ALMA MATER STUDIORUM - UNIVERSITA' DI BOLOGNA

CAMPUS DI CESENA
SCUOLA DI SCIENZE
CORSO DI LAUREA IN INGEGNERIA E SCIENZE INFORMATICHE

ETSI MANO Network Orchestration

Relazione finale in
Reti di Telecomunicazione

Relatore: Presentata da:
Prof. Franco Callegati Riccardo Marchi

Seconda Sessione
Anno Accademico 2017/2018

To Nicolas

Abstract

In the modern era there is a big change in the way computer networks are conceived
and the old version defined by hardware implementation is leaving space for a new
one based upon software functions. This innovation is the Network Function
Virtualization and indeed aims at easing the management of networks and reducing
the costs of their maintenance by deploying Virtual Network Functions in standard
general purpose servers.

The transition to this solution involved the necessity to improve the performance of
virtualization techniques and with the development of new solutions now it is
possible to run multiple different functions in the same physical machine. This
means that also the cloud computing benefits from this technology, having
computing, storaging and networking resources all easily manageable and accessible
due to their separation from the hardware underneath.

Therefore it is important that while building this architecture the components are
properly working and interacting together and that the virtualization techniques do
not produce too much overhead compared to the performance of the hardware
implementation.

In this essay will be discussed the Network Function Virtualization and the Open
Source MANO project, focusing on its descriptors architecture and functioning. To
better demonstrate how to create network topologies through these files, some

examples are created and analyzed.

Contents

Abstract

Introduction

Network Function Virtualization

1.1. Introduction to NFV

1.2. NFV Architectural Framework

1.2.1. NFV Infrastructure

1.2.2. NFV Management and Orchestration

1.3. NFV Network Service

Open Source Mano

2.1. Features

2.2. Architecture

2.2.1. User Interface

2.2.2. Service Orchestrator

2.2.3. NS to VNF Communication

2.2.4. VNF Configuration & Abstraction

24

11

11

12

13

14

17

19

19

21

22

23

24

2.2.5. Resource Orchestrator

2.2.6. Monitoring

2.2.7. OSM Information Model

Descriptor Files

3.1. MANO Descriptor Overview

3.1.1. Network Service Descriptor (NSD)

3.1.2. Virtual Network Function Descriptor (VNEFD)

3.1.3. Virtual Link Descriptor (VLD)

3.1.4. VNF Forwarding Graph Descriptor (VNFD)

3.2. OSM Descriptors

Complex Networks Implementation

4.1. Local Area Network

4.2. Local Area Networks Interconnected

4.3. Virtual Local Area Networks Interconnected

Conclusions

Acknowledgements

Bibliography

List of Acronyms

25

25

26

27

27

28

29

31

32

33

37

37

38

40

45

47

49

51

Introduction

The idea of discussing this topic in my thesis came up for two main reasons: the first
one is my strongly growing interest in computer networking and its developing
design and functioning, while the second one is my intense ambition of always
looking to improve and ease life with innovations which everybody can benefit from.
My final conviction about dealing with this argument came out of the experience in
the mandatory internship during the last year, which made me feel more confident

about the future studies I would like to undertake.

I started dealing with a general introduction of the topic and then, step by step, I
analyzed a specific platform up until its core components.

The main purpose of this essay is to give a complete explanation of how network
topologies are made using YAML files according to ETSI MANO standard and to try

to analyze how those lines of code are interpreted by OSM platform.

Chapter 1 concerns the birth of the Network Function Virtualization project and an
exhaustive description of the architectural framework is provided. A brief

explanation of what is a Network Service completes the section.

Chapter 2 puts the focus on the Management and Orchestration section of the
architecture and introduce an open source platform (OSM) specifying its

development features and its framework structure.

Chapter 3 coincides with the core of the essay, the part where the descriptor files are
illustrated and clarified the most in detail possible and first examples are reported

and explained.

Chapter 4 represents an attempt to create network topologies in OSM platform and,
without having tested them, it is provided an explanation of why it is supposed to

work taking a closer look to the key lines of code produced.

Chapter 5 draws the conclusions and exposes the author’s point of view about the

study and work accomplished.

10

1. Network Function Virtualization

1.1 - Introduction to NFV

In 2012 the European Telecommunications Standards Institute (ETSI) founded an
Industry Specification Group (ISG) to develop a standardized approach to Network
Function Virtualization (NFV).

This group is the union of 7 Telco operators and until nowadays it counts more than
three hundred companies.

Currently, Network Providers rely on proprietary components to provide their
services around the internet, implying that each time a new service has to be
deployed or a new feature has to be added, the company needs to perform a
reconfiguration and usually in-place installation of new hardware too. Therefore
this requires further space, electrical power and trained maintenance staff, meaning
additional costs for the company.

Knowing that each vendor designs his own function boxes with no interoperability
guarantees with other vendor’s appliances, NFV goal is to make networks agile and
capable of responding automatically to the needs of the traffic and services running
on top of it, in the same way applications are supported by dynamically configurable
and fully automated cloud environments.

In order to facilitate the development of NFV components across different open
source projects, in 2014 the Linux Foundation announced the release of a new open
source reference platform with the cooperation of ETSI, the Open Platform for
Network Function Virtualization (OPNFV), perfectly matching the ETSI architecture
in each of its components.

At the beginning it only concerned the implementation of the Network Function
Virtualization Infrastructure (NFVI) and the Virtual Infrastructure Machine (VIM)

parts, but later it involved MANO section too.

11

ETSI is also hosting another MANO initiative, OSM, an operator-led community that
aims at delivering a working open source MANO stack aligned with ETSI NFV
Information Models and that meets the requirements of NFV networks.

NFV targets are not fixed networks components only, but the same amount of

attention is given to mobile networks ones too.

1.2 - NFV Architectural Framework

NFV Management
i and Orchestration |
Os-Ma |
1= OSS/BSS —t— NFV
| ; t | Orchestrator |
| : i |
1 I
s i : ; Or-Vnfm+
il EMI EM 2 EM3 || —
E : T T iVe-Ynfm VNF
P ' ! ! | Manager(s)
b :
o VNF 1 VNF 2 VNF 3 i) .
P . | Vi-Vnfm+ Or-Vit
. | PO | - - i
! I I . ,
| Nf-Vi | |
‘-1 NFVI = VIM(s) |
—+— Main NFV reference points - = =I= = Other reference points

&——=@ Exccution reference points

Figure 1.1: ETSI NFV framework architecture.

