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Sommario

Il modello standard è la teoria che descrive con spettacolare accuratezza le interazioni fra
i costituenti fondamentali della materia come oggi ci sono noti. Nonostante il successo
nel confronto fra teoria ed esperimenti, diverse questioni rimangono insolute. Indicazioni
esistono riguardo l’esistenza di una fisica oltre il modello standard, anche se ancora ig-
noriamo la sua natura. L’obiettivo principale di questo lavoro è di caratterizzare una
delle più semplici estensioni del modello standard che prevede un singoletto scalare in-
teragente con il solo bosone di Higgs. Questo nuovo stato potrebbe avere un’influenza
sulla fenomenologia del bosone di Higgs ai collider e dare luogo al meccanismo della
bariogenesi elettrodebole. Una volta classificate le differenti possibilità, concentriamo la
nostra attenzione su un modello semplificato caratterizzato da una simmetria Z2, nel
quale le modifiche al self-coupling del bosone di Higgs possono apparire solo ad un loop.
Il calcolo dei contributi corrispondenti permette di identificare la regione dello spazio
dei parametri dove è possibile ottenere una transizione di fase elettrodebole del primo
ordine, e di verificare se le deviazioni dalle previsioni del modello standard possano essere
rilevabili ad LHC. Consideriamo sia il modello completo che la corrispondente approssi-
mazione effettiva, studiandone il regime di applicabilità. Infine, otteniamo le previsioni
per la produzione di una coppia di bosoni di Higgs. I nostri risultati preliminari mostrano
come nelle regioni dello spazio dei parametri nelle quali è possibile avere la transizione
del primo ordine un approccio effettivo sia sufficiente a riprodurre il modello completo.
Inoltre, le differenze di shape e sezione d’urto fra la estensione con un singoletto ed il mod-
ello standard sono visibili per valori della massa del singoletto potenzialmente rilevabili
a LHC.
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Abstract

The Standard Model (SM) is the theory that describes with an astonishing accuracy
the interactions among the fundamental constituents of matter as we know them today.
Notwithstanding the successful comparison between theory and experiment, a number of
unanswered questions remain. Many indications exist that some physics Beyond the SM
(BSM) must exist, even though we do not know its nature. The main goal of this work
is to characterise one of the simplest extension of the SM featuring an extra scalar state
interacting with the SM via the Higgs boson, in terms of the effects that it might have
on the Higgs phenomenology at colliders and the realisation of Electroweak baryogenesis
(EWBG). After classifying various possibilities, we focus our attention on a simplified
model featuring an unbroken Z2 symmetry. In this case modifications of the self-coupling
of the Higgs boson can only happen at one loop and we compute the corresponding
contributions. We identify the regions of parameter space where a first-order transition
for the EW symmetry breaking can be realised and then check whether deviations from
the SM expectations could be detectable at the LHC. We perform these studies both
in the full model and in the corresponding EFT approximation studying in particular
its range of applicability. We compare the singlet extension and the standard model in
the double Higgs production at the LHC, in which the trilinear Higgs self-coupling is
involved. Our preliminary results show that in the regions of parameter space which
lead to a first-order phase transition, an EFT approach is sufficient to reproduce the full
theory behaviour. Moreover, the shape and cross section differences between the singlet
extension and the standard model are noticeable for values of the singlet mass which are
potentially accessible at the LHC.
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CHAPTER 1

Introduction

1.1 The current status of high energy physics

The outstanding predictive power behind the Standard Model (SM) of fundamental par-
ticles and interactions has lead to a rich phenomenology which has been studied in the
last few decades. Up to now the SM has been capable of describing all data collected at
LHC up to 13 TeV energy, with every particle known included into this glorious picture.
In other words, the lack of additional new states observation at colliders can be simply
explained by the SM, and the discovery of any new particle being postponed to a later
(unknown) date/energy scale.

It seems that the SM as we have defined it, is just as good as it is in describing
basically all particle physics phenomenology. About one hundred inverse femtobarn of
data has been collected by CMS and ATLAS collaborations, pushing towards a precision
measurements era.

On the contrary, the main evidence concerning the existence of some kind of Beyond
Standard Model (BSM) physics mostly comes from astrophysical and cosmological obser-
vations. Neutrino oscillations have shown beyond any doubt that neutrinos have a (tiny)
finite mass (and therefore right-handed states need to be added to the SM). While the
identification of Dark Matter/Energy, and the observed baryon/antibaryon asymmetry
of the universe (BAU) remain a mystery. None of the particles and interactions in the
SM seems to be capable to give a complete understanding/description and particle inter-
pretation of Dark Matter. On the BAU, the SM seem to be containing all the necessary
ingredients to explain Electroweak Baryogenesis (EWBG) yet with the actual measured
parameters today, such a transition is too weak (and CP violation too) to generate the
observerd asymmetry.

Motivated by these evidences, for most of the HEP community the SM is far from
being a complete theory. Thus, the search for a more complete theory continues. If
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the scale of new physicsis higher than the energies directly accessible at LHC, one can
still detect the imprints of such a complete theory in the interactions among the SM
particles. This approach builds upon an effective description. Among the many proposals
been presented through the years, the Standard Model Effective Field Theory
(SMEFT) is among the most promising ones. Assuming a linear realisation of the gauge
symmetry and that the scale of new physics is higher than about one TeV, fixes all the
degrees of freedom at each order in powers of the inverse powers of the new physics scale.
In this formulation, non-renormalisable, yet fully gauge invariant, interactions between
SM particles are taken into account as the low energy behavior of more complicated
interactions between SM and a BSM/hidden sector.

1.1.1 Beyond standard model physics with effective theories

The main goal of this work is to classify how one among the simplest extensions of
the SM, i.e. adding a real scalar singlet under all the gauge interactions of the SM, is
capable of affecting the Higgs sector. In particular, we focus on how to extend the Higgs
potential in order to modify the early universe EW phase transition making it strongly
of first order, and to consequently achieve the electroweak baryogenesis1.

The idea is to minimally deform the SM by introducing a massive scalar particle
s which does not interact with the SM particles at the tree- and renormalisable level,
except for the Higgs boson, through the |Φ|2 portal term:

L = LSM +
1

2
(∂µs)2 − µ2

s

2
s2 − λm

2
|Φ|2s2 − µ3

3
s3 − λs

4
s4 + µ4 |Φ|2s . (1.1)

This is the most general Lagrangian of the well-known Singlet Higgs Portal (SHP),
which has been widely discussed in the literature in recent years.

As we will see, this simple extension is capable of significantly modifying the self Higgs
couplings, if different orders of perturbation theory are considered depending on if the
extended potential is equipped with a Z2 explicit symmetry or not. As this trilinear shift
also enters in the main process of production of the Higgs boson at LHC, the interesting
question is whether modifications which are sufficient to explain EWBG can be detected
in collider observables. Moreover, this new s scalar state turns out to also be a possible
component of the dark matter, anyhow, even though in a strongly constrained region of
its parameter space.

One can also consider model-independent modifications of the Higgs boson poten-
tial using the SMEFT approach, i.e. understanding the SM as non-renormalisable La-
grangian,

Leff = LSM +
ch

2Λ2
∂µ
(

Φ†Φ− v2

2

)
∂µ

(
Φ†Φ− v2

2

)
+
∞∑
n=3

c2n

Λ2n−4

(
Φ†Φ− v2

2

)n
, (1.2)

and then determine the cn coefficients in the case of (heavy) scalar singlet model, by
matching the full theory to the effective one.

1For the moment, we set aside the CP-violation problem and leave it for future investigations.
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We will investigate this matching in details for the singlet scalar extension of the
SM, re-deriving existing results and performing novel computations. Moreover, we will
investigate the phenomenology of the Z2 symmetric case at the LHC, focusing on the
double Higgs production. For this purpose, we will first implement in MadGraph the
one-loop corrections to the Higgs potential induced by the Z2 symmetric singlet. Then,
we will analyse the differential distributions to compare the full BSM model and the
EFT description, and also to highlight their differences with respect to the SM. This
phenomenological analysis constitutes an original contribution of this thesis.

1.1.2 Outline

In chapter 2 we briefly review the main features of SM, discussing in particular those that
will be important for our analysis later, such as the scalar sector (Yukawa and potential)
and the source(s) of CP-violation. Chapter 3 is dedicated to the introduction of EFT
techniques. A methodological argument is given to motivate the approach and then a
specific case is explained in detailed taking a toy model as example, and eventually the
SMEFT is introduced.

The following chapter 4 introduces the SM minimal extensions, primarily discussing
the singlet portals. Full matching calculation to the up-to-8-dimensional effective Higgs
potential are performed in three different cases, endorsing two different matching proce-
dures.

In chapter 5 we select one of the main models studied in the previous chapter to
analyse how the singlet is capable to trigger the strong first order EWPT. A brief review
of the Sakharov conditions in the SM is made, then the singlet is introduced considering
its one loop and thermal corrections in the effective potential to finally perform a detailed
analysis of the parameters space region where the transition is allowed.

Finally, in chapter 6 we simulate how the double Higgs production at LHC gets modi-
fied by considering the new scalar state, both in the full and effective theory frameworks.
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CHAPTER 2

A brief review of the standard model

We start reviewing the Brout-Englert-Higgs (BEH) mechanism for the mass generation of
an abelian gauge field, then we proceed with phenomenologically constructing the stan-
dard model, discussing non-abelian gauge symmetries, boson/fermion mass generation,
flavor changing interactions and CP violation, ending with a brief discussion about the
Higgs potential.

In passing, some of the standard model shortcomings are highlighted, with particular
reference to baryogenesis and how a modification of the potential as generated by an
effective field theory scenario can explain the phenomenon. The main review references
used in the chapter are [1, 2, 3].

2.1 Gauge symmetry breaking via the BEH mechanism

Let us consider a scalar QED theory in which a charged scalar field interacts with a
massless abelian vector field, as described by the Lagrangian

L = (Dµφ)?Dµφ+ µ2φ?φ− λ(φ?φ)2 − 1

4
FµνFµν , (2.1)

where Dµφ = (∂µ−ieAµ)φ is the covariant derivative, λ and e are positive, and where we
took the crucial positive sign on the scalar field mass term. Expanding the field strength
tensor as well as the covariant derivative, we can rewrite the Lagrangian explicitly as

L = ∂µφ?∂µφ+ µ2φ?φ− 1

2
∂µAν(∂µAν − ∂νAµ)

− λ(φ?φ)2 +Aµφ?ie
←→
∂µφ+ e2AµAµφ

?φ .

(2.2)

Using the Euler-Lagrange equations for each field leads us to

D?
µ(Dµφ)? − µ2φ? + 2λ(φ?)2φ = 0 , (2.3)
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with the related complex conjugate equation, and

∂νFµν + φ?ie
←→
Dµφ = 0 . (2.4)

Taking the divergence of the last equation we arrive to

∂µ∂νFµν + ∂µ
(
ieφ?
←→
Dµφ

)
︸ ︷︷ ︸

Jµ

= 0→ ∂µJ
µ = 0. (2.5)

The Lagrangian defined above turns out to be invariant under full non-homogeneous
Lorentz group and the U(1) group of the local phase transformations, which acts on the
field variables as

φ(x)→ φ′(x) = eieθ(x)φ(x) , (2.6)
Aµ(x)→ A′µ(x) = Aµ(x) + ∂µθ(x) . (2.7)

In particular, (2.5) expresses the continuity equation for the abelian U(1) current Jµ,
which also defines the U(1) charge conservation

Q = −e
∫

dr φ? i
←→
D0 φ. (2.8)

We also see the covariant derivative to transform homogeneously under these field
transformations

(Dµφ(x))′ = eieθ(x)Dµφ(x). (2.9)

Owing to the Poincaré symmetry of the Lagrangian, we can define the energy-
momentum tensor as

Tµν = Dµφ(Dνφ)? + (Dµφ)?Dνφ− Fµλ∂νAλ − gµνL , (2.10)

from which we can write down the energy of the system1:

P0 = E =

∫
dr
{
φ̇(r, t)(D0φ)?(r, t)+D0φ(r, t)φ̇?(r, t)−E(r, t)·Ȧ(r, t)−L(r, t)

}
. (2.11)

Then, writing the conjugated momenta of the field variables

δL
δφ̇(r, t)

≡ Π?(r, t) = (D0φ(r, t))?
δL

δȦ(r, t)
≡ −E(r, t)

δL
δϕ̇(r, t)

= 0
δL

δφ̇?(r, t)
≡ Π(r, t) = D0φ(r, t) ,

(2.12)

we substitute
φ̇ = Π + i e ϕ φ , Ȧ = −E−∇ϕ , (2.13)

1Here we explicitly set Aµ = (ϕ,A).
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in the energy functional obtained above, arriving to the classical Hamiltonian functional,
namely

H =

∫
dr

{
Π(r, t)Π?(r, t) +Dkφ(r, t)(Dkφ)?(r, t) + V(φφ?)

+
1

2
E2(r, t) +

1

2
B2(r, t) + E(r, t) · ∇ϕ(r, t) + ϕ(r, t)J0(r, t)

}
, (2.14)

where we defined
V(φ?φ) = −µ2φ?φ+ λ(φ?φ)2 . (2.15)

Now, as

∂µFµν + ieφ?
←→
Dνφ = 0 (2.16)

∂kFk0 + ieφ?
←→
D0φ = 0 (2.17)

and so
∇ ·E(r, t) = J0(r, t) , (2.18)

we can transform the last two terms in (2.14) and let them vanish according to the fact
that

E(r, t) · ∇ϕ(r, t) + ϕ(r, t)J0(r, t) =∇ · (E(r, t)ϕ(r, t)) . (2.19)

Eventually, we are left with

H =

∫
dr

(
Π Π? +Dkφ (Dkφ)? +

1

2
E2 +

1

2
B2 − µ2φφ? + λ(φφ?)2

)
,

which turns out to be non positive semi-definite, owing to the negative mass sign of the
scalar field.

We find the stationary points of this Hamiltonian by letting

φ(r, t) = φ0 , A0
µ(r, t) = 0 ,

so that we reduce to
H =

∫
dr V(φ?0φ0) (2.20)

and we can directly analyse the scalar potential to find the extremes.
It follows

δV(φ?0φ0)

δφ0
= φ?0

(
2λφ0φ

?
0 − µ2

)
= 0 ⇐⇒ φ0 = 0 , φ0φ

?
0 =

µ2

2λ
(2.21)

H0(0) = 0 H0(φφ?) = −µ
4

4λ
, (2.22)

with the minimal constant field configuration describing an U(1) symmetric circle of ray
µ/
√

2λ in the complex φ0 plane.
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2.1.1 Quantisation and Feynman rules

The quantisation of the Higgs abelian gauge invariant model follows after a redefinition
of the field functions and the inclusion of supplementary gauge fixing terms.

Essentially, we identify the vacuum expectation value of the Higgs field as the constant
field minima derived upon

| 〈0|φ(x) |0〉 | = µ√
2λ

=
v√
2
, (2.23)

and then we expand the scalar field over the vacuum as

φ(x) =
1√
2

(v + η(x)) exp{iχ(x)/v} . (2.24)

Moreover, owing to the gauge invariance of the vector field, we have

Aµ(x) = Vµ(x) + ∂µχ(x)/ve . (2.25)

where χ(x) is the so called Goldstone field, and where we identify η(x) and V µ(x) as the
new dynamic fields.

Now we proceed to add the gauge fixing Lagrangian

Lg.f = V ν∂νB +
ξ

2
B2 =

ξ

2
B2 +

(
Aν − 1

ve
∂νχ

)
∂νB , (2.26)

with B(x) a real scalar auxiliary field.
Definitely, we obtain

L = ∂µφ?∂µφ+ µ2φ?φ− 1

2
∂µAν(∂µAν − ∂νAµ)− λ(φ?φ)2

+ Aµφ?ie
←→
∂µφ+ e2AµAµφ

?φ+
ξ

2
B2 +

(
Aµ − 1

ve
∂µχ

)
∂µB .

(2.27)

As can be easily checked, the fields redefinitions in equations (2.24), (2.25) translates
in

Dµφ(x) =
e
iχ(x)
v

√
2

(∂µη(x)− ieVµ(x)η(x)− ievVµ(x)) , (2.28)

and

Dµφ(Dµφ)? =
1

2
(∂µη)2 +

e2

2
V 2η2

+ve2V 2η +
e2v2

2︸ ︷︷ ︸
m2/2

V 2 , (2.29)

V(φφ?) = −µ
4

4λ
+ µ2η2 + µ

√
λη3 +

λ

4
η4 , (2.30)

1

4
FµνFµν =

1

2
∂µV ν (∂µVν − ∂νVµ) . (2.31)
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Thus, employing the transformations in (2.24),(2.25) as well as the relations derived
here above, equation (2.27) becomes

L =
1

2
∂µη∂µη − µ2η2 − 1

4
FµνFµν +

m2

2
V µVµ

+
e2

2
V µVµη

2 +
µe2

√
λ
V µVµη − µ

√
λη3 − λ

4
η4 (2.32)

+V µ∂µB +
ξ

2
B2 +

µ4

4λ
.

We notice that:

• the Goldstone field χ(x) has completely disappeared from the gauge fixed La-
grangian;

• the abelian vector field Vµ(x) is now suited with a Proca mass term which can be
directly read in equation (2.29).

These two facts are the essence of the Higgs mechanism. We started from a gauge in-
variant Lagrangian, and then, by expanding the fields over the minimal constant field
configurations, we spontaneously broke the U(1) symmetry, generating the two conse-
quences described above.

To derive the Feynman rules we calculate the equations of motion from the new
Lagrangian, obtaining

(�+m2)V ν = (ξ − 1)∂νB − e2η

(
2µ√
λ

+ η

)
V ν , (2.33)

(
�+ 2µ2

)
η = e2V 2

(
µ√
λ

+ η

)
− 3µ

√
λη2 − λη3 , (2.34)(

�+ ξm2
)
B = 0 , ∂µVµ = ξB . (2.35)

Then, substituting the second equation of (2.35) into the gauge fixing Lagrangian (2.26),
we find

Lg.f =
1

2ξ
V ρ(x)∂ρ∂νV

ν(x) . (2.36)

Therefore, we can rewrite the full Lagrangian in a form that makes the kinetic terms
for the vector and scalar fields explicit. We have

L = −1

2
(�+ 2µ2)η(x) +

1

2
V µ(x)

[(
�+

e2µ2

λ

)
gµν − ∂µ∂ν

(
1− ξ−1

)]
V ν(x)

+
e2

2
V 2(x)η2(x) +

µe2√
λ
η(x)V 2(x)− µ

√
λη3(x)− λ

4
η4(x) ,

(2.37)

which leads to the momentum space Feynman rules:

• scalar Higgs boson propagator:

Ds(p) =
i

p2 − 2µ2
;
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• massive abelian vector particles:

iλ

λk2 − e2µ2

(
− gµν +

λ(1− ξ)kµkν
λk2 − ξe2µ2

)
;

• three points scalar vertex: −6iµ
√
λ ;

• four points scalar vertex: −6iλ ;

• three points vertex with one scalar and two massive vectors: i2µe2gµν/
√
λ ;

• four points vertex with two scalars and two massive vectors 2ie2gµν .

Figure 2.1: Feynman rules for the gauge fixed spontaneously broken abelian Higgs La-
grangian. The dashed lines representing massive scalar bosons, and the wavy lines rep-
resenting massive vectors.

Finally, we recall that the Hilbert subspace of the physical states is recovered by
removing unphysical ghost-Stückelberg states with the subsidiary condition

B−(x) |phys〉 = 0 , (2.38)

and in the ξ →∞ limit we turn to the unitary gauge with the non-renormalisable massive
vector boson propagator.

In this section we saw how a massless vector field acquires mass via the Higgs mech-
anism. In the next section we will extend this discussion to the non-abelian case and to
fermions, with the goal of a complete phenomenological building of the standard model.

2.2 The BEH mechanism in the standard model

The standard model for the weak and electromagnetic interactions is empirically based
upon the non-semi-simple and unitary gauge group G = SU(2)× U(1) ∼ U(2), in which
the corresponding gauge bosons exchange the associated elementary interactions. Inside
this picture, we have to arrange the known matter and the interaction fields. In practice,
we proceed bottom-up, by phenomenological considerations and experimental evidence.

We choose to take the left-handed matter fields as doublets of the fundamental rep-
resentations of SU(2):

Ψi(x) =

(
νi(x)
`−i (x)

)
`−i (x) =

(I− γ5)

2
`i(x) ,
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where i is understood to run over the 3 different families of leptons (e, µ, τ). The right-
handed ones are singlets of SU(2), and are defined by

`+i (x) =
(I + γ5)

2
`i(x) ,

where γ5 = iγ0γ1γ2γ3.
At this point, we are left with the choice of the Higgs scalar field, and following the

Occam’s razor argument, we base our choice on simplicity, choosing the parametrisation
containing the minimal number of degrees of freedom possible. Once again, experimental
data tell us that is necessary to give mass to 3 vectors, i.e. the non-abelian gauge
bosons, and to keep the photon massless. So, owing to the Goldstone theorem and to
the spontaneous symmetry breaking pattern SU(2) × U(1)Y → U(1)em, we choose to
arrange the Higgs and the Goldstone bosons into a complex SU(2) doublet into one of
the fundamental representations of the gauge group, namely

Φ(x) =

(
φ+(x)
φ0(x)

)
.

Essentially, everything that concerns the standard model follows from these basics as-
sumptions/arrangements made above.

As a consequence of the spontaneous symmetry breaking, the electric charge turns
out to be a linear combination of both SU(2) and U(1) generators, namely

Q = T3 +
1

2
Y. (2.39)

Now we can proceed to write down the most general, renormalisable, gauge invariant
Lagrangian involving the fields considered above. Owing to the constraining criterion of
renormalisability, every term in L must be a local monomial of the fields and their
derivatives of canonical engineering dimension D in natural units D 6 4. Thus,
the famous, unique and necessary result is

L = −1

4
Wµν
I W I

µν −
1

4
BµνBµν + (DµΦ)†DµΦ− V(Φ)

+ iΨ̄i /D Ψi + i ¯̀+
i
/D `+i − yi

(
Ψ̄i · Φ `+i + h.c.

)
.

(2.40)

Where Wµν
I and Bµν are respectively the non-abelian and abelian field strength

tensors, and where Dµ is the SU(2)× U(1) covariant derivative. Moreover, the Higgs
potential which respects the gauge symmetry of the Lagrangian and the renormalisability
criterion is the generalisation of the Higgs potential introduced in the former section, i.e.

V(Φ†Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 . (2.41)

It turns out that all the vector gauge bosons, as well as all the lepton fields, appear
to be mass-less. In fact:
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• The assumed transformation laws for the left and right-handed components forbid
the introduction of an SU(2) invariant Dirac or Majorana mass for leptons.

• It is not possible to include a Proca-like mass term for the non-abelian gauge vector
bosons, as this inevitably leads to a both non-renormalisable/non-unitary theory
at the quantum level.

• It could be possible to introduce a Proca mass term for the abelian gauge vector
boson, and so to recover a renormalisable and unitary theory at the quantum level2,
but the experimental limit on the photon mass is extremely low, being fixed around
10−18eV.

The obvious consequence is that every particle mass in the standard model is expected
to be proportional to the absolute value of the only mass scale of the theory, i.e. the
Higgs mass.

