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Abstract

In this work we study a simplified version of the path integral for a particle on a sphere,

and more generally on maximally symmetric spaces, in the case of N = 2 supersymme-

tries on the worldline.

This quantum mechanics is generically that of a nonlinear sigma model in one dimension

with two supersymmetries (N = 2 supersymmetric quantum mechanics), and it is mostly

used for describing spin 1 fields and p-forms in first quantization. Here, we conjecture a

simplified path integral defined in terms of a linear sigma model, rather than a nonlinear

one. The use of a quadratic kinetic term in the bosonic part of the particle action should

be allowed by the use of Riemann normal coordinates, while a scalar effective potential

is expected to reproduce the effects of the curvature. Such simplifications have already

been proven to be possible for the cases of N = 0 and N = 1 supersymmetric quantum

mechanics.

As a particular application, we employ our construction to give a simplified worldline

representation of the one-loop effective action of gauge p-forms on maximally symmet-

ric spaces. We use it to compute the first three Seeley-DeWitt coefficients, denoted by

ap+1(d, p), namely a1(2, 0), a2(4, 1) and a3(6, 2), that appear in the calculation of the

type-A trace anomalies of conformally invariant p-form gauge potentials in d = 2p + 2

dimensions.

The simplified model describes correctly the first two coefficients, while it seems to fail

to reproduce the third one. One possible reason could be that the model is based on a

conjecture about the effective potential that has been oversimplified in our analysis.

Future work could improve our construction, in order to give a correct description to all

orders, or alternatively disprove the possibility of having such a simplification in the full

N = 2 quantum mechanics.





Sommario

In questo lavoro di tesi si è studiata una versione semplificata del path integral per una

particella su una sfera e, in generale, su spazi massimamente simmetrici, in presenza di

supersimmetria (SUSY N = 2) in un approccio di tipo “wordline”. La meccanica quan-

tistica è la stessa di un modello sigma non lineare in una dimensione con due cariche

di supersimmetria ed è principalmente usata nella descrizione di campi di spin 1 e, in

generale, di p-forme in prima quantizzazione.

La congettura alla base di questo lavoro consiste nel definire il path integral in termini

di un modello sigma lineare. L’utilizzo di una metrica piatta nel termine cinetico nella

parte bosonica dell’azione è reso possibile dall’utilizzo di un particolare sistema di co-

ordinate, dette coordinate normali di Riemann, mentre ci si aspetta che gli effetti della

curvatura dello spazio siano riprodotti da un potenziale scalare effettivo.

Questa semplificazione è già stata testata, e la sua validità verificata, nei casi di super-

simmetria con N = 0 e N = 1.

Questa costruzione è stata applicata per rappresentare in maniera semplificata l’azione

effettiva one-loop di p-forme su spazi a massima simmetria ed è stata utilizzata per cal-

colare i primi tre coefficienti di Seeley-DeWitt, indicati con ap+1(d, p) (a1(2, 0), a2(4, 1)

e a3(6, 2)), i quali compaiono nel calcolo delle anomalie di traccia di tipo A per p-forme

in d = 2p+ 2 dimensioni.

Il modello semplificato descrive correttamente i primi due coefficienti, mentre sembra

non riprodurre il terzo. Una possibile spiegazione consiste nel fatto che la congettura sul

potenziale effettivo potrebbe essere non del tutto corretta nella nostra analisi.

Possibili sviluppi futuri potrebbero essere volti a migliorare questo modello, per rag-

giungere una corretta descrizione a tutti gli ordini perturbativi, oppure in alternativa,

escludere la possibilità di applicare questo approccio alla meccanica supersimmetrica con

N = 2.
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Introduction

Quantum Field Theory provides the language that best reconciles quantum mechanics

and special relativity (QED, Standard Model, etc..). The worldline formalism is a first

quantized approach: coordinates of each relativistic “particle” are quantized. It is an

old formalism. In fact, in “Mathematical Formulation of the Quantum Theory of Elec-

tromagnetic Interaction” (1950) R.P. Feynman [1] showed a description, in Lagrangian

Quantum Mechanical form, of particles satisfying the Klein-Gordon equation. Such a

description involved the use of an extra parameter analogous to proper time to describe

the trajectory of the particle in four dimensions. In the appendix of that paper Feynman

wrote “The formulation given here [...] is given only for its own interest as an alternative

to the formulation of second quantization.”

The worldline formalism has been used in many contests, where it appears to be simpler

than standard QFT Feynman rules, producing efficient tools for perturbative computa-

tions of Feynman diagrams of standard quantum field theories [2].

At the quantum mechanical level supersymmetry appears in worldline models for par-

ticles with spin. Supersymmetry is a particular symmetry which relates bosons and

fermions. It is largely used to conjecture extensions of the Standard Model for the de-

scription of the elementary particles.

Recently, also gravitationally interacting field theories have been discussed in this frame-

work by considering the path integral quantization of worldlines of particles of spin 0,

1/2 and 1 (p-forms, more generally) embedded in a curved space.

When the path integral formulation of quantum mechanics [3] is applied to particles

on curved background, it implies some faintness that are the analogue of the ordering

ambiguities of canonical quantization. In order make sense of the path integral, at least

perturbatively, one needs to specify a regularization scheme.

The action of a nonrelativistic particle takes the form of a nonlinear sigma model in one

dimension and identifies a super-renormalizable one-dimensional quantum field theory.
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It can be treated by choosing a regularization scheme that produces a corresponding

counterterms, the latter being needed to match the renormalization conditions, i.e. to

fix uniquely the theory under study.

While several regularization schemes have been worked out and tested [4], recently a

simplified version of the path integral on maximally symmetric spaces (MSS) has been

constructed [5]. It realizes an old issue [6] which suggests a peculiar use of Riemann

normal coordinates (RNC).

It assumes that in such a coordinate system an auxiliary flat metric can be used in the

kinetic terms, while a suitable effective potential is supposed to reproduce the effects of

the curvature. This construction turns the non linear sigma-model into a linear one.

The simplifications expected are rather interesting and motivate a further investigation

of this issue. If the addition of a effective scalar potential to a kinetic term with a flat

metric works for MSS, its validity can’t be proved on arbitrary geometries, at this stage.

By using Riemann normal coordinates on MSS, the Schrödinger equation (the heat equa-

tion in our euclidean convention) for the transition amplitude can be simplified, and

this gives us a corresponding simplified version on the path integral that generates its

solutions. This works in the cases of N = 0 and N = 1 supersymmetric quantum me-

chanics [7, 8], which are relevant in the first quantization of particles of spin 0 and 1/2.

The aim of this work is to extend this approach to N = 2 supersymmetric quantum

mechanics, so that the resulting path integral can be used to describe p-forms and,

in particular, spin 1 fields in first quantization. While a direct approach through the

Schrödinger equation seems unmanageable, we have tried to construct the simplified

path integral by conjecturing the simplified version with a linear sigma model, and fix-

ing the ensuing effective potential to reproduce the leading terms of the path integral.

The path integral for p-forms will be studied by making a perturbative expansion in the

proper time β. In particular, we compute the first few Seeley-DeWitt coefficients for a

p-form in arbitrary dimensions by considering the transition amplitude for the N = 2

quantum mechanics at coinciding points, as needed for identifying the one-loop effective

action of p-forms through worldlines.

These Seeley-DeWitt coefficients can be related to the type-A trace anomalies for p-forms

and we check if they reproduce known results.

Our construction of the simplified path integral works only at the first few orders and

this will have to be improved in future extensions.
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Thus, in chapter 1 we introduce the path integral formalism for a particle on a curved

space, discussing the nonlinear sigma model and the simplification in terms of a linear

one. Riemann normal coordinates are here introduced. In chapter 2 we discuss the

N = 1 supersymmetric version and related computation of transition amplitude and

trace anomalies for spin 1/2 relativistic particles. In chapter 3 we try to extend the

simplified construction to the case N = 2 by computing the transition amplitude up

to order β3 and checking if the first three Seeley-DeWitt coefficients reproduce known

results. This coefficients are related to the type-A trace anomalies of p-forms.
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Chapter 1

Particles on curved spaces

In this chapter we start from the path integral description of a scalar particle on a curved

space, based on a nonlinear sigma model, and we will treat the different regularization

schemes that have been tested (time slicing, mode and dimensional regularization). Then

we will consider a simplified path integral on a maximally symmetric space, as for ex-

ample a sphere, by making use of the Riemann normal coordinates that allow us to turn

the nonlinear sigma model into a linear one. At the end, we will show how to compute

the transition amplitude and the type-A trace anomalies for the scalar field.

1.1 A nonlinear sigma model

A nonrelativistic particle of unit mass in a curved d-dimensional space has a lagrangian

containing only the kinetic term

L(x, ẋ) =
1

2
gij(x)ẋiẋj, (1.1)

where gij(x) is the metric in an arbitrary coordinate system. It is the action of a nonlinear

sigma model in one dimension, and the corresponding equations of motion are written in

terms of the affine parameter t, the time used in the definition of the velocity ẋi = dxi

dt
.

The corresponding Hamiltonian reads

H(x, p) =
1

2
gij(x)pipj (1.2)

where pi are the momenta conjugated to xi. Upon canonical quantization it carries or-

dering ambiguities, which consist in terms containing one or two derivatives acting on
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the metric. In the coordinate representation the hermitian momentum acting on a scalar

wave function takes the form pi = −ig− 1
4∂ig

1
4 . Further details may be found in the

book [4].

These ambiguities are greatly reduced by requiring background general coordinate in-

variance. Since the only tensor that can be constructed with one and two derivative on

the metric is the curvature tensor, the most general diffeomorphism invariant quantum

hamiltonian that can be constructed reads

Ĥ = −1

2
∇2 +

ξ

2
R (1.3)

where ∇2 is the covariant laplacian acting on scalar wave functions, and ξ is an arbitrary

coupling to the scalar curvature R (defined to be positive on a sphere) that parametrizes

remaining ordering ambiguities. The value ξ = 0 defines the minimal coupling, while the

value ξ = d−2
4(d−1)

is the conformally invariant coupling in d dimensions.

For definiteness let us review the theory with the minimal coupling ξ = 0. Other values

can be obtained by simply adding a scalar potential V = ξ
2
R. The transition amplitude

in euclidean time β (the heat kernel)

K(x, x′; β) ≡ 〈x|e−βĤ(x̂,p̂)|x′〉 (1.4)

contains the covariant hamiltonian

Ĥ(x̂, p̂) =
1

2
g−

1
4 (x̂)p̂ig

ij(x̂)g
1
2 (x̂)p̂jg

− 1
4 (x̂). (1.5)

We choose position eigenstates normalized as scalars, x̂|x〉 = xi|x〉,〈x|x′〉 = δ(d)(x−x′)√
g(x)

,

1 =
∫
ddx
√
g(x)|x〉〈x|, so the amplitude K(x, x′; β) is a biscalar.

It solves the Schrödinger equation in euclidean time (heat equation)

− ∂

∂β
K(x, x′; β) = −1

2
∇2
xK(x, x′; β) (1.6)

and satisfies the boundary conditions at β → 0

K(x, x′; 0) =
δ(d)(x− x′)√

g(x)
. (1.7)
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In (1.6) ∇2
x indicates the covariant scalar laplacian acting on coordinates x.

The transition amplitude K(x, x′; β) can be given a path integral representation.

1.2 Regularization schemes

Using different regularization schemes the action acquires finite and different countert-

erms. Let’s see some regularization schemes.

1.2.1 Time slicing regularization

With a Weyl reordering of the quantum Hamiltonian Ĥ(x̂, p̂) one can derive a discretized

phase-space path integral containing the classical phase-space action suitably discretized

by the midpoint rule [9]. The action acquires a finite counterterm VTS of quantum origin,

arising from the Weyl reordering of the specific hamiltonian in (1.5), originally performed

in [10] (the subscript TS reminds of the time slicing discretization of the time variable).

The perturbative evaluation of the phase space path integral can be performed directly

in the continuum limit [11] ∫
DxDp e−S[x,p] (1.8)

with the phase-space euclidean action taking the form

S[x, p] =

∫ β

0

dt(−ipiẋi +H(x, p))

H(x, p) =
1

2
gij(x)pipj + VTS(x)

VTS(x) = −1

8
R(x) +

1

8
gij(x)Γlik(x)Γkjl(x). (1.9)

To generate the amplitude K(x, x′; β) the paths x(t) must satisfy the boundary condi-

tions x(0) = x′ and x(β) = x, while the paths p(t) are unconstrained. We recall that

perturbative corrections are finite in phase space. The presence of the noncovariant part

of the counterterm VTS corrects the noncovariance of the midpoint discretization, and

it ensures the covariance of the final result. These noncovariant counterterms were also

derived in [12] by considering point transformations (i.e arbitrary changes of coordinates)

in flat space.

The definition of the corresponding path integral in configuration space carries more

subtle problems. The classical action takes the form of a non linear sigma model in one
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dimension

S[x] =

∫ β

0

dt
1

2
gij(x)ẋiẋj (1.10)

and power counting indicates that, in a perturbative expansion about flat space, it is

a super-renormalizable model, with superficial degree of divergence D = 2 − L where

L counts the number of loop [4]. Thus, considering quantum mechanics as a particular

QFT in one euclidean dimension, one can find possible divergences at one- and two-loops.

Therefore, just like in generic QFTs, one must define a regularization scheme, needed to

cancel divergences, and a finite part, needed to match the renormalization conditions. In

the present case the counterterms are finite if one includes the local terms arising from

the general coordinate invariant path integral measure.

Three well-defined regularization schemes have been studied in the literature, required

by the effort of computing QFT trace anomalies with quantum mechanical path integrals

[13, 14]. The latter extended to trace anomalies the quantum mechanical method used

for chiral anomalies in [15,16].

