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Alla mia famiglia,

per avermi sempre appoggiato in ogni mia scelta.





When machines can see, doctors and nurses will have extra pairs of 
tireless eyes to help them to diagnose and take care of patients. Cars 
will run smarter and safer on the road. Robots, not just humans, will 
help us to brave the disaster zones to save the trapped and wounded. 

We will discover new species, better materials, and explore unseen 
frontiers with the help of the machines.  

Little by little, we're giving sight to the machines. First, we teach 
them to see. Then, they help us to see better. For the first time, 

human eyes won't be the only ones pondering and exploring our 
world. We will not only use the machines for their intelligence, we 

will also collaborate with them in ways that we cannot even imagine.  

This is my quest: to give computers visual intelligence and  
to create a better future for the world. 

Fei-Fei Li,  Head of Stanford AI Lab





Introduction

More than half a century ago the computer was invented. Since that

day many felt the essence of thinking, the heart of intelligence was found.

Reproducing intelligence seemed to be possible by the way computers worked.

All of a sudden, it became possible to simulate thinking, problem solving,

even natural language: Artificial Intelligence was born. The human brain was

interpreted as a computer. We all agree on the fact that computers have been

one of the biggest achievements in history, but computers have not fulfilled

the expectations of producing intelligence as we normally understand it. Here

are some cases where AI seemed to be more smarter than humans:

• In 1997, world chess champion Garry Kasparov played against Deep

Blue, a program built by IBM. As you already probably know, Kas-

parov was defeated by the machine.

• In 2011, Watson, another software made by IBM, won against a hu-

man player. The game was called Jeopardy and it was, essentially, a

quiz show where players were asked questions concerning any domain:

general knowledge, history, politics, economics etc.

Both these cases do not necessarily imply that a computer must be smart

in order to achieve these goals. In fact, a chess algorithm can perform very

well in searching through many positions and possible moves without requir-

ing so much intelligence. Even retrieving information from a pre-built archive

is not something we can define as smart. While scientists and engineers were

pushing themselves to build robots capable of doing commonplace activities
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(path navigation, obstacle avoidance, face recognition) they realized that

these tasks were extremely hard for machines. What is easy for people is

extremely hard for computers and, viceversa, what is often hard for humans

is easy for computers. By the mid-1990s, researchers from Artificial Intelli-

gence had to admit that perhaps the idea of computers as smart machines

was misguided. As Rolf Pfeifer and Christian Scheier wrote in their book

“Understanding Intelligence” [1], the brain does not simply ”run programs”

but it does something completely di↵erent. What the brain does is reinforc-

ing connections among neurons, which are activated depending on specific

stimuli. Essentially, the brain learns from experience. The idea of creating a

class of algorithms that learn from experience is summed up by a subfield of

Artificial Intelligence called Machine Learning. The more examples we give

them, the more they learn and, subsequently, this knowledge can be applied

for inference over new examples.

When little children still struggle to talk, parents still talk to them as

if they could understand everything. This way, the brain of the children is

nourished by examples. Furthermore, when children start uttering their first

words and they use a term wrong, the parents correct them with the right

word and, again, children learn. This is what in Machine Learning is called

Supervised Learning: a model is fed by thousands of examples and then

it is able to predict, act, classify. However, if the model is wrong about a

prediction it can be automatically corrected, learning from its own mistakes.

In the last decade, Machine Learning techniques have been used in di↵er-

ent fields, ranging from finance to healthcare and even marketing. Amongst

all these techniques, the ones adopting a Deep Learning approach were re-

vealed to outperform humans in tasks such as object detection, image clas-

sification and speech recognition.

This thesis introduces the basic concepts of Machine Learning and Deep

Learning, and then deepens the convolutional model (CNN). The second

chapter specifically introduces Deep Learning architectures present in the

scientific literature for object recognition. Then we introduce the concept of
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”Edge AI”, that is the possibility to build learning models capable of mak-

ing inference locally, without any dependence on expensive servers or cloud

services. A first case study we consider is based on the Google AIY Vision

Kit, an intelligent camera equipped with a graphic board to optimize Com-

puter Vision algorithms. Then we focus on two applications: we want to test

the performances of CORe50, a dataset for continuous object recognition,

on embedded systems. The techniques developed in the previous chapters

will then be used to solve a challenge within the Audi Autonomous Driving

Cup 2018, where a mobile car equipped with a camera, sensors and a graphic

board must recognize pedestrians and stop before hitting them.





Introduzione

Più di mezzo secolo fa il computer fu inventato. A partire da quel

giorno, molte persone intuirono che l’essenza del ragionamento, il cuore

dell’intelligenza fu trovato. Sembrava a tutti possibile sfruttare il modo in

cui i computer operavano per riprodurre intelligenza. All’improvviso sembrò

possibile simulare il pensiero, svolgere in maniera automatizzata attività di

problem solving ed anche riprodurre il linguaggio naturale: l’Intelligenza Ar-

tificiale era appena nata. Il cervello umano veniva interpretato proprio come

un computer.

Siamo tutti d’accordo sul fatto che il computer sia stato uno dei più grandi

traguardi nella storia, tuttavia i computer non hanno raggiunto l’aspettativa

di riprodurre intelligenza cos̀ı come noi la intendiamo. Analizziamo i seguenti

casi in cui l’AI sembrava essere più intelligente di esseri umani:

• Nel 1997, Garry Kasparov, campione mondiali di scacchi, giocò contro

Deep Blue, un programma costruito da IBM. Come noto, Kasparov fu

battuto dal calcolatore.

• Nel 2011, Watson, un altro programma fatto da IBM, vinse contro un

altro campione. Il gioco in questione si chiamava Jeopardy e consisteva

in una specie di quiz con domande relative ad ogni possibile ambito:

cultura generale, storia, politica, economia ecc ecc.

Entrambi i casi non richiedono necessariamente intelligenza da parte della

macchina. Infatti, la ricerca di possibili combinazioni e mosse, come nel caso

degli scacchi, non richiede troppa intelligenza. Anche reperire informazioni

i
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da un archivio è qualcosa che non si può considerare intelligente. Mentre

scienziati ed ingegneri concentravano le loro forze nello sviluppo di robot ca-

paci di intraprendere attività per umani considerate comuni (muoversi in un

ambiente, evitare ostacoli, riconoscere facce, a↵errare oggetti) si resero conto

che questi task erano estremamente di�cili per le macchine. Ciò che è facile

per le persone è molto di�cile per i computer e, viceversa, cio che è di�cile

per le persone è facile per i computer.

A cavallo degli anni 90’, ricercatori nell’ambito dell’Intelligenza Artificale

dovettero ammettere che forse l’idea di computer inteso come una macchina

intelligente era sbagliata. Come Rolf Pfeifer e Christian Scheier scrivono

nel loro libro ”Understanding Intelligence” [1], il cervello non manda sem-

plicemente programmi in esecuzione ma fa qualcosa di completamente di-

verso. Ciò che il cervello fa è rinforzare le sinapsi, le connessioni tra di-

versi neuroni a seconda degli stimoli che ricevono dall’esterno. Più stimoli

riceviamo, più le connessioni si rinforzano. In poche parole, il cervello ap-

prende dall’esperienza. L’idea di creare una classe di algoritmi che impara

dall’esperienza è riassunta in una sottobranca dell’Intelligenza Artificiale

chiamata Machine Learning. Più esempi diamo in pasto a questi algoritmi

e più loro apprendono e, di conseguenza, sono in grado di utilizzare questa

conoscenza per fare inferenza su nuovi esempi.

Quando i bambini, ancora piccoli, stentano a parlare, i genitori parlano loro

come se potessero intendere ogni cosa. In questa maniera, il cervello dei

bambini è nutrito in maniera continua di esempi. In più, quando il bambino

impara le prime parole e le usa in maniera sbagliata il genitore lo corregge.

Questo è ciò che in Machine Learning viene chiamato come Apprendimento

Supervisionato: un modello è alimentato da migliaia di esempi e, di con-

seguenza, diventa in grado di predire, agire, classificare. Tuttavia, se il mod-

ello si sbaglia in uno di questi task può essere automaticamente corretto. Si

apprende dai propri errori.

Negli ultimi dieci anni le tecniche di Machine Learning sono state applicate

ai più svariati ambiti, dalla finanza alla medicina fino al marketing. Tra tutte
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queste tecniche, quelle basate sul Deep Learning hanno dimostrato di avere

performance migliori degli essere umani in task come rilevazione di oggetti,

classificazione di immagini e riconoscimento del parlato.

L’elaborato in questione introduce i concetti base dell’apprendimento auto-

matico e del Deep Learning, per poi approfondire il modello convoluzionale

(CNN). Il secondo capitolo espone e confronta le architetture di Deep Learn-

ing presenti in letteratura per il riconoscimento di oggetti. Si introduce

poi il concetto di ”Edge AI”, ovvero la possibilità di costruire modelli di

apprendimento in grado di fare inferenza localmente, senza alcuna dipen-

denza da servizi cloud o server costosi. Il caso di studio è basato sul Google

AIY Vision Kit, una camera intelligente dotata di una scheda grafica per

l’ottimizzazione di algoritmi di Computer Vision. Lo scopo finale è duplice:

da una parte si vogliono testare le performance di CORe50, dataset per

il riconoscimento continuo di oggetti, su sistemi embedded. In seguito, le

tecniche sviluppate nei capitoli precedenti saranno utilizzate per risolvere

una challenge all’interno dell’Audi Autonomous Driving Cup 2018, dove una

macchina dotata di camera, sensori e scheda grafica deve riconoscere i pedoni

e fermarsi.
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Chapter 1

Machine Learning

Machine Learning is a subject located at the intersection among Statistics,

Data Analysis, Pattern Recognition and Artificial Intelligence. As already

explained in the introduction, the main idea is that of feeding a model with

many examples and, later on, applying inference. Thus, machines “mag-

ically” learn from data. The point is to define the correct model for the

learning phase. More formally, we can say that “a computer program is said

to learn from experience E with respect to some classes of tasks T and perfor-

mance measure P if its performance at tasks in T, as measured by P, improves

with experience E” [2] . A dataset is normally split into three parts: the first

part, called the training set, is used for the training phase; the second one,

the test set, is aimed at the evaluation, while the last one, the validation

set, is suitable for tuning hyper parameters. The training phase is charac-

terized by the learning process and knowledge acquisition of the model. The

subsequent application of said knowledge is the testing phase.

If, during the training phase, data are labelled then it is called Supervised

Learning. The goal is to find a function that maps the input data on its

corresponding classes. In case there are no labels, which makes the problem

harder than before, it is called Unsupervised Learning. The training set can

even be partially labelled: this is what Semi-supervised Learning means. The

last paradigm of Machine Learning is Reinforcement Learning: an agent takes

1
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action interacting with the environment. To each action there corresponds a

reward. The goal of the agent is to maximize the sum of the total rewards.

This approach has shown to be incredibly e↵ective when an agent must learn

behaviours: control theory, simulation, gaming.

1.1 Machine Learning Data

Machine Learning algorithms can handle di↵erent kinds of data:

• Numerical: these are values associated with measurable characteristics.

There is an order among them and they can be both discrete or contin-

uous. They can be represented as vectors in a multidimensional space.

Ex: finding the height, weight or foot size of a given person .

• Categorical: values associated with qualitative characteristics. Binary

values are considered categorical as well. Ex: finding the sex or blood

type of given a person.

• Sequences: these data express a relationship between time and space.

What really matters is their position into a sequence and the reference

with predecessors and successors. Ex: a sequence of words, streams of

data.

1.2 Machine Learning Problems

Machine Learning techniques can be applied for facing several problems,

which are:

• Classification: starting from a labelled dataset, the aim is to correctly

classify new patterns as belonging to their classes. Ex: given the weight

and height of a person, is that a male or female? Traditional approaches

to classification tasks are: supported vector machines (SVM), decision

trees, perceptron, nearest neighbors and other models.
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• Clustering: grouping data that share the same characteristics. Data

are not labelled. The purpose is to minimize intra-cluster distance and

maximize inter-cluster distance. Clustering algorithms are: K-means,

K-median, X-means, etc.

• Regression: the task of approximating a mapping function from input

variables to a continuous output variable. Even if it may seem close to

classification, the main di↵erence is the fact that regression considers

continuous variables as output, while classification works only with

discrete values.

• Dimensionality Reduction: mapping a space Kn to Km where m < n.

This operation surely implies the loss of some information that is not

supposed to be important. The most used technique is called PCA

(Principal Component Analysis) and it exploits eigenvectors to discard

the variance.

• Representation Learning: identifies a set of algorithms aimed at the

automatic processing of data provided during the learning phase, for

the discovery of a better representation of said data. Representation

Learning takes the raw data provided during the pre-processing phase

before they are classified. Many of the deep learning techniques (such

as convolutional neural networks) operate this way, using raw data as

input and automatically extracting the necessary features to solve the

problem.

During the training phase we want to find a model that maps features to

labels and then we proceed with the test of the model on the validation set.

The model must be able to generalize and find relationships between features

and labels even on a new dataset. This is how we measure performances.

However, it can happen that the model seems to perform very well but then

it underperforms on the validation set. This is what is known as overfitting :

the model knows how to fit the data, but there is no real understanding of
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Figure 1.1: Example of overfitting

the relationship between data and labels. Figure 1.1 shows an example of

overfitting.

Machine Learning algorithms have a performance limit. When this limit

is reached, even if data input is increased, performances do not improve.

To overcome this limit it is necessary to introduce more powerful techniques

based on a Deep Learning approach. In figure 1.2 it is possible to see the

di↵erence between Machine Learning and Deep Learning algorithms in terms

of performances.

1.3 Introduction to Deep Learning

Deep learning is the field of research in Machine Learning that is based

on di↵erent levels of representation, corresponding to hierarchies of charac-

teristics of factors, where high-level concepts are defined on the basis of low-

level ones. Deep learning based techniques have been applied successfully in

computer vision, automatic speech recognition, natural language processing,

audio recognition and bioinformatics. This chapter introduces the concept of

artificial neuron, Neural Network (ANN), Multilayer Perceptron (MLP) and
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Figure 1.2: Comparing Machine Learning and Deep Learning performances

Convolutional Neural Network (CNN).

