ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA CIVILE

D.I.S.T.A.R.T. – Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento e del Territorio

Sede di Tecnica delle Costruzioni

ISOLAMENTO ALLA BASE DI UN EDIFICIO RESIDENZIALE

Tesi di Laurea Specialistica in

TECNICA DELLE COSTRUZIONI LS

CANDIDATO: GIANLUCA TOGNINELLI **RELATORE:**

Chiar.mo Prof. Ing. CLAUDIO MAZZOTTI

Sessione II

ANNO ACCADEMICO 2009-2010

Alla mia famiglia e a quanti mi sono stati vicini in questi anni di studio e di sacrifici.

Indice

IndiceI
INTRODUZIONE 1
CAPITOLO I - Descrizione dell'intervento, analisi del sito e delle azioni 13
1.1 Descrizione dell'edificio, classe d'uso e periodo di riferimento
1.1.1 Vita nominale
1.1.2 Classe d'uso e periodo di riferimento per l'azione sismica
1.2 Caratteristiche geologiche e geotecniche del sito
1.2.1 Stendimento sismico
1.2.2 Sulla capacità portante del terreno e costante di Winkler
1.3 Valutazione dell'azione sismica 20
1.3.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali 20
1.3.2 Spettro di risposta elastico in accelerazione della componente verticale 23
1.3.3 Stati limite per l'azione sismica e relative probabilità di superamento 24
1.3.4 Spettri di progetto per gli stati limite ultimi e fattore di struttura
1.3.5 Pericolosità sismica
1.3.6 Determinazione dello spettro di progetto (componenti orizzontali) 29
1.3.7 Determinazione dello spettro di progetto (componente verticale)
1.3.8 Combinazione dell'azione sismica con le altre azioni
1.4.1 Classificazione delle azioni secondo la loro variazione nel tempo
1.4.2 Combinazioni delle azioni
1.4.3 Azioni nelle verifiche agli stati limite ultimi
1.4.4 Pesi propri dei materiali strutturali
1.4.5 Carichi permanenti non strutturali: elementi divisori interni
1.4.6 Carichi variabili
1.4.7 Calcolo del carico neve
1.4.8 Azioni del vento
1.4.9 Analisi dei carichi

1.4.10 Spinta delle terre4	!2
CAPITOLO II - Analisi statica della struttura non isolata alla base 4	3
2.1 Aspetti introduttivi all'analisi statica della struttura	3
2.1.1 Materiali strutturali e loro caratteristiche4	!3
2.1.2 Valutazione della sicurezza e metodi di analisi4	!4
2.1.3 Analisi elastica lineare4	!5
2.2 Verifiche agli stati limite ultimi4	6
2.2.1 Resistenze di calcolo dei materiali4	!7
2.2.2 Resistenza a sforzo normale e flessione (elementi monodimensionali)4	!9
2.2.3 Resistenza nei confronti di sollecitazioni taglianti5	2
2.2.4 Resistenza nei confronti delle sollecitazioni torcenti5	3
2.2.5 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi5	6
2.2.6 Verifica dell'aderenza delle barre di acciaio con il calcestruzzo5	7
2.3 Dettagli costrutti per elementi monodimensionali: travi e pilastri	7
2.3.1 Armatura delle travi5	7
2.3.2 Armatura dei pilastri5	8
2.3.3 Copriferro ed interferro5	9
2.3.4 Ancoraggio delle barre e loro giunzioni5	9
2.4 Analisi statica della struttura con software di calcolo	0
2.4.1 Modello A (telaio a base incastrata)6	60
2.4.2 Modello B (telaio su suolo elastico)6	i9
2.4.3 Verifica della trave soggetta a momento massimo positivo (Beam 94)7	'9
2.4.4 Verifica della trave soggetta a momento massimo negativo (Beam 366)8	0
2.4.5 Verifica del pilastro soggetto a sforzo normale massimo (Beam 41)8	2
2.4.6 Verifica del pilastro soggetto a flessione massima (Beam 703)8	3
CAPITOLO III - Analisi modale e analisi dinamica con spettro di risposta 8	5
3.1 Introduzione e aspetti normativi dell'analisi lineare dinamica	5
3.2 Analisi modale e sua determinazione per i modelli di calcolo	6
3.2.1 Modello A: forme modali e frequenze naturali8	7
3.2.2 Modello B: forme modali e frequenze naturali9	95
3.2.3 Modello C: illustrazione, forme modali e frequenze naturali	13

3.3 Analisi dinamica lineare con spettro di risposta (Spectral Response)	114
3.3.1 Modelli A e B: considerazioni sull'esito dell'analisi spettrale	116
3.3.2 Modello C: risultati dell'analisi dinamica con spettro di risposta	123
3.3.3 Verifica dell'elemento (e.1) – Trave 30x60	128
3.3.4 Verifica dell'elemento (e.2) – Trave 30x65	129
3.3.5 Verifica dell'elemento (e.3) – Pilastro 30x50	131
3.3.6 Verifica dell'elemento (e.4) – Pilastro 40x30	133
3.4 Il principio di gerarchia delle resistenze (Capacity Design)	136
3.4.1 Pilastri: sollecitazioni di calcolo	136
3.4.2 Nodi trave-pilastro: classificazione e verifiche di resistenza	137
3.4.3 Verifica dell'elemento (e.3): nodo 44	138
3.4.4 Verifica dell'elemento (e.4): nodo 39	139
CAPITOLO IV - Fondamenti di protezione sismica con isolamento alla base.	141
4.1 Introduzione e concetti di base	141
4.2 Isolatori sismici (Isolation Bearings)	143
4.2.1 Isolatori in gomma armata	143
4.2.2 Isolatori scorrevoli	151
4.2.3 Molle elicoidali in acciaio	161
4.3 Metodi di analisi	162
4.3.1 Modello lineare a due gradi di libertà	162
4.3.2 Modello di struttura rigida ad un grado di libertà (SDOF)	176
4.3.3 Modello lineare a più gradi di libertà (MDOF)	176
4.3.4 Modello MDOF lineare con smorzamento non classico	183
4.3.5 Modello lineare equivalente	193
CAPITOLO V - Analisi della struttura isolata alla base e considerazioni finali	i 197
5.1 Modello D: isolatore ALGASISM HDRB HDH D 300 B350 Z 265	197
5.1.1 Isolatore HDRB ALGASISM HDH D 300 B350 Z 265	197
5.1.2 Modello D (isolamento HDRB ALGASISM): analisi modale	199
5.1.3 Modello D (isolamento HDRB ALGASISM): analisi dinamica lineare	208
5.1.4 Elemento (e.1) – Trave 30x60	212
5.1.5 Elemento (e.2) – Trave 30x65	213

Indice

5.1.6 Elemento (e.3) – Pilastro 30x50	213
5.1.7 Elemento (e.4) – Pilastro 40x30	216
5.2 Valutazioni su azioni, resistenze e coefficienti di sicurezza dei pilastri	219
5.2.1 Elemento (p.1): pilastro 50x30	220
5.2.2 Elemento (p.2): pilastro 30x50	223
5.2.3 Elemento (p.3): pilastro 30x50	225
5.2.4 Elemento (p.4): pilastro 30x50	228
5.2.5 Elemento (p.5): pilastro 40x30	231
5.2.6 Elemento (p.6): pilastro 50x30	234
5.3 Effetti dell'isolamento sui coefficienti di sicurezza dei pilastri	237
5.4 Modello D: gerarchia delle resistenze	238
5.5 Gli spostamenti relativi di piano: confronto fra i Modelli D e C	238
5.6 Considerazioni finali	239
BIBLIOGRAFIA	241
RINGRAZIAMENTI	243

INTRODUZIONE

Il fabbricato oggetto di studio è un edificio ad uso residenziale in fase di realizzazione, situato nel centro abitato di Cavola, nel comune di Toano (RE). Si tratta di un edificio avente una superficie in pianta dell'ordine dei 300 mq e con altezza di gronda inferiore a 7 metri fuori terra. E' inoltre presente un piano interrato. Il sito di realizzazione ha un'altitudine di circa 510 metri s.l.m..

Lo scopo di questa tesi è valutare la tipologia strutturale più adeguata e performante rispondente all'attuale normativa italiana in materia di calcolo strutturale: D.M. 14 gennaio 2008 "Norme tecniche per le costruzioni". Particolare rilievo assumerà la problematica sismica per la quale saranno analizzati moderni sistemi e tecnologie per l'isolamento alla base e l'attenuazione degli effetti sismici.

Nell'ultimo quindicennio, alcuni terremoti critici, Northridge (California) del 1994, Kobe (Giappone) del 1995, Turchia e Taiwan del 1999, hanno colpito in zona epicentrale agglomerati urbani densamente abitati, dotati di quartieri progettati secondo le norme di calcolo moderne, mettendo in luce comportamenti strutturali in precedenza studiati solo tramite modelli di calcolo e in laboratorio. Altri terremoti, che hanno colpito aree caratterizzate da costruzioni meno evolute, hanno generato livelli di scuotimento del suolo o rilasci di energia raramente osservati, come quelli di Bam, Iran, del 2003 e Sumatra, del 2004. A seguito di questi eventi si sono dovuti riconsiderare alcuni concetti, a cominciare dalla severità delle azioni sismiche, soprattutto nella zona epicentrale, precedentemente sottostimata. In seconda istanza è stata ribadita l'importanza dei dettagli costruttivi. Qualche considerazione affrettata aveva indotto a credere che costruzioni ben realizzate dal punto di vista dei criteri generali, non necessariamente riferiti alle azioni sismiche, si sarebbero comportate egregiamente anche durante terremoti severi. Tale convinzione è stata smentita, non solo per ponti ed edifici alti, ma anche per costruzioni modeste, apparente classificabili come non engineered. L'esame del danno ha

mostrato in particolare la necessità di un'analisi accurata del comportamento dinamico-sismico per qualunque struttura.

Le Norme Tecniche per le Costruzioni, nei confronti dell'azione sismica, fanno riferimento ad un approccio di tipo prestazionale della struttura nel suo complesso, includendo elementi strutturali, non strutturali e gli impianti. I quattro stati limite (di esercizio ed ultimi) considerati dalla normativa, descrivono una condizione di utilizzo (o di stato) della struttura a seguito dell'azione sismica.

Figura 1 – Obiettivi prestazionali (Performance objective)

In un'ottica di progettazione di tipo *basic objective*, (Figura 1) allo Stato Limite di Salvaguardia della Vita (LS – *Life Safety*) si richiede che la struttura non crolli (nelle sue componenti strutturali) ma si accettano danneggiamenti irreparabili; questo obiettivo può non rispondere alle aspettative degli utenti delle strutture e si è dimostrato economicamente non sostenibile. La popolazione si aspetterebbe che le strutture strategiche (ospedali, caserme, impianti elettrici e telefonici, ponti, viadotti e tutte le strutture essenziali per la gestione delle emergenze) rimanessero operative sia durante che dopo il sisma.

L'integrità assoluta di una costruzione, implica la totale protezione non solo degli elementi strutturali, ma anche di quelli non strutturali (tamponature, pareti interne, arredi e oggetti contenuti): riguardo a questi ultimi è da sottolineare che le cause di maggior danno, sono i valori crescenti nel piano orizzontale, dalla base alla sommità della costruzione, sia dell'accelerazione che dello spostamento (in particolare degli spostamenti relativi); le prime causano ad esempio il ribaltamento e la caduta di oggetti mentre i secondi danno luogo a rotture delle pareti interne, dei tamponamenti, delle tubazioni ed altro ancora. Tali fenomeni non sono contemporaneamente eliminabili in una costruzione realizzata in modo convenzionale (a base fissa). Occorre quindi ricorrere all'*isolamento sismico*.

