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Abstract (italiano)

Nel contesto dell’Internet of Things, lo sviluppo di sistemi adattivi, su larga

scala, solitamente si concentra sul comportamento del singolo dispositivo. Ag-

gregate programming è un paradigma che fornisce un approccio alternativo, nel

quale l’unità di base della computazione è un insieme di dispositivi che cooperano

tra loro, invece del singolo dispositivo. scafi è un framework basato su Scala,

e fornisce una piattaforma basata su Akka per lo sviluppo di applicazioni aggre-

gate, supportando sia reti peer-to-peer che server-based. Inoltre, scafi mette a

disposizione un modulo simulator per simulare un sistema aggregato.

Il lavoro descritto in questa tesi consiste nell’analisi di scafi, nella parziale

reingegnerizzazione della sua piattaforma ad attori, e nello sviluppo di nuove

feature. L’obiettivo principale è incrementare la flessibilità di scafi in un con-

testo distribuito, favorendo la sua adozione per programmare spatial systems. Per

prima cosa, è stata resa possibile la comunicazione tra nodi distribuiti, attraverso

la definizione di una strategia di serializzazione basata su JSON, che favorisce

interoperabilità. Inoltre, vi è l’introduzione di una piattaforma, che mette in

atto una comunicazione peer-to-peer tra i dispositivi, con un’unità centrale che

gestisce tutte le informazioni rilevanti relative alla distribuzione spaziale. Questa

piattaforma colma la principale mancanza dell’approccio peer-to-peer in un am-

biente distribuito: il tracciamento di dispositivi remoti. Inoltre, è implementato

un approccio di code mobility, in modo da permettere l’assegnamento di nuovi

programmi ai dispositivi, a tempo di esecuzione. Infine, è emerso il concetto

di monitoraggio di un sistema aggregato distribuito, portando allo sviluppo di

un’interfaccia grafica, che permette di osservare i dispositivi di un sistema in ese-

cuzione.
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In questa tesi, presento la nuova architettura e API della piattaforma ad attori

di scafi, progettata con lo scopo di garantire un approccio più flessibile per lo

sviluppo di applicazioni distribuite con aggregate computing.

Parole chiave – aggregate programming, sistemi distribuiti, attori, Akka, Scala,

scafi
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Abstract

In the context of the Internet of Things, development of large-scale, adaptive

systems usually focuses on the behavior of the single device. Aggregate program-

ming is a paradigm that provides an alternative approach, in which the basic

unit of computing is a cooperating collection of devices, instead of a single de-

vice. scafi is a Scala framework for aggregate programming, and provides an

Akka-based platform for aggregate applications, supporting both peer-to-peer and

server-based networks. Moreover, scafi offers a simulator module for the simula-

tion of an aggregate system.

The work described in this thesis consists in the analysis of scafi, in the partial

re-engineering of its internal actor platform, and in the development of new fea-

tures. The main goal is to enhance the flexibility of scafi in a distributed context,

promoting its adoption for programming spatial systems. First of all, communica-

tion between distributed nodes is enabled, by defining a JSON-based serialization

strategy, which promotes interoperability. A hybrid platform is also introduced,

exploiting a peer-to-peer communication between devices, with a central unit that

manages all the relevant space-related information. This platform fills the main

gap of the peer-to-peer approach in a distributed environment: tracking of remote

devices. Moreover, a code mobility approach is implemented, allowing the assign-

ment of new programs to devices, at runtime. Lastly, the concept of monitoring a

distributed aggregate system emerged, leading to the development of a graphical

user interface, observing the devices in a running system.

In this thesis, I present the new architecture and API of the actor platform of

scafi, designed with the aim of ensure a more flexible approach for the develop-

ment of distributed applications with aggregate computing.
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Keywords – aggregate programming, distributed systems, actors, Akka, Scala,

scafi
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Introduction

Pervasive computing is the growing trend of embedding computational capa-

bility into everyday objects to make them effectively communicate and perform

tasks of various kind, minimizing the user’s need to interact with computers as

computers. Programming these large-scale situated systems is complex, since de-

vices are heterogeneous, and they often demand for proximity-based interactions

with neighboring devices. Traditional approaches address development of these

applications focusing on the behavior of the single device, deriving the global be-

havior of the system from the interaction of devices. Programming interaction of

complex systems involves management of robust coordination, efficient and reliable

communication, fault-tolerance techniques, and so on.

Aggregate programming is a paradigm that addresses the development of large-

scale adaptive systems focusing on the global behavior of the system. With this

approach, the basic unit of computation is a cooperating collection of devices.

A layered and compositional approach, based on field calculus, allows to provide

developers with a simple programming API, that provides robust and adaptive

coordination, guaranteeing resilience and safety.

In [1], an aggregate programming framework, scafi, has been developed in

Scala, providing an implementation of the field calculus semantics and an Akka-

based distributed platform for simulating and executing aggregate applications. In

order to support development of systems based on different architectural models,

scafi offers the possibility of relying on a peer-to-peer platform, or on a server-

based platform.

Distribution and interaction are key concepts in scafi; both of them must be

handled at platform-level, in order to provide the developer with high-level API.
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This thesis addresses these topics and their implementation in the framework, and

it aims to propose interventions that allow to enhance the flexibility of scafi in a

distributed context, promoting its adoption for programming spatial systems. In

particular, the main interventions concern:

• implementation of a JSON-based serialization strategy, to enable communi-

cation between different nodes with a standard format;

• introduction of an actor-based hybrid platform as a combination of the pre-

existing platforms (p2p and server-based), to fill the main gap of the p2p

approach in a distributed environment: tracking of remote devices;

• support for a form of code mobility, allowing the assignment of new programs

to devices at runtime;

• monitoring of the actor-based platform, in order to make a distributed ag-

gregate system observable during its execution.

This thesis is organized into six chapters. In chapter 1, an overview of the

key elements of the aggregate programming approach is provided. The focus is

placed on the aggregate programming stack based on field calculus and resilient

API, in order to examine the multi-layer construction that allows implementation

of aggregated applications in the scafi framework. In chapter 2, the requirements

of this thesis are listed and analyzed, in order to present a detailed description of

the needs that the design aims to satisfy. In chapter 3, the architecture of the

actor-based platform of scafi is illustrated, along with the design of its key ele-

ments, highlighting the contribution introduced with this thesis. In chapter 4, the

implementation of the most relevant aspects is exposed. In chapter 5, exploiting

the presentation of some demonstrative programs, an evaluation process is car-

ried out to verify the achievement of the initial requirements. In chapter 6, final

considerations are expressed, along with a presentation of future perspectives.
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Chapter 1

Background

This chapter provides a review of the studies carried out in the field of aggre-

gate programming, along with the presentation of scafi, an aggregate computing

framework on top of the Scala programming language.

Outline:

• Introduction to the aggregate programming paradigm

• Description of the aggregate programming stack

• Key elements of scafi

1.1 Aggregate programming

Aggregate programming is an emergent paradigm, where the programmable

entity is the aggregate collection of devices that cooperatively carry out a com-

putational process. This paradigm presents a top-down approach, based on the

specification of the global system behavior, instead of focusing on the design of

the single device (bottom-up approach). In this way, it represents a shift in pro-

gramming of distributed systems, from the traditional device-centric viewpoint to

an aggregate viewpoint.

• Device-centric viewpoint: the developer focuses on the design of structure

and local behavior of the single device. The global behavior of the system

is derived from the interaction between the device and the other elements of

1



CHAPTER 1. BACKGROUND

the system.

• Aggregate viewpoint: the developer focuses on the global behavior and pat-

terns of the overall system. The programmable entity is the entire set of

devices that make up the system. Local behaviors of individual devices are

deduced from the high-level global specifications.

Adopting an aggregate viewpoint, a global-to-local mapping is necessary to auto-

matically translate aggregate application specifications into micro-level computa-

tions of single devices.

In [2], the main principles of aggregate programming are presented:

• programming a region of the computational environment, not a single device;

abstracting away from the underlying specific details;

• the program is specified as manipulation of data constructs with spatial and

temporal extent across the region;

• programs are executed by individual devices in the region, exploiting resilient

coordination mechanisms and proximity-based interaction.

The application of these principles allows programmers to focus on the specification

of the actual program, since mechanisms for robust coordination are hidden “under

the hood”. The aggregate computing approach is also compositional, so that

coarse-grained services can be built as simple and safe combination of smaller

functional blocks.

Raising the abstraction level for the development of distributed systems is a

key element in aggregate programming. Developers require user-friendly APIs and

guarantees of resilience and safety, in order to address programming of complex

distributed application in the IoT field. To address this needs, the aggregate

computing stack is built as a multi-layer structure, as shown in Figure 1.1.

In [2], the aggregate programming abstraction layers are defined and exploited

for engineering large-scale, opportunistic crowd safety services, demonstrating

their composability, resilience, and adaptivity.

2



CHAPTER 1. BACKGROUND

Figure 1.1: Aggregate programming stack (from [2]).

In the following subsections, the middle layers of the aggregate programming

stack (field calculus constructs, resilient coordination operators, developer APIs),

are briefly described, in order to illustrate the way in which device capabilities are

modeled to provide an appropriate abstraction level to the programmer in writing

the application code.

1.1.1 Field calculus

Field calculus is a minimal universal language for expressing computations

based on fields.

3



CHAPTER 1. BACKGROUND

Computational fields

The field is the unifying abstraction of the field calculus, inspired by the concept

of force field in physics; it’s a dynamically evolving function that maps every

computational device to a structured value. In field calculus everything is a field

(e.g. a collection of temperature sensors produces a field of ambient temperatures).

The behavior of aggregate systems can be expressed as a functional composition

of operators that manipulate (evolve, combine, restrict) computational fields [3].

Operators are functions that take input fields and returns output fields.