To recall the various regularization schemes let us first notice that in configuration space

the formally covariant measure can be related to a translational invariant measure by

using ghost fields ai,bi and ci à la Faddeev-Popov

Dx =
∏

0<t<β

ddx(t)
√
g(x(t)) =

∏
0<t<β

ddx(t)

∫
DaDbDc e−Sgh[x,a,b,c] (1.11)

where

Sgh[x, a, b, c, d] =

∫ β

0

dt
1

2
gij(x)(aiaj + bicj). (1.12)

Considering ai bosonic variable and bi,ci fermionic variables allows to reproduce the

factor g(x(t))√
g(x(t))

=
√
g(x(t)) in the measure. By Dx,Da,Db and Dc we indicate the

translational invariant measure, useful for generating the perturbative expansion (e.g

Dx =
∏

0<t<β d
dx(t), and so on). Thus, the path integral for the nonlinear sigma model

in configuration space can be written as∫
DxDaDbDc e−S[x,a,b,c] (1.13)
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with the full action taking the form

S[x, a, b, c, d] =

∫ β

0

dt

(
1

2
gij(x)(ẋiẋj + aiaj + bicj) + VCT

)
. (1.14)

and with VCT is the counterterm associated to the chosen regularization. To generate

the amplitude K(x, x′; β) the paths x(t) must of course satisfy the boundary conditions

x(0) = x′ and x(β) = x.

The time slicing regularization (TS) in configuration space was studied in [17, 18], by

deriving it from the phase space path integral, and studying carefully the continuum

limit of the propagators together with the rules that must be used in evaluating their

products. Recalling that the perturbative propagators are distributions, how to multiply

them and their derivative together is the problem one faces in regulating the perturbative

expression. This regularization leads to the insertion of the counterterm VTS in (1.9).

1.2.2 Mode regularization

Mode regularization (MR) was already applied in curved space in [13,14]. The complete

counterterm was identified in [19] and arises from the necessity of addressing mismatches

originally found between TS and MR. Those mismatches disappear with the correct

counterterm

VMR = −1

8
R− 1

24
gijg

klgmnΓikmΓjln. (1.15)

The rule how to define the products of distributions in this regularization scheme follows

from the expansion of the quantum fluctuations in a Fourier series truncated by a cut-off,

which eventually is removed in the continuum limit. Including the vertices originating

from the counterterm produces the covariant final answer.

1.2.3 Dimensional regularization

Finally, dimensional regularization (DR) was introduced in the quantum mechanical

context in [20–22]. It needs the counterterm

VDR = −1

8
R (1.16)

which has the useful property of being covariant.
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All these regularization schemes have been extensively tested and compared, see e.g

[23,24]. Extensions to supersymmetric models have been recently discussed again in [25],

where the counterterms in all the previous regularization schemes were identified for the

supersymmetric nonlinear sigma model with N supersymmetries at arbitrary N . Addi-

tional details may be found in the book [4].

The case of trace anomalies provided a precise observable on which one can test and ver-

ify the construction of the quantum mechanical path integrals in curved spaces, clearing

the somewhat confusing status of the subject present in previous literature.

This tool allows more general applications of the path integral, in particular in the first

quantized approach to quantum fields [26] coupled to gravitational background, such as

the worldline description of field of spin 0,1/2 and 1 coupled to gravity [27–30], and many

more.

1.3 A linear sigma model

In the previous sections we have reviewed the quantum mechanical path integral for

a nonlinear sigma model, that describes a particle moving in a curved space by using

arbitrary coordinates. In this section we wish to take up in a critical way an old proposal,

put forward by Guven in [6], of constructing the path integral in curved spaces by

using Riemann normal coordinates. The proposal assumes that in Riemann normal

coordinates (RNC) an auxiliary flat metric can be used in the kinetic term, while an

effective potential reproduces the effects of the curved space. This construction aims at

transforming the original nonlinear sigma model into a linear one. If correct, it carries

several simplifications, making perturbative calculations simpler and more efficient. It

may also improve its use in the worldline applications mentioned earlier. Correctness

has been proved for the N = 0 and N = 1 SUSY models. The case N = 2 is studied in

this thesis.

1.3.1 Geometry of maximally symmetric spaces and Riemann

normal coordinates

As a preliminary, we discuss the geometry of maximally symmetric spaces in Riemann

normal coordinates (RNC), which will be used extensively later on.
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On maximally symmetric spaces the Riemann tensor is related to the metric tensor by

Rmnab = M2(gmagnb − gmbgna) (1.17)

where M2 = 1/a2 is a constant that can be either positive for a sphere of radius a, nega-

tive for a real hyperbolic space, or vanishing for a flat space. For simplicity we consider

at first spheres, as real hyperbolic spaces can be obtained by analytic continuation.

The Ricci tensor are then defined by

Rmn = Ram
m
n = M2(d− 1)gmn

R = Rm
m = M2(d− 1)d (1.18)

and the constant M2 is related to the constant Ricci scalar R by

M2 =
R

(d− 1)d
. (1.19)

We want to use RNC, where the metric can be expressed as

gij(x) = δij + f(r)Pij

= δij +
∞∑
l=1

clM
2l(−1)l(x2)lPij,

(1.20)

where xi are the RNC centered at a point (the origin), Pij is a projector given by

Pij = δij − x̂ix̂j, x̂i =
xi

r
, r =

√
δijxixj, (1.21)

and

cl =
1

2

4l+1

(2l + 2)!
. (1.22)

The series can be summed up to give

f(r) =
1− 2(Mr)2 − cos(2Mr)

2(Mr)2
. (1.23)

The function f(r) does not have poles and is even in r and, because of the projector Pij,

one has the equality r2 = ~x2 = δijx
ixj = gij(x)xixj.
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The inverse metric gij(x) and metric determinant g(x) are given by

gij = δij + h(r)P ij, g(x) = (1 + f(r))d−1, (1.24)

where

h(r) = − f(r)

1 + f(r)
. (1.25)

On the right hand side of these formulae indices are raised and lowered by the flat metric

δij.

For completeness, we discuss the case of real hyperbolic spaces as well. Now the sectional

curvature is negative, M2 < 0. It can be obtained from the previous case by the analytic

continuation M → i|M |, with the imaginary unit i giving rise to the negative sign of the

sectional curvature, and |M | =
√
−M2. Performing this analytic continuation in (1.20)

we find that in the sum the minus from (−1)l get canceled

gij = δij +
∞∑
l=1

cl|M |2l(x2)lPij = δij + f(x)Pij, (1.26)

and the sum now converges to the function

f(r) =
−1− 2(|M |r)2 + cosh(2|M |r)

2(|M |r)2
. (1.27)

Finally the function f(r) vanishes in the flat space case, where Riemann normal coordi-

nates are just the standard cartesian coordinates. It may also be obtained as a smooth

limit of the curved cases, as f(r)→ 0 for M → 0.

This metric in (1.20) can be generated by the following choice of vielbein

eai (x) = δai + l(r)P a
i (x) (1.28)

where xa = δai x
i and

l(r) = −1 +
√

1 + f(r) = −1 +
sin(Mr)

Mr
. (1.29)

A priori, there are two independent solutions l± = −1 ±
√

1 + f(r) of the quadratic

equation that follows from gij = ηabe
a
i e
b
j. However, only with the upper solution does the

vielbein reduce to the flat vielbein when M2 → 0.
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The inverse vielbein reads

eai(x) = δai +

(
−1 +

1√
1 + f(r)

)
P ai(x). (1.30)

Thus, by using the relation

ωi
ab(x) =

1

2
eaj(∂ie

b
j − ∂jebi)−

1

2
ebj(∂ie

a
j − ∂jeai )−

1

2
ecie

ajebk(∂jeck − ∂kecj) (1.31)

one can find that the associated spin connection is given by

ωi
ab(x) = Ω(r)

1

2
xj(δaj δ

b
i − δbjδai ), (1.32)

with

Ω(r) = −2

r

(
l′(r) +

l(r)

r

)
= 2M2 1− cos(Mr)

(Mr)2
, (1.33)

where the prime denotes the derivative with respect to the radial coordinate r. Equiva-

lently we can write the spin connection in the form

ωi
ab(x) =

1

M2
Ω(r)

1

2
xjRij

ab(0). (1.34)

where the prefactor reads

1

M2
Ω(r) = 2

1− cos(Mr)

(Mr)2
=
∞∑
n=0

2(−1)n

(2n+ 2)!
(Mr)2n

= 1− (Mr)2

12
+

(Mr)4

360
− (Mr)6

20160
+ ... (1.35)

and a power of M2 is absorbed by Rab
ij (0). Note that the vielbein (1.28) with (1.29) and

the spin connection (1.34) satisfy the Fock-Schwinger gauge conditions

eai (x)xi = δai x
i

xiωi
ab(x) = 0. (1.36)

1.3.2 Simplified path integral in maximally symmetric spaces

We wish to compute the path integral in RNC using the linear sigma model of (1.1) and

considering maximally symmetric spaces in order to obtain the transition amplitude at
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coinciding points K(x, x′; β).

Let us review the considerations put forward in [6]. First of all it is convenient to consider

the transition amplitude as a bidensity by defining

K(x, x′; β) = g
1
4 (x)K(x, x′; β)g

1
4 (x′) (1.37)

so that, from (1.6), K is seen to satisfy the equation

− ∂

∂β
K(x, x′; β) = −1

2
g

1
4 (x)∇2

xg
− 1

4 (x)K(x, x′; β) (1.38)

with the boundary condition

K(x, x′; 0) = δ(d)(x− x′) (1.39)

where ∇2
x is the scalar laplacian ∇2 = 1√

g
∂i
√
ggij∂j acting on the x coordinates, with

√
g =

√
| det(g)|.

By direct computation the differential operator appearing in the right hand side of (1.38)

can be rewritten as

−1

2
g

1
4∇2g−

1
4 = −1

2
∂ig

ij∂j + V0 (1.40)

where derivatives act through and with the effective potential given by

V0 = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4 (1.41)

where all derivatives now stop after acting on the last function. The heat equation (1.6)

now reads more explicitly as

− ∂

∂β
K(x, x′; β) =

(
−1

2
gij∂i∂j + V0(x)

)
K(x, x′; β) (1.42)

The Lorentz invariance (rotational invariance in euclidean conventions) of the momentum-

space representation of K written in Riemann normal coordinates implies that the gij in

the ∂ig
ij∂j operator of (1.40) can be replaced by the constant δij, as seen in [31]. Indeed,

in the momentum-space representation of K previously studied in [32] by using Riemann

normal coordinates, it was found that in an adiabatic expansion of K the first few terms

depended on certain scalar functions, which were functions of δijx
ixj only. However it

is not obvious why such a property should hold to all orders. In a curved space Lorentz
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invariance obviously cannot hold, for example scalar terms proportional to Rijx
ixj may

also arise (we denote by Rij the Ricci tensor evaluated at the origin of the Riemann

coordinates and by xi the Riemann normal coordinates themselves).

Let’s consider the euclidean Schrödinger equation

− ∂

∂β
K(x, x′; β) =

(
−1

2
δij∂i∂j + V0(x)

)
K(x, x′; β). (1.43)

The heat kernel equation (1.43) contains now an hamiltonian operator

H = −1

2
δij∂i∂j + V0(x) (1.44)

which is interpreted as that of a particle on a flat space (in cartesian coordinates) inter-

acting with an effective potential V0 of quantum origin (in fact, it would be proportional

to ~2 in arbitrary units). To be sure that the replacement of gij(x) with δij is valid, one

must show that (
∂ig

ij(x)∂j − δij∂i∂j
)
K(x, x′; β) = 0. (1.45)

where x′ = 0 is the chosen origin of RNC. Using (1.21) and (1.24) we find that the

equation that we must verify takes the form(
h(r)P ij(x)∂i∂j + ∂i(h(r)P ij(x))∂j

)
K(x, 0; β) = 0, (1.46)

where the projector P ij and the function h(r) are given by (1.21) and (1.25) respectively.

The function h(r) is a function of only r2 = δijx
ixj and it is even in r =

√
δijxixj. This

is a consequence of the maximal symmetry of the sphere. The explicit evaluation of the

derivatives appearing in (1.46) produces (recalling the orthogonality condition P ijxj = 0)

h(r)P ij(x)∂i∂jK(x, 0; β) = 2h(x)δijP
ij ∂

∂x2
K(x, 0; β)

= 2(d− 1)h(r)
∂

∂x2
K(x, 0; β), (1.47)

and

∂i(h(r)P ij(x))∂jK(x, 0; β) = −2(d− 1)h(r)
∂

∂x2
K(x, 0; β). (1.48)

The two terms cancel each other out, so that we have indeed verified (1.45) and the

correctness of the heat kernel equation (1.43), that can be solved by a standard path
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integral for our linear sigma model.

1.4 Transition amplitude for a scalar field

The path integral discussed in section 1.1 gives the transition amplitude for a particle

on curved spaces, and one can restrict to maximally symmetric spaces (MSS) such as

spheres. The latter can be used to extract the type-A trace anomalies for scalar fields

(spin 0 particles), as shown in [5].

As we have seen the path integral contains the nonlinear sigma model and must be

regulated carefully. However, on MSS we can introduce a simplification that allows to

turn the nonlinear sigma model into a linear one. This arises at the expense of adding

an effective potential on top of using RNC

K(x, x′; β) ∼
∫ x(β)=x

x(0)=x′
Dx e−S0[x], S0[x] =

∫ β

0

dt

(
1

2
δijẋ

iẋj + V0(x)

)
(1.49)

as follows from (1.44). We wish to evaluate the transition amplitude at coinciding points

x = x′ = 0 (taken to be the origin of the Riemann coordinates) in a perturbative

expansion in terms of the propagation time β. To control the β expansion it is useful to

rescale the time t→ τ = t
β

so that τ ∈ [0, 1] and the action takes the form

S0[x] =

∫ β

0

dt

(
1

2β
δijẋ

iẋj + βV0(x)

)
. (1.50)

V0 is the effective potential given by

V0(x) = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4

=
(d− 1)

8

[
(d− 5)

4

(
f ′(r)

1 + f ′(x)

)2

+
1

1 + f(x)

(
(d− 1)

x
f ′(x) + f ′′(x)

)]
=
d(d− 1)

12
M2 +

(d− 1)(d− 3)

48

(5(Mr)2 − 3 + ((Mr)2 + 3) cos(2Mr))

r2 sin2(Mr)
. (1.51)
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with expansion

V0(x) = −d− d
2

12
+ (d− 1)(d− 3)

(
x2

120
+

x4

756
+

x6

5400
+

x8

41580

+
691x10

232186500
+

x12

2806650
+O(x14)

)
.