In the following section we will see how via the spontaneous symmetry breaking
mechanism both non-abelian gauge bosons, the fermions and the Higgs field itself do
acquire mass. It turns out that the classical Hamiltonian which follows from the (2.40)
reaches its minimum for vanishing lepton and gauge vector fields values, but for non-zero,
constant values of the SU(2) Higgs scalar doublet:

Φ†0Φ0 =
µ2

2λ
,

in the same fashion of the already discussed Higgs abelian gauge invariant model.
Then, the electroweak symmetry breaking follows assuming a non-zero vacuum ex-

pectation value of the Higgs doublet

〈 0 |Φ(x) | 0 〉 =
1√
2

(
0
v

)
, v2 =

µ2

λ
, v ' 246 GeV. (2.42)

Using the polar decomposition as

Φ(x) =
1√
2
Uχ(x) [v + h(x)]

(
0
1

)
, (2.43)

Uχ(x) = exp{iχa(x)τa/v} , (2.44)

one can identify h as the neutral scalar Higgs field, while χa is a matrix containing the
anticipated Goldstone scalar fields which will decouple from the dynamics in order to let
the gauge boson acquire a mass.

2via the Stuckelberg trick
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2.2.1 Gauge fields and fermions masses

Let us start by considering the transformation law for the covariant derivative acting on
the scalar Higgs field. We have

(DµΦ)(x) =

(
∂µ − igV µ − ig′

2
Bµ

)
Φ(x) , (2.45)

where g and g′ are respectively the SU(2) and U(1) couplings, and where V µ and Bµ

are the corresponding fields.
Defining

Vµ(x) = UχWµ(x)U−1
χ −

i

g
(∂µUχ)U−1

χ , (2.46)

with

Wµ(x) =
1

2

(
W 3
µ(x) W+

µ (x)/
√

2

W−µ (x)/
√

2 W 3
µ(x)

)
, (2.47)

W±µ (x) =
W 1
µ(x)∓ iW 2

µ(x)
√

2
, (2.48)

Wµ(x)Wµ(x) =
1

4
gµν

3∑
a=1

W a
µ (x) W a

ν (x)

(
1 0
0 1

)
, (2.49)

it follows that

(DµΦ)†DµΦ =
1

2
∂µh∂

µh+
g2

2
[v + h]2W+

µ W
µ
−

+
1

8
(gWµ

3 − g
′Bµ)(gW 3

µ − g′Bµ)[v + h]2 .

(2.50)

The term in W±µ is easily understood to be the mass term leading to mW = vg/2.
The new feature here is that we are still not able to guess the abelian field and the W 3

µ

masses, as they share a non-diagonal mass matrix.
To find a correct identification, we have to move to the mass eigenstates. We reach

this goal by setting (
W 3
µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Z0
µ

Aµ

)
, (2.51)

which makes the mass matrix diagonal if and only if tan θW = g′/g. This choice
corresponds to mA = 0 and mZ = mW / cos θW , which are respectively identified with
the photon and Z boson masses.

For what concerns the fermions, we find that their mass can be generated by Yukawa
terms. Then, defining the Higgs doublet into the conjugate SU(2) representation as

Φ̃(x) = iσ2Φ?(x) , (2.52)
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and substituting the same Higgs field parametrisation made before, we obtain

yi
(

Ψ̄i · Φ `+i + Φ̃ · ¯̀+
i Ψi

)
=

yiv√
2

(
h

v
+ 1

)(
¯̀−
i `

+
i + ¯̀+

i `
−
i

)
. (2.53)

Finally, considering the covariant derivative acting on a fermion as

iDµΨ′i(x) =

(
i∂µ + gVµ −

g′

2
Bµ

)
UχΨi(x), (2.54)

and employing once again (2.51), it is possible to show that the positron charge is iden-
tified as e = g sin θW .

Eventually, we arrive to the leptons Lagrangian of the electroweak standard model3

Lleptons =
3∑
i=1

[
i Ψ̄i /∂ Ψi + i ¯̀+

i
/∂ `+i −mi (1 + h/v) ¯̀

i `i

]
+ g

(
W+
µ Jµ+ +W−µ Jµ− + Z0

µ J
µ
0

)
− e Aµ Jµ .

(2.55)

2.2.2 Introducing quarks and gluons

As far as we know, the elementary constituents of matter can be organised in six leptons
and six quarks, with the latter being also subject to the strong interactions described
by Quantum Chromo Dynamics (QCD). As in this work we will focus on the EW
interactions, will not discuss the details of QCD, but limit ourselves to introducing how
the strong interactions are incorporated in the standard model Lagrangian.

The introduction of quarks and gluons shares some common features with the leptonic
sector of the standard model. The quarks Lagrangian is understood to be the same as
(2.40), but with quark fields replacing leptons:

Lquarks =
∑

colors

[
i ūi /D ui+ i d̄i /D di−

(
yd
(
q̄−i ·Φ)d+

i +yu(q̄−i · Φ̃) u+
i +h.c.

)]
. (2.56)

Here, an interesting feature related to the presence of three experimentally seen fam-
ilies of quarks needs to be discussed. In fact, the Lagrangian for the quark families might
not simply be the sum of the corresponding Lagrangians, and mixing can take place.

This is what experimentally one observes in EW interactions among quarks, i.e. that
quark families numbers are not conserved. Moreover, in principle, there is no compelling
reason to pair the quarks doublets as done in (2.56).

In fact, one is completely free to choose any basis in the quarks families space. This
leads to the anticipated feature that in order to have the Yukawa interaction terms into
a diagonal form, the weak interactions will contain off-diagonal terms mixing different
families.

3a complete form of the currents will be specified in the next subsection after introducing quarks and
gluons.

20



It turns out that the most general quarks action must contain two non-diagonal
matrices that correspond to families mixing in arbitrary bases. After the introduction
of the SU(3) non-abelian vector fields and the related strength tensor, corresponding
to gluons, i.e. the carriers of strong interactions, we are ready to write down the full
standard model Lagrangian

LSM = −1

4
GAµνG

µν
A −

1

4
W I
µνW

µν
I −

1

4
BµνBµν + (DµΦ)†DµΦ− V(Φ)

+

3∑
i=1

[
i Ψ̄i /D Ψi + i ¯̀+

i
/D `+i − yi

(
Ψ̄i · Φ `+i + h.c.

)]
+

∑
colors

3∑
i=1

[
i ūi /D ui + i d̄i /D di (2.57)

−
( 3∑
j=1

Ydij (q̄−i · Φ) d+j + Yuij
(
q̄−i · Φ̃

)
u+j + h.c.

)]
.

Then, moving to the eigenstate basis in which the mass matrix is diagonal by em-
ploying the unitary matrices V u,d

∓ , as defined by

u∓(x) = V u
∓ u∓(x) , d∓(x) = V d

∓d
∓(x) , (2.58)

and considering spontaneous breaking of the electroweak symmetry as done earlier,
we come to the broken phase Lagrangian4

LSM = −1

4
GAµνG

µν
A −

1

4
W I
µνW

µν
I −

1

4
BµνBµν

+
1

2
∂µh∂µh−

1

2
m2
hh

2 − λv h3 − 1

4
λ h4

+ [m2
W Wµ

+W
−
µ +

1

2
m2
Z Z0

µZ
µ
0 ](1 + h/v)2

+ i

3∑
i=1

[
Ψ̄i /D Ψi + ¯̀+

i
/D `+i +

∑
colors

(
ūi /D ui + d̄i /D di

)]
(2.59)

−
3∑
i=1

[
m`
i

¯̀
i`i +

∑
colors

(
mu
i ūiui +md

i d̄idi
)]

(1 + h/v)

+ AµJ
µ + Z0

µJ
µ
0 +W−µ J

µ
− +W+

µ J
µ
+ .

4which follows after repeating the same steps already done to let fermions acquire mass in the former
section.
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The complete expression of the electroweak currents is given by

Jµ = −e
3∑
i=1

[
¯̀
i γ

µ `i +
∑

colors

(1

3
d̄i γµ di −

2

3
ūi γµ ui

)]
(2.60)

Jµ+ =
g√
2

3∑
i=1

[
ν̄i γ

µ `−i +
1

2

∑
colors

ū−i γµ(I− γ5) Vij dj

]
≡ (Jµ−)† , (2.61)

Jµ0 =
1

2
sec θW

3∑
i=1

[
ν̄i γ

µ νi − ¯̀−
i γµ `−i + 2 sin2 θW ¯̀

i γ
µ `i

+ ū−i γµ u−i −
1

2
d̄i γµ(I− γ5)di (2.62)

+ sin2 θW

(2

3
d̄i γµ di −

4

3
ūi γµ ui

)]
,

and is riassuntive of both the lepton and quark matter.

2.3 CP-violation in the standard model

Being measured in several neutral K mesons decays, CP-violation is still one of the most
tested aspects of SM and most mysterious, at the same time. It is unlikely that the SM
can describe all the CP-violation in nature. It is also clear that some kind of BSM physics
exists, and so it is not surprising at all that most of these extensions do incorporate some
additional sources of CP-violation5.

A glaring evidence of our limited understanding6 of CP symmetry, is that our Universe
seems to be composed mostly of ordinary matter, while antimatter is only created in high-
energy events, be these of astrophysical nature, cosmic rays or our laboratories. This fact
is known as the baryon asymmetry problem, and it goes under the name of baryogenesis
in the primordial universe.

As we will discuss later, to correctly account for such a transition it is mandatory to
have additional CP-violating sources than those we know of in the SM. Another logical
possibility is simply that we have not reached an energy high enough to test if the SM
is capable of such violation. It could be that the energy scales involved are actually far
from our experimental reach, and this directly translated in successful measurement on
arguments concerning the mostly CP conserving nature of the SM. Nevertheless, here
we proceed by analysing the only source of CP-violation present in the SM (assuming
neutrino are massless, for the moment).

The SM Lagrangian provides three Yukawa interactions between the Higgs field and
the fermions

Lyuk = −
3∑
i=1

{
3∑
j=1

∑
colors

(
Ydij q̄

−
i · Φ d+j + Yuij q̄

−
i · Φ̃ u+j

)
+ yi Ψ̄i · Φ `+i + h.c.

}
, (2.63)

5As an example, the seesaw mechanism to generate neutrino masses provides extra sources of CP-
violation via the Majorana phases involved in neutrinos mixing

6we also remind the puzzling question of strong CP-violation in QCD
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to be CP-violating, if and only if [3]

Im
{

det
[
YdYd,†, YuYu,†

]}
6= 0 . (2.64)

This can intuitively be related to the structures of Yukawa terms concerned in the
interactions. As an example, consider a generic fermion ψ with Yukawa coupling to the
SM Higgs

Yij ψ̄−i · Φ ψ+
j + Y?ij ψ̄

+
i · Φ̃ ψ−j . (2.65)

The CP acts as
CP(ψ̄−i · Φ ψ+

j )→ ψ̄+
i · Φ̃ ψ−j . (2.66)

So, we essentially move to the Hermitian conjugated on the first term of the equation
above. On the other hand, the Y matrices do not get modified acting with CP operator.
Therefore we find the SM to be completely CP-symmetric if and only if the Y matrices are
real, i.e. Yij = Y?ij . But how many CP-violating independent phases do we have? We have
three 3×3 complex Yukawa matrices, for a total of 27 complex coefficients, i.e 27 real and
imaginary parts. It is possible to reduce this number via a unitary rotation which leaves
invariant the three generators for each of the five representations of fermion species[3].
Doing so, we remove at most 15 real and 30 imaginary parameters. Nevertheless, a

U(1)B× U(1)e× U(1)µ× U(1)τ (2.67)

symmetry is left untouched, meaning that up to 26 imaginary parameters can be removed.
As a result, we have 12 real parameters and a phase. The 12 real parameters correspond
to the six quark masses, the three charged leptons masses, and three angles. The phase is
the only CP-violating source present in the SM, and is known as the Kobayashi-Maskawa
phase.

Going back to the SM Lagrangian (2.57), after EWSB occurs the quarks masses are
generated via the Higgs mechanism as shown in (2.59) by means of (2.58). This eventually
takes us to writing down the vector currents in the mass eigenstate basis. It turns out
that the only currents getting affected by the change of basis is

Jµ+(x) =
1√
2

3∑
i=1

Ū−i γµ
(
V µ,†
− V d

−

)
ij
D−j (x) =

(
Jµ−(x)

)?
. (2.68)

We now understand that the flavour changing weak interactions mix up the three
quarks up and the three quark down species by the Cabibbo-Kobayashi-Maskawa
mixing matrix

VCKM ≡ V u,†
− V d

− , (2.69)

which is a unitary 3× 3 matrix with three real angles and six phases. The form of this
matrix is not unique. A standard choice consists in

• Getting rid of all the possible permutation by ordering the up and down quarks by
their masses, leading to

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


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• Defining Pi to be unitary phase matrices, we can equivalently rotate to the mass
eigenstates by using

Ṽ i
− = P iV i

− Ṽ i
+ = P iV i

+,

with the mass basis being the same under this transformation. Nevertheless the
CKM matrix changes as

VCKM → PuVCKMP d,?. (2.70)

we fix this freedom [3] by requiring VCKM to have the minimal number of phases
compatible with the quark generations included, leading us to keep only one phase
in the mixing matrix. This phase is exactly the Kobayashi-Maskawa phase, i.e., the
same phase we obtained before from the three complex Yukawa matrices concerning
quarks and Higgs interactions.

We end this section by writing down the standard parametrisation for the CKM matrix,
suiting three Euler-like angles and the only CP-violating KM phase[1]:

VCKM =

 c12c13 s12c13 s13e
−iδKM

−s12c23 − c12s23s13e
iδKM c12c13 − s12s23s13e

iδKM s23c13

s12s23 − c12c23s13e
iδKM −c12s23 − s12c23s13e

iδKM c23c13

 . (2.71)

2.4 Shortcomings of the standard model

Today’s measurements performed at high energy colliders, as well as in low-energy pre-
cision experiments, confirms that the SM is able to explain pretty much all the particle-
physics observations with an unexpected precision. The last exciting discoveries at col-
liders being the Top-Quark (Fermilab, 1995 - [4]), the τ neutrino (Fermilab 2000 - [5])
and the Higgs boson (CERN, 2012 - [6]), with no convincing sign of BSM physics. On
the other hand, hints of BSM physics appear to us considering theoretical considerations
on the one hand and astrophysical/cosmological observations. In particular:

• we now know neutrinos to be massive, yet we do not know the mechanism through
which their masses is generated. In addition, we do not know whether they are
Majorana or Dirac fermions. Finally, their mixing could also be the source of
additional CP-violation;

• we observe a baryon-anti-baryon asymmetry in today’s universe, for which mecha-
nisms are in place in the SM but whose amount cannot be explained by SM;

• we have evidence that the Universe is mostly made by some kind of non-interacting/non-
collisional kind of matter, i.e. the Dark Matter, which cannot find a full explanation
in the SM.

We aim to explore whether all of these facts (and other theoretical limitations) can be
explained by a BSM theory that leaves at higher energy scales.
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In the last decades, different theoretical scenarios have been built trying to answer
these questions. On the other hand, the phenomenological and experimental conse-
quences of such theoretical constructions have so far eluded us. A complementary and
model independent approach is to assume that the new physics energy scale Λ is beyond
our reach, and only indirect effects (from the virtual exchange of new states) could be
detected.

Under this hypothesis, the Effective Field Theory approach is the most promising
one, as it provides a consistent QFT framework where to analyses possible deviations
from the SM. In the context of the problems outlined above EFT’s also offer a context
where to analyse/solve problems:

• Majorana neutrino mass generation can be obtained from the only 5-dimensional,
non-renormalisable, gauge independent operator which encompasses, for instance,
all different types of see-saw mechanisms[7];

• by adding suitable operators to the SM, it is possible to achieve electroweak phase
transition, understood to directly lead to the observed matter-antimatter asymme-
try [8];

• Dark Matter candidates can be added and EFTs built to include them in rather
model independent way [9];

last but not least, the EFT approach is general and can experimentally tested both in
collider [10, 11] and non-collider [12, 8] experiments.

2.4.1 Electroweak baryogenesis

Electroweak baryogenesis is understood as one of the most attractive and promising
ways to account for the observed baryon asymmetry of the Universe. The assumptions
are simply that in the phase where hot radiation dominated universe, the electroweak
symmetry SU(2)× U(1)y was unbroken.

As the universe temperature cooled down, the Higgs acquired a non zero VEV, break-
ing the EW gauge symmetry to the U(1)em subgroup. During this phase transition, if
first order, the EWBG occurs. In short, the electroweak Phase Transition (EWPT) pro-
ceeds via bubble formation in U(1)em broken phase nucleating within the non-broken
plasma around and then expanding. By a non-perturbative process, the so-called EW
sphaleron processes [13, 14], the asymmetry between the internal and external regions of
the bubbles, the presence of sufficiently large CP-violation, and the fact that the bubble
expand, lead to formation of a net baryon number inside the bubble which we currently
call our Universe.

In 1967, Andrei Sakharov identified three minimum properties which are required for
baryogenesis to occur:

• at least one baryon number violating process,

• C and CP violation,
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• interactions outside thermal equilibrium.

In the SM, mechanisms that lead to satisfying the three conditions above are present. On
the other hand, our current understanding is that within the SM, the size of the effects
are not sufficient to generate enough baryons as fast as needed to achieve EWBG [15].
This is due to the smallness of the CP violation in the SM and the SM Higgs potential,
which implies a second order electroweak phase transition. A strong first order phase
transition could instead occur in extensions of the SM.

So the question now is :

How can we obtain both a modification of the Higgs potential and
enough CP-violation by minimally deforming the SM?

As mentioned above, it is possible to achieve baryogenesis in the framework of an
EFT. This is essentially due to the fact that these conditions can be satisfied taking into
account effects from non-renormalisable/higher-dimensional operators, generated
after integrating out heavy-particles/degrees-of-freedom of a complete theory. After this
short review of the SM, we are ready to consider EFTs more in detail.

In the next chapter we review the idea and some basic aspects of effective field theo-
ries, while the full discussion about which models should be considered for our goals and
the corresponding theoretical/experimental/observational constrains is in the following
chapters.
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CHAPTER 3

Effective field theory approach

This chapter is dedicated to reviewing key concepts and technical developments of EFT
methods. The goal is to construct a solid theoretical framework to face up the arguments
discussed in the succeeding chapters.

We start with a brief introductory discussion on the motivations behind this approach
in section 3.1. We review how mass and energy scales play a different role in this picture
in the relative subsection 3.1.1, using [16] as the main reference.

Then, in section 3.2 we review on how the EFT approach takes place. We consider
a full (referred as an ordinary field theory) spinor/meson interacting theory and show
how matching to the corresponding EFT can be obtained up to the one-loop order in
perturbation theory. The entire discussion is based on the work [17], with the results
reproduced independently.

Finally, in section 3.3 we generalize this approach to the standard model effective
field theory. We discuss on operator basis and phenomenological Lagrangians, eventually
characterising an Higgs extended sector which will be introduced in chapter 4. The main
review reference exploited here being [11].

3.1 Physics and philosophy behind

Most of the times, phenomena involving different scales can be analysed by considering
only one relevant scale at a time. Classical Mechanics is the straightforward example in
which this statement is true. If one is looking for extreme precision, then it is mandatory
to consider classical mechanics only an approximation of reality, or according to the
language to which we will refer, an effective description.

To get a whole understanding, one must take all the necessary steps into the vast area
of fundamental physics, starting from special relativity and quantum mechanics, arriving
to the quantum theory of fields.
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The standard model is the quantum field theory of fundamental particles and inter-
actions, and represents one of the most advanced steps in our understanding of nature.
Even though, as we discussed in section 2.4, the SM is found to be an incomplete the-
ory, which cannot be extended to arbitrary large energy-momentum scales owing to
the raw/non-smooth structure of the quantum fields at short scales [18]. This feature
inevitably degenerates into the so called ultraviolet divergences of the Feynman loop
diagrams. To fix this behavior, several procedures were developed over the years.

Today, the standard method to deal with infinities is known as Regularisation,
together with the strictly related Renormalisation. In a nutshell, the key concept is
the possibility to separate the finite and the infinite parts of the Feynman diagrams using
a proper integral-regularisation technique, and to cast away these infinities introducing
counter-terms inside the Lagrangian with a proper renormalisation scheme. As several
regularisation techniques and subtraction scheme can be defined, this procedure leads to
arbitrariness in the finite terms, which, however, is not physical.

Nowadays, supported by an incredible matching with the experimental results, we
understand these techniques to be trustful.

But what about the infinities? Why do we simply cast away them?
The easy way to understand this prescription is thinking at QFTs and the SM as

theories constructed to describe only a finite range of energy and length scales. Inte-
grating over loops inside Feynman diagrams does not respect this constrain, because the
integration is made on the unbounded Fourier space of momenta. Regularising and then
renormalising the divergences translates into an high energy-momenta cutoff, fixed to a
finite and arbitrary scale.

Renormalisation can be simply thought of as a method to manage contributions
from higher scales and writing an effective field theory which is not sensitive to physics
happening at very high energies.

Now, after this brief discussion, in the following we will enter the details concerning
the charming world of effective field theories.

3.1.1 On mass and energy scales

Before getting into the details, we briefly argue about the subtle differences between
mass and interaction/effective energy scales, in order to highlight their different physical
meaning and to better understand the process of matching (a distinction that helps in
highlighting their different physical meaning) to an EFT.

To discuss what will follow it is necessary to partially abandon natural units, which
we tacitly assumed up to know by taking ~ = c = 1. To distinguish between energy E
and length L−1, but not between length and time T , we keep c = 1.

Now, a general SM Lagrangian density of dimension [L] ≡ EL−3 contains

• scalar fields → [φ] ≡ (EL−1)1/2 ,

• vector field → [Aµ] ≡ (EL−1)1/2,

• spinor fields → [ψ] ≡ E1/2L−1,
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• 4-derivatives → [∂µ] ≡ L−1,

• Couplings →

{
[g] = [y] ≡ (E−1L−1)1/2 ,

[λ] ≡ E−1L−1 .

We maintained the same conventions of the former chapter, so that g2, λ, y2 are respec-
tively, the gauge, scalar quartic and Yukawa couplings.

We remark that:

1. all the couplings appear to be dimensional, so it is worth to simplify the notations
introducing the coupling and mass units as

C ≡ 1/
√
EL , M̃ ≡ 1/L ; (3.1)

2. it is possible to demonstrate that every 1-loop integral carries an ~, so that for
each loop we have multiplicative factors of ∼ ~ki/(4π)2, with ki = g2, λ, y2, which
do not contribute modifying the couplings dimension. This fact is also extended
mutatis-mutandis to any loop order.

Now, considering a generic operator1 included in L as

L ⊃ 1

Λd−4
∂ndΦnbψnf , (3.2)

with Φ = (φ,Aµ), it is possible to guess the dimensions of Λ, i.e. the effective scale.
The meaningful fields and parameter dimensions introduced above can be now ex-

pressed as functions of the units of mass and coupling.
We have

[φ] = [Aµ] ≡ M̃C−1 , [ψ] ≡ M̃3/2C−1 , (3.3)

so that

[L] =
M̃nd+nb+

3
2
nf

C−(nb+nf )Λd−4
. (3.4)

Then, as [L] ≡ M̃4/C2, and as nb + 3
2nf + nd = d, we immediately obtain the

dimensions of the effective scale, namely

[Λ] =
M̃

C
n−2
d−4

, (3.5)

where n = nb + nf .
Equation (3.5) gives us the minimal number of couplings required to define the scale

measuring the strength of effective interactions.
we are eventually lead to understand the differences between mass and scales by

the fact that the exponent of C is always positive, and so scales and masses are not
commensurable quantities.

1nb, nf , nd are respectively for numbers of bosons, fermions, and derivatives.
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Moreover, the physical meaning of these two quantities is intimately different, as the
mass is associated with the energy at which new degrees of freedom do appear, while the
energy scale is associated with the limit over which the theory becomes strongly coupled
if no degrees of freedom do modify the effective description [16].