L'idea dell'isolamento sismico nasce dall'analisi dello spettro di risposta ai terremoti in termini di accelerazione (si veda l'esempio di Figura 2). In genere, esso presenta forti amplificazioni nel campo dei bassi periodi di oscillazione (T < 1,0 s), mentre decresce rapidamente all'aumentare del periodo stesso. Purtroppo la maggior parte delle costruzioni dell'edilizia corrente presenta un periodo naturale di oscillazione proprio in corrispondenza delle ordinate maggiori. Ecco perché un edificio costruito con metodi tradizionali è molto sensibile alle azioni sismiche e, in occasione di un evento sismico violento, oscilla con accelerazioni elevate, riportando danni severi alle parti strutturali e non.

Figura 2 – Spettro di risposta elastico in accelerazione (linea continua) e spostamento (linea tratteggiata)

L'isolamento sismico alla base, aumentando consistentemente il periodo d'oscillazione mediante l'inserimento di particolari dispositivi tra la struttura in elevazione e la fondazione, determina il *disaccoppiamento* del moto della costruzione rispetto a quello del terreno: mentre questo si muove con accelerazioni anche elevate, invertendo molte volte il verso del moto durante l'evento sismico, la struttura al di sopra del sistema di isolamento oscilla lentamente con spostamenti relativi tra i vari piani trascurabili, essendo gli spostamenti assoluti molto ampi ma pressoché costanti lungo l'altezza dell'edificio. Le sollecitazioni, come può dedursi dai valori spettrali, sono ridotte del 70-80%, o anche più, ed è possibili progettare le strutture in campo elastico, ossia in modo che non subiscano danni nemmeno in occasione di eventi sismici violenti. Gli spostamenti assoluti, come detto, aumentano considerevolmente: gli isolatori devono essere in grado di sopportare questi spostamenti e la costruzione deve essere libera di spostarsi lateralmente, grazie ad opportuni giunti.

In realtà il concetto di isolamento sismico trova origini molto lontane. Nella "Naturalis Historiae", Plinio Il Vecchio agli inizi del I secolo d.C. scriveva: «Grecae magnificentiae vera admiratio extat tempium Ephesiae Dianae CXX annis factum a tota Asia. In solo id palustri fecere, ne terrae motum sentiret aut hiatus timeret, rursus ne in lubrico atque instabili fondamenta tantae molis locarentur, calcatis ea substravere carbonibus, dein velleribus lanae». Alla base della costruzione del tempio di Diana ad Efeso (eretto nel VI secolo a.C. e riedificato nel 416 a.C. dopo un incendio) c'è l'intuizione di disaccoppiare il moto della struttura da quello del terreno utilizzando uno strato di frammenti di carboni costipati e uno di velli di lana. Veniva realizzato così un isolamento che, in caso di scosse telluriche, avrebbe consentito alla struttura di scorrere sul sito di fondazione preservandola dal crollo.

Figura 3 – Tempio di Diana (Artemide) a Efeso come doveva apparire

Secondo gli scritti di *Diogene Laerzio* (II, 103) nel III secolo d.C. l'idea di progettare il sito di base del tempio di Artemide con strati alterni di carbone e velli di lana fu suggerito da un grande architetto dell'epoca, *Theodoros di Samo*, che applicò la stessa tecnica per l'edificazione del tempio Heraion (VI secolo a.C.). Questa procedura era ben nota ed utilizzata dagli architetti greci come dimostrano i vari reperti archeologici, contemporanei alla costruzione del tempio di Diana, ad esempio il tempio di Atena ad Ilion (III secolo a.C.), in cui l'isolamento sismico era realizzato con strati di sabbia e pietrisco sui quali poggiavano le strutture in elevazione.

In Cina, nella provincia dello *Shanx*i, un monastero costruito nel 313 su strati di terreno sabbioso riuscì a resistere a numerosi terremoti di cui uno di magnitudo 8,2; da questo terremoto uscì indenne anche un tempio eretto nello stesso territorio nel 1056.

La prima applicazione moderna dell'isolamento sismico è quella della scuola Pestolazzi di Skopje in Macedonia, ricostruita a seguito di un sisma nel 1960. Il sistema di isolamento, proposto da un team di ingegneri svizzeri e denominato *Swiss Full Base Isolation 3D*, rappresenta il prototipo degli attuali dispositivi elastomerici.

L'isolamento sismico. uscito da alcuni anni dalla fase di sperimentazione a cui ogni nuova tecnologia deve sottoporsi, è divenuto un sistema di impiego rilevante per la protezione sismica degli edifici civili. Più delle analisi teoriche e delle ricerche di laboratorio, la sua efficacia è stata chiaramente dimostrata dalle risposte delle costruzioni isolate che hanno subito terremoti violenti e dal confronto delle stesse con edifici non isolati; ciò è stato possibile grazie all'esame delle registrazioni su edifici monitorati durante il terremoto di Los Angeles del 1994 e più ancora con quello di Kobe (Giappone) del 1995. In particolare, dopo quest'ultimo evento, in Giappone si è avuto un incremento rapidissimo delle costruzioni protette dal sisma mediante sistema di isolamento, sia per quanto riguarda la ricostruzione del grande numero di ponti e viadotti distrutti o danneggiati, sia per la realizzazione di nuovi edifici di tipo residenziale e commerciale isolati alla base (Figura 4).

Capitolo I

Figura 4 - Applicazioni dell'isolamento sismico in Giappone (GLIS, 2004)

Al Giappone segue ora, per numero di applicazioni delle moderne tecnologie antisismiche, la Repubblica Popolare Cinese, con più di 650 edifici isolati e decine di edifici protetti da sistemi dissipativi (oltre a numerosi ponti e viadotti isolati); anche in questo paese le nuove applicazioni delle tecnologie suddette continuano a succedersi ad un ritmo elevato (in particolare per gli edifici residenziali, molti dei quali in muratura) e proseguono grandi realizzazioni (come quella riguardante i 50 edifici isolati del nuovo centro residenziale di Pechino). Di rilevo sono pure ora, come in Giappone, l'uso di isolatori 3D negli edifici e quello di SMAD (dispositivi in leghe a memoria di forma) per la salvaguardia del patrimonio culturale, oltre all'adozione dell'isolamento sismico per la protezione degli impianti industriali, ad esempio con le prime applicazioni cinesi ai serbatoi di gas naturale liquefatto (Liquefied Natural Gas o LNG). Nella Repubblica Popolare Cinese, a seguito dell'ottimo comportamento, durante il terremoto di Wenchuan del 12 maggio 2008, non solo di due grandi edifici residenziali in cemento armato, ma anche di un edificio di ben 6 piani in muratura, è prevedibile, nel prossimo futuro, un'ancora più rapida ed estesa utilizzazione dei moderni sistemi e dispositivi antisismici (Figura 5).

Figura 5 – Applicazioni dell'isolamento sismico nella Repubblica Popolare Cinese (GLIS, 2004)

I notevoli progressi nell'uso dei sistemi e dei dispositivi antisismici nella Repubblica Popolare Cinese hanno fatto recentemente retrocedere al terzo posto (per numero di strutture protette con tali sistemi e dispositivi) la Federazione Russa (Figura 6), dove risultano esservi attualmente circa 600 edifici isolati: qui infatti le nuove applicazioni delle moderne tecnologie antisismiche (che sono principalmente d'isolamento) procedono con una certa lentezza da diversi anni, sebbene ora annoverino interessanti realizzazioni e progetti, sia di adeguamento sismico (retrofit) di edifici monumentali che per grattacieli di nuova costruzione. Queste realizzazioni e questi progetti utilizzano finalmente sistemi d'isolamento "di tipo occidentale", nettamente più affidabili degli isolatori in cemento armato a forma di fungo rovesciato utilizzati fino a qualche anno fa nella maggior parte dei paesi dell'ex-URSS (Armenia esclusa). È da notare che, per i grattacieli russi isolati in costruzione a Sochi, si utilizzano isolatori di produzione italiana.

Retrocedono al quinto posto gli Stati Uniti d'America (Figura 6), dove l'uso dei moderni sistemi antisismici nei ponti e nei viadotti risulta di 600÷650 applicazioni sparse in tutto il paese. Anche negli edifici prosegue in modo soddisfacente, ma a causa della normativa molto penalizzante in vigore per gli edifici isolati (nonostante l'ottimo comportamento di alcuni di essi durante il terremoto di Northridge del 1994) il numero di nuove realizzazione di questo tipo resta limitato; risultano ad oggi completati un numero di 100÷200 edifici isolati.

Figura 6 – Numero di edifici sismicamente isolati nel mondo (GLIS, 2009)

L'Italia, dove le applicazioni dei moderni sistemi antisismici sono iniziate nel 1975 per i ponti ed i viadotti e nel 1981 per gli edifici (4 anni prima del Giappone e degli USA), rimasta per diversi anni al quinto livello mondiale e sempre prima in Europa per il numero di edifici isolati, grazie al consistente intervento (*Progetto C.A.S.E.*) seguito al sisma de L'Aquila (2009), si qualifica al quarto posto sorpassando gli USA (Figura 6).

Merita appunto un approfondimento il *Progetto C.A.S.E.* e il terremoto che ha colpito l'Abruzzo, il Lazio e in parte le Marche. La scossa distruttiva si è verificata il 6 aprile 2009 alle 03:32 (ora locale). L'*Istituto Nazionale di Geofisica e Vulcanologia* (INGV), ha registrato un sisma di *magnitudo momento* 6,3 M_W ; secondo la scala di *magnitudo locale* (scala Richter) il valore è stato di 5,8 *Ml*. Nelle 48 ore dopo la scossa principale, si sono

registrate altre 256 scosse, delle quali più di 150 nel giorno di martedì 7 aprile, di cui 56 oltre la magnitudo 3,0 *Ml* (scala Richter). Tre eventi di magnitudo superiore a 5,0 *Ml* sono avvenuti il 6, il 7 e il 9 aprile. Dall'esame dei segnali della stazione INGV aquilana (AQU, ubicata nei sotterranei del Forte spagnolo), sono state conteggiate oltre 10.000 scosse. Nell'anno che ha seguito l'evento del 6 aprile, l'INGV ha registrato circa 18.000 terremoti in tutta l'area della città de L'Aquila. Il bilancio definitivo è di 308 morti e più di 1500 feriti.

Al marzo 2010 sono stati effettuati circa 80.000 sopralluoghi di 73.521 edifici grazie a più di 5.000 tecnici volontari provenienti da tutta l'Italia; si riportano gli esiti delle verifiche nella seguente tabella:

Esito	Edifici privati	Edifici pubblici	Patrimonio culturale
Agibile (A)	52%	53,6%	24,1%
<i>Parzialmente inagibile</i> (B) 0 <i>Temporaneamente inagibile</i> (C)	15,9%	25,2%	22,2%
<i>Totalmente inagibile</i> (E) 0 <i>Inagibile per rischio esterno</i> (F)	32,1%	21,2%	53,7%
Esiti definitivi di inagibilità	71.302	2.219	1.800

Tabella A – Verifiche di agibilità, terremoto 06/04/09 (Protezione Civile, marzo 2010)

Per far fronte all'emergenza del terremoto e poter dare una adeguata sistemazione agli sfollati nel minor tempo possibile, il Governo Italiano ha predisposto il *Progetto C.A.S.E. (Complessi Antisismici Sostenibili ed Ecocompatibili).* Obiettivo di questo piano la realizzazione in pochi mesi di nuove abitazioni antisismiche a basso impatto ambientale. Sono state individuate 20 aree nelle quali si è avviata la costruzione di 185 edifici per un totale di 4.500 appartamenti in grado di ospitare più di 15.000 persone.