(1.52)

1.4.1 Perturbative expansion for a scalar field

The perturbative expansion of the path integral is obtained by setting

S0[x] = Sfree[x] + Sint[x] (1.53)

with

Sfree[x] =
1

β

∫ 1

0

dτ
1

2
δijẋ

iẋj, Sint[x] = β

∫ 1

0

dτV0(x) (1.54)

so that (1.49) reduces to

K(0, 0; β) =
〈e−Sint〉
(2πβ)

d
2

(1.55)

where 〈...〉 denotes normalized correlation function with the free path integral. The

propagator associated to the free kinetic term is given by

〈xi(τ)xj(τ ′)〉 = −βδij∆(τ, τ ′), ∆(τ, τ ′) =
1

2
|τ − τ ′| − 1

2
(τ + τ ′) + ττ ′, (1.56)

The couplings k2l needed for a description of K(0, 0; β) are read off (1.52). Let’s write

them explicitly up to k10 included

k0 = −d(d− 1)

12

k2 =
(d− 1)(d− 3)

120

k4 =
(d− 1)(d− 3)

756

k6 =
(d− 1)(d− 3)

5400

k8 =
(d− 1)(d− 3)

41580

k10 =
691(d− 1)(d− 3)

232186500
. (1.57)
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Thus, by using Wick contractions one finds

K(0, 0; β) =
1

(2πβ)
d
2

exp

[
βR

12
− (βR)2

6!

(d− 3)

d(d− 1)
− (βR)3

9!

16(d− 3)(d+ 2)

d2(d− 1)2

− (βR)4

10!

2(d− 3)(d2 + 20d+ 15)

d3(d− 1)3

+
(βR)5

11!

8(d− 3)(d+ 2)(d2 − 12d− 9)

3d4(d− 1)4

+
(βR)6

13!

8(d− 3)(1623d4 − 716d3 − 65930d2 − 123572d− 60165)

315d5(d− 1)5

+O(β7)

]
.

(1.58)

Computational details will be shown in chapter 3. The exponential in (1.58) can be

expanded to identity the first six heat kernel coefficients (also known as Seeley-DeWitt

coefficients), defined as the coefficients an in the expansion

K(0, 0; β) =
1

(2πβ)
d
2

∑
n

anβ
n . (1.59)

1.4.2 Type-A trace anomaly of a scalar field

A further test of the previous formulas is to use them to compute the type-A trace

anomaly of a conformal scalar field. Trace anomalies characterize conformal field theories.

In fact, the trace of the energy-momentum tensor for conformal fields vanishes at the

classical level but it acquires anomalous terms at the quantum level. These terms depend

on the background geometry of the spacetime which the conformal fields are coupled to,

and they are related to the appropriate Seeley-DeWitt coefficient sitting in the heat

kernel expansion of the associated conformal operator.

A simple way to obtain this relation is to consider the trace anomaly as due to the QFT

path integral measure, so that it is computed by the regulated Jacobian arising from

the Weyl transformation of the QFT path integral measure [33]. For a scalar field the

infinitesimal Weyl transformation δσgmn = σ(x)gmn(x), applied to the one-loop effective

action, yields ∫
ddx
√
g σ(x)〈Tmm(x)〉 = lim

β→0
Tr

{
σe−βR

}
(1.60)



1.4 Transition amplitude for a scalar field 19

where the consistent regulatorR appearing in the exponent is just the conformal operator

associated to the scalar field, and reads

R = −1

2
∇2 +

ξ

2
R. (1.61)

It can be identified as the hamiltonian operator (1.3) for a nonrelativistic particle in

curved space. Therefore, one identifies the trace anomaly in terms of a particle path

integral by

〈Tmm(x)〉 = lim
β→0

K(x, x; β) (1.62)

where the limit picks up just the β-independent term, while divergent terms are removed

by QFT renormalization. This procedure selects the appropriate Seeley-DeWitt coef-

ficient sitting in the expansion of K(x, x′; β). Trace anomalies have been classified

d 〈T µµ〉 〈T µµ〉

2 R
24π

1
12πa

4 − R2

34560π2 − 1
240π2a4

6 R3

21772800π3
5

4032π3a6

8 − 23R4

339880181760π4 − 23
2334560π4a8

10 263R5

2993075712000000π5
263

506880π5a10

12 − 133787R6

1330910037208675123200π6 − 133787
251596800π6a12

Table 1.1: The type-A trace anomaly of a scalar field from [5].

as type-A, type-B and trivial anomalies in [34]. On conformally flat space the type-B

anomalies vanish so only the type-A anomaly survives. It is proportional to the topolog-

ical Euler density, and its coefficient enters the so-called c-theorem of 2 dimensions [35]

and a-theorem of 4 dimensions [36] at fixed points. These theorems capture the irre-

versibility of the renormalization group flow in 2 and 4 dimensions. Their extension

to arbitrary even dimensions has been conjectured, but not proven (see [37] for a more

general conjecture).
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The sphere is a conformally flat space, so we can calculate the type-A anomaly for a

scalar field in arbitrary dimensions using the expansion obtained in the previous section.

Choosing x as the origin of the RNC system we have by definition gmn(x) = δmn, and

〈Tmm(x)〉 = lim
β→0

K(x, x; β) (1.63)

so that expanding (1.58) and picking the β0 term in the chosen dimension d, we obtain

the trace anomalies for a conformal scalar field in d dimensions reported in Table 1.1,

where the second form is written in terms of a2 = 1
M2 = d(d−1)

R
to directly compare with

the results tabulated in [38].

By way of example, let’s compute explicitly the first three Seeley-DeWitt coefficients.

The expansion up to order β3 of (1.58) with the addition of Vξ reads

K(0, 0; β) =
1

(2πβ)
d
2

[
1 +

4− d
24(d− 1)

βR− (d− 3)

720d(d− 1)
(βR)2 +

(4− d)2

576(d− 1)2
(βR)2

+
1

6

(4− d)3

243(d− 1)2
(βR)3 − 16(d− 3)(d+ 2)

9!d2(d− 1)2
(βR)3 − (d− 3)(d− 4)

24 · 720d(d− 1)2
(βR)3 +O(β4)

]
.

(1.64)

Using (1.63) we have

d = 2 → 1

2πβ

2

24
βR =

R

24π
(1.65)

d = 4 → 1

4π2β2

[
−β

2R2

8640

]
= − R2

34560π2
(1.66)

d = 6 → 1

8π3β3

[
− 8

6 · 243 · 125
− 16 · 24

9! · 900
+

6

24 · 720 · 150

]
β3R3 (1.67)

=
R3

8π3

[
− 1

1296000
− 1

850500
+

1

432000

]
=

R3

21772800π3
(1.68)

The comparison is successful, except at d = 12, where the coefficients in Table 1.1 differ

by a number of the order of 10−13. This result is correct since a zeta function approach

employed in [38,39] allows us to reproduce the results shown in Table 1.1.



Chapter 2

Path integral for supersymmetric

quantum mechanics

In the previous chapter we treated the heat equation for a scalar particle on MSS and a

simplified path integral for it, that we used to extract the type-A trace anomalies of a

scalar particle. We now repeat the same procedure with the presence of supersymmetry.

We discuss the case N = 1 studied in [8], which is relevant for the description of a spin

1/2 particle.

2.1 Transition amplitude

Let us discuss the N = 1 supersymmetric version of the particle mechanics, identified by

the euclidean lagrangian

L =
1

2
gij(x)ẋiẋj +

1

2
ψa(ψ̇a + ẋiωiab(x)ψb) (2.1)

where ψa are real Grassmann variables with flat indices, and ωiab is the spin connection

built from the vielbein eai . The fermionic variables ψa are the supersymmetric part-

ners of the coordinates xi. Upon quantization they lead to operators that satisfy the

anticommutation relations

{ψ̂a, ψ̂b} = δab (2.2)

a Clifford algebra which we can either represent by the usual Dirac gamma matrices

(ψ̂a = 1√
2
γa, with {γa, γb} = 2δab), or treat by a fermionic path integral.

The conserved quantum supersymmetric charge of the model is proportional to the Dirac
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operator, and reads

Q̂ = − i√
2
/∇(ω) = − i√

2
γaeia(x)

(
∂i +

1

4
ωiabγ

aγb
)

(2.3)

while the related quantum hamiltonian becomes

Ĥ = Q̂2 = −1

2
/∇2

= −1

2
gij∇i(ω,Γ)∇j(ω) +

1

8
R, (2.4)

where we have indicated the connections present in the various covariant derivatives. All

these operators act on a spinorial wave function (a Dirac spinor).

The heat kernel associated to this hamiltonian

K = e−βĤ (2.5)

has quantum mechanical matrix elements

Kαα′(x, 0; β) = 〈x, α|e−βĤ |0, α′〉 (2.6)

where α,α′ are spinorial indices. In the following we will not show the spinorial indices

explicitly and just remember that K is matrix-valued. Now, from the maximal symmetry

of the space one deduces that the heat kernel K(x, 0; β) can only be a function of x2,

γaγ
a ∼ 1 and δiax

iγa. In addition, as the gamma matrices appear only in even combi-

nations (they are contained quadratically in the spin connections inside the hamiltonian

(2.4)), one finds that the dependence on δiax
iγa arises only through its square

(δiax
iγa)2 = 1x2 (2.7)

which is again proportional to the identity matrix. Thus, the full heat kernel is propor-

tional to the identity, and must be a function of r =
√
δijxixj only,

K(x, 0; β) = 1U(r; β). (2.8)

Now let us analyze the heat equation satisfied by the bidensity

K(x, 0; β) = g
1
4 (x)K(x, 0; β)g

1
4 (0), (2.9)
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(the value g(0) = 1 is actually irrelevant) which is

−∂βK(x, 0; β) = g
1
4 (x)Ĥg−

1
4 (x)K(x, 0; β). (2.10)

By expanding out the expression of the hamiltonian given in equation (2.4), we write

g
1
4 Ĥg−

1
4 = −1

2
g

1
4∇2g−

1
4

− 1

8
(∂iω

i
ab)γ

ab − 1

4
ωiabγ

ab∂i

− 1

32
ωiabω

i
cdγ

abγcd +
1

8
R.

Using the explicit expression of the spin connection (1.34), which satisfies the Fock-

Schwinger gauge (1.36), one can prove that the terms in the second line do not contribute

when applied to K (they give rise to terms proportional to xiωiab ∼ 0 because of the Fock-

Schwinger gauge), while the terms in the third line give expressions proportional to 1.

In particular, we find

− 1

32
ωiabω

i
cdγ

abγcd =
d− 1

8
M2

(
1− cos(Mr)

sin(Mr)

)2

1. (2.11)

Recalling (1.40) we find that a simplified heat equation for the case N = 1 holds

−∂βK(x, 0; β) =

(
−1

2
δij∂i∂j + V 1

2
(x)

)
K(x, 0; β) (2.12)

with

V 1
2
(x) = V0(x) +

d(d− 1)M2

8
+
d− 1

8
M2

(
1− cos(Mr)

sin(Mr)

)2

(2.13)

where the second addendum is just 1
8
R, and V0(x) has given in (1.51). Equations (2.12)

and (2.13) allow to find the following simplified path integral

K(x, 0; β) ∼ 1

∫ x(β)=x

x(0)=0

Dxe−S 1
2

[x]
, S 1

2
[x] =

∫ β

0

dt(
1

2
δijẋ

iẋj + V 1
2
(x)) (2.14)
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with the effective potential V 1
2

is given explicitly as a function of r =
√
δijxixj by

V 1
2
(x) =

d(d− 1)

24
M2 +

(d− 1)(d− 3)

48

(
5(Mr)2 − 3 + ((Mr)2 + 3) cos(2Mr)

)
r2 sin2(Mr)

+
d− 1

8
M2

(
1− cos(Mr)

sin(Mr)

)2

.

(2.15)

Of course, one may reintroduce free worldline fermions ψa to represent the identity with

a Grassmann path integral, so to have the full linear sigma model lagrangian

L =
1

2
δijẋ

iẋj +
1

2
ψaψ̇

a + V 1
2
(x) (2.16)

instead of the original nonlinear sigma model we started with in (2.1).

One could then use antiperiodic boundary conditions on the ψ’s to produce the trace on

the spinor indices, periodic boundary conditions to produce the trace with an insertion

of γ5, or more generally leave open boundary conditions.

The heat kernel remains trivial on the spinor indices (in particular, traces are trivially

computed). This simplified path integral was tested in [8] by computing its perturbative

expansion and used to obtain the type-A trace anomalies of a Dirac field coupled to

gravity in dimensions d ≤ 12.

2.1.1 Perturbative expansion for Dirac field

The short-time perturbative expansion of the kernel (2.14) can be formally written as a

power series in β

K(x, 0; β) = g
1
4 (x)

e−
x2

2β

(2πβ)
d
2

∞∑
n=0

an(x, 0)βn, (2.17)

where an are the Seeley-DeWitt coefficients. In general they are matrix-valued, but as

we have discussed they are proportional to the identity matrix on maximally symmetric

spaces.