Field calculus constructs

The field calculus constructs for building and manipulating fields are:

• Built-in operators – b(e1, ... en)

The built-in function b is applied to the input fields e1 ... en. The output field

is obtained by the point-wise evaluation of the operator to the input fields

(each device applies the operator to its local values of the input fields). The

built-in functions are stateless mathematical, logical or algorithmic functions,

sensors or actuators, or user-defined or imported library methods.

• Function definition – def f(x1, ... xn) {eB}
The function f is declared with the arguments x1 ... xn and expression eB as

body.

Function call – f(e1, ... en)

The function f is applied to inputs e1 ... en. The provided inputs are substi-

tuted to the function parameters x1 ... xn in the body expression eB.

• Time evolution – rep(x←v) {s1; ... ; sn}
The rep construct defines a local variable x, initialized with value v, and

periodically updated with the result obtained by computing its statements

s1; ... ; sn against the prior value of x. The output is a dynamically evolving

field.

• Interaction – nbr(s)

The nbr construct maps each device to a field that consists in the most recent

4



CHAPTER 1. BACKGROUND

values of its neighbors, obtained from the evaluation of s. The output is a

field of fields.

• Domain restriction – if(e) {s1; ... ; sn} else {s′1; ... ; s′n}
The if construct partitions the network into two subsets: s1; ... ; sn is com-

puted only in the devices where the condition e is true, while s′1; ... ; s
′
n is

computed where e evaluates to false.

Higher-order field calculus

In [4], the higher-order field calculus (HFC) is introduced, as an extension of

the field calculus with embedded first-class functions. HFC provides the following

benefits:

• support for higher-order functions, which are functions that take one or more

functions as arguments, and/or return a function as result;

• support for anonymous functions (also known as lambdas), as functions cre-

ated “on the fly”;

• using the nbr construct, functions can be moved between devices;

• the executed functions can change over time, via the rep construct.

In summary, in HFC, built-in and user-defined functions are naturally handled like

any other value, allowing for both code mobility and self-organization.

1.1.2 Building block operators

Field calculus provides basic constructs for manipulation of computational

fields. In [5], a set of building blocks is presented, in the form of a library of

functions defined on top of the field calculus operators. Building blocks can be

combined to create advanced applications involving aggregate programming of col-

lective systems. Follows a brief description of each one of the introduced building

blocks.

• Gradient-cast – G(source, init, metric, accumulate)

The G operator spreads information across space, covering two of the most

common distributed algorithms: distance estimation and broadcast.

5



CHAPTER 1. BACKGROUND

• Converge-cast – C(potential, accumulate, local, null)

The C operator collects information from across space. It’s complementary

to the G operator; and it accumulates values up to a potential field.

• Time-decay – T(initial, decay)

The T operator summarizes information across time. Basically, an initial

field is strictly decreased toward zero, according to a decay function.

• Sparse-choice – S(grain, metric)

The S operator is useful for creating partitions and for selecting subsets of

devices.

These operators are extremely general, so each one of them can provide a wide

range of different useful services. Building blocks can also be combined, in order to

cover many of the most common coordination patterns used in distributed systems.

Moreover, all the listed building blocks are self-stabilizing (it’s necessary to

point out that self-stabilization of S is a particular case); consequently all dis-

tributed systems constructed of building blocks will be guaranteed to be self-

stabilizing (further information on this topic can be retrieved in [5]). Self-

stabilization is a property of an algorithm or a system such that, beginning from

any arbitrary state, it will end up to a correct state within finite time. If the inputs

of an algorithm stop changing, then its output will self-stabilize and stop changing.

An algorithm that takes the output of a self-stabilizing algorithm as input, will

have an input that stops changing, and its output, in turn, will self-stabilize.

1.1.3 Developer APIs

As shown in Figure 1.1, the second layer from the top provides a user-friendly

API, built using building-block operators, which serves as a support in writing the

application code. In this layer, some functions are represented, each one based on

one or more building-block operators.

For example, information diffusion functions are typically based on G. One

common pattern is broadcast of a value from a source; using nbrRange as a metric

of estimated device-to-device distance, it can be implemented:

6



CHAPTER 1. BACKGROUND

def broadcast(source, value) {

G(source, value, () -> {nbrRange}, (v) -> {v})

}

These developer APIs are resilient and safely composable, since they rely on

resilient operators and field calculus constructs. They can, in turn, be combined,

in order to raise the abstraction level and ease the development of applications for

IoT scenarios.

1.2 scafi

scafi1 (Scala with computational fields) is an aggregate computing framework

on top of the Scala2 programming language. The purpose of scafi is to provide

an integrated environment for programming aggregate systems, exploiting the ad-

vantages of the Scala programming language, from its powerful static type system

to its high-level support for library development.

scafi implements a language for field calculus, embedded within Scala, as an

internal domain-specific language (DSL), and provides a platform and API for

simulating and executing aggregate applications. Moreover, scafi comes with a

simulator that allows for aggregate computations to be executed and controlled

locally.

Follows a brief description of the key elements of scafi, based on the informa-

tion retrieved from [1, 6, 7].

1.2.1 Project organization

The project is divided into separate modules.

• core: includes the specifications of the field calculus language, along with a

virtual machine (VM) for its execution.

• tests: unit and acceptance tests for the scafi-core module.

1https://github.com/scafi/scafi
2https://www.scala-lang.org
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CHAPTER 1. BACKGROUND

• spala: definition of the distributed platform and implementation of an actor-

based platform.

• distributed: realization of predefined platform embodiments.

• simulator: implementation of a simulator for simulating aggregate systems.

• simulator-gui: definition of a view to show and control a simulation in

progress.

• demos: provides examples and demonstration programs for both simulation

and execution.

• commons: provides some useful definitions, including abstractions for model-

ing space and time.

• stdlib: a standard library that provides useful operators (like building

blocks).

1.2.2 Field calculus DSL and VM

scafi provides an internal domain-specific language (embedded in Scala), with

the following characteristics:

• The language implements a variant of the higher-order field calculus, pre-

sented in section 1.1.1, supporting distributed first-class functions.

• The language is typed and rely on the Scala typing. Each operation resolves

to generic method invocation.

• The language supports all the field calculus constructs listed in section 1.1.1.

• The language is enriched with builtins, as derivate operators built on top of

the primitive field calculus constructs.

• The language is concise, easy-to-use, and modular.

Programs written in the scafi DSL are executed by a virtual machine (VM),

implementing the field calculus semantics. This component maps program ele-

ments to the underlying platform (that is Scala).

8
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1.2.3 Aggregate programming platform

scafi provides a platform which supports both the definition and the execution

of distributed aggregate applications.

Devices

An aggregate system consists of a network of interacting devices, immersed in

some kind of environment. Each device may be equipped with sensors, to detect or

measure a property of its surrounding environment, and/or actuators, to perform

an action in its surrounding environment. Computation is organized in rounds: a

device runs its local aggregate computation with a certain frequency. Each device

broadcasts the result of its computation (export) to its neighbors, and receives,

in turn, messages containing the exports produced by its neighbors. This is a

conceptual model, since the actual behavior of a device depends on the kind of

platform used.

Actor-based platform

In scafi, a general distributed platform is defined for supporting execution

of aggregate programming systems. An actor-based platform specifies the base

platform providing an implementation based on Akka3 actors. In turn, the actor-

based platform splits into two different platforms:

• peer-to-peer platform (decentralized),

• server-based platform (with a centralized unit for coordination).

In [8], these platforms are illustrated, and the following consideration is pointed

out: aggregate programming is a computational model that can transparently fit a

variety of execution platforms, due to its ability of declaratively designing systems

by global-level abstractions. Therefore, since aggregate programming abstracts

from deployment and execution details, other platforms could be introduced to

handle these aspects differently than the currently supported platforms (P2P and

server-based).

3https://akka.io
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Simulation

scafi supports the simulation of aggregate programming systems. A simula-

tion platform is introduced, modeling the whole computational system. Spatial

simulation are also supported.

Simulations can be performed in different modalities:

• scafi provides an internal simulator (simulator module) and an appropri-

ate view (simulator-gui module), respectively to run the simulation and

allow the user to interact with the simulation in progress.

• Simulation can also be performed externally. In [9], an integration between

scafi and the Alchemist simulator is carried out. Alchemist[10] is an event-

driven simulator, mostly written in Java, tailored to the simulation of per-

vasive systems with a focus on performance. With a mapping between the

Alchemist meta-model and the concrete scafi entities, complex simulations

can be designed in scafi and executed in Alchemist.

Platform configuration

The system (platform) configuration in scafi works on two levels:

• the developer can build a system architecture by selecting a predefined in-

carnation or by creating its own. An incarnation is a platform embodiment,

in which a platform is specified, defining the set of types to work with.

• setup of the system settings.

10



Chapter 2

Analysis

This chapter provides a description of the analysis phase in the development

process. The goal of the thesis is delineated, along with the functional requirements

and overall properties of the system, providing the input of the design phase.

Outline:

• Project requirements

• Requirements analysis, focusing on the concept of flexibility in a framework

for distributed systems, scafi

• Problem analysis, detection of critical elements and proposal for potential

solutions

2.1 Requirements

The requirements share the common goal of ensuring a flexible implementation

of distributed systems with aggregate computing. The work must be carried out

on the aggregate programming framework scafi, using the Scala programming

language and the Akka toolkit.

2.1.1 Serialization

• Implementation of a serialization strategy in scafi for message passing be-

tween different nodes of the network.

11
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• Each message that crosses the network must be serialized (and deserialized

once it has reached its destination).

• The serialization format should promote openness and interoperability.

2.1.2 Hybrid platform

In [11, 12], a classification of peer-to-peer networks is outlined, between pure

P2P systems and hybrid P2P systems. Hybrid models are a combination of peer-

to-peer and client-server models; a common hybrid model is to have a central

server that helps peers find each other. In this categorization, the peer-to-peer

platform implemented in scafi belongs to the class of pure P2P systems (purely

decentralized).