The following are just a few examples to give an idea of how Deep Learning

is being applied in di↵erent contexts [3]:

• Autonomous Guide: researchers in the automotive industry have de-

veloped deep learning algorithms for automatic detection of objects,

such as stop signs and tra�c lights. Furthermore, deep learning is

used to detect the presence of pedestrians, helping to reduce the risk

of accidents.

• Aerospace and Defense: Deep learning is used to identify objects from

satellites that are able to help locate areas of interest and identify safe

or unsafe areas for troops.

• Medical Research: researchers use deep learning to automatically de-

tect cancer cells. Some teams at UCLA have built an advanced mi-

croscope that produces a large data set used for the training of a deep

learning application that can accurately identify cancer cells.

• Industrial Automation: Deep learning helps improve the safety of work-

ers when using heavy machinery by automatically detecting the pres-

ence of people and objects at an unsafe distance from the machines.

• Assistive Technologies: Deep learning is used in automatic auditory
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and vocal translation. For example, home assistance devices with voice

recognition and knowledge of user preferences are supported by deep

learning applications.

1.3.1 Artificial Neuron

Taking inspiration from biology, in 1943 McCulloch and Pitts introduced

the notion of artificial neuron, which is shown in figure 1.3.

Figure 1.3: Artificial Neuron

An artificial neuron is essentially a function that takes input from other

neurons. Each input is associated to a weight. Inside the neuron, which is

represented as a circle in the figure above, the dot product (input x weights)

is calculated and then an activation function is applied.

The activation function is typically the Standard Logistic Function, or

any function that belongs to the Sigmoid family:

Figure 1.4: Standard Logistic Function
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f(x) =
1

1 + e�xi

Where xi is the dot product given a neuron at index i:

xi =
X

wi ⇥ pi

Properties of the Standard Logistic Function:

• Dom: [-1,1], Cod: [1,0]

• limx!�1 f(x) = 0, limx!1 f(x) = 1

Another common activation function is the Hyperbolic Tangent, shown

in figure 1.5:

Figure 1.5: Hyperbolic Tangent

f(x) = tanh(x)

Properties of the Hyperbolic Tangent:

• Dom: [-1,1], Cod: [-1,+1]

• limx!�1 f(x) = �1, limx!1 f(x) = 1

Sigmoid functions are often used in Neural Networks (ANN) to introduce

non-linearity into the model and to ensure that certain signals remain within



8 1. Machine Learning

specific ranges. A popular artificial neural element computes the linear com-

bination of the corresponding input signals and applies a sigmoid function

limited to the result. This model can be seen as a ”regular” variant of the

classical threshold neuron.

1.3.2 Artificial Neural Network

An Artificial Neural Network (ANN) is obtained by grouping di↵erent

artificial neurons into di↵erent layers. Figure 1.6 shows an example of ANN.

Figure 1.6: Artificial Neural Network

An Artificial Neural Network (ANN) is composed of a series of neurons,

represented as circles in the figure, which take as input the weights of the

edges coming from the neurons of the previous level. The ANN then calcu-

lates the dot product and applies the activation function to the result and

it propagates the output to the next level. A network with these charac-

teristics is called feedforward because the output always goes towards the

next layer. Another feature of the network shown in the figure is that of

being fully connected : each neuron propagates the result of its computation

to each neuron of the following layer. A network that is both feed-forward

and fully connected is called Multilayer Perceptron (MLP). A neural network

is considered ”deep” when several layers are stacked and each layer contains

thousands of neurons. Recent models present between 7 and 50 layers.
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The core of the Deep Learning algorithms consists in finding the right

weights at the edges of the network so that the sum of the errors of the output

neurons is minimized. To achieve this goal it is necessary to establish:

• which function to use in each neuron (activation function).

• which function to use to calculate the sum of errors (loss function).

• which algorithm to use to find the right weights of the network (back-

propagation algorithm).

We have already explained the meaning of the activation function, thus no

further clarification is needed. Concerning the loss function, one of the most

used, especially for regression problems, is the Mean Square Error (MSE):

⌘(w, x) =
1

n

X
tc � zc

2

Where:

• z represents the output vector produced by the network z = [z1, .., zn]

• x represents the input vector x = [x1, .., xn]

• t represents the desired output.

The aim of the Deep Learning algorithms is to find parameters (weights)

and hyper-parameters to minimize the total MSE. The most used method

is the backpropagation algorithm, which consists in tracing back the network

(from the output level up to the input level) and adjusting the weights,

which in principle are initialized randomly. At each step, the new weights are

calculated using the gradient descent, a well known optimization technique

that allows to find local minimum of multi-variable functions, and therefore

to minimize the error, according to an additional parameter called Learning

Rate. This latter parameter determines the speed of convergence of the

gradient: if the learning rate is too high, the algorithm converges quickly but

risks overshooting, e.g.: not finding the local minimum and continuing to
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oscillate among more possible solutions. Viceversa, if the learning rate is too

small, the gradient descent algorithm risks converging too slowly. Learning

is therefore a complex optimization problem because the number of weights

involved can be very high. Recent models reach up millions of parameters.

1.3.3 Convolutional Neural Network

Artificial Neural Networks, in particular the MLP model, are extremely

powerful because, according to the Universal Approximation Theorem, are

capable of approximating any function. However, they do not apply well

to images. In fact, images are 2D grid structured arrays. Given a few mil-

lion pixels, the parameters explode. In addition, images have transversely

repeated patterns. It is possible to exploit the presence of patterns to give

the same weights to the edges and make the problem easier for computers.

The same thing happens in the brain: data coming through the retina to the

primary visual cortex (v1) pass through neural layers that create hierarchical

features. This process is illustrated in figure 1.7.

Figure 1.7: Visual Cortex System

The intuition stems from an experiment by D.Wiesel and T. Hubel [4],

which dates back to 1962, when the two researchers realized that cats, and

similarly humans, have two types of cells: simple and complex cells. Simple

cells are excited to recognize small and simple patterns, while complex cells

aggregate information from simple cells to recognize more generic patterns.
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There is a hierarchy of simple and complex cells which is repeated. This

repetition creates a hierarchical structure, where initial the layers are able to

recognize simple patterns, while complex patterns are distinguished by the

last layers.

Convolutional neural networks (CNN) are based exactly on the same hierar-

chical representation. However, instead of using a fully connected network, a

local filter convolution is applied to every area of the input image. The con-

volution operation is essentially a filter that is passed over every area of the

input image of the CNN. This operation, described in figure 1.8, represents

exactly the simple cell.

Figure 1.8: Convolution operation with filter

The complex cell is instead represented by the pooling operation: it takes

a set of simple cells and applies an operation that is typically the maximum

or the average to aggregate information. The idea is to present a sort of

’summary’ to the next level, so we use the maximum or the average. Pooling

operation is shown in figure 1.9.

CNNs apply a convolution layer and a pooling layer in series. At the end

there is always a fully connected layer, that is the classifier, and it classi-

fies the learned features. The result is a neural network where weights are

shared and connections to the next level are local. As a consequence, the

number of weights to be found is much lower than an MLP, so the problem,

computationally speaking, is easier. The activation function typically used
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Figure 1.9: Pooling operation using max, 2x2 filter and stride=2

in CNNs is the ReLU (figure 1.10), which is similar to a sigmoid, but has

some advantages that favors convergence:

Figure 1.10: ReLU, Rectified Linear Unit

f(x) = max(0, x)

The ReLU as activation function implies that neurons are activated in a

sparse manner. Combining convolution and pooling, CNNs are excellent for

image classification problems. Hence, the final architecture for Convolutional

Neural Network is shown in figure 1.11:
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Figure 1.11: Convolutional Neural Network

1.4 Training details

During the training phase, hyper-parameters are particularly relevant.

This section aims at analyzing the most important parameters, the one that

can a↵ect the training phase the most in terms of training time, convergence

and accuracy.

1.4.1 Stochastic Gradient Discent

Stochastic Gradient Descent (SGD) is one of the most popular optimiza-

tion algorithms. It is widely used in neural networks as it is the basis of

the backpropagation algorithm. The idea of the SGD is to minimize an

objective function J(x) formed by N parameters by updating the value of

the parameters based on the di↵erence with the negative gradient of J(x).

The parameter is then updated step by step, according to a given value LR,

called the Learning Rate. In short, we descend a function J(x) step by step,

until this leads us to a local minimum value. How long is the step? This

corresponds to the Learning Rate value, as shown in figure 1.12.
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Figure 1.12: SGD and Learning Rate

1.4.2 SoftMax as function for the output level

As already explained, it is possible to use both tan(h) or the Standard

Logistic Function as activation functions on the output layer . In the first

case, output values are included between -1 and 1. Using a Standard Logistic

Function, output values will be included between 0 and 1. However, in both

cases there is no guarantee that the sum on the output neurons is 1, which is

a fundamental requirement so that they can be interpreted as a probabilistic

distribution.

When a neural network is used as a multi-class classifier, the use of the Soft-

Max activation function makes it possible to transform the values produced

by the last level of the network into class probabilities:

softmax(x) =
exP
1..nex

1.4.3 Cross-Entropy as loss function

Using MSE as a loss function is not an optimal choice for classification

since the output values do not represent probabilities and the non-imposition

of the sum constraint equal to 1 makes learning less e↵ective [5]. Given a

multiclass classification problem, the use of Cross-Entropy as a loss function

is highly recommended:
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CE(x) = �
X

p(x)⇥ log(q(x))

Cross-entropy is mostly used to understand the di↵erence between two

probability distributions. The target distribution, the one that the model is

trying to match, is expressed in terms of a one-hot distribution. How close is

the predicted distribution to the real distribution? That is what the cross-

entropy loss determines. In the formula above, p(x) stands for the target

probability, while q(x) represents the actual probability.

1.4.4 Regularization

Regularization techniques can be used to reduce the risk of overfitting

by a neural network with many parameters. This trick is very important

when the training set is not large compared to the capacity of the model.

Neural networks whose weights are close to zero tend to be more stable and

this often leads to a better generalization [5]. To force the network to adopt

weights of small value, a regularization term to the loss can be added. For

instance, in the case of Cross-Entropy Loss:

J tot = CE + J reg

J reg can be obtained as follows:

• L1: J reg = �
P

|wi|

• L2: J reg =
1
2 ⇥ �

P
wi

2

In both cases the � parameter can be set arbitrarily. L1 can have a sparsifying

e↵ect (i.e. bring numerous weights to 0) greater than L2. In fact, when the

weights assume values close to zero, the calculation of the square in L2 has

the e↵ect of excessively reducing the corrections to the weights, making it

di�cult to reset them.
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1.4.5 Momentum

While stochastic gradient descent remains a popular optimization strat-

egy, learning with it can sometimes be slow. The method of momentum is

designed to accelerate learning, especially in presence of high curvature, small

but consistent gradients, or noisy gradients [6]. The momentum algorithm

accumulates an exponentially decaying moving average of past gradients and

continues to move in their direction. The name momentum derives from

an analogy with physics, in which the negative gradient is a force moving

a particle through parameter space, according to Newton’s laws of motion.

Momentum in physics is mass times velocity. In figure 1.13 it is possible to

see the e↵ect of the momentum, draw in red lines.

Figure 1.13: The e↵ect of momentum

1.4.6 Learning Rate

We said before that learning rate is an hyper parameter that represents

how long is the step while moving towards a local minimum. This definition

implicitly means that steps must be of the same length. In this scenario, we

would probably choose a short step, meaning a low value for the LR, because
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we want to be sure to find a local minimum and to avoid overshooting, despite

the fact that this would be time consuming. However, it is easy to understand

that the best choice would be that of taking a ”longer” step when we are

far from the minimum, and of progressively decreasing the length of the step

as we get closer to the solution. This can be achieved by using predefined

learning rate schedules or adaptive learning rate methods.

Learning Rate Schedules

Learning rate schedules aim at adapting the learning rate during training

by planning a predefined schedule. Learning rate schedules methods are:

time-based decay, step decay and exponential decay.

Time-Based Decay can be expressed in mathematical form as follows:

lr = lr0/(1 + kt)

where lr, k are hyperparameters and t is the iteration number. The learning

rate is updated by a decreasing factor in each epoch.

Step Decay schedule drops the learning rate by a factor every few epochs.

The mathematical form of step decay is :

lr = lr0 ⇥ dropfloor(
epoch

epochsdrop )

A typical way is to to drop the learning rate by half every 10 epochs.

Another common schedule is exponential decay:

lr = lr0 ⇥ e�kt

where lr, k are hyper parameters and t is the iteration number.

Adaptive Learning Rate

There is still one issue to be discussed concerning the use of the learning

rate schedule: hyper-parameters must be defined a priori and the same hyper

parameters are applied for each update. Sometimes, we may be interested
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in updating the parameters in di↵erent extent. A better way to do this is

to use Adaptive gradient descent algorithms: Adadelta, Adagrad, Adam,

RMSprop. These methods use a heuristic approach, avoiding extensive fine

tuning for the hyper-parameters.

Adagrad adapts the learning rate performing updates: frequently occur-

ring features are associated with smaller updates, while infrequent features

are associated with larger updates. Due to this behaviour, Adagrad is well-

suited for dealing with sparse data. Previously, an update over all parameters

⇥ was performed using the same learning rate ⌘. Adagrad uses a di↵erent

learning rate for every parameter ⇥i at every time step t.

Adadelta is an extension of Adagrad that seeks to reduce its aggressive,

monotonically decreasing learning rate. Instead of accumulating all past

squared gradients, Adadelta restricts the window of accumulated past gradi-

ents to some fixed size [7].

Adam (Adaptive Moment Estimation) calculates adaptive learning rates

for each parameter. In addition to storing an exponentially decaying average

of past squared gradients, Adam also keeps an exponentially decaying average

of past gradients, similar to momentum [8].

There are still other methods as adaptive learning rate that are not men-

tioned. At this point, one might be wondering which criteria we must con-

sider for picking up the right learning rate method. The truth is that, despite

Adam being considered the state of the art, there is no rule for this task. In

fact, training a neural network requires experience, and hyper-parameters

tuning depends on the problem, the architecture of the network, the dataset,

the domain and other details. Experience in training neural architectures

surely plays a key role [9].