Per la realizzazione degli edifici sono state costruite piastre di fondazione in calcestruzzo sulle quali si sono montati pilastri prefabbricati in acciaio. Su ognuno dei pilastri sono poi stati installati gli isolatori sismici che sorreggono la piattaforma che costituisce il basamento delle nuove abitazioni sismo-isolate.

I dispositivi antisismici utilizzati nel *Progetto C.A.S.E.* sono *isolatori a pendolo scorrevole* forniti dalle aziende italiane ALGA S.p.A. e FIP Industriale, fra le più grandi al mondo in questo settore.

Gli isolatori a pendolo sono una soluzione tecnologica che permette di separare, in caso di scossa, il movimento della terra dall'edificio. È la prima volta che in Italia viene usato un dispositivo antisismico in modo così estensivo e per una stessa applicazione: in tutto sono 7.368 gli isolatori utilizzati.

Questo importante intervento edilizio ha quindi notevolmente accresciuto il numero di edifici sismicamente isolati realizzati sul territorio nazionale (Figura 7), comportando anche alla sensibilizzazione della società verso la problematica sismica e le nuove tecnologie di protezione dai terremoti.

Figura 7 – Applicazioni dell'isolamento sismico in Italia (GLIS, 2009)

Si riporta infine un elenco delle applicazioni dell'isolamento sismico in Italia che comprende strutture già realizzate ed altre in fase di progettazione o di esecuzione:

Numero	Località Edificio Anno di roglizzazione (e state esecutivo)	N° Edifici	
Applicaz.	Localita, Edificio, Affilo di fealizzazione (o stato esecutivo)		
1	Napoli, Quartier Generale dei VVFF, 1981	1 (1)	
2	Napoli, Edificio Brigata Mobile VVFF, 1985		
3	Ancona, Centro civico, 1989	1 (3)	
4	Avezzano, EdificioTexas Instruments, 1989	1 (4)	
5	Ancona, Centro Regionale dell'Attuale TELECOM Italia, 1990	5 (9)	
6	Squillace (CZ), Appartamenti, 1992	1 (10)	
7	Ancona, Centro Arruolamento Volontari della Marina Militari, 1992	1 (11)	
8	Augusta (SR), Centro medico Base della Marina Militare, 1993	1 (12)	
9	Augusta (SR), Edifici residenziali Base della Marina Militare, 1993	4 (16)	
10	Messina, Centro Radar controllo traffico marittimo sullo stretto, 1994	1 (17)	
11	Potenza, Edifici dell'Università della Basilicata, 1995	5 (22)	
12	Rapolla (PZ), Edificio residenziale, 2000	1 (23)	
13	Città di Castello (PG), Edifici residenziali, 2003	3 (26)	
14	Napoli, Centro civico Rione Traiano (retrofit), 2004	1 (27)	
15	Solarino (SR), Edifici residenziali (retrofit), 2004	2 (29)	
16	Elisuperficie dell'ospedale di Varese, 2004	1 (30)	
17	Udine, Ala nuova dell'Ospedale Gervasutta, 2004	1 (31)	
18	Scarperia (FI), villetta, 2005	1 (32)	
19	Catania, Aeroporto Fontanarossa, 2005	1 (33)	
20	Morrone nel Sannio, scuola (struttura portante), 2005	1 (34)	
21	Popoli (PE), Stabilimento industriale (isolamento della copertura), 2005	1 (35)	
22	Fabriano, Edificio residenziale (retrofit con sottofondazione), 2005	1 (36)	
23	S. Venerina (CT), Villetta, 2005	1 (37)	
24	Siracusa, Santuario della Madonna delle Lacrime (isolam. copertura), 2006	1 (38)	
25	Ragusa, Centro Direzionale, 2006	1 (39)	
26	Montelongo (CB), Chiesa Santa Maria in Nives, 2006	1 (40)	
27	Gran Sasso, Laboratorio CNR, 2006	1 (41)	
28	Crowne Hotel, Caserta, Isolamento della copertura, 2006	1 (42)	
29	Gaggio Montano (BO), Edificio della Protezione Civile, 2007	1 (43)	
30	San Giuliano di Puglia (CB), Edificio residenziale, 2007	1 (44)	
31	Grassina (FI), Sede dell'Associazione Fratellanza Pop. Croce D'Oro, 2007	1 (45)	
32	Rocca di Castell'Ottieri (GR), Edificio residenziale, in costruzione	1 (46)	
33	San Giuliano di Puglia (CB), Scuola e Centro "Le Tre Torri", 2008	2 (48)	
34	Foligno, Centro Protezione Civile (3 completati, 2 in costruz., 2 progettati)	7 (55)	
35	Cerignola (FG), Edifici residenziali, 2008	4 (59)	
36	Napoli, Ospedale del Mare, 2008	2 (61)	
37	Napoli, Centro NATO di Napoli Sud, in fase di completamento	1 (62)	
38	Bojano (CB), Scuola, in fase di completamento	1 (63)	
39	Gricignano (CE), villetta (in completamento)	1 (64)	
40	Santa Severina (SR), Edificio residenziale, in costruzione	1 (65)	
41	San Giuliano di Puglia (CB), Edificio residenziale, in costruzione	1 (66)	
42	Corciano (PG), Edifici in muratura, in costruzione	2 (68)	
43	Marsico Vetere (PZ), Chiesa di S. Francesco (copertura), in costruzione	1 (69)	
44	Marsico Vetere (PZ), Chiesa di S. Francesco (campanile), in costruzione	1 (70)	
45	L'Aquila, Facoltà di Lettere, in costruzione	1 (71)	
46	Riposto (CT), Scuola Quasimodo, in costruzione	1 (72)	
47	Monteleone di Puglia (FG), Scuola, in costruzione	1 (73)	

 Tabella B – Elenco delle applicazioni in Italia dell'isolamento sismico (GLIS, 2009)

Capitolo I

48	Romagnano al Monte (SA), Centro Studi e Ricerche, in costruzione	1 (74)		
49	Frosinone, Ospedale, in costruzione 3			
50	Spoleto (TR), Centro per la conservazione dei Beni Culturali, in costruzione	1 (78)		
51	Villafranca Lunigiana (MS), Nuove scuola media ed elementare, in costruz.	2 (80)		
52	Gallicano (MS), Nuove scuola media e scuola elementare, in costruzione	2 (82)		
53	Fivizzano (MS), Nuova scuola media, in costruzione	1 (83)		
54	Mulazzo (MS), Nuova scuola materna ed elementare (1 in costruz., 2 prog.)	3 (86)		
55	Ancona, Edificio polifunzionale, in costruzione	1 (87)		
56	Messina, Edificio di 8 piani, in costruzione	1 (88)		
57	Catania, Chiesa della Beata Vergine del Carmelo, lavori appaltati	1 (89)		
58	Marzabotto (BO), Scuola, lavori in fase di appalto	1 (90)		
59	Frosolone (IS), Villetta, progetto ultimato	1 (91)		
60	Acireale (CT), Edificio residenziale, progetto ultimato	1 (92)		
61	Pordenone, Ospedale, progetto ultimato	1 (93)		
62	Massa Carrara, Scuola media, in fase di progetto	1 (94)		
63	Campobasso, Liceo scientifico Romita (retrofit), in fase di progetto	3 (97)		
64	Rieti, Scuola, in fase di progetto	1 (98)		
65	San Gregorio (CT) (retrofit), in fase di progetto	1 (99)		
66	Potenza, Ospedale San Carlo, in fase di progetto	1 (100)		
67	Reggio Calabria, Edificio residenziale, in fase di progetto	1 (101)		
68	Pontecorvo (FR), Centro Commerciale, in fase di progetto	1 (102)		
69	Progetto CASE, L'Aquila, (lavori ultimati a febbraio 2010)	185 (287)		

CAPITOLO I

Descrizione dell'intervento, analisi del sito e delle azioni

1.1 Descrizione dell'edificio, classe d'uso e periodo di riferimento

L'edificio è di tipologia residenziale (quindi ad uso civile abitazione), monofamiliare ed isolato. Si presenta strutturato su tre livelli di cui uno interrato adibito ad autorimessa e locali di servizio. Al piano terreno si trova la zona giorno mentre al piano primo la zona notte. Nella porzione dedicata a soggiorno si apre un doppio volume (tra piano terra e primo piano) con una parte a soppalco accessibile da una rampa metallica poggiante sul primo impalcato. Il vano scale principale si trova nella zona centrale dell'edificio, anche la struttura di questa rampa è metallica con struttura portante dedicata che parte dal piano interrato. Una ulteriore rampa di servizio della medesima tipologia delle altre collega piano terra e primo piano; è situata nell'ala opposta alla zona soggiorno e grava sul primo impalcato. Il primo impalcato è distribuito su tre differenti quote. La copertura è metallica, posizionata su di un solaio portante piano.

Complessivamente l'edificio si presenta irregolare in pianta (forma riconducibile ad una L) e anche in altezza, per la presenza di numerose sporgenze, il doppio volume e una porzione in falso fra il secondo solaio e il solaio di copertura. L'altezza sotto la gronda è di circa 6,5 metri e la superficie lorda delle porzioni fuori terra è di circa 300 metri quadrati.

Il progetto originario prevede una struttura portante a telaio in conglomerato cementizio armato, fondazioni nastriformi a trave rovescia doppiamente ordite, solai latero-cementizi per primo impalcato, secondo impalcato e copertura e lastre a doppia orditura in conglomerato cementizio armato per tutte le sporgenze quali balconi, gronde e pianerottoli. Il piano interrato è circondato da muri di sostegno in conglomerato cementizio armato, tutti controterra. Nelle Figure 1.1, 1.2 e 1.3 si hanno alcune viste dell'edificio.

Capitolo I

Figure 1.1, 1.2 e 1.3 – Immagini render dell'edificio oggetto della progettazione.

1.1.1 Vita nominale

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale dei diversi tipi di opere è riportata ai sensi del D.M. 14 gennaio 2008 nella seguente tabella:

Tabella 1.1.1 – Vita nominale per diversi tipi di opere

	TIPI DI COSTRUZIONE	Vita Nominale V_N (in anni)
1	Opere provvisorie, opere provvisionali, strutture in fase costruttiva	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100

Per quanto inizialmente detto sulla tipologia dell'edificio in esame (civile abitazione), questo rientra nella categoria delle opere ordinarie, pertanto si considera la seguente *vita nominale*:

$$V_N = 50 anni$$

1.1.2 Classe d'uso e periodo di riferimento per l'azione sismica

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, la normativa suddivide le costruzioni in classi d'uso. L'edificio in oggetto ricade nella *Classe d'uso II*.

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un *periodo di riferimento* V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la *vita nominale* V_N per il *coefficiente d'uso* C_U che è definito al variare della *classe d'uso* secondo la seguente tabella:

 Tabella 1.1.2 – Valori del coefficiente d'uso

CLASSE D'USO	Ι	II	III	IV
Coefficiente <i>C</i> ^{<i>U</i>}	0,7	1,0	1,5	2,0

Per il fabbricato in esame si avrà quindi:

$$V_R = V_N \cdot C_U = 50 \cdot 1, 0 = 50 \text{ anni}$$
(1.1)

1.2 Caratteristiche geologiche e geotecniche del sito

L'abitato di Cavola è stato dichiarato da consolidare nel 1938 ai sensi della legge 445/1908. All'interno della perimetrazione effettuata ai sensi della legge 2 febbraio 1974 n.64 e dell'art. 29 del Piano Territoriale Paesistico Regionale, il lotto ricade in zona contermine. Essendo il sito in esame segnalato tuttora come area in "frana quiescente" nella Carta del Dissesto del Piano per l'assetto idrogeologico dell'Autorità di bacino del Fiume Po, sono state indagate le condizioni di stabilità globale dell'intero versante mediante prove in situ.