As in the previous case, in order to compute perturbatively the expansion we use a

rescaled time τ = t
β
, so that

S 1
2
[x] =

∫ 1

0

dτ

(
1

2β
δijẋ

iẋj + βV 1
2
(x(τ))

)
, (2.18)
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where the dot now indicates derivative with respect to τ . Then we Taylor expand the

potential about the origin of the Riemann coordinates

V 1
2
(x) = M2

∞∑
l=0

k2l(Mr)2l,⇒ S 1
2
[x] =

∫ 1

0

dτ
1

2β
δijẋ

iẋj +
∞∑
l=0

S2l[x] (2.19)

and retain only the relevant “coupling constants” k2l needed to carry out the expansion

at the desired order. Explicitly,

S2l[x] = βM2+2lk2l

∫ 1

0

dτ(δijx
ixj)l. (2.20)

The perturbative expansion can be obtained as seen before. In order to carry out an

expansion say to order βm, one needs to retain couplings up to k2(m−1), so that to reach

order β6 we need the couplings from V 1
2

up to k10

k0 = d(d− 1)

(
− 1

12
+

1

8

)
=
d(d− 1)

24

k2 = (d− 1)

(
(d− 3)

1

120
+

1

32

)
=

(d− 1)(d− 3)

480

k4 = (d− 1)

(
(d− 3)

1

756
+

1

192

)
=

(d− 1)(16d+ 15)

12096

k6 = (d− 1)

(
(d− 3)

1

5400
+

17

23040

)
=

(d− 1)(64d+ 63)

345600

k8 = (d− 1)

(
(d− 3)

1

41580
+

31

322560

)
=

(d− 1)(256d+ 255)

10644480

k10 = (d− 1)

(
(d− 3)

691

232186500
+

691

58060800

)
=

691(d− 1)(1024d+ 1023)

237758976000
(2.21)

For simplicity, we consider the diagonal part of the heat kernel only by setting x = 0,

which is relevant to obtain the trace anomalies or to compute the one-loop effective

action of a Dirac spinor. This involves the following correlators

K(0, 0; β) =
1

(2πβ)
1
2

e−S0 exp

[
− 〈S2〉︸︷︷︸

O(β2)

− 〈S4〉︸︷︷︸
O(β3)

−〈S6〉+
1

2
〈S2

2〉c︸ ︷︷ ︸
O(β4)

−〈S8〉+〈S4S2〉c︸ ︷︷ ︸
O(β5)

−〈S10〉+ 〈S6S2〉c +
1

2
− 〈S2

4〉c −
1

3!
〈S3

2〉c︸ ︷︷ ︸
O(β6)

+O(β7)

]
(2.22)
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where the subscript “c” stands for “connected” correlation functions.

The expression for the kernel (2.22) differs from that obtained in the scalar case only

in the coupling constants, now given by (2.21). Hence, by inserting the new coupling

constants into the expression of the scalar heat kernel we can obtain the final results for

the fermion heat kernel at coinciding points

K(0, 0; β) =
1

(2πβ)
d
2

exp

[
−d(d− 1)

βM2

24
+ d(d− 1)

(
−(βM2)2

6!

4d+ 3

4

− (βM2)3

9!
(d+ 2)(16d+ 15)

− (βM2)4

10!

(16d3 + 257d2 + 555d+ 315)

8

+
(βM2)5

11!

(d+ 2)(64d3 − 333d2 − 1341d− 945)

24

+
(βM2)6

13!

207744d5 + 943595d4 − 2652226d3 − 18403426d2 − 29381262d− 14365890

5040

+O(β7)

)]
(2.23)

which we can write in terms of the constant scalar curvature R. Computational details

will be shown in chapter 3. In this expression the exponential must be expanded, keeping

terms up to order O(β7) excluded. This allows to read off the diagonal coefficients

an(0, 0), with integer n up to n = 6, in order to identify the type-A trace of a Dirac

fermion in various dimensions.

2.1.2 The type-A trace anomalies for a Dirac fermion

In general, the trace anomaly of a Dirac fermion can be related to the transition ampli-

tude of a N = 1 spinning particle in a curved space by

〈Tmm(x)〉QFT = − lim
β→0

TrK(x, x; β), (2.24)

where on the left hand side Tmm(x) is the trace of the stress tensor of the Dirac spinor in a

curved background, obtained from the appropriate Dirac action SD by Tma(x) = 1
e

δSD
δema(x)

where eam(x) is the vielbein of the curved spacetime. The expectation value is performed

in the corresponding quantum field theory. We can view the right hand side as the
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anomalous contribution arising from QFT path integral measure, regulated à la Fujikawa

[33], with the minus sign due to the fermionic measure, as usual, and the trace being the

trace on spinor indices. The regulator corresponds to the square of the Dirac operator,

and is identified with the quantum hamiltonian Ĥ of the N = 1 spinning particle in a

curved space

Ĥ = −1

2
( /∇)2, (2.25)

which appears in the heat kernel at coinciding points K(x, x; β). As in the previous case,

it is understood that the β → 0 limit in (2.24) picks up just the β-independent term,

as divergent terms are removed by the QFT renormalization. This procedure selects the

appropriate heat kernel coefficient an(x, x) sitting in the expansion of K(x, x; β). It may

be interpreted as the contribution to the anomaly of the regularized particle making its

virtual loop, see for example [40], where a Pauli-Villars regularization gives rise to the

Fujikawa regulator used above.

Expanding K(x, x; β) at the required order one can read off the trace anomalies in even

d dimensions (odd dimensions support no anomaly if the space is boundaryless)

〈Tmm(x)〉QFT =
Tr a d

2
(x)

(2π)
d
2

(2.26)

that is, for even d = 2n dimensions, the relevant coefficient is precisely an(x, x). Of

course, one may use Riemann normal coordinates centered at x, so that
√
g(x) = 1 and

K(x, x; β) = K(x, x; β). This formula holds on a generic space. In the present maximally

symmetric case, due to translational invariance, the choice of which point is the origin

of the Riemann coordinates becomes irrelevant. Hence, K(x, x; β) = K(0, 0; β), and the

result obtained in the previous subsection is directly applicable. The trace in (2.26)

reduces to the trace of the identity matrix, and counts the dimension of the spinor space,

2
d
2 for even d dimensions.

This calculations are similar to the one performed in the N = 0 model and they reproduce

again the trace anomalies in d = 2, 4, 6.... Now we report the calculation for the first

three coefficients. Let’s consider the expansion of (2.23) up to order β3

K(0, 0; β) =
1

(2πβ)
d
2

[
1− βR

24
− (βR)2

720

4d+ 3

4d(d− 1)
+

1

2

(βR)2

576

+
(βR)3

24 · 720

(4d+ 3)

4d(d− 1)
− (βR)3

9!
(d+ 2)(16d+ 15)− (βR)3

82944

]
.

(2.27)
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d 〈T µµ〉 〈T µµ〉

2 R
24π

1
12πa

4 − 11R2

34560π2 − 11
240π2a4

6 191R3

108864000π3
191

4032π3a6

8 − 2497R4

339880181760π4 − 2497
34560π4a8

10 14797R5

598615142400000π5
14797

101376π5a10

12 − 92427157R6

1330910037208675123200π6 − 92427157
251596800π6a12

Table 2.1: The type-A trace anomaly of a Dirac spinor in terms of the curvature scalar
R and in terms of the radius a, in various dimensions reported in [8].

The first three coefficients read

d = 2 → − Tr

{
1

2πβ

(
−βR

24

)}
=

R

24π
(2.28)

d = 4 → − Tr

{
1

(2πβ)2

[
− 19

34560
+

1

1152

]
(βR)2

}
= − 11

34560π2
R2 (2.29)

d = 6 → − Tr

{
1

(2πβ)3

[
1

76800
− 1

82944
− 111

40824000

]
(βR)3

}
=

191

108864000π3
R3 (2.30)

The other anomalies obtained from the expansion (2.23) up to order β6 have been re-

ported in Table 2.1. The type-A trace anomaly can also be obtained using the Riemann

zeta-function associated to the differential operator (2.25)

〈Tmm(x)〉QFT = −
Γ(d+1

2
)

2π
d+1
2
ad
ζ /∇2

(0), (2.31)

as discussed in [38,39].



Chapter 3

Path integral for N = 2

supersymmetric quantum mechanics

3.1 Transition amplitude for p-forms

We have considered up to now the worldline path integral for the N = 0 and N = 1

supersymmetric quantum mechanics in maximally symmetric curved spaces, and we have

described a simplified path integral by making use of Riemann normal coordinates.

Now we wish to investigate if this construction can be extended to the N = 2 super-

symmetric quantum mechanics, which is useful for treating the quantum field theory of

spin 1 fields, and more generally of p-forms, in first quantization.

So, we want to study the path integral∫
DXe−S[X;gij ] (3.1)

where X = (xi, ψa, ψ̄a), with xi the bosonic coordinates of a particle on a sphere (or,

more generally, on a maximally symmetric space) and ψa,ψ̄a related fermionic variables

(the N = 2 supersymmetric partners of xi). We denote by i,j... curved indices and by

a,b,... flat indices, i.e. coordinate and frame indices, respectively.

The precise nonlinear sigma model of interest is given by

S[X; gij] =

∫ β

0

dt

(
1

2
gij(x)ẋiẋj + ψ̄a(ψ̇

a + ẋiωi
a
bψ

b)− 1

2
Rabcdψ̄

aψbψ̄cψd
)
, (3.2)

where β is the total propagating euclidean time, gij the metric of the sphere, ωi
a
b the
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spin connection related to the vielbein eai , and Rabcd is the Riemann tensor.

On generic curved spaces the path integral must be regulated carefully. However on

maximally symmetric spaces such as spheres, Riemann normal coordinates may be help-

ful to turn the nonlinear sigma model into a linear one, and possibly find simplifications

as seen in the N = 0 (bosonic) and N = 1 supersymmetric sigma model.

However, a direct study of the transition amplitude shows now that in general it does not

only depend on r2 = δijx
ixj, but there could be more general structures allowed by the

symmetry, such as (xµγ
µ
1 )(xνγ

ν
2 ), where the gamma matrices are two anticommuting set

of gamma matrices realizing the real and imaginary part of the worldline fermions (and

acting on a bispinorial wave function on the first and on the second index, respectively).

Thus, a direct splitting into noninteracting bosonic and fermionic parts does not seem

achievable.

We can still assume that some simplifications will occur in the path integral. The sim-

plest conjecture is to assume a suitable effective potential, that linearizes the kinetic

term of the bosonic part of the sigma model, and test if this ansatz can reproduce the

known results at order β2 given in [29]. This matching leads us to our conjecture, based

on the use of RNC, which consists in introducing an effective potential

V1(x) = V0(x) +
1

8
R = V0(x) +

d(d− 1)M2

8
(3.3)

and a linear sigma model action

S[x, ψ, ψ̄] = Sb[x] + Sf [x, ψ, ψ̄]

Sb[x] =

∫ β

0

dt

(
1

2
δijẋ

iẋj + V1(x)

)
Sf [x, ψ, ψ̄] =

∫ β

0

dt

(
ψ̄a
Dψa

dt
− 1

2
Rabcdψ̄

aψbψ̄cψd
)

(3.4)

where the coupling to the Riemann tensor reduces to

Rabcdψ̄
aψbψ̄cψd = M2(ψ̄aψ

a)2. (3.5)

Thus, the purely bosonic part is semplified to a linear sigma model augmented by the

scalar effective potential V1, while the fermionic part is left untouched, but to be treated

in RNC. The fermionic path integral requires the additional use of a worldline regular-

ization, that we choose to be dimensional regularization (DR). Indeed we find that the
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perturbative expansion reproduces the results in [29], where the nonlinear sigma model

was used to compute the transition amplitude up to order β2. As this matching was at

the basis of our conjecture, a crucial test is to check whether the order β3 is correct.

While we do not know how to check the full transition amplitude at that order, we use

it to see if it correctly reproduces the trace anomaly of a 2-form in 6 dimensions.

3.1.1 Perturbative expansion for p-forms

With our linear sigma model the transition amplitude in RNC is computed by

K(x, η̄, 0, η; β) =

∫ x(β)=x

x(0)=0

Dx
∫ ψ(β)=η̄

ψ(0)=η

DψDψ̄e−S[x,ψ,ψ̄] (3.6)

where the Grassmann variables η and η̄ (not conjugated to each other) label the external

states associated to the fermionic variables (coherent states).

We will not compute it in full generality but content ourselves to compute perturbatively

the transition amplitude at coinciding points (x = x′ = 0) using twisted boundary

conditions on the fermions

K(0, 0; β, φ) =

∫ x(β)=0

x(0)=0

Dx
∫
T

DψDψ̄e−S[x,ψ,ψ̄] (3.7)

where the subscript T denotes the antiperiodic boundary conditions twisted by an angle

φ, that is ψ(β) = −eiφψ(0) and ψ̄(β) = e−iφψ̄(0). This amplitude is enough to study the

one-loop effective action of p-forms, and, in particular, to extract the trace anomalies of

the conformal p-forms in d = 2p+ 2 dimensions. At the same time this calculation offers

a test of the previous construction.

At first, we rescale the time t → τ = t
β

(with the parameter τ ∈ [0, 1]) to control the

perturbative β expansion and the bosonic part of the action, that we denote with Sb[x],

takes the form

Sb[x] =

∫ 1

0

dτ

(
1

2β
δijẋ

iẋj + βV1(x)

)
. (3.8)

From the kinetic term we identify the free propagator

〈xi(τ)xj(τ ′)〉 = −βδij∆(τ, τ ′) (3.9)
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with

∆(τ, τ ′) = (τ − 1)τ ′θ(τ − τ ′) + (τ ′ − 1)τθ(τ ′ − τ) (3.10)

where θ(x) is the step function with θ(0) = 1
2
. The propagator implements the correct

boundary conditions (x(0) = x(1) = 0) and at coinciding points reduces to

∆(τ, τ) = τ 2 − τ. (3.11)

Then, by Wick contractions one computes the correlation functions arising from the

interactions depending on the effective potential V1 and given by

Sb,int = β

∫ 1

0

dτV1(x) =
∞∑
m=0

S2m =
∞∑
m=0

βM2+2mk2m

∫ 1

0

dτ(x2)m, (3.12)

where the coefficients K2m are obtained from the Taylor expansion of the potential V1.