Figure 1.1 represents the complete architectural framework defined by ETSI. Each

macro-component will now be discussed in detail.

12

1.2.1 - NFV Infrastructure

The Network Function Virtualization Infrastructure (NFVI) consist of the hardware
and software components where Virtual Network Functions are deployed.

Their goal is to create a virtualization layer to abstract the underlying hardware
resources, which will be logically partitioned and then provided to the Virtual
Network Functions (VNF) to perform their duties.

Inside this component, ETSI distinguishes three different domains, shown in Figure
1.2.

WFY hlmawanent mil

Virchertraizom
Os-Ma
P 5 BSS - Chehestratoy
i o Se-Ma
S Hervace, VEF and Lilinshnciire —_—
Trescraption 1 orvnfm
i ERIS 1 ERLS 2 ERLS 3 We\nim
H _ | VNEF
E + "'L - Manage(s)
VNFI | [VNF 2 | VN3 4 oru
s Fe= vin-Mi -4 Vi-vinim
= Vil Virtial
T § ol e Horrze Teehwonk
Hypervisor : e NE-Vi Virhalized
. H""!ﬁ-. L W= L L J Tnfrastructine
Domain 5) Manage(=)
H VI U
Uik Hlownge Talwwlk:
ardare Ilmibeare Fladwinrg
Compute oo 11 —
Domain =8 Execntiai i llerence pouit | Crilven vl e e psante hlaem MFV jelervnce omb

Infrastructure Network Domain

Figure 1.2: NFVI domains.

Compute Domain: This domain contains all physical resources available as
commercial off-the-shelf. Network connectivity is provided through interfaces to
the network infrastructure domain, while the resources provided are abstracted into
logical resources by a virtualization layer. This is an example of how NFV could

influence the development of virtualization and Cloud technologies.

13

Hypervisor Domain: The hypervisor domain tasks are converting physical
resources into logical ones and providing them to those Virtual Machines (VM)
running on top of them. There are many ways to perform abstraction, but the most
suitable one must be chosen by referring to the specific needs: if there are some
latency requirements there may be needed a lightweight virtualization technique,
while other applications may require a specific Instruction Set Architecture (ISA)

and therefore would be necessary a full emulation of a different ISA.

Infrastructure Network Domain: The infrastructure network domain comprises all
the communication channels for the connectivity through different components. It
provides communication between Virtual Network Function Components (VNFC) of
a VNF, between different VNFs. In addition, it guarantees communication between
VNFs and the Network Functions Virtualization Orchestrator (NFVO), and between
NFVI and NFVO.

1.2.2 - NFV Management and Orchestration (MANO)

While Figure 1.1 shows on the right side the three main blocks of the component
responsible for network management and orchestration, Figure 1.3 represents a
more detailed view of each element.

The decoupling of a Virtual Network Function (VNF) from the underlying hardware
resources presents new management challenges. Such challenges include
end-to-end service to end-to-end NFV network mapping, instantiating VNFs at
appropriate locations to realize the intended service, allocating and scaling
hardware resources to the VNFs, keeping track of VNF instances location, etc. Such
decoupling also presents challenges in determining faults and correlating them for a
successful recovery over the network. These are all tasks MANO needs to accomplish

the best way possible.

14

T S T R S T Ty

1
]
Os-Nfvo :
0SS/BSS - l NFV Orchestrator (NFVO) —)
i]
]] T : - :
] 1 i '
| | - —— Or-vnfm = - :
I] 1 I '
: i I !
| I NS VNF =] NFV NFVI :
'?_ : Catalog Catalog Instances Resources '
! i H]
! i = !
i ' :]
] 1 VeEn-Vnfm x I
; ! ! !
EMS — VNF Manager :
; : | (VNFM) :
1 1
o I | VeNt-vnfm T '
VINF Wnfm-Wi :
] I
? i !
4 Vn-Nf] _ or-vi !
| I Virtualised '
: | NE-Vi Infrastructure | 1
NFVI Manager ! :
] VIM
1 () NFV-MANO :
o e o A
&—=8 Execution reference points | (Other reference points e Main NFV reference points

Figure 1.3: ETSI MANO Framework

This separation of elements leads us to the introduction of new entities:

Network Service (NS): Composition of network functions in order to execute a
certain task.

Virtual Network Function (VNF): Software implementation of a physical
network function.

Physical Network Function (PNF): Legacy hardware implementation of a
network function. It is crucial to guarantee the coexistence between PNF and
VNF, in order to have a seamless shift from one solution to the other.

Virtual Network Function Component (VNFC): Basic software component
that in addition to others creates a VNF.

Network connection: It is defined by connection points and Virtual Links
(VL). A connection point is the software implementation of a network
interface card. A VL is the software implementation of a physical connection
(i.e. a virtual cable). A VL may be used to connect both VNFs and PNFs. Two
types of VLs are defined: An external VL is used either to connect a NS to the

outside world or to connect different VNFs within the same NS. An internal

15

VL is used either to connect different VNFCs within the same VNF or to
connect VNFC to the external interface of a VNF.

e Virtual Network Function Forwarding Graph (VNFFG): Graph made of logical
links connecting network function nodes. Essentially it represents the flow of

the packets through the functions composing the NS.

As we can easily distinguish in Figure 1.1, the three main blocks of MANO are the
Virtualized Infrastructure Manager (VIM), the Virtual Network Functions Manager
(VNFM) and the NFV Orchestrator (NFVO).

Virtualized Infrastructure Manager (VIM): This component is responsible for the
management of NFVI and through hypervisors or network controllers it is able to
control computation, storage and network resources assignment. The main job it is
asked to do is to keep trace of all the virtual resources available and also those which
have been allocated to physical ones (due to the ability of the VIM to exchange
information with more than one machine simultaneously). In addition to that,
depending on the type of implementation, each VIM could have more
functionalities, that could be the management of security groups policies to ensure

access control or gathering performance and fault information.

