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Chapter 1

Introduction

In this thesis project we study, simulate and analyse the issue of entropic
forces and their effects in a simple gaseous system. This project focuses on
the aspect of the effect of this forces in dynamical situations.

This thesis project started because after a long talk with my supervisor
and following with some more detailed readings [2, 3], I was fascinated by his
idea on how life came to be on earth due to uneven forces. In the beautiful
idea shown to me, the evolution mechanisms are essentially based on ran-
domness and we have some paradoxes to understand how it was possible to
select the amino acid sequence of a protein that define its three-dimensional
structure essential for the metabolism processes of life. The role of entropic
forces could shed light on the problem.

We are still far from achieving meaningful results about this concept, but
we have made the first steps in the direction obtained from such an interesting
idea.

The starting point of this projects is the effects of entropic or deple-
tion forces and they mainly concern colloids. Let’s define what colloids are.
Following the IUPAC’s definition the term colloidal refers to a state of sub-
division, implying that the particles dispersed in a medium, either liquid or
gaseous, have at least in one direction a dimension approximately between
10−9 m and 10−6 m or that in a system discontinuities are found at distances
of that order. Colloids are quite bigger compared to normal molecules, but
they may be comparable to the size of macromolecules.

We want now to give an insight to the reader to what entropic forces are
through a real life mental experiment. Let us consider a room in a restaurant
in two different occasions. On regular evenings the tables are arranged in
a normal dinner set-up. Sometimes they set up a cocktail party with many
people present. In such a event the tables are full of snacks and beverages
and the arrangement of the tables is quite different. When the number of
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6 CHAPTER 1. INTRODUCTION

costumers increases and get over a certain threshold, the staff tend to push
the table close to each other in order to get more free space for the visitors.
This is a kind of ’phase separation’ and is triggered by entropy only. We
see an apparent attraction between the tables that originates from repulsive
interaction between the customers, which do not wish to be too close each
other. If we think of the tables as a colloidal particles in a solution, and the
costumers as smaller particles, we have the gist of how entropic forces work.

In fact if we suppose that rigid colloidal sphere are mixed with smaller
rigid polymeric spheres the bigger ones have a portion of excluded volume,
i.e. ’void’ space near the surface in which the smaller particles cannot enter.
The mechanism that is responsible for attraction originates from the super-
imposition of two of this layers from different colloidal particles: when two
layers superimpose the space available to the smaller particles increases. It
follows that the free energy of the smaller spheres is minimised by states in
which the big spheres are close together. The visible effect is an attractive
force between the bigger spheres even if the only interactions are repulsive of
non superposition. Instead, in the entropic picture, we have that it is more
probable to find two big spheres close one to the other due to the effect of
the smaller spheres, because this increase the free volume available for the
smaller spheres and this increases the total entropy of the system. For small
concentrations the attraction is equal to the product of the osmotic pressure
and the overlap volume. Moreover we have a discontinuous behaviour,which
is typical in a model where elastic collision between rigid object happens.

The concept of entropic force was first derived by Asakura and Oosawa
in 1954 [1]. In the first chapter of this thesis project we will present how the
understanding of this concept came to be, retracing the steps made by the
discoverers of this force. We show from a very simple geometrical calcula-
tion how the entropic forces are derived between two plates, which is very
straightforward, between two spheres and between a wall and a sphere. We
want to highlight that Asakura and Oosawa demonstrated theoretically the
existence of this force, but we focused on the dynamical effect of this forces.

In the second chapter we decided to look into a different effect of excluded
volumes through a new idea developed by us. In fact we still don’t know with
precision how they act in many situation, in particular which is their role in
many situation of non-equilibrium.

The shape of the proteins or of other molecules determines the forces,
due to the excluded volume, to which they are subjected. For a better un-
derstanding we calculate how a two dimensional hypothetical rigid molecule,
with a non symmetrical shape, behaves when hit by a beam of small particles
with a not null volume.

The molecule is split in two along an axis of non symmetry and the beam
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of particles are carrying a momentum only in the direction perpendicular to
that axis, the particles from the beam arrive both from +∞ and −∞.

The cross section of the molecule in the two different direction cover the
same area, but due to the different shape of the molecule and to the fact
that the particles have a volume and are not point-like, the value of the
momentum at each height is different, and is in function of the radius of the
particles.

In the third chapter we tried to obtain computational result through
simulations of a gas in different systems. In the chapter dedicated to the
simulation we give to the reader a brief explanation on how the program Not
Only Colliding Spheres (NOCS), written in the language C++, works. NOCS
is a program able to reproduce the dynamics of molecules in two dimension.

In this thesis project we used NOCS to reproduce, as a first step, the
result obtained by [8], who used a Monte Carlo simulation for obtaining the
shape of the entropic potential. We were able to reproduce the same shape
of the potential through a dynamical simulation.

We want to highlight that the simulations done with NOCS are original
endeavour developed by us.

A different simulation we focused on, is one in which we studied the dis-
tribution of the time intervals in which the particles kept close one to each
other. This in important because in physics, in biology and in chemistry
many reaction happen only if the time two particles or molecules spend to-
gether in long enough.

The shape of the distribution of the time length is exponential and we ob-
tained interesting data that connects the depth of the potential well obtained
in the previous simulation with the coefficient of the exponential distribution
of time length two particles stay close together.

Afterwards we decided to present to the reader, in the appendix, some
recent experimental discoveries on the Soret effect, for which particles in
aqueous solutions usually move from regions with higher temperature to re-
gions with lower temperature, [4, 5]. The Soret effect theoretically is not
yet clearly understood, since there are many different elements which con-
tribute and as it can happens in effects due to thermodynamic which are
often complex.

The authors, using lasers to heat a film of water will create a gradient of
temperature in the film enclosed by polystyrene slides. Afterwards through

If will be shown that if the system is sufficiently steady, i.e. not too hot,
and the the Soret coefficient is linked to the entropy.
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Chapter 2

Entropic Force Theory

Asakura and Oosawa [1] deduced an attractive force acting between sus-
pended colloids in a solution of polymeric particles, which act as depletants,
where there is neither direct interaction between two colloids nor between
colloids and solute polymeric particles. This force has a range of interaction
of the order of the diameter of the polymeric particle and a magnitude of the
osmotic pressure of the polymeric particles.

In their article Asakura and Oosawa approximate the bigger colloids and
the smaller polymeric particles as rigid spheres with two different radii, the
size of the two kind of spheres is the only difference between them.

The polymeric particles compete with the bigger colloidal particle to have
access to the available volume, decreasing it, and in this sense the colloidal
particles are called depletants. Since the colloids have less volume available,
they are more likely to be close to each other compared to if there were only
the same number of colloids in the same volume.

When two colloids get close enough, closer than two times the radius of
the small polymeric particles, the smaller particles apply a force to the two
colloids, force caused by an unbalanced osmotic pressure, but since the force
is small and in a gas mixture is present a lot of thermal noise, the colloids
tends to wander off. However since the colloids perceive a force they spend
more time close to each other and since time is required to trigger many
biochemical reactions, depletion forces play an important role in nature.

In the following chapter we want to highlight the most important steps
done in the description of the depletion forces. In the following theoretical
derivation the colloids considered will be blocked in place, because it is not
easy to obtain a direct dynamic derivation of the depletion forces. This thesis
projects revolves more on the dynamical aspect of the depletion interactions
however it is relevant to learn from the work of Asakura and Oosawa since
their work started all the further derivations.

9



10 CHAPTER 2. ENTROPIC FORCE THEORY

2.1 Force Method

Entropic Interaction Between two Flat Plates

Let us consider two large parallel plates immersed in a solution of rigid spher-
ical polymeric particles. If the distance between the inner surfaces of these
two plates is smaller than the diameter of solute polymeric particles, none of
those polymeric particles can enter in the space between the plates. There-
fore a force equivalent to the osmotic pressure of the solution of polymeric
particles acts on the outer surfaces of these plates.

The force per unit area, K(h) , between the two parallel plates separated
by a distance h, is the difference between the osmotic pressure Pi inside the
plates and the outside pressure Po

K = Pi − Po . (2.1.1)

We suppose that the hard spheres behave thermodynamically ideally and
so the osmotic pressure outside the plates is given by Van’t Hoff law

Po = nbkT,

where nb is the bulk number density of the polymers. When the plate
separation h is equal or larger than the diameter σ of the hard spheres the
osmotic pressure inside the plates is equal to the one outside:

Pi = Po = nbkT,

Instead when h is smaller than σ no polymer can enter the gap and Pi = 0.