The first few ones are

k0 = d(d− 1)

(
− 1

12
+

1

8

)
=
d(d− 1)

24

k2 = (d− 1)(d− 3)
1

120

k4 = (d− 1)(d− 3)
1

756
(3.13)

which contribute to expansion of the bosonic part of (3.7) to order β3

Kb(0, 0; β) =
e−S0

(2πβ)
d
2

exp

[
− 〈S2〉︸︷︷︸

O(β2)

− 〈S4〉︸︷︷︸
O(β3)

+O(β4)

]
(3.14)

Let’s set M = 1 for simplicity.

At order β there is only a constant term that does not require any Wick contraction

−S0 = −βk0 = −βd(d− 1)

24
(3.15)
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Figure 3.1: Diagram for S2

Figure 3.2: Diagram for S4

At order β2 we have to perform the Wick contraction of bosonic lines in the diagram in

figure 3.1, that gives:

−〈S2〉 = −βk2

∫ 1

0

dτ〈δijxi(τ)xj(τ)〉 = β2k2d

∫ 1

0

dτ∆(τ, τ) = (3.16)

β2d(d− 1)(d− 3)

120

∫ 1

0

dτ(τ 2 − τ)︸ ︷︷ ︸
− 1

6

= −β2d(d− 1)(d− 3)

6!
(3.17)

At order β3 we have to consider the diagram in fig 3.2

−〈S4〉 = −βk4

∫ 1

0

dτ〈δijxi(τ)xj(τ)δlmx
l(τ)xm(τ)〉 (3.18)

= −β3d(d+ 2)k4

∫ 1

0

dτ∆(τ, τ)2 (3.19)

= −β3d(d+ 2)(d− 1)(d− 3)

756

∫ 1

0

dτ(τ 2 − τ)2︸ ︷︷ ︸
1
30

= −16d(d− 1)(d− 3)(d+ 2)

9!

(3.20)

The bosonic transition amplitude reads

Kb(0, 0; β) =
1

(2πβ)
d
2

exp

[
d(d− 1)

(
− β

24
− β2

6!
(d− 3)− β3

9!
16(d− 3)(d+ 2) +O(β4)

)]
.

(3.21)
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Now we consider the part of the action containing the fermionic variables:

Kf (β, φ) =

∫
T
DψDψ̄〈e−Sf [ψ,ψ̄,x]〉. (3.22)

where 〈...〉 denotes averaging on the x variables. Again, we rescale the time t → τ = t
β

to find

Sf [ψ, ψ̄, x] =

∫ 1

0

dτ

[
ψ̄a(ψ̇

a + ẋiωi
a
bψ

b)− β

2
(ψ̄aψ

a)2

]
. (3.23)

From the kinetic term we identify the free fermionic propagator with twisted boundary

conditions

〈ψa(τ)ψ̄b(τ
′)〉 = δab∆f (τ − τ ′, φ) (3.24)

where the function ∆f (x, φ) is given for x ∈ (−1, 1) by

∆f (x, φ) =
1

2 cos φ
2

[
ei
φ
2 θ(x)− e−i

φ
2 θ(−x)

]
(3.25)

with θ(x) the step function. Note that for x 6= 0

∆f (x, φ)∆f (−x, φ) = −1

4
cos2 φ

2
(3.26)

while at coinciding points (τ = τ ′, i.e. x = 0) it takes the regulated value

∆f (0, φ) =
i

2
tan

φ

2
(3.27)

so that

∆2
f (0, φ) =

1

4
tan2 φ

2
= −1

4
cos−2 φ

2
+

1

4
(3.28)

This regulated value is responsible for the counterterm mentioned earlier in construct-

ing the effective potential V1. More details are shown in Appendix A. Then, by Wick

contractions on the diagrams shown in figure 3.2, one computes the correlation functions

〈S4f〉 = −β
2

∫ 1

0

dτ〈ψ̄aψaψ̄bψb〉. (3.29)

and
1

2
〈S2

4f〉c =
β2d(d− 1)

8

[
1

8
cos−4 φ

2
− (d− 1)

4
cos−2 φ

2
tan2 φ

2

]
(3.30)
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Figure 3.3: Diagram for 〈S4f〉

Figure 3.4: Diagram for 〈S2
4f〉c

It is not necessary to compute the non connected correlation function 1
2
〈S2

4f〉nc because

it will arise from the term of order β in the exponential expansion.

Let’s consider now the part of the action containing the spin connection

ẋiωiab(x)ψ̄aψb, (3.31)

We want to compute the correlation function

〈SSC〉 =

∫ 1

0

dτ〈ψ̄aẋiωiab(x)ψb〉. (3.32)

Let’s consider the relations

ωi
ab(x) =

1

M2
Ω(r)

1

2
xjRij

ab(0) (3.33)

and

Ω(x) = −2

r

(
l′(r) +

l(r)

r

)
= 2M2 1− cos(Mr)

(Mr)2
, (3.34)

We can rewrite Ω(x) by Taylor expanding it around the point x = 0 (we set M = 1)

Ω(x) = Ω0(x) + Ω1(x) + ... = 2(
1

2
− 1

24
r2 + ...) = 1− 1

12
r2 + ... (3.35)

Let’s use the first term of the Taylor expansion of Ω(x) in (3.35) and perform the Wick
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contractions between bosonic and fermionic separately. Then, the integral vanishes be-

cause of the antisymmetry of the Riemann tensor. Appendix B.1 shows how to compute

the quadratic contribute of this term by making use of the dimensional regularization,

as shown in [29], that reads

1

2
〈S2

SC〉 = − β2

192
R2
abcd cos−2 φ

2
. (3.36)

At this perturbative order there are other diagrams that involve the interaction of the

spin connection with the bosonic expansion of the potential V1 and with the fermionic

part of the action S4f , but they vanish. Now we put all these results together in the

exponential expansion of the full transition amplitude up to order β2

K(0, 0; β) =

=
(2 cos φ

2
)d

(2πβ)
d
2

[
1− S0 − 〈S2〉 − 〈S4〉 − 〈S4f〉 − 〈SSC〉+

1

2
S2

0 +
1

2
〈S2

SC〉+ 〈S0〉〈S4f〉+O(β3)

]
(3.37)

that reads

K(0, 0; β) =
(2 cos φ

2
)d

(2πβ)
d
2

{
1 + βd(d− 1)

(
1

12
− 1

8
cos−2 φ

2

)
+ β2d(d− 1)

[
5d2 − 7d+ 6

1440
− (d− 2)2

96
cos−2 φ

2
+

(d− 2)(d− 3)

128
cos−4 φ

2

]
+O(β3)

}
.

(3.38)

where the factor (2 cos φ
2
)d comes from the normalization of the fermionic part of the

path integral as shown in [29]. At the orders β and β2 this transition amplitude seems

to check the correctness of the effective potential V1.

Simplified fermionic model (without spin connection)

For computing Kf (β, φ) =
∫
T
DψDψ̄ e−Sf [ψ,ψ̄] we may also use a different action with an

auxiliary bosonic field φ. Rather then

Sf [ψ, ψ̄] =

∫ 1

0

dτ

(
ψ̄aψ̇

a − β

2
(ψ̄aψ

a)2

)
(3.39)
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we consider

Sf [ψ, ψ̄, φ] =

∫ 1

0

dτ

(
ψ̄aψ̇

a +
1

2
φ2 −

√
βφψ̄aψ

a

)
(3.40)

which is classically equivalent (we use M = 1).

At the quantum level we have the propagators

〈φ(τ)φ(τ ′)〉 = δ(τ − τ ′) (3.41)

〈ψa(τ)ψ̄b(τ
′)〉 = δab ∆f (τ − τ ′, φ) (3.42)

where the function ∆f (x, φ) is given for x ∈ (−1, 1) by

∆f (x, φ) =
1

2 cos φ
2

[
ei
φ
2 θ(x)− e−i

φ
2 θ(−x)

]
(3.43)

with θ(x) the step function. Note that for x 6= 0

∆f (x, φ)∆f (−x, φ) = −1

4
cos−2 φ

2
(3.44)

while at coinciding points (τ = τ ′, i.e. x = 0) it takes the regulated value

∆f (0, φ) =
i

2
tan

φ

2
(3.45)

so that

∆2
f (0, φ) = −1

4
tan2 φ

2
= −1

4
cos−2 φ

2
+

1

4
. (3.46)

This regulated value is responsible for the counterterm mentioned earlier in constructing

the effective potential V1.

By Wick contractions one computes perturbatively the transition amplitude

Kf (β, φ) =
(
2 cos

φ

2

)d〈e−Sint〉 (3.47)

where 〈...〉 denotes normalized correlation functions. Using the formulation without the

auxiliary field

Sint = S4f = −β
2

∫ 1

0

dτ ψ̄aψ
aψ̄bψ

b (3.48)



38 Path integral for N = 2 supersymmetric quantum mechanics

and at the leading order one finds

〈e−S4f 〉 = 1− 〈S4f〉+ ... (3.49)

= 1 +
β

2
d(d− 1)∆2

f (0, φ) + ... (3.50)

= 1− β

8
d(d− 1) tan2 φ

2
+ ... (3.51)

= 1− β

8
d(d− 1)

(
cos−2 φ

2
− 1

)
+ ... (3.52)

where we have used the regulated value (3.46) for ∆2
f (0, φ) (maybe one could use a

different regularization). Using the formulation with the auxiliary field we have

Sint = −
√
β

∫ 1

0

dτφψ̄aψ
a (3.53)

and at the leading nonvanishing order

〈e−S4f 〉 = 1− 〈Sint〉+
1

2
〈S2

int〉+ ... (3.54)

= 1 + 0 +
β

2

∫ 1

0

dτ

∫ 1

0

dτ ′ δ(τ − τ ′)
(
d2∆2

f (0, φ)− d∆f (τ − τ ′, φ)∆f (τ
′ − τ, φ)

)
(3.55)

= 1 +
β

2
d(d− 1)∆2

f (0, φ) + ... (3.56)

= 1− β

8
d(d− 1) tan2 φ

2
+ ... (3.57)

= 1− β

8
d(d− 1)

(
cos−2 φ

2
− 1

)
+ ... (3.58)

This reproduces indeed what we have found earlier. This is an alternative set-up that

can be studied in future works.
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Transition amplitude up to order β3

Now let’s extend the computation of the original transition amplitude in (3.7) with the

action (3.2) up to order β3, that includes the following terms:

O(β3)→− 1

3!
(〈S0〉)3 − 〈S4〉+ 〈S0〉〈S2〉 −

1

3!
〈S3

4f〉 −
1

3!
〈S3

SC〉

+ 〈S2〉〈S4f〉 −
1

2
〈S2

SCS4f〉 −
1

2
〈S0〉〈S2

4f〉 −
1

2
〈S0〉〈S2

SC〉.
(3.59)

〈S4〉 is given by (3.20) and by a direct computation one can obtain:

− 1

3!
(〈S0〉)3 = −β

3d3(d− 1)3

3! · 243
(3.60)

〈S0〉〈S2〉 =
β3d2(d− 1)2(d− 3)

17280
(3.61)

〈S2〉〈S4f〉 =
β3d2(d− 1)2(d− 3)

5760

(
cos−2 φ

2
− 1

)
(3.62)

−1

2
〈S0〉〈S2

4f〉 = −β
3d2(d− 1)2

192

[
(d− 2)(d− 3)

16
cos−4 φ

2
− (d− 1)(d− 2)

8
cos−2 φ

2
+
d(d− 1)

16

]
(3.63)

−1

2
〈S0〉〈S2

SC〉 =
β3d2(d− 1)2

2304
cos−2 φ

2
. (3.64)

Let’s consider the contribution of the diagrams with three vertices corresponding to

− 1

3!
〈S3

4f〉 =
β3

3! · 8

∫∫∫
dτdσdξ 〈ψ̄aψaψ̄bψb(τ) ψ̄cψ

cψ̄dψ
d(σ) ψ̄eψ

eψ̄fψ
f (ξ)〉. (3.65)

To compute the correlation function 〈S2nf〉 we have to perform Wick contractions be-

tween n fermions and n antifermions, and it can be done in n! different ways, i.e 2! for

〈S4f〉 and 4! = 24 for 〈S2
4f〉. The latter takes into account non connected (2! · 2! = 4

ways) and connected diagrams (20 ways).

If we consider the contribution of 〈S3
4f〉, we have 6! = 720 possible different ways to con-

tract fermions, taking into account not connected (128 ways) and connected (592 ways)

correlation functions. We are just interested in 5 connected diagrams for 〈S3
4f〉c, that are
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shown in Figure 3.5 and give

(a)

(
β3

8

)
16d(d− 1)3Ia (128)

(b)

(
β3

8

)
24d(d− 1)3Ib (192)

(c)

(
β3

8

)
96d(d− 1)Ic (192)

(d)

(
β3

8

)
8d(d− 1)Id (16)

(e)

(
β3

8

)
(−16d(d− 1)(d− 3))Ie, (128) (3.66)

The computation of the integrals in (3.66) gives:

Ia =

∫∫∫
dτdσdξ∆3(0)∆τσ∆σξ∆ξτ = − 1

64
(cos−6 φ

2
− 2 cos−4 φ

2
+ cos−2 φ

2
)

Ib =

∫∫∫
dτdσdξ∆2(0)∆τσ∆στ∆σξ∆ξσ = − 1

64
(cos−6 φ

2
− cos−4 φ

2
)

Ic =

∫∫∫
dτdσdξ∆(0)∆τσ∆σξ∆ξσ∆σξ∆ξτ = − 1

64
(cos−6 φ

2
− cos−4 φ

2
)

Id =

∫∫∫
dτdσdξ∆τσ∆τσ∆σξ∆σξ∆ξτ∆ξτ = − 1

64
(cos−6 φ

2
− 2 cos−4 φ

2
)

Ie =

∫∫∫
dτdσdξ∆τσ∆στ∆σξ∆ξσ∆ξτ∆τξ = − 1

64
cos−6 φ

2
. (3.67)

where we use, for example, ∆τσ instead of ∆AF (τ − σ). We obtain

− 1

3!
〈S3

4f〉C =

= β3d(d− 1)

[
−5d2 − 12d+ 24

384
cos−6 φ

2
+

7d2 − 14d+ 21

384
cos−4 φ

2
− (d− 1)2

192
cos−2 φ

2

]
.