Chapter 2

Computer Vision

T.S. Huang provides a brilliant definition for Computer Vision [10]. Com-

puter Vision has a dual goal. From the biological science point of view, com-

puter vision aims at providing computational models of the human visual

system. From an engineering point of view, computer vision aims at build-

ing autonomous systems which could perform some of the tasks which can

also be performed by the human visual system (and even surpass it in many

cases). Of course, the two goals are intimately related. The properties and

characteristics of the human visual system often give inspiration to engineers

who are designing computer vision systems. Conversely, computer vision al-

gorithms can o↵er insights into how the human visual system works.

The tasks of Computer Vision typically are:

• Image Classification: it is the task of assigning a label, from a fixed set

of categories, to an input image. This is one of the core problems in

Computer Vision that, despite its simplicity, presents a large variety of

practical applications.

• Image Classification and Localization: given an image, what we want

is the most relevant object and provide a rectangle to identify where

the object is.

• Object Detection: given an image, the aim of object detection is to

19
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extract relevant objects and their location. This means that object

detection is not just a classification task, but also a regression task. In

fact, the final output is a label plus a tuple of numbers: x0, y0, width,

height.

• Instance Segmentation: it can be considered as a sort of object recogni-

tion, with the di↵erence that in this case segmentation is more precise,

because it creates an area that overlaps the detected object. The result

of image segmentation is a set of segments that collectively cover the

entire image, or a set of contours extracted from the image [11].

Figure 2.1: Image Classification, Localization, Detection and Segmentation

All these tasks are illustrated in figure 2.1. In this thesis, we will focus

mainly on Object Detection.

2.1 Deep Architectures for Object Detection

This section will introduce the main architectures that exploit Deep Learn-

ing for Object Detection. It should be noted that the architectures proposed

are the result of a fairly recent scientific work which is in constant evolution.

All these models share the same core: they are all based on Convolutional

Neural Networks (CNN).
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2.1.1 R-CNN

The purpose of the R-CNN (Region CNN) [12] is to identify the main

objects given an input image. Therefore, the first step is identifying the re-

gions where the objects could potentially be and subsequently applying CNNs

for the identification phase. This phase, called Regions Proposal Phase, is

computed through an algorithm called Selective Search [13]. This algorithm

considers the image through windows of di↵erent sizes, and for each dimen-

sion tries to group adjacent pixels by texture, color or intensity, as shown in

figure 2.2.

Figure 2.2: Selective Search

The result of this phase are the Regions of Interest, which are areas

of the starting image that contain potential objects to be detected. Each

Region of Interest is adjusted to ensure that the input of the Region of

Interest matches the CNN (warping phase). Each image is processed by CNN,

typically AlexNet, and then SVM is applied for the classification task, on the

last layer, the fully connected one, while Bounding Box Regression is used

for the localization task. The initial regions proposed by the Selective Search

algorithm may not be perfectly centered with respect to the subject they

contain. Precisely for this reason, the last step of Bounding Box Regression

is a further refinement to ensure that the subject is centered in relation to
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the coordinates of the rectangle in which it is inscribed. Therefore we can

consider the R-CNNs just like CNN, where the input is suggested by the

Selective Search algorithm and the last layer performs the classification task

using SVM. It is evident that the R-CNNs su↵er from a critical problem:

each Region of Interest becomes the input of a CNN, so the number of CNNs

is equal to the number of Regions of Interest, usually a few thousands per

image. This makes the problem not suitable for real-time applications, where

the detection time must be almost instantaneous. Figure 2.3 shows R-CNN

architecture.

Figure 2.3: R-CNN

2.1.2 Fast R-CNN

Fast R-CNNs [14] are a further improvement of the R-CNN. The substan-

tial di↵erence consists in placing a RoI Pooling layer between the CNNs and

the last fully connected level. While with the R-CNN the components to be

trained were CNN, SVM and Bounding Box respectively, the Fast R-CNNs

are better because only one component (the RoI Pooling layer) is used for

the training phase. The RoI Pooling layer receives as input both the Region

Proposals, obtained again by the Selective Search algorithm, and the last

layer of CNN. The resulting output are vectors that have the same size that

are processed by the fully connected layer. Similarly to the classical R-CNNs,
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classification and regression are made on the basis of this last level, with the

di↵erence that the classification task is no longer assigned to SVM but to the

Soft-Max algorithm, which returns a confidence value. The regression part

remains unchanged, using the Bounding Box Regressor. Figure 2.4 shows the

Fast R-CNN architecture, while figure 2.5 shows just the RoI Pooling Layer.

Figure 2.4: Fast R-CNN Architecture

Figure 2.5: RoI Pooling Layer

When analyzing the architecture of a Fast R-CNN network, it is clear that

all the inputs and outputs necessary for the classification and localization

tasks come from a single network, which therefore proves to be much more

e�cient than a classic R-CNN, where to each object there corresponds a

CNN.
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2.1.3 Faster R-CNN

Even with all these improvements, a sore point remains in the (Fast) R-

CNN: the Region Proposal phase. As we have seen, the first step to discover

the position of objects is to generate a lot of potential regions of interest

to be tested. The Selective Search algorithm is quite slow and turns out to

be the bottleneck of the whole process. The Faster R-CNNs [8] distinguish

themselves precisely because they are able to make classification and region

proposals thanks to a single CNN. In fact, note that the RoIs strongly depend

on the features extracted from the image, which are also calculated by the

first levels of CNN. Why not using the same results coming from the CNN

for region proposals instead of running the Selective Search separately? This

way we obtain the regions of interest almost for free, the only shrewdness is

to train the CNN.

Faster R-CNNs consist of two modules:

• RPN (Region Proposal Network): given the input of the convolutional

layer, it finds the rectangles for the localization. These rectangles are

identified only if there is a relevant subject inside.

• RoI Pooling Layer: classifies each proposal and applies a correction

factor so that the subject is centered with respect to the rectangle in

which it is inscribed.

The Region Proposal Network (RPN) is definitely the element that makes

Faster R-CNN more interesting than the approaches seen so far. Specifically,

the RPN uses a sliding window that is scrolled on the feature map and

classifies what is below the sliding window as an object/non-object proposing

a bounding box in the first case. However, we know that these bounding

boxes will have di↵erent proportions depending on the object that has been

identified. For example, a person will be framed in a rectangle where the

height will be significantly greater than the width. Vice versa, a TV monitor

will be identified by a rectangle with a 4: 3 aspect ratio. The RPN also

deals with finding rectangles with the appropriate proportions. To do so, we
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propose a series of anchor boxes with associated confidence values. Anchor

boxes whose confidence value falls below a certain threshold are discarded,

while the rest are passed to the RoI Pooling layer for the classification phase.

Figures 2.6 and 2.7 show respectively the Faster R-CNN architecture and the

RPN.

Figure 2.6: Faster R-CNN Architecture

Figure 2.7: Region Proposal Network
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2.1.4 YOLO

Previous detection systems reuse classifiers or locators to perform detec-

tion. They apply the model to an image in multiple positions and scales.

Regions with a high image score are considered relevant. YOLO [15] uses a

completely di↵erent approach. A single neural network is applied to the entire

image. In fact, YOLO stands for You Only Look Once. This network di-

vides the image into regions and calculates bounding boxes and probabilities

for each of them. This approach has several advantages over classifier-based

systems. It makes predictions with a single evaluation of the network, unlike

systems like R-CNN that require thousands of evaluations for a single image.

How is it possible to do everything with a single neural network? The first

step of the processing is to divide the input image into a grid, where each cell

is responsible for predicting bounding boxes and their respective confidence

values. If the box contains an object, the associated confidence value will be

very high, vice versa if it does not contain any object, then the confidence

will be very low. This step is shown in figure 2.8.

Figure 2.8: YOLO, image divided into bounding boxes

At this point we know exactly how many relevant objects there are in

the image, but not what they are. Therefore, each cell also takes care of

calculating the probability that for the object to belong to a certain class

(class probability), as shown in figure 2.9.

We are talking about conditional probability, which means that the cal-

culated value does not represent the probability to contain that object; it

means that if that cell contains an object, then the probability for that ob-
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Figure 2.9: YOLO, class probabilities

ject to be a bike, a dog or a car is equal to the calculated value. Subsequently

the class probability is multiplied by the conditional probability to obtain a

grid where each bounding box considers both the probability of containing

this object related to the possibility that there is an object inside. Figure

2.10 illustrates this process.

Figure 2.10: YOLO, bounding box and conditional

We then consider only the rectangles whose confidence value is higher

than a certain threshold, which is described in figure 2.11.

Despite some generalization errors, YOLO represents the state of the art

in object detection algorithms and its speed in detecting objects inside images

makes the network particularly adaptable to solve tasks in real time. The

architecture of YOLO is summarized in figure 2.12.

The same authors of YOLO have then introduces some improvements in

order to enhance the processing time such as anchor boxes generation and a
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Figure 2.11: YOLO, threshold detection

Figure 2.12: YOLO architecture

tree data structure allowing the label sharing between detection and classi-

fication, since detection usually has coarse grained label, which corrisponds

to the parent node in the tree [16] [17].

2.1.5 SSD Multibox

In November 2016, Wei Liu et al.[18] introduced the Single Shot Multi-

Box Detector. SSD speeds up the processing phase by eliminating the RPN.

Starting from a small convolution filters, SSD is able to calculate both lo-

cation and class score. Then, feature maps are extracted and a convolution

filter is applied to each cell. What is new is the multi-scale feature maps:

multiple layers are used to detect objects independently. This is done by 6

convolution layers after the VGG-16 layer [19]. In fact, VGG-16 as base net-



2.1 Deep Architectures for Object Detection 29

work is a brilliant idea due to its strong performances in image classification

and its popularity for problems where transfer learning helps in improving

results. Thus, a set of convolution layers enables multiple scale feature ex-

tractions while decreasing the size of the input layer step by step.

Figure 2.13: SSD architecture

In addition, extra convolutional layers help handling bigger objects, while

the non-maxima suppression algorithm is used to filter multiple boxes that

may appear. The final architecture is exposed in figure 2.13. The model

is quite simple if compared to previous architecture because it discards the

proposal generation step. All the processing phase is handled in a single

network. Despite SSD could seem similar to YOLO, it is necessary to remark

that YOLO uses predefined grid cells, so the aspect ratio is fixed, while SSD

allows more aspect ratios (6 in total). Due to this reason, SSD bounding

boxes are generally more accurate than the one predicted by YOLO.

2.1.6 Performance evaluation

mAP stands for mean Average Precision and it is considered the standard

measure for evaluating object detection algorithms by the scientific commu-

nity. Here we should remember that that object detection means both clas-

sification and regression, we need a measure for evaluating both tasks at the

same time. Using accuracy as metric would introduce some biases. In fact,

a typical data set may contain many classes and their distribution is non-

uniform (for example, there might be many more cats than cars). To face

this problem, we must introduce the notion of Precision and Recall:

• Precision measures the false positive rate:
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Precision =
true object detections

total number of detections by the system

A precision value close to 1 means that whatever the classifier predicts

as positive is in fact a correct prediction.

• Recall measures the false negative rate:

Recall =
true object detections

total number of objects in the data set

A recall value close to 1 means that almost all objects in the dataset

will be positively detected.

Precision and Recall are linked by a relationship of inverse proportionality:

when one grows, the other decreases and vice versa. For instance, if we

want to calculate the AP (Average Precision) for the class ’dog’, the Preci-

sion/Recall curve is created by varying the threshold that determines what

is considered as a model-predicted positive detection of the class, as shown

in figure 2.14.

Figure 2.14: Precision-Recall curve for the class dog

Given this curve, AP can be calculate as follows:

AP =
1

n

X

Recalli

Precision(Recalli)

Concerning the localization problem, the most common metric is the In-

tersection over the Union (IoU). The basic idea is to provide a number scoring

how well the ground truth object overlaps the object boundary predicted by
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the model. IoU can even be explained visually, which makes everything easier

to understand. Figures 2.15 and 2.16 explain IoU visually.

Figure 2.15: Intersection over the Union

Figure 2.16: IoU stop sign
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Again, the IoU threshold is a fundamental parameter and, as previously

stated, we can calculate Precision-Recall by varying IoU thresholds.

Figure 2.17: Precision/Recall curve for IoU

In figure 2.17 dashes represent spaced recall values where the AP is cal-

culated. Finally, the mean Average Precision or mAP score is equal to the

mean AP over all classes and over all IoU thresholds. This way there is only

one score that comprehends both classification and localization. However,

thresholds may vary depending on the competition or dataset. Right now,

we can evaluate all the deep learning architectures for object detection that

have been previously explained. Table 2.1 compares di↵erent deep architec-

tures for object detection [20].

mAP Speed (FPS) Speed (s/img)

R-CNN 62.4 .05 FPS 20 s/img

Fast R-CNN 70 .5 FPS 2 s/img

Faster R-CNN 78.8 7 FPS 140 ms/img

YOLO 63.7 45 FPS 22 ms/img

SSD 74.3 59 FPS 29 ms/img

Table 2.1: Object Detection performances, tested on Pascal VOC

It is necessary to specify that the table below has been elaborated to give

a summary view of the main characteristics of these networks. To be more

precise, each of these neural networks should be evaluated in their versions
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and updates. In addition, although Pascal VOC is considered the standard

by the scientific community, there are also other datasets on which to perform

benchmarking such as COCO, ImageNet etc. However, data show that:

• R-CNNs are the worst solution both for accuracy and speed.

• R-CNNs, Fast R-CNNs, Faster R-CNNs clearly show a huge bottleneck

due to the selective search algorithm.

• YOLO and SSD are nearly the only two suitable for solving real-time

tasks.

In the next chapters we will first introduce Tensorflow for Object Detec-

tion and we will then focus on those networks that can solve real-time tasks

and, at the same, optimize the use of resources (computing, memory, battery

capacity), a typical scenario of embedded systems.
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Chapter 3

Tensorflow for Object

Detection

Tensorflow is the most popular library for Machine Learning. It was ini-

tially built for scaling and running over multiple CPUs and now it is even

available for mobile operating systems. In Tensorflow models are represented

as a dataflow graph that contains a set of nodes described as operations.