Summarising the last results we have:

K(h) = −nbkT for h < σ

= 0 for h ≥ σ .
(2.1.2)

As we can see from the last equation, we have a discontinuous behaviour,
this is typical in a model where we have elastic collision between rigid object.

We know that K = −dW/dh, and integrating from ∞ to h yields the
interaction potential per unit area W (h) between the plates at distance (h)

W (h) = −nbkT (σ − h) for h < σ

= 0 for h ≥ σ .
(2.1.3)
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Figure 2.1:
Schematic picture
of two parallel
flat plates in the
presence of hard
spheres

h
K

σ

Entropic Interaction Between two Spheres in two di-
mensions

When the volume of thickness σ/2 around the spherical colloidal particles
with radius R start to overlap, i.e. when the distance r between the centres of
the two colloidal particles is smaller than 2R+σ, a clear force arises between
these colloidal particles. Let’s define an effective entropic force radius Re

Re = R +
σ

2
. (2.1.4)

This attractive force originates from an uncompensated osmotic pressure
due to the diminution of the available volume between the colloidal particles.

We can see in the Fig. 2.2 that the uncompensated pressure acts on the
surface from θ = 0 to θ = θ0, θ0 = arccos (r/2Re).

For symmetry reasons only the contributes to the total force along the
line who connects the two spheres is meaningful. The angle on which this
forces operate is between θ e θ + dθ, whose surface is 2πR2

e sin(θ)dθ We can
obtain the whole force acting between the colloidal spheres integrating from
0 to θ0 on θ

Ks(r)

nbkT
= −2π

(
R +

σ

2

)2 θ0∫
0

senθcosθ dθ

= −πR2
e

[
1−

(
r

2Re

)2
]

2R ≤ r < 2Re

= 0 r ≥ 2Re .

(2.1.5)

The minus sign in the last equations stand for an attractive force.

We can now obtain a depletion potential by integration of the depletion
force
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Ws(r) =

2Re∫
r

Ks(r) dr

= −nbkTVov(r) 2R ≤ r < 2Re

= 0 r ≥ 2Re .

(2.1.6)

We can note that the potential Ws(r) is equal to pressure time the overlap
volume Vov where

Vov(r) =
4π

3
R3
e

[
1− 3

4

r

Re

+
1

16

(
r

Re

)3
]

(2.1.7)

or can be expressed as follows

Vov(h) =
π

6
(σ − h)2

(
3R + σ +

h

2

)
. (2.1.8)

Both equations are widely used in the literature.
In the limit σ/2� R the force expressed in equ. (2.1.5) becomes

Ks(h)

nbkT
= −πR(σ − h) (2.1.9)

and from the potential (2.1.6) we get

Ws(h)

nbkT
= −πR

2
(σ − h)2. (2.1.10)

The latter two formulae are valid when h = r − 2R < σ.

2.2 Extended Gibbs Adsorption Equation Method

Entropic interaction between two flat plates

An alternative way to obtain the interaction potential is from the extended
Gibbs adsorption equation. We use the gran potential Ω(T, V, µ, h) as the
best thermodynamic potential able to describe the situation in Fig. 2.3.

Ω = F − µN, (2.2.1)

where F = F (T, V,N, h) is the Helmholtz free energy, N the number of
hard spheres in the system and µ their chemical potential. We have that at
a constant temperature and volume dF = µdN −KAdh, so
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R
σ
2

σ

r θ0

h

P

Figure 2.2: Two hard spheres in the presence of smaller hard spheres as depletants. The
proximity of the two spheres produce an overlap of areas (grey part) excluded to the centre
of the smaller spheres, resulting in more free space for the smaller spheres.The overlapped
area has the shape of a lens with tickness σ − h and height H = 2Retanθ0, where θ0 is
give by cosθ0 = r/2Re The unbalanced number of strikes for the bigger spheres causes an
unbalanced pressure P , resulting in an attractive force between them.

dΩ = −KAdh−Ndµ, (2.2.2)

where K is the force per unit area between the plates and A is the area of
the plates. Differentiating the previous equation we obtain(

∂K

∂µ

)
h

=
1

A

(
∂N

∂h

)
µ

(2.2.3)

knowing that

K = −
(
∂W

∂h

)
µ

, (2.2.4)

we get that

−
(
∂

∂h

(
∂W

∂µ

)
h

)
µ

=
1

A

(
∂N

∂h

)
µ

(2.2.5)

The depletion potential W vanishes at infinite separation for all values of
µ of the depletion agent, integrating over h bring us

−
(
∂W

∂µ

)
h

=
N(h)−N(∞)

A
, (2.2.6)
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Figure 2.3: Illustration
on how the entropic
forces between to plates
in the system of interest
(I) at the given chemi-
cal potential of the reser-
voir (II). The two system
are connected by a mem-
brane M able to let go
through the particles of
the depletants h

K

µ

I

II

M

where N(h) is the number of hard spheres in the system when the plates
are at separation h and N(∞) is that at infinite separation. We can express
the number of hard spheres in the previous equation in terms of the surface
adsorption (

∂W

∂µ

)
h

= Γ(h)− Γ(∞), (2.2.7)

where

Γ(h) =

h∫
0

(n(x)− nb)dx, (2.2.8)

and

Γ(∞) = 2Γsingle wall = 2

∞∫
0

(n(x)− nb)dx. (2.2.9)

In equ. (2.2.9) n(x) refers to the concentration profile of spheres near a
single wall, while in equ. (2.2.8) n(x) we have the profile between two walls.
Expression (2.2.7) is the extension of the Gibbs adsorption equation for a
single surface to the case of two surfaces at finite separation. Integration of
equ (2.2.7)gives

W (h) = −
µ∫

−∞

(Γ(x)− Γ(∞))dµ. (2.2.10)

The centre of the hard spheres can’t get closer to the wall of the plate
than σ/2 and AΓ(h) is equal to the overlap volume A(σ − h) times nb, as
shown in Fig. 2.4.
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h

σ

σ − h

σ
2 K

σ
2

Figure 2.4: The overlap volume (hatched area) due to hard spheres between
two parallel flat plates equals to A(σ − h)

Γ(h)− Γ(∞) = nb(σ − h) for h < σ

= 0 for h ≥ σ
(2.2.11)

The chemical potential of the hard spheres is

µ = kT ln(nb). (2.2.12)

If we insert equations (2.2.11) and (2.2.12) into equ. (2.2.10) we find again
the interaction given by equ. (2.1.3). The calculation with the extended
Gibbs adsorption equation has a conceptual advantage, it provides a direct
link between the depletion of particles with the entropic potential. This
method also gives us a physically motivated approximate expression for the
entropic interaction where an exact calculation is not possible.

Interaction Potential Between two Spheres

Applying exactly the same line of reasoning as for the derivation of the ex-
tended Gibbs adsorption equation for two flat plates, now we obtain

−
(
∂Ws

∂µ

)
= N(r)−N(∞), (2.2.13)

where N(r) is the number of penetrable hard spheres in the system when
the colloidal spheres are centre-to-centre separation r and N(∞) at infinite
separation. The difference between the two is caused by the overlapping
volume of the depletion zones.
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N(r)−N(∞) = nbVov(r) for 2R ≤ r < 2Re

= 0 for r ≥ 2Re

(2.2.14)

with Vov defined as in equation (2.1.7) or in (2.1.8). Integrating equ.
(2.2.13), while keeping in consideration equations (2.2.14) and (2.2.12) we
immediately obtain equ. (2.1.6).

Interaction Between a Sphere and a Wall

We can apply the extended Gibbs adsorption equation to the case of a sphere
interacting with a wall, we use again

−
(
∂Wsw

∂µ

)
= N(h)−N(∞), (2.2.15)

where N(h) is the number of penetrable hard spheres in the system when
the colloidal sphere is at a separation h from the wall and N(∞) is that at
infinite distance. Again the difference between the two are caused by the
overlap of the excluded volumes, in this case, of the sphere and the wall (see
Fig. 2.5)

Vov(h) =
N(h)−N(∞)

nb

=
1

3
π(σ − h)2

(
3R +

σ

2
+ h
)

for 0 ≤ h < σ

= 0 for h ≥ σ.

(2.2.16)

If we integrate equ. (2.2.15) we get

Wsp(h)

nbkT
= −1

3
π(σ − h)2

(
3R +

σ

2
+ h
)

for 0 ≤ h < σ

= 0 for h ≥ σ .