Sono stati quindi realizzati tre sondaggi penetrometrici e due saggi esplorativi mediante escavatore meccanico per la definizione delle caratteristiche litostratigrafiche e geotecniche.

Al di sotto dello strato agrario superficiale è stato intercetta una compagine detritica di natura argillosa con lievi differenze di frazione limosa da saggio a saggio. Si può quindi definire il tipo di terreno come *argilla limosa*.

I valori di resistenza alla compressione semplice, per profondità superiori al metro dal piano campagna non scendono mai al di sotto del seguente valore:

$$q_u = 2,0 \ \frac{kg}{cm^2}$$

1.2.1 Stendimento sismico

Per la definizione del parametro sismico $V_{s,30}$ si sono utilizzati i risultati di una adiacente campagna di indagini. Il rilievo sismico è effettuato a mezzo di un sismografo a dodici canali, realizzato in cinque battute lungo una stesa della lunghezza di circa 44 metri.

Lo scopo del sondaggio sismico è quello di determinare la velocità delle onde di compressione longitudinali V_p negli strati del sottosuolo fino alla profondità di 30 metri dal piano campagna. La velocità di propagazione delle onde di taglio V_s si ricava dalla velocità delle onde di compressione longitudinali V_p registrate nello stendimento sismico a rifrazione, utilizzando la seguente correlazione che tiene conto del coefficiente di Poisson v:

$$V_{s} = V_{p} \sqrt{\frac{1 - 2\nu}{2 - 2\nu}}$$
(1.2)

Dalla suddetta sezione geofisica si può, utilizzando i dati restituiti da indagini geognostiche precedenti e con ragionevole approssimazione, ricostruire la stratigrafia dei primi 30 metri di sottosuolo ed assegnare ad ogni strato così definito un adeguato valore del coefficiente di Poisson. Avendo poi cura di scegliere la verticale coi peggiori parametri geofisici registrati al fine di ottenere risultati a favore di sicurezza, tramite la precedente correlazione, si può determinare il valore di V_s per ogni singolo strato. Di seguito si riportano i risultati in tabella:

Tabella	1.2	2.1
---------	-----	-----

Litotipo	Spessore dello strato	$V_p \left[m/s \right]$	C. di Poisson, ν	$V_s [m/s]$
Cotica superficiale	2 metri	200	0,4	82
Livello intermedio	5 metri	400	0,3	321
Livello profondo	23 metri	800	0,2	490

Si consideri ora la seguente relazione contenuta nelle Norme Tecniche per le Costruzioni (D.M. 14 gennaio 2008) che esprime la velocità equivalente delle onde di taglio $V_{s,30}$:

$$V_{s,30} = \frac{30}{\sum_{i=1}^{N} \frac{h_i}{V_{s,i}}} \quad [m/s]$$
(1.3)

Nella precedente espressione si indicano:

- h_i spessore (in metri) dell'i-simo strato compreso nei primi 30 metri di profondità;
- $V_{s,i}$ velocità delle onde di taglio nell'i-simo strato.

Applicando quindi la formula da normativa, in base ai dati rilevati, si ottiene il seguente valore:

$$V_{s,30} = 280 \ m/s$$

Capitolo I

Questo valore definisce l'appartenenza di questo sottosuolo alla *categoria C* secondo la Tabella 3.2.II delle Norme Tecniche per le Costruzioni, della quale si riporta l'estratto:

Tabella 1.2.2

Categoria	Descrizione
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero 15 < $N_{SPT,30}$ < 50 nei terreni a grana grossa e 70 < $c_{u,30}$ < 250 kPa nei terreni a grana fina).

Ai fini dei successivi calcoli per la determinazione delle azioni sismiche, la normativa richiede l'ulteriore classificazione del terreno in base alla morfologia. Valutate le condizioni topografiche si classifica il sito in oggetto come *categoria topografica T1* secondo la Tabella 2.3.IV del D.M. 14 gennaio 2008, della quale si riporta l'estratto:

Tabella 1.2.3

Categoria	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$		

1.2.2 Sulla capacità portante del terreno e costante di Winkler

Sul sito in esame sono state realizzate prove penetrometriche dinamiche. Si sono quindi correlati i dati ottenuti (*numero di colpi* N_{10}) con quelli che si sarebbero dedotti da prove SPT (*Standard Penetration Test*) e in particolar modo con il *numero di colpi* o *resistenza penetrometrica* N_{SPT} . Le prove SPT sono tra le più diffuse e consolidate nel campo della caratterizzazione geotecnica dei terreni. La *resistenza penetrometrica* N_{SPT} si ottiene da *numero di colpi* N_{10} registrati nelle prove penetrometriche dinamiche utilizzando la correlazione elaborata da Vannelli e Benassi nel 1983 per penetrometri tipo Dinastar ($0,7N_{SPT} \ge N_{10} \ge 1,2N_{SPT}$). Dalla *resistenza penetrometrica* N_{SPT} si ricava (tramite relazioni empiriche) la coesione non drenata c_u dell'ammasso detritico, considerato privo di *angolo di attrito interno* ($\phi = 0$). Il *modulo di compressibilità* o *modulo edometrico* E_{ed} si ricava dai valori di *resistenza alla punta* q_c di prove penetrometriche statiche mediante alcune correlazioni empiriche.

Si riporta nella seguente tabella la caratterizzazione dell'orizzonte litomeccanico superficiale (primi 5 metri di profondità dal piano campagna):

Tabella 1.2.4

ORIZZONTE 1	VALORI CARATTERISTICI ($\phi_k = 0$)	Profondità
Detrito gravitativo	Valori prossimi al minimo	[m]
Coesione non drenata $c_{u,k}$	50 kPa	
Modulo edometrico E _{ed,k}	14500 kPa	1,0 ÷ 5,0 m
Peso del terreno γ	19,0 kN/m³	

La *capacità portante ultima del terreno* q_d in situazione statica (non applicando coefficienti di sicurezza e coefficienti parziali) è stata ricavata dai valori di *resistenza dinamica* r_d ottenuti dalla prova penetrometrica per profondità maggiori di 1,0 metri dal piano campagna. Si è quindi calcolato il seguente valore minimo:

$$q_d = 300 \ kPa = 3,06 \frac{kg}{cm^2}$$

Per poter successivamente valutare l'interazione terreno-struttura utilizzando il *modello di suolo elastico alla Winkler*, occorre determinare la *costante di sottofondo k*. A tal fine si considera la seguente relazione, riduzione della più nota *formula di Vesić* (Bowles,1991):

$$k = \frac{E_s}{B(1-\nu^2)} \tag{1.4}$$

dove: E_s modulo elastico del terreno;

B larghezza della sezione della fondazione (nastriforme);

 ν coefficiente di Poisson del terreno.

Il valore del *modulo elastico del terreno* E_s può essere dedotto dal *modulo edometrico* E_{ed} noto il *coefficiente di Poisson* v relativo allo strato di terreno in esame, considerando che E_{ed} è un modulo calcolato in condizione di

espansione laterale impedita. Dalla *teoria dell'elasticità* per un mezzo continuo si desume la seguente relazione:

$$E_s = E_{ed} \frac{(1 - \nu - 2\nu^2)}{(1 - \nu)} \tag{1.5}$$

Impiegando un *coefficiente di Poisson* v pari a 0,3 dedotto dallo stendimento sismico e validato dalla letteratura tecnica per questo tipo di terreno, si ottiene il valore del *modulo elastico*:

$$E_s = 10771 \, kPa$$

Per motivi di programmazione al calcolatore, si preferisce mantenere il valore della *costante di sottofondo* indipendente dalle dimensioni geometriche della fondazione; si calcolerà quindi la quantità *kB*:

$$kB = \frac{E_s}{(1-\nu^2)} = \frac{1,0771}{(1-0,3^2)} \cong 1,18 \ \frac{kN}{cm^2}$$
(1.6)

1.3 Valutazione dell'azione sismica

Analizzati gli aspetti geologici e topografici del sito si possono valutare le azioni sismiche correlate al sito in esame e in modo particolare determinare gli *spettri di risposta elastici in accelerazione*. Detto spettro è espresso da una forma spettrale (spettro normalizzato) riferita ad uno *smorzamento convenzionale* del 5%, moltiplicata per il valore della *accelerazione orizzontale massima* a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della *probabilità di superamento nel periodo di riferimento* P_{V_R} . Gli spettri così definiti possono essere utilizzati per strutture con periodo fondamentale minore o uguale a 4,0 secondi; per strutture con periodi fondamentali superiori lo spettro deve essere definito da apposte analisi ovvero l'azione sismica deve essere descritta mediante accelerogrammi.

1.3.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Quale che sia la *probabilità di superamento nel periodo di riferimento* P_{V_R} considerata, lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$0 \leq T < T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B}\right)\right]$$

$$T_B \leq T < T_C \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$$

$$T_C \leq T < T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C T_D}{T^2}\right)$$
(1.7)

nelle quali T ed S_e sono rispettivamente il *periodo di vibrazione* e l'*accelerazione spettrale orizzontale*; inoltre:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la seguente relazione:

$$S = S_S \cdot S_T \quad , \tag{1.8}$$

essendo S_S il *coefficiente di amplificazione stratigrafica* (Tabella 1.3.1) e S_T il *coefficiente di amplificazione topografica* (Tabella 1.3.2);

 η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione

$$\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0,55 \quad , \tag{1.9}$$

dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;

 F_0 è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;

 T_c è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da:

$$T_C = C_C \cdot T_C^* \quad , \tag{1.10}$$

dove T_c^* è il periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale tabulato in normativa corrispondente al sito in oggetto e C_c è un coefficiente funzione della categoria di sottosuolo;

 T_B è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante:

$$T_B = \frac{T_C}{3} \quad ; \tag{1.11}$$

 T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione:

$$T_D = 4.0 \cdot \frac{a_g}{g} + 1.6 \ . \tag{1.12}$$

Si specificano infine i concetti appena esposti di *amplificazione stratigrafica* e *amplificazione topografica*:

• Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1.

Per le categorie di sottosuolo B, C, D ed E i coefficienti S_S e C_C possono essere calcolati in funzione dei valori di F_0 e T_C^* relativi al sottosuolo di categoria A, mediante le espressioni fornite dalla normativa, nelle quali g è l'accelerazione di gravità ed il tempo è espresso in secondi.

Si riporta nella seguente tabella un estratto delle norme riguardante il sottosuolo di categoria C alla quale appartiene quello oggetto di studio:

Tabella 1	1.3.1
-----------	-------

Categoria sottosuolo	S _S	C _C
С	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$

• Amplificazione topografica

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella, espressi in funzione della categoria topografica e dell'ubicazione dell'opera o dell'intervento.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

 Tabella 1.3.2 – Valori massimi del coefficiente di amplificazione topografica

La variazione spaziale del coefficiente di amplificazione topografica è definita da un decremento lineare con l'altezza del pendio o rilievo, dalla sommità o cresta fino alla base dove S_T assume valore unitario.

Come già anticipato, il sito in esame è stato classificato come appartenente alla categoria topografica T1 (pendio con pendenza media entro i 15°).