To summarize and show this fact practically, let us take a λφ4 Lagrangian describing
a massless complex scalar field invariant under the global group of phase transformation
U(1), namely

L =
1

2
gµν(∂µφ)?∂νφ− λ

(
φ?φ− v2

2

)2

. (3.6)

Then, taking the U(1) symmetry to be broken by the following field parametrisation
over it’s VEV

φ =
e
iχ(x)
v

√
2

(v + γ(x)) , 〈0|φ |0〉 =
v√
2
, (3.7)

we are lead to

L ⊃ 1

2

[
1 +

γ2

v2
+ 2

γ

v

]
∂µχ∂µχ−

1

2
γ
(
�+m2

γ

)
γ , (3.8)

where m2
γ = 2λv2, and where other therms arising were neglected, as irrelevant to this

example.
Here we see two interaction vertexes concerning both χ and γ.
At energies far below the mass of γ it is possible to integrate out this field by the

procedure introduced in Appendix A. Doing so, we determine the EFT that describes
the interactions of the so called Nambu/Goldstone boson, namely

Figure 3.1: Full theory (left) vs effective theory (right) diagrams. Integrating out the
radial γ field (continued line), we are left with the momentum dependent four scalar
diagram in the effective theory, with the Λ scale identified in the matching procedure
illustrated.

Leff =
1

2
∂µχ∂µχ+

1

Λ4
(∂µχ∂µχ)2 , (3.9)

with Λ4 = m2v2.
From this formula we confirm the differences between mass and energy scales. In

fact, m is the mass at which the particle responsible of the higher dimensional interaction
appears, while Λ is the scale at which the theory becomes strongly coupled.
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3.2 Illustrating the process

After these introductory remarks, we reserve this section to be dedicated to the intro-
duction of EFT techniques from a quantitative perspective.

As discussed, the point of departure for EFTs is to humbly accept that any given
theory is likely to have some short-distance or UV cut-off, Λ, beyond which it is invalid.
Then, we proceed by dropping the constraining criterion of renormalisability, welcoming
the introduction of d > 4 terms local in space-time.

That’s to say that an effective Lagrangian is in principle defined by

Leff = Ld64 +
∞∑
d=5

cd
Λd−4

Od . (3.10)

The goal of this picture will be to describe the infrared physics of a more general full
theory, taking into account how the ultraviolet physics can also influence this low energy
behavior.

Following this scheme, we should consider only light degrees of freedom in the EFT,
dropping the heavy ones2.

Formally, these particles are integrated out of the action by a functional path
integration over the heavy field involved.

That is, mathematically speaking3∫
DϕH exp

{
i

∫
dx L(ϕ`, ϕh)

}
= exp

{
i

∫
dx Leff(ϕ`)

}
. (3.11)

After that, it is clear that the Leff in (3.10) is a function of the solely light states ϕ`,
and that the cd ≡ cd(µ) are the Wilson coefficients describing the dynamics of the heavy
fields.

In the following section we will illustrate the procedure of Matching to the effective
and full theory results, taking as example a Yukawa theory involving two scalar states,
and more precisely an heavy and a light one.

1. In section 3.2.1 we introduce the spinor/mesons interaction model and proceed to show how
the tree-level matching procedure is performed. In particular we consider the 8-dimensional
EFT resulting after the integration out of the heavy scalar.

2. In section 3.2.2 we consider 1-loop corrections in the EFT.We show how these contributions
affect the Wilson coefficients by renormalisation group running.

3. In section 3.2.3 we illustrate the process of matching to the 1-loop order. We start from a
simplified full theory with a single heavy scalar, proceeding to match in the corresponding
6-dimensional EFT.

4. Finally, in section 3.2.4 we consider the same model of 3.2.3. We still perform 1-loop
matching calculation, this time considering the fermion as the heavy degree of freedom.

2The dividing line between light and heavy states is based on whenever or not the particles can be
produced on shell at the available energy.

3` is for light, h is for heavy.
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3.2.1 Mathematical formulation and tree-level matching

Let L be a Yukawa-like Lagrangian with two different scalar fields carrying and exchang-
ing interactions with a matter field. In the following, without arguing about Hierarchy
problems, we assume

• ϕ` a light scalar field of mass m ,

• ϕh a heavy scalar field of mass M ,

so that M >> m.
For the sake of simplicity, we do not consider quartic interactions (and self-interactions)

among scalars. So, the full theory Lagrangian reads:

Lfull = iψ̄ /∂ψ +
1

2
∂µϕ`∂µϕ` −

m2

2
ϕ2
`

+
1

2
∂µϕh∂µϕh −

M2

2
ϕ2
h − λψ̄ψϕh − ηψ̄ψϕ`. (3.12)

In ordinary (and so in effective) field theory, the S-Matrix, or scattering operator, is
defined by the relation

S = T exp

{
− i
~

∫ +∞

−∞
dt Vint(t)

}
, (3.13)

where Vint(t) is the potential in the Interaction Picture, in which the time evolution
is completely determined by the free part H0 of the complete, self-adjoint, Hamiltonian
H = H0 + V of the quantum-mechanical system [1].

We would now like to match to the EFT where the heavy scalar has been integrated
out. To reach this goal we consider the diagrams in 3.2, where only heavy scalars are con-
sidered as intermediate states. The only non zero S-matrix element for the corresponding
scattering process is given by

S = I− iλ
∫

dx
{
ϕh(x)ψ̄(x)ψ(x)

}
−λ2

∫
dx

∫
dy T

{
ϕh(x)ψ̄(x)ψ(x)ϕh(y)ψ̄(y)ψ(y)

}
+ . . . . (3.14)

Owing to the Wick Theorem, it turns out that the only non-zero S-Matrix element for
the ψψ → ψψ scattering process in 3.2, is given by

Afull = (−iλ)2 〈0| a(p3)a(p4) : ψ̄
(+)
3 ψ(−)

y ψ̄(+)
x ψ(−)

y : a†(p1)a†(p2) |0〉Dxy
= (−iλ)2 a(p3)ψ̄y︸ ︷︷ ︸

ū(p3)

ψya
†(p4)︸ ︷︷ ︸

u(p1)

Dxy a(p4)ψ̄x︸ ︷︷ ︸
ū(p4)

ψxa
†(p2)︸ ︷︷ ︸

u(p2)

(3.15)

= ū3u1ū4u2(−iλ)2 i

(p3 − p1)2 −M2
− 3↔ 4 ,
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Figure 3.2: Tree-level diagrams for ψψ scattering. The continuous lines with arrows
are for the fermions, while the dashed lines for the heavy scalars. We maintain this
convention till the end of this section if it is not specified differently.

where ui indicates the spin state u(pi) and where in the last term on the r.h.s. we took
into account the impulse interchange between 3 and 4.

The whole point here is that this contribution can be generated into the correspondent
effective field theory.

As said, the idea behind is to include only the light degrees of freedom into a new La-
grangian. This is made by taking into account the residual interactions between light and
heavy fields, which in the EFT are manifested as higher-dimensional/non-renormalisable
interactions between the solely light fields.

Doing so, we understand the Yukawa interaction between the fermion and the heavy
scalar to generate the (zero order momenta) Lagrangian

Leff = iψ̄ /∂ψ +
c

2
ψ̄ψψ̄ψ . (3.16)

We can reproduce the scattering amplitude we calculated in the full theory by considering
the tree level diagram in 3.3.

We have
Aeff = ū3u1ū4u2(ic)− 3↔ 4 . (3.17)

As can be easily seen, the Dirac structure of the theory is identical both on the full
and the effective sides, so we can proceed by focusing on the bosonic structure.

Figure 3.3: Tree-level diagram for EFT ψψψψ scattering.

In the full theory it is possible to approximate the Klein-Gordon propagator in equa-
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tion (3.15) according to

Afull ∼ (−iλ)2
i

(p3 − p1)2 −M2
=
−iλ2

M2

[
1(

p3−p1
M

)2 − 1

]

' iλ2

M2

[
1 +

(
p3 − p1
M

)2

+O(p4/M4)

]
. (3.18)

So, comparing this expansion to the amplitude in (3.17), the straightforward guess is
c = λ2

M2 .
A Dirac spinor field carries engineering dimensions in natural units of [E]3/2. This

means that a 4-spinor interacting term such as the one in (3.16) necessarily requires a
squared energy-inverse coupling constant to get the action dimensionless, which is exactly
what we obtained in the matching procedure.

Moving to the next order in momentum expansion we get another 4-spinor interaction
defined in the Lagrangian

Leff2 = iψ̄ /∂ψ +
λ2

2M2
ψ̄ψψ̄ψ + d∂µψ̄∂

µψψ̄ψ . (3.19)

We calculate the corresponding amplitude, proceeding then to match to the 1-st
momentum dependend term of the full theory amplitude.

It is helpful to remind that, comparing full and effective theories, we can choose
the external momenta to be either on or off shell. In this example is easier to put the
momenta on shell, so that the amplitude follows to be dependent only by mixed momenta
contributions.

In fact, if
p2
i = 0 (i = 1, . . . , 4) ,

then

Afull ' i
λ2

M2

(
1− 2

p1 · p3

M2
+O((p1 · p3/M)4

)
− 3↔ 4 . (3.20)

On the effective side, the 4-fermions d-coupled term corresponds to the amplitude

Aeff2 = (id)ū3u1ū4u2

(
p3 · p1 + p2 · p4

)
− 3↔ 4 . (3.21)

As the momentum conservation implies

p1 · p2 = p3 · p4 , p1 · p3 = p2 · p4 , p1 · p4 = p2 · p3 , (3.22)

we obtain d = −
(
λ2/M4

)
. This time we see an ∼ 1/M4 behavior, as the momentum

dependent term is 8-dimensional.
The d-coupled operator we introduced in Leff2 is not the only one possible with same

dimension and momenta structure. In principle, we also have the operators

(∂2ψ̄)ψψ̄ψ + h.c. , ∂µψ̄ψψ̄∂
µψ . (3.23)
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It is possible to show [17] that ∂2 terms are vanishing in the EFT owing to the
fermion equations of motion. For this reason, we have the following relation between the
remaining derivative terms

∂µψ̄ψψ̄∂µψ + ψ̄∂µψψ̄∂µψ + ψ̄ψ∂µψ̄∂µψ = 0 (3.24)

Moreover, we also mention that it would be possible to introduce the 6-dimensional
operator

ψ̄γµψψ̄γµψ . (3.25)

In effective field theory it is in principle necessary to consider all these non-equivalent
operators (up to the fixed dimension considered).

Anyhow, as our principal goal here is to illustrate the main features involving EFT
techniques, we will not include these operators in the description.

3.2.2 1-loop corrections and renormalisation group running

After this first example, we consider the whole effective theory picture resulting by in-
tegrating out the heavy field to the 1-loop level, focusing on how RG evolution plays a
role here.

The up-to-dimension-8 effective theory Lagrangian L which we will now consider is

Leff3 = iψ̄ /∂ψ +
c

2
ψ̄ψψ̄ψ + d∂µψ̄∂µψψ̄ψ

+
1

2
∂µϕ`∂µϕ` −

m2

2
ϕ2
` − ηψ̄ψϕ` , (3.26)

with the matched parameters being

c =
λ2

M2
, d = − λ2

M4
. (3.27)

Our next goal will be to calculate the ψ̄ψ → ψ̄ψ scattering amplitude to the 1-loop
order in the effective theory. We start by calculating the self-energy Σeft of the fermion.

We have

= (−iη)2

∫
ddk

(2π)d
i(/k + /p)

(k + p)2

i

k2 −m2
. (3.28)

For this kind of integral is it possible to use the Feynman Formula, which in the
present case reduces to [19]

1

A1 ·A2
=

∫ 1

0

dx(
xA1 + (1− x)A2

)2 , (3.29)
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so that, with the substitution ` = k + xp, the fermion self-energy follows as

Σeft(p, η) = η2

∫ 1

0
dx

∫
dd`

(2π)d

/̀+ (1− x)/p

x2
(
`2 − (1− x)(p2 −m2)

x︸ ︷︷ ︸
∆2

)2
. (3.30)

We choose to keep the singular contributions to this integral. In fact, the finite terms
do not contribute to the Renormalisation Group (RG) calculations to which we are
interested. For this reason, we proceed considering the second term on the right hand
side.

Solving, we obtain

Σeft(η, p) =

∫ 1

0
dx

∫
dd`

(2π)d
η2 (1− x)/p

(`2 −∆2)

=

∫ 1

0
dx
( η

4π

)2(1

ε̄
+ ln

4πm2

∆2

)
(1− x)/p+O(ε) , (3.31)

and so

Σeft(η, p) =
1

ε

η2

16π2

∫ 1

0
dx (1− x)/p+ finite =

iη2/p

32π2

1

ε
+ finite . (3.32)

This concludes our analysis to the kinetic contribution.
Then, we may proceed with the 1-loop correction to the 4-fermions vertexes, which

are shown in figure 3.4. Owing to the UV divergent nature of these diagrams, it is
possible to neglect the external momenta and masses, still if we are interested to the
solely divergent parts.

Realising that every top/bottom pair in figure 3.4 makes the same contribution to
the scattering amplitude, we may proceed by just multiplying by 2 each topology.

The calculation follows as

(A1 +A2)eft = 2 · 2η2c

∫
ddk

(2π)d
/k

2

k6
= −2η2c γµγν

∫
ddk

(2π)d
kµkν
k6

= −2η2c

∫
ddk

(2π)d
1

k4
= − 2η2c

16π2

i

ε
+ finite ; (3.33)

(B1 +B2)eft = 2 · η2c
(∫ ddk

(2π)d
kµkν
k6

)
· ū3γ

µu1ū4γ
νu2

=
2iη2c

4(4π)2

1

ε
· ū3γ

µu1ū4γµu2 + finite ; (3.34)
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(C1 + C2)eft = −2 · η2c
(∫ ddk

(2π)d
kµkν
k6

)
· ū3γ

µu1ū4γ
νu2

= − 2iη2c

4(4π)2

1

ε
· ū3γ

µu1ū4γµu2 + finite . (3.35)

Eventually, these contributions add up to

(A1 +A2 +B1 +B2 + C1 + C3)eft = − 2η2c

16π2

i

ε
+ finite , (3.36)

which coincide with A1 + A2. In fact, the B and the C topologies are canceling each
other owing to the opposite momentum directions.

Figure 3.4: 1-loop contributions to the 4-fermions interaction vertex. The interaction is
still point-like, but the fermion flow through the vertex is emphasised. We will refer to
these diagrams as (A,B,C)eft with the suffix 1,2 indicating respectively the first and
the second row.

We now introduce the bare and dressed parameters and fields in order to define
the 1-loop renormalised Lagrangian. We can think of the original Lagrangian as being
expressed in terms of the bare fields and bare coupling constants, and rescale

ψ0 =
√
Zψψ , c0 = cµ2εZc , η0 = ηµεZη . (3.37)
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This choice on the couplings is made in order to keep fixed the dimensions in an
arbitrary d = 4− 2ε space-time.

The 1-loop renormalised Lagrangian reads

Leff,R = iψ̄ /∂ψ + µ2ε c

2
ψ̄ψψ̄ψ − µεηψ̄ψϕ` + i(Zψ − 1)ψ̄ /∂ψ (3.38)

+ µ2ε c

2
(ZcZ

2
ψ − 1)ψ̄ψψ̄ψ − µεη(ZηZψ − 1)ψ̄ψϕ` ,

where the counter terms in can actually be identified as

Zψ − 1 = − η2

2(4π)2

1

ε
; c(ZcZ

2
ψ − 1) =

2cη2

(4π)2

1

ε
. (3.39)

So, we easily get:

Zψ = 1− η2

2(4π)2
1

ε
, (3.40)

Zc =
(

1 +
2η2

(4π)2
1

ε

)
·
(

1− η2

2(4π)2
1

ε

)−2
=

(
1 +

2η2

(4π)2
1

ε

)
·
(

1 +
η2

(4π)2
1

ε
+O(1/ε2)

)
(3.41)

= 1 +
3η2

(4π)2
1

ε
+O(1/ε2) .

The standard way to calculate the Renormalisation Group Equations (RGEs)
is to exploit the fact that the bare quantities do not depend on the renormalisation scale.
So, considering the Lagrangian (3.38), we have

µ
d

dµ

(
cµ2εZc

)
=
(
βcZc + 2εcZc + c

dZc
d logµ

)
µ2ε = 0 (3.42)

d logZc
d logµ

= −c−1βc − 2ε , (3.43)

where the βc = µ d
dµc function has been introduced.

Following the same argument, it is easy to get the βη function from the renormalised
η coupling,

µ
d

dµ
(µεηZη) =

(
εµεηZη + µεβηZη + µεη

dZη
d logµ

)
= 0 , (3.44)

which implies

βη = −ηd logZη
d logµ

− εη . (3.45)

Now, we know that

dZc
d logµ

= µ
d

dµ

(
1 +

3η2

(4π)2

1

ε

)
=

6η

(4π)2

βη
ε
. (3.46)
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As the derivative of logZη term would give rise to an higher-order term in η, we
choose to retain only εη term in the βη expansion in (3.45). It follows

µ
d

dµ
Zc = − 6η2

(4π)2
→ βc =

6η2

(4π)2
c , (3.47)

c(m) =
λ2

M2

(
1− 6η2

(4π)2
log

M

m

)
. (3.48)

Then, it is possible to show that calculating the running of βη we obtain

βη =
5η3

(4π)2
, (3.49)

and so

µ
dη

dµ
=

5η3

(4π)2
(3.50)

dη

η3
=

5

(4π)2

dµ

µ
(3.51)

−1

2

1

η2

∣∣∣µ1
µ2

=
5

(4π)2
logµ

∣∣∣µ1
µ2

(3.52)

1

η2(µ2)
− 1

η2(µ1)
=

10

(4π)2
log

µ1

µ2
. (3.53)

Substituting this behavior into the definition of βη, we have

µ
dc

dµ
=

6η2

(4π)2
c ,

dc

c
=

6η2

(4π)2
d logµ (3.54)

dc

c
= − 6

10
η2d

(
1

η2

)
,

∫ M

m

dc

c
=

3

5

∫ M

m
2

dη

η
(3.55)

c(m) = c(M)
( η2(m)

η2(M)

)3/5
. (3.56)

The important point to remark is that the Yukawa interaction ηψ̄ψϕ` receives cor-
rections from both the light and heavy scalar fields. Also, the lack of renormalisability
never played any role in the previous calculations.

3.2.3 1-loop matching

We will now illustrate the process of matching to the 1-loop order in perturbation theory.
We take the full theory Lagrangian in (3.2), considering only the heavy scalar, and

the effective theory in (3.3). We also consider a small σ mass for the fermion, in order
to avoid possible infrared divergences in the loop integrals.

With these positions, the full theory Lagrangian now reads

Lfull2 = iψ̄ /∂ψ − σψ̄ψ +
1

2
∂µϕh∂µϕh −

M2

2
ϕ2
h − λψ̄ψϕh , (3.57)
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Figure 3.5: Full theory diagrams from the Lagrangian in (3.57). We will refer to them
as a,b,c,d , from left to right.

with the corresponding Feynman diagrams illustrated in figure 3.5.
We then proceed with the evaluation. By using the Feynman parametric formula,

and introducing
UV = −ū3γ

µu1ū4γ
νu2 , US = ū3u1ū4u2 , (3.58)

we have

(a) = (−iλ)4

∫
ddk

(2π)d
ū3
i(/k + σ)

k2 − σ2
u1

i2

(k2 −M2)2
ū4
i(−/k + σ)

k2 − σ2
u2

= λ2

{
− ū3γ

µu1ū4γ
νu2︸ ︷︷ ︸

UV

∫
ddk

(2π)d
kµkν

(k2 − σ2)2(k2 −M2)2

+ ū3u1ū4u2︸ ︷︷ ︸
US

∫
ddk

(2π)d
σ2

(k2 − σ2)2(k2 −M2)2

}
(3.59)

=
iλ4

(4π)2

{
UV
2

∫ 1

0
dx

x(1− x)

xM2 + (1− x)σ2

+ σ2US

∫ 1

0
dx

x(1− x)

(xM2 + (1− x)σ2)2

}
.

Evaluating the integrals as∫ 1

0

dx
x(1− x)

xM2 + (1− x)σ2
=

(
M2 + σ2

)
log
(
M2
)
−
(
M2 + σ2

)
log
(
σ2
)
− 2M2 + 2σ2

(M2 − σ2)
3∫ 1

0

dx
x(1− x)

(xM2 + (1− x)σ2)2
=

2M2σ2 log σ2 +
(
M2 + σ2

) (
M2 − σ2

)
− 2M2σ2 logM2

2 (M2 − σ2)
3

and Taylor expanding for σ → 0, we obtain

(a) =
iλ4

(4π)2

(
UV

( 1

4M2
+

σ2

4M2

(
3− 2 log

M2

σ2

))
+ US

σ2

M2

(
log

M2

σ2
− 2
))

. (3.60)
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This result can be extended to the (b) diagram, inverting the sign of the momentum
in one of the fermion propagators.

Doing so, we get

(b) =
iλ4

(4π)2

(
− UV

( 1

4M2
+

σ2

4M2

(
3− 2 log

M2

σ2

))
+ US

σ2

M2

(
log

M2

σ2
− 2
))

, (3.61)

and in the same way, we can calculate the divergent diagrams

(c) = −4
iλ4

(4π)2
US

(3

ε̄
+ 3 log

µ2

σ2
+ 1
)

+ . . . (3.62)

and

(d) = −2
iλ4

(4π)2M2
US

(
1

ε̄
+ 1 + log

µ2

M2
+

σ2

M2

(
2− 3 log

M2

σ2

))
+ . . . . (3.63)

Then, the sum of all of these contributions is

(a+ · · ·+d) =
2iλ4US

(4π)2M2

(
−1

ε̄
− 1− log

µ2

M2
+

σ2

M2

(
−6

ε̄
− 6 log

µ2

σ2
− 6 + 4 log

M2

σ2

))
. (3.64)

Moreover, it is straightforward to calculate the fermion self-energy Σfull2(p,M) con-
tribution of the heavy scalar to the 1-loop level. We have

= (−iλ)2

∫
ddk

(2π)d
i(/k + /p+ σ)

(k + p)2 − σ2

i

k2 −M2

= λ2

∫ 1

0
dx

∫
dd`

(2π)d

/̀+ (1− x)/p+ σ

x2
(
`2 −∆2

)2 (3.65)

= i/p
λ2

2(4π)2

(1

ε̄
+ log

µ2

M2
+

1

2
+ . . .

)
= Σfull2 ,

were we proceeded following the steps of the equation (3.28).
Now, we consider the effective Lagrangian

Leff4 = izψ̄ /∂ψ − σψ̄ψ +
c

2
ψ̄ψψ̄ψ (3.66)

and calculate the scattering amplitude related to the ones we calculated in the full theory.
The self-energy vanishes in this EFT, so we can proceed by evaluating the 4-fermion

amplitudes.
Considering the diagrams in figure 3.6, we have

(a)eft =
c2

4

∫
ddk

(2π)d
ū3i(/k + σ)u1ū4i(/k + σ)u2

(k2 − σ2)2

= c2

∫
ddk

(2π)d
UV k

2 + USσ
2

(k2 − σ2)2
, (3.67)

41



from which we can easily isolate the divergent contribution to the σ2 term on the r.h.s.
as

(a)eft =
ic2US
(4π)2

(
1

ε̄
+ log

µ2

σ2

)
+ . . . . (3.68)

Figure 3.6: 1-loop diagrams to the c2 order from the effective Lagrangian in (3.66). We
will refer to them as (a, b, c, d)eft , from left to right, starting from the upper row.