The design and implementation of a hybrid platform, fitting in the class of

hybrid P2P system, is required.

• It should be possible to use the hybrid platform instead of one of the preex-

istent platforms (peer-to-peer and server-based).

• The hybrid platform must exploit peer-to-peer communication for the prop-

agation of the exports between the devices.

• The hybrid platform should use a server, to track the positions of the devices

and the relations between every device and its neighborhood.

• A device, at pre-start, must register with the server, and it should be able,

at any time, to acquire from the server the information needed to contact its

neighbors directly.

2.1.3 Spatial platform

• The platform must support a form of spatial computing (spatial network).

Each device (or node) of the network must be situated in a space, provided

by the spatial abstraction of the platform.

– A device is located at a position in the space.

12
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– The neighboring relation is a function from a position to an arbitrary

set of positions.

– Each device has a set of neighbors, consisting of the devices located

within a predefined range of distance from its position.

• A device should merge the exports of its neighbors before computing its

program.

• The network is dynamic: the position of the devices may change over time.

• Spatial computing should be platform-independent.

– Server-based platform: the server manages the neighboring relations

between the devices of the network.

– Peer-to-peer platform: each device must be aware of the state of its

neighborhood.

– Hybrid platform: the server keeps track of the neighborhood of every

device.

2.1.4 Code mobility

• Integration of a code mobility approach in scafi.

• It must be possible to change the aggregate program executed by the devices

at runtime. It should be necessary to send the new program to only one

device of the network.

– After receiving a new program, the device immediately starts executing

it, replacing the current program (if present).

– The device propagates the new program in the network, sending it to

its neighbors. The propagation of the program should be coherent with

the underlying platform (peer-to-peer, hybrid or server-based).

13
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2.1.5 Platform/view integration

scafi provides an actor platform for execution of distributed systems and a

simulation module that allows for aggregate simulations to be carried out locally.

While the simulator is tied to a graphical user-interfaces (GUI), the platform

execution has no graphical output.

• An integration between the actor platform and the simulator GUI must be

realized.

• The GUI should reflect the state of a running distributed system.

– It must be possible to observe the execution of a distributed system on

the GUI.

– It must be possible to interact with devices (moving the devices, trigger

devices’ sensors, . . . ).

2.2 Requirements analysis

All the requirements impact on the actor platform of scafi; some of them

require a direct intervention on the existing code, while others need a more careful

analysis and design to identify the best implementation.

2.2.1 Serialization

In the current version of scafi, the serialization is not implemented. Since the

platform is distributed, this aspect is crucial to support remote message passing.

Every message sent by a device could be directed to another device located on

a different node; this communication will fail if the platform does not provide a

process for converting the state information of a message into a binary or textual

form.

The platform messages, defined in module spala (mostly inside the trait

it.unibo.scafi.distrib.actor.PlatformMessages), are object-oriented; ob-

jects needs to be serialized as well. For example:
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case class MsgExport(from: UID, export: ComputationExport)

The serialization of MsgExport, implies also the serialization of objects from

and export, respectively of type UID and ComputationExport (both are abstract

types1 defined in it.unibo.scafi.distrib.BasePlatform).

A serialization strategy could be implemented in the scafi platform, exploiting

the Akka framework[13]:

• Default serialization: Akka provides a default serializer (customizable by

configuration) that relies on Java serialization.

• Custom serialization: Akka allows the developer to build its own serializer

and apply it for the serialization and deserialization of predefined objects.

Since the requirements demands for openness and interoperability, the definition

of a custom serializer is preferable. In this way, messages could be converted into

a standard format, like XML or JSON, and subsequently turned into bytes.

JSON2 (JavaScript Object Notation) is a lightweight data-interchange format.

Using JSON, data objects are transmitted in a human-readable text, as attribute-

value pairs and array data types. For example, in the serialization process in scafi,

the message MsgExport could be converted into the following JSON object:

{

"from": <ID>,

"export": <EXPORT>

}

A JSON serialization of ID and EXPORT must be provided.

2.2.2 Hybrid platform

A more accurate study of the hybrid platform concept is necessary. In [14],

comparison and analysis of well-known P2P hybrid systems can be found. Most

1https://docs.scala-lang.org/tour/abstract-types.html
2https://www.json.org
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of them are file-sharing services, but the concepts expressed are general enough to

be used in different domains as well. In [12], a further classification of P2P hybrid

networks is defined:

• Centralized indexing: a central server stores all the information regarding

location of nodes. Each peer maintains a connection to the central server,

through which the queries are sent.

• Decentralized indexing: a central server registers the users into the system

and facilitates the peer discovery process. In these systems, queries are not

handled by the server, but by supernodes, nodes that assume a more impor-

tant role than the rest of the nodes. Supernodes are dynamically elected,

usually on the basis of their processing power and bandwidth.

The approach with centralized indexing is the more appropriate solution to match

the requirements. Though, the development of a platform that exploits decentral-

ized indexing could be considered as an interesting future work: in these systems,

the absence of a single point of failure and the presence of self-organization mech-

anisms, ensure scalability, robustness, and flexibility.

2.2.3 Spatial platform

The spatial platform has already been partially implemented. In [1], Casadei

provides the design (and implementation) of a spatial abstraction in scafi; a

metric spatial abstraction is also introduced, expressing how distances between

positions are calculated. This previous work could be reused and extended to

produce a complete implementation of the spatial platform.

2.2.4 Code mobility

Since distribution is a key concept in this work, an implementation of the

feature of code mobility must allow the movement of programs between remote

nodes, across the network. In scafi, a code mobility approach should follow the

subsequent steps:
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1. A node (sender) initiates a code mobility process by sending some code to

another node (receiver).

2. The code is subjected to a serialization process.

3. The receive must be able to retrieve the actual code and to load it locally.

4. The receiver executes the code.

In this context, two different types of code mobility could be analyzed and imple-

mented:

• Weak code mobility: the receiver already has the code. In this case, the

receiver, after receiving some code, has to do a local check for the code

presence and then, if found, can simply execute it.

• Strong code mobility: more complex scenario, the receiver does not have the

code yet. In this case, the sender should provide some mechanisms to allow

the receiver to load all the classes used in the code.

The second approach should be the ultimate goal, because it ensures more flexi-

bility, allowing to assign a new program to the devices even at runtime. Though,

it can be a not easy target and, initially, could be more appropriate to focus on

the first one.

As stated in subsection 1.2.2, scafi implements higher-order field calculus,

which supports distributed first-class functions, that are handled like any other

data. Therefore, functions can be moved between devices (with nbr construct).

The code mobility problem can be considered a similar problem. In fact, if you can

move a user-defined or anonymous function from a node to another, the receiver

can apply it, achieving the goal of code mobility. Moving a program is equivalent

to moving a parameterless function (scala.Function0[+R] in Scala) that returns

the program when it’s executed.

However, not all functions can be trivially transferred from a device to another;

this is the case of impure functions. An impure function is a function that mutates

variables/state/data outside of it’s lexical scope; its return value does not solely

depend on its arguments. Adopting the weak code mobility approach, an impure

function can produce different results when transferred to another device. In this
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work, code mobility has to support only pure functions.

2.2.5 Platform/view integration

This activity could lead to the achievement of some interesting goals. Since

the requirements do not force constraints on implications of this work, all possible

directions should be analyzed.

Simulation on the actor platform

In this scenario, an actual actor platform is internally built for the purpose

of executing the simulation. This approach ensures a more accurate and realistic

simulation. A possible workflow could consist of the following steps.

1. Configuration of the simulation, with a flag that specifies the execution en-

vironment (classic simulator or internal platform).

2. Creation of the actor platform (the peer-to-peer platform is preferable in

terms of performances).

3. Scheduling of the devices, to execute the rounds of the simulation directly

on the platform.

4. Observation of the devices to retrieve the exports produced.

5. Periodic update of the view.

This approach to simulation could also lead to a prototype of parallel and dis-

tributed simulation with minimal effort, considering that the platform is designed

to be distributed on different node. The execution of parallel and distributed simu-

lation that is both consistent and efficient, though, is not an easy target. As stated

in [15], a synchronization algorithm is required to ensure that the parallel execu-

tion of the simulation produces exactly the same results as a sequential execution

on a single processor; moreover, one of the main issues consists in distributing

information among the nodes in an efficient and timely manner.
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Monitoring of the actor platform

The view could be used as a monitor/controller of a distributed system. The

view is already equipped with all the graphical capabilities necessary to display the

state of an aggregate programming system. The current source for the visualization

process is the set of exports produced by the simulated devices. An alternative

source could be defined, observing an actual running system, and using the exports

produced by devices that are part of it. A possible workflow could consist of the

following steps.

1. Implementation and deployment of a distributed system, developed using

the scafi framework (and the actor platform).

2. Configuration of the view, to establish a connection to the devices in the

deployed system.

3. Observation of the devices, to retrieve the exports produced.

4. Periodic update of the view.

An interesting consideration in this scenario is that the view is an external com-

ponent to the running system; in this way, a running system could be monitored

and controlled at any time.

In this thesis, we refer to the just described approach as monitoring, although

it is also characterized by elements typical of a control architecture.

2.3 Problem analysis

2.3.1 Neighborhood control in the spatial platform

In the spatial context, the critical issue relies on the management of the neigh-

borhood of each device. The spatial platform must be implemented for all the

supported platforms (server-based, hybrid, and peer-to-peer).

• In the server-based platform, devices don’t communicate directly with each

other, but their communication is mediated by the server. The server, which

has a complete knowledge of the network (including the position of every
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device), can forward a message received from a device to all its neighbors.

• The peer-to-peer platform is fully decentralized, there is no central unit;

therefore each device needs a technique to detect its neighbors and a mecha-

nism to directly contact them. A distinction has to be made, between fixed

networks and mobile networks.