(2.2.17)

When R� σ equ. (2.2.17) becomes

Wsp(h) = −nbkTπR(σ − h)2 for 0 ≤ h < σ, (2.2.18)

which is equal to two times equ. (2.1.10).
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R

σ
2

σ

σ
2

Figure 2.5: Illustration of the overlap volume (hatched) of depletion layers
between hard wall and a hard sphere

2.3 Derjaguin Approximation

Derjaguin showed an approximate relation for the force between curved ob-
ject and the interaction potential between two flat plates. In the Derjaguin
approximation the spherical surface is replaced by a collection of flat rings.
Consider two spheres with radius R at a centre to centre distance r = 2R+h.
The distance H between the sphere surfaces at a distance z from the line join-
ing the centres is H = h+ 2∆, we have that (R−∆)2 + z2 = R2, as we can
see in Fig. 2.6 (a).

When the range of interaction is short enough it is sufficient to consider
only small values of h/R or z/R. For z � R since we have

∆2 − 2R∆ + z2 = 0,

from the previous equation, we can solve it for ∆ and get

∆1,2 = R±
√
R2 − z2 = R±R

√
1− z2

R2
.

Since z � R we can expand the root with a Taylor series and truncate the
values at the first order, obtaining

∆1,2 = R±R
(

1− z2

2R2

)
.

We can exclude the value of sigma close to 2R, since it is not the physics
condition that interest us, and we get
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∆ =
z2

2R
.

Therefore H = h+ z2

R
and we have that dH = (2z/R) dz. The interaction

between two spheres can be written as the integration of the interactions of
flat rings with radius z and surface 2πzdz at a distance H(z) from each other.
If the interaction happens at a suitable short distance, the contributions of
the outer rings, with a higher value of H can be neglected, and so we may
extended to z =∞.

We have

Ws(h) =

∞∫
0

W (H)2πzdz = πR

∞∫
h

W (H)dH (2.3.1)

and then

Ks = −∂Ws(h)

∂h
= πRW (h), (2.3.2)

where in this formula W (h) is a interaction potential between two flat
plates and h is the distance between the two plates.

The larger the radius of the sphere the more accurate the Derjaguin Ap-
proximation is. This approximation is an useful tool which can be very
accurate under the right conditions, but it’s better to be careful and to be
aware of its limitations.

With respect to the depletion interaction the approximation of the Der-
jaguin approximation becomes accurate when considering a depletion agent
which is small compared to the colloidal sphere. If we apply the Derjaguin
approximation to equ. (2.1.3) in the case of hard spheres using equ. (2.3.2)
we get on the spot at the equ. (2.1.9).

If we apply the same line of reasoning to the interaction between a sphere
and a flat plate we have that H = h+ ∆ and thus dH = (z/R)dz, this bring
us to the following force

Ksp = 2πRW (h) . (2.3.3)

From equation 2.3.3 it follows that

Wsp(h) = 2πR

∞∫
h

W (h′)dh′ . (2.3.4)

For the case of hard spheres as depletion agent this gives us
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h
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Figure 2.6: How the Derjaguin Approximation works

Wsp(h) = −nbkTπR(σ − h)2 for 0 ≤ h < σ

= 0 for h ≥ σ,
(2.3.5)

in agreement with equ. (2.2.18).
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Chapter 3

Effects of a Boltzmann gas on a
Molecule

In the first part of this derivation we want to find out how the resultant
momentum of a molecule composed of three spheres positioned as in Fig.
3.1, hit by smaller spheres with momentum only in the X direction, changes
in function of σ, the diameter of the smaller spheres. This calculation has
been done to understand better the underlying effects of the excluded volume.

Let us consider particles which are evenly distributed along the Y axis
and arrive with a low frequency so that we can suppose the particles have no
interaction between them. Let us consider the molecule as set, incapable of
moving. When a particle hits a certain sphere of the molecule, we consider
that the particle bounces off elastically in the normal direction to the surface
of the sphere, as we can see in Fig. 3.2. We will consider in the following
calculation that all the smaller spheres carry a momentum in absolute value
of pp.

When a particle arrives its momentum is given by ~pp = ±pp̂ı, where
ı̂ indicates the unit vector of the x direction, and the plus or minus sign
is determined by which side the particle arrives. After a collision between
the particle and the molecule happens the momentum retains his absolute
value while his direction changes due to the impact with the molecule. The
variation of the momentum of the particle is given by

∆~pp = ~p′p − ~pp = ±pp cos φ̂ı± pp sin φ̂± pp̂ı, (3.0.1)

where ̂ is the unit vector of the y direction and the ± signs are decided
by the quadrant from which the particle arrives and its y coordinate. The
angle φ between impact point of a particle and the centre of the sphere of
the molecule which was hit is given by

21
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O′

O′′

O

−~pp

~pp

σ

hR +
σ
2

d

φ

X

Y

Figure 3.1: The molecule we want to study is composed by the three spheres
with their respective centres O, O′ and O′′, arranged equally spaced. The
angle φ is given by the impact point of the molecule and the axis, parallel to
the X axis, passing in the centre of the sphere which has been struck, h is
the relative height of the particle. The sphere-like particles have a diameter
of σ and all the particles carry a momentum in absolute value of pp, only in
the X direction.

φ(y) = arctan

(
h

d

)
= arctan

(
h√

(R + σ
2
)2 − h2

)
. (3.0.2)

Where h is the relative height at which a particle arrives to hit a sphere
of the molecule, it is equal to the y initial position of the particle or y ± R
depending on its initial position, it can range from −(R+σ/2) to (R+σ/2).

For each impact of a particle against the molecule the particle changes its
total momentum and such variation is equal to the impulse of the force that
the molecule exerts on the particle in the time interval in which the contact
molecule-particle happens. Let us indicate with δt the aforementioned time
interval and with F the average force which the molecule exerts on the par-
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O

O′

O′′

~pp
~p′p

Figure 3.2: In this image we want to represent how the collision between the
particles and the molecule happens. A particle arrives from ±∞ carrying
a momentum only in the x direction, it collides with the molecule and it
bounces off elastically in the direction perpendicular to the surface of the
sphere in that point. The absolute value of the momentum doesn’t change
and remain constant. The particles are evenly distributed along y in the
interval [−(2R + σ/2); (2R + σ/2)].

ticle, the impulse is thus Fδt. For Newton’s third law the average force that
the particle exerts on the impact against the molecule is therefore

~Fδt = −∆~pp. (3.0.3)

Let us integrate both members of the equation on time

τ∫
0

~Fδtdt =

τ∫
0

−∆~ppdt, (3.0.4)

where τ is a time interval long enough that every interval along the y
direction get visited. Afterwards we can exchange the integral on the time
with a integral on the spacial coordinate dy and we obtain

τ∫
0

~Fδtdt =

∫
all possible y

−∆~ppdy = −pp
∫

all possible y

(± cos φ̂ı± sin φ̂± ı̂) dy,

(3.0.5)



24 CHAPTER 3. EFFECTS OF A BOLTZMANN GAS

where again the plus and minus signs depends on the initial position of the
particle considered. We can drop the last term, since the integral on all the
possible y, in the two direction of a constant is null.

For simplicity we will now split the calculation between the resultant of
the right part of the molecule, ~Fright, the one that gets hit by spheres with

negative momentum, and the resultant of left part, ~Fleft. We obtain

~Fright =
∑

O,O′,O′′

−pp
∫

[cos φ̂ı + sin φ̂]dh. (3.0.6)

Knowing the inverse trigonometric functions

cos (arctan x) =
1√

1 + x2
and sin (arctan x) =

x√
1 + x2

, (3.0.7)

we get that

cos (arctanφ(h)) =
1√

1 + h2

(R+σ
2
)2−h2

=

√
(R + σ

2
)2 − h2

R + σ
2

(3.0.8)

and

sin (arctanφ(h)) =
h√

(R + σ
2
)2 − h2

1√
1 + h2

(R+σ
2
)2−h2

=
h

R + σ
2

. (3.0.9)

The y component of the momentum is odd and the sum of the intervals
of integration is even, so the y component is null.

Let us name R + σ/2 as k for clarity and therefore we obtain

FO
∣∣
x

= −pp

k∫
−k

cosφ dh = −pp

k∫
−k

√
k2 − h2
k

dh = −pp

k∫
−k

√
1− h2

k2

k
dh.

(3.0.10)
Using the substitution

x =
h

k
,

we get
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FO
∣∣
x

= −pp

1∫
−1

√
1− x2k dx. (3.0.11)

As we know if we put x = sin t

∫ √
1− x2 dx =

∫ √
1− sin2 t cos t dt =

∫
cos2 t dt =

t

2
+

sin 2t

4
+ c

=
arcsinx

2
+

1

2
sin(arcsin (x)) cos(arcsin (x)) + c

=
arcsinx

2
+

1

2
x
√

1− x2 + c.