These are units of computation: they can be simple, as addition or multi-

plication, but also complicated, such as convolutions. Each operation takes

as input a tensor and it provides a new tensor as output. Tensors are just

the way data are represented in Tensorflow, they are multidimensional ar-

rays of numbers and they flow among operations. This chapter provides basic

notions for building Machine Learning models using Tensorflow, introducing:

• High Level APIs (Keras and Eager Execution)

• Low Level APIs (Tensors, Graphs and Sessions)

The content of this chapter is a small summary of Tensorflow documenta-

tion. The aim is to provide a general overview of the concepts that underlie

the construction of deep learning models [21].

35
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3.1 High Level APIs with Keras

Keras is a high-level API to design deep learning models. It is used for fast

prototyping, advanced research and production, with three key advantages:

• User friendly: a simple interface optimized for common use cases. It

provides a clear feedback regarding user errors.

• Composable: Keras models are made by connecting configurable build-

ing blocks together.

• Easy to extend: writing custom layers, creating new layers, loss func-

tions.

What developers do with Keras is, essentially, composing layers for building

models. The basic model is the sequential: tf.keras.Sequential. This is a

simple Multilayer Percepetron model:

import tensorflow as tf

from tensorflow import keras

model = keras.Sequential()

model.add(keras.layers.Dense(64, activation=’relu’))

model.add(keras.layers.Dense(64, activation=’relu’))

model.add(keras.layers.Dense(10, activation=’softmax’))

The above mentioned code creates a MLP with 3 layers: 64 neurons for

layers 1 and 2 with ReLU as activation function, while the last layer has 10

output neurons using softmax for classification.

We can train and evaluate this model using the ’compile’ method with 3

arguments:

• Optimizer: This object specifies the training procedure. We can spec-

ify which kind of training policy to adapt, such as AdamOptimizer,

RMSPropOptimizer, or GradientDescentOptimizer.
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• Loss: The function used to calculate the error during the optimization

phase. Common choices include mean square error (MSE) or Cross

Entropy.

• Metrics: Used to monitor training. These are string names or callables

from the tf.keras.metrics module.

By calling the ’compile’ method we can train and evaluate the model:

model.compile(optimizer=tf.train.AdamOptimizer(0.001),

loss=’categorical_crossentropy’,

metrics=[’accuracy’])

Before starting the training phase, we need to set up the dataset. This

can be easily done by in-memory Numpy Arrays and using the ’fit’ method,

that takes 3 arguments: epochs, batch size and validation data.

import numpy as np

data = np.random.random((1000, 32))

labels = np.random.random((1000, 10))

model.fit(data, labels, epochs=10, batch_size=32)

In case we need bigger datasets or we just need to clean data before process-

ing them, Keras APIs provide all the methods to perform these operations.

Lastly, we can evaluate the model and predict new data:

model.evaluate(x, y, batch_size=32)

model.evaluate(dataset, steps=30)

model.predict(x, batch_size=32)

model.predict(dataset, steps=30)

The final code for a simple fully connected neural network (MLP) is:

inputs = keras.Input(shape=(32,))

x = keras.layers.Dense(64, activation=’relu’)(inputs)

x = keras.layers.Dense(64, activation=’relu’)(x)

predictions = keras.layers.Dense(10, activation=’softmax’)(x)
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model = keras.Model(inputs=inputs, outputs=predictions)

model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),

loss=’categorical_crossentropy’,metrics=[’accuracy’])

model.fit(data, labels, batch_size=32, epochs=5)
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For instance, it is extremely easy to build a MNIST classifier [22] using

Keras:

import tensorflow as tf

# downloading the mnist dataset

mnist = tf.keras.datasets.mnist

# splitting test and train set

(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

# composing the model

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(512, activation=tf.nn.relu),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])

# configuring the training parameters

model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

# start the training

model.fit(x_train, y_train, epochs=5)

# evaluating the model

model.evaluate(x_test, y_test)

3.2 High Level APIs with Eager Execution

What makes Tensorflow eager execution di↵erent from Keras APIs is the

fact that operations are evaluated immediately, with no graph needed. In

fact, operations return values without building the entire graph. It can be a

good choice for getting started with Tensorflow and for debugging the model.

The main advantages are:
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• An intuitive interface: structure your code using Python data struc-

tures. Quickly iterate on small models and small data.

• Easier debugging: call operations directly to inspect models.

• Natural control flow: use procedural control flow instead of Tensorflow

graph.

By enabling tf.enable eager execution() TensorFlow operations will re-

turn the result immediately:

import tensorflow as tf

tf.enable_eager_execution()

x = [[2.]]

m = tf.matmul(x, x)

print(m) #[[4.]]

Since there is not a computational graph to build and run later in a session, it

is easy to inspect results using ’print()’ or a debugger. Evaluating, printing,

and checking tensor values does not break the flow for computing gradients

[21].

Models can be organized in classes. Here is a model class that creates a

two layer neural network that can classify the standard MNIST handwritten

digits.

class MNISTModel(tfe.Network):

def __init__(self):

super(MNISTModel, self).__init__()

self.layer1 = self.track_layer(tf.layers.Dense(units=10))

self.layer2 = self.track_layer(tf.layers.Dense(units=10))

def call(self, input):

# Actually runs the model

result = self.layer1(input)

result = self.layer2(result)

return result
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The ’build’ method is called the first time the layer is used. It is possible

to create variables during init () if their full shapes are already known. We

use tfe.Network, which is a container for layers. It also contains utilities for

inspection, saving and restoring values. Even without training the model, we

can imperatively call it and inspect the output:

model = MNISTModel()

batch = tf.zeros([1, 1, 784])

print(batch.shape) # (1, 1, 784)

result = model(batch)

print(result)

# tf.Tensor([[[0., ..., 0]]], shape=(1, 1, 10), dtype=float32)

To train any model, we define a loss function to optimize, calculate gradients,

and use an optimizer to update the variables.

def loss_function(model, x, y):

y_ = model(x)

return tf.nn.softmax_cross_entropy_with_logits(labels=y,

logits=y_)

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)

for (x, y) in tfe.Iterator(dataset):

grads = tfe.implicit_gradients(loss_function)(model, x, y)

optimizer.apply_gradients(grads)

3.3 Low Level APIs: Tensors, Graphs and

Sessions

If you really want to know how Tensorflow works at its cor,e then Low

Level APIs are needed, which consist of three elements:

• Tensors

• Graphs
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• Sessions

The central unit of data in Tensorflow is the tensor. A tensor consists of

a set of primitive values shaped into an array of any number of dimensions.

Given a tensor, its rank is the number of dimension, and its shape is a tuple

of numbers specifying the array lenght for each dimension. Tensorflow uses

numpy arrays to represent tensor values. [23]

A computational graph is a series of operations. The graph is composed of

two types of objects:

• Operations: these are the nodes of the graph. The input is a tensor

and the output is another tensor.

• Tensors: these are the edges in the graph. They are the values that

flow through the graph.

A simple computational graph for adding two numbers can be coded as fol-

lows:

a = tf.constant(3.0)

b = tf.constant(4.0)

total = a + b

print(total) #this will not print 7.0

Printing the value of the tensor will not provide the final result. To execute

this graph you need to start a session. A session encapsulates the state of

the Tensorflow runtime, and runs Tensorflow operations. A tf.Session object

is like the python executable:

sess = tf.Session()

print(sess.run(total)) # 7.0

A graph can be parameterized to accept external inputs, known as place-

holders. A placeholder is a promise to provide a value later, like a function

argument.

x = tf.placeholder(tf.float32)
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y = tf.placeholder(tf.float32)

z = x + y

We can use Placeholders for simple experiments, but Datasets are the pre-

ferred method of streaming data into a model. To get a runnable tf.Tensor

from a Dataset you must first convert it to a tf.data.Iterator, and then

call the Iterator’s get next method. Creating an iterator is easy with the

make one shot iterator method. For instance, in the code below the next item

tensor will return a row from the my data array on each run call:

my_data = [

[0, 1,],

[2, 3,],

[4, 5,],

[6, 7,],

]

slices = tf.data.Dataset.from_tensor_slices(my_data)

next_item = slices.make_one_shot_iterator().get_next()

We will now see how to built a feedfoward neural network using Low Level

APIs:

# Define placeholders

X = tf.placeholder(tf.float32, shape=[None, 4])

y = tf.placeholder(tf.int32, shape=[None, 3])

# Define variables

w1 = weight_variable([1], 2])

b1 = bias_variable([2])

w2 = weight_variable([2, 3])

b2 = bias_variable([3])

# Define network

# Hidden layer

z1 = tf.add(tf.matmul(X, w1), b1)

a1 = tf.nn.relu(z1)

# Output layer
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z2 = tf.add(tf.matmul(a1, w2), b2)

y_pred = tf.nn.softmax(z2)

y_one_hot = tf.one_hot(y, 3)

# Define loss function

loss = tf.losses.softmax_cross_entropy(y, y_pred,

reduction=tf.losses.Reduction.MEAN)

# Define optimizer

optimizer = tf.train.AdamOptimizer(0.01).minimize(loss)

# Metric

accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, axis=1),

tf.argmax(y_pred, axis=1)), tf.float32))

for _ in range(n_epochs):

sess.run(optimizer, feed_dict={X: X_train, y: y_train})

In this example, variables X train and y train contain the whole training

set, mini-batches as big as the whole dataset. It is clear that building a

MNIST classifier using Low Level API is quite complex. We will not focus

on this part, but if you are interested the code is available on Github:

https://github.com/cjalmeida/tensorflow-mnist
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3.4 Tensorflow Object Detection APIs

Designing accurate machine learning models capable of localizing and

identifying objects in a single image remains a core challenge in computer

vision. The TensorFlow Object Detection API is an open source framework

built on top of TensorFlow that makes it easy to construct, train and deploy

object detection models. Object Detection is based on low level APIs and

has nothing to do with Keras or Eager Execution. This section will provide

a general overview about how object detection APIs work, more details will

be given in chapter 4.

3.4.1 Training a model and export a frozen graph

Object Detection APIs are a set of classes for training custom models

for object detection. The good point is that the general architecture does

not require to code writing for the training phase. In fact, the training is

completely handled by a config file, where the developer can specify:

• Model configuration: this defines what type of model will be trained.

• Train configuration: decides what parameters should be used during

the training.

• Evaluation configuration: determines what set of metrics will be re-

ported for evaluation.

• Training input: defines what dataset the model should be trained on.

• Evaluation input: defines what dataset the model will be evaluated on.

Once all these things are defined, we still need a file for the labels and

.record files that contain the images for the training and evaluation phases in

a Tensorflow own binary storage format. Labels can be expressed in a .pbtxt

file according to the following pattern:
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item {

id: 1

name: ’class_name_1’

}

item {

id: n

name: ’class_name_n’

}

TF record files can be created by simply using using the generate tfrecord.py

class that is included in the Object Detection package. This class needs a

.csv as input and it provides a .record file as ouput. After that, it is easy to

setup a training pipeline. The library has already some examples available,

which may be customized just by changing some parameters. The training

phase can be started by running:

python legacy/train.py

--logtostderr

--train_dir=train_directory

--pipeline_config_path=CONFIG_FILE

Concurrently, we can run the evaluation phase:

python legacy/eval.py

--logtostderr

--pipeline_config_path=CONFIG_FILE

--checkpoint_dir=directory_to_save_checkpoints

--eval_dir=eval_directory

The training phase continuously generates checkpoints, which contain the

weights of the network, that are evaluated by eval.py. Through Tensorboard

it is possible to monitor the whole process. Tensorboard can be started by

typing:

tensorboard --logdir=train_directory



3.4 Tensorflow Object Detection APIs 47

When the model reaches good performances, then it is possible to export it

as a frozen graph:

python export_inference_graph.py

--input_type image_tensor

--pipeline_config_path=CONFIG_FILE

--trained_checkpoint_prefix=checkpoint

--output_directory=exported_model_directory

A .pb file is written into the exported model directory. This file contains the

network with weights that ensure certain performances. In fact, during the

training phase, weights are held in separate files called checkpoints. When

the session is running, graph variables are replaced by values taken from

checkpoints. The frozen graph is a single file that contains both the graph

and the weights, without the need to use two separate files. Once we have

the frozen graph, we can exploit it for out of the box inference.

3.4.2 Out of the box inference

Out of the box inference, meaning the exploitation a pre-trained neural

network for inference, is pretty easy due to the fact that models are already

available online. Normally, developers train their models while monitoring

the accuracy. When the accuracy reaches an high peak then the model is

exported as a frozen graph. Given a frozen graph, this part can be divided

as follows:

• Importing Object Detection libraries

• Loading a frozen graph into memory

• Loading the label map

• Running inference

• Visualizing results

Libraries can be imported this way:
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from utils import label_map_util

from utils import visualization_utils as vis_util

Then we need to load the frozen graph (.pb) into the memory:

detection_graph = tf.Graph()

with detection_graph.as_default():

od_graph_def = tf.GraphDef()

with tf.gfile.GFile(’frozen_graph.pb’, ’rb’) as fid:

serialized_graph = fid.read()

od_graph_def.ParseFromString(serialized_graph)

tf.import_graph_def(od_graph_def, name=’’)

Label maps are important because they match each label with an index:

label_map = label_map_util.load_labelmap(’my_label_map.pbtxt’)

categories =

label_map_util.convert_label_map_to_categories(label_map,

max_num_classes=’SET_NUM_CLASSES’, use_display_name=True)

category_index = label_map_util.create_category_index(categories)

Then, we can run inference on a single image:

def run_inference_for_single_image(image, graph):

with graph.as_default():

with tf.Session() as sess:

# Get handles to input and output tensors

ops = tf.get_default_graph().get_operations()

all_tensor_names = {output.name for op in ops for output in

op.outputs}

tensor_dict = {}

for key in

[’num_detections’,’detection_boxes’,’detection_scores’,’detection_classes’]:

tensor_name = key + ’:0’

if tensor_name in all_tensor_names:

tensor_dict[key]=tf.get_default_graph().get_tensor_by_name(tensor_name)
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image_tensor=tf.get_default_graph().get_tensor_by_name(’image_tensor:0’)

# Run inference

output_dict = sess.run(tensor_dict, feed_dict={image_tensor:

np.expand_dims(image, 0)})

# all outputs are float32 numpy arrays, so convert types as

appropriate

output_dict[’num_detections’] =

int(output_dict[’num_detections’][0])

output_dict[’detection_classes’] =

output_dict[’detection_classes’][0].astype(np.uint8)

output_dict[’detection_boxes’] =

output_dict[’detection_boxes’][0]

output_dict[’detection_scores’] =

output_dict[’detection_scores’][0]

return output_dict

At this point, the output dict object contains everything we need: pre-

dicted bounding boxes and the predicted class. It is possible to visualize

results by drawing a rectangle on the image:

image = Image.open(’my_image.jpg’)

image_np = load_image_into_numpy_array(image)

image_np_expanded = np.expand_dims(image_np, axis=0)

# Actual detection.

output_dict = run_inference_for_single_image(image_np,

detection_graph)

# Visualization of the results of a detection.

vis_util.visualize_boxes_and_labels_on_image_array(

image_np,

output_dict[’detection_boxes’],

output_dict[’detection_classes’],

output_dict[’detection_scores’],

category_index,

use_normalized_coordinates=True,
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line_thickness=8)

plt.figure(figsize=IMAGE_SIZE)

plt.imshow(image_np)

Figure 3.1 shows the results. All the objects are correctly classified ac-

cording to a confidence value which is reported at the top right corner label.