Virtual Network Functions Manager (VNFM): This element has the task of
managing the lifecycle of the VNF, which means starting with the instantiation (and
configuration), passing through its management and finishing with the termination.
Obviously, in order to perform all these actions it is not sufficient having only the
software running a specific VNF, but it is necessary an information model that uses
descriptors (defined by ETSI), which will determine the deployment and the
operational behaviour of each VNF. The ETSI MANO information model will be
discussed in another chapter later.

The VNFM is not only connected to the VNFs, but to the Element Management
Systems (EM/EMS) too, which are responsible to perform FCAPS(Fault Management,
Configuration Management, Accounting Management, Performance Management,

Security Management) for their respective VNF.

16

While VNFM takes care of the VNF virtual part (everything regarding their lifecycle),
on the other hand EMS is focused on the functional part (how to perform its

actions).

NFV Orchestrator (NFVO): This block has two tasks, which are the Resource
Orchestration and the Network Service Orchestration.

The former functionality is used to provide services to access NFVI in an abstract
way without caring about the information regarding any VIM. The latter has the job
to orchestrate the NS instantiated, by coordinating the multiple VNFs that compose
each one; to do that, it uses the services exposed by the VNFM and the Resource
Orchestrator.

This block is connected to the Operation Support System (OSS)/Business Support
System (BSS) of the server provider. Although network operators make huge
investment in the optimization of OSS/BSS for their own environment, they will
need to evolve their one in order to support a NFV-based architecture, that is
characterized by highly dynamic network changes. Indeed, in a NFV context, the
network architecture, topology and service delivery chain can change very
frequently. Moreover, considering that service delivery has to support a
multi-vendor environment, service and application monitoring becomes
challenging. Legacy OSS/BSS solutions are made of a set of interconnected
applications each focusing on specific functions. The high dynamism introduced by
NFV requires real-time monitoring and full automation, that is not supported by
most of currently deployed OSS/BSS. The development of open source OSS/BSS

solutions and guidelines would help operators to perform this shift.

1.3 - NFV Network Service

As briefly explained before, a Network Service is a composition of different Network

Functions. In Figure 1.4 it is possible to see that a NS can present multiple VNF

17

Forwarding Paths (VNFFP), which are the perfect expression of “Function
Chaining”. The primary advantage of this innovation is to mechanize the way virtual
network connections can be set up to handle traffic flows for connected services. It
also can be operationally beneficial by enabling automated provisioning of network
applications that may have different characteristics. For example, a video or VOIP
session has more demands than simple Web access. Automated function chaining
can enable these sessions to be set up and torn down dynamically, without requiring
human intervention. This also helps ensure that specific applications are getting the
proper network resources or characteristics (bandwidth, encryption,

quality-of-service).

CP = connection point, VIL = Virtual Link, YNFFG = WNF Forwarding Graph, NFP = Metwork Forwarding Path

Traffic E
flow '
PR = B e @
SN B e e L LR .'\
E ' Graph
1 ! endpaint

Figure 1.4: NS example with different forwarding paths.

Each VNF has one or more Connection Point (CP), the software implementation of a
Network Interface Card. The composition of VLs and CPs define a Network
Forwarding Path (NFP), in which the traffic could flow from one end point to

another exploiting the connected VNFs.

18

2. Open Source Mano

Open Source Mano (OSM) is an ETSI-hosted open source management and
orchestration (MANO) community project to jointly innovate, create and deliver a
MANO stack that is closely aligned with ETSI NFV information models and that
meets the requirements of commercial NFV networks.

The first release of the ETSI MANO platform was announced during Mobile World
Congress (MWC) in 2016 and was issued in June of the same year as Release 0. The
operators leading the development group of the platform decided to issue a release

every 6 months and right on schedule Release 4 has been announced on May 2018.

2.1 - Features

Figure 2.1 shows the mapping of OSM components within the NFV MANO
architectural framework.

The main feature of this open source project is to design it in order to be
interoperable with components developed by different vendors. In fact, as we can
see in Figure 2.1, it is able to support a notable group of VIM implementations, like
AWS, OpenStack, OpenVim and VMware. Additionally it is able to manage multiple
Software Defined Network (SDN) controllers, like Open DayLight (ODL), Open
Network Operating System (ONOS) and Floodlight.

Talking about SDN technology, it is is an emerging architecture that is dynamic,
manageable, cost-effective, and adaptable, making it ideal for the high-bandwidth,
dynamic nature of today’s applications. This architecture decouples the network
control and forwarding functions enabling the network control to become directly

programmable and the underlying infrastructure to be abstracted for applications

19

and network services. This innovation is strictly connected to NFV, but it is not

going to be discussed in this essay.

GUI & Design-Time Tools
055/BSS
Network Service Orchestrator
L ——
| Specific | :
: VPJFMS | i Resource
. , VNF
VNFs | M Configuration Orchestator
: .
.. i g (Includes VIM/SDN
: & Abstraction
PNFs Connectors)
NFVI
| |
~ oDL :
ONOS NEVi Open .
! — Sti;ck VMware AWS |
Floodlight : | |
e Main NFV reference points
Other Components

Figure 2.1: OSM components mapped on ETSI NFV MANO architectural framework

With the second release (Release 1) the multi-site capability is added to the
platform, usefully letting the instantiation of a NS made of multiple VNFs dislocated
geographically in different data centers.

To maintain the near-native performances of the virtualized environment, a new
innovation was required, also in order to make all the system work in the proper way
in real deployment scenarios. Therefore OSM developed the Enhanced Platform
Awareness (EPA), which actually is only supported by a restricted group of VIMs. By

using this platform, a Cloud OS is able to understand where a VM can perform better

20

in a certain situation. In fact the VIM has the capability to discover all by itself the
enhanced features in the CPU and PCle slots available on the servers it manages,
choosing the better one for each instantiated VM.

Another important feature added (included in Release 3) is the Role Based Access
Control (RBAC), which is a widespread technique adopted to restrict system access
to authorized people only. It consists of a different set of permissions for each
group, in which every user has those limited visibility and control authorizations.
Furthermore, Release 4 made the platform much easier to install and operate,
increasing its interoperability and scalability. Architectural improvements resulted

in a more efficient behaviour, reducing the RAM consumption up to 75%.