(3.68)
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(a) (b) (c) (d) (e)

Figure 3.5: Connected fermionic diagrams at three vertices

Not connected diagrams are shown in Figure 3.6 and one can easily compute their con-

tributions:

(a) − β3d3(d− 1)3

3072
cos−6 φ

2

(b)
β3d2(d− 1)3

256

(
cos−6 φ

2
− 2 cos−4 φ

2
+ cos−2 φ

2

)
(c) − β3d2(d− 1)2

512

(
cos−6 φ

2
− cos−4 φ

2

)
(3.69)

If we put together all the contributions in (3.69) we obtain

− 1

3!
〈S3

4f〉NC =− β3d2(d− 1)2

3072

[(
d2 − 13d+ 18

)
cos−6 φ

2

− 3
(
d2 − 9d+ 10

)
cos−4 φ

2
+ 3(d− 4)(d− 1) cos−2 φ

2
− d(d− 1)

]
.

(3.70)

Let’s consider now terms involving the spin connection at order β3. Calculation details

are shown in Appendix B.2 and lead to

−1

2
〈S2

SCS4f〉 = −β
3d(d− 1)

192

(
(d− 1) cos−4 φ

2
− (d− 3) cos−2 φ

2

)
, (3.71)

−1

2
〈S2

SCS4f〉NC =
β3d2(d− 1)2

768

(
cos−4 φ

2
− cos−2 φ

2

)
, (3.72)

and

− 1

3!
〈S3

SC〉 = −β
3d(d− 1)(d− 2)

2880
cos−2 φ

2
. (3.73)
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(a)

(b)

(c)

Figure 3.6: Not connected fermionic diagrams at three vertices

Finally, the transition amplitude at order β3 reads

K(0, 0; β) =
(2 cos φ

2
)d

(2πβ)
d
2

{
1 + βd(d− 1)

(
1

12
− 1

8
cos−2 φ

2

)
+ β2d(d− 1)

[
5d2 − 7d+ 6

1440
− (d− 2)2

96
cos−2 φ

2
+

(d− 2)(d− 3)

128
cos−4 φ

2

]
+ β3d(d− 1)

[
−d

4 − 14d3 + 71d2 − 114d+ 192

3072
cos−6 φ

2

+
2d4 − 24d3 + 106d2 − 156d+ 184

3072
cos−4 φ

2

− 15d4 − 158d3 + 567d2 + 720d+ 928

46080
cos−2 φ

2

− 35d4 + 266d3 − 1181d2 + 880d− 768

2903040

]
+O(β4)

}
.

(3.74)

3.1.2 One-loop effective action for p-forms and trace anomalies

The transition amplitude at coinciding points is a constant (any choice of the origin of

RNC is equivalent on MSS). Denoting K(β, φ) = K(0, 0; β, φ), we represent the one-loop
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effective action of a p-form, as a functional of the metric, by

ΓQFTp [g] =

∫
ddx
√
g

[
−1

2

∫ ∞
0

dβ

β

∫ 2π

0

dφ

2π

eiqφ

(2 cos φ
2
)2
K(β, φ)

]
(3.75)

where q = d
2
− p− 1, as discussed in [29] and reviewed in appendix A. The crucial input

is the integral over the angle φ which implements a projector on the degrees of freedom

of the p-form . One may write 3.75 in the form

ΓQFTp [g] = −1

2

∫ ∞
0

dβ

β
Zp(β) (3.76)

Zp(β) =

∫
ddx
√
g

(2πβ)
d
2

∫ 2π

0

dφ

2π
eiqφ

(
2 cos

φ

2

)d−2

[1 + ...]︸ ︷︷ ︸(
a0+a1β+a2β2+a3β3+...

) (3.77)

where the coefficients an are the Seeley-DeWitt coefficients. They characterize the the-

ory. For example, a1 gives the trace anomaly for a scalar field in two dimensions (with

p = 0) and a2 gives the trace anomaly for a spin 1 field in four dimensions (with p = 1).

Similarly, a3 for p = 2 should give the trace anomaly of a gauge 2-form field Bµν in six

dimensions. On MSS an = bnR
n for certain numbers bn, which we now compute (they

depend on d and p, and are more conveniently denoted by bn(d, p)).

One should check b1(2, 0), b2(4, 1), and b3(6, 2), to see if they reproduce the trace anoma-

lies.

At the end, b1(2, 0) and b3(6, 2) should arise from c coefficients shown in Table 3.1 while

an explicit calculation of b2(4, 1) is reported in [29]. Trace anomalies read

〈
Tmm(x)

〉
= (−1)n+1c2n

E2n

(2π)n
(3.78)

where E2n is the Euler density in 2n dimension, that on 2n-dimensional spheres is given

by

E2n =
(2n)!

(2n(2n− 1))n
Rn (3.79)

and the stress tensor normalized is

Tmn =
2
√
g

δS

δgmn
c . (3.80)



44 Path integral for N = 2 supersymmetric quantum mechanics

So our bn coefficients should be given by

d = 2n (2n+ 1)! c(scalar) (2n+ 1)! c(fermion) (2n+ 1)! c(AT )

2 1
2

1
2

1
2

4 1
12

11
12

124
19

6 5
72

191
72

221
4

Table 3.1: The c coefficients of the type-A trace anomaly of a real conformal scalar,
Dirac fermion, conformal antisymmetric tensor (AT), i.e. (n− 1)-form gauge potential.
We have multiplied them by (2n+ 1)! to make the numbers more readable.

bn =
(2n)!

(2n(2n− 1))n
c2n (3.81)

Using (3.77) we can compute

a1(2, 0) =

∫ 2π

0

dφ

2π
βR

[
1

12
− 1

8
cos−2 φ

2

]
=

1

12
βR

a2(4, 1) =

∫ 2π

0

dφ

2π

(
2 cos

φ

2

)2
β2R

2

12

[
1

64
cos−4 φ

2
− 1

24
cos−2 φ

2
+

29

720

]
=
−31

4320
β2R2

a3(6, 2) =

∫ 2π

0

dφ

2π
β3 R

3

900

(
2 cos

φ

2

)4
[
− 7

64
cos−6 φ

2
+

59

384
cos−4 φ

2
− 5486

23040
cos−2 φ

2
− 2159

241920

]
=

6719

2400 · 7!
β3R3, (3.82)

that give

b1(2, 0) =
1

12

b2(4, 1) = − 31

4320

b3(6, 2) =
6719

2400 · 7!
. (3.83)
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The first two coefficient are correctly reproduced by our model while the third isn’t since

the expected value, which can be extracted from [24], is

b3(6, 2)exp =
221

150 · 7!
. (3.84)

Thus it seems that our ansatz for a simplified path integral for the N = 2 model fails

after the first 2 perturbative orders. Perhaps our assumption have been too naive, or

perhaps one should test other regularization schemes. We plan to test these assumptions

in future works.
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Conclusions

In this work we have studied the worldline path integral formulation for the N = 2

supersymmetric quantum mechanics in curved space, which is characterized by a super-

symmetric nonlinear sigma model action. One of its most important applications is to

describe in a worldline approach the one-loop effects due to the propagation of p-forms

coupled to gravity, including as particular cases a gauge field Aµ and a gauge 2-form

field Bµν .

In particular, we have addressed the possibility that a simplified path integral, in terms

of a linear sigma model, might be applicable to maximally symmetric spaces. We have

tested a particular method of computing the path integral in Riemann normal coordi-

nates on maximally symmetric spaces, i.e. spheres, that turns the nonlinear sigma model

into a linear one in which the curvature effects are taken care of by a suitable effective

scalar potential, as already seen for the N = 0 and N = 1 cases.

Lacking a direct proof, we have made an ansatz for a simplified path integral, and com-

puted the transition amplitude at coinciding points up to order β3. We had to take into

account the part of the action containing the spin connection, that was crucial to repro-

duce the correct transition amplitude at order β2. However this made the computation

more complicated at order β3. We obtained the first few Seeley-DeWitt coefficients, that

characterize the theory, and computed the type-A trace anomalies in order to verify that

our model reproduces known results. a1 gives the trace anomaly for a scalar field in

two dimensions (with p = 0) and a2 gives the trace anomaly for a spin 1 field in four

dimensions (with p = 1). Similarly, a3 for p = 2 should give the trace anomaly of a

gauge 2-form field Bµν in six dimensions. On MSS an = bnR
n for certain numbers bn

(they depend on d and p, and are more conveniently denoted by bn(d, p)).

We have computed b1(2, 0), b2(4, 1), and b3(6, 2). The first two coefficients are correctly

reproduced by our model, as said, while the last one turns out not to be correct. This

fact deserves more attentions. One reason for this failure may be that the model has
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been oversimplified. Thus, the main purpose of a future work will be to improve on it in

order to give a correct description at order β3, and possibly to all orders.



Appendix A

N = 2 model, propagators and

determinants

In this appendix we discuss the theory of a N = 2 supersymmetric sigma model used

in [29], from which we obtain the propagators and the determinants that we used in

treating our N = 2 linear sigma model.

A.1 A brief review of the N = 2 spinning particle

Let us review the particle action characterized by a N = 2 extended supergravity on the

worldline. It was analyzed in [41], where it was shown that its quantization produces

the equation of motion of a p-form in flat spacetime. The action in phase space contains

gauge symmetries generated by certain constraints H,Q,Q̄,J (to be discussed shortly).

The coupling of the N = 2 spinning particle to spacetime gravity can be achieved by

suitably covariantizing the constraints H,Q,Q̄,J . It is convenient to use flat indices

for the worldline fermions by introducing the vielbein eµ
a and the corrisponding spin

connection ωµ
ab. The action reads

S =

∫
dt [pµẋ

µ + iχ̄aψ̇
a − eH − iχ̄Q− iχQ̄− aJ ] (A.1)
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with covariantized constraints (including a Chern-Simons coupling q in J)

J = ψ̄aψa − q

Q = ψaea
µπµ

Q̄ = ψ̄aea
µπµ

H =
1

2
gµνπµπν −

1

2
Rabcdψ̄

aψbψ̄cψd. (A.2)

where πµ is the“covariant” momentum

πi ≡ pµ − iωµabψ̄aψb (A.3)

which becomes the Lorentz covariant derivative upon canonical quantization. The co-

variantizations of Q and Q̄ are easy to guess and the algebra identifies H. One must

also check that the full constraint algebra remains unchanged, of course. For exam-

ple, {Q,Q}PB = 0 is verified using the cyclic identity satisfied by the Riemann tensor.

Elimination of the momentum pi produces the configuration space action

S =

∫
dt

[
1

2
e−1gµν(ẋ

µ − iχ̄ψµ − iχψ̄µ)(ẋν − iχ̄ψν − iχψ̄ν)

+ iψ̄a(ψ̇
a + ẋµωµ

a
bψ

b + iaψa) +
e

2
Rabcdψ̄

aψbψ̄cψd + qa

] (A.4)

which has been quantized using path integrals on a closed worldline (to study one-loop

effects) [29]. To use euclidean conventions, we perform a Wick rotation to euclidean time

(t → −iτ , and also a → ia to keep the gauge group U(1) compact) which produces the

euclidean action (SE = −iS)

S =

∫ 1

0

dτ

[
1

2
e−1gµν(ẋ

µ − χ̄ψµ − χψ̄µ)(ẋν − χ̄ψν − χψ̄ν)

+ ψ̄a(ψ̇
a + ẋµωµ

a
bψ

b + iaψa)− e

2
Rabcdψ̄

aψbψ̄cψd − iqa
] (A.5)

where τ ∈ [0, 1] parametrizes the closed loop. From now on we will drop the subscript on

SE as no confusion should arise. The gauge transformations of the supergravity multiplet
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in euclidean time are needed to study the gauge fixing and are given by

δe = ξ̇ + 2χ̄ε+ 2χε̄

δχ = ε̇+ iaε− iαχ

δχ̄ = ˙̄ε− iaε̄+ iαχ̄

δa = α̇ (A.6)

A.2 Quantization of a p-form on a curved space

The path integral quantization of the action of the particle of the p-form in a background

metric gµν gives the following one-loop effective action ΓQFTp [gµν ], as a functional of the

metric

ΓQFTp [gµν ] ≡ Z[gµν ] =

∫
T 1

DGDX
V ol(Gauge)

e−S[X,G;gµν ] (A.7)

where G = (e, χ, χ̄, a) and X = (xµ, ψµ, ψ̄µ) are the fields that must be path integrated

over, and S[X,G; gµν ] is the action in (A.5). Division by the volume of the gauge group

reflects the necessity of fixing the gauge symmetries.

We impose periodic boundary conditions on the bosonic fields xµ and e (the gauge field a

is instead treated as a connection) and antiperiodic boundary conditions for the fermions.