Figure 3.1: Object Detection using Tensorflow APIs

Tensorflow has proven to be an extremely flexible framework, that can

be used both for prototyping projects and for a more in-depth use. Object

Detection APIs provide a high level of abstraction, enclosing the core of

computation in a single configuration file.
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Edge AI

Big companies in the ICT sector o↵er web services to take advantage of

the latest Computer Vision technologies. On the one hand, this allows a

quick prototyping, but on the other hand, there is a lack of knowledge about

what is behind these services. Cloud APIs are easy to use, but in many cases

we would like to be cloud independent for the following reasons:

• Connectivity - there might be places where the network is not available.

• Latency - for real time tasks is not suitable to upload an image/video

and then get the result back.

• Costs - running inference in the cloud is not free.

• Privacy - some images or videos are personal and we want to make sure

no one accesses them.

Edge AI, a term coined by Intel [24], is an enabling technology for the de-

velopment of ambient intelligence systems: inference runs directly on device

and no connectivity is required. This thesis will focus mainly on the Google

Vision Kit, but same concepts can be applied to other embedded AI devices

such as Amazon Deep Lens, Intel Neural stick etc.

Concerning the pipeline to be adopted while working with these intelligent

systems, it is summarized in figure 4.1.

51
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Figure 4.1: Edge AI workflow

The model is developed locally depending on the system’s requirements.

Then, the model is trained on the cloud. When the model reaches good per-

formances it is ’frozen’ and compiled locally. Finally, we move the compiled

model to the embedded system. Now, the system is ready to run inference

locally.

4.1 MobileNets

As soon as Google realized that Edge AI would be a disruptive factor

in bringing Artificial Intelligence within everyday products (smart homes,

surveillance systems, cars, healthcare image analysis), the company decided

to publish a special kind of deep architecture specifically designed for em-

bedded systems, called MobileNets.

A short extract from the original paper [25]:

MobileNets, a family of mobile-first computer vision models for Tensor-

Flow, designed to e↵ectively maximize accuracy while being mindful of the

restricted resources for an on-device or embedded application. MobileNets

are small, low-latency, low-power models parameterized to meet the resource

constraints of a variety of use cases. They can be built upon for classification,

detection, embeddings and segmentation similar to how other popular large

scale models, such as Inception, are used.

To sum up, there are two key points introduced in MobileNets:

• Hyperparameters: two simple global hyperparameters e�ciently trade

o↵ between e�ciency and accuracy allowing developers to choose the
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right model depending on the constraints of their system.

• Depth-wise Separable Convolution: to reduce the computation in the

first few layers.

A standard convolution both filters and combines inputs into a new set

of outputs in just one step, as shown in figure 4.2. Using the depth-wise

separable convolution, these operations are split. Firstly, a single filter is

applied to each input channel. Figure 4.3 shows this technique. Later, the

pointwise convolution applies a 1x1 convolution to combine the outputs of

the depthwise convolution, which is described in figure 4.4. Thus, there is a

separate layer for filtering and another layer for combining. This mechanism

dramatically reduces computation and model size.

Figure 4.2: Standard Convolution Filter

Figure 4.3: Depthwise Convolutional Filter

Figure 4.4: Pointwise Convolutional Filter
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As already explained, designers can trade-o↵ accuracy and e�ency thanks

to two hyperparameters: ↵ and �. ↵ is called width multiplier and its role

is that of thinning a network uniformly at each layer. ↵ is ranged between

0 and 1. MobileNet, in its base form, has ↵ = 1, while reduced models have

↵ < 1. � is the resolution multiplier: by applying � to the input image, the

internal representation of every layer is subsequently reduced by the same

value. MobileNet architecture is illustrated in figure 4.5.

Figure 4.5: MobileNet Architecture

In order to make transfer learning easier, Google released also 16 pre-

trained ImageNet classification checkpoints to be used in mobile projects of

all sizes. Figure 4.6 shows all the checkpoints available for MobileNets.

Figure 4.6: MobileNet Checkpoints

The size of the network in memory and on disk is proportional to the num-
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ber of parameters. The accuracy and power usage of the network scales with

the number of Multiply-Accumulates (MACs), which measures the number

of fused Multiplication and Addition operations [25].

4.2 A case study: Google AIY Vision Kit

The AIY Vision Kit from Google allows to build your own intelligent

camera. Thanks to this kit, it is east develop machine learning and neural

network based models. The hardware is very limited: a Raspberry Pi Zero

with a special GPU called Vision Bonnet. Right now, the AIY Vision Kit is

not available for sale in Europe but it can be sold exclusively in the USA.

Figure 4.7 illustrates the new Google Vision Kit.

Figure 4.7: Google AIY Vision Kit
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4.2.1 Vision Bonnet

What makes this kit so special is the presence of the new compact GPU

board called Vision Bonnet (figure 4.8). This board is equipped with the

Movidius Myriad 2 MA2450 chip, a Vision Processing Unit designed by Intel

and intended for machine vision in low-power environments. The Vision

bonnet allows the kit to run real-time deep neural networks directly on the

device, rather than in the cloud.

Figure 4.8: Vision Bonnet

The Vision Bonnet reads data directly from the Pi camera through the

flex cable, processes them and passes said data to the Raspberry Pi. This

approach brings two main benefits:

• while the code is running, the process has complete access to the cam-

era;

• the whole processing phase does not overhead the Raspberry Pi, which

is equipped with just 1 GHz ARM single core processor.

The main feature is the Movidius Myriad 2 MA2450 vision processing

unit chip (VPU), its architecture is shown in figure 4.9. The VPU presents

hardware acceleration that runs neural network graphs at low power. Despite

the hardware acceleration, the inference engine has been coded from scratch

by Google to enhance performances at runtime.
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Figure 4.9: Myriad 2 Vision Processing Unit

The HW Accelerators Image Signal Processing part is also known as Vi-

sion Engine. It is a set of pre-optimized vision libraries and custom softwares:

this way the developer can describe the vision sequence as a directed graph,

taking inspiration from the TensorFlow model. Given that, the compiler

takes the graph and it distributes the computation among 12 shave cores,

vision engine and memory fabric. This enables high performances at low

power. Target applications are Deep Neural Network-based Classification,

Pose Estimation, 3D Depth, Visual Inertial Odometry (Navigation), Ges-

tures Recognition and Eyes Tracking.

4.3 Getting started: AIY demos

The AIY Vision Kit comes with a prebuilt image within Raspbian as

operating system, plus some default demos to get started with Computer

Vision tasks. The first one is the Joy Detector (figure 4.10), which is

pretty simple but still surprising. This demo uses machine learning to detect

if a person is smiling or frowning. A smile turns the button to yellow, and a
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frown turns it blue. If expressions are really emphasized, a sound plays. If

the camera sees more than one face, it evaluates each person’s face and sums

the joy score of each face.

Figure 4.10: Joy Detector demo

The image classification camera demo, shown in figure 4.11, is based

on Deep Neural Networks. Using the camera you can point at objects ran-

domly and you will see the confidence score appearing on the display, next

to the guest object. This model can be run using either MobileNet or

SqueezeNet [26]. MobileNet based model, with depth multiplier equal to

1 and 300 pixel as input size, has 59.9% top-1 accuracy on ImageNet, while

SqueezeNet based model only 45.3%. The dog/cat/human detector is

the first demo that uses object detection. It is based on MobileNetV1+SSD,

which is a meta-architecture: mixing di↵erent parts of image classification

architectures for improving their performances. Huang et al.[27] presented a

paper which provides an in-depth performance comparison between R-FCN,

SSD and Faster R-CNN, finding out that they can be combined with dif-

ferent kinds of feature extractors such as ResNet or Inception. This is the

concept of meta-architecture. As the name suggests, this demo is able to

draw bounding boxes around dogs, cats and humans given an image.

The Dish Classifier demo is designed to identify food in an image. It is

based on the MobileNet model, a general-purpose object classification model.

It is incredibly accurate and it is even able to distinguish composed food. The
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Figure 4.11: Image Classification Camera demo

Face Detection demo recognizes faces through the camera in real time and

it draws bounding boxes. This is real-time face detection, a core element in

Edge AI. Lastly, Nature Explorer has 3 machine learning models based on

MobileNet, trained on a dataset made of photos uploaded by the iNaturalist

community. These models are built to recognize 4,080 di↵erent species (960

birds, 1020 insects, 2100 plants). The species and images are a subset of the

iNaturalist 2017 Competition dataset, organized by Visipedia.

4.4 Custom deploy

After playing a little bit with available demos, we decided to train a model

from scratch. The aim of this section is designing a model that can possibly

perform real-time inference. We do not only want image classification, our

goal is object detection. For sure, our Deep Learning framework will be Ten-

sorflow, especially its Object Detection API [27]. Developers normally

create models capable of detecting their pets: cats, dog, hamsters or even

racoons. Since we do not have any pets, we decided to create a ”Pikachu

Detector”. Pikachu, illustrated in figure 4.14, is just a sort of little yellow

mouse, belonging to the famous Pokemon saga. Truth is that I have a simple

Pikachu puppet in my room, so it is easy to test it on the Google Vision

Kit. Furthermore, it is even easier to create a dataset with Pikachu labelled

images due to its popularity on the web.
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Figure 4.12: Pikachu

Thus, the required steps are:

• Create a small dataset.

• Label each image by hand.

• Convert the dataset into .tfrecords (Tensorflow readable files).

• Create labels in .pbtxt format.

• Create bounding boxes.

• Set TF Object Detection API.

• Create a pipeline for training.

• Run the training to produce a graph.

• Monitor the performances and freeze the graph.

• Export the graph.

• Compile it for the Vision Bonnet.

• Write Python code to make it work with the compiled graph.

• Test the final system.
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4.4.1 Creating the dataset

As you can see there are lot of things to do. We shall start by simply in-

stalling a Chrome plugin for downloading images in a single batch. This saves

a lot of time. The plugin is called ”Fatkun Batch Download Images”. We

will not go into details, because its use is pretty straightforward. A remark:

it would be better to download images where the subject is not always in the

foreground, but hidden and partially visible sometimes. After that, we must

install a program called RectLabel for the labelling phase, which requires to

manually label each image. Once this operation is completed, we will see

a folder named ’annotations’ with many XML files describing the bounding

box of each image. The dataset is then split into 70% for the training set

and 30% for the test set. Having XML files for bounding boxes and labels

is quite useless. In fact, Tensorflow requires .tfrecord files as input. In order

to convert these files, we will first convert from xml to .csv and then we will

use a class provided by Tensorflow for generating .tfrecords. Concerning the

first part, this is the code:

import os

import glob

import pandas as pd

import xml.etree.ElementTree as ET

def xml_to_csv(path):

xml_list = []

for xml_file in glob.glob(path + ’/*.xml’):

tree = ET.parse(xml_file)

root = tree.getroot()

for member in root.findall(’object’):

bndbox = member.find(’bndbox’)

value = (root.find(’filename’).text,

int(root.find(’size’)[0].text),

int(root.find(’size’)[1].text),

member.find(’name’).text,
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int(bndbox.find(’xmin’).text),

int(bndbox.find(’ymin’).text),

int(bndbox.find(’xmax’).text),

int(bndbox.find(’ymax’).text)

)

xml_list.append(value)

column_name = [’filename’, ’width’, ’height’, ’class’, ’xmin’,

’ymin’, ’xmax’, ’ymax’]

xml_df = pd.DataFrame(xml_list, columns=column_name)

return xml_df

def main():

image_path = os.path.join(os.getcwd(), ’annotations’)

xml_df = xml_to_csv(image_path)

xml_df.to_csv(’pikachu_labels.csv’, index=None)

print(’Successfully converted xml to csv.’)

main()

The result is a .csv with labels and bounding boxes, as shown in figure

4.15.

Figure 4.13: CSV labels and bbox
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This operation, meaning the conversion from xml to csv, must be repeated

both for the training and the test set. At the end, we will have two .csv files:

train.csv, test.csv. At this point we have to put aside these files and install

Tensorflow Object Detection API, which is an open source framework built

on top of TensorFlow that makes it easy to construct, train and deploy object

detection models. The installation is reported on the website and it relies on

a lot of dependencies. However, after that, we can exploit a python class for

converting .csv files to .tfrecords:

> cd models/research/object_detection

> python generate_tfrecord.py

--csv_input=train.csv

--output_path=train.record

> python generate_tfrecord.py

--csv_input=test.csv

--output_path=test.record

TFrecord file format is optimized for being used with Tensorflow in mul-

tiple ways. To start with, it makes it easy to combine multiple datasets and

integrates with the data import and preprocessing functionality provided by

the library. This is suitable for large datasets that cannot be completely

stored in memory. Only data required at each batch will be loaded in mem-

ory. Another major advantage of TFRecords is that it is possible to store

sequence data. For instance, a time series or word encodings in a way that al-

lows very e�cient and convenient import of this type of data. After tfrecords

are generated, what we need is a label map which consists in a .pbtxt file in

the following format:

item {

id: 1

name: ’Pikachu’

}
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4.4.2 Setting the training pipeline

As already explained in the previous chapter, the complete training pro-

cess is handled by a config file known as the pipeline. Said pipeline is

divided into five main structures that are responsible for defining the model,

the training and evaluation process parameters, and dataset inputs. The

skeleton of the pipeline looks like this:

model {

model config here

}

train_config : {

train_config here

}

train_input_reader: {

train_input configuration here

}

eval_config: {

eval configuration here

}

eval_input_reader: {

eval_input configuration here

}

Concerning the model structure, due to limited hardware resources on

Vision Bonnet, there are constraints on what type of models can be run on

device. Table 4.1 shows compatible models.