(3.0.12)
Thus

FO
∣∣
x

= −kpp
2

[
arcsinx+ x

√
1− x2

]1
−1

= −kpp
2
π. (3.0.13)

Similar calculations bring us the result for the other two integrals.

FO′
∣∣
x

= FO′′
∣∣
x

= −kpp
2

[
arcsinx+ x

√
1− x2

]1
σ
2k

= −kpp
2

[(
π

2
− arcsin

( σ
2k

)
− σ

2k

√
1− σ

2k

)]
.

(3.0.14)

So we get

Fright
∣∣
x

= −kpp
(
π − arcsin

( σ
2k

)
− σ

2k

√
1− σ

2k

)
. (3.0.15)

We can now calculate Fleft as the integral on the two spheres, with the
right interval of integration. The consideration we did before are still valid
now and the y component is null here too. In addition we have that the
integral on the x component of O′ is equal to the one on O.

FO′
∣∣
x

= FO′′
∣∣
x

= pp

k∫
−R

cos (φ) dh = pp

k∫
−R

√
1− h2

k2
dh = kpp

1∫
−R
k

√
1− x2 dx

=
kpp
2

[
π

2
+ arcsin

(
R

k

)
+
R

k

√
1− R2

k2

]
(3.0.16)
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So Fleft is equal to two times the result in equ. (3.0.16).
Finally we obtain the total momentum as

FTot
∣∣
x

= FLeft
∣∣
x

+ FRight
∣∣
x

= kpp

[
π

2
+ arcsin

(
R

k

)
+
R

k

√
1− R2

k2
− π+

+ arcsin
( σ

2k

)
+

σ

2R + σ

√
1− σ

2R + σ

]

= kpp

[
− π

2
+
R

k

√
1− R2

k2
+ arcsin

( σ
2k

)
+

σ

2k

√
1− σ

2k

]
. (3.0.17)

We can see that there is a force different from zero on the X axis acting
on the molecule if we get a time interval long enough, in this configuration.
Since the molecule is symmetric over the X axis we expected no force at all
along the Y axis, and so it is. We can see in Fig. 3.3 the trend of the force
in function of σ.

Let’s keep our attention on the X axis from now on and let us imagine
that the molecule is free to move only in the X axis direction, as if it had an
ideal constraint. If we now consider two changes of coordinates of the X−Y
axis and of the set up, of a rotation of 120o and 240o we get that the X ′ and
X ′′ axis pass through the centre of the O′ and O′′ spheres respectively.

We keep the particle fixed on the old X axis rails, but let us consider the
collision with the particles coming also along the new X ′ and X ′′ axis carrying
momentum only in the X ′ and X ′′ direction, uniformly distributed along the
Y ′ and Y ′′ axis respectively. What we would obtain if the molecule was not
on tracks and hit only in the X ′ or X ′′ direction would be a drift along the
corresponding axis in accordance with the results above. Instead since the
molecule can move only in a fixed direction, and we receive particles from
the three directions the particles in the other direction gives us a contribute
of −Px′/2−

√
3Py′/2 and −Px′′/2 +

√
3Py′′/2

In the second part we want to uncover how the fluctuations on the moment
distribution of the molecule struck in the three directions behave, because the
simple sum of all the elements we considered would give us a still molecule in
average, while the fluctuations under some condition can bring us a different
result.

We can see in Fig. 3.5 the pattern of the exchanged momentum in func-
tion of the three impact parameters y, y′ e y′′. The functions concerned are
not reversible and we could not get the distribution of the momentum ana-
lytically, but since the functions are continuous, except for a few numerable
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Figure 3.3: This image shows the value of the total momentum along the X
axis in function of σ/2R

discontinuous points, we obtained it computationally through a simple pro-
gram in which for every step of the impact parameter we calculated a value
of the function with which we built an histogram out of all the values. In
Fig. 3.6 we can see some examples at different values of σ/2R.

Afterwards we calculated the median value and the average value of the
histogram thus created and in Tab. 3.1 some of the results are shown.

In a stationary situation, in which there is no gradient in temperature,
the particle won’t change its position, in average, while if there is one, the
fluctuations on the momentum give us information if there is the possibility
of a drift.

As expected, when σ is null the distribution of the values is symmetrical
and the median and the average are equal to zero too. When the value of
σ is different from zero the symmetry is broken and the median is negative
while the average is still compatible to zero due to the error caused by the
computation approximations. As sigma grows, as we can see in the Fig. 3.6
the imbalance between the left and the right part is more evident, but the
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O′

O′′

O X
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X ′

Y ′

X ′′

Y ′′

~px

~px′

~px′′

Figure 3.4: In this figure we show the two change of coordinates considered.
The X ′ − Y ′ coordinates (in green in the figure) are obtained rotating the
X − Y axis of an angle of 2π/3, while the X ′′ − Y ′′ coordinates (in red in
the figure) are obtained through a rotation of 4π/3 in respect of the X − Y
axis. Particles can arrive from the three directions carrying momentum only
in the direction from which they arrive.

median reach a sort of threshold. The null average is compatible with the
results obtained in the first half, if the molecule is hit by the particles in the
three direction equally distributed along the three impact parameters the
molecule will in average stay still. Instead if there is a gradient of tempera-
ture, since the median is not null, the fluctuations of values of the exchanged
momentum can let the molecule experience a drift.
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Figure 3.5: Value of the exchanged momentum, along the x-axis, in function
of the impact parameter, respectively y, y′ e y′′. For obtaining these images
we used as values R = 1, σ/2 = 0.1 and pp = 1.
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σ
2R

Median Average

0 1.1× 10−16 0

0.2 -0.03 6.7× 10−5

0.4 -0.06 1.3× 10−4

0.6 -0.07 1.4× 10−4

0.8 -0.07 1.5× 10−4

1 -0.07 1.5× 10−4

Table 3.1: The value of the median and of the average of the distribution of
the momentum, in function of σ/2R
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Figure 3.6: In these images are shown the distribution of the value of the
momentum exchanged at different values of σ



Chapter 4

Program and Simulations

In this thesis project I used the program developed by dr. Matteo Monti
and dr. Carlo Emilio Montanari called Not Only Colliding Spheres (NOCS)
written in the programming language C++. The program is still under de-
velopment and in this thesis project we have tested some of its key elements.

We want now to give to the reader an idea of how the program works and
if someone is interested in this topic it is possible to have more information
following the link mentioned in the bibliography [7].

4.1 Not Only Colliding Spheres

NOCS has been important to study and understand how the effects of ex-
cluded volume works with spheres and Boltzmann gases. In fact all of its fea-
tures and its capability to adjust to the many situation which have emerged
in our study make it one extremely useful tool on this topic.

NOCS is an exact event driven program developed for the simulation of
motion of molecules in two dimensions with periodic boundary conditions.

Furthermore if the user needs some particular data, or conditions, for his
simulation, it is possible to implement two kinds of lambda expressions that
will help the user to reach the goal of his simulation.

Let’s see some of the most important features of the program NOCS
through the highlighting of its most important classes and lambda expres-
sions.

The class Engine

The class Engine is the core of the entire simulation, because it takes care
of the actual execution of the processes simulated. The Engine stores the
objects of the simulation and it builds a queue of event objects.

31
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The fact that the program is event based means that the time evolution
doesn’t happen as in a normal simulation of motion, where all particles evolve
over time at the same time. Instead a queue of events is created and only
when an event, like a bump between molecules, happens the position of the
particles involved are changed. It is like to keep all the particles not involved
in an event backward in time until they actually are involved in a event and
then to change their positions, their equations of motion and that of the
other particles that may interact with them, and to build afterwards a new
queue of events.

While it may seem unnatural to use such a simulation method, it is im-
portant for cutting down computational time considering that in models with
many body, simulations with exact dynamics are too time consuming. While
other methods may be employed, like the use of Monte Carlo simulation, a
program able to develop exact dynamics in an acceptable time is extremely
enticing.

The queue of events is obtained through the equation of motion of all
the particles, bumps happen elastically, along the line joining the centre of
mass of the two particles and the total energy and the total momentum are
conserved. Particles also can carry an internal momentum and are able to
rotate.

The class Engine works with a decided by the user amount of time, mean-
ing that it must develop the queue of events until the decided time. After
the decided time the position and the momentum of all the particles are up-
graded to what they should be if a normal dynamic was happening, through
integration of the equations of motion. Afterwards another time interval may
be given to the class Engine that makes the procedure start again from the
newly calculated positions and momenta.