We can use gauge symmetries to fix the supergravity multiplet to Ĝ = (β, 0, 0, φ), where

β and φ are the leftover bosonic moduli that must be integrated over. The parameter

β is the usual proper time and the parameter φ is a phase that corresponds to the only

modular parameter that the gauge field a can have on the torus. Gravitinos χ and χ̄ are

antiperiodic and can be completely gauged away using (A.6), leaving no moduli.

One can discuss more extensively how the modular parameter φ arises.

The action for the fermions in (A.5) is of the standard form (the target space geometry

is essential for this particular gauge fixing, and one can take it flat)

S ∼
∫ 1

0

dτψ̄(ψ̇ + iaψ). (A.8)
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Finite gauge transformations are given by

ψ(τ)→ ψ′(τ) = e−iα(τ)ψ(τ)

ψ̄(τ)→ ψ̄′(τ) = eiα(τ)ψ̄(τ)

a(τ)→ a′(τ) = a(τ) + α̇(τ) (A.9)

where the gauge transformations e−iα(τ) are required to be periodic functions on [0, 1].

In one dimension the only gauge invariant quantity is the Wilson loop

w = ei
∫ 1
0 dτa(τ). (A.10)

Using “small” gauge transformations, for example those continuously connected to the

identity, one can bring a(τ) to a constant value φ

φ =

∫ 1

0

dτa(τ). (A.11)

Then “large” gauge transformations with α(τ) = 2πnτ allow to identify

φ ∼ φ+ 2πn, (A.12)

with n integer. Therefore one can take φ ∈ [0, 2π] as the fundamental region of the

moduli space.

The value of the Wilson loop is given by the phase w = eiφ, and once again one can φ

to be an angle.

In the gauge a(τ) = φ the action (A.8) becomes

S ∼
∫ 1

0

dτψ̄(ψ̇ + iφψ). (A.13)

One may now redefine the fermion by ψ′ = eiφτψ, in order to eliminate the gauge field

from the action

S ∼
∫ 1

0

dτψ̄′ψ̇′. (A.14)

The new field acquires twisted boundary conditions

ψ′(1) = −eiφψ′(0) (A.15)



A.3 Proper time expansion 53

so that the modulus φ ∈ [0, 2π] interpolates between all possible boundary conditions

specified by a phase. With the original assumption of antiperiodic boundary conditions

we did not loose generality, in fact the integration over the U(1) modulus automatically

takes into account the sum over spin structures.

For φ = π one obtain periodic boundary conditions. Thus, the fermions acquire zero

modes (and the gravitinos develop corresponding moduli). We now discuss the gauge

fixing of (A.7). If we choose the gauge Ĝ = (β, 0, 0, φ), insert the Faddeev-Popov de-

terminant to eliminate the volume of gauge group, and integrate over the moduli, we

obtain

ΓQFTp = −1

2

∫ ∞
0

dβ

β

∫ 2π

0

dφ

2π

eiqφ

(2 cos φ
2
)2

∫
T 1

DXe−S[X,Ĝ,gµν ], (A.16)

where the measure over the proper time β takes into account the effect of the symmetry

generated by the Killing vector on the torus. The Faddeev-Popov determinants from

the commuting SUSY ghosts are given by det−1(∂τ + iφ) det−1(∂τ + iφ) = (2 cos φ
2
)−2.

These are the inverse of the fermionic determinant arising from (A.13) which is easily

computed: antiperiodic boundary conditions produce a trace over the corresponding

two-dimensional Hilbert space and thus det(∂τ + iφ) = e−i
φ
2 + ei

φ
2 = 2cosφ

2
. The other

Faddeev-Popov determinants do not give rise to any moduli dependent term. The overall

normalization −1/2 has been inserted to match QFT results. Up to the overall sign, one

could argue that this factor is due to the fact that one is considering a real field rather

that a complex one.

Up to the final integration over the moduli, one is left with a standard path integral for

a nonlinear N = 2 susy sigma model. This path integral cannot be evaluated exactly for

arbitrary background metrics gµν , but it is the starting point of various approximations

schemes.

One can consider here an expansion in terms of the proper time β which leads to the

local heat-kernel expansion of the effective action. It is a derivative expansion depending

on the Seeley-DeWitt coefficients.

A.3 Proper time expansion

One can evaluate perturbatively in β the following path integral∫
T 1

DX e−S[X,Ĝ;gµν ]+iqφ (A.17)
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where we have extracted the constant Chern-Simons term from the action. The sigma

model action reads

S[X, Ĝ] =
1

β

∫ 1

0

dτ [
1

2
gµν ẋ

µẋµ + ψ̄a(ψ̇
a + iφψa + ẋµωµ

a
bψ

b)− 1

2
Rabcdψ̄

aψbψ̄cψd]. (A.18)

where the fermion has been scaled to extract a global factor 1/β. One can extract the

dependence on the zero modes xµ0 of the coordinates and obtains

ΓQFTp [g] = −1

2

∫ ∞
0

dβ

β

∫
ddx
√
g

(2πβ)
d
2

∫ 2π

0

dφ

2π
eiqφ

(
2 cos

φ

2

)d−2 ∫ ddx0

√
g(x0)

(2πβ)
d
2

〈e−Sint〉.

(A.19)

The constant zero modes xµ0 can be factorized by setting xµ(τ) = xµ0 +yµ(τ) and imposing

the Dirichlet boundary conditions yµ(0) = yµ(1) = 0 on the quantum fields yµ(τ). This

describes a loop with a fixed point x0. The extra factor (2 cos φ
2
)d comes from the

normalization of the fermionic path integral and correspond to detd(∂τ + iφ).

A.4 Propagators ans determinants

The propagators are obtained from the quadratic part of the action which is obtained

by Taylor expanding the metric around the point xi0

S =
1

β

∫ 1

0

dτ

[
1

2
gµν(x0)ẏµẏν + ψ̄a(ψ̇

a + iφψa)

]
. (A.20)

The bosonic propagator is given by

〈yµ(τ)yν(σ)〉 = −βgµν(x0)∆(τ, σ) (A.21)

(A.22)

where

∆(τ, σ) =
∞∑
m=1

[
− 2

π2m2
sin(πmτ) sin(πmσ)

]
= (τ − 1)σθ(τ − σ) + (σ − 1)τθ(σ − τ) (A.23)

with θ(τ − σ) the standard step function.
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The fermionic fields with antiperiodic boundary conditions can be expanded in half-

integer modes

ψa(τ) =
∑

r∈Z+ 1
2

ψare
2πirτ , ψ̄a(τ) =

∑
r∈Z+ 1

2

ψ̄are
−2πirτ (A.24)

and from the action (A.20) one finds the propagator (AF stands for antiperiodic fermions)

〈ψa(τ)ψ̄b(σ)〉 = βδba∆AF (τ − σ, φ), ∆AF (x, φ) =
∑

r∈Z+ 1
2

−i
2πr + φ

e2πirx (A.25)

which satisfies

(∂x + iφ)∆AF (x, φ) =
∑

r∈Z+ 1
2

e2πirx = δAF (x) (A.26)

where δAF is the delta function on the space of antiperiodic functions. For x ∈] − 1, 1[

the propagator can be summed up to yield

∆AF (x, φ) =
e−iφx

2 cos φ
2

[
ei
φ
2 θ(x)− e−i

φ
2 θ(−x)

]
. (A.27)

For coinciding points (τ = σ i.e. at x = 0) it takes the regulated value

∆AF (x, φ) =
i

2
tan

φ

2
(A.28)

which can be computed by “symmetric integration”, i.e. symmetrically combining the

modes +r and −r and then summing up the series. On the other hand for x 6= 0 one

finds

∆AF (x, φ)∆AF (−x, φ) = −1

4
cos−2 φ

2
(A.29)

which shows that this function has a discontinuity at x = 0. When multiplied by a

distribution it necessitates a regularization. An example is discussed in Appendix B.

Let us now review the calculation of the fermionic determinant∫
ABC

Dψ̄Dψ e−S = detd(∂τ + iφ) (A.30)

where ABC stands for antiperiodic boundary conditions and the action is the one in
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(A.20). The easiest way to obtain the determinant is to use the operator formalism∫
ABC

Dψ̄Dψ e−S = Tr e−Ĥφ (A.31)

where Ĥφ is the hamiltonian operator of the system and equals

Ĥφ = iφ
1

2
(ψ̂†aψ̂

a − ψ̂aψ̂†a) = iψ

(
ψ̂†aψ̂

a − d

2

)
. (A.32)

One can recognize in (A.32) the hamiltonian for a d dimensional fermionic oscillator

and easily compute the trace. In one dimension the eigenvalues of the fermionic number

operator ψ̂†ψ̂ are either 0 or 1, and one gets

detd(∂τ + iφ) = Tr e−iφ(ψ̂†
aψ̂

a− d
2

) = e−iφ
d
2 (1 + e−iφ)d = (2 cos

φ

2
)d. (A.33)

An alternative way to compute the determinant directly from the path integral con-

sists in expanding the fermions in antiperiodic modes and taking the infinite product of

eigenvalues

detd(∂τ + iφ) = detd(∂τ )

[
det(∂τ + iφ)

det(∂τ )

]d
(A.34)

= 2d
+∞∏

n=−∞

(
1 +

φ

2π(n+ 1
2
)

)d
=

(
2 cos

φ

2

)d
(A.35)

where we have used a standard representation of the cosine as an infinite product (af-

ter combining positive and negative frequencies together as part of our regularization

prescription).
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Dimensional regularization

Here we discuss the procedure of dimensional regularization (DR) applied to our N = 2

supersymmetric linear sigma model, extending the treatment presented in [22, 28] for

N = 0 and N = 1 supersymmetric sigma models.

If the quantum hamiltonian for the N = 0 system is proportional to the covariant scalar

laplacian H = −1
2
∇2, without any coupling to the scalar curvature R, then the rules of

dimensional regularization requires a counterterm VDR = −1
8
R in addition to the classical

euclidean action, normalized as ∆SDR =
∫ 1

0
dτβVDR. The quantum hamiltonian of the

N = 1 model acts on a spinor space, and it is fixed by supersymmetry to be the square

of the Dirac operator (the susy charge) H = −1
2
/∇ /∇ = −1

2
(∇2 − 1

4
R). Now the total

counterterm in dimensional regularization vanishes [28].

For the N = 2 model the counterterm vanishes as well [29].

Dimensional regularization requires the extension of the space I = [0, 1] to I × R
d. The

action can also be extended to d+ 1 dimensions and reads

S =
1

β

∫
I×Rd

dd+1t

[
1

2
gµν∂

αxµ∂αx
ν+ψ̄aγ

α(∂αψ
a+∂αx

µωµ
abψb)+iφψ̄aψ

a−1

2
Rabcdψ̄

aψbψ̄cψd
]

(B.1)

where tα ≡ (τ, t) are the coordinates in the extended space (bold face indicates vectors in

the extra d dimensions) and γα are the corresponding Dirac matrices. The propagators

in d+ 1 dimensions read

∆(t, s) =

∫
ddk

(2π)d

∞∑
m=1

−2

(πm)2 + k2 sin(πmτ) sin(πmσ)eik·(t−s) (B.2)
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∆AF (t− s) = −i
∫

ddk

(2π)d

∑
r∈Z+ 1

2

2πrγ0 + k · ~γ − φ
(2πr)2 + k2 − φ2

e2πir(τ−σ)eik·(t−s) (B.3)

and satisfy

∂α∂α∆(t, s) = δ(τ, σ)δd(t− s)(
γα

∂

∂tα
+ iφ

)
∆AF (t− s) = ∆AF (t− s)

(
−γβ

←−
∂

∂sβ
+ iφ

)
= δAF (τ − σ)δd(t− s) (B.4)

where

δ(τ, σ)δd(t− s) =

∫
ddk

(2π)d

∞∑
m=1

2 sin(πmτ) sin(πmσ)eik·(t−s) (B.5)

and a similar equation for the one containing δAF (τ − σ).

The index contractions in d + 1 dimensions keeps track of which derivative can be

contracted to which vertex to eventually produce the (d+ 1)-dimensional delta function.

The delta functions in (B.4) are only to be used in d+1 dimensions, as one assumes that

only in such a situation the regularization is taking place because of the extra dimensions.

Then, by using partial integration one casts the various loop integrals in a form which

can be directly computed in the d→ 0 limit. At this stage one can use the propagators

in one dimensions, γ0 = 1 and no extra factors arise from the Dirac algebra.

B.1 Contribution of the spin connection

B.1.1 Order β2

Let us apply the procedure of DR explained before to one of the most relevant graphs of

order β2 coming from the vertex involving the spin connection

ẋµωµab(x)ψ̄aψb → ∂αx
µωµab(x)ψ̄aγαψb. (B.6)

Expanding the vertex around xµ0 = xµ(τ)−yµ(τ), and using Riemann normal coordinates

and a Lorentz gauge such that ωµab(x0) = 0 and ∂(νωµ)ab(x0) = 0, one obtains a quartic
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Figure B.1: Diagram for 〈∆S2
SC〉

vertex of the form

∆SSC =
1

β

∫ 1

0

dτ
1

2
ẏµyνRνµab(x0)ψ̄aψb → 1

β

∫
dd+1t

1

2
∂αy

µyνRνµab(x0)ψ̄aγαψb.

(B.7)

whose diagram is shown in Figure B.1. To compute the correlation function we must

evaluate the Wick contractions, obtaining:

1

2
〈(∆SSC)2〉 =

β2

8
R2
µνab(x0)I (B.8)

with

I =

∫ 1

0

dτ

∫ 1

0

dσ

[
•∆•(τ, σ)∆(τ, σ)− •∆(τ, σ)∆•(τ, σ)

]
∆AF (τ − σ)∆AF (σ − τ)

→
∫
dd+1t

∫
dd+1s [α∆β(t, s)∆(t, s)− α∆(t, s)∆β(t, s)]× Tr[γα∆AF (t− s)γβ∆AF (s− t)]

(B.9)

where dots and indices on the left/right of the propagators indicates derivatives with

respect to the first/second variable. The function •∆• contains a delta function mul-

tiplying the step functions contained in ∆AF , and these products of distributions are

ambiguous and must be carefully regularized. Thus we extend the integrals in (B.9) to

d+ 1 dimensions.