Among all these models, the only one suitable for Object Detection is

MobileNetv1+SSD, with input size equal to 256x256 and depth multiplier

as 0,125. This specific configuration is called embedded_ssd_mobilenet.

According to these constraints, the model structure can be set as reported

in appendix A.

We must be aware that training the network from scratch is not a good

solution. In fact, our dataset is too small and first layers of the network
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MODEL TYPE SUPPORTED CONFIGURATION

MobileNetV1
input size: 160x160, depth multiplier = 0.5

input size: 192x192, depth multiplier = 1.0

MobileNetV1 + SSD input size: 256x256, depth multiplier = 0.125

SqueezeNet input size: 160x160, depth multiplier = 0.75

Table 4.1: Vision Bonnet constraints

would struggle for learning features. Hence, a good idea is to apply transfer

learning [28]: we start from a pretrained network and then we train the last

layers using our dataset. This can be achieved by setting a proper train

configuration:

train_config: {

batch_size: 32

optimizer {

rms_prop_optimizer: {

learning_rate: {

exponential_decay_learning_rate {

initial_learning_rate: 0.004

decay_steps: 800720

decay_factor: 0.95

}

}

momentum_optimizer_value: 0.9

decay: 0.9

epsilon: 1.0

}

}

fine_tune_checkpoint:"training/model.ckpt"

from_detection_checkpoint: true

data_augmentation_options {

random_horizontal_flip {
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}

}

data_augmentation_options {

ssd_random_crop {

}

}

Please notice that model.ckpt is a checkpoint of the same network trained

on the Pascal VOC dataset. This way, during the training phase, weights

from this checkpoint are loaded into our network. Training input and evalu-

ation are quite obvious:

train_input_reader: {

tf_record_input_reader {

input_path: "train.record"

}

label_map_path: "label.pbtxt"

}

eval_config: {

num_examples: 71

}

eval_input_reader: {

tf_record_input_reader {

input_path: "test.record"

}

label_map_path: "label.pbtxt"

shuffle: false

num_readers: 1

}

label_map_path must point to the .pbtxt file that contains the labels,
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while input_path, both for train and eval, must point to the tfrecord files

we previously generated. num_examples set the number of images that are

used for the test set.

Finally we have:

• a .pbtxt label file

• tf records both for training and evaluation

• a configuration pipeline

4.4.3 Training phase and evaluation

We can start with the training phase. According to the TensorFlow Ob-

ject Detection APIs, training and evaluation must be run concurrently. The

training phase generates some checkpoints that are read by the evaluation

phase and then plotted on TensorBoard, an utility that provides useful in-

sights for training deep learning architectures. To start the training it is

su�cient to run these commands:

python train.py

--logtostderr

--train_dir=train

--pipeline_config_path=myconfig.config

Commands for the evaluation are:

python eval.py

--logtostderr

--pipeline_config_path=myconfig.config

--checkpoint_dir=train

--eval_dir=test

After that, the training script will start printing the loss value on the

terminal, but we must rely on TensorBoard to find out how well the network

performs. By monitoring the evaluation, we find that the highest peak is



68 4. Edge AI

around 20k iterations. So we repeat the same procedure and we evaluate

the model using K-Fold Cross Validation (k=5),which can be used when the

dataset is too small. This procedure splits the dataset into k non-overlapping

subsets of the same size, at every step, the k-th part of the dataset is used

as the validation set and the remaining one as the training set. Given k=5,

the dataset is divided in 5 parts: P1,P2,P3,P4,P5. Table 4.2 shows all the

possible combinations, while table 4.3 reports the results obtained.

CONFIG TRAINING EVAL

A P1, P2, P3, P4 P5

B P1, P2, P3, P5 P4

C P1, P2, P4, P5 P3

D P1, P3, P4, P5 P2

E P2, P3, P4, P5 P1

Table 4.2: 5-Fold Cross Validation

CONFIG embedded ssd mobilenet

A 0,5692

B 0,5873

C 0,5902

D 0,5733

E 0,6084

avg 0,58568 mAP ⇠59%

Table 4.3: 5-Fold Cross Validation results
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Results are clearly not brilliant. This depends mostly on the small dataset

of only 350 images. However, they can still be good enough for developing a

custom model capable of detecting Pikachu on the Google Vision Kit.

4.4.4 Exporting the frozen graph

The model is trained and evaluated. We need to export the Tensorflow

frozen graph, compile it and write code for running inference on the Vision

Kit. TensorFlow provides all the necessary classes:

python export_inference_graph.py

--input_type=image_tensor

--pipeline_config_path=myconfig.config

--trained_checkpoint_prefix=model.ckpt

--output_directory=exported_model_directory

The output is a .pb file located in the output directory. Later on, the

compile phase is possible on a Ubuntu’s operating system:

./bonnet_model_compiler.par

--frozen_graph_path=exported_graph.pb

--output_graph_path=visionkit_graph.binaryproto

--input_tensor_name=input

--output_tensor_names=final_result

--input_tensor_size=input_size

4.4.5 Coding

What we need now is some Python code to capture data from the Vision

Kit camera and to run inference directly on the device. In order to do so,

two classes are needed. The first one takes the .protobinary compiled graph

and exposes methods that are called by the other class, which is in charge to

acquire data from the Pi Camera, apply inference and draw a bounding box

as soon as Pikachu is detected.
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Firstly, we need to import standard Python libraries plus a subset of AIY

libraries, which are not documented but still available within the ISO image.

import math

import sys

import os

from aiy.vision.inference import ModelDescriptor

from aiy.vision.models import utils

from aiy.vision.models.object_detection_anchors import

Then we create the class, with the costructor and labels:

class Object(object):

BACKGROUND = 0

PIKACHU = 1

_LABELS = {

BACKGROUND: ’BACKGROUND’,

PIKACHU: ’PIKACHU’,

}

def __init__(self, bounding_box, kind, score):

self.bounding_box = bounding_box

self.kind = kind

self.score = score

self.label = self._LABELS[self.kind]

We must define the model descriptor that reads directly from the .protobi-

nary.

def model():

return ModelDescriptor(

name=’object_detection’,

input_shape=(1, 256, 256, 3),

input_normalizer=(128.0, 128.0),

compute_graph=utils.load_compute_graph(’graph.protobinary’))
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Again, we need a method that decodes the bounding boxes and returns a

tuple of 4 floats (xmin, ymin, xmax, ymax):

def _decode_box_encoding(box_encoding, anchor):

assert len(box_encoding) == 4

assert len(anchor) == 4

y_scale = 10.0

x_scale = 10.0

height_scale = 5.0

width_scale = 5.0

rel_y_translation = box_encoding[0] / y_scale

rel_x_translation = box_encoding[1] / x_scale

rel_height_dilation = box_encoding[2] / height_scale

rel_width_dilation = box_encoding[3] / width_scale

anchor_ymin, anchor_xmin, anchor_ymax, anchor_xmax = anchor

anchor_ycenter = (anchor_ymax + anchor_ymin) / 2

anchor_xcenter = (anchor_xmax + anchor_xmin) / 2

anchor_height = anchor_ymax - anchor_ymin

anchor_width = anchor_xmax - anchor_xmin

ycenter = anchor_ycenter + anchor_height * rel_y_translation

xcenter = anchor_xcenter + anchor_width * rel_x_translation

height = math.exp(rel_height_dilation) * anchor_height

width = math.exp(rel_width_dilation) * anchor_width

xmin = _clamp(xcenter - width / 2)

ymin = _clamp(ycenter - height / 2)

xmax = _clamp(xcenter + width / 2)

ymax = _clamp(ycenter + height / 2)

return (xmin, ymin, xmax, ymax)

The output of the neural network must be processed for retrieving objects:

def get_objects(result, score_threshold=0.3, offset=(0, 0)):
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assert len(result.tensors) == 2

logit_scores = tuple(result.tensors[’concat_1’].data)

box_encodings = tuple(result.tensors[’concat’].data)

size = (result.window.width, result.window.height)

objs = _decode_detection_result(logit_scores, box_encodings,

ANCHORS,score_threshold, size, offset)

return _non_maximum_suppression(objs)

The network will generate more candidates, so it is necessary to remove

some of them that fall below a certain threshold. Also candidates that overlap

with existing candidates must be removed.

def _non_maximum_suppression(objs,overlap_threshold=0.5):

objs = sorted(objs, key=lambda x: x.score, reverse=True)

for i in range(len(objs)):

if objs[i].score < 0.0:

continue

for j in range(i + 1, len(objs)):

if objs[j].score < 0.0:

continue

if _overlap_ratio(objs[i].bounding_box,

objs[j].bounding_box) > overlap_threshold:

objs[j].score = -1.0

return [obj for obj in objs if obj.score >= 0.0]

Putting all these pieces together, what we obtain is a library that we

called pikachu object detection.py. Subsequently, a new file is needed where

we capture input from the Pi camera, and then we apply inference using the

public methods previously created. Of course, AIY libraries are needed:

import argparse

import os

from picamera import PiCamera

from time import time, strftime



4.4 Custom deploy 73

from aiy.vision.leds import Leds

from aiy.vision.leds import PrivacyLed

from aiy.toneplayer import TonePlayer

from aiy.vision.inference import CameraInference

from aiy.vision.annotator import Annotator

import pikachu_object_detection

Essentially, the CameraInference methods take the model as input. After

that, we create an annotator that represents the bounding box. For each

detection, the annotator must update its position.

def main():

with PiCamera() as camera, PrivacyLed(Leds()):

camera.sensor_mode = 4

camera.resolution = (1640, 1232)

camera.start_preview(fullscreen=True)

with CameraInference(pikachu_object_detection.model()) as

inference:

last_time = time()

pics = 0

save_pic = False

enable_label = True

annotator = Annotator(camera, dimensions=(320, 240))

scale_x = 320 / 1640

scale_y = 240 / 1232

def transform(bounding_box):

x, y, width, height = bounding_box

return (scale_x * x, scale_y * y, scale_x * (x +

width),

scale_y * (y + height))

def leftCorner(bounding_box):

x, y, width, height = bounding_box

return (scale_x * x, scale_y * y)

def truncateFloat(value):
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return ’%.3f’%(value)

for f, result in enumerate(inference.run()):

annotator.clear()

detections =

enumerate(pikachu_object_detection.get_objects(result,

0.3))

for i, obj in detections:

annotator.bounding_box(transform(obj.bounding_box),

fill=0)

if enable_label:

annotator.text(leftCorner(obj.bounding_box),obj.label

+ " - " + str(truncateFloat(obj.score)))

x, y, width, height = obj.bounding_box

annotator.update()

camera.stop_preview()

However, there is still one thing missing. Our model must be capable

of real time detection and for understanding processing time, the following

code is needed:

def calculate_time():

now = time()

duration = (now - last_time)

annotator.update()

print("Processing_time:\%s_seconds.Bonnet

inference_time:_\%s_ms"_\%

(duration, result.duration_ms))

last_time = now

4.4.6 Running the model on the Vision Kit

At this point, we must move to the /home/AIY-projects/src/example/vision

directory. The directory structure must be:

- pikachu detector.binaryproto
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- pikachu object detection.py

- custom pikachu detector.py

and then typing from a shell:

./custom_pikachu_detector

The camera will start loading the model on the Vision Bonnet. Figures

4.16 show the output. Pikachu is detected and a bounding box is drawn to

identify the region where it is located.

Figure 4.14: Pikachu detector on Google AIY Vision kit

The whole code is available on my Github repository:

https://github.com/giacomobartoli/vision-kit

Processing time is around 20 or 30 ms for each detection, ideal require-

ment to perform real-time tasks.

4.4.7 Running the model as Android app

By Applying more or less the same process, we were able to develop a

model even for an Android app. The main di↵erences consist in the fact

that the network is pretrained on COCO, while the vision kit model was

trained on Pascal VOC, and the network is not an embedded ssd mobilenet

anymore. We use a ssd mobilenet, where the width multiplier is equal to

1. Perfomances are reported in table 4.4, using 5-Fold Cross Validation:

https://github.com/giacomobartoli/vision-kit
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CONFIG ssd mobilenet

A 0,7916 mAP

B 0,7675 mAP

C 0,7795 mAP

D 0,7982 mA

E 0,7128 mAP

avg 0,76992 mAP ⇠77%

Table 4.4: 5-Fold Cross Validation results

It is clear that ssd mobilenet performs better than embedded ssd mobilenet.

The main reasons are:

• COCO dataset has 90 classes, while Pascal Voc only 20. For this reason,

ssd mobilenet learns more robust features.

• Using a width mutiplier = 1, makes available 4 times more feature maps

per layers with respect to the 0.25 model.

Finally, some visual results are provided in figures 4.17.

Figure 4.15: Pikachu detector as Android app



Chapter 5

CORe50 at the Edge

5.1 Introduction

CORe50 [29] is a dataset designed for Continuous Learning. It contains

50 domestic objects belonging to 10 categories. Due to its design, clas-

sification can be applied both at an object level or on a category level.

There are 11 sessions, 8 indoor and 3 outdoor, for each object. CORe50

has been used exclusively for classification, starting from 128x128 images

pre-segmented through a motion algorithm. The aim of this project is to

apply detection using CORe50 over original images, in the format 350x350.

Bounding boxes are already given and we decided to take advantage of them

in order to train a detector. As usual, we will apply transfer learning start-

ing from a pre-trained ssd mobilenet model on COCO. Being able to dis-

tinguish 50 objects is certainly a challenging task. Despite the fact that

CORe50 is specifically designed for Continuous Learning, it can be still used

as a static dataset. Benchmarks will be reported on the o�cial website:

https://vlomonaco.github.io/core50.