– Fixed network: the devices are located in a specific predefined position,

that does not change at runtime. In this case, it’s possible to assign to

each device all the neighborhood related information before deploying

the system.

– Mobile network: the position of the devices may change at runtime. If

a device moves, it must update the status of its neighborhood. The

most relevant alternatives for solving this problem are listed below.

∗ The following assumption could be made: a device, at any time, is

able to sense its neighborhood and interact with the devices con-

tained in it. Ideally, a device should be equipped with a sensor that

can detect all the devices nearby, or programmed for a discovery

phase.

∗ If a device receives the position of all the other devices, and has

access to the neighboring logic, it can deduce the identity of its

neighbors and interact with them.

∗ In the event that previous assumptions can not be guaranteed, use

of the hybrid platform is recommended.

• The hybrid platform, analyzed in subsection 2.2.2, solves this problem by

using a central unit (server) to track the devices. The server knows the

position of the devices, and therefore it is able to provide information about

the neighborhood of each device. Devices communicate directly with each

other; the server is exploited only to inform a device about its neighbors.
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2.3.2 Communication

In scafi, the communication technique used in the platform is message passing.

The platform is actor-based (and Akka-based), and every node of the network

(devices, server) is implemented as an actor. Since one of the main goals of scafi

is to build an aggregate distributed platform, each actor could be located in a

different node of the network, raising the communication problem. Currently,

both peer-to-peer platform and server-based platform rely on Akka Remoting.

Akka Remoting, as described in [13], is a communication module for connecting

actor systems in a peer-to-peer fashion. It’s based on the principle of location

transparency; there is nearly no API for the remoting layer of Akka (it is purely

driven by configuration). The connection between systems is symmetric: each

system is equally connected to the other, and there is no system that only initiates

or accepts connection. The client/server model with predefined roles cannot be

safely created.

To properly address the communication problem, an analysis of applications

that can be potentially developed with scafi has to be made. In the context of

the Internet of Things, the possibilities are countless; from programming a wireless

sensor network with low-power devices and short-range radio communication, to

the realization of a system composed of smartphones communicating across the

Internet. Therefore, it should be possible to build the most suitable communication

for each specific system on top of the platform.

For example, a support for communication across the Internet could be im-

plemented as an extension of the existing platform, exploiting Akka networking

techniques, described in [13].

• Akka I/O: is an API designed to match the underlying transport mechanism

(TCP, UDP), and to be fully event-driven, non-blocking and asynchronous.

Akka I/O is completely actor-based, and is meant to be used for the imple-

mentation of network protocols and building higher abstractions.

• Akka HTTP: is a module, on top of the actor module, made for building

integration layers based on HTTP. It offers a full client/server stack, for

both providing and consuming HTTP-based services.
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The latter could be an interesting choice for interoperability and openness, pro-

viding support for aggregate heterogeneous systems. In fact, with a formalization

of the HTTP API supported by the platform, even devices with different im-

plementation (in terms of architectures or languages), could join the aggregate

computation.

In this case study, the analysis of communication techniques for scafi has been

limited to the only relevant implementations provided by Akka. Nevertheless, some

Akka-independent approaches could also be taken into account.

2.3.3 Simulation versus control

In subsection 2.2.5, simulation and monitoring are depicted as two distinct

activity. Basically this assumption is true, but considering the execution on the

actor-based platform of scafi, these two concepts overlaps.

Following the steps enunciated in subsection 2.2.5, a simulation relying on the

actor-based platform can be executed. Each device of the simulated system is

mapped on a platform actor, that has the task of carrying on the computation.

Sensors, actuators and position of every device are simulated, allowing the user of

the simulation to set these value as preferred. The simulation view displays the

state of each device at any time.

Keeping in mind this simulation context, let’s imagine to spread the device

actors to different nodes, reachable between them (this operation is absolutely legit,

since distribution is a key element of the platform). We have now obtained a form of

distributed simulation, since each actor contributes to the result of the simulation.

We assume that the node on which an actor is running can be considered as a

device, characterized by a position in a space; the node can also be equipped with

sensors and actuators. In this case, we have an aggregate system composed of

devices distributed in the network, each performing a local computation based on

its sensors and on the state of its neighbors; this is the description of a deployed

platform in execution. Though, the user of the simulation can still impose values

of sensors and position of devices.

Considering this particular situation, questions arise: is it still a simulation?
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If not, how can this scenario be defined?

• Simulation, because the simulator orchestrates the computation by control-

ling the scheduling of devices, and the user can still simulate events and

changes in the status of the aggregate system.

• Monitoring, because a view displays the status of a running aggregate system.

• Control, because the user can interact with a running aggregate system,

changing its status.

Apart from the formal definition, the analysis of this scenario is particularly

worthy of attention, as it allows a transition from a simulation of an aggregate

system to its actual monitored execution in a few basic steps.
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Design

The design phase focuses on the inclusion of the concepts produced in the

analysis phase into the preexistent architecture of scafi. In this chapter, the

design of the actor platform of scafi is presented, with a particular reference to

the work accomplished in [1], and to the contribution introduced with this thesis.

Outline:

• Architecture of the actor platform

• Design that focuses on the key elements for platform distribution

• Design for the realization of platform monitoring

3.1 Platform architecture

The platform of scafi has been designed to provide flexibility for design, de-

ployment, and execution of distributed systems. The distributed platform, through

its façade API, is responsible for:

• parsing the incoming settings of the aggregate system, provided by the sys-

tem developer;

• configuration and setup of the platform;

• definition of the aggregate application, along with the creation of devices;

• start of the system.
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Figure 3.1: Architecture of the actor platform (reworked from [1]).

The actor platform, as shown in Figure 3.1, is a specialization of the distributed

platform, exploiting the actor model. Given the significant complexity of the

overall design, the platform is split into several components, each one managing a

specific concern.

• Messages: definition of the messages exchanged between actors and devices

inside the platform.
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• Actors: definition of actors to manage the given aggregate application (by

creating the devices and supervising them).

• Sensors: definition of sensor actors, providing input values.

• Devices: definition of actors representing system’s devices, able to perform

computation in the aggregate computing fashion.

• Schedulers: definition of scheduling strategies, to organize aggregate com-

putation on devices.

• APIFacade: extension of the façade of the distributed platform, to allow for

the adaptation to an actor-dependent context (actor platform configuration,

creation of device actors, . . . ).

The actor platform splits into:

• actor-based, peer-to-peer platform (purely decentralized),

• actor-based, hybrid platform (hybrid architecture),

• actor-based, server-based platform (centralized).

For each platform, a different Spatial Platform has been defined, as a special-

ization for providing a form of space-aware computing.

3.2 Detail design

3.2.1 Devices

In the actor-based platform, each device is modeled as an actor. In particular, a

ComputationDeviceActor is a device capable of executing a local computation, in-

tegrating information from sensors and nearby devices. This actor is characterized

by a working behavior, in which the device performs a round of the computation,

by executing the program locally. The computation phase is performed at regular

intervals, with a certain frequency; receiving of a tick message (GoOn) triggers the

computation. The tick message can be sent to the device both by external compo-

nents and by device itself. This working behavior allows for the scheduling of the

devices by an external entity, as well as the autonomous execution of each device.
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Figure 3.2: Structure and interface of device actors (reworked from [1]).

As shown in Figure 3.2, the complex behavior of a ComputationDeviceActor

is subdivided into different small behaviors, to encourage code reuse and compos-

ability. Each behavior is a specialization of BasicActorBehavior, and manages a

specific kind of interaction.

• SensingBehavior: manages all the values retrieved from the sensors of the

device. This behavior is crucial for executing a situated computation.

• SensorManagementBehavior: manages the connections between the device

and its sensors.

• ActuatorManagementBehavior: manages the connections between the de-
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vice and its actuators.

• BaseNbrManagementBehavior: manages the interaction between the device

and its neighbors. This behavior is closely related to the type of actor plat-

form used (interaction with the server in server-based platform, direct com-

munication with other devices in both p2p and hybrid platform).

WeakCodeMobilityComputationDeviceActor supports the approach of weak

code mobility, described in subsection 2.2.4. This actor is defined as an extension

of ComputationDeviceActor, and manages all the actions needed for the program

switch at runtime, along with the propagation of the new program to its neigh-

bors. The implementation of this last task, just like the implementation of the

BaseNbrManagementBehavior, depends on the type of actor platform in use.

3.2.2 Hybrid platform

The design of the hybrid platform follows the indications expressed in subsec-

tion 2.2.2. The devices are clients of a central server that owns the information

about the topology of the network.

In Figure 3.3 the static architecture of the hybrid platform is shown, along with

significant interactions between components.

• Registration: each device, at startup, registers with the server.

• Export: after the execution of its local computation, each device propagates

its computational state directly to all its neighbors (same behavior as that

of the peer-to-peer platform).

• GetNeighborhoodLocations: periodically, each device queries the server, re-

ceiving in response a message with the identity and reference of its neighbors

(NeighborhoodLocations).

• Neighbor, Neighborhood: the server is informed about neighborhood rela-

tions of a device.

• Position: in the spatial platform, each device communicates its position to

the server; in this way the server can provide accurate information about the

neighborhood of every device.
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Figure 3.3: Design of the hybrid actor-based platform.

The hybrid platform, like any other actor-based platform, can be enhanced with

spatial extension, or used in its base form; though, it’s conceived for space-aware

devices in a mobile network. If the network is fixed and neighborhood relations

are predefined, a peer-to-peer approach should be widely preferable.

3.2.3 Serialization

The serialization strategy consists in the definition of a custom JSON serializer,

which ensures interoperability, as stated in subsection 2.2.1.

As shown in Figure 3.4, the design of the serialization adopts a modular ap-

proach. The overall task is divided between different components, each responsible

for the serialization and deserialization of a specific set of objects.
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Figure 3.4: Architecture of the serialization module.

