlation between the

topological structure of the graph and the FR of the word is founded. We de-

�ned some distances and investigated the structure of the network with respect

to those measures. At �rst, we just used the plain topological distance, then

we de�ned a new one that additionally considered the number of occurrences of

the links. Finally, we de�ned a third measure that also took into account the

positioning of the words in the sentences. As a result we found out that the more

detailed the distance was the more it seemed to be correlated with the FR of

the words. Hence this �rst evidence seems to con�rm the assumption that the

topology of the network is related to the FR of the words of the texts, despite

its invariance to reshu�ing.

Subsequently, we applied some centrality measures to the network. This kind of

measures gives an indication of the importance of the nodes in the graph. Since

we were interested in the topology of the network, we performed only the cen-
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trality measures that were in some ways related to the density of the links. More

in detail, for our study we used three di�erent measures each based on a di�erent

distance. Accordingly with the topological study, we found that the more re�ned

the centrality measure was the more it seemed to be correlated to the change in

slope of the FR. Worth noting, the centrality measure that took into account the

number of occurrences of the links seemed to outline two di�erent components

of the network. In other words, also these results seem to be consistent with

the conjecture that the structure of the network is related to the frequency of

the words. More in particular, it seems that the density of the links naturally

outlines a structure of the network divided in components.

Inspired by this result, we decided to de�ne some components of the network

on the basis of the density of their links. As already mentioned, this division is

based on a completely new way of quantifying the density of links and leads to

some interesting results. In fact, studying the composition of the components,

we found out that they are di�erently populated frequency-wise. More in detail,

we observed that some components are populated only by words that belong

to the second slope of the FR while others are inhabited by words more evenly

distributed. This evidence outlines that the composition of some of the compo-

nents is related to the FR of the words, hence the structure of the graph could

be associated with the FR. This means that the daisy structure hypothesis could

be founded.

To check the hypothesis of a strong structure of the network based only on the

frequency of words and not on their order we performed the same analysis on

the shu�ed network, where the word adjacencies are determined after shu�ing

all the words in the texts. In particular, we found that the IN and OUT compo-

nents, de�ned as the components that have the function of connecting the dense

part of the network with the outer part, changed their statistical composition

while the other did not. This evidence outlines that the composition of some of

the components is related to the FR of the words, while the IN and OUT are

also related to the order of the words. Therefore the IN and OUT components

are probably related to the weak structure of the network, while the others may
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be related to the strong one.

Concluding, our thesis dealt with the FR in the context of linguistics. We ad-

dressed this problem because its study could reveal some hidden properties of the

human mind and deepen our understanding of the structure of language. We per-

formed the analysis of this problem with both a theoretical and an experimental

approach. With regard to the theoretical study, we formalized some models that

reproduce power-laws and showed that stochastic processes and Markov chains

are powerful tools for the analysis of those models. On the quantitative exper-

imental side, we built a network of word adjacencies and found some evidence

that led us to think that its topological features are related to the FR of the

words. In addition to this, we outlined with a novel method some components

of the network that seem to con�rm its hypothesized daisy structure. This is an

important result because it means that the double slope of the FR is related to

the structure and the limits of the human mind. It is a completely new approach

to the study of the change in slope of the FR and it could be deepened in future.

For example it would be interesting to analyze in the same way a larger corpus

of texts and to build a model that represents the network and its properties. In

the context of quantitative linguistics this study could lead to a development in

the �eld of text mining and analysis: from the daisy structure of the network it

is possible to infer the topics that are addressed in the text, paving the way for

more modern techniques of text mining.
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