77
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5.2 Parsing data, setting the TF pipeline

TensorFlow Object Detection requires a valid configuration, a file for

mapping the labels and tfrecord files, which contain the images. We need

a tfrecord file for the training set and another for the test set. The whole

code is available in the appendix, but the procedure can be briefly reported

according to these steps:

• Starting from a txt file, we convert the labels in the pbtxt format for

Tensorflow (Appendix B).

• We download the entire dataset and we convert images from png to

jpeg (Appendix C).

• Given labels, bounding boxes and images, we create two CSV files: one

for the training set and another one for the test set (Appendix D).

• CSV files can be easily converted to TF records using TF Object De-

tection APIs.

Once we have CSV files, we can use Tensorflow Object Detection API for

generating tfrecords:

python generate_tfrecord.py

--csv_input=my_csv.csv

--output_path=core50_train.record

Given two tfrecords, training and evaluation, and a .pbtxt for the labels

we can setup a tensorflow pipeline by taking a pre-compiled structure of a

SSD mobilenet v1 from the o�cial website. It is better to start with a pre-

trained network that has already learned feature maps on a bigger dataset.

For this reason, we can download a pre-trained ssd mobilenet v1 on COCO

dataset. Checkpoints are available on the Tensorflow website, as shown in

figure 5.1.
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Figure 5.1: Screenshot of pre-trained checkpoints

Then, we can setup the training pipeline with the following parameters:

num_classes: 50

fine_tune_checkpoint:"downloaded_checkpoint.ckpt"

from_detection_checkpoint: true

label_map_path: "core_50.pbtxt"

train_input_path: "train.record"

train_input_path: "test.record"

Again, all these scripts are available on the Github repository:

https://github.com/giacomobartoli/vision-kit

5.3 Performance evaluation

Monitoring performance trends during training is the best way to under-

stand when a model converges. In fact, performances stabilize around 20k

and 30k iterations, with an accuracy up to 66%. The graph taken from Ten-

sorboard is illustrated in figure 5.2, while the loss function is plotted in figure
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5.3.

Figure 5.2: SSD Mobilenet accuracy

Figure 5.3: SSD Mobilenet loss

Finally, some visual results. Figure 5.4 shows a light bulb, a ball and a

remote control correctly identified.
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Figure 5.4: CORe50 detection

However, there are still a few mistakes, as reported in figure 5.5, where a

can is classified as a mobile phone.

Figure 5.5: SSD Mobilenet detection

In general, we can say that results are good. We should keep in mind that

being able to distinguish among 50 di↵erent objects is a challenging task, so

66% is definitely a good performance of the model.
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5.4 Comparing Mobilenet vs SSD Mobilenet

SSD Mobilenet is a meta-architecture for object detection that derives

from Mobilenet. We would like to compare performances to understand how

mixing parts from di↵erent models impact the final performance. CORe50, as

static dataset, has already been benchmarked using other deep architectures

such as Ca↵eNet, Nin, GoogleNet and ResNet50. These results are reported

in table 5.1.

model batch size accuracy

Ca↵eNet 256 74.1%

Nin 256 82.26%

GoogleNet 64 91.3%

ResNet50 12 92.9%

MobileNetV1 64 91.01%

Table 5.1: CORe50 benchmarks for classification

However, to compare SSD Mobilenet and Mobilenet, we need an algo-

rithm to split classification and localization errors. The pseudocode is the

following:

classification_errors = 0

localization_errors = 0

for each image in test_set:

BBg #bounding_box ground truth

class(BBg) # class of BBg

BBp #predicted_bounding_box

class(BBp) # class of BBp

if class(BBg) == class(BBp):

then classification_errors ++

else IoU(BBg, BBp) > 0.5 :



5.4 Comparing Mobilenet vs SSD Mobilenet 83

then localization_errors ++

Despite its simplicity, translating this algorithm into Tensorflow is not so

trivial. This is due to the fact that the graph must be exported, then we

need to run inference for each image in the test set. Moreover, given a test

set made of 45’000 images, this algorithm will be very time consuming. The

process can be divided into 3 parts:

• a method for running inference on multiple images

• call this method for each image in the dataset

• calculate classification and localization error

The full code is available in appendix E. When running the code, we got

13’591 classification errors, 5’940 of localization. Classification errors make

up almost 30% of the test set, so performance of SSD Mobilenet for accuracy

on CORe50 reach up the 70% of the test set. This is close to Ca↵eNet used

in classification mode on 128x128 images: therefore the e↵ectiveness of the

proposed detection on original 350x350 images is quite good.
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Chapter 6

Audi Autonomous Driving Cup

Every year the famous car manufacturing company Audi organizes the

Audi Autonomous Driving Cup to test new technologies in the automotive

field. This is the first year that the competition is open to teams coming

from outside Germany. After a careful selection based on projects submitted

from all European universities, only 10 teams were chosen to access the finals.

Among these, there is also a team represented by the University of Bologna.

The competition involves several challenges, but most of them require object

detection for solving tasks such as avoiding pedestrians, recognizing road

signs, detecting zebra crossings, allowing emergency vehicles to pass.
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6.1 The Vehicle

Each team is equipped with one vehicle. The hardware platform, devel-

oped by Audi specifically for the contest corresponds to a 1:8 scale replica

of the Audi Q2. For the Audi Autonomous Driving Cup 2018, the vehicles

were equipped with a miniTX board. This includes:

• an Intel Core i3 processor

• 8 GB RAM

• a fast 128 GB M.2 SSD hard drive

• an NIVIDIA GeForce GTX1050Ti graphics card

In addition to two Gigabit Ethernet ports, the board also has several

USB3.0 interfaces and a USB-C port. Furthermore, a Bluetooth and a

WLAN module (IEEE 802.11ac) are available. The sensor set of the 2018

AADC model car is getting closer to the real car sensors. A new Laserscanner

RPLIDAR A2 is added at the front. The sensor set consists of:

• RPLIDAR A2 (front, > 180 field of view, detection range < 6m, update

rate 10Hz)

• 130�mono video camera (front)

• 80�mono video camera (back)

• Ultrasonic sensors (three in the back, one left side, one right side, de-

tection range < 4m, update rate 40Hz)

To measure the speed of the car there are wheel speed sensors. There is also

a 9-axis motion tracking sensor to measure accelerations and angular rates.

For development, a tested industry standard environment ADTF (Auto-

motive Data and Time-triggered Framework) is installed. A developer license

for the software is available on every vehicle computer so that a convenient

development directly on the vehicle is possible. At the front, the car is
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equipped with a double camera. The first one is the Intel Realsense R200

that can streams at 640x480 or 1920x1080 resolution. The framerate is 15,

30 or 60 FPS. Especially for road sign and lane detection, the car is equipped

with an additional front camera that has a 1280x960 resolution at 45 FPS.

Both cameras are good enough for real-time scenarios. Figure 6.1 shows the

vehicle, the sensors and a general overview of the computer mounted on the

car.

Figure 6.1: AADC vehicle, computer and sensors

6.2 The Challenge

Each team is requested to solve a series of tasks that concern the domain

of autonomous driving. Tasks are divided into categories:

• Manoeuvre list: parallel parking, cross parking, change lane.

• Sectors: Sectors are specific track sections within the course. They are

made up of a list of manoeuvres.

• Basic driving tasks: obstacle avoidance, path navigation.

• Backend communication: the car must send its position continuously

to a central server.

• Map data: data concerning the car position can be optionally used to

improve the performance of all the driving tasks.
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• Artificial Intelligence-related driving tasks: distinguish a per-

son from a vehicle, detecting an emergency vehicle and zebra crossing.

These are the task we will focus because they can be easily solved by

using Deep Learning techniques.

6.3 Artificial Intelligence driving tasks

Artificial Intelligence related driving tasks are interesting precisely be-

cause it is possible to exploit the deep learning techniques previously illus-

trated to solve them e↵ectively. These tasks are:

• Zebra crossing

• Crossing task

• Adult versus child

• Yielding to Emergency Vehicles

6.3.1 Zebra crossing task

The vehicle must be able to autonomously distinguish between people

and other objects. This includes giving way to people crossing the zebra

crossing.

Figure 6.2: Zebra crossing
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6.3.2 Crossing task

The vehicle must be able to autonomously distinguish between people

and vehicles. If a vehicle is detected, right of way must be granted where ap-

plicable in accordance with the tra�c regulation. If a pedestrian is detected,

his/her orientation must be used to determine whether he/she is crossing the

road in front of your vehicle, so the vehicle must wait.

Figure 6.3: Crossing

6.3.3 Adult versus child

The vehicle must be able to distinguish between adults and children. If

a child is detected, the speed shall be reduced and this shall be indicated by

the brake lights. For adults, no actions are required.

Figure 6.4: Adult versus child
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6.3.4 Yielding to Emergency Vehicles

The car must yield the right-of-way to any emergency vehicle using a siren

and emergency lights. Drive to the right edge of the road and stop until the

emergency vehicle has passed.

Figure 6.5: Yielding to emergency vehicles

6.4 Deep Learning techniques for driving tasks

The graphic card mounted on the car is fully compatible with SSD Mobilenet,

so we decided to create a unique model to detect adults, children, emergency

vehicles and normal vehicles. The dataset was created by filming every ob-

ject and then extracting frames from each video. As total, the dataset is

made by 3960 images, 660 of them used as test set and 3300 as training set.

In order to avoid biases, each object had almost the same number of images

in the whole dataset. Audi already provided dolls for simulating adults and

children. The mini car was considered as normal vehicle, while we decided

to consider as emergency vehicle only cars that had sirens on it. This means

that our model needs only to identify flashing sirens.

Given this, a training pipeline was set up by taking as example a default con-

figuration file. We fine-tuned a pre-trained model on COCO dataset. Each

image in the dataset was manually labelled and then labels were exported in

Pascal VOC format and converted into TF record files. Starting the training

and the evaluation is exactly like repeating what has been done in chapters

4 and 5.
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6.5 Performance evaluation

After 4k iterations, the algorithm converges with an high accuracy. Figure

6.6 shows the overall accuracy, which reaches almost 90%. Figure 6.7 shows

accuracy considering each category as an individual task: adult and car

recognition reach almost 100%, while identifying a child performs well in

more than 90% of the cases. Results are impressive, except for recognizing

emergency sirens, which is up to 60%.

Figure 6.6: Precision

We wrote some code for out of the box inference. This way, we can get

inference on images that we want to test. Results are reported in figure 6.8.

I even tried to merge images in a unique image with multiple subjects,

to find out if the model was capable to distinguish between a child and an

adult, a normal car and an emergency car. As reported in figure 6.9 the

model is able to clearly distinguish subjects.
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Figure 6.7: Precision per category

Figure 6.8: Detecting adult, child and emergency car.

6.6 Testing the model on the ADTF

Despite results from the test set seem looking excellent, the real test is to

deploy the model directly on the car. This way we can understand how well

the model behaves in real-world context. This section is divided as follows:

• Test the model to check if inference times are fast enough.
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Figure 6.9: Testing multiple detections.

• Deploy the model on the Audi’s car.

6.6.1 Testing inference speed

The Audi car is equipped with a Linux-based system. Unfortunately, it is

not possible run Tensorflow directly on the car. The only way to do inference,

given a frozen graph, is to exploit Tensorflow through its C++ APIs. For this

reason we cannot reuse the code we wrote before for out of the box inference.

Installing C++ APIs for Tensorflow is only possible using a package provided

by Audi. Furthermore, this package limits Tensorflow models to the version

1.8. The following code creates a graph, starts a session using the pre-trained

model as frozen graph, and feeds this model with a given image. We tested

on 5 random images taken from the test. Results show that every image is

correctly classified with a bounding box.

int main() {

string image="PATH_TO_IMAGE";

string graph ="PATH_TO_FROZEN_GRAPH";

string labels ="PATH_TO_LABELS";

int32 input_width = 299;

int32 input_height = 299;

float input_mean = 0;

float input_std = 255;
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string input_layer = "image_tensor:0";

vector<string> output_layer ={ "detection_boxes:0",

"detection_scores:0", "detection_classes:0",

"num_detections:0" };

bool self_test = false;

string root_dir = "";

// First we load and initialize the model.

std::unique_ptr<tensorflow::Session> session;

string graph_path = tensorflow::io::JoinPath(root_dir, graph);

LOG(ERROR) << "graph_path:" << graph_path;

Status load_graph_status = LoadGraph(graph_path, &session);

if (!load_graph_status.ok()) {

LOG(ERROR) << "LoadGraph ERROR!!!!"<< load_graph_status;

return -1;

}

// Get the image from disk as a float array of numbers, resized

and normalized to the specifications the main graph expects.

std::vector<Tensor> resized_tensors;

string image_path = tensorflow::io::JoinPath(root_dir, image);

Status read_tensor_status =

ReadTensorFromImageFile(image_path, input_height,

input_width, input_mean, input_std, &resized_tensors);

if (!read_tensor_status.ok()) {

LOG(ERROR) << read_tensor_status;

return -1;

}

const Tensor& resized_tensor = resized_tensors[0];

LOG(ERROR) <<"image shape:" <<

resized_tensor.shape().DebugString()<< ",len:" <<

resized_tensors.size() << ",tensor type:"<<

resized_tensor.dtype();

// Actually run the image through the model.

std::vector<Tensor> outputs;
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//Starting timer for measuring processing time

struct timeval start, stop;

double secs = 0;

gettimeofday(&start, NULL);

//Inference phase

Status run_status =

session->Run({{input_layer,resized_tensor}},output_layer, {},

&outputs);

//Stopping the timer

gettimeofday(&stop, NULL);

secs = (double)(stop.tv_usec - start.tv_usec) / 1000000 +

(double)(stop.tv_sec - start.tv_sec);

printf("inference time: %f\n",secs);

if (!run_status.ok()) {

LOG(ERROR) << "Running model failed: " << run_status;

return -1;

}

int image_width = resized_tensor.dims();

int image_height = 0;

LOG(ERROR) << "size:" << outputs.size() << ",image_width:" <<

image_width << ",image_height:" << image_height << endl;

tensorflow::TTypes<float>::Flat scores = outputs[1].flat<float>();

tensorflow::TTypes<float>::Flat classes =

outputs[2].flat<float>();

tensorflow::TTypes<float>::Flat num_detections =

outputs[3].flat<float>();

auto boxes = outputs[0].flat_outer_dims<float,3>();

LOG(ERROR) << "num_detections:" << num_detections(0) << "," <<

outputs[0].shape().DebugString();

for(size_t i = 0; i < num_detections(0) && i < 20;++i)

{

if(scores(i) > 0.3)
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{

LOG(ERROR) << i << ",score:" << scores(i) << ",class:" <<

classes(i)<< ",box:" << "," << boxes(0,i,0) << "," <<

boxes(0,i,1) << "," << boxes(0,i,2)<< "," << boxes(0,i,3);

}

}

return 0;

}

We fed the model with 5 images taken randomly from the test set. How-

ever, we made sure that these 5 images represented all the classes. Table 6.1

reports inference time for each one of those images:

Image Processing time

1 11,234 ms

2 11,265 ms

3 11,491 ms

4 11,538 ms

5 11,332 ms

avg 11,372 ms

Table 6.1: Audi’s car inference time

The results obtained are in line with what is reported into the NVidia

whitepaper: GPU-Based Deep Learning Inference, A Performance and Power

Analysis [30]. Moreover, 11 ms per image means that our model, during the

inference phase, will be able to process almost 90 images per second.