In this essay it will be examined the platform up until Release 3, the latest available

when the study of the platform started.

2.2 - Architecture

Figure 2.2 is a detailed representation of OSM logical architecture. There are three
main components on which the entire platform is built on, guaranteeing a certain
level of abstraction without being too excessive. Those pre-existent elements are
the Resource Orchestrator OpenMano, delivered by Telefonica, the Service
Orchestrator Riftware and the VNF Manager Juju. It is good to know that in OSM
environment the VNFM is often referenced as Configuration Module or Virtual
Network Functions Configuration and Abstraction (VCA) module.

By reducing the level of abstraction using components coming from different
vendors, involves a non-ignorable problem of inconsistency due to the several
implementation methods, naming and file location. To resolve this issue the
DevOps module, on the left of Figure 2.2, has been built and helps to have a
continuous and unidirectional workflow in order to ease developer’s job and to
speed up the releasing process.

Since it is not an essential part of the platform it will not be examined in this essay.

21

DevOps
One VNF Package | VNF/NS Catalog [Account ||, OSM
Click Composer Manager isynchped Client
Installer

Jenkins
API Service & Mgmt. Endpoint

Service Orchestration Engine

Configuration Data Store Catalog Manager

Network Service Composition Engine Resource Orchestrator Plugin

Resource
AP| Service &
h
Orchestrator Utilities

Engine Monitoring Tool
Plugin

VIM Plugin SDN Plugin
OpenStack

VCA Engine | OpenStack OpenDaylight | (Aodh/Gnocchi)
(Juju Adapter) [Amazon Web AWS
Services EC2/VPC ONOS CloudWatch
VNF | OpenVIM i VMware
T : vRealise
Meonitoring VMware vCD Floodlight

Emulator
Operations

Figure 2.2: Detailed view of OSM logical architecture.

2.2.1 - User Interface

The first component of OSM logical architecture is the User Interface (UI) Module,

made by both design and run time elements.

The design-time parts are tools used to build properly-formed packages. These
packages are fundamental to the creation of the services, for the fact that they are
the main carriers of information regarding the functions and networks we would like
to instantiate. In fact these packages are composed by a checksum file, a README
file and a descriptor file. Many other items can be included in these packages,
depending on the needs of the service.

The two tools responsible for these actions are the VNF Package Generator and the

VNF/NS Catalog Composer.

22

The Package Generator aims to create a well-formed package given the descriptor
file. The available utilities are a Command Line Interface (CLI) or a web based-form
(provided by riftware), with the benefit to be very easy to use if the descriptors are

not too complex. Otherwise it would be inconvenient and occasionally troublesome.

The Catalog Composer, instead, is an helpful tool to create the desired descriptor
file by filling some information in the Graphical User Interface (GUI) provided by
OSM. Moreover it allows you to add and configure the component needed according
to the newly created topology. An additional button is provided to let the user see

the yaml format of the desired descriptor.

The run-time parts are the Account Manager, the Launchpad and the OSM Client.

The Account Manager is responsible for the configuration and management of the
credentials of each part of the platform, regulating the access for every account. It is
important to notice that, for example, there are different accounts in the RO in

comparison to VIM’s ones.

The Launchpad is the interactive GUI with which it is possible to manage lifecycle
operations like instantiating or turning down any type of service. It is also useful
because it allows you to see real time statistics and a detailed view of the network

topologies created.

The OSM Client is a simple CLI using a python functional library that allows users to

interact with the system remotely.

2.2.2 - Service Orchestrator

Every element belonging to the Service Orchestrator Module is a run-time

component.

23

The API Service & Management Endpoint is providing the primary API endpoint
into OSM.

The Service Orchestration Engine is responsible for all aspects of service
orchestration including lifecycle management and service primitive execution. It is
effectively the “master” orchestration component in the system that governs the
workflow throughout OSM. It is also responsible for supporting the concepts of

multi-tenancy, projects, users, and enforcing role-based access controls.

The Configuration Data Store is responsible for persistently storing the SO state,

particularly in the context of VNF and NS descriptors deployment records.

The Network Service Composition Engine is responsible for supporting NS and VNF
descriptors composition. It validates that these files conform to the defined YANG

(Yet Another Next Generation, data modeling language) schema.

The Catalog Manager is responsible for supporting the Create/Read/Update/Delete
lifecycle operations on the defined VNF and NS descriptors and packages.

The Resource Orchestrator Plugin is responsible for providing an interface to

integrate the Resource Orchestrator.

2.2.3 - NS to VNF Communication

The NS to VNF Communication (N2VC) Module is responsible for the plugin
framework between the SO and the VNF Configuration and Abstraction (VCA) layer.

2.2.4 - VNF Configuration & Abstraction

The VNF Configuration and Abstraction (VCA) layer is responsible for enabling

configurations, actions and notifications to/from the VNFs and Element Managers.

24

2.2.5 - Resource Orchestrator

The API Service & Utilities endpoint is responsible for providing the interface into
the RO (for the SO to consume) and has available a number of utilities for internal to

RO consumption.

The Resource Orchestration Engine is responsible for managing and coordinating
resource allocations across multiple geo-distributed VIMs and multiple SDN

controllers.

The VIM and SDN Plugins are responsible for connecting the Resource
Orchestration Engine with the specific interface provided by the VIMs and SDN

controllers.

2.2.6 - Monitoring

One of the guiding principles for the OSM Monitoring Module (MON) is that it is
required to interface with and leverage existing or new monitoring systems. It is not
intended to replicate or compete with those ones.

The Monitoring Module should mostly be considered as a means for driving
configuration updates to the external monitoring tools and as a conduit for steering
actionable events into the Service Orchestrator. These actionable events may be
either directly triggered by running NS/VNFs or deduced by the external monitoring
tools. One of the most powerful things OSM is delivering as a part of the Monitoring
Module is the ability to correlate telemetry related to the VMs and VNFs to the
relevant NSs.

Automated correlation is expected to provide a considerable user experience
improvement to OSM wusers and drive up efficiency for operators in a

Telecommunications environment.