This feature is useful if in a particular simulation for example is needed
to know how the position of some particle evolves. It is still important to not
give a set of time intervals too small because the integration of the equation
of motion gives an intrinsic computational error, and also because it would
be too costly in computational time, making the implementation of a event
driven program useless.

The class Engine also provides a subscription system that allows the user
to observe only the desired events of the simulation, so to gather only the
required data without wasting computational time.

The class Grid

The class Grid implements a subdivision of the simulation zone into smaller
squared regions, when the engine is established the finesse of the grid must
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be set.
The space where the simulations of NOCS happens is a square with an

edge of length one, but since the dimension of the molecule considered must
be quite smaller it is unpractical to build a queue of events comparing each
element of the simulation with each other, since it would require a great deal
of computational time. The subdivision in smaller squares reduce the volume
of many analysis, in fact after the subdivision happens each element of the
simulation needs now to be compared only with the other elements in their
region and in the neighbouring regions.

It is important to impose a grid with cell bigger than the particles present
in that particular simulation, or the simulation may work poorly, but as small
as possible, for reducing the computational cost.

The class Molecule

The class Molecule is the object-oriented representation of a generic molecule
of arbitrary shape and mass in dynamic motion, inside a 2-dimensional space.

A molecule is built up totally by the user as it is more fit for his uses in
a particular simulation.

The user may set properties that gives the molecules their characteristic:
the relative position of the spheres which compose the molecule (with the
condition that they must overlap, or at least they must be tangent to each
other), the mass, the radius of the spheres, the relative position of the centre
of mass. Also the external proprieties that dictate the interaction with the
other particles must be set, like the position and the velocity of the centre of
mass, the orientation and the angular velocity.

When a molecule is inserted in the engine it receives an id from the
program that identifies it, in addition the user may give one or more tags to
a molecule, thanks to the class Tag.

The class Tag

The class Tag is a public nested class of the class Engine, this class is what
allows to identify any object of the simulation with a series of system-defined
and user-defined tags.

In fact when an object like molecule gets implemented is possible to in-
clude the class Tag. Doing so will give to the chosen molecule a label cho-
sen by the user that will permit to the program to differentiate between
molecules, or group of molecules, with different tags.

Since often the user is interested on how the properties of some particular
molecule evolves or change, this feature is extremely helpful in doing so.
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To any molecule, or group of molecules, any number of tags may be added.

The class Bumper

The class Bumper is an object-oriented representation of a spherical immov-
able obstacle in a two dimensional space. When a bumper is implemented
together with the position and the dimension of the bumper itself a tag can
be added.

The class Event

The class Event is the abstract base class for the engine’s event system.
It may represent the collision of a molecule with a bumper, a molecule
against a molecule or a molecule changing region inside the grid of the engine.
This guarantees space continuity by performing translations on the molecules
when it is required.

The classes Resetter and Elasticity

The class Resetter is a component of Engine which allows the user to set
the value of energy of a molecule, or a group of molecules, with a chosen
tag, into any desired value, maintaining all the internal proportions between
them (translational and rotational).

The class Elasticity enable the user to set certain events (impact be-
tween certain tagged molecules or between certain molecules and bumpers)
as anelastic (in the impact some of the energy get dissipated) or superelastic
(in the impact the energy get increased).

These class are useful when we want to study effects taking place at the
imbalance, or when we want to simulate a transition of energy between a hot
and a cold spot, for example.

The lambda expression Engine.on

The lambda expression Engine.on permits to the user to write expressions
that will be inserted in the queue of events, once a determined event that
triggers the effect of Engine.on happens in the simulation. The lambda ex-
pression Engine.on offers the most versatile uses and it is the most useful
tool in NOCS.
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The lambda expression Engine.each

The lambda expression Engine.each permits, at a given time, to get all the
possible information needed by the user on a particular set of molecules with
the same tag. In addiction this expression can repetitively perform a task
for all the molecules in the chosen set.

Graphics

NOCS offer also the opportunity to visualise the two dimensional simulation
while it happens. While it is not recommended to use the visualising through
a long simulation, due to its computational cost, it is useful during trials for
understanding if the system simulated is meaningful.

4.2 Effects of the Excluded Volume

We want now to disclose to the reader the results of the simulation done
for this thesis project. In this section we present the simulations, obtained
through NOCS, of a system, a gas, of two kind of spherical particles, bigger
colloidal-like particles and smaller ones, which act as depletants. We want
to answered to two issues, firstly how the potential behaves. This is a topic
often found in literature [6] and we tried to follow the examples of

Secondly we want to estimate the time of clustering for the bigger par-
ticles. This is important in many systems, in fact for many chemical or
biological reaction to take place is needed an activation time, and to under-
stand if and how the effects of the excluded volumes have played a role in
the formation and in the shaping of the proteins would be interesting.

The simulations are in function of two parameters

• The ratio between the radii of the two different particles present in our
gas,

• The occupancy, which is the occupied area by all the particles divided
by the total area of the box.

It is important to choose an appropriate occupancy, because a system
with an occupancy too big may cause effect of jamming, that is a phase
transition, in which a local event may have an impact on all the system.
It can describe some physical process like glasses, foams or emulsions but
we are not interested in treating these topics in this projects. Instead the
simulation of a too rarefied gas would not let us understand how the excluded
forces relate with the thermal noise of a Boltzmann gas, not helping us to
understand the dynamics of the molecules in a true gas.
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4.2.1 Determination of the Potential

For figuring out the shape of the potential we did two kind of simulation

Estimation of the Exchanged momentum

As we described in the third chapter, between two spheres at a fixed distance
surrounded by smaller spheres which act as depletants act a force, when the
distance between the two bigger spheres is compatible with the diameter of
the smaller spheres, as an effect of the excluded volume. And if given enough
time, the exchanged momentum may be considered a force.

In the first simulation done we placed two particles at a fixed distance h
giving them a considerable mass, bigger then ten order of magnitude than
the other particles, and no kinetic energy at all, this way we could consider
the two spheres fixed at the given place for a reasonable time intervals.

This simulation can’t be considered truly dynamical because the element
of concern, the potential, is obtained blocking the bigger spheres for a time
which can be considered infinite. The potential thus found may not have an
actual effect when all particles are free to move because the thermal noise of
the gas could cover up the effect of the potential.

The two bigger spheres are placed at the centre of the square in which
our simulation happens and the radii of the two bigger spheres are chosen
to be the 0.05 of the aforementioned square. The centres are placed at the
same y coordinate,at the same height.

The smaller particles are able to move freely in the two dimensional
squared box with periodic boundary conditions, have a small mass compared
to the bigger spheres and at the beginning of our simulation are given a fixed
position each and a kinetic energy distributed according to a normal distri-
bution and an initial random direction of motion. The radius of the smaller
spheres is given in function of that of the bigger spheres, it can vary from
the 0.25 to the 0.35 of the aforementioned radius of the bigger spheres. The
number of the smaller spheres are decided by the occupancy, the quantity of
total area covered by all the particles.

After an initial time of mixing we can consider our system to have achieved
an equilibrium and then we start to collect the exchanged momentum at the
impact between the smaller spheres and the two bigger spheres. We want to
obtain the total exchanged momentum along the axis passing through the
centre of the two spheres, since the shape of our configuration has an effect
only along the aforementioned axis. As we explained in the third chapter, if
given enough time the sum of all the momenta is like a force acting between
the two bigger particles. We project the exchanged momentum of each bigger
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(a) In this figure we can see the profile of the force obtained through this simula-
tion in function of the distance . Each point of the force was obtained blocking
the position of the two molecules at the needed distance, and letting the system
exchange momentum with the particle and as seen in the third chapter if enough
time was given the sum of all the exchanged momentum can be considered a force.
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(b) In this figure we can see the profile of the potential acting between the two
molecules in function of the distance between them. This profile is obtained
through numerical integration of the previous force profile and shift of the value
along the y-axis so to have zero has value of the last point. This was done because
after a diameter and half of the smaller spheres the effect of the entropic force is
not relevant, and the value oscillates around the zero.

particle on the axis of interest and sum all of it up to obtain a relative value
of the force acting at the fixed distance h, between the two bigger particles.
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We repeated the process at different values of h, keeping all the other
variables constant, the number of the time steps included, we repeated the
same simulation for five times and averaging the results thus obtained we
arrive at a profile for the force, as we can see in Fig. 4.1a for the case with
occupancy equal to 0.4 of the total area and a radius ratio of 0.3.

Once we obtained the profile of the force, we have integrated it numeri-
cally, thus achieving the shape of the potential acting between the two bigger
spheres as shown in Fig. 4.1b.