1.3.2 Spettro di risposta elastico in accelerazione della componente verticale

Lo spettro di risposta elastico in accelerazione della componente verticale è definito dalle seguenti espressioni:

$$0 \leq T < T_B \qquad S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \left(1 - \frac{T}{T_B}\right)\right]$$

$$T_B \leq T < T_C \qquad S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v$$

$$T_C \leq T < T_D \qquad S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T \qquad S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2}\right)$$
(1.13)

nelle quali T ed S_{ve} sono rispettivamente il *periodo di vibrazione* e l'*accelerazione spettrale verticale* e F_v è il fattore che quantifica l'amplificazione spettrale massima in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la ralazione:

$$F_{\nu} = 1,35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0,5}$$
 (1.14)

I valori di a_g , F_0 , S, η sono i medesimi definiti per le componenti orizzontali al paragrafo 1.3.1; i valori di S_S , T_B , T_C e T_D , salvo più accurate determinazioni,

sono quelli definiti nella seguente tabella:

Categoria di sottosuolo	S _S	T _B	T _C	T_D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,00 s

 Tabella 1.3.3 – Valori dei parametri dello spettro di risposta elastico verticale

Per tener conto delle condizioni topografiche, in assenza di specifiche analisi si utilizzano i valori del coefficiente topografico S_T già riportati nella Tabella 1.3.2.

1.3.3 Stati limite per l'azione sismica e relative probabilità di superamento

Nei confronti delle azioni sismiche, gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti. Gli stati limite di esercizio sono: lo *Stato Limite di Operatività* (SLO) e lo *Stato Limite di Danno* (SLD). Gli stati limite ultimi sono invece: lo *Stato Limite di salvaguardia della Vita* (SLV) e lo *Stato Limite di prevenzione del Collasso* (SLC).

In questa progettazione si è scelto di seguire una progettazione agli stati limite ultimi e in particolare si è considerato lo *Stato Limite di salvaguardia della Vita* (SLV): in questo approccio, a seguito del terremoto, la costruzione subisce rotture e crolli delle componenti non strutturali ed impiantistici e significativi danni delle componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

La probabilità di superamento nel periodo di riferimento P_{V_R} (dove V_R è il periodo di riferimento) alla quale riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, è indicata nella normativa (D.M. 14 gennaio 2008). Si riporta il valore di P_{V_R} attinente allo *Stato Limite di* salvaguardia della Vita (SLV):

$$P_{V_R} = 10\%$$
 (1.15)

1.3.4 Spettri di progetto per gli stati limite ultimi e fattore di struttura

Qualora le verifiche agli stati limite ultimi non vengano effettuate tramite l'uso di opportuni accelerogrammi ed analisi dinamiche al passo, ai fini del progetto o della verifica delle strutture, le capacità dissipative delle strutture possono essere messe in conto attraverso una riduzione delle forze elastiche che tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni. In tal caso, lo *spettro di progetto* $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo *spettro elastico* corrispondente riferito alla *probabilità di superamento nel periodo di riferimento* P_{V_R} considerata con le ordinate ridotte sostituendo nelle formule 1.7 e 1.13 il coefficiente η con 1/q, dove q è il *fattore di struttura* di seguito definito. Si assumerà comunque $S_d(T) \ge 0, 2 \cdot a_q$.

L'analisi delle strutture soggette ad azione sismica può essere lineare o non lineare. L'analisi lineare (che è quella che si intende eseguire in questa fase del progetto) può essere utilizzata per calcolare gli effetti delle azioni sismiche sia nel caso di sistemi dissipativi sia nel caso di sistemi non dissipativi. Quando si utilizza l'analisi lineare per sistemi dissipativi, come avviene per gli stati limite ultimi, gli effetti delle azioni sismiche sono calcolati, quale che sia la modellazione per esse utilizzata, riferendosi allo *spettro di progetto* ottenuto assumendo un *fattore di struttura q* maggiore dell'unità. Il valore del *fattore di struttura q* da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità del materiale. Esso può essere calcolato tramite la seguente espressione:

$$q = q_0 \cdot K_R \tag{1.16}$$

dove:

 q_0 è il valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tale da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione;

 K_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per le costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.

Per la componente verticale dell'azione sismica il valore di q utilizzato a meno di adeguate analisi giustificative è q = 1,5 per qualunque tipologia strutturale e di materiale, tranne per i ponti per i quali è pari all'unità.

I massimi valori di q_0 relativi alle diverse tipologie ed alle due classi *di duttilità* contemplate dalla normativa (CD"A" e CD"B") sono riportati nella seguente tabella:

Tabella 1.3.4 – Valori di q_0

Tipologia	q_0		
Tipologia	CD"B"	CD"A"	
Strutture a telaio, a pareti accoppiate, miste	$3,0 \cdot \alpha_u/\alpha_1$	$4,5 \cdot \alpha_u / \alpha_1$	
Strutture a pareti non accoppiate	3,0	4,0 $\cdot \alpha_u / \alpha_1$	
Strutture deformabili torsionalmente	2,0	3,0	
Strutture a pendolo inverso	1,5	2,0	

Per l'analisi sismica dell'edificio si assumerà la struttura deformabile torsionalmente. La classe di duttilità del progetto è la CD"B" (bassa duttilità).

1.3.5 Pericolosità sismica

Le Norme Tecniche pel le Costruzioni (NTC) adottano un approccio prestazionale alla progettazione delle strutture nuove e alla verifica di quelle esistenti. Nei riguardi dell'azione sismica l'obiettivo e il controllo del livello di danneggiamento della costruzione a fronte di terremoti che possono verificarsi nel sito di costruzione.

L'azione sismica sulle costruzioni è valutata a partire da una "pericolosità sismica di base" in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale (categoria A delle NTC). La "pericolosità sismica di base", o più semplicemente *pericolosità sismica*, costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. Deve essere descritta con sufficiente livello di dettaglio, sia in termini geografici che in termini temporali; tali condizioni possono ritenersi soddisfatte se i risultati dello studio di pericolosità sono forniti:

- in termini di accelerazione orizzontale massima a_g e dei parametri che permettono di definire gli spettri elastici nelle condizioni di riferimento rigido orizzontale già definito;
- in corrispondenza dei punti di un reticolo (*reticolo di riferimento*) i cui nodi siano sufficientemente vicini fra loro (distanze inferiori ai 10 km);
- per diverse *probabilità di superamento* in 50 anni e/o diversi *periodi di ritorno T_R* ricadenti in un *intervallo di riferimento* compreso almeno tra 30 e 2475 anni, estremi esclusi.

L'azione sismica così individuata viene successivamente variata per tener conto delle modifiche prodotte dalle condizioni locali stratigrafiche del sottosuolo effettivamente presente nel sito di costruzione e dalla morfologia della superficie. Tali modifiche caratterizzano la risposta sismica locale.

Le azioni di progetto di ricavano secondo la normativa (NTC) dalle accelerazioni a_g e dalle relative forme spettrali. Le forme spettrali previste dal D.M. 14 gennaio 2008 sono definite su riferimento rigido orizzontale in funzione di tre parametri:

- a_g accelerazione orizzontale massima del terreno;
- F_0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c^* periodo di inizio dl tratto a velocità costante dello spettro in accelerazione orizzontale.

Le forme spettrali previste dalla normativa sono caratterizzate da prescelte probabilità si superamento P_{V_R} e vite di riferimento V_R che occorre fissare

Capitolo I

preventivamente. E' però conveniente caratterizzare la *pericolosità sismica* con il *periodo di ritorno* dell'azione sismica T_R , espresso in anni.

Fissata la *vita di riferimento* V_R , i due parametri T_R e P_{V_R} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_{R} = -\frac{V_{R}}{\ln(1 - P_{V_{R}})}$$
(1.17)

Si può quindi determinare il *periodo di ritorno* dell'azione sismica T_R , avendo precedentemente fissato la *vita di riferimento* V_R della struttura (equazione 1.1) e la *probabilità di superamento* P_{V_R} nella vita di riferimento (equazione 1.15) pertinente allo stato limite considerato (SLV); si ottiene quindi:

$$T_R = -\frac{50}{\ln(1-0,10)} \cong 475 \ anni$$
 (1.18)

Noto il *periodo di ritorno* $T_R = 475 anni$, occorrono solamente longitudine e latitudine del sito in esame per poter estrarre dal retico lodi riferimento della normativa i parametri a_g , $F_0 \in T_C^*$.

La latitudine e la longitudine dell'abitato di Cavola, Comune di Toano, Provincia di Reggio nell'Emilia, sono le seguenti:

Tabella 1.3.5

Comune di Teore (DE)	LATITUDINE	44,3773
Comune ur Toano (KE)	LONGITUDINE	10,5622

I parametri per la definizione delle forme spettrali pertinenti al sito oggetto di studio sono ottenuti per interpolazione mediante superficie rigata dei punti 17163, 17164, 17385 e 17386 del *reticolo di riferimento* e vengono riportati nella seguente tabella:

Tabella 1.3.6

$T_R = 475 anni$	a_g	F ₀	$T_{\mathcal{C}}^*$
	0,162 <i>g</i>	2,531	0,292 <i>s</i>
1.3.6 Determinazione dello spettro di progetto (componenti orizzontali)

Noti i dati riferiti al sito (Tabella 1.3.6), applicando le formule di Tabella 1.3.1, si calcolano il *coefficiente di amplificazione stratigrafica* S_S e il coefficiente C_C per le componenti orizzontali:

$$S_s = 1,70 - 0,60 \cdot 2,531 \cdot \frac{0,162g}{g} \cong 1,454$$
 (1.19)

$$C_C = 1,05 \cdot (0,292)^{-0,33} \cong 1,576 \tag{1.20}$$

Richiamando il valore del *coefficiente di amplificazione topografica* S_T (Tabella 1.3.2) e applicando la formula 1.8 si calcola il coefficiente *S*:

$$S = 1,454 \cdot 1 = 1,454 \tag{1.21}$$

Come anticipato al paragrafo 1.3.4, la progettazione è svolta in classe di bassa duttilità (CD"B") e si ipotizza la struttura irregolare in altezza e deformabile torsionalmente (questo verrà in seguito validato nell'analisi modale). Si avrà pertanto:

$$q_0 = 2,0$$
 (1.22)

$$q = 2,0 \cdot 0,8 = 1,6 \tag{1.23}$$

$$\eta = \frac{1}{q} = \frac{1}{1,6} = 0,625 \tag{1.24}$$

Si possono quindi determinare i periodi caratteristici dello spettro:

$$T_C = C_C \cdot T_C^* = 1,576 \cdot 0,292 = 0,460 s \tag{1.25}$$

$$T_B = \frac{T_C}{3} = \frac{0,460}{3} = 0,153 s \tag{1.26}$$

$$T_D = 4.0 \cdot \frac{0.162g}{g} + 1.6 = 2.248 \, s \tag{1.27}$$

Intendendo determinare lo spettro di progetto per uno stato limite, in particolare lo Stato Limite di salvaguardia della Vita (SLV), si è operata la sostituzione del coefficiente η con l'inverso del *fattore di struttura q* (formula

Capitolo I

1.24). Il risultato è il seguente spettro in accelerazione delle componenti orizzontali:

Grafico 1.1 – Spettro di progetto in accelerazione delle componenti orizzontali

Le ordinate del Grafico 1.1 sono ottenute applicando le formule 1.13.