6.6.2 Deploy on the Audi car

We can easily reuse code in the previous section to apply inference directly

on the car. The di↵erence is that while before we were acquiring images

directly from the file system, the ADTF system captures frames from the

camera as OpenCV Mat objects. These are essentially matrices made of
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unsigned integers. Tensorflow instead requires a tensor, which feeds the graph

used for inference.

Status readTensorFromMat(const Mat &mat, Tensor &outTensor) {

auto root = tensorflow::Scope::NewRootScope();

using namespace ::tensorflow::ops;

// Conversion trick: fill an empty tensor with the opencv

matrix and feed a TF graph

float *p = outTensor.flat<float>().data();

Mat fakeMat(mat.rows, mat.cols, CV_32FC3, p);

mat.convertTo(fakeMat, CV_32FC3);

auto input_tensor = Placeholder(root.WithOpName("input"),

tensorflow::DT_FLOAT);

vector<pair<string, tensorflow::Tensor>> inputs = {{"input",

outTensor}};

auto uint8Caster = Cast(root.WithOpName("uint8_Cast"),

outTensor, tensorflow::DT_UINT8);

tensorflow::GraphDef graph;

TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));

vector<Tensor> outTensors;

unique_ptr<tensorflow::Session>

session(tensorflow::NewSession(tensorflow::SessionOptions()));

TF_RETURN_IF_ERROR(session->Create(graph));

TF_RETURN_IF_ERROR(session->Run({inputs}, {"uint8_Cast"}, {},

&outTensors));

outTensor = outTensors.at(0);

return Status::OK();

}

After this function, the tensor outputs will contain everything we need

for inference: classes, scores, bounding boxes.

// Extract results from the outputs vector

tensorflow::TTypes<float>::Flat scores =

outputs[1].flat<float>();
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tensorflow::TTypes<float>::Flat classes =

outputs[2].flat<float>();

tensorflow::TTypes<float>::Flat num_detections =

outputs[3].flat<float>();

tensorflow::TTypes<float, 3>::Tensor boxes =

outputs[0].flat_outer_dims<float,3>();

Finally, we can iterate over the tensor num detections and print every

every object whose confidence is above a certain threshold.

for(size_tensor i = 0; i < num_detections(0);++i){

if(scores(i) > 0.3) {

LOG(ERROR) << i << ",score:" << scores(i) << ",class:" <<

classes(i)<< ",box:" << "," << boxes(0,i,0) << "," <<

boxes(0,i,1) << "," << boxes(0,i,2)<< "," << boxes(0,i,3);

}

}

We cannot directly test inference time due to some conflicts with the

ADTF libraries, but it is easy to predict that they will not di↵er so much

from what we obtained in section 6.6.1. In that section, we tested only

inference while now we should add to that results the time need for loading

images in memory.

Some visual results are reported in the video available at this URL:

[https://www.vimeo.com/giacomobartoli]



Conclusions

It is clear that embedded systems empowered by AI will become more

significant in the next few years. Given that, we can say for sure that deep

models specifically designed for light architectures will be relevant, especially

in the field of Computer Vision. This technology can revolutionize entire

sectors such as public security, transports, medicine and agriculture. In this

direction, deep architectures that can easily trade o↵ e�ency and accuracy, as

MobileNet, will play a central role. Developers must carefully choose models

where inference time is in the order of milliseconds. Choosing the right model

is a matter of architectures, purpose, frameworks and hardware compatibility.

Despite that, there is still a lack of tools for supporting the creation of the

dataset. Video labelling tools, where the user can label objects without

repeating this operation for each frame, are still naive. I do believe developers

must invest in these softwares to speed up and even automate the dataset

creation. However, the pipeline to follow in these cases is the same: creating

the dataset, training the model, exporting the model once performances are

good enough and applying inference locally. We found out that fine-tuning

a pre-trained model is the fastest way to obtain high accuracy. This thesis

focused on intelligent cameras, smartphones and autonomous cars but the

same concept is valid for drones, unmanned vehicles and any object related to

Computer Vision. Finally, we applied those techniques for object detection

to the dataset CORe50. Results will be reported in the o�cial website and

will be starting points to deepen other Computer Vision tasks such as Image

Segmentation and provide other insights about CORe50 as static dataset.
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Appendix A

embedded ssd mobilenet

pipeleine

model {

ssd {

num_classes: 1

box_coder {

faster_rcnn_box_coder {

y_scale: 10.0

x_scale: 10.0

height_scale: 5.0

width_scale: 5.0

}

}

matcher {

argmax_matcher {

matched_threshold: 0.5

unmatched_threshold: 0.5

ignore_thresholds: false

negatives_lower_than_unmatched: true

force_match_for_each_row: true

}
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}

similarity_calculator {

iou_similarity {

}

}

anchor_generator {

ssd_anchor_generator {

num_layers: 5

min_scale: 0.2

max_scale: 0.95

aspect_ratios: 1.0

aspect_ratios: 2.0

aspect_ratios: 0.5

aspect_ratios: 3.0

aspect_ratios: 0.3333

}

}

image_resizer {

fixed_shape_resizer {

height: 256

width: 256

}

}

box_predictor {

convolutional_box_predictor {

min_depth: 0

max_depth: 0

num_layers_before_predictor: 0

use_dropout: false

dropout_keep_probability: 0.8

kernel_size: 1

box_code_size: 4

apply_sigmoid_to_scores: false
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conv_hyperparams {

activation: RELU_6,

regularizer {

l2_regularizer {

weight: 0.00004

}

}

initializer {

truncated_normal_initializer {

stddev: 0.03

mean: 0.0

}

}

batch_norm {

train: true,

scale: true,

center: true,

decay: 0.9997,

epsilon: 0.001,

}

}

}

}

feature_extractor {

type: ’embedded_ssd_mobilenet_v1’

min_depth: 16

depth_multiplier: 0.125

conv_hyperparams {

activation: RELU_6,

regularizer {

l2_regularizer {

weight: 0.00004

}
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}

initializer {

truncated_normal_initializer {

stddev: 0.03

mean: 0.0

}

}

batch_norm {

train: true,

scale: true,

center: true,

decay: 0.9997,

epsilon: 0.001,

}

}

}

loss {

classification_loss {

weighted_sigmoid {

}

}

localization_loss {

weighted_smooth_l1 {

}

}

hard_example_miner {

num_hard_examples: 3000

iou_threshold: 0.99

loss_type: CLASSIFICATION

max_negatives_per_positive: 3

min_negatives_per_image: 0

}

classification_weight: 1.0
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localization_weight: 1.0

}

normalize_loss_by_num_matches: true

post_processing {

batch_non_max_suppression {

score_threshold: 1e-8

iou_threshold: 0.6

max_detections_per_class: 100

max_total_detections: 100

}

score_converter: SIGMOID

}

}

}
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Appendix B

Script for converting labels

wget https://vlomonaco.github.io/core50/data/core50_class_names.txt

input = ’core50_class_names.txt’

output = ’core_50_labels.pbtxt’

input_file = open(input, ’r’).readlines()

output_file = open(output, ’w’)

counter = 0

def add_apex(s):

new_string = "’" + s + "’"

return new_string

def create_item(s):

sf=’item {\n id:’ + str(counter)+’ \n name: ’ + repr(s) +

’\n}\n\n’

return sf

for i in input_file:

counter+=1

output_file.writelines(create_item(i.strip()))

output_file.close()

print(’done! Your .pbtxt file is ready!’)
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Appendix C

Script for converting PNG

images to JPEG

wget http://bias.csr.unibo.it/maltoni/core50/core50_350x350.zip

unzip core50_350x350

mogrify -format jpg */*.png

find . -type f -iname \*.png -delete
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Appendix D

Script for creating CORe50 csv

file

import csv

import re

import os

from fnmatch import fnmatch

# header

column_name = [’Filename’, ’width’, ’height’, ’class’, ’xmin’,

’ymin’, ’xmax’, ’ymax’]

# CORe50 images width and height

C50_W = 350

C50_H = 350

# CORe50 root: select if training dir or test

root = ’core50_350x350/train’

# root = ’core50_350x350/train’

pattern = "*.jpg"

# Bounding boxes root

bbox = ’bbox/’

pattern_bbox = "*.txt"

# This is an empty list that will be filled with all the data:

filename, width, height, session..etc
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filenames = []

# some regex used for finding session, obj, frame

re_find_session = ’(?<=.{2}).\d’

re_find_object = ’(?<=.{5}).\d’

re_find_frame = ’(?<=.{8})..\d’

def find_obj(s, regex):

obj = re.search(regex, s)

return obj.group()

def find_bbox(session, obj, frame):

bb_path = ’bbox/’+session+’/’+’CropC_’+obj+’.txt’

f = open(bb_path, ’r’).readlines()

for line in f:

regex_temp = ’Color’+frame+’: ’

if line.startswith(regex_temp):

return line[10:]

# c[0] = xmin, c[1] = ymin, c[2] = xmax, c[3] = ymax

def add_bbox_to_list(bbox, list):

c = bbox.split()

list.append(c[0])

list.append(c[1])

list.append(c[2])

list.append(c[3])

return list

# given an object, it returns the label

def add_class_to_list(object):

index = int(object[1:])

f = open(’core50_class_names.txt’, ’r’).readlines()

return f[index-1].strip()
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# scanning the file system, creating a list with all the data

for path, subdirs, files in os.walk(root):

for name in files:

if fnmatch(name, pattern):

listToAppend = []

listToAppend.append(name)

listToAppend.append(C50_W)

listToAppend.append(C50_H)

session = ’s’ + find_obj(name,

re_find_session).strip(’0’)

object = ’o’ + find_obj(name, re_find_object).strip(’0’)

frame = find_obj(name, re_find_frame)

listToAppend.append(int(object.strip(’o’)))

bounding_box = find_bbox(session, object, frame)

add_bbox_to_list(bounding_box, listToAppend)

filenames.append(listToAppend)

# writing data to the .csv file

with open(’core50_train.csv’, ’w’) as csvfile:

filewriter = csv.writer(csvfile, delimiter=’,’,

quotechar=’|’, quoting=csv.QUOTE_MINIMAL)

filewriter.writerow(column_name),

for i in filenames:

filewriter.writerow(i)

print (’Done! Your .csv file is ready!’)
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Appendix E

Splitting classification and

detection errors

def run_inference_for_images(images, graph):

with graph.as_default():

with tf.Session() as sess:

output_dict_array = []

for image in images:

# Get handles to input and output tensors

ops = tf.get_default_graph().get_operations()

all_tensor_names = {output.name for op in ops for

output in op.outputs}

tensor_dict = {}

for key in [

’num_detections’, ’detection_boxes’,

’detection_scores’,’detection_classes’:

tensor_name = key + ’:0’

if tensor_name in all_tensor_names:

tensor_dict[key] =

tf.get_default_graph().get_tensor_by_name(tensor_name)

image_tensor =

tf.get_default_graph().get_tensor_by_name(’image_tensor:0’)
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image2 = load_image_into_numpy_array(image)

# Run inference

output_dict = sess.run(tensor_dict,

feed_dict={image_tensor: np.expand_dims(image2,

0)})

# all outputs are float32 numpy arrays, so convert

types as appropriate

output_dict[’num_detections’] =

str(output_dict[’num_detections’][0])

output_dict[’detection_classes’] =

output_dict[’detection_classes’][0].astype(np.uint8)

output_dict[’detection_boxes’] =

output_dict[’detection_boxes’][0]

output_dict[’detection_scores’] =

output_dict[’detection_scores’][0]

output_dict_array.append(output_dict)

global tot_images

tot_images = tot_images - 1

print(’Remaining images: ’ + str(tot_images))

return output_dict_array

Then we must call the previous method, sorting the images:

# LOADING TEST SET, SORTED ALPHABETICALLY

images = sorted(glob.glob("images/test/*.jpg"))

tot_images=len(images)

print("Test set dimension: "+str(tot_images)+" images")

# ARRAY WITH DETECTION RESULTS

output_dict_array = run_inference_for_images(images,

detection_graph)

#loading GT labels/bbox from .txt
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ground_truth_list_labels =

open(’ground_truth_labels.txt’).read().splitlines()

ground_truth_list_bbox =

open(’ground_truth_bbox.txt’).read().splitlines()

# computing class_errors and localization errors

index = -1

for f, b in zip(ground_truth_list_labels, predicted_labels):

index +=1

print(str(index))

if f != b:

class_errs = class_errs+1

else:

boxA = predicted_bbox[index].split(’,’)

boxB = ground_truth_list_bbox[index].split(’,’)

if bb_intersection_over_union(boxA, boxB) > 0.5:

localiz_errs = localiz_errs + 1

print(’CLASSIFICATION: ’+str(class_errs))

print(’LOCALIZATION: ’+str(localiz_errs))
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L’elaborato in questione è il frutto di un intenso lavoro di circa 7 mesi.

Vorrei ringraziare in primis il Prof. Davide Maltoni che ha mostrato massima
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