Then, the calculation for the (b) diagram is essentially the same.
We have

(a+ b)eft = 2
ic2US
(4π)2

(
1

ε̄
+ log

µ2

σ2

)
+ . . . , (3.69)

were we took into account the fact that, owing to the opposite directions of the momenta
flow, the UV part of the diagrams vanish in the sum.

The same way it is possible to calculate

(c)eft = −4
ic2σ2

(4π)2
US

(
3

ε̄
+ 3 log

µ2

σ2
+ 1

)
, (3.70)

(d)eft = 2
ic2σ2

(4π)2
US

(
3

ε̄
+ 3 log

µ2

σ2
+ 1

)
. (3.71)

So that

(a+ . . . d)eft = −2ic2σ2

(4π)2
Us

(
2

ε̄
+ 2 log

µ2

σ2
+ 1

)
= − 2iλ4σ2

(4π)2M4
Us

(
2

ε̄
+ 2 log

µ2

σ2
+ 1

)
. (3.72)

42



Notice that the degree of divergence of these EFT diagram is higher than the FT
ones. For example, the (a) diagram of figure 3.6 is quadratically divergent, while the (a)
diagram in figure 3.5 is finite.

The only scale which appears in last expansion is contained inside the logarithm. On
the other side, taking a look to the full theory results , we easily see that multiple scales
are involved. In fact, we find

log
µ2

M2
, log

M2

σ2
, log

µ2

σ2
(3.73)

terms.
Now, taking into account that the coefficients in the front of the log σ2 terms are

identical both in the effective and in the full theory sides, we understand this scale to be
the so called Matching Scale.

In other words, we switched to an effective low-energy theory which must look iden-
tical to the IR behavior of the full theory, and we found back the fact that non-analytic
terms involving only the light degrees of freedom are identical.

Taking the difference between the full and the effective results, evaluated on µ = M ,
we are able to identify the 1-loop corrections to the tree-level c = λ2/M2 coefficient.
Using the M̄S subtraction scheme, we have

c(µ = M) =
λ2

M2
− 2λ4

M2(4π)2
− 10λ4σ2

M4(4π)2
. (3.74)

Definitely, as the EFT fermion self energy vanishes, we simply identify

z = 1 +
λ2

4(4π)2
, (3.75)

from (3.65), exploiting the M̄S-scheme.
The EFT Lagrangian now reads

Leff4,R = i

(
1 +

λ2

4(4π)2

)
ψ̄ /∂ψ − σψ̄ψ +

1

2

(
λ2

M2
− 2λ2

M2(4π)2
− 10λ4σ2

M4(4π)2

)
ψ̄ψψ̄ψ . (3.76)

Finally, the physical scattering amplitude are obtained after the rescaling
√
zψ → ψcanonical . (3.77)

This gives an additional contribution to the λ4 term in equation (3.74), which is not
obvious to consider at this level.

In fact, other 4-fermions interaction, say the d-coupled interaction vertex in (3.26),
can contribute to this λ4 order in the renormalisation group running, eventually gener-
ating the same contribution.

Anyhow, we will not argue about this eventuality for now.
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3.2.4 Heavy fermion/light Scalar: Sketch of The calculations

This last subsection is reserved to the case in which the fermion is the heavy field to
integrate out. We also choose to consider just a single scalar field ϕ.

The full theory Lagrangian reads

Lfull3 = iψ̄ /∂ψ −Mψ̄ψ − 1

2
∂µϕ∂µϕ−

m2

2
ϕ2 − ηψ̄ψϕ , (3.78)

with M >> m.
No diagrams with internal fermion line are present to the tree-level, so we have to

consider 1-loop diagrams. Getting started with the ϕ self-energy diagram in figure 3.7,
we find

Figure 3.7: 1-loop self-energy diagram for ϕ.

Σ(p,M, η) = (−1)(iηµε)2
∫

ddk

(2π)d
i2

(/k + /p+M)(/k +M)(
(k + p)2 −M2

)(
k2 −M2

)
= −4η2µ2ε

∫
ddk

(2π)d
k2 + kp+M2(

x((k + p)2 −M2) + (1− x)(k2 −M2)
)2

= −4η2µ2ε

∫ 1

0

dx

∫
dd`

(2π)d
`2 + p2(x− 1)x+M2 +

odd︷ ︸︸ ︷
`(1− 2x)p

(`2 −M2)2

= − 4iη2

(4π)2

[(3

ε̄
+ 1 + 3 log

µ2

M2

)(
M2 − p2

6
− p4

20M4
+ . . .

)]
. (3.79)

Then, it is possible to show that the 1-loop correction in figure 3.8 can be evaluated
as

Figure 3.8: 1-loop 4-points amplitude.
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Y(M,η, ki) = −1(−iηµε)4
∫

dd`

(2π)d
i(/̀+M)

`2 −M2
· i(

/̀− /k1 +M)

(`− k1)2 −M2
(3.80)

· i(
/̀+ /k2 + /k3 +M)

(`+ k2 + k3)2 −M2
· i(

/̀+ /k2 +M)

(`+ k2)2 −M2
+ 5 permutations

= − 8iη4

(4π)2

[
3
(1

ε̄
+ log

µ2

M2

)
− 8

]
+ . . . . (3.81)

In the corresponding effective theory we have to integrate out the heavy spinor field.
Doing so, we are left with the following tree-level free scalar field Lagrangian

L =
1

2
∂µϕ∂µϕ−

m2

2
ϕ2 . (3.82)

Which is lacking of any interaction content.
Finally, we obtain the 1-loop effective theory Lagrangian, setting µ = M in the full

theory 1-loop amplitudes, and by choosing the counter terms to cancel the 1
ε̄ poles in the

previous expressions.

Leff5,R =
(

1− 4η2

3(4π)2

) (∂µϕ)2

2
−
(
m2 +

4η2M2

(4π)2

)ϕ2

2
+

η2

5(4π)2M2

(∂2ϕ)2

2
+

64η2

(4π)2
ϕ2

4!
. (3.83)

Once again (as done in the former case in section 3.2.3), to obtain a consistent/physical
scattering amplitude we have to normalise the scalar field according to the coefficient of
the kinetic operator.

3.3 The SM as an effective field theory

Notwithstanding its predictive power, nowadays the SM is not understood to be a com-
plete theory of the microscopical world. In fact, we expect this framework to break up
as we raise and raise the energy scale at which experiments are running.

This motivation, through the years, has taken researchers to invest time on the de-
velopment of alternative approaches beyond the SM, to eventually be ready for some
evident deviations, and to improve accuracy in the interpretation of the already gathered
datas.

The standard model effective field theory turns out to be a particularly interesting
framework, to describe physics beyond the standard model in a model independent way.

Moreover, projecting measurements of the interactions of the known SM states into
an effective field theory framework is an important goal of the LHC physics program, so
we expect to get results and answers on the correctness of this approach in the proximal
future.
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Utilizing the SMEFT is based on the expectation that the experimental resolution
∆Er at LHC [11] 4 could be (in the future) such that

∆Er .
cip

2

gsmΛ2
. (3.84)

It seems to be reasonable to adopt this assumption for now.
Conversely, using the standard model is equivalent to assume that

∆Er >>
cip

2

gsmΛ2
, (3.85)

will always hold when interpreting the data.
The SMEFT generalizes the SM with a set of higher order SU(3) × SU(2) × U(1)

invariant operators, under the assumption that the corresponding BSM states/fields have
masses greater than the measured Higgs VEV, which currently sets the mass scale of all
the SM states.

The related Lagrangian is obtained with the same recipe already introduced in equa-
tion (3.10), namely

LSMEFT = LSM +

∞∑
d=5

cd
Λd−4

Od . (3.86)

The general algorithm to determine operator bases at higher orders was developed
by [20].

However, in the following, we will mainly be concerned with the SMEFT Lagrangian
truncated up to 6-dimensional operators. A characteristic still embedded in this con-
struction is that the Higgs VEV gets modified by the operator c6

Λ2O6.
In fact,

L ⊃ −λ
(

Φ†Φ− v2

2

)2
+
c6

Λ2
(Φ†Φ)3 , (3.87)

leading to a new potential’s minimum given by

〈Φ†Φ〉 =
v2

2

(
1 +

3c6v
2

4λΛ2

)
. (3.88)

3.3.1 Operator bases and reduction

In order to consider the SM extension up to dimension 6 it is required to introduce a new
basis of operators. In [20] we have a set of operators respecting the gauge symmetry of the
SM. Anyhow, this set of operators is over-complete. Indeed, we immediately understand
a redundancy5 issue after including every term compatible with the truncated (3.86)
Lagrangian.

As discussed by [21], it is possible to fix this behavior by using the following substi-
tutions6 on the SM fields:

4Here ci is a Wilson coefficient in the effective theory corresponding to the expansion p2/Λ2.
5Which we already encountered in the examples developed in 3.2.
6We remark that removing these redundant operators have always to be done in a gauge independent

manner, as the procedure is justified by the invariance of observables under gauge independent field
redefinitions [11].
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Bosons

Φ′j → Φj +
a1
Λ2
D2Φj +

a2
Λ2

¯̀+Ψjy +
a3
Λ2
d̄qjYd +

a4
Λ2

(ūεqj)
?Y?u +

a5
Λ2

(Φ†Φ)Φj ,

B′µ → Bµ +
b1
Λ2
ψ̄γµψ +

b2
Λ2

Φ†i
←→
DµΦ +

b3
Λ2
DνBνµ +

b4
Λ2

(Φ†Φ)Bµ ,

W a′

µ →W a
µ +

c1
Λ2
q̄σaγµq +

c2
Λ2

¯̀σiγµ`+
c3
Λ2

Φ†
←→
Dµ

aΦ +
c4
Λ2

[Dν ,Wνµ]a +
c5
Λ2

(Φ†Φ)W a
µ ,

GA
′

µ → GAµ +
d1
Λ2
q̄ TAγµq +

d2
Λ2
d̄ TAγµd+

d3
Λ2
ū TAγµu+

d4
Λ2

[Dν , Gνµ]A +
d5
Λ2

(Φ†Φ)GAµ .

(3.89)

Left-handed fermions

q′j → qj +
f1
Λ2
ui /DΦ̃jY†u +

f2
Λ2
ui
←−
/DΦ̃jY†u +

f3
Λ2
di /DΦ̃jY

†
d +

f4
Λ2
di
←−
/DΦ̃jYd

+
f5
Λ2

(Φ†Φ)qj +
f6
Λ2
D2qj , (3.90)

Ψ′j → Ψj +
g1
Λ2
`+i /DΦjy† +

g2
Λ2
`+i
←−
/DΦjy† +

g3
Λ2

(Φ†Φ)Ψj +
g4
Λ2
D2Ψj .

Right-handed fermions

`+
′
→ `+ +

h1
Λ2

Ψ̄i /DΦy† +
h2
Λ2

Ψ̄i
←−
/DΦy† +

h3
Λ2

(Φ†Φ)`+ +
h4
Λ2
D2`+ ,

d′ → d+
j1
Λ2
q̄i /DΦY†d +

j2
Λ2
q̄i
←−
/DΦY†d +

j3
Λ2

(Φ†Φ)d+
j4
Λ2
D2d , (3.91)

u′ → u+
k1
Λ2
q̄i /DΦY†u +

k2
Λ2
q̄i
←−
/DΦYu +

k3
Λ2

(Φ†Φ)u+
k4
Λ2
D2u .

With these substitutions we are eventually lead to the Warsav basis, which is the
first complete set of SM field operators respecting the SM gauge group up to dimension
6.

We refer the reader to references [11, 20, 21] for further informations on this topic.

3.3.2 Phenomenological lagrangians

The concept of phenomenological Lagrangian is introduced to characterize a subset of
events occurring at LHC.

Instead of specifying all of the SMEFT Lagrangian, we focus on a specific sector,
giving rise, for example, to the SILH (Strong Interacting Light Higgs) [22] Lagrangian7.

It is worth to specify that a phenomenological Lagrangian is by no means a basis for
the SMEFT operators. Technical aspects about this topic are discussed in [23, 24, 25].

For what concerns this work, we will be mainly interested in the Higgs extended
sector. The natural phenomenological Lagrangian describing this sector is exactly the

7This Lagrangian is inspired by a scenario in which the Higgs is part of a strongly interacting sector
[22].
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SILH Lagrangian. Following [26, 22], we decompose the standard model effective field
theory Lagrangian as

LSMEFT = LSM + LSILH + LG + LCP + LF1 + LF2 + LF3 . (3.92)

In particular, we have the SILH Lagrangian to contain the 6-dimensional self-interacting
Higgs operators

LSILH ⊃
ch

2Λ2
∂µ(Φ†Φ)∂µ(Φ†Φ)− c6

Λ2
(Φ†Φ)3 , (3.93)

which will be essential for the discussions in the following chapters.
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CHAPTER 4

Minimally extending the standard model

In the former chapter we introduced and discussed the framework of effective field the-
ories. Our aim now is to make use of these techniques to analyse some possible beyond
standard model scenarios featuring a real scalar singlet.

We have already pointed out that the standard model still lacks an explanation for
(say) the origin of the baryon asymmetry of the universe, dark matter and neutrino
masses and how these evidences motivates the study of physics beyond the standard
model. Among the BSM proposals one can identify three minimal scenarios where the
new physics is connected to the SM through so-called portal interactions and the field
content of the SM is minimally extended.

These three scenarios respectively include the following new states:

1. scalar singlet (both real and complex),

2. right-handed/sterile neutrino,

3. dark photon.

In this thesis we will focus on the scenario 1. The main reason behind this choice is
the next experimental program of the LHC and the future ILC [11, 27]. Indeed, this will
aim at measuring the trilinear Higgs coupling, which is shifted after taking into account
effective operators generated by integrating out these new singlet states.

For simplicity and without affecting the main conclusions of our investigation we will
restrict to the simplified case in which there is only one new real scalar.

The main goal of this chapter is to systematically analyze this model focusing on
the resulting deviations in the Higgs couplings. In particular we will concentrate on the
corresponding EFT operators that are generated in this class of models when the new
state is heavy and is integrated out.
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We will explore the different possible realisations of this model (with or without
a conserved Z2 symmetry acting on the singlet). In this investigation, we reproduce
independently the results already presented in the literature, but we also extend some of
the computations to higher order in the EFT expansion.

This section is organised as follow:
We start by introducing the real scalar singlet portal, previously studied in e.g. [26,

28, 29, 30, 31, 32]. In section 4.1.1 we review the EFT structure [27] which results after
integrating out the singlet.

Then we introduce two different scenarios, taking into account (sections 4.2 , 4.4) or
not (section 4.3) the possibility of an explicit Z2 symmetry.

We describe the structures of the full theories, eventually proceeding by mapping to
the EFT with two different approaches, in order to evaluate and double check the Wilson
coefficients necessary to the analysis which will follow in sections 5 and 6.

4.1 The real scalar singlet portal

We now introduce and discuss the real singlet scalar portal, which is one of the simplest
possible renormalisable extension of the SM involving the Higgs sector.

The most important event at LHC is without any doubt the discovery of the Higgs
Boson. This confirms the Higgs Mechanism of the SM. After electroweak symmetry
breaking (EWSB) occurs, every particle interacting with the Higgs acquires mass. More-
over, linear, cubic and quartic self-interaction terms do appear for the physical Higgs
boson.

It is known that the quartic self-interaction term is very hard to probe at LHC
nowadays. Conversely the cubic self-interaction can be investigated by searching for
double-Higgs final states and loop induced single Higgs productions [27]. In particular,
a detailed analysis of this sector and a precise measure of the coupling would definitely
test the electroweak sector of the SM by the reconstruction of the scalar Higgs potential.

As mentioned, we still do not know the structure of the potential and the physics be-
hind the electroweak symmetry breaking. In particular, beyond standard model scenarios
could modify significantly the SM physics.

As we will find out in the sequel, including a real scalar singlet as a BSM particle
will modify the temperature dependent Higgs effective potential. This is crucial to get
the strong first order electroweak phase transition [29, 13] which is necessary for elec-
troweak baryogenesis (see section 2.4), in an attempt to explain the baryon asymmetry of
Universe. Singlet scalars are indeed among the most-hidden particles that can increase
the strength of this EW transition. Moreover, the existence of this particle can have
implications for the Higgs searches at LHC.

Motivated by the lack of significant deviations from the SM global data set [11],
we will extensively study this scenario by using the framework of EFTs introduced and
discussed in the former section. Essentially, we will proceed by matching tree-level and
1-loop level results into the EFT which results after integrating out the singlet particle.
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To get started, let us introduce the most general/Z2-breaking SM Higgs potential
extended with the SU(3)× SU(2)× U(1) real singlet scalar:

V(Φ, s) = −µ2
h|Φ|2 + λ|Φ|4 − µ2

s

2
s2 +

λm
2
|Φ|2s2︸ ︷︷ ︸

portal

+
µ3

3
s3 +

λs
4
s4 + µ4|Φ|2s . (4.1)

Here, Φ is the Higgs field, which is a doublet laying into one of the fundamental
representation of the SU(2)×U(1) gauge group, and s is the real singlet. Then, starting
from this potential, many different scenarios could arise as the singlet takes a vacuum
expectation value or not. Furthermore, this general potential could also be reduced to
a Z2 preserving one, which is of particular interest if we are looking for a reliable dark
matter candidate1.

The Z2-preserving potential can be quickly obtained taking µ4, µ3 to zero in (4.1).
Summarising, in the following we discuss the singlet extension of the SM analyzing

both the possibilities of a Z2 preserving or breaking potential, and the cases in which the
singlet do get a vacuum expectation value or not.

We will perform a map into the effective Higgs potential introduced below, where
local operators respecting the symmetries of the gauge group are inserted inside the SM
Lagrangian as

Leff = LSM +
ch

2Λ2
∂µ
(

Φ†Φ− v2

2

)
∂µ

(
Φ†Φ− v2

2

)2

+
∞∑
n=3

c2n

Λ2n−4

(
Φ†Φ− v2

2

)n
, (4.2)

where Λ is the effective scale, and where c2n ≡ c2n(µ) are the Wilson coefficients of the
higher dimensional Higgs operators. For now, we will only consider scalar operators up
to dimension 8. Moreover, we will extende our investigations up to the 1-loop level in
perturbation theory.

It turns out that

1. ch corrects the Higgs field wave function renormalisation, and globally shifts all the
other Higgs couplings,

2. c6 corrects the 3,4,5,6 - Higgs self-interactions,

3. c8 corrects both the 4,5,6,7,8 - Higgs self-interactions.

We will adopt the following conventions2 in the whole chapter:

1Indeed, the absence of odd interaction vertexes do stabilise the singlet, and it is clear that a dark mat-
ter particle have to respect this feature, otherwise it wouldn’t be possible to obtain the relic abundance
measure up-to-date.

2If it is not otherwise specified.
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• the gauge bosons acquire mass after the Higgs field gets a VEV according to the
gauge choice:

Φ(x) =
Uχ(x)√

2

(
0

h(x) + v

)
, Uχ(x) = e

iτaχ
a(x)
v , v2 =

µ2
h

2λ
, (4.3)

where h(x) is the Higgs field, Uχ(x) is a unitary matrix containing the three
Goldstone bosons χa(x) and v is the Higgs vacuum expectation value.

• Every internal line in the Feynman diagrams of this section is referred to the singlet,
which is represented by a continuous line.

• Every external line represents the Higgs, referring in the same way to the broken
phase or the symmetric one.

• Dimensional regularization will be used in all the 1-loop calculations unless it is
explicitly stated.

• Wemainly use the M̄S renormalisation scheme, defining the Euler Γ function simple
poles as

1

ε̄
=

1

ε
− γ ,

with γ being the Euler-Mascheroni constant.

4.1.1 The effective theory

Here we introduce the self-interacting sector of the Higgs effective potential relevant
to our investigations. The results obtained in the full theories will be matched in this
effective theory, following the recipe already discussed in 3.2.

We start from the phenomenological SILH Lagrangian [11] introduced in (3.93) ex-
tended with the 8-dimensional (Φ†Φ)4 operator.

In the symmetric phase we have3

Leff ⊃ −
ch

2Λ2

(
Φ†Φ− v2

2

)
�
(

Φ†Φ− v2

2

)
− c6

Λ2

(
Φ†Φ− v2

2

)3
− c8

Λ4

(
Φ†Φ− v2

2

)4
. (4.4)

Then, after the Higgs gets a VEV according to (4.3), every term up to the power of
8 appears.

We have

Leff ⊃ ch
2Λ2

(h+ v)2∂µh∂µh−
c6

Λ2

(h6

8
+ v3h3 +

3h5v

4
+

3h4v2

2

)
− c8

Λ4

(h8

16
+
h7v

2
+ 2h5v2 +

3h6v2

2
+ h4v4

)
. (4.5)

3The 6-dimensional derivative operator is identical to the one in equation (4.2) up to a total derivative.
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In particular, it follows that:

• ch contributes to the renormalisation of the Higgs wave function as

1

2

(
1 +

chv
2

Λ2︸ ︷︷ ︸
c̄h

)
∂µh∂µh; (4.6)

• c6 do modify the hhh self-interaction vertex as

λvh3 → vλ
(

1 +
c6v

2

λΛ2︸︷︷︸
c̄6

)
h3 ; (4.7)

• c6 and c8 do modify the hhhh self-interaction vertex as

1

4
λh4 → 1

4
λ
(

1 +
6c6v

2

λΛ2︸ ︷︷ ︸
6c̄6

+
4c8v

4

λΛ4︸ ︷︷ ︸
c̄8

)
h4 . (4.8)

For convenience, we also define the ratios

k3 =
λ3

λ3,SM
= 1 + c̄6 , k4 =

λ4

λ4,SM
= 1 + 6 c̄6 + c̄8 . (4.9)

To take into account the BSM contributions to the interaction vertexes we will be
using two different techniques.

Specifically:

1. We will integrate out the singlet by using its equations of motion, as exemplified
in appendix A.

2. We will compare the full theory and effective theory complementary scattering
amplitudes, following the example discussed in 3.2.

Being mainly interested in the renormalisable self-interacting Higgs couplings, we
will focus our attention to the value of ch, c6 and c8 in the singlet extended models
introduced. Then, we will show how different form for the singlet scalar potential will
lead to modifications of interaction vertexes both at tree and 1-loop level.
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4.2 Z2 preserving potential:
spontaneous symmetry breaking

For the sake of simplicity, we proceed by increasing difficulty, starting from the easiest
extension consisting of just a single coupling between the Higgs and the singlet. As the
title suggests, this corresponds to a Z2 preserving potential.

The case is interesting when the scalar field mass mixing occurs from ∝ hs terms
appearing after both the fields acquire a VEV. Moreover, as introduced, a Z2 preserving
model could eventually ensure stability to the singlet. This feature would make it a
possible Dark Matter candidate.

Anyhow, here the Z2 symmetry will be spontaneously broken after the singlet acquires
a VEV, forbidding this kind of identification which we will discuss in section 4.4.