We can see in Fig.4.2 a comparison between the profiles of the potential
obtained by varying the occupancy and by keeping the radius ratio constant.
As we can see as the occupancy increases the depth of the potential well
increases as well. For the case of Occupancy 0.5 we can see a second well of
potential, typical of the entropic forces at such concentrations of particles,
as presented in the paper [8].

Secondly in Fig. 4.3 is shown comparison of the profiles of the potential
obtained by varying the radius ratio and by keeping the occupancy constant.
As we can see the depth of the potential well doesn’t change much in this
range of variation of the radius ratio. It is shown that the potential generated
by the smaller spheres of different dimension have a different range of action.
In fact the length of the potential well is determined by the length of the
diameter of the smaller spheres which act as depletants.

In Fig. (4.4) we show the comparison between the theoretical profile of
the potential as obtained in the second chapter in equ. 2.1.6, and one of the
simulation done at occupancy 0.4 and at radius ratio 0.3. The trend of the
potential obtained through the simulation is a good approximation, except
when the two molecules get further away then the diameter of the smaller
spheres.
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Figure 4.2: In this image are shown all the potential obtained by varying the
occupancy, while maintaining constant the radius ratio. We can see that as
the occupancy increases the depth of the potential well increases as well.
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Figure 4.3: In this image are shown all the potential obtained by varying
the radius ratio, while maintaining constant the occupancy. We can see that
as the radius ratio diminishes the potential well, but only a little. We can
also see that the potential generated by the depletants of different dimension
have a different range of action. In fact the length of the potential well is
determined by the length of the diameter of the depletants.
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Figure 4.4: In this figure it is shown in blue circles the potential in function
of the distances between the centre of the molecules at radius ratio 0.3 and
occupancy 0.4, in orange is shown the profile of the theoretical potential
obtained in the second chapter in equ. 2.1.6 in arbitrary units.
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Estimation of the Distribution of the Distances

The other method we followed for computing the potential is a dynamic
method. In this simulation all the particles can move freely.

We know that in gas, when is present a potential between particles, the
distribution of the positions follows the Maxwell-Boltzmann distribution

P (N, x) = Ae−
W (x)
kT , (4.2.1)

where P is the probability to have the two particle be at a distance x,
N is the number of particle present, A is a normalisation constant, k is
the Boltzmann constant, T is the temperature of the system and W is the
potential existing between the particles.

We want to obtain the potential through a measure of the distribution of
the distances. The distances obtained in the system simulated with NOCS
will be compared to a null model which will be built for differentiate between
the effect of the potential and the statistical effects.

In fact we have that:

P0(N, x) = A0e
−W0
kT0 , (4.2.2)

where P0 is the probability to have two particles at the distance x for a
gas without potential acting between, N is the number of particle present, A0

is a normalisation constant, W0 is a constant potential, k is the Boltzmann
constant and T0 is the temperature of the system.

From the equations (4.2.1) and (4.2.2) we have

P (N, x)

P0(N, x)
=

A

A0

e
−W (x)kT0

W0kT , (4.2.3)

and making the logarithm of the previous equation we obtain

log

(
P (N, x)

P0(N, x)

)
= − log

(
A

A0

)
T0
W0T

W (x), (4.2.4a)

W (x) = −B log

(
P (N, x)

P0(N, x)

)
, (4.2.4b)

where B = W0T

T0 log
(
A
A0

) is a constant, since the temperatures are arbitrary

and in our simulations and they remain constant.
For calculating the effects of the potential we introduced a set of ten

bigger spheres labelled as Big, trough the class Tag of NOCS, the radius of
the bigger spheres are chosen to be the 0.05 of the edge of the square where
the simulation happens. The bigger spheres are positioned at the beginning
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of the simulation on the lower part of the square and are given a kinetic
energy distributed according to a normal distribution a finite mass and an
initial random direction of motion.

It is not so important the attribution of a certain energy or mass to the
bigger spheres, what is important is the ratios of the energy and of the masses
between the bigger and the smaller spheres.

We attributed to the smaller particles a mass related to the bigger spheres
through the ratio of their area, we have chosen to give the same density to
both particles. We gave them the same value of kinetic energy of the bigger
spheres, for the normal distribution, so they are less massive, but faster, since
we consider the gas to be at the same temperature. Again the number of
the smaller spheres are decided by the occupancy, the quantity of total area
available to be covered after we subtracted the area covered by the bigger
spheres.

After an initial time of mixing we reach a stable configuration and we
begin our measurements.

We want to obtain the distribution of the relative distances between all
the closest Big spheres, so using the lambda expression Engine.each, after
a chosen time interval, we got the positions of every particle and we cal-
culated the matrix off all the distances. Afterwards we selected, to add to
our data, only the closest particle for each particle. We built the program
so that the chosen time interval was sufficient to let the particles mix and
have independent measurements of the positions. We used all the relative
distances to build a histogram in function of the distances. Afterwards we
built a distribution of all the distances thus obtained, as we can see in Fig.
4.5a.

For the construction of the null model, we decided to use a Monte Carlo
experiment. We let the program distribute some points, in a two dimensional
box, in a random fashion. We placed as many points as the number of
particles of the dynamic experiment explained before.

We imposed an acceptance condition on the random placement, which is
that two centres of all the particles considered cannot be closer to each other
than a length equal to the diameter of the spheres. The acceptance condition
is used to represent the impossibility of overlapping for two particles.

The ratio of the acceptance parameter with the edge of the squared box
where the points are placed is 0.1, the same ratio of the diameter of a Big
particle with the square of the previous experiment.

Again we are interested in the distribution of the relative positions, so
after taking all the position at a fixed frame in the simulation we build a
matrix with all the distances, and afterwards we let the program evolve.
We let all the points, one at a time while all the other points are fixed,
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(a) In this figure we can see the
histogram with the distribution
of the distance between the cen-
tres of the molecules, of the other
closest molecule to each molecule
in our simulation.

(b) Here we show the distribu-
tion of the distances of the null
model build through a Monte
Carlo simulation, again we don’t
have any molecule closer to each
other of a diameter of a molecule.
The shape of the distribution is
that of a truncated gaussian.

(c) In this image we show a mag-
nification of the histogram shown
in the figure (a), with a focus
on the distances covered by the
range of the potential.

choose a new acceptable random position. We repeat the procedure for 1000
times and than take a new frame, this way we can consider, at every frame
used for calculating the distances, the positions to be independent from the
previous positions and we thus obtain the distribution. As we can see from
Fig. 4.6 the shape of the potential thus obtained is almost equal to the shape
obtained through the previous simulation. The only difference between the
two potentials is in the sharper decay of the peak in the second simulation.
This is due to the fact that in the first simulation the molecules were blocked
at all the distances for an equal amount of time, while in a true dynamical
simulation we think that the molecules in average spend less time in that
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range, so the value is diminished after the peak.
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Figure 4.6: In this figure it is shown in red the potential in function of the
distances between the centre of the molecules, obtained through the process
just explained, in blue we can see in comparison the shape of the potential
obtained in the first kind of simulation. The red profile of the potential was
obtained through a dynamical simulation. Both profile are obtained with an
occupancy of 0.4 and a radius ratio of 0.3. Both profiles are normalised to
the height of the highest peak.

4.2.2 Estimation of the Clustering Time

One of the main reason we started this project was to understand and quan-
tify how the particles stay close to each other. This is important because
in nature many events, like chemical or biological reactions need time to let
them happen.

We wanted, through a simulation, to measure how the time intervals in
which the molecules spend time close to each other varies.

We used the same computational set up of the last experiment, we intro-
duced a set of 10 molecules, labelled as big, free to move in a two dimensional
box and a higher number of smaller particles which act as depletants, in de-
pendence to the parameter occupancy, which decided how much of the total
space is occupied.

After an initial time of mixing of the system, needed for reaching a sta-
tionary condition, we started to measure how much time two particles spend
close to each other.
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Figure 4.7: We show how the data for the fits are selected. We chose to
exclude the data when the semi-log distribution starts to go often to zero
and when there in the initial bulk. Increasing the simulation time may help
to get a better result but it isn’t necessary to our purpose.

As we can see in the Tables 4.1 and 4.2 the Slope of the lines obtained
decrease, in absolute value, as the occupancy grows and as the radius ratio
grows.

After two particles got closer than the first threshold, we started to count
how many time steps they spent together and after the molecules move fur-
ther away than a second threshold we stopped the count and added one to
the appropriate cell of the array used to record the time intervals, this way
we could obtain the distribution of how often a certain time interval would
occur, given the radius ratio and the occupancy.