1.3.7 Determinazione dello spettro di progetto (componente verticale)

Per la componente verticale dello spettro in accelerazione, il *coefficiente di amplificazione stratigrafica* S_S e i periodi caratteristici già definiti dalla normativa (si riportano i valori di Tabella 1.3.3):

$$S_S = 1,0$$
 (1.28)

$$T_B = 0.05 \ s \tag{1.29}$$

$$T_c = 0.15 s$$
 (1.30)

$$T_D = 1,00 s \tag{1.31}$$

Applicando la formula (1.8) si ha:

$$S = 1,0 \cdot 1 = 1,0 \tag{1.32}$$

Nel caso della componente verticale dell'azione sismica, in assenza di opportune analisi, si assume da normativa per qualsiasi struttura e materiale (tranne che per i ponti) il seguente valore del *fattore di struttura q*:

$$q = 1,5$$
 (1.33)

Come illustrato nel precedente paragrafo (§ 1.3.6) lo spettro di progetto per uno stato limite si ottiene sostituendo il coefficiente η con l'inverso del *fattore di struttura q* (formula 1.24):

$$\eta = \frac{1}{q} = \frac{1}{1,5} = 0,667 \tag{1.34}$$

Il risultato è il seguente spettro in accelerazione delle componenti orizzontali (Grafico 1.2) dove le ordinate sono ottenute applicando le formule 1.13.

Grafico 1.2 – Spettro di progetto della componente verticale

1.3.8 Combinazione dell'azione sismica con le altre azioni

Per costruzioni civili e industriali le verifiche agli stati limite, sia ultimi che di esercizio, sono effettuate per la *combinazione sismica*:

$$G_1 + G_2 + P + E + \sum_j \psi_{2j} Q_{kj}$$
(1.35)

Capitolo I

Gli effetti dell'azione sismica vengono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj} \tag{1.36}$$

Si sono indicati con G_1 i pesi propri degli elementi strutturali, con G_2 i pesi dei carichi permanenti non strutturali, con P la precompressione, con E l'azione sismica e con Q i carichi variabili. Maggiori dettagli e i valori dei coefficienti ψ_{2i} saranno riportati nel paragrafo seguente (§ 1.4.1).

1.4 Valutazione delle azioni statiche

La fase di verifiche statiche su di una struttura, da quando la nuova normativa è entrata in regime stabile è condotta con il metodo agli Stati Limite. Gli Stati Limite si suddividono in Stati Limite Ultimi (SLU) e Stati Limite di Esercizio (SLE): i primi comportano il raggiungimento di una condizione limite di equilibrio che ammette anche crolli parziali e deformazioni eccessive ed ogni edificio deve essere verificato per gli SLU; i secondi (SLE) prevedono che l'edificio sia eventualmente verificato in relazione alle prestazioni attese.

1.4.1 Classificazione delle azioni secondo la loro variazione nel tempo

Le Norme Tecniche per le Costruzioni propongono la seguente classificazione basata sulla variazione temporale dell'intensità delle azioni:

- a) *permanenti* (G): azioni che agiscono durante tutta la vita nominale della costruzione, la cui variazione di intensità nel tempo è così piccola e lenta da poterle considerare con sufficiente approssimazione costanti nel tempo:
 - G_1 : peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);

- G_2 : peso proprio di tutti gli elementi non strutturali;
- spostamenti e deformazioni imposti, previsti dal progetto e realizzati all'atto della costruzione;
- *P*: pretensione e precompressione;
- ritiro e viscosità;
- spostamenti differenziali;
- b) *variabili* (*Q*): azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:
 - *di lunga durata*: agiscono con una intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
 - *di breve durata*: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;
- c) *eccezionali* (*A*): azioni che si verificano solo eccezionalmente nel corso della vita nominale della struttura:
 - incendi;
 - esplosioni;
 - urti ed impatti;
- d) sismiche (E): azioni derivanti dai terremoti.

1.4.2 Combinazioni delle azioni

In questo progetto per la parte statica si considerano solamente gli Stati Limite Ultimi (SLU), pertanto si riporta la *combinazione fondamentale* pertinente agli SLU:

$$\gamma_{G1}G_1 + \gamma_{G2}G_2 + \gamma_P P + \gamma_{Q1}Q_{k1} + \gamma_{Q2}\psi_{02}Q_{k2} + \gamma_{Q3}\psi_{03}Q_{k3} + \cdots$$
(1.37)

Per quanto riguarda altre combinazioni, occorre menzionare anche la *combinazione sismica*, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica *E*:

$$G_1 + G_2 + P + \psi_{21}Q_{k1} + \psi_{22}Q_{k2} + \cdots$$
 (1.38)

Capitolo I

Nella seguente tabella sono riportati i coefficienti di combinazione:

Categoria/Azione Variabile	ψ_{0j}	ψ_{1j}	ψ_{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, industrie	1,0	0,9	0,8
Categoria F <i>Rimesse e parcheggi (veicoli</i> ≤30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (veicoli >30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

 Tabella 1.4.1 – Valori dei coefficienti di combinazione per i carichi variabili

I valori dei coefficienti parziali sono riportati nel paragrafo seguente (§ 1.4.3).

1.4.3 Azioni nelle verifiche agli stati limite ultimi

Le verifiche agli stati limite devono essere eseguite per tutte le più gravose condizioni di carico che possono agire sulla struttura; nelle verifiche agli stati limite ultimi si distinguono:

- lo stato limite di equilibrio come corpo rigido (EQU);
- lo stato limite di resistenza della struttura compresi gli elementi di fondazione (STR);
- lo stato limite di resistenza del terreno (GEO).

Nella Tabella 1.4.2 sono riportati i valori dei coefficienti parziali delle azioni da assumere per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

Per le verifiche nei confronti dello stato limite ultimo di equilibrio come corpo rigido (EQU) si utilizzano i coefficienti parziali γ_F relativi alle azioni riportati nella colonna EQU della Tabella 1.4.2 sopra citata. Nelle verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO) si possono adottare in alternativa due diversi approcci progettuali:

- *Approccio 1*: si impiegano due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (*A*), per la resistenza dei materiali (*M*) ed eventualmente per la resistenza globale del sistema (*R*). Nella *Combinazione 1* dell'*Approccio 1*, per le azioni si impiegano i coefficienti γ_F riportati nella colonna *A*1 della Tabella 1.4.2, mentre per la *Combinazione 2* dell'*Approccio 1* si impiegano i coefficienti della colonna *A*2;
- *Approccio 2*: si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le azioni (*A*), per la resistenza dei materiali (*M*) ed eventualmente per la resistenza globale (*R*). In tale approccio si utilizzano i coefficienti parziali γ_F riportati nella colonna *A*1 della seguente tabella.

 Tabella 1.4.2 – Coefficienti parziali per le azioni nelle verifiche SLU

		Coefficiente γ_F	EQU	A1 STR	A2 GEO
Carichi normanonti	favorevoli	27	0,9	1,0	1,0
Carichi permanenti	sfavorevoli	<i>YG</i> 1	1,1	1,3	1,0
Carichi permanenti	favorevoli	24	0,0	0,0	0,0
non strutturali ⁽¹⁾	sfavorevoli	¥ G2	1,5	1,5	1,3
Camahi yamahili	favorevoli	24	0,0	0,0	0,0
Carichi Variabili	sfavorevoli	YQi	1,5	1,5	1,3
⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (es. permanenti portati) siano compiutamente definiti, si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.					

Nella precedente tabella si sono impiegati i seguenti simboli:

- γ_{G1} coefficiente parziale del peso proprio della struttura, nonché del peso del terreno e dell'acqua, quando pertinenti;
- γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ_{Qi} coefficiente parziale delle azioni variabili.

Per la precompressione si assume il coefficiente parziale $\gamma_P = 1,0$.

1.4.4 Pesi propri dei materiali strutturali

Per la determinazione dei pesi propri strutturali dei più comuni materiali possono essere assunti i valori dei pesi dell'unità di volume, riportati di seguito in Tabella 1.4.3 per i principali materiali da costruzione:

 Tabella 1.4.3 – Pesi dell'unità di volume dei principali materiali da costruzione

Materiale	Peso unità di volume
Calcestruzzo ordinario	24,0 KN/m ³
Calcestruzzo armato (e/o precompresso)	25,0 KN/m ³
Acciaio	78,5 KN/m ³
Laterizio (pieno)	18,0 KN/m ³
Laterizi forati e blocchi alveolati	6,5÷8,0 KN/m ³

1.4.5 Carichi permanenti non strutturali: elementi divisori interni

Sono considerati carichi permanenti non strutturali i carichi non rimovibili durante il normale esercizio della costruzione, quali quelli relativi a tamponature esterne, divisori interni, massetti, isolamenti, pavimenti e rivestimenti del piano di calpestio, intonaci, controsoffitti, impianti ed altro. Essi devono essere valutati sulla base delle dimensioni effettive delle opere e dei pesi dell'unità di volume dei materiali costituenti. In linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i carichi permanenti portati ed i carichi variabili potranno assumersi, per la verifica d'insieme, come uniformemente ripartiti.

Per gli orizzontamenti degli edifici per abitazioni e uffici, il peso proprio di elementi divisori interni può essere ragguagliato ad un carico permanente portato uniformemente distribuito g_{2k} , purché vengano adottate le misure costruttive atte ad assicurare una adeguata ripartizione del carico. Il carico uniformemente distribuito g_{2k} ora definito dipende dal peso proprio per unità di lunghezza G_{2k} delle partizioni nel modo seguente:

- per elementi divisori con $G_2 \le 1,0 \ kN/m$: $g_2 = 0,40 \ kN/m^2$;
- per elementi divisori con $1,0 < G_2 \le 2,0 \ kN/m$: $g_2 = 0,80 \ kN/m^2$;
- per elementi divisori con $2,0 < G_2 \leq 3,0 \ kN/m$: $g_2 = 1,20 \ kN/m^2$;

per elementi divisori con 3,0 < G₂ ≤ 4,0 kN/m : g₂ = 1,60 kN/m²;
per elementi divisori con 4,0 < G₂ ≤ 5,0 kN/m : g₂ = 2,00 kN/m².
Elementi divisori interni con peso proprio maggiore devono essere considerati in fase di progetto tenendo conto del loro effettivo posizionamento sul solaio.

1.4.6 Carichi variabili

I carichi variabili comprendono i carichi legati alla destinazione d'uso dell'opera; i modelli di azioni possono essere costituiti da:

- carichi verticali uniformemente distribuiti $q_k [kN/m^2]$;
- carichi verticali concentrati Q_k [kN];
- carichi orizzontali lineari $H_k [kN/m]$.

I carichi verticali Q_k formano oggetto di verifiche locali, sono da applicarsi su impronte definite e non devono essere sovrapposti ai corrispondenti carichi verticali distribuiti; in questa progettazione i carichi Q_k non sono presenti.

I valori nominali e/o caratteristici dei carichi verticali uniformemente distribuiti q_k sono riportati nella seguente tabella:

Cat.		Ambienti	q_k	Q_k	H_k
	Ambienti	ad uso residenziale		[KIN]	
A	Sono con abitazione esclusione	npresi in questa categoria i locali di e relativi servizi, gli alberghi (ad delle aree suscettibili di affollamento).	2,00	2,00	1,00
	Ambienti	suscettibili di affollamento.			
	Cat. C1	Ospedali, ristoranti, caffè, banche, scuole	3,00	2,00	1,00
	Cat. C2	Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi	4,00	4,00	2,00
C	Cat. C3	Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune	5,00	5,00	3,00
	Copertur	e e sottotetti			
Н	Cat. H1	Coperture e sottotetti accessibili per sola manutenzione	0,50	1,20	1,00
	Cat. H2	Coperture praticabili	secondo	cat. di appa	artenenza

Tabella 1.4.4 – Valori dei carichi d'esercizio per le diverse categorie di edifici

1.4.7 Calcolo del carico neve

Il carico provocato dalla neve sulle coperture viene valutato mediante la seguente espressione:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t \tag{1.39}$$

dove: q_s

è il carico neve sulla copertura;

- μ_i è il *coefficiente di forma della copertura* (Tabella 1.4.6);
- q_{sk} è il valore caratteristico di riferimento del carico neve al suolo;
- C_E è il *coefficiente di esposizione* (Tabella 1.4.5);
- C_t è il *coefficiente termico*.