• JsonSerialization is an interface that represents a component able to pro-

vide both serialization and deserialization of a generic object.

• A bunch of specific components are defined for the serialization of some Scala
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built-in classes: predefined value types1, a subset of immutable collections,

the scala.Option class, the tuple classes2, and higher-order functions.

• JsonBaseSerialization extends and combines the aforementioned compo-

nents, to provide serialization of relevant Scala built-in types.

• JsonMessagesSerialization is the trait dedicated to the serialization

of messages exchanged in the actor platform. This component extends

JsonBaseSerialization; and it depends on the actor platform, since it

has to manage messages and key elements of the aggregate computation.

• AbstractJsonPlatformSerializer is the designated serializer for the ac-

tor platform. This component implements the contract defined in the

interface Base Serializer, and exploits the serialization capabilities of

JsonMessagesSerialization.

• The platform makes extensive use of Scala abstract types, while the

actual types are defined inside the incarnation of the actor plat-

form, BasicAbstractActorIncarnation. Information about the ac-

tual type is mandatory to properly serialize objects typical of ag-

gregate computing (e.g. ComputationExport). A further serializer,

AbstractJsonIncarnationSerializer, is required to manage the serial-

ization of objects defined in the platform incarnation.

As described in [13], a custom serializer, in Akka, has to inherit from a prede-

fined abstract class (in this case SerializerWithStringManifest). Therefore,

the component CustomSerializer is defined as an implementation of the Akka

serializer, and uses the AbstractJsonIncarnationSerializer for the actual pro-

cess of serialization.

3.3 Platform monitoring

In subsection 2.2.5, two options are presented and proposed for the integration

between the actor platform and the view: simulation on the actor platform and

1https://docs.scala-lang.org/tour/unified-types.html
2https://docs.scala-lang.org/tour/tuples.html
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monitoring of the actor platform. These proposals are strictly related to each

other, and the realization of one does not exclude the other. However, in this

work, the focus is placed on the realization of the second: platform monitoring.

3.3.1 Simulation front-end

The development process that led to the design and implementation of the

graphical front-end in scafi is described in [16] (considered as a general reference

for this section).

As shown in Figure 3.5, the architecture design of the front-end followed the

main principles of the architectural pattern model-view-controller (MVC), along

with the frequent application of the design pattern observer.

Figure 3.5: Structure of the front-end with macro components.

Unlike classical MVC designs, the front-end is characterized by the definition

of two distinct and independent models.

• Logical model (Simulator component): maintains the logical representation

of the aggregate system. It’s updated by the simulator after the execution
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of each round of computation. The computation frequency of a round is set

by the Controller.

• Graphical model (Model component): represents the world state displayed

by the view. It’s updated by the Controller considering the state of the

logical model. The update frequency is set by the Controller, and it can be

different from the update frequency of the logical model (e.g. it’s reasonable

to think that, in the same period of time, the update of the logical model is

performed more often than the update of the graphical model).

The independence between the two models allows to decouple the two worlds:

the visualization is not strictly related to the logical model. In this way, it’s

possible to change the existing logical system, ensuring the same display results.

3.3.2 Monitoring of the actor platform

Thanks to the separation of concerns principle, applied in the front-end design,

the interventions necessary to the implementation of the monitoring task are local-

ized and relate solely to the update mode of the logical model. In the simulation

front-end, briefly described in subsection 3.3.1, the logical model is updated by the

simulator, after simulating a round of computation. In the monitoring context,

there’s no simulator, but it’s possible to rely on an actual platform in execution.

The PlatformMonitor component is introduced (instead of the Simulation

component), as a bridge from the Controller to a running platform, exposing

the same external interface provided by the Simulation component. A plat-

form is composed of devices performing a local computation; the results of the

computation, along with the last values retrieved from local sensors, resides in

the single device. In the actor-based platform, a device is represented as a

ComputationDeviceActor (further details in subsection 3.2.1), which can be ex-

tended with an observable behavior (ObservableActorBehavior), obtaining an

ObservableDeviceActor. Inside PlatformMonitor, a PlatformObserverActor

is defined with the purpose of observing all the devices, retrieving all the infor-

mation necessary to provide a proper visualization of the system on the graphi-

cal front-end. Figure 3.6 shows the main structure of the monitoring system of
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the actor platform, along with the most significant messages exchanged between

PlatformObserverActor and ObservableDeviceActor.

Figure 3.6: Structure of the platform monitoring system.

In this case, the observer pattern is applied to actors. PlatformObserverActor

registers itself as an observer of ObservableDeviceActor, to stay up to date on the

status of each device in the running system. An example is provided in Figure 3.6,

in which an Export message is sent to PlatformObserverActor, in order to notify

it about the result of a computation round. Though, other messages are sent as

an effect of the observer pattern (e.g. the device notify the observers about values

retrieved by its sensors).
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Implementation

The key elements for platform distribution, described in section 3.2, are im-

plemented in the preexisting actor platform of scafi. This chapter presents an

overview of the implementation phase, providing significant pieces of code in the

process.

Outline:

• Hybrid platform implementation

• Serialization implementation

• Code mobility implementation

• Platform monitoring implementation

4.1 Hybrid platform

The key elements and constructs to build the hybrid platform are implemented

in the package it.unibo.scafi.distrib.actor.hybrid of the spala module.

In this work, some code has been reused from previous platform implementation

(from p2p platform and server-based platform), after a refactoring process. The

most significant part of the implementation of the hybrid platform consists in

the definition of device actor and server actor; in this section, an overview of the

implementation in regards to these components is provided.
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4.1.1 Base actor platform

The following fragment of code encloses the implementation of DeviceActor.

class DeviceActor(override val selfId: UID,

override var aggregateExecutor: Option[ProgramContract],

override var execScope: ExecScope,

val server: ActorRef)

extends P2pBaseDeviceActor with ObservableDeviceActor {

// Scheduling of a periodic behavior to ask the server for neighbors’ info

context.system.scheduler.schedule(

initialDelay = 0 seconds,

interval = 1 second,

receiver = server,

message = MsgGetNeighborhoodLocations(selfId)

)

override def preStart(): Unit = {

super.preStart()

// Registration with the server at startup

server ! MsgRegistration(selfId)

}

override def inputManagementBehavior: Receive =

super.inputManagementBehavior orElse {

case MsgNeighborhoodLocations(id, nbs) =>

// ... Replacing the current neighbrhood info with nbs ...

}

}

P2pBaseDeviceActor is a trait that provides the main definitions of a device

actor in the peer-to-peer actor-based platform; in addition to general rules (in-

herited from ComputationDeviceActor), this component adopts a behavior to

manage all aspects related to communication with neighbors (support for nbr

construct) in the peer-to-peer fashion of direct communication. The device actor

(distrib.actor.hybrid.DeviceActor) has a similar behavior, extended in order

to perform an interaction with the server: registration at startup, scheduling of a

behavior to ask the server for its neighbors, and management of the server response

to update its internal knowledge of its neighborhood.

The implementation of the ServerActor is shown in the next frame.
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class ServerActor() extends ServerBaseServerActor with ObservableServerActor {

// Map containing the neighbors of each device

val neighborhoods: MMap[UID, Set[UID]] = MMap()

override def neighborhood(id: UID): Set[UID] =

neighborhoods.getOrElse(id, Set())

override def queryManagementBehavior: Receive =

super.queryManagementBehavior.orElse {

case MsgGetNeighborhoodLocations(id) =>

// Retriving the reference of every neighbor of the requestor

val locs = neighborhood(id)

.filter(idn => lookupActor(idn).isDefined)

.map(idn => idn -> lookupActor(idn).get.path.toString)

.toMap

sender ! MsgNeighborhoodLocations(id, locs)

}

override def inputManagementBehavior: Receive =

super.inputManagementBehavior orElse {

case MsgNeighbor(id, idn) => addNbrsTo(id, Set(idn))

case MsgNeighborhood(id, nbrs) => addNbrsTo(id, nbrs)

}

def addNbrsTo(id: UID, nbrs: Set[UID]): Unit = {

// Updating neighborhood map and notification to observers

neighborhoods += id -> (neighborhood(id) ++ nbrs)

notifyObservers(MsgNeighborhood(id,nbrs))

}

}

ServerBaseServerActor is a trait that provides the most general functionality

of a server in the platform: tracking of devices; this component manages regis-

tration of devices and offers the implementation of the lookupActor definition,

usable to retrieve the reference of a previously registered device. The server actor

(distrib.actor.hybrid.ServerActor) has a similar behavior, extended in order

to handle the MsgGetNeighborhoodLocations message.

4.1.2 Spatial actor platform

The spatial platform is implemented on top of the base platform, and uses a

spatial abstraction, MetricSpatialAbstraction, to manage the representation of
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the space. The implementation requires the redefinition of the actors delineated

in subsection 4.1.1. These actors must be extended to supply the capabilities

necessary to carry out a form of spatial computation.

The base DeviceActor is extended by SpatialDeviceActor, as follows.

class SpatialDeviceActor(override val selfId: UID,

_aggregateExecutor: Option[ProgramContract],

_execScope: ExecScope,

override val server: ActorRef)

extends DeviceActor(selfId, _aggregateExecutor, _execScope, server) {

override def setLocalSensorValue(name: LSensorName, value: Any): Unit = {

super.setLocalSensorValue(name, value)

if (name == LocationSensorName) {

// Notification of location to the server

server ! MsgPosition(selfId, value)

}

}

}

The spatial device retrieve its position in the space by means of an appropriate

location sensor, and forwards that information to the server.