We chose to apply two different threshold because otherwise the low value
of time interval would be overestimated. We choose to use as first thresh-
old between the distance of the centre of the bigger molecules a diameter of
the two molecules plus 1.5 times the radius of the depletant particles. This
because the range of the force acting between the molecules due to the de-
pletant is at maximum two times the radius of the depletant, but since some
particles may arrive with a strong kinetic energy they may not perceive the
potential well if they do not get close enough to each other.

After some trials, we saw that if we used the same threshold for when
the particles moved away from each other we got an extremely high value for
small time interval, we thought that the molecules might fluctuate near the
threshold and thus we overestimated the small time intervals. Instead after
using a second threshold of two times the radius of the smaller depletants,
the effect previously described was greatly reduced.

We can see in Fig. 4.8a as the trend of the distribution change in function
of the occupancy and in Fig. 4.9a the changes in function of the radius
ratio. We show also the semi-log graph in Fig. 4.8b and 4.9b, for better
understanding.
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(a) In this image are shown the distributions of how much time
two particles are close together. The distributions are in function
of the occupancy and of the radius ratio. Every value of the time
length corresponds to 0.15 seconds of simulation time. In this
image we show three of the distribution obtained varying only the
occupancy. We can see a clear negative exponential behaviour.
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(b) The distribution shown in (b) are the logarithmic scale of the
distribution in the previous image, we can see that as the occupied
area increases (from green to blue to red) the time that the particle
tend to stand close to each other increases too.

Figure 4.8

We can see a big number of small time interval, probably caused by the
fact that when two particle spend time close to each other and get apart they
may get close together again, oscillating and thus overestimating the smaller
time intervals. Subsequently we have a decreasing exponential behaviour.
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(a) In this image are shown the distributions of how much time
two particles are close together. The distributions are in function
of the occupancy and of the radius ratio. Every value of the time
length corresponds to 0.15 seconds of simulation time. In this
image we show three of the distribution obtained varying only the
radius ratio. We can see a clear negative exponential behaviour,
for this we show the same distribution in a logarithmic scale in
the Fig. (b)
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(b) The distribution shown in this image are the logarithmic scale
of the distribution in the previous image, we can see that as the
radius ratio area increases (from orange to blue to violet) the time
that the particle tend to not change too much.

Figure 4.9

It is evident that as the area occupied by the particles increases, the time
the molecules tend to stick close to each other increase visibly too. Meanwhile
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Occupancy 0.3 0.4 0.5
Slope -0.0246 -0.0176 -0.0106

Table 4.1: Values of the Slope for the distribution shown in Fig. 4.8. We
can see a decrease of the negative exponential of the length of the time the
particle spend close to each other as the occupancy increases.

Radius Ratio 0.25 0.30 0.35
Slope -0.0196 -0.0176 -0.0167

Table 4.2: Values of the Slope for the distribution shown in Fig. 4.9. We
can see a less steep decrease of the negative exponential, in respect to the
previous table, as the radius ratio increases.

as the Radius ratio increases there is again a growth of the time the molecules
spend together, but it is less evident.

We choose to interpolate the data to obtain the coefficient of the exponen-
tial behaviour. For interpolating we choose to use the semi-log distribution
and select the data from when it starts to behave exponentially to when the
value are not visited enough and they go to zero, as shown in Fig. 4.7. Since
we chose to use the semi-log distribution, we will show the Slope and the Y
Intercept of the line obtained trough the fit.

Estimation of the Clustering Time with Dissipation

When two molecules bump one into the other the collision is rarely perfectly
elastic and there is a little dissipation of energy.

For this reason we decided to repeat the simulation shown above with in
addition a little dissipation between the collisions of the bigger spheres and
a suitable reheating of the smaller particle ensuring that the temperature of
our system would not drop too low.

Through the usage of the features of NOCS Elasticity and Resetter the
task was easily done. Every time two bigger spheres hit each other we made
them dissipate the 20% of their energy. Every time step of our simulation we
calculated the total energy off all the spheres, both big and small, present.
If the value of the total energy was inferior to the 95%, we set the energy of
the smaller particles to a value which added to the value of the energy of the
bigger particles was equal to the initial energy.

As we can see from the Fig. 4.10 when the dissipation is active in our
simulation the exponential decay happens slower. Moreover the bulk value
at the beginning of our distribution is reduced, in fact, introducing the dis-
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Figure 4.10: We show in this image the comparison of the distribution of the
time length between the case without dissipation and the one with dissipation
at the same conditions. Every value of the time length corresponds to 0.15
seconds of simulation time.

sipation, we were able to decrease the overestimate of the low length time
intervals.

As we can see from the Tab. 4.3 and 4.4, the values of the negative
exponential are reduced respect the simulations without dissipation. The
order is kept, comparing the simulation with and without dissipation, in the
values of the exponential with respect to the occupancy, while we can see an
exchange of values with respect to the radius ratio.

This may be due to the fact that the potential shown previously have
a more significant difference varying the occupancy, so the order is main-
tained, while the difference in the potentials in the case in which we vary the
potential is smaller. Moreover the potential generated by bigger depletion
agents, despite being a little smaller, has a longer range, so in the case with-
out dissipation it may be more effective than the one generated by smaller
depletants.



50 CHAPTER 4. PROGRAM AND SIMULATIONS

0 10 20 30 40 50 60 70 80 90 100

Clustering Time Length in Simulation Time

0

500

1000

1500

2000

2500

F
re

q
u

e
n

cy

Frequency with Dissipation at Occupancy=0.4 and Radius Ratio=0.3

Frequency with Dissipation at Occupancy=0.5 and Radius Ratio=0.3

Frequency with Dissipation at Occupancy=0.3 and Radius Ratio=0.3

(a) In this image are shown the distributions of how much time
two particles are close together when the dissipation is activated.
In this image are shown the distribution varying the occupancy.
Every value of the time length corresponds to 0.15 seconds of
simulation time.
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(b) In this image are shown the distribution varying the radius
ratio.Every value of the time length corresponds to 0.15 seconds
of simulation time.

Figure 4.11
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Occupancy 0.3 0.4 0.5
Slope -0.0166 -0.0107 -0.0056

Table 4.3: Values of the Slope for the distribution shown in Fig. 4.11a. We
can see again a decrease of the negative exponential of the length of the
time the particle spend close to each other as the occupancy increases. Fur-
thermore the coefficient of the negative exponential is significantly decreased
compared to the values of the simulation without dissipation.

Radius Ratio 0.25 0.30 0.35
Slope -0.0103 -0.0107 -0.0117

Table 4.4: Values of the Slope for the distribution shown in Fig. 4.11b. In this
case there is an inversion of the trend compared to the case of the simulation
without dissipation. In fact the potential generated by the particles with a
bigger radius is a little smaller, but it acts in a longer range, probably with
dissipation the effect is more noticeable.
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Chapter 5

Conclusive Remarks

The entropic forces may have played a fundamental role in the shaping of
some kind of macromolecules and of the proteins, in particular amino acids.
Since the systems of interest are extremely complicated and even if this forces
and excluded volume effects exist and they may facilitate an entrapment due
to a potential well, they may not determine it. It is difficult to determine
an actual result for understanding how the proteins truly developed, for
this reason it is important to develop our knowledge through computational
simulations.

In this thesis project we studied how how a particular molecule, formed
by three spheres equidistant in two dimension is subject to the effects of
excluded volume and we tried to understand how the shape of a molecule
gives us information on its behaviour when it is subject to collisions.

We also studied in a system of binary hard sphere mixture how the poten-
tial behaves in function of the density of the spheres and of the radius ratio
between the two spheres involved, through dynamical simulations. Moreover
we estimated the distribution of the clustering time again in comparison
with in function of the density of the spheres and of the radius ratio in a case
where elastic collisions happened and in a case in which we let the spheres
of interest dissipate part of their energy, keeping the temperature constant.
Finally we made a comparison for understanding the parameters which can
enhance the length of the clustering time.

53



54 CHAPTER 5. CONCLUSIVE REMARKS



Appendix A

Recent experimental discoveries

A.1 How the molecules move along a temper-

ature gradient in aqueous solutions

It has been known since the end of the 19th century, experimentally, that
particles may move along along a temperature gradient. This phenomenon
is known as the Soret Effect, thermodiffusion or thermophoresis. Particles
usually move from regions with higher temperature to regions with lower tem-
perature, but the inverse Soret effect exists too. The Soret effect theoretically
is not yet clearly understood, recent studies [4] give us an interesting insight
for the Soret Effect when the gradient of the temperature is sufficiently small.