Il *coefficiente di esposizione* C_E può essere utilizzato per modificare il valore del carico neve in copertura in funzione delle caratteristiche specifiche dell'area in cui sorge l'opera. Nella seguente tabella sono riportati valori consigliati del suddetto coefficiente di esposizione per diverse classi topografiche. Se non diversamente indicato si assume $C_E = 1$.

 Tabella 1.4.5 – Valori del coefficiente di esposizione per diverse classi topografiche

Topografia	Descrizione			
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti.	0,9		
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terremoto, altre costruzioni o alberi.			
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti.			

Il *coefficiente termico* C_t può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato $C_t = 1$.

Il *coefficiente di forma per le coperture* μ_i viene calcolato tenendo conto dell'angolo α formato dalla falda con l'orizzontale, espresso in gradi

sessagesimali. I valori del coefficiente μ_1 riportati nella seguente tabella, si riferiscono alle coperture ad una o due falde.

Coefficiente di forma	$0^{\circ} \le \alpha \le 30^{\circ}$	$30^\circ < \alpha < 60^\circ$	$\alpha \ge 60^{\circ}$
μ_1	0,8	$0,8\cdot\frac{(60-\alpha)}{30}$	0,0

Tabella 1.4.6 – Valori del coefficiente di forma

Sia per le coperture ad una falda, che per le coperture a due falde, si assume che la neve non sia impedita di scivolare. Se l'estremità più bassa della falda termina con un parapetto, una barriera od altre ostruzioni, allora il coefficiente di forma non potrà essere assunto inferiore a 0,8 indipendentemente dall'angolo α .

Il carico neve al suolo dipende dalle condizioni locali di clima e di esposizione, considerata la variabilità delle precipitazioni nevose da zona a zona. In mancanza di adeguate indagini statistiche e specifici studi locali, che tengano conto sia dell'altezza del manto nevoso che della sua densità, il carico di riferimento neve al suolo, per località poste a quota inferiore a 1500 m sul livello del mare, non dovrà essere assunto minore di quello calcolato in base alle espressioni riportate nel seguito, cui corrispondono valori associati ad un periodo di ritorno pari a 50 anni.

L'altitudine di riferimento a_s è la quota del suolo sul livello del mare nel sito di realizzazione dell'edificio. Come anticipato il sito in esame, ovvero Cavola di Toano (RE) è sito a quota 510 metri s.l.m., pertanto si indica:

$$a_s = 510 m$$
 (1.40)

Il suddetto sito di costruzione è classificato come *Zona 1 (Alpina)*; i valori caratteristici minimi del carico della neve al suolo per questa zona sono quelli riportati nel seguito:

$$q_{sk} = 1,50 \frac{kN}{m^2}; \qquad a_s \le 200 m$$

$$q_{sk} = 1,39 \left[1 + \left(\frac{a_s}{728}\right)^2 \right] \frac{kN}{m^2}; \qquad a_s > 200 m$$
(1.41)

Capitolo I

Si determina quindi il *valore caratteristico di neve al suolo* per altitudine e zona considerate:

$$q_{sk} = 1,39 \left[1 + \left(\frac{510}{728}\right)^2 \right] = 2,072 \frac{kN}{m^2}$$
 (1.42)

Vengono assunti per l'edificio i seguenti coefficienti:

- $C_E = 1,0$ (classe di esposizione topografica normale);

- $-C_t = 1$ (nessuna riduzione termica del carico neve);
- $\mu_i = 0.8$ (copertura a due falde con inclinazione $0^\circ \le \alpha \le 30^\circ$).

Il carico neve da considerarsi nella progettazione è il seguente:

$$q_s = 0.8 \cdot 2.072 \cdot 1.0 \cdot 1 = 1.658 \ \frac{kN}{m^2} \cong 170 \ \frac{kg}{m^2}$$
 (1.43)

1.4.8 Azioni del vento

In questa progettazione, data la modesta elevazione e la contenuta estensione dell'edificio, si trascurano gli effetti del vento.

1.4.9 Analisi dei carichi

- Coperture: $g_1 = 325 \ kg/m^2$ (Solaio latero-cementizio 20+5) $g_2 = 225 \ kg/m^2$ (Manto di copertura) $q_1 = 50 \ kg/m^2$ (Cat. H1 – Sola manutenzione) $q_s = 170 \ kg/m^2$ (Carico neve, Zona 1)
- Impalcati: $g_1 = 325 \ kg/m^2$ (Solaio latero-cementizio 20+5) $g_2 = 475 \ kg/m^2$ (Massetto, intonaco, pav. e tramezzi) $q_1 = 200 \ kg/m^2$ (Cat. A – Amb. ad uso residenziale)
- Scale e balconi: $g_1 = 500 \ kg/m^2$ (Soletta c.c.a., spessore 20 cm) $g_2 = 350 \ kg/m^2$ (Massetto, intonaco e pavimento) $q_1 = 400 \ kg/m^2$ (Cat. C2 – Balconi, ballatoi e scale) $q_s = 170 \ kg/m^2$ (Carico neve, Zona 1)

Occorre inoltre considerare il carico apportato alla struttura dalle pareti di tamponamento esterne: questo carico, assimilabile ad un carico lineare, grava direttamente sulle travi di bordo dei piani interessati ed eventualmente su qualche altra struttura per alcune zone particolari.

Viene riportata di seguito (Figura 1.1) la sezione della parete tipo di tamponamento:

Figura 1.1 – Parete di tamponamento: sezione e dettaglio dei materiali

I pesi specifici dei materiali impiegati per le murature di tamponamento sono i seguenti:

_	Malte e intonaci	$2.400 \ kg/m^3$
_	Blocchi in laterizio	$780 \ kg/m^3$
_	Laterizi forati	$650 \ kg/m^3$
_	Pannelli isolanti	$30 kg/m^3$

Considerando gli spessori dei materiali di Figura 1.1 e i pesi specifici appena elencati, si ottiene il seguente carico:

$$h_t = 335 \, kg/m^2 \tag{1.44}$$

Per le pareti di tamponamento aventi uno sviluppo in altezza di circa 3 metri si avrà H_{t1} mentre per quelle con altezza di circa 3,5 metri si avrà H_{t2} :

$$H_{t1} \cong 1000 \ kg/m$$

 $H_{t2} \cong 1200 \ kg/m$
(1.45)

1.4.10 Spinta delle terre

Il piano interrato dell'edificio è costituito da muri di sostegno perimetrali con uno sviluppo di 280 cm in altezza esclusa la fondazione da 40 cm; si definisce quindi:

$$h = 3,20 m$$
 (1.46)

Come già anticipato, il peso per unità di volume del terreno γ è

$$\gamma = 1900 \ kg/m^3 \tag{1.47}$$

mentre si assume il seguente angolo di attrito interno:

$$\varphi' = 20^{\circ} \tag{1.48}$$

Si possono quindi calcolare i seguenti coefficienti di spinta caratteristici del terreno studiato:

• Coefficiente a riposo:

$$K_0 = 1 - \sin \varphi' = 1 - \sin 20^\circ = 0,660 \tag{1.49}$$

• Coefficiente di spinta attiva:

$$K_a = \tan^2\left(45^\circ - \frac{\varphi'}{2}\right) = \tan^2\left(45^\circ - \frac{20^\circ}{2}\right) = 0,490$$
(1.50)

• Coefficiente di spinta passiva:

$$K_p = \tan^2\left(45^\circ + \frac{\varphi'}{2}\right) = \tan^2\left(45^\circ + \frac{20^\circ}{2}\right) = 2,040$$
(1.51)

Si possono infine determinare le risultanti delle spinte attiva e passiva del terreno sul muro di sostegno:

• Spinta attiva:

$$S_a = \frac{1}{2}\gamma h^2 K_a = \frac{1}{2}1900 \cdot 3.2^2 \cdot 0.490 = 4767 \ kg \tag{1.52}$$

• Spinta passiva:

$$S_p = \frac{1}{2}\gamma h^2 K_p \frac{1}{2} 1900 \cdot 32^2 \cdot 2040 = 19845 \, kg \tag{1.53}$$

CAPITOLO II

Analisi statica della struttura non isolata alla base

2.1 Aspetti introduttivi all'analisi statica della struttura

Il presente edificio, rientrante nella categoria delle costruzioni civili, presenta una struttura in calcestruzzo armato normale (cemento armato) rientrante nelle tipologie di calcestruzzi di peso normale.

2.1.1 Materiali strutturali e loro caratteristiche

Ai fini della valutazione del comportamento e della resistenza delle strutture in calcestruzzo, quest'ultimo viene titolato ed identificato mediante la *classe di resistenza* contraddistinta dai valori caratteristici delle resistenze cilindrica e cubica a compressione uni assiale, misurate rispettivamente su provini cilindrici (o prismatici) e cubici, espressa in MPa.

Si sceglie un calcestruzzo avente classe di resistenza C28/30.

Per quanto riguarda l'acciaio di armatura adottato, la tipologia prevalente e ammessa dalle nuove norme tecniche è l'acciaio B450C.

Materiali		Resistenze caratteristiche
Calcestruzzo C28/35 -		$f_{ck} = 25 MPa$
		$f_{ctk} = 1,8 MPa$
Acciaio per armature normali	B450C	$f_{yk} = 450 MPa$

 Tabella 2.1 – Caratteristiche meccaniche dei materiali strutturali

Per la determinazione della resistenza caratteristica a trazione del calcestruzzo f_{ctk} si sono utilizzate le seguenti espressioni:

$$f_{cm} = f_{ck} + 8 = 25 + 8 = 33 MPa \tag{2.1}$$

$$f_{ctm} = 0,30 f_{ck}^{2/3} = 2,57 MPa$$
(2.2)

$$f_{ctk} = 0.7 f_{ctm} = 0.7 \cdot 2.57 = 1.8 MPa$$
(2.3)

Nella formula (2.3) si è considerata la resistenza a trazione caratteristica del calcestruzzo f_{ctk} corrispondente al frattile 5% della resistenza media del calcestruzzo f_{ctm} .

2.1.2 Valutazione della sicurezza e metodi di analisi

La valutazione della sicurezza viene condotta secondo i principi fondamentali espressi dalla normativa (NTC) di seguito riportati: le opere e le componenti strutturali devono essere progettate, eseguite, collaudate e soggette a manutenzione in modo tale da consentirne la prevista utilizzazione, in forma economicamente sostenibile e con livello di sicurezza previsto dalla suddetta normativa. La sicurezza e le prestazioni di un'opera o di una parte di essa devono essere valutate in relazione agli stati limite che si possono verificare durante la vita nominale. Stato limite è la condizione superata la quale l'opera non soddisfa più le esigenze per le quali è stata progettata. In particolare, secondo quanto stabilito nei capitoli specifici, le opere e le varie tipologie strutturali devono possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone ovvero comportare la perdita di beni, ovvero provocare gravi danni ambientali e sociali, ovvero mettere fuori servizio l'opera;

- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;

- robustezza nei confronti di azioni eccezionali: capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti.

Il superamento di uno stato limite ultimo ha carattere irreversibile e si definisce collasso; il superamento di uno stato limite di esercizio può avere carattere reversibile o irreversibile.

Per quanto riguarda l'analisi strutturale ai fini della valutazione degli effetti delle azioni, si possono adottare i seguenti metodi:

- a) analisi elastica lineare;
- b) analisi plastica;
- c) analisi non lineare.