The base ServerActor is extended by SpatialServerActor, as follows.

class SpatialServerActor(val space: MutableMetricSpace[UID])

extends ServerActor {

override def neighborhood(id: UID): Set[UID] = {

// The neighborhood consists of the devices nearby in the space

if(space.contains(id)) space.getNeighbors(id).toSet else Set()

}

override def inputManagementBehavior: Receive =

super.inputManagementBehavior orElse {

case MsgPosition(id, pos) =>

// Set the device’s position in the space

space.setLocation(id, pos.asInstanceOf[P])

// Notification of neighborhood of each device to observers

this.space.getAll().foreach(id => {

val nbs = this.space.getNeighbors(id)

notifyObservers(MsgNeighborhood(id,nbs.toSet))

})

}

}
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The spatial server has a representation of the space (MutableMetricSpace), pro-

vided by the spatial abstraction. The neighborhood function has to be redefined,

since the neighborhood of a device depends on its position in the space. Receiving

a MsgPosition message from a device causes a corresponding update in the space.

4.2 Serialization

The actualization of the serialization strategy is mainly implemented in the

package it.unibo.scafi.distrib.actor.serialization of the spala module;

the only exception is the trait AbstractJsonIncarnationSerializer, which be-

longs to the package it.unibo.scafi.incarnations of the distributed module.

In the serialization process, the Play JSON library1 has been used as a support

for conversions from objects to JSON values, and vice versa.

The following frame shows the basic implementation of JsonSerialization.

trait JsonSerialization {

def anyToJs: PartialFunction[Any, JsValue]

def jsToAny: PartialFunction[JsValue, Any]

}

As already mentioned in subsection 3.2.3, serialization and deserialization are car-

ried out respectively by anyToJs and jsToAny. The PartialFunction[-A, +B]

return type allows for class composition with mixins2. This mechanism is applied

to objects serialization in JsonBaseSerialization, as follows.

trait JsonBaseSerialization extends JsonSerialization

with JsonPrimitiveSerialization

with JsonOptionSerialization

with JsonCollectionSerialization

with JsonTupleSerialization

with JsonCommonFunctionSerialization {

override def anyToJs: PartialFunction[Any, JsValue] =

// Composition of partial functions

super[JsonPrimitiveSerialization].anyToJs orElse

super[JsonOptionSerialization].anyToJs orElse

1https://www.playframework.com/documentation/2.6.x/ScalaJson
2https://docs.scala-lang.org/tour/mixin-class-composition.html
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super[JsonCollectionSerialization].anyToJs orElse

super[JsonTupleSerialization].anyToJs orElse

super[JsonCommonFunctionSerialization].anyToJs

override def jsToAny: PartialFunction[JsValue, Any] =

// ... Composition of partial functions, as above ...

}

The Play JSON library supports the definition in scope of implicit conversions3,

to specify how to perform the transformation from objects to JSON values and vice

versa. Following this directive, implicits are defined for all the platform messages.

The problem related to dependency on the actor platform is addressed through

the introduction of a self-type4, declaring that the JsonMessagesSerialization

trait must be mixed into an actor-based platform.

trait JsonMessagesSerialization extends JsonBaseSerialization {

self: distrib.actor.Platform =>

implicit val msgExportWrites: Writes[MsgExport] = msg =>

Json.obj("from" -> anyToJs(msg.from), "export" -> anyToJs(msg.export))

implicit val msgExportReads: Reads[MsgExport] = js => JsSuccess {

MsgExport(

jsToAny((js \ "from").get).asInstanceOf[UID],

jsToAny((js \ "export").get).asInstanceOf[ComputationExport]

)

}

// ... implicit conversions for other messages

}

AbstractJsonIncarnationSerializer extends the serialization functions

with incarnation-related types. The implementation of serialization and deseri-

alization of ComputationExport is shown below.

trait AbstractJsonIncarnationSerializer

extends AbstractJsonPlatformSerializer {

self: BasicAbstractActorIncarnation =>

override def anyToJs: PartialFunction[Any, JsValue] = super.anyToJs orElse {

case e: ComputationExport =>

3https://docs.scala-lang.org/tour/implicit-conversions.html
4https://docs.scala-lang.org/tour/self-types.html
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Json.obj("type" -> "ComputationExport", "val" -> anyToJs(e.getMap))

case // ... serialization of other objects ...

}

override def jsToAny: PartialFunction[JsValue, Any] = super.jsToAny orElse {

case e if (e \ "type").as[String] == "ComputationExport" =>

// Creation of an empty export

val export = new EngineFactory().emptyExport()

// Use of reflection to set the private map

val field = classOf[ExportImpl].getDeclaredField("map")

field.setAccessible(true)

field.set(export,

Map(jsToAny((e \ "val").get).asInstanceOf[Map[Any,Any]].toSeq:_*))

field.setAccessible(false)

adaptExport(export)

case // ... deserialization of other objects ...

}

}

4.3 Code mobility

The implementation of code mobility concerns only the preexisting trait

PlatformDevices in the package it.unibo.scafi.distrib.actor of the spala

module. Adopting the weak code mobility approach, the strategy consists in the

definition of different pure functions of type () => AggregateProgram (which

is syntactic sugar for Function0[AggregateProgram]) inside the platform. In

fact, in this scenario, each device contains a reference to all programs and can

switch between them, after receiving a corresponding message from another de-

vice. In particular, when a device receives a MsgUpdateProgram message, switches

to the specified program (applying the function) and propagates the message to

all its neighbors. This behavior produces a transition phase in the platform from

the current program to a new one, without needing to stop the system. The

MsgUpdateProgram message could be sent to a running device from a component

external to the platform.

To allow code mobility in a distributed system, functions need to be serialized.

Trait JsonCommonFunctionSerialization, mentioned in section 4.2, executes a

sort of functions serialization based on reflection: the code is not actually trans-
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ferred from a node to another, only the function reference is moved. In this way,

the receiver can look for the function (locally) and apply it.

The key elements of the implementation of WeakCodeMobilityDeviceActor

are shown in the following frame.

trait WeakCodeMobilityDeviceActor extends ComputationDeviceActor {

var lastProgram: Option[() => Any] = None

var unreliableNbrs: Set[UID] = Set()

override def inputManagementBehavior: Receive =

super.inputManagementBehavior.orElse {

case MsgUpdateProgram(nid, program) => handleProgram(nid, program)

}

def handleProgram(nid: UID, program: () => Any): Unit = {

// If the incoming program is different from the current one

if (lastProgram.isEmpty || lastProgram.get != program) {

lastProgram = Some(program)

// All neighbors becomes potentially unreliable

unreliableNbrs = nbrs.keySet

// Reset of current computational context

resetComputationState()

// Replacing the current program with the incoming one

updateProgram(program)

// Propagation of program to all neighbors

propagateProgramToNeighbors(program)

}

// The nbr that sent this is reliable, it has alredy embraced the program

unreliableNbrs = unreliableNbrs - nid

}

// ...

}

A particular issue regarding program switch consists in successfully exceeding the

transition phase. In this phase, there will be a moment in which a device will

have already embraced the new program, while a subset of its neighbors have not

yet done so. In this case, the devices computes one or more rounds with different

programs, producing exports impossible to merge with each other. A further step

is required, the selected strategy is the following:

• each device has a unreliableNbrs list (initially empty);
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• a device adds all its neighbors to the list after receiving a MsgUpdateProgram

containing a program different from its own;

• when a device receives a MsgUpdateProgram, removes the sender from the

list (assuming that the sender has already embraced the program);

• only the exports of neighbors that are not in the list are used for the com-

putation phase. This task is achieved by overriding the beforeJob method,

originally defined in ComputationDeviceActor, and executed before each

computation. Inside this method, all the exports coming from unreliable

neighbors are removed, in order to prevent them being considered in the

computation phase.

4.4 Platform monitoring

The implementation of actor platform monitoring is localized in the package

it.unibo.scafi.simulation.gui.incarnation.scafi.bridge.monitoring of

the simulator-gui module. The development process related to the monitoring of

the actor-based platform focuses on the implementation of the PlatformMonitor

class. This component has a particular role, since it has to integrate classical

object-oriented programming (to provide an interface known by the Controller)

with the asynchrony and reactivity typical of the actor model (to interact with

actors representing the devices of the platform).

Interaction with device actors of the running platform is delegated to

PlatformObserverActor, an actor created within the PlatformMonitor class.

This actor immediately registers itself as an observer of every device actor, in

order to be notified of every change in status; when this happens, it updates

the state of PlatformMonitor, triggering the Controller (which is registered

as an observer of the PlatformMonitor component). The implementation of

PlatformObserverActor, as an inner class of PlatformMonitor, is reported in

the following frame.

class PlatformObserverActor(platform: Platform) extends Actor {

override def preStart(): Unit = {
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super.preStart()

platformNodes.foreach(dev => {

// Configuration of Akka path to remote device actor

val path =

self.path.address.copy(

protocol = "akka.tcp",

system = "scafi",

host = Some(dev._2._1),

port = Some(dev._2._2)

).toString +

"/user/" +

platformName +

"/dev-" +

dev._1

context.system.actorSelection(path).resolveOne(2 seconds).onComplete {

case Success(ref) => // Remote actor successfully retrieved

devicesLocation += dev._1 -> Some(ref)

ref ! MsgAddObserver(self)

case Failure(e) => // Connection to remote actor failed

}

})

}

override def receive: Receive = {

case platform.MsgExport(id, export) =>

setExport(id, export.asInstanceOf[EXPORT])

case // ... managing other messages coming from the observed devices

}

}

Some terms, present in the above code, require a brief explanation:

• platform: class parameter that represents the platform in execution; its type

(Platform) is an alias for BasicAbstractActorIncarnation, a component

that provides some useful definitions of aggregate computing on top of the

actor platform.

• platformNodes: object of type Map[ID, (String, Int)], which, for each

device of the system, indicates:

– a value that uniquely identifies the device within the platform;

– a tuple that represents the host in which the device is executing, iden-

tified by IP address (String) and port (Int).

46



CHAPTER 4. IMPLEMENTATION

• path: an Akka-based mechanism to identify and locate a specific actor in a

distributed actor system. If the actor exists, its ActorRef can be retrieved

from the path, by the resolveOne method of the ActorSelection class

(further information can be found in [13]).