The Z2 preserving potential reads

V(Φ, s) = −µ2
h|Φ|2 + λ|Φ|4 − µ2

s

2
s2 +

λs
4
s4 +

λm
2
|Φ|2s2 . (4.10)

Substituting the EWSB condition from (4.3) and letting s acquire a non zero VEV
by s→ s+ vs, we have:

V(h, s) = −
µ2
h

2
(h2 + 2vh+ v2) +

λ

4
(h4 + v4 + 6h2v2 + 4v3h+ 4vh3)

− µ2
s

2
(s2 + 2vs+ v2) +

λs
4

(s4 + v4
s + 6v2

ss
2 + 4v3

ss+ 4vss
3)

+
λm
4

(h2 + v2 + 2vh)(s2 + v2
s + 2vss)

=
(
− µ2

hv + λv3 +
λm
2
vv2
s

)
h+

(
−
µ2
h

2
+

3

2
λv2 +

λm
4
v2
s

)
h2 (4.11)

+
(
− µ2

svs + λsv
3
s +

λm
2
vsv

2
)
s+

(
− µ2

s

2
+

3

2
λsv

2
s +

λm
4
v2
)
s2

+
λ

4
h4 + vλh3 +

λ

4
v4 +

λs
4
s4 + λsvss

3 +
λs
4
v4
s

+
λm
4
h2s2 +

λmv

2
hs2 + λmvvshs+

λmvs
2

h2s .

After the introduction of masses mh,ms and tadpoles Th,Ts (which can be identified
respectively from the squared and linear terms in the last equation), we have

V(h, s) =
m2
h

2
h2 + Thh+

m2
s

2
s2 + Tss+

λ

4
h4 + vλh3 +

λ

4
v4 +

λs
4
s4 + λsvss

3 (4.12)

+
λs
4
v4
s +

λm
4
h2s2 +

λmv

2
hs2 +m2

hshs+
λmvs

2
h2s .

We immediately note a mass mixing term arising. In order to get a clear understand-
ing of the respective singlet and Higgs masses, it is necessary to diagonalize the mass
matrix of the system. Essentially, we move from (h, s) to the mass eigenstates (h1, h2).
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For this task, we start by employing the tadpole conditions, namely

Ts = Th = 0 .

We have

−µ2
hv + λv3 +

λm
2
v2
sv = 0 → µ2

h = λv2 +
λm
2
v2
s ; (4.13)

−µ2
svs + λsv

3
s +

λm
2
vsv

2 = 0 → µ2
s = λsv

2
s +

λm
2
v2 . (4.14)

By substituting these conditions into the definition of the mass parameters of the system,
we obtain

m2
h = 2λv2 | m2

s = 2λsv
2
s . (4.15)

Thus, we now understand (from the potential (4.12)) the mass of the system to be
embedded in the matrix product(

h s
)( 2λv2 λmvvs

λmvvs 2λsv
2
s

)(
h
s

)
. (4.16)

Rotating to the mass eigenstates by means of(
h1

h2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
s

)
, θ =

1

2
arctan

( 2m2
hs

m2
s −m2

h

)
, (4.17)

gives us with the two correspondent mass eigenvalues, namely

m2
1,2 =

1

2

(
m2
h +m2

s ∓ (4m4
hs + (m2

h −m2
s)

2)1/2
)

=
1

2

(
m2
h +m2

s ±
m2
h −m2

s

cos 2θ

)
.

(4.18)

Taking the limit in which the singlet VEV vs is much larger than the Higgs VEV v
is equivalent to assume a very small mixing angle. In fact, owing to equation (4.17), it
follows:

θ ' 1

2
arctan

(
2m2

hs(
1− m2

h
m2
s

) 1

m2
s

)
=

1

2
arctan 2y ' y , (4.19)

where we defined y as the ratio λmv/2λsvs.
Moreover, we also have the following mass ratios to be small in the same limit:

x =
mh

ms
<< 1 ; y =

m2
hs

m2
s

' λmv

2λsvs
<< 1 . (4.20)

After this process, the Higgs modified couplings to fermions and weak gauge bosons
do follow straightforwardly. In fact, it is just necessary to introduce the rotated/mixed
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Figure 4.1: Interaction vertexes between the standard model Higgs and the singlet scalar
field, after EWSB and v → s + vs. The dashed lines corresponding to the SM Higgs
boson h, and the filled lines to the real scalar singlet s. The last interaction vertex is
suppressed in the leading v/vs approximation.

definition of h from (4.52) (with the appropriate limit on v and vs) inside the usual
definition of the Higgs couplings with the SM.

For example, we have the gauge bosons couplings modified after the field rotation

h→ h1 cos θ − h2 sin θ ' h1

(
1− θ2

2

)
− h2θ (4.21)

' h
(

1− y2

2

)
− ys , (4.22)

as [26]

W+
µ W

µ
−

[
gmW

(
1− y2

2

)
h+

g2

4
(1− y2)h2 − (gmW y)s

]
, (4.23)

ZµZ
µ

[
gmW

2 cos θW

(
1− y2

2

)
h2 +

g2

4(cos θW )2
(1− y2)h2 − (

gmW

2 cos θW
y)s

]
. (4.24)

Finally, restricting our attention to the leading order in the mixing angle, the mass
eigenvalues are just

m2
1 = m2

s(x
2 − y2) ' m2

h ; m2
2 = m2

s(1 + y2) ' m2
s , (4.25)

i.e. , the masses do not mix anymore.
Eventually, we are lead to the broken phase potential

V(h1, h2) ' V(h, s) =
1

2
m2
ss

2 +
1

2
m2
hh

2 +
λ

4
h4 + λvh3 +

λm
4
h2s2

+
λmvs

2
h2s+

λs
4
s4 + λsvss

3 , (4.26)

in which only the leading terms in vs >> v are considered.
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4.2.1 Integrating out the singlet via E.O.M.

We now proceed with the matching to the effective theory introduced in section4.1.1. It
is possible to quantify the IR physics of this real scalar singlet BSM model by integrating
it out via its EOM.

We start writing down the full theory Lagrangian

L =
1

2
∂µs∂µs+

1

2
∂µh∂µh−

1

2
m2
ss

2 − 1

2
m2
hh

2 − λ

4
h4

+ λvh3 − λm
4
h2s2 − λmvs

2
h2s− λs

4
s4 − λsvss3 . (4.27)

Then, following the procedure illustrated in A by:

1. solving the equations of motion for s by considering up to s3 terms in L ,

2. proceeding by expanding the correct4 solution in powers of 1/ms ,

3. plugging the result for s inside (4.27),

we are lead to the effective Lagrangian:

Leff ⊃
λ2
mv

2
s

8m4
s

∂µ(h2)∂µ(h2)−
m2
h

2
h2 − λvh3 −

(
λ

4
− λ2

mv
2
s

8m2
s

)
h4

− λ3
mv

2
s

16m6
s

(
m2
s − 2λsv

2
s

)
h6 +

λ4
m

64m10
s

(
2m4

sv
2
s + 18λ2

sv
6
s − 13m2

sλsv
4
s

)
h8 . (4.28)

Then, by the tadpole condition m2
s = 2λsv

2
s , it follows that c6 = c8 = 0 .

Moreover, in this case we also that every c2n coefficient defined in (4.2) is null. This
can be easily showed considering the full equations of motion for s without expanding
for large ms. In fact, plugging the full expression for s inside (4.27), we eventually have

Leff ⊃
λ2
m

4λsm2
s

h2∂µh∂
µh−

m2
h

2
h2 − λvh3 −

(
λ

4
− λ2

mv
2
s

8m2
s

)
h4 . (4.29)

Thus, we only have a non zero value for

ch
Λ2

=
λ2
m

2λsm2
s

→ chv
2

Λ2
= y2 (4.30)

is found5.
As ch renormalises the broken phase Higgs field wave function, it also modifies all

the Higgs couplings to the SM once we canonically normalise the corresponding kinetic
term.

4The solution which vanishes as the Higgs field h goes to zero.
5We have recognised the same combination corresponding to the parameter y2 defined in (4.22).
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In fact, from equation (4.6) it follows that the correct wave function normalisation is
found after the shift

h→
(

1− chv
2

2Λ2

)
h . (4.31)

With this substitution, we eventually recover equations (4.23),(4.24), where the Higgs
coupling to gauge bosons is modified by the Higgs/singlet mixing. This also provides us
a consistency check of the integrating out procedure.

At last, an interesting phenomenological observation related to the Wilson coefficient
ch is that, as discussed by [26, 32], it modifies the electroweak precision observables.

In particular the S and T parameters are modified as follows

S =
1

6π
(ch) log

ms

mW
, (4.32)

T = − 3

8π cos2 θW
(ch) log

ms

mW
, (4.33)

where mW is the Wµ
± bosons mass, and where θW is the Weinberg angle.

4.2.2 Matching to the EFT with amplitudes

Here we proceed by employing the other matching method introduced, which essentially
consists of a comparison between scattering amplitudes in the full and effective theories.

Specifically, in order to estimate the 6-Higgs effective coupling it is necessary to
evaluate the full theory diagrams in 4.2. Starting from the diagram on left we have:

A1 = −
(λmvs

2

)3 λsvs(
`2

m2
s
− 1
)3
m6
s

' λ3
mv

4
sλs

8m6
s

. (4.34)

Then, the second diagram gives:

A2 =
λm
4

(λmvs
2

)2 1(
`2

m2
s
− 1
)2
m4
s

' − 1

16

λ3
mv

2
s

m4
s

. (4.35)

Taking into account the combinatorial factors, we arrive to a null value for the c6

coefficient at the tree level.
In fact, as can be easily checked

c6 =
3

8

(2λsv
2
s

m2
s

− 1
)λ3

mv
2
s

m4
s

= 0 , (4.36)

in agreement with the result in (4.29).
Moving on, we calculate the 8-Higgs effective coupling. The diagrams involved are in

figure 4.3.
Starting from the first on left, we have
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Figure 4.2: Tree-level diagrams to match in the EFT to calculate the value of the c̄6

Wilson coefficient.

A3 = −i
(
− iλmvs

2

)4(
− iλs

4

) i4

1
m8
s

(
`2

m2
s
− 1
)4 (4.37)

' − λ4
mv

4
sλs

32m8
s︸ ︷︷ ︸

λ4m
λs

1

162m4
s

[
1 + 4

`2

m2
s

+O
( `4
m4
s

)]
.

Then, moving to the second in the same row, we have:

A4 = −i
(
− iλmvs

2

)2(
− iλm

4

)2 i3

1
m6
s

(
`2

m2
s
− 1
)3 (4.38)

' λ4
mv

2
s

64m6
s︸ ︷︷ ︸

λ4m
λs

1

16·8m4
s

[
1 + 3

`2

m2
s

O
( `4
m4
s

)]
.

Finally, the last two diagrams contributes as (starting from left)

A5 = −i
(
− iλmvs

2

)4(
− iλsvs)2 i5

1
m10
s

(
`2

m2
s
− 1
) (4.39)

' λ4
mλ

2
sv

6
s

16m10
s︸ ︷︷ ︸

λ4m
λs

1

16·8m4
s

[
1 + 5

`2

m2
s

+O
( `4
m4
s

)]
,
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Figure 4.3: Diagrams contributing to the c̄8 coefficient at the tree level.

A6 = −i
(
− iλmvs

2

)3(
− iλsvs)

(
− iλs

4

) i4

1
m8
s

(
`2

m2
s
− 1
)4 (4.40)

' − λ4
mλsv

4
s

16 · 2m8
s︸ ︷︷ ︸

λ4m
λs

1

16·8m4
s

[
1 + 4

`2

m2
s

+O
( `4
m4
s

)]
.

Summing up all the contributions above with the relative combinatorial factors, we
have

c8 =
λ4
m

16 · 8 · λsm4
s

(9

2
+ 2− 13

2

)
= 0 . (4.41)

60



In this section we showed that the model with a Z2 preserving potential with spon-
taneous symmetry breaking induces a modification of the Higgs wave function, captured
in the EFT framework by a non vanishing Wilson coefficient ch. On the contrary, we
showed that the contribution to the EFT operators c6,c8 and c2n do eventually vanish.
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4.3 Z2 explicit breaking potential

Here we discuss the most general potential for the singlet/Higgs sector, including Z2-
breaking terms, and in which both fields acquire a non zero VEV. The starting point
being equation (4.1) in which all the possible interaction terms between the two fields
are included.

The potential reads

V(Φ, s) = µ2
h|Φ|2 + λ|Φ|4 +

µ2
s

2
s2 +

λm
2
|Φ|2s2 +

µ3

3
s3 +

λs
4
s4 + µ4|Φ|2s . (4.42)

This case turns out to share some common features with the one we discussed in
section 4.2, as mass mixing do also occur. As we had already analysed the common
terms in 4.2, we are just left with expanding

µ3

3
(s+ vs)

3 =
µ3

3
(s3 + v3

s + 3v2
ss+ 3vss

2) ; (4.43)

and
µ4|Φ|2s =

µ4

2

(
h2s+ h2vs + 2hsv + 2hvvs + v2s

)
, (4.44)

so that we eventually arrive to the modified interaction potential

V(h, s) = h

(
µ2
hv +

1

2
vλmv

2
s + λv3 + vvsµ4

)
+ h2

(
µ2
h

2
+

1

4
λmv

2
s +

3λv2

2
+
vsµ4

2

)
(4.45)

+ s

(
1

2
v2λmvs + λsv

3
s + µ2

svs + µ3v
2
s +

µ4v
2

2

)
+
λm
4
s2h2 + (λmvs + µ4)

sh2

2

+ s2
(

1

4
v2λm +

1

2
µ2
s +

3

2
λsv

2
s + µ3vs

)
+
λ

4
h4 + λvh3

+
λmv

2
hs2 +

(
λmvs +

µ4

2

)
hs+

λs
4
s4 + s3

(µ3

3
+ λsvs

)
.

In particular, from the tadpole conditions, we find out

−1

2
v2λmvs − λsv3

s − µ2
svs − µ3v

2
s −

µ4v
2

2
= 0 , (4.46)

−µ2
hv −

1

2
vλmv

2
s − λv3 − vsvµ4 = 0 , (4.47)

and so the Higgs and the singlets masses follows as

m2
s

2
= λsv

2
s +

µ3vs
2
− µ4v

2

4vs
→ m2

s = 2λsv
2
s + µ3vs −

µ4v
2

4vs
, (4.48)

m2
h

2
= λv2 → m2

h = 2λv2 . (4.49)
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We now have the broken phase potential:

V(h, s) =
1

2
m2
ss

2 +
1

2
m2
hh

2 +
h4λ

4
+ h3λv +

λm
4
s2h2 + (λmvs + µ4)

sh2

2
(4.50)

+
λmv

2
hs2 +m2

hshs+
1

4
s4λs + s3

(µ3

3
+ λsvs

)
,

which features the mass matrix

M =

(
m2
h m2

hs

m2
hs m2

s

)
=

(
2λv2 λmvvs + µ4v

2

λmvvs + µ4v
2 2λsv

2
s + µ3vs − µ4v2

4vs

)
. (4.51)

Rotating to the mass eigenstates (h1, h2) by means of(
h1

h2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
s

)
, θ =

1

2
arctan

( 2mhs

ms −mh

)
, (4.52)

we arrive to the mass eigenvalues

m2
1,2 =

1

2

(
m2
h +m2

s ∓ (4m2
hs + (m2

h −m2
s)

2)1/2
)
. (4.53)

Then, inverting the rotation matrix, we find{
h = h1 cos θ + h2 sin θ ,

s = −h1 sin θ + h2 cos θ ,
(4.54)

and thus, e.g. , the trilinear Higgs coupling in the mass eigenstates basis reads

vλh3 = vλ
(
h1 cos3 θ + h2 sin3 θ + 3h2

1h2 cos2 θ sin θ + 3h2
2h1 sin2 θ cos θ

)
. (4.55)

The same way all the other terms get shifted. Thus, collecting all the couplings in
front of h3

1 (which we identify as the SM Higgs) and taking into account the symmetry
factors, we are ready to write down the modified/shifted trilinear Higgs coupling, namely:

6 λ̃3 = 6λv cos3 θ − (3µ4 + 3λmvs) cos2 θ sin θ (4.56)

+ 3λmv cos θ sin2 θ − sin3 θ(2µ3 + 6vsλs) . (4.57)

Proceeding the same way for the four Higgs coupling, we obtain

4! · λ̃4 = 4! ·
(
λ cos4 θ +

λm
2

cos2 θ sin2 θ +
λs
4

sin4 θ

)
. (4.58)

In particular, as a cross-check, it is possible to link this framework to the one discussed
in section 4.2 by taking the limits µ3, µ4 → 0, and by the assumption6 y → 0.

6We remind the reader that y is identifiable with the mixing angle.
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Taking the limit in which µ3, µ4 → 0, we have:

6 λ̃3 = 6λv cos3 θ − 3λmvs cos2 θ sin θ + 3λmv cos θ sin2 θ − 6vsλs sin3 θ ' 6λv , (4.59)

4! λ̃4 = 4! ·
(
λ cos4 θ +

λm
2

cos2 θ sin2 θ +
λs
4

sin4 θ
)
' 4!λ , (4.60)

that is, if θ → 0, then

λ̃3 → λv then k3 =
λ3

λ3,SM
= 1 , (4.61)

λ̃4 → λ then k4 =
λ4

λ4,SM
= 1 . (4.62)

Eventually, we have that in this limit both c6 and c8 are zero at the tree level,
matching the result from 4.2.

4.3.1 Integrating out the singlet via E.O.M.

Here we discuss what happens integrating out the singlet via equations of motion. As
shown in section 4.2 this approach turns out to be fully equivalent to the scattering
amplitude matching, therefore we will use only this for reasons of convenience.

We will thus provide an explicit expression of the ch, c6, c8 at the tree-level, which
turn out to be non zero, owing to the presence of explicit Z2-breaking terms that do
modify the singlet mass/VEV relation found before via tadpole conditions.

Calling back the potential and the definitions developed in 4.3, we have, after EWSB
and s→ s+ vs

L ⊃ 1

2
∂µh∂

µh+
1

2
∂µs∂

µs− 1

2
m2
ss

2 − 1

2
m2
hh

2 − λ

4
h4 − λvh3 − λm

4
s2h2 (4.63)

− λmvs + µ4

2
sh2 − λmv

2
hs2 −m2

hshs+
λs
4
s4 −

(µ3

3
− λsvs

)
s3 .

Then, moving to the mass eigenstates already introduced, and considering the leading
approximation in v/vs (which essentially means to take the mixing angle θ ' 0) we have

L ⊃ −1

2
m2
ss

2 − 1

2
m2
hh

2 − λ

4
h4 + λvh3 − λm

4
s2h2 (4.64)

− λmvs + µ4

2
sh2 − λs

4
s4 −

(µ3

3
− λsvs

)
s3 ,

in which only the relevant interaction terms are present.
Then, solving the equations of motion for the heavy field, and substituting the value

of smin inside the Lagrangian (4.64), we obtain the effective Lagrangian containing the
resulting interactions involving just the light field h.
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Considering just the ch, c6 and c8 relevant terms, we do have:

Leff ⊃
(µ4 + λmvs)

2

2m4
s

h2∂µh∂µh (4.65)

−

{
λm (µ4 + λmvs)

2

16m4
s

− λsvs (µ4 + λmvs)
3

8m6
s

}
h6

− (µ4 + λmvs)
2

64m10
s

{
2λ2

mm
4
s −m2

sλs
(
µ2

4 + 14µ4λmvs + 13λ2
mv

2
s

)
+ 2

(
9λ2

sv
2
s − µ2

3

)
(µ4 + λmvs)

2

}
h8 .

We conclude

ch/Λ
2 =

(µ4 + λmvs)
2

m4
s

, (4.66)

c6/Λ
2 =

(µ4 + λmvs)
2

2m4
s

(
λm − 2

λsvs
m2
s

(µ4 + λmvs)

)
, (4.67)

c8/Λ
4 =

(µ4 + λmvs)
2

4m10
s

[
2λ2

mm
4
s −m2

sλs
(
µ2

4 + 14µ4λmvs + 13λ2
mv

2
s

)
(4.68)

+ 2
(
9λ2

sv
2
s − µ2

3

)
(µ4 + λmvs)

2
]
.

If µ3, µ4 → 0 both c6 and c8 are zero owing once again to the tadpole condition,
which in this case simplifies as m2

s = 2λsv
2
s . Moreover, c̄h = y2 , so we get back to the

results already obtained in section 4.2.

In this section we showed that the model with a Z2 breaking potential with sponta-
neous symmetry breaking induces a modification of the Higgs wave function, captured
in the EFT framework by the non vanishing Wilson coefficient ch, c6 and c8. Moreover,
we also showed how in the limit in which the Z2 breaking coefficients are null we recover
the Z2 preserving case in which c6 = c8 = 0.

65



4.4 Z2 preserving potential : 1-loop matching

Finally, let us now consider the case in which only the standard model Higgs gets a VEV,
moving to the 1-loop level to see how the couplings do get affected.

In this case, as opposed to 4.2, the singlet can also be a reliable DM candidate owing
to the absence of (as we shall see) the s → hh interaction vertex generated after the
singlet gets a VEV.

Employing the parameterization in equation (4.3) inside the potential in (4.1), it
follows:

Figure 4.4: Feynman Diagrams resulting from the expansion in (4.70). The dashed lines
corresponding to the standard model Higgs field, and the continuos lines with the scalar
singlet field.

V(h, s) =
[
−
µ2
h

2
+
λ

4

(
v2 + h2 + 2hv

)](
v2 + h2 + 2hv

)
− (4.69)

+
µ2
s

2
s2 +

λs
4
s4 +

λm
4

(
v2 + h2 + 2hv

)
s2

=

(
−
µ2
h

2
+

3

2
λv2

)
h2 + (−µ2

hv + λv3)h+
λ

4
h4 + λvh3

+

(
−µ

2
s

2
+
λm
4
v2

)
s2 +

λs
4
s4 +

λm
4
h2s2 +

λm
2
vhs2 .

After the obvious definition of the coefficients in the last row, and after imposing the
tadpole condition µ2

h = 2λv2, it follows:

V(h, s) +
m2
h

2
h2 + λvh3 +

λ

4
h4 +

m2
s

2
s2 +

λs
4
s4 +

λm
4
h2s2 +

λm
2
vhs2 . (4.70)

The corresponding interaction vertices are summarised by the Feynman diagrams in
4.4. It turns out that no mass mixing arises in this particular case, i.e. the mass matrix
is diagonal.
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4.4.1 Matching by scattering amplitudes

To correctly calculate contributions to c6, c8 and ch, we have to consider all the Feynman
diagrams that generate the corresponding effective interaction vertexes after integrating
out the singlet.

We can immediately see that these contributions are not found at tree level here, since
six and four external SM Higgs legs connected by only internal singlets are topological
impossible with this kind of interactions. This is just equivalent to take the case discussed
in 4.2 in the limit in which vs → 0, where by this prescription we also see ch to became
null.

Conversely, at the 1-loop level, a non zero value for all the Wilson coefficients do
arise. Starting from ch by considering the diagrams in figure 4.5, we have, for the left
one:

A7 ≡ B0(p2,m2
s,m

2
s) = 2 ·

(
− i λmv

2

)2
∫

dd`

(2π)d
i

`2 −m2
s

i

(`− q)2 −m2
s

(4.71)

= 2 ·
(λmv

2

)2
∫

dd`

(2π)d

∫ 1

0
dx
[
`(`− 2qx) + q2x−m2

s

]−2
,

which simplifies after the substitution `′ = `− qx as

A7 = 2 ·
(λmv

2

)2
∫ 1

0
dx

∫
dd`′

(2π)d

[
`
′2−q2x2 + q2x−m2

s︸ ︷︷ ︸
M2
s (x,ms)

]−2
(4.72)

= 2 ·
(λmv

2

)2 1

16π2

[
1

ε̄
+ ln

4πµ2

m2
s

−
∫ 1

0
dx ln

(
1 +

x(x− 1)q2

m2
s

)]
.

Figure 4.5: 1-loop contributions to the ch coefficient.