In DR we integrate by part the ∂α from α∆β. This produces a boundary term which
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vanish, a term which doubles the other term in (B.9), and the following extra term∫
dd+1t

∫
dd+1s

{
∆β(t, s)∆(t, s) Tr

[(
γα

∂

∂tα
∆AF (t, s)

)
γβ∆AF (s, t)

+ ∆AF (t, s)γβ
(

∆AF (s, t)

←−
∂

∂tα
γα
)]}

.

(B.10)

We can add for free the “mass” term iφ in order to obtain the Dirac equations. By using

the second line in (B.4) one can show that this extra contribution vanishes

2

∫
dd+1t∆β(t, t)∆(t, t) Tr

[
γβ∆AF (0)

]
→ 2∆AF (0)

∫ 1

0

dτ∆•(τ, τ)∆(τ, τ) = 0. (B.11)

We have used ∆•(τ, τ) = τ − 1
2

and ∆(τ, τ) = τ 2 − τ . The regularization has been

removed only when it was obvious that the integral did not contain any dangerous

product of distributions at d = 0. The remaining nonvanishing term is

I = −2

∫
dd+1t

∫
dd+1s α∆(t, s)∆β(t, s) Tr

[
γα∆AF (t− s)γβ∆AF (s− t)

]
→ −2

∫ 1

0

dτ

∫ 1

0

dσ •∆(τ, σ)∆•(τ, σ)∆AF (τ − σ)∆AF (σ − τ)

= − 1

24
cos−2 φ

2

(B.12)

where •∆(τ, σ) = σ − θ(σ − τ), ∆•(τ, σ) = τ − θ(τ − σ) and ∆AF (τ − σ)∆AF (σ − τ) =

−1
4

cos−2 φ
2

(which are the correct limits of the Fourier sums up to a set of points of zero

measure). Thus we have obtained

1

2
〈(∆SSC)2〉 = − β2

192
R2
µνab cos−2 φ

2
. (B.13)

B.1.2 Order β3

Let us now discuss the contribution of terms involving the spin connection at the order

β3. One possible contribute that we have to consider is:

−1

2
〈S2

SCS4f〉 =

(
β

4

)∫∫∫
dτdσdξ 〈ẋiωiabψ̄aψb(τ) ẋjωjcdψ̄

cψd(σ) ψ̄eψeψ̄
fψf (ξ)〉.

(B.14)
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Figure B.2: One possible diagram for 〈∆S2
SC〉

The right hand side can be rewritten, by making use of (1.34), as(
β

4

)∫∫∫
dτ dσ dξ 〈1

2
ẋixkΩ0Rkiab ψ̄

aψb(τ)
1

2
ẋjxlΩ0Rljcdψ̄

cψd(σ) ψ̄eψeψ̄
fψf (ξ)〉

(B.15)

where Ω0 is the term of lowest order in the Taylor expansion of the Ω function that

does not contain other bosonic variables and allows us to obtain a contribute of order

β3. There are two non vanishing diagrams that arise from the different ways to perform

the Wick contractions. Other contractions give vanishing contributes because of the

antisymmetry of the Riemann tensor. The first one is shown in Figure B.2 and leads to

β2

(
δijδ

k
l
•∆•(τ − σ)∆(τ − σ) + δilδ

k
j
•∆(τ − σ)∆•(τ − σ)

)
. (B.16)

If we perform the Wick contractions of the fermionic variables, we obtain terms with

products of fermionic propagators that contain step function. As discussed earlier, we

need a regularization as •∆• contains a delta function multiplying the step functions

contained in ∆AF . Thus, we extend the integral in (B.15) to d+ 1 dimensions:

− β3

16
R2
kiab

∫∫
dd+1t dd+1s dd+1u

[
α∆β(t, s)∆(t, s)− α∆(t, s)∆β(t, s)

]
2(d− 1)

× Tr{γα∆F (t− s)γβ∆F (s− u)∆F (u− t) + γα∆F (s− t)γβ∆F (u− s)∆F (t− u)}

× Tr{∆F (u− u)}
(B.17)
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As in the previous case, we can integrate by parts the ∂α from α∆β. This produces a

boundary term which vanishes, a term which doubles the other term in (B.17)

β3R2
kiab

(d− 1)

4

∫∫
dd+1t dd+1s dd+1u α∆(t, s)∆β(t, s)

× Tr{γα∆F (t− s)γβ∆F (s− u)∆F (u− t) + γα∆F (s− t)γβ∆F (u− s)∆F (t− u)}

× Tr{∆F (u− u)}
(B.18)

and the extra term

β3R2
kiab

(d− 1)

4

∫∫
dd+1t dd+1s dd+1u ∆(t, s)∆β(t, s)

× Tr

{(
γα

∂

∂tα
∆F (t− s)

)
γβ∆F (s− u)∆F (u− t)

+ ∆F (t− s))γβ∆F (s− u)

(
∆F (u− t)

←−
∂

∂tα
γα
)

+

(
∆F (s− t)

←−
∂

∂tα
γα
)
γβ∆F (u− s)∆F (t− u)

+ ∆F (s− t)γβ∆F (u− s)
(
γα

∂

∂tα
∆F (u− t)

)}
× Tr{∆F (u− u)}

(B.19)

Triple integration in the latter expression can be reduced at one integration over the

variable t after the application of the Dirac equation (B.4), that introduces the delta

functions δ(t− s) and δ(t− u), so one obtains

β3 (d− 1)

4
R2
kiab

∫
dd+1t∆(t, t)∆β(t, t) Tr

{
2γβ∆F (t− t)∆F (t− t)∆F (t− t)

}
. (B.20)

Now, we remove DR and obtain

β3 (d− 1)

2
R2
kiab ∆3

F (0)

∫ 1

0

dτ ∆(τ, τ)∆•(τ, τ) = 0 (B.21)
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where we have used that ∆(τ, τ) = τ 2 − τ and ∆•(τ, τ) = τ − 1
2

and ∆F (0) = i
2

tan φ
2
.

Thus, we are left with

− 1

2
〈S2

SCS4f〉A = β3R2
kiab

(d− 1)

4

∫∫
dd+1t dd+1s dd+1u α∆(t, s)∆β(t, s)

× Tr

{
γα∆F (t− s)γβ∆F (s− u)∆F (u− t) + γα∆F (s− t)γβ∆F (u− s)∆F (t− u)

}
× Tr{∆F (u− u)}

(B.22)

that gives, after sending d to 0,

β3R2
kiab

(d− 1)

4

∫ 1

0

∫ 1

0

∫ 1

0

dτdσdξ •∆(τ − σ)∆•(τ − σ)

×
[
∆F (τ − σ)∆F (σ − ξ)∆F (ξ − τ)∆F (0) + ∆F (σ − τ)∆F (ξ − σ)∆F (τ − ξ)∆F (0)

]
.

(B.23)

The final result reads

−1

2
〈S2

SCS4f〉A =
β3(d− 1)R2

kiab

4

(
cos−4 φ

2
− cos−2 φ

2

)(
− 1

12

)
= −β

3d(d− 1)2

192

(
cos−4 φ

2
− cos−2 φ

2

) (B.24)

The other nonvanishing diagram is shown in Figure B.3. The bosonic factor is identical

Figure B.3: Another possible diagram for 〈∆S2
SC〉

to the one just analyzed. As in the previous case, if we perform the Wick contractions
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of the fermionic variables, we obtain terms with products of fermionic propagators that

contain step functions. By performing DR one can obtain, without ambiguities, the

following integral:

β3

8
R2
kiab

∫∫∫
dd+1t dd+1s dd+1 u

[
α∆β(t, s)∆(t, s)− α∆(t, s)∆β(t, s)

]
× Tr

{
γα∆F (t− u)∆F (u− s)γβ∆F (s− u)∆F (u− t)

} (B.25)

By proceeding as in the previous case, we integrate by parts, obtaining

β3

4
R2
kiab

∫∫∫
dd+1t dd+1s dd+1u α∆(t, s)∆β(t, s)

× Tr

{
γα∆F (t− u)∆F (u− s)γβ∆F (s− u)∆F (u− t)

} (B.26)

and

β3

8
R2
kiab

∫∫∫
dd+1t dd+1s dd+1u ∆β(t, s)∆(t, s)

× Tr

{(
γα

∂

∂tα
∆F (t− u)

)
γβ∆F (u− s)∆F (s− u)∆F (u− t)

+ γβ∆F (t− u)∆F (s− u)∆F (u− s)
(

∆F (u− t)
←−
∂

∂tα
γα
)}

.

(B.27)

If we use the Dirac equation in (B.27), we can reduce triple integration to a double one

β3

8
R2
kiab

∫∫
dd+1t dd+1s ∆β(t, s)∆(t, s)

× Tr

{
γβ∆F (t− t)∆F (s− t)∆F (t− s) + γβ∆F (t− t)∆F (s− t)∆F (t− s)

}
=
β3

4
R2
kiab

∫∫
dd+1t dd+1s ∆β(t, s)∆(t, s) Tr

{
γβ∆F (t− t)∆F (s− t)∆F (t− s)

}
(B.28)

If we set d→ 0 and compute the integral by inserting the expressions of the propagators,

we obtain a vanishing result. Let’s consider the contribute from (B.26)

β3R2
kiab

4

∫ 1

0

dτ

∫ 1

0

dσ

∫ 1

0

dξ •∆(τ, σ)∆•(τ, σ)∆F (τ − ξ)∆F (σ − ξ)∆F (ξ − σ) (B.29)
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from which one can obtain the following final result for diagram in Figure B.3

−1

2
〈S2

SCS4f〉B =
β3R2

kiab

16
cos−2 φ

2

(
− 1

12

)
= −β

3d(d− 1)

96
cos−2 φ

2
(B.30)

If we put together (B.24) and (B.30) we obtain

−1

2
〈S2

SCS4f〉 = −β
3d(d− 1)

192

(
(d− 1) cos−4 φ

2
− (d− 3) cos−2 φ

2

)
(B.31)

Finally, let’s calculate the contribution of the term with 〈S3
SC〉 (whose diagram is not

shown for reason of complexity)

− 1

3!

∫ 1

0

∫ 1

0

∫ 1

0

dτdσdξ
〈1

2
ẋixkRkiabψ̄

aψb(τ)
1

2
ẋlxmRmlcdψ̄

cψd(σ)
1

2
ẋτxλτefRλτ ψ̄

eψf (ξ)
〉

(B.32)

One can extend the integral in (B.32) to d+ 1 dimensions

− 1

48

∫∫∫
dd+1t dd+1s dd+1u

〈
∂αx

ixkRkiabψ̄
aγαψb(t) ∂βx

lxmRmlcdψ̄
cγβψd(s)

∂δx
τxλRλτef ψ̄

eγδψf (u)
〉 (B.33)

If we Wick contract bosonic and fermionic parts and perform DR we obtain:

β3

24
d(d− 1)(d− 2)

∫∫∫
dd+1t dd+1s dd+1u

×
[
α∆β(t, s)∆(t, u)∆α(s, u) + α∆β(t, s)∆δ(t, u)∆α(s, u)

+ α∆δ(t, u)∆β(t, s)∆(s, u) + α∆δ(t, u)∆(t, s)β∆(s, u)

+ β∆δ(s, u)α∆(t, s)∆(t, u) + β∆δ(s, u)α∆(t, u)∆(t, s)

+ α∆(t, s)β∆(s, u)∆δ(t, u) + α∆(t, u)∆β(t, s)∆(s, u)

]
× Tr{γα∆F (t− s)γβ∆F (s− u)γδ∆F (u− t)}.

(B.34)



66 Dimensional regularization

We can integrate by parts the ∂α from α∆β and ∂β from β∆δ, we obtain terms that cancel

each others and we are left with

− β3d(d− 1)(d− 2)

24

∫∫
dd+1t dd+1s dd+1u

×
[
∆δ(t, u)∆β(t, s)∆(s, u) + ∆δ(t, u)∆(t, s)β∆(s, u)

]
× Tr

{(
γα

∂

∂tα
∆F (t− s)

)
γβ∆F (s− u)γδ∆F (u− t)

+ ∆F (t− s)γβ∆F (s− u)γδ
(

∆F (u− t)
←−
∂

∂tα
γα
)}

(B.35)

and

− β3d(d− 1)(d− 2)

24

∫∫
dd+1t dd+1s dd+1u

×
[
∆δ(s, u)α∆(t, s)∆(t, u) + ∆δ(s, u)∆(t, s)α∆(t, u)

]
× Tr

{(
γβ

∂

∂sα
∆F (s− u)

)
γδ∆F (u− t)γα∆F (t− s)

+ ∆F (s− u)γδ∆F (u− t)γα
(

∆F (t− s)
←−
∂

∂sβ
γβ
)}

.

(B.36)

If we use Dirac equation and then remove DR, we obtain

− β3d(d− 1)(d− 2)

48

×
∫ 1

0

∫ 1

0

dτ dσ

[
3∆•(τ, τ)∆•(τ, σ)∆(σ, τ) + ∆•(τ, σ)∆(τ, τ)•∆(τ, σ)

]
×∆F (τ − σ)∆F (σ − τ).

(B.37)

If we insert the expression of the propagators in (B.37), we obtain

− 1

3!
〈S3

SC〉 = −β
3d(d− 1)(d− 2)

96

(
1

30

)
cos−2 φ

2

= −β
3d(d− 1)(d− 2)

2880
cos−2 φ

2
.

(B.38)
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Cesena per avermi concesso il piacere di rendere la taverna del locale il mio principale

luogo di studio.