25

2.2.7 - OSM Information Model

OSM is based on a model-driven architecture. The architectural direction has always
been to use the same model as the basis of both the design-time capabilities and the
run-time capabilities. The OSM Information Model Module was created to be the
single point of authority on the OSM data model that is leveraged by the different
components. This helps the development towards a methodology where two of the
most important data models in the system, the VNF Descriptor (VNFD) and the
Network Service Descriptor (NSD), can be shared in their innate forms between
components. OSM modules can act authoritatively on the relevant parts of the

VNFD/NSD.

26

3. Descriptor Files

One of the main goals of NFV innovation is to establish a standard way to create,
manage and update virtual networks. Therefore the first step of this development is
to make different pieces of hardware co-work together without creating any trouble.
Once completed this job, as happened with OSM components (dealt in the previous
chapter), the following step is to standardize the software language in order to make
development and maintenance of the platform easy for multiple programmers
coming from different companies. So the key element to address is the data
modeling language, which would define functions tasks and networks topologies.

The selected schema for this purpose is the Yet Another Next Generation (YANG), a
data modeling language used to design configuration and state information
manipulated by the Network Configuration (NETCONF) Protocol, NETCONF remote
procedure calls, and NETCONF notifications. It can be converted into any encoding
format (like XML or JSON) and would still be supported by the standard. As it will be
better analyzed later in the chapter, OSM uses YAML files for data modeling, a
supported superset of JSON but more human readable and, by using references, can

also be more efficient.

3.1 - MANO Descriptor Overview

The information model defined by ETSI uses descriptors, configuration templates
that define the main properties of managed objects in a network. Depending on the
type of the component, they will define their deployment and operational

behaviour.

27

Figure 3.1 illustrates the structure of a MANO NS, showing which descriptor files are
needed to instantiate a service and all its elements: Network Service Descriptor
(NSD), Virtual Network Function Descriptor (VNFD), Physical Network Function
Descriptor (PNFD), Virtual Link Descriptor (VLD) and VNF Forwarding Graph
Descriptor (VNFEGD).

Network Service
Virtual Physical
Network Virtual Link Network
Function Function
WNE B ----rrrrrersrsiiasiiania
m ..
Graph
+ + « Reference to. -

Figure 3.1: Structure of a MANO NS

The PNFD defines a physical network function, specifying the interconnections in
the case the NS needs a physical device to expand the network. It will not be
analyzed thoroughly because it is not yet supported by OSM platform and the focus

is set on the virtual perspective of the topic.

3.1.1 - Network Service Descriptor (NSD)

The Network Service Descriptor (NSD) is the top-level structure that defines the
topology of the network, wrapping all the references to the descriptors

corresponding to the other components.

28

Figure 3.2 shows the high-level object model for the NSD. The task of this type of
file is to permit the instantiation of a NS by referencing to the information
contained in its lines.

In fact the NSD keeps the references to one or more VNFD connection points. The
VNFs containing these virtual interfaces are connected with a single or multiple

VLs, while the VNFFGD establishes the data flow around the network.

NS
Descriphor
* * N
NSEDCMH Consfituant VNF Monitoring
Cmpf;im WMF Dependencias Parcmeters Virtual Link

Elerment X

- =Ralerence— — VNFD
Connecfion
Point

Figure 3.2: NSD object model.

3.1.2 - Virtual Network Function Descriptor (VNFD)

The Virtual Network Function Descriptor is a deployment template that defines the
behaviour of a single VNF. Initially it is used by the VNF Manager to instantiate the
lifecycle manager of the related function, later it provides information to the NFV
Orchestrator in order to manage and orchestrate network services and virtualized
resources on the NFV Infrastructure.

It is important to highlight the fact that a VNF is made up by a set of VNF
Components (VNFC), that are pieces of software packaged together to make a more
complex architecture. These elements are realized using a computing resource from

the VIM, which could be either a virtual machine or a container. In order to run

29

those components a Virtual Deployment Unit (VDU) must be defined, indicating
also the necessary information regarding storage, memory, CPU and networking
resources.
In this file are reported:

e VNF images, containing the application and the launchpad

e Connection points and virtual links required to establish connection between

VNFCs and between VNFs and the outside network
e VDU specifying compute, storage, memory and network resources
e Platform resource requirements like CPU, RAM, interfaces and network

e EPA characteristics and performance capabilities

To let the VNF to interface with other instances, it has available internal and
external connection points, corresponding to the virtual interfaces used by the
VM/container. The internal ones are useful to establish connectivity between two or
more VNFCs, while the external ones can be used to keep the communication with
the outside network. Either internal or external, both of them are connected using
virtual links. Each VL has references to two or more connection points.

Figure 3.3 is the representation of the high-level object model of the VNFD. This
contains lists of VDUs, internal connection points, internal virtual links, and
external connection points. The internal connection points and internal virtual links
define how the VMs inside the VNF will be connected. The external connection
points are used by the NSD to chain VNFs. The VDUs define the individual VNF
components and capture information about VM image, VM flavor, and EPA

attributes.

30

Descriptor
A X x X
VYINFD
— VINF Internaol vDu
VDU | Ccﬂ‘-g::iﬁﬂn Virtuol Links o A Sos
| ~ |
J e
: = =3
g A X
Internal
External Intermaol |
i] imsedoces inlerfoces [T C“'P'm"?cm"
EPA
Attributes
——EbgmgnT——
— =Reference- —
_—
O< Faorometers

Figure 3.3: VNFD object model

3.1.3 - Virtual Link Descriptor (VLD)

A Virtual Link Descriptor (VLD) is a deployment template that describes the
resource requirements needed for a link between VNFs, PNFs and endpoints of the
network service. Even though it could seem obvious, it is important to highlight the
fact that a NS cannot work without VLs.

The VLD provides a description of each Virtual Link. This type of information can be
used by the NFVO to determine the appropriate placement of a VNF instance, and
by the VIM responsible for managing the virtualized resources of the selected
placement to determine the allocation of required virtualized resources on a host
with adequate network infrastructure. The VIM can also use this information to
establish the appropriate paths. The VLD describes the basic topology of the

connectivity (E-LAN, E-Line, E-Tree) between one or more VNFs connected to this

31

VL and other required parameters (such as bandwidth and QoS class). The VLD
connection parameters are expected to have similar attributes to those used on the
ports on VNFs in ETSI standards. Therefore a set of VLs in a Network Service can be
mapped to a Network Connectivity Topology (NCT). Figure 3.4 shows an example of
a NCT described by the use of VLs referencing Connection Points of the VNFs and
the NS.