• platformName: the name of the remote actor system, in which the actors

will be searched.

• devicesLocation: object of type Map[ID, Option[ActorRef]], which cor-

relate the ID of a device and its reference (if this information is available).

The objects platformNodes, platformName, and devicesLocation, along with

the setExport function, are defined inside the PlatformMonitor class.
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Evaluation

In this chapter, the results of the development phase are analyzed, to determine

the degree of success in achieving the initial goals.

Outline:

• Basic demos of future applications in the field of distributed systems

• Verification of the requirements

5.1 Demos

Demonstration programs have been developed as proof of concept, with a dual-

purpose: put into practice the key elements introduced with this thesis and test

the flexibility of the framework in developing distributed applications. Before this

work, five demos were already available in scafi (from Demo0 to Demo4), showing

how the framework can be used to develop aggregate applications. As a result

of the efforts produced in this thesis, three new demos have been added to the

preexisting ones.

5.1.1 Spatial nets

The demos that exploit architectures classifiable as spatial nets are Demo5 and

Demo6. Each one of them supports:

• server-based, hybrid, peer-to-peer architectures;
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• spatial platform;

• mobile network;

• view of the devices;

• command-line configuration.

Each demo is split in three different versions:

(A) server-based platform;

(B) peer-to-peer platform;

(C) hybrid platform.

The view of the devices, briefly described subsequently, has been developed

only for demonstration and testing purpose, and it should not be considered as a

part of the actual platform provided by the scafi framework.

View of the devices

The view supported the whole development process, establishing a way to both

observe the state of the running platform and interact with the devices. The main

characteristics of the view are summarized, as follows.

• The view is unique for all the devices of the network, even though they may

be located on different nodes.

• The view simulates the space in which the devices are located. Each device

is represented as a dot in the view, and it’s placed at a specific spot in the

view (based on its spatial position). The view shows the current export of

every device.

• The view is constantly updated, to show an accurate status of the devices.

• A change in the position of a device can be simulated by moving the corre-

sponding node in the view. Each move is notified to the platform.

The key component is DevViewActor (package examples.gui of the demos mod-

ule). This actor acts as a bridge from the platform to the view and vice versa. Its

task is to interact with a single DeviceActor to make the visualization of the view
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consistent with respect to the actual device’s state. Although the view is unique,

several DevViewActor are created, one for each device of the platform.

Spatial platform

The goal of this demo is to demonstrate the proper functioning of the spatial

platform and to document programming of a spatial system in scafi. The demo

is available in three different versions, each one based on a specific kind of actor

platform. In this case, an example is shown, exploiting the server-based platform,

and all the steps necessary to setup the system are described. Command-line

configuration is exploited to complete the definition of the relevant settings.

Firstly, the server-based spatial platform is selected, along with the actor that

will act as the view of every device.

import it.unibo.scafi.distrib.actor.server.SpatialPlatform

import examples.gui.server.DevViewActor

Then, the spatial platform is refined, obtaining the ultimate platform of this demo.

This operation provides the embodiment of abstract definitions related to sensors

and space.

object Demo5A_Platform extends SpatialPlatform

with BasicAbstractActorIncarnation {

override val LocationSensorName: String = "LOCATION_SENSOR"

val SourceSensorName: String = "source"

override type P = Point2D

override def buildNewSpace[E](elems: Iterable[(E, P)]): SPACE[E] =

new Basic3DSpace(elems.toMap) {

override val proximityThreshold = 1.1

}

}

import demos.{Demo5A_Platform => Platform}

The next step consists in the definition of the aggregate program, as a class ex-

tending the AggregateProgram trait. In particular, the main function contains

the actual program, that will be executed by devices. In this case, a simple hop
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gradient program is implemented. A device is a source for the gradient program

if it retrieves true from its SourceSensor.

class Demo5A_AggregateProgram extends Platform.AggregateProgram {

def hopGradient(source: Boolean): Double = {

rep(Double.PositiveInfinity){

hops => { mux(source) { 0.0 } { 1 + minHood(nbr { hops }) } }

}

}

def main(): Double = hopGradient(sense(Platform.SourceSensorName))

}

In order to start the platform from command-line, the CmdLineMain class is cus-

tomized. Settings (that will be set by command-line configuration) are extended,

to assign a DevViewActor to each device. Moreover, the onDeviceStarted func-

tion is overridden, to specify the initial sensor values for every device.

object Demo5A_MainProgram extends Platform.CmdLineMain {

// Indication of DevViewActor in Settings as a view of a device

override def refineSettings(s: Platform.Settings): Platform.Settings = {

s.copy(profile = s.profile.copy(

devGuiActorProps = ref => Some(DevViewActor.props(Platform, ref))

))

}

// Assigning initial value to sensors of every device

override def onDeviceStarted(dm: Platform.DeviceManager,

sys: Platform.SystemFacade): Unit = {

val devInRow = DevViewActor.DevicesInRow

val pos = Point2D(dm.selfId % devInRow, (dm.selfId / devInRow).floor)

dm.addSensorValue(Platform.LocationSensorName, pos)

dm.addSensorValue(Platform.SourceSensorName, dm.selfId==44)

dm.start

}

}

Lastly, the server-side entry point is expressed.

object Demo5A_ServerMain extends Platform.ServerCmdLineMain

An example of command-line configuration for this system is shown in the following

frame.
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Demo5A_ServerMain -h 127.0.0.1 -p 9000 --sched-global rr

Demo5A_MainProgram --program "demos.Demo5A_AggregateProgram" -P 9000 -p 9001

--sched-global rr -r 0to99 --gui

This configuration will create:

• a server on localhost, listening on port 9000, that performs a round-robin

scheduling of the devices;

• 100 devices on localhost (port 9001), with a reference to the server (on port

9000), which executes the specified program (Demo5A AggregateProgram);

the platform will provide a view, to observe the devices and interact with

them.

Figure 5.1: Graphical output of the spatial platform demo. Source nodes are

highlighted in red. A simple hop gradient program is executed. The export of

each node corresponds to the value of its distance from the source (device 44).

Figure 5.1 shows the output of the described demo on the view of the devices.
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Code mobility

This demo enhance the previous one (spatial platform demo) with the introduc-

tion of the code mobility support. Through interaction with the view, a program

switch can be triggered, causing an automatic update of the system. The demo

is available in three different versions, each one based on a specific kind of actor

platform. In this case, realization of a simple application, relying on the hybrid

platform, is described. Command-line configuration is exploited to complete the

definition of the relevant settings.

Common elements between all versions of this demo are collected in the def-

inition of Demo6 Platform, a first refinement of the actor-based platform. This

trait does not specify the actual kind of platform, allowing each version of the

demo to combine it with the appropriate incarnation. A Demo6DeviceActor is

defined, exploiting a code mobility approach based on the behavior expressed in

WeakCodeMobilityDeviceActor (described in section 4.3). Functions of type ()

=> AggregateProgram are declared, to provide different programs to every device,

allowing a switch to one of them at runtime.

import it.unibo.scafi.distrib.actor.Platform

trait Demo6_Platform extends Platform with BasicAbstractActorIncarnation {

val SourceSensorName: String = "source"

trait Demo6DeviceActor extends WeakCodeMobilityDeviceActor {

override def updateProgram(program: () => Any): Unit = program() match {

case ap: AggregateProgram =>

super.updateProgram(() => ap: ProgramContract)

}

}

val NeighborsCountAggregateProgram = () => new AggregateProgram {

override def main(): Int = foldhoodPlus(0)(_ + _)(1)

}

val BooleanGossipAggregateProgram = () => new AggregateProgram {

override def main(): Boolean = rep(false)(x =>

sense[Boolean](SourceSensorName) | foldhoodPlus(false)(_|_)(nbr(x)))

}

// ... Definition of other aggregate programs ...

}
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The first step of programming consists in the selection of the hybrid platform.

import it.unibo.scafi.distrib.actor.hybrid.SpatialPlatform

import examples.gui.hybrid.DevViewActor

The spatial platform is enforced with the implementation of its abstract members.

Moreover, the actor.hybrid.SpatialDeviceActor is enhanced with support for

code mobility.

object Demo6C_Platform extends Demo6_Platform with SpatialPlatform {

override val LocationSensorName: String = "LOCATION_SENSOR"

override type P = Point2D

override def buildNewSpace[E](elems: Iterable[(E,P)]): SPACE[E] =

new Basic3DSpace(elems.toMap) {

override val proximityThreshold = 1.1

}

class HybridDemo6DeviceActor(override val id: UID,

_aggEx: Option[ProgramContract],

_scope: ExecScope,

override val server: ActorRef)

extends SpatialDeviceActor(id, _aggEx, _scope, server) with Demo6DeviceActor

object HybridDemo6DeviceActor {

def props(id: UID, prog: Option[ProgramContract],

exScope: ExecScope, server: ActorRef): Props =

Props(classOf[HybridDemo6DeviceActor], id, prog, exScope, server)

}

}

import demos.{Demo6C_Platform => Platform}

A basic aggregate program is defined as the initial program executed by devices.

class Demo6C_AggregateProgram extends Platform.AggregateProgram {

override def main(): String = "ready"

}

The definition of the main program is similar to that of the spatial platform demo,

with a substantial difference: a custom device actor (HybridDemo6DeviceActor)

will be used, instead of the default device actor, to represent a device inside the

platform.
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object Demo6C_MainProgram extends Platform.CmdLineMain {

override def refineSettings(s: Platform.Settings): Platform.Settings = {

s.copy(profile = s.profile.copy(

// Indication of the actor to be used to represent a device

devActorProps = (id, prog, scope, server) =>

Some(Platform.HybridDemo6DeviceActor.props(id, progr, scope, server)),

devGuiActorProps = ref => Some(DevViewActor.props(Platform, ref))

))

}

override def onDeviceStarted(dm: Platform.DeviceManager,

sys: Platform.SystemFacade): Unit = {

val devInRow = DevViewActor.DevicesInRow

val pos = Point2D(dm.selfId % devInRow, (dm.selfId / devInRow).floor)

dm.addSensorValue(Platform.LocationSensorName, pos)

dm.addSensorValue(Platform.SourceSensorName, dm.selfId==44)

dm.start

}

}

Lastly, the server-side entry point is expressed.

object Demo6C_ServerMain extends Platform.ServerCmdLineMain

The command-line configuration shown in the frame below produces a system

analogous to the one of the spatial platform demo.