So, the lowest order contribution from this diagram, after renormalising, is

δZ = −dA7

dq2

∣∣∣∣∣
q2=0

=
1

96

λ2
mv

2

2π2m2
s

. (4.73)

Then, we move on calculating the second diagram. This particular one can easily be
calculated adopting the cut-off regularization technique [19, 1].
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Introducing Λc as the cut-off scale in the momenta space, we thus get:

A8 ≡ B0(p2,m2
s) = 2 · λm

2

∫
d4`

(2π)4
Θ(Λ2

c − ~̀2)
i

`20 − ¯̀2 −m2
s

(4.74)

=
λm
2

∫
d~̀

(2π)3
Θ(Λ2

c − ~̀2)
1√

~̀2 +m2
s

=
λm
2π2

∫ Λc

0
d`

`2√
~̀2 +m2

s

=
λm
4π2

{
Λ2
c −m2

s

(
ln

Λ2
c

m2
s

− 1

2
+ ln 2

)}
,

where < ρ > is the vacuum energy expectation value.
This particular diagram is finite and momentum independent, so it does not con-

tribute to the ch coefficient while matching on-shell.
Thus, we match the previous computations to the corresponding contribution in the

effective theory which arises by a tree level diagram involving the Wilson coefficient ch
(which modifies the Higgs wave function).

We conclude that the operator

chv
2

2Λ2
∂µh∂µh , (4.75)

is generated at one loop with ch/Λ2 = λ2
m/96π2m2

s, as derived in [30].

Figure 4.6: 1-loop contributions to the c6 coefficient.

We then proceed to the calculation involving c6. The diagrams are shown in 4.6.
Starting from the triangle, we have

iA9 =
(
− iλmv

2

)3
∫

dd`

(2π)d
i3

(`2 −m2
s)((`+ p)2 −m2

s)((`− q)2 −m2
s)
. (4.76)
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Then, using the Feynman Parametric Formula, we get:

iA9 = 2
(λmv

2

)3 ∫ 1

0

dx

∫ 1−x

0

dy

∫
dd`

(2π)d

[
(1− x− y)(`2 −m2

s) (4.77)

+ x
(
(`− q)2 −m2

s

)
− y
(
(`+ p)2 −m2

s

)]−3
= 2

(λmv
2

)3 ∫ 1

0

dx

∫ 1−x

0

dy

∫
dd`

(2π)d
[
`2 −m2

s + 2`(qx− py) + q2x+ p2y
]−3

.

Shifting the integration variable as `′ = `− qx+ py reduces the amplitude to

A9 = −i 2
(λmv

2

)3 ∫ 1

0

dx

∫ 1−x

0

dy

∫
dd`

(2π)d

[
`2−m2

s − (qx− py)2 + q2x+ p2y︸ ︷︷ ︸
−M2

s (x,y,p,q)

]−3
(4.78)

= − 1

32π2

λ3mv
3

4

∫ 1

0

dx

∫ 1−x

0

dy

[
(4π)ε

Γ(1 + ε)

Ms(x, y, p, q)2(1+ε)

]
,

In particular, letting ε→ 0, and considering the combinatorial factor of 8, we obtain:

A9 = −λ
3
mv

3

16π2

∫ 1

0
dx

∫ 1−x

0
dy

1

M2
s

. (4.79)

Thus, we are only left with the other diagram in figure 4.6:

iA10 =
−iλm

4

−iλmv
2

∫
dd`

(2π)d
i2(

(`− q)2 −m2
s

)(
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) (4.80)
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0
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λ2
mv
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0
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∫
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=
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0
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(2π)d

[
`2−q2x2 −m2
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−M2

s (x,q)

]−2
.

Thus, with the combinatorial factor of 2, we are lead to

iA10 = i
λ2
mv

64π2

[
1

ε̄
+ ln

4πµ2

m2
s

−
∫ 1

0
dx ln

(
1− x(1− x)q2

m2
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. (4.81)

Summing up the the two diagrams, we obtain

A9 +A10 =
λ2
mv

64π2

[
1

ε̄
+ ln

4πµ2

m2
s

−
∫ 1

0
dx ln

(
1− x(1− x)q2
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(4.82)

− λ3
mv

3

16π2

∫ 1

0
dx

∫ 1−x

0
dy

1

M2
s

.
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Then, owing to the expansion made in equation (4.7), we are legitimate to match
(this time) c6 with the sum of the two diagrams calculated above.

Considering the tree-level three point function in the EFT, already defined in 4.1.1,
we have

− i 3!
c6v

3

Λ2
= iA9 + iA10 . (4.83)

Eventually, at q2 = p2 = 0, a non zero value for c6 appears at 1-loop:

c6/Λ
2 =

λ3
m

192π2m2
s

. (4.84)

Lastly, we consider the diagrams in figure 4.7, to match in the effective theory to
obtain the c8 coefficient and to finally have a full picture of the λ4 behavior in this
8-dimensional effective theory.

Considering the first diagram on the left, it follows

iA11 =
(λmv

2
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(2π)d
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`2 −m2
s
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=

∫
`

∫
x,y,z

[
`2 −m2

s − x(2`p+ p2) + y(2`(p+ q) + p2 − q2)

− z(2`(q + k)− q2 + k2)
]−4

=

∫
`

∫
x,y,z

[
`(`− 2

(
p(x+ y) + q(y − z)− kz

)
− p2(x− y)− q2(y − z)− k2z

]−4
=

∫
`

∫
x,y,z

{[
`−

(
p(x− y) + q(y − z)− kz

)][
`+

(
p(x− y) + q(y − z)− kz

)]
− p2(x− y)− q2(y − z)− k2z

}−4
=

∫
`

∫
x,y,z

{
`2−m2

s −
(
p(x− y)− q(y − z)− kz

)2 − p2(x− y)− q2(y − z)− k2z︸ ︷︷ ︸
−M2

s (x,y,z,p,q,k,m
2
s)

}−4

= 6
(λmv

2

)4 ∫ dd`

(2π)d

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−y

0

dz
[
`2 −M2

s

]−4
=

6

16π2

(λmv
2

)4 ∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−y

0

dz M−4s .
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Figure 4.7: 1-loop contributions to the c8 coefficient.

While the second diagram gives
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Finally, the last diagram gives
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,

so that, letting ε→ 0, we obtain:
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Summing up the results for p, q, k = 0, with the related combinatorial factor, we find

A11 +A12 +A13 = − λ2
m

16π2

[
1
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+ ln

4πµ2
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s

]
+
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Then, we repeat the procedure already employed for c6. Considering the EFT tree
level contributions arising from the 8-dimensional operator, we have

A6 +A7 +A8 = 4!
c8v

4

Λ4
. (4.90)

Then, using the minimal subtraction scheme, and matching on µ = ms, we are left
with

c8/Λ
4 =

1

v2m2
s

λ3
m

16 · 4! · π2

(
1 +

2λmv
2

m2
s

)
. (4.91)

4.5 Singlet models showdown

To better rearrange the whole discussion and to make evident the EFT structure con-
cerning the singlet models analysed, here we summarize all of the results for ch and c6

obtained in the chapter7.
We discussed the Z2-breaking potential

V(Φ, s) = µ2
h|Φ|2 + λ|Φ|4 +

µ2
s

2
s2 +

λm
2
|Φ|2s2 +

µ3

3
s3 +

λs
4
s4 + µ4|Φ|2s . (4.92)

in the case in which the singlet and the Higgs fields do acquire a VEV.
We also discussed the Z2-preserving potential8

V(Φ, s) = −µ2
h|Φ|2 + λ|Φ|4 − µ2

s

2
s2 +

λs
4
s4 +

λm
2
|Φ|2s2 , (4.93)

with the Higgs always acquiring a VEV, and the singlet acquiring a VEV or less.
It is easy to see that c6 and c8 cannot be generated at tree-level if the potential is

Z2 symmetric (see sections 4.2 , 4.4). Moreover, it turns out that every c2n coefficient
of the effective theory would be null in this case. Nevertheless, moving to next orders
in perturbation theory, we find these coefficients to be non zero. We also have that ch
is generated at tree-level only if mixing occurs between the Higgs and the singlet9(see
section 4.2). If this is not the case, we have ch generated at 1-loop (see section 4.4).

Conversely, the explicit Z2 breaking scenarios do always supply non zero values for
the Wilson coefficients, also if we take the limit of vanishing singlet VEV (see section
4.3).

All the formulas in the following table are featuring a non zero VEV vs for the singlet
are valid under the hypothesis of vs >> v, with v the Higgs field VEV. We also include
the Z2-breaking potential in the vs → 0 case, in which we can still find non vanishing
values for the Wilson coefficients of the effective theory.

7c8 is missing mainly as its not relevant for the two next chapters. The long expression (see (4.66)
would also be difficult to display clearly here.

8Which can be obtained taking the limit µ3, µ4 →= 0 and inverting the Higgs and singlet mass signs.
9That is the case in which both the fields acquire a VEV.
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tree-level ch/Λ
2 c6/Λ

2

VZ2 , vs = 0 0 0
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4
s 0
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1-loop ch/Λ
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s
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CHAPTER 5

Electroweak baryogenesis via singlet portals

5.1 Introduction

The matter/antimatter asymmetry of todays universe remains still an open issue: the
ratio between matter and radiation, which characterizes this asymmetry, is1 η = (nB −
nB̄)/nγ ∼ 6, 14 · 10−10.

We expect inflation to produce an equal number of particles and antiparticles, as any
existing asymmetry found before will be diluted by the large amount of entropy generated
in the reheating phase.

We could also expect to have a large scale universe populated with regions in which
baryons and antibaryons are separately dominating. Anyhow, this would directly trans-
late in a rate of annihilation between baryons and antibaryons dominated region, owing
to the large hydrogen gas clouds observed[33] between galaxy clusters. Eventually, this
should produce a large amount of observed gamma rays which are not observed.

The first explanation of the observed Baryon Asymmetry of the Universe (BAU) was
given by Sakharov and his famous mechanism of baryogenesis. As we already introduced
in 2.4, the necessary conditions, the Sakharov conditions, to any baryogenesis to occur
are

• Baryon number violation.

• CP and C - violation.

• Absence of thermal equilibrium.

It turns out that the SM is in principle capable of accommodating these three condi-
tions, and that the baryogenesis occurs during the electroweak phase transition. However,

1n is for density of B-baryons, B̄-antibaryons, and γ-photons
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the actual parameters of the SM (masses and couplings) are such that, while met, such
conditions do not generate enough BAU. First, an additional source of CP-violation is
required. Second, the mass of the Higgs is too light (and so the self-coupling is too small)
to achieve a strong first order electroweak phase transition necessary to accommodate
a departure from thermal equilibrium. This necessarily forces us to the introduction of
new BSM physics at the electroweak scale.

First of all, we give a basic description of how the three Sakharov conditions are found
in the SM [33, 34] in Section 5.2. An important role in the determination of the phase
transition is given by the study of the effective potential for the Higgs field, including
thermal effects.

Hence, we first discuss in Section 5.3 the Coleman-Weinberg potential for a scalar
QED model, and we re-derive in details the symmetry breaking mechanism via radiative
corrections.

Then we review the finite temperature corrections to the 1-loop effective potential in
Section 5.4 following [35, 34].

Finally, in Section 5.5 we proceed by discussing the singlet real scalar extension of
the SM with Z2 symmetric potential (described in the section 4.4) as a possible BSM
scenario to realize a strong first order EWPT.

We investigate the conditions to achieve the SFOPT in such BSM theory and we
reproduce independently results already existing in the literature (see e.g. [29]).

5.2 Sakharov conditions in the standard model

5.2.1 Baryon number violation

In the SM we understand baryon number violation to occur via the Sphaleron Pro-
cess. The starting point is the Adler-Bell-Jackiw Anomaly concerning the axial
currents in gauge theories. The process in figure 5.1 (that is the sphaleron process)
with 3 left-handed leptons (one for each generation) and 9 left-handed quark (SU(2)
doublets, three for each generation), is indeed possible according to the baryon/lepton
current2[33, 36, 2]

∂µJ
µ
BL+LL =

3g2

32π2
εαβγδW

αβ
a W γδ

a . (5.1)

Here g is the SU(2) coupling and Wµνa is the SU(2) non-abelian strength tensor.
From this process results a baryon number violation of three3.

This baryon number violation occurs in every perturbative process, and is associated
with the vacuum structure of the SM. More precisely, the violation is due to the vacuum
structure of spontaneously broken SU(N) gauge theories [39, 36, 40].

2Conversely, the difference between the total number of baryons and leptons B − L and the related
JµBL−LL current vanish in the sphaleron process, and so we also have ∆B = ∆L.

3A similar scenario is also found in GUT and supersymmetric theories [37, 38].
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Quarks

Leptons

Figure 5.1: The sphaleron process. We see a total of 9 quarks in the initial and 3 leptons
in the final states, leading to the baryon asymmetry.

To explain this fact we introduce the Chern-Simons number NCS [41], which is ob-
tained from the current

Kµ =
g2

32π2
εµναβ

(
W a
ναA

a
β −

g

3
εabcA

a
νA

b
αA

c
β

)
, (5.2)

as
NCS =

∫
d~x K0(t, ~x) . (5.3)

The Chern-Simons current Kµ features the property

∂µK
µ =

g2

32π2
W a
µνW̃

µν
a , (5.4)

where
W̃µν
a =

1

2
εµνδγWδγa . (5.5)

The topological nature of the Chern-Simons number becomes clear considering pure
gauge configurations at some fixed times.

Labeling these fixed times as t2 and t1 and evaluating the difference

NCS(t2)−NCS(t1) =

∫ t2

t1

dt

∫
d3x ∂µK

µ = ν , (5.6)

we have that ν is found to be always an integer, which is a winding number. It is
also possible to demonstrate that in correspondence of these integer values we find the
degenerate vacuum states4 of the system [41, 33].

We can think at the gauge field Aµ(x) as a map between the physical space and the
manifold of the gauge group5 SU(2). Given a family of static gauge configurations with

4These stases are characterised by vanishing energy and field strength tensor.
5From now on we will restrict our considerations to the SU(2) gauge group, as we are interested to

connections between the C-S current/number and the ABJ current.
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NCS continuously varying, we see the strength tensor Wµνa and the energy to be zero in
the degenerate vacua, but in every configuration between (ν, ν + i), they are not.

It turns out that every of these vacua is a valid perturbative state of the theory [40].
Now, if we take (5.4), we see that

∂µKµ =
g2

32π2
εµναβ

{
∂µW a

ναA
a
β +W a

να∂µA
a
β

− g

3
εabc

(
∂µA

a
νA

b
αA

c
β +Aaν∂µA

b
αA

c
β +AaνA

b
α∂µA

c
β

)}
(5.7)

=
g2

32π2
εµναβW a

αβW
a
µν =

g2

32π2
WαβaW̃ a

αβ ,

and so
∂µJ

µ
BL+LL = Nf∂µKµ . (5.8)

Here Nf is the number of families, which in the present case is 3 as the generations of
quarks and leptons.

Now, integrating the equation above in space time on both sides, we have6∫
dt

∫
d~x

[
∂tJ

0
BL+LL − ~∇ · ~JBL+LL

]
= Nf

∫
dt

∫
d~x

[
∂tK

0 − ~∇ · ~K
]

(5.9)

d

dt

∫
dt

∫
d~x J0

BL+LL = Nf
d

dt
NCS , (5.10)

and so it follows : 3
d

dT
NCS =

d

dT
NB =

d

dT
NL . (5.11)

We conveniently defined the number of baryons and leptons in the last equation.
From this equation we understand a violation of three units in the baryon and lepton

number. It was demonstrated that this violations occur as a consequence of tunnel effects
between two neighbors degenerate vacua.

The field configurations involved in the tunneling process are called istantons, and are
defined as the field configurations fulfilling the classical EOM in Euclidean space-time.

The amplitude of tunneling was calculated in [42] and turns out to be proportional
to the energy gap between the degenerate vacua considered. Considering e.g. two next
neighbors it was found [33] that the tunneling amplitude is E ∼ 10−173, which is ex-
tremely small. This amplitude would not be sufficient to generate any kind of baryon
number violation in the early universe.

The scenario changes if we keep in mind finite temperature effects. At higher tem-
perature quantum fluctuations support the possibility to jump over the energy barriers
instead of tunneling through. This behavior gives rise to the sphaleron process, which
is illustrated in Figure 5.1. This process requires at least a temperature of ∼ 100GeV
to occur[14], and the thermal hopping must pass at least one time next to the sphaleron
energy, which is defined as the max value between the two vacua7.

6The spatial divergences integrate to zero.
7This just acquires as long as T > Esph. If T >> Esph this conditions has not to be fulfilled anymore.

77



The rate of hopping can be written down starting from the energy gap proportional
amplitude as [33]

Γ

V
= k

(
Esph

T

)3(MW (T )

T

)4

T 4e−Esph/T , (5.12)

which is valid as long as T < Esph. In fact, as this condition is not fulfilled, EWSB does
not occur, and so the MW mass is not defined. To determine this ratio above the EWPT
it is necessary to appeal lattice simulations, as an analytic expression is still not found.
The result has been fixed by [43] as Γ/V = (1.06 ± 0.08)× 10−6T 4. Then, looking to
when the sphalerons were in thermal equilibrium, we assume a thermal volume of 1/T 3

for each particle inside the thermal bath, so that Γ ∼ 10−6T . Finally, comparing this
expression to the Hubble expansion rate, we see the equilibrium temperature to be8

Γ = H ∼
√
g?T 2

MP
→ T ' 10−6

√
g?MP ∼ 1013 GeV , (5.13)

and so baryogenesis to be affected from the sphaleron process if it is occurring in the
GUT era.

5.2.2 CP-violation from the Quark sector

As we introduced in 2.3, the only CP-violation source of the SM is the CKM mixing
matrix defined in (2.71), in particular, the only free KM-phase embedded in the definition.
To really understand how much CP-violation we do have in the SM it is necessary to
define an invariant phase, i.e. a phase that can not be removed by transformations acting
on the fields or on the Lagrangian.

Invariant phase: As an example, let’s consider a scalar theory described by

L = −µ2Φ2 + gΦ4 + h.c. . (5.14)

Then, the CP transformation acts as

L → Lcpv = −µ2(Φ2)? + g(Φ4)? + h.c. , (5.15)

and thus, if µ2 and g are not both real, these terms are not CP-invariant.
Then, explicitly writing

µ2 = −|µ|2eiα | g = |g|eiβ ,

we do have
L = −|µ|2eiαΦ2 + geiβΦ4 + h.c. . (5.16)

So, we see that is possible to eliminate the phase on the squared field term by the redefinition
Φ→ e−iα/2Φ. Nevertheless, this leads us to

L → Lcpv = −|µ|2Φ2 + |g|ei(β−2α)Φ4 + h.c. , (5.17)

8Mp is the Plank mass, g? is the number of degrees of freedom at T .
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where now γ = β− 2α should be defined as the invariant phase according to the definition given
above.

Turning back to the CKM matrix, the corresponding invariant phase turns out to be
not uniquely defined, as it is process dependent. In [44] a next-to-general procedure to
extrapolate this phase was developed by calculating the determinant between the up and
down quarks squared mass matrices, i.e.

J = det
{

[m2
up,m

2
dw]
}
. (5.18)

Starting from this equation it is possible to show that SM is not provided with enough
CP-violation to let EWBG occur. In fact, trying to define a dimensionless measure, we
can consider the ratio J/T 2. In particular, taking T to match the lower bound necessary
for EWPT, we obtain J/T 2 ∼ 10−20. As the observed BAU is estimate by η ∼ 10−10,
there is no chance for the SM to account to the full CP-violation required [33].

Additional discussions on how precise (and good) is this definition of J can be found
in [44, 45, 46].

5.2.3 Departure from Thermal Equilibrium: Strong First Order Phase
Transition

This last requisite is the least easy to obtain. Going out of thermal equilibrium, in fact,
requires the EWPT to be strongly of first order (SFOPT), otherwise the magnitude of
the SM couplings is not sufficiently small to let the transition occur[34].

The type of transition can be seen by the behavior of the Higgs Effective Potential at
finite temperature, which will be extensively discussed in the next section. In particular:

in the FOPT, the potential develops a bump in correspondence of the
critical temperature. This bump separates the broken and symmetric
phases. We then can distinguish three degenerate vacua configurations
in the broken phase, and only one vacuum in the symmetric one, with the
transition proceeding by the expansion of broken phase bubbles via nu-
cleation.

Quarks

Leptons

AntiQuarks

AntiLeptons

Figure 5.2: The Sphaleron Process
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The Higgs VEV and all the SM particles masses are non vanishing inside the bubble,
while in the external side the VEV and SM masses are still vanishing, so that sphalerons
are in equilibrium.

Then, the process follows in these steps:

1. in the inside CP-violating interactions do bias differente quantum reflections of
right/left-handed quarks, generating a chiral asymmetry with more qL + q̄R than
qR + q̄L.

2. The contrary just happens on the outside.

3. The sphaleron process relax this CP asymmetry, as sphalerons do just interact with
left handed particles.

4. The processes described by the two diagrams in figure 5.2 occur with different rates.
The first causes a baryon number violation of −3, while the second of ∆B = 3.
As the one on left is slower [13], we see the CP-asymmetry to be converted into a
Baryon asymmetry in front of the wall, while keeping the internal side untouched
owing to the Higgs VEV magnitude.

We are thus left to the calculation of the Effective potential and the critical temper-
ature identification.

5.3 The Effective Potential

Here we write down the Finite Temperature Effective Potential in all of its components,
starting from the definition of the 1-loop Coleman-Weinberg potential, proceeding with
finite temperature effects, and ending with Daisy correction, necessary to avoid infrared
divergences occurring in the Higgs and Goldstone Bosons propagators.

5.3.1 Symmetry breaking via radiative corrections:
the Coleman-Weinberg potential

The Coleman-Weinberg potential [47] can be easily derived in a scalar QED picture
where just a small scalar mass is took into account, leaving aside possible Proca mass
terms. Then, playing with this mass sign, one asks if it is possible to get the Lagrangian
symmetry spontaneously broken.

The starting point is

L = −1

4
FµνFµν + (DµΦ)†(DµΦ)−m2Φ†Φ− λ

6
(Φ†Φ)2 . (5.19)

The coupling between scalar and vector bosons is embedded in the covariant deriva-
tive, which is defined as

DµΦ(x) = (∂µ + ieAµ(x))Φ(x) . (5.20)
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Here e stands for the electric charge of the complex scalar field. We can immediately
find the minimal configuration for the field Φ. If we take m2 = −µ2 < 0, it follows

Φ†0Φ0 =
3

λ
µ2 . (5.21)

Then, we can actually say that µ2 = λ
3 Φ2

0, and proceed to expand the Lagrangian
around this constant field configuration. For this task, we introduce two real scalar fields
σ, π, and we let

Φ→ Φ0 +
1√
2

(σ(x) + iπ(x)) . (5.22)

Then, we have to work out all the single parts of the Lagrangian.
Starting with the kinectical term, we find

(DµΦ)†DµΦ = ∂µΦ†∂µΦ + e2AµAµΦ†Φ + ieAΦ†
←→
∂ Φ (5.23)

= ∂µ
(

Φ0 +
1√
2

(σ(x)− iπ(x))
)
∂µ

(
Φ0 +

1√
2

(σ(x) + iπ(x))
)

+ e2AµAµ

(
Φ0 +

1√
2

(σ(x)− iπ(x))
)(

Φ0 +
1√
2

(σ(x) + iπ(x))
)

+ ieA
(

Φ0 +
1√
2

(σ(x)− iπ(x))
)←→
∂
(

Φ0 +
1√
2

(σ(x) + iπ(x))
)

=
1

2
∂µσ∂µσ +

1

2
∂µπ∂µπ +

e√
2
Aµ(σ∂µπ − π∂µσ) + e2Φ2

0A
2

+
√

2e2Φ0A
2σ +

e2

2
A2(σ2 + π2) .

Then, using the fact that

Φ†Φ = Φ2
0 +

σ2

2
+
√

2Φ0σ +
π2

2
,

and substituting the minimum condition, we can easily come to the full expanded La-
grangian as

L .
= −1

4
FµνFµν +

1

2
∂µσ∂µσ +

1

2
∂µπ∂µπ +

e√
2
Aµ(σ∂µπ − π∂µσ)

+ e2Φ2
0A

2 +
√

2e2Φ0A
2σ +

e2

2
A2(σ2 + π2) (5.24)

− λ

3
√

2
Φ0σ(σ2 + π2)− λ

24
(σ2 + π2)2 − λ

3
Φ2

0σ
2 .