CP = connection point, VL = Virtual link

Figure 3.4: Example of a Network Connection Topology

3.1.4 - VNF Forwarding Graph Descriptor (VNFFGD)

A VNF Forwarding Graph Descriptor (VNFFGD) is a deployment template which
describes a topology of the Network Service or a portion of the Network Service, by
referencing VNFs, PNFs and Virtual Links that connect these two. A VNFFG is a
graph, specified by a network service provider, of bi-directional logical links that

connect network function nodes, where at least one node is a VNF through which

32

network traffic is directed. A VNFFG model consists of a list of Rendered Service
Path (RSP) and list of classifier components.

Figure 1.4 shows a graphical representation of three different VNFFG, distinguished
by the three colors.

Up until now it is not possible to know how the VNFFG will track changes to the
deployed instances, such as additional VNF instances being brought into service to
handle scalability required for a traffic peak and migration of VNF workloads to an
alternative infrastructure to enable operational maintenance or provide business

continuity in the event of major link or site failure.

3.2 - OSM Descriptors

As briefly explained before, OSM uses yaml language for descriptor files due to its
readability and efficiency.

The distinction between the main types of descriptors made before in this chapter is
less evident in OSM platform, because only two files are required to instantiate a NS.
In fact, to deploy this service it is necessary to onboard only the NSD and the VNFD
wrapped into two different descriptor packages and then the NFVO will do the
instantiations needed. The reason why only two descriptor files are required is
because the VLDs and the VNFFGDs constituting the network topology are defined
in the NSD template.

To give a brief introduction to the structure of descriptors, a NSD and a VNFD will
be reported, showing how a basic NS made of a single VNF is instantiated just

providing these two files.

The VNFD is:
1 wvnfd-catalog:
2 vnfd:

3 - id: basic-vnf

33

4 name: basic-vnf

5 short-name: basic-vnf

6 version: ‘1.0’

7 description: A VNF in a VDU
8 logo: osm.png

9 connection-point:

10 - name: vnf-cpO

11 type: VPORT

12 vdu:

13 - id: basic-vm

14 name: basic-vm

15 image: ubuntulo6(04

16 count: ‘1’

17 vm-flavor:

18 vcpu-count: ‘17

19 memory-mb: ‘1024’
20 storage-gb: ‘10’
21 interface:

22 - name: vdu-ethO

23 type: EXTERNAL

24 virtual-interface:
25 type: VIRTIO
26 external-connection-point-ref: vnf-cp0
277 mgmt-interface:

28 cp: vnf-cp0

It could be unnecessary to say, but it is important to notice that the id must be
unique in the catalog, otherwise it will be refused the time we try to onboard it onto
the platform. It is fundamental to specify that the image field of the vdu must be
given the same name belonging to the disk image uploaded on the VIM connected to

the platform.

34

The NSD is:

1 nsd-catalog:

2 nsd:

3 - id: basic-ns

4 name: basic-ns

5 short-name: basic-ns

6 description: A NS with a VNF and a VL
7 version: ‘1.0

8 logo: osm.png

9 constituent-vnfd:

10 - vnfd-id-ref: basic-vnf

11 member-vnf-index: ‘1’

12 vld:

13 - id: mgmt-net

14 name: mgmt-net

15 short-name: mgmt-net

16 type: ELAN

17 mgmt-network: ‘true’

18 vnfd-connection-point-ref:

19 - vnfd-id-ref: basic-vnf
20 member-vnf-index-ref: ‘1’
21 vnfd-connection-point-ref: vnf-cp0

As the first lines are similar to the descriptor before, this type of file has also the
reference to the VNF and the definition of the VLD, establishing connection
between the management network of the service and the connection point of the

VNF.

In the next chapter more complex files will be created and analyzed, providing the

necessary information to create the desired topology the easiest way possible.

35

36

4. Complex Networks Implementation

In this chapter we will examine some examples of network topologies and try to
create a NSD and one or more VNFD for each one, describing the most important
lines of code and explaining how it works.

What might jump out in the next files is the fact that in none of them there is a
reference to any VNFFGD: this is because that model is specified by network service

providers and up until now there are no examples of how it works in OSM.

Thanks to the experience gained during the internship handling OSM platform, I
could understand also how it works when there are different VMs and it is necessary
to establish a connection between them to make the whole system work. Therefore
it is important, as a first step, to create all the VIMs needed to store and run the
functions required for the services. Once up and running, by using special
commands from CLI, it is possible to set up connectivity between the orchestrator

and the VIMs, referencing them by their IP address in the LAN.

It is essential to notice that actually it is not possible to connect VMs in different
LANSs, because of the fact that OSM does not support it and would not be able to
keep trace of the path to the external VIMs, but the second example is thought as if

it is possible to create a system working on more than one LANs interconnected.

For many reasons, there was not an infrastructure able to let me try if those
elements are in fact working or not, but this is an attempt of creating something
working by taking advantage of all the study and analysis made in the chapters

before.

37

4.1 - Local Area Network

In this first example we will create a NS between two end points belonging to the
same LAN with a VNF in the middle. In this setting OSM machine, VIM machine and

the two end-points belong to the same network.

This is the VNF:

1. vnfd-catalog:

2. vnfd:

3. - id: lan-vnf

4. name: lan-vnf

5. short-name: lan-vnf

6. version: ‘1.0

7. description: A VNF in a VDU
8. logo: osm.png

9. connection-point:

10. - name: vnf-cp0

11. type: VPORT

12. vdu:

13. - id: lan-vm

14. name: lan-vm

15. image: vnf-viml

16. count: ‘1’

17. vm-flavor:

18. vcpu-count: ‘17
19. memory-mb: ‘1024’
20. storage-gb: ‘10’
21. interface:

22. - name: vdu-ethO
23. type: EXTERNAL

38

24 . virtual-interface:

25. type: VIRTIO

26. external-connection-point-ref: vnf-cpl
27. mgmt-interface:

28. cp: vnf-cp0

This VNFD is quite standard and really basic.