Demo6C_ServerMain -h 127.0.0.1 -p 9000

Demo6C_MainProgram --program "demos.Demo6C_AggregateProgram" -P 9000 -p 9001

-r 0to99 --gui

The output of this demo, in terms of representation of the network, is similar to

the one shown in Figure 5.1. Initially, the export produced by each device will be

a constant field, the string ”ready”. But, since it’s possible to change the executed

program, if the hop gradient program was assigned to the devices, you would get

an output equivalent to the one of the spatial platform demo.

5.1.2 Platform monitoring

This demo creates a distributed system, relying on the p2p platform, and start

monitoring it. Inside the MonitoringDemo Inputs a programmatic configuration
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of the platform is in action. The concept of node is introduced, as a physical entity

(identified by an address) in which one or more devices are located. The following

code shows the process of defining the settings to allow execution on each node.

case class Node(host: String, port: Int, devices: Map[ID, (Point2D, Set[ID])])

import it.unibo.scafi.distrib.actor.p2p.SpatialPlatform

object MonitoringDemoPlatform extends SpatialPlatform

with BasicAbstractActorIncarnation {

override val LocationSensorName: LSensorName = "LocationSensor"

}

import sims.monitoring.{ MonitoringDemoPlatform => Platform }

object MonitoringDemo_Inputs {

val nodes: List[Node] = List(

Node("127.0.0.1", 9000, Map(1 -> (Point2D(50, 54), Set(2)))),

Node("127.0.0.1", 9100, Map(2 -> (Point2D(50, 104), Set(3)))),

// ... Definition of other nodes ...

)

val platformName: String = "MonitoringDemo"

class MonitoringDemo_AggregateProgram extends AggregateProgram

with SensorDefinitions with BlockG {

def channel(source: Boolean, target: Boolean, width: Double): Boolean =

distanceTo(source) + distanceTo(target) <=

distanceBetween(source, target) + width

override def main() = branch(sense3){false}{channel(sense1, sense2, 1)}

}

val aggregateAppSettings = Platform.AggregateApplicationSettings(

name = platformName,

program = () => Some(new MonitoringDemo_AggregateProgram())

)

val deploySys1 = Platform.DeploymentSettings(nodes(0).host, nodes(0).port)

// ... Definition of deployment settings for the other nodes ...

val settings1: Platform.Settings =

Platform.settingsFactory.defaultSettings().copy(

aggregate = aggregateAppSettings,

platform = Platform.PlatformSettings(

subsystemDeployment = deploySys1,

otherSubsystems = Set(Platform.SubsystemSettings(

subsystemDeployment = deploySys2,

ids = nodes(1).devices.keySet

))
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),

deviceConfig = Platform.DeviceConfigurationSettings(

ids = nodes(0).devices.keySet,

nbs = nodes(0).devices.map(d => d._1 -> d._2._2))

)

// ... Definition of settings for the other nodes ...

class MonitoringDemoMain(override val settings: Platform.Settings)

extends Platform.BasicMain(settings) {

override def onDeviceStarted(dm: Platform.DeviceManager,

sys: Platform.SystemFacade): Unit = {

val pos = nodes.filter(n => n.devices.contains(dm.selfId)).head

.devices(dm.selfId)._1

dm.addSensorValue(Platform.LocationSensorName, pos)

dm.addSensorValue(SensorName.sensor1, false)

// ... Set of the other sensors (sensor2, sensor3) to false ...

dm.start

}

}

}

The goal of the implemented program, known as Channel, is to create the shortest

path from a source (devices that retrieves true from sensor1) to a destination (de-

vices that retrieves true from sensor2), avoiding obstacles (devices that retrieves

true from sensor3).

After the process of settings definition, an application launcher is set for each

node.

import MonitoringDemo_Inputs._

object MonitoringDemo_MainProgram_1 extends MonitoringDemoMain(settings1)

object MonitoringDemo_MainProgram_2 extends MonitoringDemoMain(settings2)

// ... Application launcher for the other nodes ...

Finally, the monitoring view is created and attached to the platform. The

MonitoringDemo Monitor is the entry point of the monitoring application. Further

information on how to run the view can be found in [16].

import MonitoringDemo_Inputs._

object MonitoringDemo_Monitor extends App {

val initializer = RadiusSimulation(
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radius = 5,

platformName = platformName,

platformNodes = nodes.flatMap(

n => n.devices.map(_._1 -> (n.host, n.port))

).toMap,

platform = Platform

)

ScafiProgramBuilder (

worldInitializer = Fixed(

nodes.flatMap(n => n.devices.map(d => d._1 -> d._2._1)).toSet

),

scafiSimulationInfo = SimulationInfo(

program = classOf[MonitoringDemo_AggregateProgram]

),

simulationInitializer = initializer,

outputPolicy = GradientFXOutput

).launch()

}

An execution schema for this demo is:

1. Execution of the actual system, by running all the distinct subsystems

through the corresponding launchers (MonitoringDemo MainProgram x ).

2. Execution of the monitoring system, by running the appropriate launcher

(MonitoringDemo Monitor).

3. Monitoring and control of the system.

Figure 5.2 shows the output of the described demo.

5.2 Requirements verification

Considering the code produced in the implementation phase and the results

obtained in the demos, an evaluation of each requirement expressed in section 2.1

has to be carried out.

• Serialization: a serialization strategy has been successfully implemented

in scafi. The adoption of the JSON format promote interoperability in

the complex context of the Internet of Things. The modular structure of

the serializer, described in section 4.2, ensures extendibility; in fact, the
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Figure 5.2: Graphical output of the monitoring demo. Graphically, the source is

identified by a red circle, the destination by a yellow circle, and obstacles by a blue

circle. Each node that is on the shortest path between source and destination is

highlighted.

problem of serialization of a new message can only be addressed by defin-

ing conversions (from message to JSON value and vice versa) inside the

JsonMessagesSerialization trait.

• Hybrid platform: The implementation of the hybrid platform fulfill its

main requirement, since the demos proves that the three platforms are inter-

changeable. Hence, replacing a server-based or p2p platform with a hybrid

platform is a zero-cost operation, that guarantees the same results with a

different architecture.

• Spatial platform: In the demos related to spatial nets (Demo5 and Demo6),

the spatial platform is exploited to create spatial systems, in which devices

are situated in an environment. A device can move in the space and retrieve
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its position from an appropriate location sensor. In the demos, movement

is simulated assigning different values to the mentioned sensor; an execution

with actual sensors in the real world could allow a more effective testing of

the developed systems.

• Code mobility: the ultimate goal of code mobility is to properly exchange

programs (code) between devices. The Demo6 proves the accomplishment

of this requirement, allowing the user to change the program executed by

the devices at runtime. As described in section 4.3, this result can be eas-

ily achieved by using WeakCodeMobilityDeviceActor instead of the default

ComputationDeviceActor. A message (of type MsgUpdateProgram) sent to

any device triggers the program switch across the platform.

• Platform/view integration: the demo related to platform monitoring con-

firm the integration, since the view displays the state of a running platform

(monitoring task). To fulfill the requirements, the monitoring system lets

the users directly interact with devices of the platform, and allows them to

simulate sensor values at will (control task).
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Conclusion

In this thesis, the problem of distributing aggregate computations has been

addressed. Several options have been presented and analyzed to increase flexi-

bility in the development of distributed systems. The most promising ones have

been implemented in the preexisting actor-based platform of scafi, exploiting

the advanced features provided by both the Scala programming language and the

Akka framework. This work based on distribution accomplished the following main

results:

• support communication between nodes distributed in the network;

• design of systems with a hybrid peer-to-peer architecture model;

• change in the behavior of aggregate systems at runtime, by shipping new

code to devices;

• monitoring and control of an aggregate system at execution time.

In the process, different demos have been produced, to verify the correctness of each

functionality introduced in scafi, and to show the programming of distributed

aggregate application with the framework.

6.1 Future work

The path related to consolidation of distributed computing in scafi, under-

taken with this thesis, can not be considered complete. In particular, some inter-
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esting future directions are presented.

• IoT deployment: an actual deployment of systems produced with scafi

would be a great opportunity for testing aggregate applications in action.

The platform could be run on mobile devices (like smartphones), equipped

with physical sensors and actuators. Moreover, a server-based architecture

could be extended, exploiting services offered by cloud computing.

• Communication on top of the actor platform: the current Akka-based

communication between devices is not suitable for a distributed application

in the context of the Internet of Things. As stated in subsection 2.3.2,

application-level protocols and communication technologies could be built

on top of the existing platform, with moderate efforts. As proof of concept,

a demo could be realized, showing the design and implementation of a system

distributed on the Internet (maybe exploiting the HTTP protocol).

• Full support for code mobility: the approach to code mobility could def-

initely be improved. In subsection 2.2.4, a distinction is delineated between

weak code mobility and strong code mobility. The latter is not currently sup-

ported by the platform, but it would bring interesting implications, allowing

for unknown code injection at runtime.

• Simulation on platform: the key concepts explained in subsection 2.3.3

should be carefully explored, in order to design the most suitable implemen-

tation of a simulation based on the actor platform. In particular, defining

the connection between the already implemented task of platform monitoring

and the actor-based simulation is crucial.
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