Let us start with a straightforward theoretical explanation of thermod-
iffusion. For diluted concentrations, it is generally assumed that the drift
velocity due to thermodiffusion depends linearly on the gradient of the tem-
perature ∆T .

In fact if we combine the drift of the thermophoresis with the diffusive
back flow we have the drift current density

j = jD + jTD = −D∇c−DT c∇T (A.1.1)

where D is the diffusion coefficient due to the diffusive back flow, ∇c is
the molecule concentration gradient DT is the thermodiffusion coefficient and
∇T is the temperature gradient. It happens that j = vc, and so, as it was
already stated

v = −DT∇T. (A.1.2)

When the system is in the steady the sum of the two currents compensate,
and thus j = 0, this bring us to the following equation, when the difference
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in temperatures are small

dc

c
= −STdT (A.1.3)

with ST = DT/D, which is the Soret coefficient.
If the Soret coefficient is constant integrating the previous equation we

obtain

c(~x)

c0(~x0)
= e−ST (T (~x)−T0(~x0)) (A.1.4)

and ~x0 is an arbitrarily defined location, with a temperature T0 and a
concentration c0. As we can see from the previous equation the dependence
between the concentration and the temperature is exponential, and the con-
centration c depends only on the difference T − T0.

To reach the position ~x from ~x0 in a steady state let us consider to con-
catenate many arbitrary small regions by diffusion, sufficiently small regions
so that it is possible consider each region to have a local equilibrium.

We can express the ratio of the concentration of the final region cN and
the initial region c0 as a sequence of products of local concentration ratios of
neighbouring regions, expressed by local laws of thermophoresis

cN
c0

=
N∏
i=1

ci
ci−1

=
N∏
i=1

1− ST (Ti − Ti−1) (A.1.5)

If we assume a equal spacing in temperature between the various regions
∆T = (TN − T0)/N , for a fairly large N we can apply the limit definition of
the exponential function to equ. (A.1.5) and obtain

cN
c0

=

[
1− ST

TN − T0
N

]N
→ e−ST (TN−T0) (A.1.6)

Even if the system globally is in a non equilibrium state, local thermody-
namic equilibrium of many regions may assemble in a global steady state.

In the work of Duhr and Dieter the previous relation was put to test using
microfluidic fluorescence. The gradient of the temperature was generated
through an infrared laser at a wavelength of 1480 nm with power used usually
at 25 mW . A water chamber was formed using polystyrene slides of 10 µm
thickness. A 32× air objective put in a fluorescence upright microscope was
used for the imaging.

The spot heated by the laser had a ∆T = 8 K with a full width of 40 µm.
The thermophoresis of polystyrene beads with a diameter of 200 nm was

measured. The beads were diluted to 0.02% solid in 1 nM Tris buffer. The
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Figure A.1: This image shows some of the specific of the experimental ap-
proach. (a) A film of water is surrounded by polystyrene slides. The low
thermal conduction due to the walls and the thin water film allows a tem-
perature profile which is independent of the thickness.(b) As a consequence
also the depletion profile due to the thermophoresis shows no dependence on
the thickness. (c) Convection has negligible velocity, at most of 5 nm/s, due
to thin film of water and broad heating focus.

thermophoretic properties of the system stated above were measured for a
small ∆T of 1.2 K, bringing to the results of DT = 1.4 µm2/(sK) and
D = 2.1 µm2/s and thus ST = 0.7 K−1 .

For obtaining the concentration of particles the luminosity of 50 images
were averaged, each image was obtained with an exposure time of 10 seconds
and it was recorded with 12-bit resolution.

The protocol for collecting the images was formed by three steps

• The first step was to collect the images before the laser started to heat
the system in the decided spot.

• The second images are obtained after a twenty minute of laser heating,
in a steady state.

• The last kind of images are obtained after 20 minutes of back-diffusion,
needed for correcting the fluorescence bleaching of the beads.

The result of the images obtained is that the bleaching could be corrected
linearly and the possible inhomogeneous illumination was removed by divid-
ing with the images obtained before the heating of the system. The profiles
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of the radial concentration were obtained from the average of the group of
images. The background fluorescence was removed in respect of the central
depleted region.

The experiment was simulated using a finite element calculation taking
into consideration Navier-Stokes flow superposed with thermal expansion,
heat transfer, gravity, molecule diffusion and thermophoresis. The tempera-
ture profile of the film of water is flat due to the low thermal conductivity of
the walls of the chamber in polystyrene (Fig. A.1a). Small deviation from a
constant z profile of both temperature and concentration compensate in the
first order. The simulation does not underline a disturbance of the profile
of the concentration of beads caused by the thermal convection (Fig. A.1b)
and this happens because the maximum speed due to thermal convection is
only of 5 nm/s.

The radial temperature distribution of the system was measured using
the BCECF fluorescence (Fig. A.2a). The average of the temperature (lin-
ear) and of the concentration (logarithmic scale) in function of the radius is
shown in Fig. A.2d. The exponential dependence between the temperature
and the concentration has a Soret coefficient of ST = 0.72/k, quite close to
the value measured for the system at a smaller temperature interval. The
beads in consideration may have a Soret coefficient with a small temperature
dependence, but the experimental result may be equally explained with or
without it.

Equations (A.1.5), (A.1.6) and the division in small region of local equi-
librium may be put to test may be put to test. The temperature and the
concentration locally do not present an abrupt change and a linearized Boltz-
mann distribution holds and when this happens small concentration changes
dc are related to small Gibbs free energy differences dG:

dc

c
= −dG

kT
= −STdT. (A.1.7)

As we have showed before, the local Boltzmann law is related to the Soret
coefficient ST , and this permits to connect it with the Gibbs free enthalpy G
(in the case of constant pressure and nearly constant temperature).

The finite size of the beads limits the subdivision in local equilibrium
system. The steepest temperature gradient that the authors where able to
recreate in this experiment was of ∆T = 0.1 K/µm, and in this case the
energy difference over the radius a of a particle is

a×∆G = a× ST∆TkT = 0.01kT. (A.1.8)

The particle thermal fluctuation is known to be kT/2, and the asymmetry
across the particle is only the 2% of this value.
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Figure A.2: (a)Measure of the temperature through the BCECF fluorescence.
(b) A single image of the depletion of the polystyrene beads due to the
thermophoresis. (c) Logarithmic bead concentration image obtained through
the average of 50 single images and after illumination and bleach correction.
(d) The average of the concentration (logarithmic) and of the temperature
in function of the radius.

The total possible energetic difference in the experiment was

∆G = kT ln (cmin/cmax) = 4.6kT ,

well beyond local equilibrium. Thus the partition applied in equations (A.1.5)
and (A.1.6) can be applied for N = 4.6/0.01 = 460 times, and this is a
sufficient converged exponential steady state.

It’s interesting and based on actual experimental evidence to describe
the thermophoretic steady states by a Boltzmann distribution with local
thermodynamic equilibrium:

c

c0
= e−ST (T−T0) = e−

G(T )−G(T0)

kT (A.1.9)

There is a linear relation between ST and G(T ), introduced in equ.
(A.1.7), this bring us to the prediction on how the size of the particles affects
the thermophoresis. Since for solid particles only the salvation energy at
their surface is temperature dependant thus the Soret coefficient must scale
with particle surface area. We have that D ∝ a−1, DT scales with particle
radius and thus

ST ∝
∂G

∂T
∝ a2, DT ∝ D

∂G

∂T
∝ a. (A.1.10)
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Figure A.3: (a) The trend of the Soret coefficient of beads in function of
the radius of its beads. (b) The thermophoretic coefficient DT scales linearly
with the radius of its beads, in accordance with how the Soret coefficient
behave.

The authors measured the Soret coefficient for some beads of polystyrene
of various sizes, the radii considered varied from 200 nm to 1 µm . The mea-
surement obtained match well with equ. (A.1.10), as we can see in Fig. A.3.
For larger particles the equilibrium cannot be assumed, since the energetic
difference is bigger than kT .

To summarise the results shown so far, the authors collected evidence in
support of describing, for opportune condition, the thermophoresis as a local
thermodynamic equilibrium.

If the system has a moderate thermal gradient, the depletion due to
thermophoresis has an exponential steady state distribution over two order
of magnitude and the Soret coefficient, for solid particles, has a scaling law
in function of the radius of the beads considered.

Another article [5] start from the result shown above and look further
into this subject. The starting point is in equation (A.1.7), in particular the
relation between the Gibbs free energy and the Soret coefficient.

An infinitesimal change in the Gibbs free energy can be expressed as
dG = −SdT + V dp+ µdN , thus for a single particle if the pressure remains
constant we have that the Soret coefficient is equal to ST = −S/kT .
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