Where, embracing the Landau gauge, we neglected terms which contain ∂µAµ up to
a total derivative. Now, we move to calculating the correspondent part in the Effective
Potential. For this task we need to start from the definition of the Generating Functional,
i.e.

Z[J ] =

∫
Dφ exp

{
i

∫
d4x L[Φ] + J(x)Φ(x)

}
, (5.25)
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where φ is intended as a field in the general sense of a function from the Minkowski space
to a target space. The logarithm of the generating functional Z can be identified with
the total energy of the system E[J ]. One then defines the classical field Φcl(x) as the
expectation value of Φ on the vacuum state of the system, that can be computed as

δ

δJ
E[J ] =

∫
DΦ exp

{
i
∫

dx (L+ JΦ)
}

Φ∫
DΦ exp

{
i
∫

dx (L+ JΦ)
} = −〈Ω|Φ(x) |Ω〉J ≡ −Φcl(x) . (5.26)

The Effective Action is then the Legendre transform of the total energy functional
E[J ] of the system

Γ[Φcl(x)] = E[J ]−
∫

dx J(x)Φcl(x) . (5.27)

We thus see the functional derivative of the Effective Action w.r.t the classical field being
related to the source . In particular, it follows

δΓ

δΦcl(x)
= −J(x) , J = 0→ δΓ

δΦcl(x)
= 0 . (5.28)

In other words, the stable states of the system are characterised by a null value of
the Effective Action derivative. This can be easily seen from the definition. In fact, if
J = 0, the effective action is precisely the total energy functional, thus if the r.h.s. of
(5.28) is true, then we are in a stable state for definition. This condition can also be
expressed in terms of an ordinary derivative by introducing the Effective Potential.
Factorizing out the Minkowski space volume from the integrals as −V T , where V stays
for the spatial volume and where T it’s for the time propagation interval, we come to the
expression

Γ[Φcl] = −V T · Veff(Φcl) , (5.29)

and thus
∂

∂Φcl
Veff(Φcl) = 0

indeed characterize the stable states of the system. The lowest energy state can be easily
recognised at this point. Following the idea behind [2] the calculation of the Effective
Potential follows by

Γ[Φcl] =
i

2
log det

{
− δ2L
δΦclδΦcl

}
. (5.30)

In most of the cases, we are dealing with determinants of Klein-Gordon like operator,
so it’s worth to make some remark on the calculation of this easiest case. Assuming

δ2L
δΦclδΦcl

= −k2 +m2 = k2
E +m2 ,

we have
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i log det
{
k2
E +m2

}
= iTr log

(
k2
E +m2

)
= iV T

∫
d4kE
(2π)4

log
(
k2
E +m2

)
(5.31)

= V T
Γ(−d/2)

(4π)d/2
1

m−d
.

Thus,
1

V T
log det

{
k2
E +m2

}
= −iΓ(−d/2)

(4π)d/2
1

m−d
. (5.32)

Then we have to identify the correct mass terms in the presence of the background
field Φcl. We already computed the mass term for the vector boson in the case of a VEV
for Φ, and the same results apply here with the identification Φ0 = Φcl. Instead, for the
scalars we have to redo the computation and expand around Φcl. We will not rewrite all
the steps since the procedure is analogous.

Substituting

Φ(x)→ Φcl +
1√
2

(σ(x) + iπ(x)) , (5.33)

and taking the second derivatives of the new potential9 evaluated for Φcl, we can legiti-
mately identify the masses

m2
Aµ → 2e2Φ2

cl ; (5.34)

m2
σ → m2 + λΦ2

cl ; (5.35)

m2
π → m2 +

λ

3
Φ2
cl . (5.36)

From the last equation we also see the (now massive) π(x) field to be massless if we let
Φcl = Φ0, recovering the former case.

We then move on to the evaluation of the determinants. Starting from the massive
vector field, we have to write the kinetic operator in a more transparent way as

−1

4
FµνFµν + 2e2Φ2

clA
2 =

1

2
Aµ
(
(�+ 2e2Φ2

cl)g
µν + ∂µ∂ν

)
Aν (5.37)

=
1

2
Aµ(�+ 2e2Φ2

cl)A
µ ,

where we used the Landau gauge condition. Three degrees of freedom are left for the
massive vector field. Then, the evaluation of the path integrals follows easy by calculating
the determinants of the previously introduced operators with the appropriate powers10.

9With respect to the Aµ, σ, π fields.
10Which follow considering the independent degrees of freedom of the fields.
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We have

det
{
�+ 2e2Φ2

cl
}−3/2

; (5.38)

det
{
�+m2 + λΦ2

cl
}−1/2

; (5.39)

det

{
�+m2 +

λ

3
Φ2
cl

}−1/2

. (5.40)

Eventually, considering d = 4− 2ε space-time dimensions, we obtain

Veff(Φcl) = −Γ(−d/2)

(4π)d/2

[
3

2
(2e2Φ2

cl)
d/2 +

1

2
(m2 + λΦ2

cl)
d/2 +

1

2

(
m2 +

λ

3
Φ2
cl
)d/2]

, (5.41)

with the expansion of the Γ function being

Γ(−d/2) =
1

2

(1

ε̄
+ log 4π +

3

2

)
.

Then, introducing the arbitrary mass scale µ, expanding the powers in the limit ε→ 0,
and employing the M̄S subtraction scheme, we are left with the 1-Loop renormalised
Effective Potential

VR,eff = m2Φ2
cl +

λ

6
Φ4
cl +

1

64π2

{
3(2e2Φ2

cl)
2
(

ln
2e2Φ2

cl

µ2
− 3

2

)
(5.42)

+ (m2 + λΦ2
cl)

2
(

ln
m2 + λΦ2

cl

µ2
− 3

2

)
+ (m2 +

λ

3
Φ2
cl)

2
(

ln
m2 + λ

3 Φ2
cl

µ2
− 3

2

)}
.

Eventually, we can see the symmetry breaking to occur via 1-loop radiative corrections
letting m→ 0 and assuming λ ∝ e4 << 1, namely

Veff =
λ

6
Φ4
cl +

3e4

16π2
Φ4
cl ln

2e2Φ2
cl

µ2
. (5.43)

Then, we find the new vacuum of the potential as

∂Veff
∂Φ2

cl
= 0 → λ

3
+

3e4

16π2

(
1 + 2 ln

2e2Φ2
cl

µ2

)
= 0 , (5.44)

and so

Φ2
cl ≡ Φ2

cl,min =
µ2

2e2
exp

{
−16π2λ

9e4
− 1

2

}
, (5.45)

confirming the symmetry breaking to occur owing to the 1-loop corrections even in the
massless case. To visualize what is happening, we plot this function for λ = λSM = 0.13
and e = 1 in Figure 5.3. We end this section by including the general 1-Loop Coleman-
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Figure 5.3: Plot of the effective potential for m = 0 and µ = 1 TeV, highlighting the new
vacua to be not in zero as in the corresponding tree-level potential.

Weinberg potential formula, which can be derived straightforwardly by extending the
result showed in this section. It follows [47]:

V1
0(h) =

∑
i

gi(−1)Fi

64π2

[
m4
i (h)

(
log

m2
i (h)

µ2
− 3

2

)]
; (5.46)

which is often presented as

V1
0(h) =

∑
i

gi(−1)Fi

64π2

[
m4
i (h)

(
log

m2
i (h)

m2
i (v)

− 3

2

)
+ 2m2

i (h)m2
i (v)

]
, (5.47)

where cut-off regularization is used and the on-shell renormalisation conditions

V′0(h)
∣∣∣
h=v

= 0 V′′0(h)
∣∣∣
h=v

= 0 . (5.48)

are endorsed.
This prescription turns out to be very useful, since the tree level definitions of the

Higgs mass and VEV are left unmodified.

5.4 Finite Temperature Effective potential

Finite temperature QFT was firstly motivated by the study of cosmological problems
[35, 34], with todays applications which are also concerning high energy physics, referring
in particular on the dynamics of phase transitions.

We are specifically interested about the dynamics of phase transitions in the pri-
mordial universe. In fact, it turns out that it is indispensable to calculate the thermal
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corrections to the 1-loop effective potential in order to fully understand the dynamics
behind the EWPT and the related EWBG. The goal of this section will thus be to write
down a full effective 1-Loop potential including temperature effects.

Following the apparatus constructed in the previous section, we can decompose the
effective potential into the sum of

Veff(Φcl) = V0
0(Φcl) + V1

0(Φcl) + V1
β(Φcl, 1/β) + Vr(Φcl, 1/β) , (5.49)

where the first two terms have been discussed in the previous sections. The last term is
the finite temperature effective potential at 1-loop. As in previous notations, we remind
that Φcl is a constant field configuration over which we expanded the original Lagrangian,
that is used to identify the shifted mass terms and to perform path integration.

Now, after the introduction of the explicit β = 1/T dependent 1-loop thermal poten-
tial correction, which is defined by

V1
β(Φcl) =

i

V T
ln

∫
DΦcl exp

{
i

∫
d4x L0(Φcl,Φ)

}
, (5.50)

and by endorsing the imaginary time formalism Feynman rules [34] :

• Boson propagator: i/(p2 −m2) with pµ = [2niπβ−1, ~p] ;

• Fermion propagator: i/(/p−m) with pµ = [(2n+ 1)iπβ−1, ~p] ;

• Loop integral :
i

β

∞∑
n=−∞

∫
d3~p

(2π)3
;

• Vertex:

−iβ(2π)3δ∑
i ωi
δ(3)

(∑
i

~pi

)
,

it is possible to write down the 1-loop corrected potential at non zero temperature for a
λφ4 theory.

Following the arguments of [47, 34, 35], we have

V1
β(Φ2

cl) =
1

2π2β4

∫ ∞
0

dx x2
(

1− e−
√
x2+β2M2(Φ2

cl)
)
. (5.51)

Eventually, it is possible to extended the whole discussion to the SM by summing
up all possible contributions coming from scalars, fermions, and gauge fields; namely
[47, 34, 35],

V1
β(Φ2

cl) =
∑

i=0,±1,...

gi(−1)Fi

2π2β4

∫ ∞
0

dx x2
(

1− (−1)Fie−
√
x2+β2M2

i (Φ2
cl)
)
. (5.52)

Here gi is a factor depending on the nature of fields, Fi is the fermion number, and
M2
i (Φ2

cl) = M2
0,i + aiΦ

2
cl.
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Finally, we can now resume all of the relevant coupling for the SM after parametrising
Φ = (G+, (h+ iG0)/

√
2), and using h2 as the background field. We have11 [29]

i = t,W,Z, h,G ; (5.53)

M2
0,i = (0, 0, 0,−µ2

h,−µ2
h) ; (5.54)

ai =

(
λ2
t

2
,
g2

4
,
g2 + g

′2

4
, 3λ, λ

)
; (5.55)

gi = (12, 6, 3, 1, 1) . (5.56)

5.4.1 Daisy Resummation

It is well known that the high temperature behavior of gauge theories is unreliable from
the perturbative point of view [34]. The problem is found to be related to the presence of
diagrams giving (T/M)n contributions, and thus leading to a series of infrared divergences
in the theory. These divergences can be cured by summing all the daisy/tadpole diagrams
of the theory due to the interactions with the surrounding hot-phase/plasma. This would
essentially lead us to shift the masses of the theory with a resummed masses with the
structure M(m,T ) = m2 + ∆(T ), with ∆ to be identified according to the nature of the
theory.

Taking, once again, a λΦ4 as example, we have the renormalised Lagrangian

L =
1

2
gµν∂µΦ∂νΦ− m2

2
Φ2 − λ

4!
Φ4 +

δz
2
gµν∂µΦ∂νΦ− δm2

2
Φ2 − δλ

4!
Φ4. (5.57)

Then, adding and subtracting the same temperature dependent term, we obtain

L ⊃ m2 + ∆(T )

2
Φ2 − ∆(T )

2
Φ2 +

δm2

2
Φ2 , (5.58)

where we now consider the added term as part of the Lagrangian, while the subtracted
as a 1-loop thermal counterterm. This is the essence of resummation.

The best value for ∆(T ) can be found by imposing the 1-Loop self energy to be zero,
namely

Π(p = 0,∆(T ))−∆(T ) = 0 , (5.59)

and by solving this "gap" equation for ∆(T ).
This argument can be extended to the standard model, eventually leading to [15, 29,

34, 13, 49] as

Vr =
∑
i

T

12π
Tr
(
M3
i (h)− (M2

i (h)−Πi(0))3/2
)
. (5.60)

11We use the same definitions of [48].
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Here i takes into account the solely Bosonic degrees of freedom, while the zero mo-
menta self-energies are

Πh(0) = T 2
(3g2

16
+
g
′2

16
+

y2
t

4
+
λ

2

)
; (5.61)

ΠG.B.(0) =
11

6
T 2diag(g2, g2, g2, g

′2) , (5.62)

with the gauge bosons mass in the unitary gauge being

M2
G.B.(h) =

h2

4


g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g

′2

 .

5.5 A Z2 singlet portal for electroweak baryogenesis

As we said in 2.4, and as can be seen in [50, 15, 13], it is quite hard to introduce the strong
first order phase transition in EWBG by solely using the SM. For this reason, different
extended scenarios have been studied through the years to enhance this phase transition
and eventually improve the CP-violating sector of the SM, in order to completely satisfy
the Sakharov conditions.

In the attempt to provide this enhancement, and motivated by DM searches, here
we’ll argue about how achieving the transition could by characterised by a BSM sector
of physics containing a single SU(3)×SU(2)×U(1) scalar singlet, referring in particular
to the already introduced scenario of 4.4.

We’ll demonstrate that the transition could be obtained by thermal and loop induced
effects in a strongly selected region of the full theory parameter space. Every consid-
eration regarding strength of the transition will be made by employing the condition
vc/Tc ≥ 1 , introduced by [29, 51], where vc corresponds to the symmetric vacuum
configuration w.r.t. to zero, at the critical temperature Tc.

We write our own code in Mathematica to verify and reproduce the results of [29].

5.5.1 Phase Transition in the Full Theory

Here, a brief discussion of the underlying mechanism in the full theory framework is given:
As we’ve discussed in the former section, it is possible to get a modification of the Higgs
potential by Loop radiative corrections and finite temperature effects by introducing the
effective potential at the 1-Loop order. Here, essentially, it is given by the sum of 4
terms, namely

Veff(h, 1/β) = V0
0(h) + V1

0(h) + V1
β(h, 1/β) + Vr(h, 1/β) , (5.63)

where the superscript and the subscript indicates the loop order and the temperature,
respectively.
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Everything inside the expression is untouched w.r.t. the SM case, except the i index
in the sums which now runs also over the singlet. Following the arguments of [29], we
see the zero temperature contribution reducing the energy difference between the EWSB
vacuum and the origin, so that, at higher temperatures the global minima of the system
will be in zero.

Then, lowering the temperature and considering the loop effects from the CW poten-
tial, we eventually reach the 1-st order transition critical temperature to correspond in
a three degenerate vacua configuration.

Finally, lowering further the temperature, the effective potential behavior is essen-
tially the tree-level Higgs one, as we came up to end in the EWSB vacuum. The process
is illustrated in figure 5.4.

Now, as all the thermal mass for the SM particles were already defined in 5.4, we just
supply the singlet thermal mass. Considering the relevant terms in the potential

V (Φ, s) ⊃ µ2
s

2
s2 +

λm
2
|Φ|2s2 +

λs
4
s4 , (5.64)

and by parametrizing Φ = (G+, (h+ iG0)/
√

2), we obtain m2
s = µ2

s + λm
2 h

2.
Also, the zero momentum self energy comes as

Πs(0) = T 2

(
λm
3

+
λs
4

)
. (5.65)

Now, it is finally time to define the viable region of parameter space to define a
trustful investigation. It is found that:

• A small value of the λm portal coupling would not enhance the phase transition
making it strongly of first order. Still, for λm/2 > 2, we are able to see this
behavior. Anyhow, as pointed in [29], calculations with λm/2 > 5 may not be
trustful because of perturbativity arguments.

• λs does almost not contribute to the phase transition in the case we’re discussing,
as it is not related to the singlet thermal mass. Its only appearance is inside the
zero momenta self-energy tensor of the singlet, and it is found that a non zero-
value of the coupling would just slightly weaken the transition. So, we proceed by
considering λs = 0 as assumption.

• in this regime of values of λm and λs, with µ2
s > 0 the SFOPT is occurring with a

singlet thermal mass ms range between approximately 400 and 800 GeV. Also, the
transition could be possible taking into account a negative singlet squared mass
µ2
s < 0 , i.e. the case in which both the scalars get a VEV presented in 4.2, but

we will not consider this case for now, eventually excluding the related region in a
final plot.

• An EFT approach would be trustful just in a more selected region of the parameter
space, as the perturbativity upper bound on λm forces us to consider small masses
compared to the regime in which an EFT is expected to be valid.
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Figure 5.4: Illustrative behavior of the first order transition. The potential changes shape
as a function of the temperature. In the 1st figure we see the high temperature symmetric
phase. In the 2nd figure we have the three degenerate vacua corresponding to the critical
temperature. In the third figure we end in the EW broken phase (the Coleman-Weinberg
potential is still present).
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Results This last paragraph concerns the identification of the region of the (λm/2,ms)
plane in which the 1-st order 1-step phase transition takes place.

The violet shaded region corresponding to the strong transition, and thus are reliable
for EWBG to occur. Conversely, in the white region below, the transition is still weak.
Finally, the gray shaded region corresponds to µ2

s < 0 values, which are not taken into
account in the analysis.

We can see that there is a sizeable portion of parameter space where the phase
transition is first order and strong. For very large λm one should in principle investigate
whether there exist perturbativity constraints, that we do not study here (we refer to
[52, 53] for such analysis).

The viable region extends from singlet mass around 400 GeV to higher masses. For
large mass a larger value of λm is required to obtain SFOPT.

In the small singlet mass regime we expect the EFT description to not be reliable,
while for large singlet mass the full theory and the EFT should reproduce the same
results12.

We will further investigate the correspondence between full theory and EFT in the
next section where we will discuss the signature of this model at the LHC. In the plot in
Figure 5.5 we also display the red contours of c̄6 which is

c̄6 =
λ3
mv

2

192π2λm2
s

. (5.66)

As one can observe, the region of SFOPT span values of c̄6 leading possibly also to large
deviations in the Higgs trilinear self coupling with respect to the SM value.

Figure 5.5: Parameter space region where the FOPT is expected to be viable.
12For a study of the strong first order EW phase transition in the effective theory see [54, 52].
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CHAPTER 6

Singlet Phenomenology at Colliders

In the previous section we identified the parameter space of the full singlet extended Z2

model where EWBG is viable. To test if this particle effectively exists, we proceed to
consider collider experiment concerning some selected differential distributions of possible
singlet dependent scatterings. In particular, the Z2 singlet model modifies the Higgs
trilinear coupling, and hence we need to look at processes containing the corresponding
interaction vertex.

The double Higgs production via gluon fusion is the most important channels of
production of the Higgs particle at the LHC. It is essentially mediated by a top-quark
loop which can produce the two final states Higgs, or a single s-channel virtual state
decaying into two real Higgs bosons. In this process the Higgs trilinear coupling is
involved. Consequently, a detailed analysis of this process can be an interesting probe of
our scenario.

In this chapter we will analyze the differential distributions of Higgs pair production
at the LHC in the full Z2-preserving singlet model and in the corresponding EFT, and we
compare them with the SM. For this purpose we will implement the new physics models
in the framework of MadGraph [55].

We proceed by introducing in Section 6.1 the full singlet extended theory with the
Z2-preserving potential, arguing on how this affects the Higgs pair production at LHC,
and showing how these contributions are taken into account for our simulations.

Then, the corresponding effective theory is introduced in Section 6.2 and it is dis-
cussed how the Wilson coefficients do modify the SM Higgs couplings and interactions
after integrating out the singlet.

Finally, in Section 6.3, we consider several (λm,ms) benchmarks identifying those
where it is possible to achieve the SFOPT. We highlight the conditions under which the
effective theory is capable to behave as the full theory in 6.3.1 (eventually showing how
in the SFOPT region the EFT seems to be a trustful approximation), and the conditions
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in which the singlet extended theory behaves differently from the SM in 6.3.2.
The results obtained in this chapter represent an original contribution of this thesis.

6.1 Full Theory Analysis

The Standard double Higgs production at LHC occurs owing to the 1-loop diagrams in
figure 6.1. All quarks contribute in the loop, however, as the top is the heaviest, and so
strongly coupled to the Higgs, we expect the leading contribution to belong solely from
two diagrams, with the corresponding permutations.

The scattering amplitudes for the process are well known. Anyhow, as we are looking
forward to implement everything in MadGraph, here below we will be mainly concerned
in how the modifications with respect to the SM are taken into account in the analysis.

Figure 6.1:

In the Z2-preserving singlet extended SM we see the right diagram in figure 6.1 to
be modified by the singlet itself, which is running inside the loop corresponding to the
trilinear Higgs vertex. Taking into account the interaction vertexes in the electroweak
broken phase, we have

L ⊃ λmv

2
hs2 +

λm
4
h2s2 .

These interaction vertexes lead to the relevant topologies in figure6.2, that we will include
into the form factor in figure 6.3.

Figure 6.2: Relevant topologies to consider in the form factor

The corresponding functions in LoopTools are written1 , from left to right, as
1the convention for Feynman diagrams as LoopTools functions is available in the user manual

http://www.feynarts.de/looptools/LT25Guide.pdf.
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1. B0i(bb0,p1sq,ms*ms,ms*ms), the bubble-like function. We have three functions
of this kind, one for each momenta, as other permutations of this diagrams are
possible to get the same initial and final states.

2. C0i(cc0, p1sq, p3sq, p2sq, ms*ms, ms*ms, ms*ms), the symmetric triangle func-
tion.

3. 1/(psqmax-MH*MH) * B0i(bb0,psqmax,ms*ms,ms*ms), the bubble correction to
the Higgs propagator ending in the two Higgs final states via the tri-linear cou-
pling.

Figure 6.3: the trilinear form factor

The renormalisation scale will be fixed on µ = ms and the M̄S subtraction scheme
will be employed. It is worthwhile to spend some words on the last diagram. Here psqmax
is imposed to be the largest momenta after the loop in the last diagram. Essentially, this
is done in order to consider just the off-shell contribution of this diagram, as the on-shell
part corresponding to the external legs consists in a renormalisation of the Higgs field,
which turns out to be a small overall shift w.r.t. the SM.

In order to implement the singlet loop corrections we define the Lorentz structures
corresponding to the previous loop diagrams in figure 6.2. We multiply these structures
by the couplings obtained in section 4.4. We redefine the Higgs trilinear vertex as the
form factor in figure 6.3.