In line 23 we can see the type of the interface: in this example it is EXTERNAL
because it allows to connect other VNFs or end-points for the chaining. In the case
we see the type INTERNAL, that means that that one will be used to connect VNFCs
to compone the VNF.

Lines 27 and 28 specify that the interface with which the VNF could be managed is

the one corresponding to the connection point vnf-cp0 previously created.

This is the NSD:

1. nsd-catalog:

2. nsd:

3. - id: lan-ns

4. name: lan-ns

5. short-name: lan-ns

6. description: A NS with a VNF and two end-points
7. version: ‘1.0

8. logo: osm.png

9. connection-point:

10. - id: end-pl

11. name: end-pl

12. short-name: end-pl
13. type: VPORT

14. - id: end-p2

15. name: end-p2

16. short-name: end-p2
17. type: VPORT

39

18. constituent-vnfd:

19. - vnfd-id-ref: lan-vnf

20. member-vnf-index: ‘1’

21. vld:

22. - id: mgmt-net

23. name: mgmt-net

24, short-name: mgmt-net

25. type: ELAN

26. mgmt-network: ‘true’

27. vnfd-connection-point-ref:
28. - vnfd-id-ref: lan-vnf

29. member-vnf-index-ref: ‘1’
30. vnfd-connection-point-ref: vnf-cp0

Between lines 9 and 17 we can see the instantiation of two connection points,
corresponding to those ports where the end-points can connect to use the service.
In lines 18, 19 and 20 is specified which vnf must be used to create the service
desired.

From line 21 until the end a VL is instantiated to let the orchestrator manage the

VNF and its life cycle.

4.2 - Local Area Networks Interconnected

In this second example we will create a NS between two LANs and try to create a
service chain between two VNFs. It is important to notice again that this is still not
possible, due to the limited capabilities of OSM.

Now OSM machine, the two VIM machines and the two end-points belong to

different networks.

40

This is the NSD:

1. nsd-catalog:

2. nsd:

3. - id: intlan-ns

4. name: intlan-ns

5. short-name: intlan-ns

6. description:A NS with two VNFs and two end-points
7. version: ‘1.0

8. logo: osm.png

9. connection-point:

10. - id: end-pl

11. name: end-pl

12. short-name: end-pl

13. type: VPORT

14. - id: end-p2

15. name: end-p2

16. short-name: end-p2

17. type: VPORT

18. constituent-vnfd:

19. - vnfd-id-ref: lanl-vnf

20. member-vnf-index: ‘1’

21. - vnfd-id-ref: lan2-vnf

22. member-vnf-index: ‘27

23. vld:

24. - id: mgmt-net

25. name: mgmt-net

26. short-name: mgmt-net

27. type: ELAN

28. mgmt-network: ‘true’

29. vnfd-connection-point-ref:
30. - vnfd-id-ref: lanl-vnf
31. member-vnf-index-ref: ‘1’

41

32. vnfd-connection-point-ref: vnf-cp0

33. vnfd-connection-point-ref:

34. - vnfd-id-ref: lan2-vnf

35. member-vnf-index-ref: ‘2’

36. vnfd-connection-point-ref: vnf-cpl

There are not big changes in the NSD, because primarily it has to deal with virtual
resources and references to other descriptors. So beyond id and naming, there are
differences in lines 21-22 and 33 to 36, with the addition of respectively a VNF and a
reference to the connection point for the creation of the service chain through the

VL.

While the first VNF might be identical to the one reported in the first example, this
is the second VNF:
1. vnfd-catalog:

2. vnfd:

3. - id: lan2-vnf

4. name: lan2Z2-vnf

5. short-name: intlan2-vnf
6. version: ‘1.0

7. description: A VNF in a VDU
8. logo: osm.png

9. connection-point:

10. - name: vnf-cpl

11. type: VPORT

12. vdu:

13. - id: lan-vm

14. name: lan-vm

15. image: vnf-vim2
16. count: ‘17

17. vm-flavor:

42

18. vcpu-count: ‘17

19. memory-mb: ‘1024’

20. storage-gb: ‘10’

21. interface:

22. - name: vdu-ethO

23. type: EXTERNAL

24, virtual-interface:

25. type: VIRTIO

26. external-connection-point-ref: vnf-cpl
27. mgmt-interface:

28. cp: vnf-cpl

The meaningful distinction of this descriptor from the previous one can be seen in
line 15: that specifies the image name of the VIM running in one of the virtual
machines and each one gets a different name when onboarded. This allows to
understand where that specific VNF will be instantiated, leaving the programmer

the decision.

43

44

5.Conclusions

The development of Management and Orchestration in Network Function
Virtualization environments could be the solution for operators and service
providers to ease the process of management and maintenance of their networks
and it would also narrow down the amount of money they need to spend in

infrastructures.

Being developed for only few years, the OSM platform still lacks of important
features and its setup is very burdensome too. The lack of a well-structured
documentation is also a big concern, because it does not allow new passionate
developers to understand how to help the community with own working lines of

code.

As explained in the chapter before, it is only possible to create basic network
topologies and it is also needed an ad hoc customization of the testing environment.
YAML descriptor files are really useful for their human readability and the

possibility of using references is a great powerful aspect.
Obviously there is the problem of the seamlessly transition from physical networks

to this innovation, but it is still at its first steps because of the fact that even now

there are many challenges regarding their initial coexistence.

45

46

Acknowledgement

There is so much pride and satisfaction in myself about achieving this first
important goal in my life that I cannot even explain.
And obviously I need to thanks to all those people who were there by my side

supporting and helping me go through many ups and downs.

First of all I just want to start saying a big thanks to Prof. Callegati, who made me
develop a passion in computer networking and supervised me through the process of

writing this thesis with willingness and accuracy.

The best moments spent at University were with my “Piscologi” (not spelt wrong),
Modo, Pippis and Simo, who made me enjoy even the gloomiest day when the boiler
in lecture hall stopped working in mid December (Max 10°C, no kidding). The

continuous support and help got from you was unmatchable.

The people I owe a lot for how their presence has been felt since high school times
are my “Regine di Cuori”, Loris, Vero, Marco and Cami, whose friendship never
vacillated one second and they have been supportive every time I needed for a really

long time (and I could bet they will carry on).