6.2 Effective Theory Analysis

In the effective theory we expect to see the residual effects of the 1-loop diagrams above.
As we had already calculated c6 and ch, the calculation follows straightforwardly by

implementing the corresponding shifts in the relevant coupling defined in MadGraph.
Calling back the framework and the definitions made in 4.1.1, we see ch to rescale the
Higgs field, and c6 to modify the Higgs trilinear as in (4.7). Consequently, every Higgs
coupling with the SM is rescaled by (1 − n c̄h2 ), where n is the power of the Higgs field
involved in the interaction.

In these diagrams we see the only particle interacting with the Higgs being the top-
quark, except the Higgs itself. So, we find the top-Higgs coupling to be rescaled as

yt√
2

(
1− c̄h

2

)
h t̄LtR =

yt√
2

(
1− chv

2

2Λ2

)
h t̄LtR , (6.1)
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and the Higgs trilinear to be rescaled both by c6 and ch as

λv

(
1− 3

2
c̄h

)
(1 + c̄6)h3 = λv

(
1− 3chv

2

2Λ2

)(
1 +

c6v
2

λΛ2

)
h3 . (6.2)

The implementation in the SM@NLO extension of MadGraph5 follows essentially
by modifying these two couplings and by introducing ch, c6 and Λ as new parameters. We
will control the mapping between the UV model parameter and the EFT parametrisation
using the coefficients in the last line of the table in 4.5.

singlet-Higgs coupling λm, as it is embedded in their definition, and we still identify
the effective scale Λ to be the singlet mass ms.

As it will be discussed in the benchmarks, we see the EFT analysis to better fit the
full theory in high values of ms and small values of λm. From the results we show, it
also seems that the EFT is a good approximation of the full theory at the points where
it is possible to achieve the SFOPT.

6.3 Benchmarks

Here we consider several benchmarks for the two Higgs invariant mass2 in the final states
in order to get an understanding of how this observable gets modified both in the full
and effective theories.

We study simulations in correspondence of the SFOPT compatible region of param-
eter space and we also consider the case of a light singlet out of SFOPT region.

All of the simulations were made running two 7 TeV beams and by taking into account
20000 events in MadGraph.

6.3.1 Full-theory and EFT comparison

We start performing three simulations taking into account three different assignments of λm and
ms. We want to show here how the EFT is capable of reproducing the full theory’s predictions
as we change the coupling and mass.

Here it is a summary table including values of the effective theory’s Wilson coefficients and
the cross sections (both in the full and effective theory) in the different benchmarks performed.
The values of the cross sections are expressed in pb, with the corresponding percent error. Every
value should be compared to the SM cross section for the related event, which is 0.017 pb.

We also introduce the quantities3

diff =
∑
i

|FTi − EFTi| , ∆σ/σtot =
|σFT − σEFT|
σFT + σEFT

, (6.3)

in order to have a quantitative understanding of the shape and cross section differences.

(λm,ms) c̄h c̄6 σEFT σFT SFOPT diff ∆σ/σtot
(14,800) 0.019 1.05 0.0079 0.0079 Yes 0.0701 0
(12,600) 0.025 1.18 0.0075 0.0073 Yes 0.0835 0.013
(6,200) 0.057 1.32 0.0072 0.0068 No 0.6660 0.028

2The most relevant variable in the process as the cos θ dependence is weak.
3FTi and EFTi correspond respectively to the full theory and EFT normalised bins.
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Figure 6.4: Selected benchmarks for the two final state Higgs invariant mass. We see the
full theory, effective theory and the standard model at comparison. The left column features
histograms which are normalised to one (using a bin size of 12 GeV). The right column features
logarithmic scale of the same histograms normalised to the integrated luminosity of 10−1 fb.

From the benchmarks in figure 6.4 we can see if the EFT is capable of reproducing the
full theory result. From the first four graphs we find the EFT to be a valid approximation
of the full theory on the first two benchmarks.

Conversely, in the last graph, we see how the EFT is not a valid approximation in the
third benchmark. In particular, the low energy behaviors appear to be quite different.
Moreover, we notice a shape difference in correspondence of 2ms, where the singlet loops
do eventually break down as the particle production threshold is reached4.

4This feature appears to lack in the other two graphs as 2ms is too high.
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6.3.2 BSM theory and SM comparison

In this section we choose six different benchmarks in the strong first order phase transition
region. The corresponding points are highlighted with a star in figure 6.5. Essentially,
we are moving on a straight line which is almost following the edge between the µ2

s < 0
and the SFOPT (µ2

s > 0) regions.
The shape and cross-section differences between the standard model and the BSM

theories (both the full theory and the EFT) increases as we increase the values of coupling
and mass. In particular, we omitted in this analysis smaller mass values as the two
frameworks are practically indistinguishable on these sides. The plots are illustrated in
figures 6.6 and 6.7.

We summarise the details of the various benchmark points in the table below.

Benchmarks (λm,ms) c̄h c̄6 σEFT σFT diff ∆σ/σtot
B1 = (6.5, 450) 0.01332 0.3331 0.0132 0.0131 0.06043 0.0038
B2 = (8, 500) 0.01635 0.5031 0.0115 0.0114 0.04673 0.0043
B3 = (9, 550) 0.01710 0.5920 0.0107 0.0107 0.0438 0
B4 = (11, 600) 0.02240 0.9082 0.00865 0.00848 0.05686 0.0099
B5 = (13, 650) 0.02554 1.277 0.00728 0.00718 0.0744 0.0069
B6 = (14, 700) 0.02554 1.375 0.00715 0.00711 0.10487 0.0028

From this table we can see how the EFT turns out to be a good approximation of
the full theory in all the selected benchmark points. Moreover, we also find the deviation
from the SM to be noticeable as the coupling and mass raise up.

Figure 6.5: Parameter space region where the FOPT is viable. The points highlighted with a
star correspond to the benchmark points we choose for this investigation, which are (λm,ms) in
B1 = (6.5, 450) ; B2 = (8, 500) ; B3 = (9, 550) ; B4 = (11, 600) ; B5 = (13, 650) ; B6 = (14, 700).

97



Full

SM

EFT

200 400 600 800 1000 1200

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Mhh(GeV)

1
/σ

d

σ
d
b
in

�1

�

G
e
V


�m=6.5 ; ms=450

Full

SM

EFT

400 600 800 1000 1200

0.01

0.05

0.10

0.50

1

5

10

Mhh(GeV)
d
N
d
b
in

�1

�

G
e
V


�m=6.5 ; ms=450

Full

SM

EFT

200 400 600 800 1000 1200

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Mhh(GeV)

1
/σ

d

σ
d
b
in

�1

�

G
e
V


�m=8 ; ms=500

Full

SM

EFT

400 600 800 1000 1200

0.01

0.10

1

10

Mhh(GeV)

d
�

d
b
in

�1

�

G
e
V


�m=8 ; ms=500

Full

SM

EFT

200 400 600 800 1000 1200

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Mhh(GeV)

1
/σ

d

σ
d
b
in

�1

�

G
e
V


�m=9 ; ms=550

Full

SM

EFT

400 600 800 1000 1200

0.01

0.05

0.10

0.50

1

5

10

Mhh(GeV)

d
�

d
b
in

�1

�

G
e
V


�m=9 ; ms=550

Figure 6.6: Selected benchmarks for the two final state Higgs invariant mass. We follow
the point highlighted with a star on the straight line in figure 6.5. The benchmarks
in this figure correspond to B1,B2,B3. We see the full theory, effective theory and the
standard model at comparison. The histograms are normalised to one (using a bin size of
12 GeV). The right column features logarithmic scale of the same histograms normalised
to the integrated luminosity of 10−1 fb.
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Figure 6.7: More benchmarks following the straight line in figure 6.5. The benchmarks
correspond to B4,B5,B6.

Having analyzed these borderline configurations of (λm,ms) (considering also the
benchmarks in section 6.3.1), we can conclude that:

• The effective theory seems to be a reasonable approximation of the full theory in
the SFOPT region.

• The singlet extended BSM scenario features interesting and promising signatures,
as the singlet effects on the double Higgs production results to be noticeable for
sizeable couplings. A more detailed analysis will be needed to estimate the sensi-
tivity of this channel at the HL-LHC.
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CHAPTER 7

Conclusions

In this work we have investigated the possibility of achieving the strong first order EW
phase transition by minimally extending the SM with a scalar singlet. This is important
to achieve the electroweak baryogenesis and to possibly describe the baryon asymmetry
of the universe.

We studied many singlet extended scenario taking into account both the full theory
and the effective approximation. In particular, we examined the possibility of a Z2

symmetric singlet potential or not. Moreover, we considered both the cases in which the
singlet takes a vacuum expectation value or not.

Then, we started by reviewing the techniques necessary to evaluate the Wilson coef-
ficients of the effective theory. We independently calculated ch, c6 and c8 in the different
scenarios by using two different approaches. In particular, we analyzed the residual ef-
fects of the singlet by comparing the scattering amplitudes in the two framework, and
we also integrated out the singlet via its equations of motion. In this analysis we have
confirmed results existing in the literature as well as extended the investigation to higher
dimensional operators.

Then, we focused on the Z2 symmetric scenario in which the singlet do not take a
VEV, investigating its phenomenological aspects. First we analyzed the possibility of
this model to modify the EWPT making it strongly of first order. Moreover we probed
the viable parameter space region to achieve this goal. As mentioned this is interesting
to analyze electroweak baryogenesis. In this analysis we independently verified some
already existing results in the literature.

Finally, we implemented the Z2 symmetric minimal extension of the SM with a soft-
ware for performing LHC phenomenological studies, i.e. MadGraph. Using this imple-
mentation we made our own phenomenological analysis. We considered several bench-
marks for the double Higgs production at LHC. The benchmarks of interest are chosen
in the SFOPT region. We show the differential distributions for the invariant mass of
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the two Higgses in this process. The plots in figure 6.6 and especially 6.7 show the fea-
tures due to the interference between the two Feynman diagrams involved. This feature
and the difference with respect to the SM case could be promising for a future probe of
this scenario at LHC. We implemented both the full model, exploiting the LoopTools
library, and the EFT approximation by modifying the already existing SM model in
MadGraph. Considering the two Higgs boson invariant mass, we can compare the pre-
diction of the full model and the EFT with respect to the SM. Our preliminary results
show that:

1. An EFT approach is reliable for many values of the singlet mass and coupling,
possibly compatible with the SFOPT regime. Anyhow, for low masses, the EFT
approximation turns out to be (as expected) not valid (in these cases, the full
theory analysis has to be considered).

2. The shape and cross section differences between the singlet extended model and
the standard model, in the SFOPT region, are noticeable starting from a 500 GeV
mass. This means that the effects of the singlet loop in the double Higgs production
at LHC can be detectable.

Our implementation of the full model in MadGraph and the analysis of the resulting
differential distribution constitute an original contribution of this thesis.

It will be also interesting to enrich this analysis by considering, for example, the full
Z2 breaking potential, and to also introduce a possible CP-violating sector to achieve all
of the three Sakharov conditions. We refer this discussion to future investigations.
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APPENDIX A

Covariant Derivative Expansion

Here we discuss the procedure of integrating out an heavy field from a given Lagrangian.
The result will lead us to an effective Lagrangian, which contains the residual effects
of a BSM theory in both the renormalisable and non-renormalisable interaction terms
involving the light degrees of freedom.

The procedure is explained in detail in [32]. Our aim here is to recall the essential
features to treat the models shown in 4. We write the general effective action up to
the 1-loop order. Anyhow, all the calculation in this thesis following this procedure are
performed at the tree level.

We can set up the problem introducing an Action containing a light field Φ and an
heavy field s. Integrating out the heavy field s exactly means to path integrate over it
while taking Φ as a background field. This is expressed by

eiSeff[Φ](µ) =

∫
Ds eiS[Φ,s](µ) , (A.1)

where µ ∼ ms is the so called matching scale.
Then we can calculate the Effective Action to the 1-Loop order by expanding s around

it’s minimum smin(s), i.e.

eiSeff[Φ] =

∫
D[smin + η] exp

{
iS[smin] +

iη2

2

δ2S

δs2

∣∣∣∣∣
smin

+ . . .

}
(A.2)

= eiS[smin]

∫
Dη exp

{
iη2

2

δ2S

δs2

∣∣∣∣∣
smin

}
= eiS[smin] det

(
η2

2

δ2S

δs2

∣∣∣∣∣
smin

)1/2

,

and so : Seff[Φ] = S[smin] +
i

2
Tr log

(
− δ2S

δs2

∣∣∣∣∣
smin

)
. (A.3)

The terms on the r.h.s. are respectively for the tree and 1-Loop level.
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A.1 Exemplifying with the Z2-preserving singlet extension

Without loss of generality we can take as an example the Z2-preserving potential already
defined in chapter 4. In this example we do not consider mixing effects arising from the
Higgs VEV.

As we expand the singlet over its VEV, i.e. s→ s+ vs, the potential reads

L =
1

2
(∂µs)2 + (DµΦ)†(DµΦ) + µ̃2

h|Φ|2 − λ|Φ|4 −
m2
s

2
s2 (A.4)

− λs
4
s4 − λsvss3 − λmvs|Φ|2s−

λm
2
|Φ|2s2 .

The new Higgs mass is defined as µ̃2
h = µ2

h −
λmv2s

2 .
Then we calculate the equations of motion for the heavy field including up to s3 terms

from L
δL
δs

= −m2
ss− λmvs|Φ|2 − λm|Φ|2s (A.5)

∂µ
δL

δ(∂µs)
= �s . (A.6)

Labelling � = ∂2 = −P2, we have

s
(
|Φ|2λm +m2

s − P2
)

+ |Φ|2λmvs + 3s2λsvs = 0 . (A.7)

This second order equation provide us with two solutions. We have to choose the solution
which vanishes as Φ goes to zero1.

We have

smin =
−|Φ|2λm −m2

s + P2 +
√

(|Φ|2λm +m2
s − P2) 2 − 12|Φ|2λmλsv2

s

6λsvs
. (A.8)

Expanding smin for ms → ∞, and substituting the result inside the full Lagrangian in
equation (A.4), we are lead to

Leff ⊃
λ2
mv

2
s

2m4
s

Dµ|Φ|2Dµ|Φ|2 + (DµΦ)†(DµΦ) + µ̃2
h|Φ|2 +

(
−λ+

λ2
mv

2
s

2m2
s

)
|Φ|4 (A.9)

+

(
λ3
mλsv

4
s

m6
s

− λ3
mv

2
s

2m4
s

)
|Φ|6 +

(
9λ4

mλ
2
sv

6
s

2m10
s

− 13λ4
mλsv

4
s

4m8
s

+
λ4
mv

2
s

2m6
s

)
|Φ|8 ,

which has been truncated up to the term of interest already introduced in 4.1.1.Thus, by
using the fact that 2λsv

2
s = m2

s, we get c6 = c8 = 0.
Moreover, considering the full equations of motion for s, it is possible to show that

all the c2n’s Wilson coefficients of the (4.5) are null. Nevertheless, we always find ch =
λ2
m/2λs.

1In other words, we have to recover the free equation of motion for s if no interaction term with Φ is
present.

103



APPENDIX B

Constraints in the Singlet Extension

Here we will discuss various theoretical and experimental bounds concerning the singlet
extended models introduced in 4. We start by reviewing the tree level unitarity constraint
in B.1. Then, we proceed to review the conditions arising from the vacuum stability
requirement in B.2. All the results obtained in this Appendix are already available in
the literature (see for example [56]), but are reproduced independently.

B.1 Perturbative unitarity at tree-level

Here we discuss the constraints arising from perturbative unitarity. As we are interested
only in 2 → 2 scattering processes, we will just explicitly show the calculations for the
singlet model introduced in 4.4. The results are eventually translatable in the other
models discussed.

We start by partial-wave expanding the scattering amplitude as

M(s, t, u) = 16π

∞∑
J=0

(2J + 1)PJ(cos θ)aJ(s) , (B.1)

where s, t, u are the Mandelstam variables, aJ is the partial-wave of spin J and PJ are
Legendre polynomials.

Then, using the definition of the differential cross section we have

dσ

dΩ
=

1

64π2s
|M|2 , (B.2)

and so

σ =
16π

s

∞∑
J=0

(2J + 1)|aJ|2 . (B.3)
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Using the optical theorem [1], we understand the cross section to be proportional to
the imaginary part of the scattering amplitude in the θ = 0-forward direction:

σ =
1

s
Im |M(θ = 0)| . (B.4)

This leads us to

|aJ|2 = Im(aJ) . (B.5)

This equation gives us the partial-wave amplitude unitarity constraint, namely

|aJ|2 6
1

2
. (B.6)

It is sufficient to focus only on the J = 0 partial wave to obtain the constraint [56].
So, we will just consider [2, 1, 57]

a0 =
1

32π

√
4ρcmf ρcmi

s

∫ 1

−1
d cos θ T2→2 , (B.7)

where ρcmi and ρcmf respectively indicate the densities of the initial and final states, and
where T2→2 is the transition matrix element for the scattering process.

Then, we analyze all the 2→ 2 scattering processes occurring in the singlet extended
model. Since the calculations are very similar we will discuss in more detail only the
hh→ hh scattering, and we will directly extend the procedure to the other cases.

diagrams hh→ hh The diagrams are shown in figure B.1. A direct calculation gives

T = 4! · λ
4

+ 3!3! · (λv)2
( 1

s−m2
h

+
1

t−m2
h

+
1

u−m2
h

)
. (B.8)

In the present case of elastic scattering we have

cos θ = 1 +
t

2|~p|2
,

|~p|2 =
1

2
(s− 4m2

h) ,
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so that (B.7) gives

a0(hh→ hh) =

=
3m2

h

16πv2

√
1−

4m2
h

s

∫ 1

−1
d cos θ

(
1 +

3m2
h

s−m2
h

+
3m2

h
s−4m2

h

2 (cos θ − 1)−m2
h

)
(B.9)

=
3m2

h

16πv2

√
1−

4m2
h

s

(
1 +

3m2
h

s−m2
h

− 6m2
h

s− 4m2
h

ln

(
s

m2
h

− 3

))
.

Definitely, imposing the unitarity constraint in the high energy limit s >> m2
h,m

2
s,

we have

mh 6

√
8π

3
v (B.10)

diagrams ss→ ss

T = 4! · λs
4

+ (λmv)2
( 1

s−m2
h

+
1

t−m2
h

+
1

u−m2
h

)
, (B.11)

a0(hh→ hh) =

=
1

16π

√
1− 4m2

s

s

∫ 1

−1
d cos θ

(
6λs +

λ2mv
2

s−m2
h

+
λ2mv

2

s−4m2
h

2 (cos θ − 1)−m2
h

)
(B.12)

=
1

16π

√
1− 4m2

s

s

(
λs +

λ2mv
2

s−m2
s

− 2λ2mv
2

s− 4m2
s

ln

(
s

m2
s

− 3

))
.

The unitarity constraint gives:

λs 6 8π . (B.13)
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diagrams ss→ hh

Tss→hh = λm

(
1 +

6λv2

s−m2
h

+ 3λmv
2
( 1

t−m2
s

+
1

u−m2
s

))
, (B.14)

a0(ss→ hh) =
λm
16π

(
1− 4m2

s

s

)1/4(
1− 4m2

h

s

)1/4[
1 +

6λv2

s−m2
h

(B.15)

− 2λmv
2√

s− 4m2
s

√
s− 4m2

h

ln
(

1 +
2
√
s− 4m2

s

√
s− 4m2

h

s−
√
s− 4m2

s

√
s− 4m2

h − 2m2
h

)]
,

unitarity gives
λm 6 8π . (B.16)

diagrams sh→ hs

Tsh→hs = λm

(
1 +

3λmv
2

s−m2
s

+ 6λv2
( 1

t−m2
s

+
1

u−m2
s

))
, (B.17)

a0(hs→ sh) =

=
λm
16π

√(
1− (mh +ms)2

s

)(
1− (mh −ms)2

s

)(
1 +

λmv
2

s−m2
h

(B.18)

− 3s

s2 − 2s(m2
h +m2

s) + (mh −ms)2
ln
( (s− 3m2

s)s+ (m2
h −m2

s)
2

s(2m2
h −m2

s)

))
.

Eventually, here we find the same bound obtained in the ss→ hh scattering analysis.
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B.2 Couplings and boundedness from below

The conditions arising from the request of vacuum stability can be deduced by imposing
the determinant of the hessian potential matrix to be greater than zero in the stationary
points. This in fact ensures us that these points are minima, and so the potential is
bounded from below.

B.2.1 Z2 Symmetric Model

Let us recall the Z2 symmetric potential introduced in equation (4.10). Then, evaluating
the potential for Φ = v√

2
and s = vs, with v, vs > 0, we have


∂V
∂v (v, vs) = v

(
−µ2

h + λv2 + λmv2s
2

)
= 0

∂V
∂v (v, vs) = vs

(
−µ2

s + λv2
s + λmv2

2

)
= 0

→

{
µ2
h = λv2 + λmv2s

2

2µ2
s = λsv

2
s + λmv2

2

. (B.19)

Then, moving on to the second derivatives, we obtain

∂2V
∂v2

= −µ2
h + 3λv2 +

λmv
2
s

2
, (B.20)

∂2V
∂v2

s

= −2µ2
s + 3λv2

s +
λmv

2

2
, (B.21)

∂2V
∂v∂vs

= λmvvs . (B.22)

So, the hessian matrix of the system reads

V(v, vs) =

(
−µ2

h + 3λv2 + λmv2s
2 λmvvs

λmvvs −µ2
s + 3λv2

s + λmv2

2

)

=

(
2λv2 λmvvs
λmvvs 2λsv

2
s

)
.

(B.23)

In the last step we evaluated the matrix in the stationary point obtained.
Definitely, by requiring the determinant of the hessian to be greater than zero, we

find
4λλs − λ2

m > 0 ; λ, λs > 0 . (B.24)

B.2.2 The General Case

Lastly, we repeat the calculation for the Z2-breaking potential introduced in (4.3).
The stationary points are given by{

∂V
∂v (v, vs) = v(µ2

h + λv2 + λmv2s
2 + µ4vs) = 0

∂V
∂vs

(v, vs) = vs(µ
2
s + λmv2

2 + µ3vs + λv2
s + µ4

2
v2

vs
) = 0

, (B.25)

108



µ2
h = −

(
λv2 +

λv2
s

2
+ µ4vs

)
; µ2

s = −
(
λmv

2

2
+ µ3vs + λv2

s +
µ4

2

v2

vs

)
. (B.26)

Then, the second derivatives are

∂2V
∂v2

= µ2
h + 3λv2 +

λmv
2
s

2
+ µ4vs , (B.27)

∂2V
∂v2

s

= µ2
s + 3λv2

s +
λmv

2

2
+ µ3vs , (B.28)

∂2V
∂v∂vs

= vvs(λm + 2
µ4

vs
) . (B.29)

The hessian matrix reads

V(v, vs) =

(
µ2
h + 3λv2 + λmv2s

2 + µ4vs vvs(λm + µ4
vs

)

vvs(λm + µ4
vs

) µ2
s + 3λsv

2
s + λmv2

2 + µ3vs

)
(

2λv2 vvs(λm + µ4
vs

)

vvs(λm + µ4
vs

) 2λsv
2
s −

µ4v2

2vs
− µ3vs

)
.

(B.30)

Definitely, by requiring the determinant of the hessian to be greater than zero, we find

4λλs −
µ4v

2

2v3
s

− µ3

vs
− λ2

m −
2λmµ4

vs
− µ2

4

v2
s

> 0 ; λ, λs > 0 . (B.31)
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