How can I forget to mention the gaming guys from “FTP”, Alfius, Baba, Fragolo, Teo
and Matteo who are the reason I often laugh until tears while playing video games
with them. Some would not believe this, but even though they are scattered all
around Italy I love them as they are always physically by my side, because the

friendship bond we have is for real.

47

And here comes the gang, the people I spend the most of the time with, those who
make me feel like a kid when it is time to have fun but also like a lucky man when it
is time to deal with real things. My “Autisti”, Agnesina, Ari, Rodil0, Pepu, Elenina,
Iris, Giada, Lalli, Nico A., Nico B., Tia, Vale and Giulione, are those crazy people who
always promised me to make a “scooterata alla villa” but never did (was the lack of
fliers the problem? duh). Anyway thank you for the patience and backing you gave

me when I needed, especially when it did not come to study.

Of course I have to thank all the lads at Promosport (#GoPromo) and all those I did

not mention for the hurry in writing this part.

The best of my thanks goes to my relatives and especially I must give credit also to

my family for this graduation.

I want to say thank you to my mother Gloriana and my father Stefano for the
economic and motivational support they gave me from day one, always trusting in
me and respecting my decisions even though they did not always agree with me.
Despite of all the many obstacles and hard moments we have been through they
always showed me love and I will always be thankful for the life lessons they gave
me. And why not, thanks also for the patience and understanding in those moments

when I go crazy at home and I start making stupid jokes and noise just to have fun.

And obviously, even though we are just like the cat and the mouse, I want to say
thank you to my brother Filippo, who has always been a model for me for the
dedication he put in its studies and everyday life. He still helps me taking my

decisions with valuable advices and he shows his support to me day in and day out.

Finally, the conclusive thanks goes to “Mimmo”, the main reason I ended up being

so fool (obviously in a positive way).

48

Bibliography

Online

ETSI NFV, https://www.etsi.org/technologies-clusters/technologies/nfv, 24/08/2018

ETSI Architectural Framework,
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV 220002
v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf, 01/09/2018

ETSI MANO,
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs NFV-M
ANO001v010101p.pdf, 13/09/2018

ETSI Network Service Template Specification,
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%2
0014v3.1.1%20-2%20GS%20-%20Network%20Service%20Templates%20Spec.pdf,
24/09/2018

Open Source Mano, https://osm.etsi.org/, 24/08/2018

OSM Information Model,
https://osm.etsi.org/wikipub/images/2/26/0OSM_R2_Information_Model.pdf,
24/09/2018

OSM Release Three - Technical Overview,
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.
PDF, 17/09/2018

49

https://www.etsi.org/technologies-clusters/technologies/nfv
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://osm.etsi.org/
https://osm.etsi.org/wikipub/images/2/26/OSM_R2_Information_Model.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.PDF
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.PDF

OSM Release Four - Technical Overview,
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFOUR-FINAL.p
df, 17/09/2018

Reference VNF and NS Descriptors,
https://osm.etsi.org/wikipub/index.php/Reference VNF_and NS Descriptors,
26/09/2018

A Cheat Sheet for Understanding “NFV Architecture”,
https://www.telcocloudbridge.com/blog/a-cheat-sheet-for-understanding-nfv-archi

tecture/, 01/09/2018

Software-Defined Networking, https://www.opennetworking.org/sdn-definition/,

28/09/2018

What is Network Service Chaining?,
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-networ

k-service-chaining/, 10/09/2018

Software-Defined Networking,

https://en.wikipedia.org/wiki/Software-defined networking, 28/09/2018

Network Function Virtualization,

https://en.wikipedia.org/wiki/Network_function_virtualization, 24/08/2018

YANG, https://en.wikipedia.org/wiki/YANG, 26/09/2018

YAML, https://en.wikipedia.org/wiki/YAML, 26/09/2018

OPNFV, https://www.opnfv.org/, 01/09/2018

50

https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFOUR-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFOUR-FINAL.pdf
https://osm.etsi.org/wikipub/index.php/Reference_VNF_and_NS_Descriptors
https://www.telcocloudbridge.com/blog/a-cheat-sheet-for-understanding-nfv-architecture/
https://www.telcocloudbridge.com/blog/a-cheat-sheet-for-understanding-nfv-architecture/
https://www.opennetworking.org/sdn-definition/
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-network-service-chaining/
https://www.sdxcentral.com/sdn/network-virtualization/definitions/what-is-network-service-chaining/
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/YANG
https://it.wikipedia.org/wiki/YAML
https://www.opnfv.org/

Acronyms

API
BSS
CLI
EM
EMS
EPA
ETSI
GUI
IP
ISA
JSON
LAN
MAC
MANO
NFV
NFVI
NFVO
NIC
NS
NSD
ODL
ONOS
OPNFV
oS
OSM
0SS

Application Programming Interface

Business Support System

Command Line Interface

Element Management

Element Management System

Enhanced Platform Awareness

European Telecommunications Standards Institute
Graphical User Interface

Internet Protocol

Instruction Set Architecture

JavaScript Object Notation

Local Area Network

Media Access Control

Management ANd Orchestration

Network Functions Virtualization

Network Function Virtualization Infrastructure
Network Functions Virtualization Orchestrator
Network Interface Card

Network Service

Network Service Descriptor

Open DayLight

Open Networking Operating System

Open Platform for Network Function Virtualization
Operating System

Open Source Mano

Operations Support System

51

PCle Peripheral Component Interconnect Express

PNF Physical Network Function

PNFD Physical Network Function Descriptor

RBAC Role Based Access Control

RO Resource Orchestrator

SDN Software Defined Networking

SO Service Orchestrator

Ul User Interface

URI Uniform Resource Identifier

VCA Virtual Network Functions Configuration and Abstraction
VDU Virtual Deployment Unit

VIM Virtualized Infrastructure Manager

VL Virtual Link

VLAN Virtual Local Area Network

VLD Virtual Link Descriptor

VM Virtual Machine

VMM Virtual Machine Monitor

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFD Virtual Network Functions Descriptor
VNFFG Virtual Network Functions Forwarding Graph
VNFFGD Virtual Network Functions Forwarding Graph Descriptor
VNFM Virtual Network Functions Manager

VPN Virtual Private Network

YAML YAML Ain’t Markup Language

52