Le analisi globali hanno lo scopo di stabilire la distribuzione delle forze interne, delle tensioni, delle deformazioni e degli spostamenti nell'intera struttura o in una parte di essa.

Analisi locali possono rendersi necessarie nelle zone singolari quali ad esempio:

- in prossimità degli appoggi;
- in corrispondenza di carichi concentrati;
- alle intersezioni travi-colonne;
- nelle zone di ancoraggio;
- in corrispondenza di variazioni della sezione trasversale.

Si sceglie di perseguire una progettazione con metodo di analisi elastica lineare.

2.1.3 Analisi elastica lineare

L'analisi elastica lineare può essere usata per valutare gli effetti delle azioni sia per gli stati limite di esercizio sia per gli stati limite ultimi.Per la determinazione degli effetti delle azioni, le analisi saranno effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate riferendosi al solo calcestruzzo;
- relazioni tensione deformazione lineari;
- valori medi del modulo d'elasticità.

Per la determinazione degli effetti delle deformazioni termiche, degli eventuali cedimenti e del ritiro le analisi saranno effettuate assumendo:

- per gli stati limite ultimi, rigidezze ridotte valutate ipotizzando che le sezioni siano fessurate (in assenza di valutazioni più precise la rigidezza delle sezioni fessurate potrà essere assunta pari alla metà della rigidezza delle sezioni interamente reagenti);
- per gli stati limite di esercizio, rigidezze intermedie tra quelle delle sezioni interamente reagenti e quelle delle sezioni fessurate.

Per le sole verifiche agli stati limite ultimi, i risultati dell'analisi elastica possono essere modificati con una ridistribuzione dei momenti, nel rispetto dell'equilibrio e delle capacità di rotazione plastica delle sezioni dove si localizza la ridistribuzione. In particolare la ridistribuzione non è ammessa per i pilastri e per i nodi dei telai, è consentita per le travi continue e le solette, a condizione che le sollecitazioni di flessione siano prevalenti ed i rapporti tra le luci di campate contigue siano compresi nell'intervallo $0,5 \div 2,0$.

Per le travi e le solette che soddisfano le condizioni dette la ridistribuzione dei momenti flettenti può effettuarsi senza esplicite verifiche in merito alla duttilità delle membrature, purché il rapporto d tra il momento dopo la ridistribuzione ed il momento prima della ridistribuzione risulti $1 \ge d \ge 0,70$.

I valori di d si ricavano dalle espressioni:

$$\delta \ge 0,44 + 1,25 \left(0,6 + \frac{0,0014}{\varepsilon_{cu}}\right) \frac{x}{d} \quad per \ f_{ck} \le 50 \ MPa \tag{2.4}$$

$$\delta \ge 0.54 + 1.25 \left(0.6 + \frac{0.0014}{\varepsilon_{cu}} \right) \frac{x}{d} \quad per \ f_{ck} > 50 \ MPa \tag{2.5}$$

dove x è l'altezza della zona compressa ed ε_{cu} è definita in seguito (§ 2.2.2).

2.2 Verifiche agli stati limite ultimi

Nel calcolo statico di questa struttura nella fase in cui è priva di isolamento alla base, l'analisi statica lineare viene limitata ai soli stati limite ultimi (SLU).

2.2.1 Resistenze di calcolo dei materiali

In accordo con la normativa (D.M. 14 gennaio 2008), le resistenze di calcolo f_d indicano le resistenze dei materiali, calcestruzzo e acciaio, ottenute mediante l'espressione:

$$f_d = \frac{f_k}{\gamma_M} \tag{2.6}$$

dove: f_k sono le resistenze caratteristiche del materiale;

 γ_M sono i coefficienti parziali per le resistenze, comprensivi delle incertezze del modello e della geometria, che possono variare in funzione del materiale, della situazione di progetto e della particolare verifica in esame.

Resistenza di calcolo a compressione del calcestruzzo

Per il calcestruzzo la resistenza di calcolo a compressione f_{cd} è:

$$f_{cd} = \alpha_{cc} \frac{f_{ck}}{\gamma_c} \tag{2.7}$$

dove: α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata;

 γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo; f_{ck} è la resistenza cilindrica a compressione del calcestruzzo a 28 giorni.

Il coefficiente γ_c è pari ad 1,5; il coefficiente α_{cc} è pari a 0,85.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di calcolo a compressione va ridotta a $0,80f_{cd}$.

Resistenza di calcolo a trazione del calcestruzzo

La resistenza di calcolo a trazione f_{ctd} vale:

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \tag{2.8}$$

dove: γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo già definito sopra;

 f_{ctk} è la resistenza caratterística a trazione del calcestruzzo.

Il coefficiente γ_c assume il valore 1,5.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di calcolo a compressione va ridotta a $0,80f_{cd}$.

• Resistenza di calcolo dell'acciaio

La resistenza di calcolo dell'acciaio f_{yd} è riferita alla tensione di snervamento ed il suo valore è dato da:

$$f_{yd} = \frac{f_{yk}}{\gamma_s} \tag{2.9}$$

dove: γ_S è il coefficiente parziale di sicurezza relativo all'acciaio; f_{yk} per armature ordinarie è la tensione caratteristica di snervamento dell'acciaio, mentre per le armature di precompressione è la tensione convenzionale caratteristica di snervamento.

Il coefficiente γ_S , per tutti i tipi di acciaio, assume sempre il valore 1,15.

• Tensione tangenziale di aderenza acciaio-calcestruzzo

La resistenza tangenziale di aderenza di calcolo f_{bd} vale:

$$f_{bd} = \frac{f_{bk}}{\gamma_C} \tag{2.10}$$

dove: γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo, pari a 1,5;

 f_{bk} è la resistenza tangenziale caratteristica di aderenza data da:

$$f_{bk} = 2,25 \cdot \eta \cdot f_{ctk} \tag{2.11}$$

in cui: $\eta = 1,0$ per barre di diametro $\phi \le 32 mm$;

 $\eta = (132 - \phi)/100$ per barre di diametro superiore.

Nel caso di armature molto addensate o ancoraggi in zona di calcestruzzo teso, la resistenza di aderenza va ridotta dividendola almeno per 1,5.

2.2.2 Resistenza a sforzo normale e flessione (elementi monodimensionali)

Per la valutazione della resistenza ultima delle sezioni di elementi monodimensionali nei confronti di sforzo normale e flessione, si adotteranno le seguenti ipotesi:

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- resistenza a trazione del calcestruzzo nulla;
- rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;
- deformazione iniziale dell'armatura di precompressione considerata nelle relazioni di congruenza della sezione.

Le tensioni nel calcestruzzo e nell'armatura si dedurranno, a partire dalle deformazioni, utilizzando i rispettivi diagrammi tensione-deformazione.

• Diagrammi di calcolo tensione-deformazione del calcestruzzo

Per il diagramma tensione-deformazione del calcestruzzo è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, modelli definiti in base alla resistenza di calcolo f_{cd} ed alla deformazione ultima ε_{cu} .

Figura 2.1 – Modelli σ - ε per il calcestruzzo

Capitolo II

In Figura 2.1 sono rappresentati i modelli σ - ε per il calcestruzzo: (a) parabolarettangolo; (b) triangolo-rettangolo; (c) rettangolo (stress block). In particolare, per le classi di resistenza pari o inferiore a C50/60 si può porre:

$$\varepsilon_{c2} = 0,200\%$$
 $\varepsilon_{cu} = 0,35\%$
 $\varepsilon_{c3} = 0,175\%$ $\varepsilon_{c4} = 0,07\%$

Per sezioni o parti di sezioni soggette a distribuzioni di tensione di compressione approssimativamente uniformi, si assume per la deformazione ultima a rottura il valore ε_{c2} anziché ε_{cu} .

• Diagrammi di calcolo tensione-deformazione dell'acciaio

Per il diagramma tensione-deformazione dell'acciaio è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale; questi modelli sono definiti in base ai seguenti tre parametri:

1) valore di calcolo della deformazione ultima ε_{ud} :

$$\varepsilon_{ud} = 0.9\varepsilon_{uk}$$
con $\varepsilon_{uk} = (A_{gt})_k$; $(A_{gt})_k \ge 7.5\% (B450C)$

$$(2.12)$$

- 2) valore di calcolo della tensione di snervamento f_{yd} ;
- 3) rapporto di sovraresistenza k:

$$k = (f_t/f_y)_k \tag{2.13}$$

In Figura 2.2 sono rappresentati i modelli σ - ε per l'acciaio: (a) bilineare finito con incrudimento; (b) elastico-perfettamente plastico indefinito.

Figura 2.2 – Modelli σ - ε per l'acciaio

• Analisi della sezione

Con riferimento alla sezione presso-inflessa rappresentata in Figura 2.3, assieme ai diagrammi di deformazione e di sforzo così come dedotti dalle ipotesi e dai modelli σ - ε appena illustrati sopra, la verifica di resistenza (SLU) si esegue controllando che:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed} \tag{2.14}$$

dove: M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ; N_{Ed} è il valore di calcolo della componente assiale dell'azione (sforzo normale); M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Figura 2.3 – Sezione presso-inflessa

Nel caso di pilastri soggetti a compressione assiale, si deve comunque assumere una componente flettente dello sforzo $M_{Ed} = e \cdot N_{Ed}$ con eccentricità e pari ad almeno $0,05h \ge 20 mm$ (con h altezza della sezione).

Nel caso di pressoflessione deviata la verifica può essere posta nella forma:

$$\left(\frac{M_{Eyd}}{M_{Ryd}}\right)^{\alpha} + \left(\frac{M_{Ezd}}{M_{Rzd}}\right)^{\alpha} \le 1$$
(2.15)

dove: M_{Eyd} , M_{Ezd} sono i valori di calcolo delle due componenti di flessione retta dell'azione attorno agli assi y e z;

 M_{Ryd}, M_{Rzd} sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti a N_{Ed} valutati separatamente attorno agli assi y e z.

L'esponente α può dedursi in funzione della geometria della sezione e dei parametri:

Capitolo II

$$\nu = \frac{N_{Ed}}{N_{Rcd}} \tag{2.16}$$

$$\omega_t = \frac{A_t \cdot f_{yd}}{N_{Rcd}} \tag{2.17}$$

 $\operatorname{con} \ N_{Rcd} = A_c \cdot f_{cd}$

In mancanza di una specifica valutazione, può porsi cautelativamente $\alpha = 1$.

2.2.3 Resistenza nei confronti di sollecitazioni taglianti

Senza escludere specifici approfondimenti, necessari in particolare nel caso di elementi costituiti da calcestruzzo di classe di resistenza superiore a C45/55, per la valutazione delle resistenze ultime di elementi monodimensionali nei confronti di sollecitazioni taglianti, si deve considerare quanto segue: analizzando il solo caso di elementi con armature trasversali resistenti a taglio, si dovrà valutarne la resistenza a taglio V_{Rd} sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i seguenti limiti:

$$1 \le \cot \theta \le 2,5 \tag{2.18}$$

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} \ge V_{Ed} \tag{2.19}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9d \frac{A_{sw}}{s} f_{yd}(\cot \alpha + \cot \theta) \sin \alpha$$
 (2.20)

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$V_{Rcd} = 0.9d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \frac{(\cot \alpha + \cot \theta)}{(1 + \cot^2 \theta)}$$
(2.21)

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = \min(V_{Rsd}, V_{Rcd}) \tag{2.22}$$

dove si sono indicati con:

d	l'altezza utile della sezione (espressa in millimetri);			
$\sigma_{cp} = N_{Ed}/A_c$	la tensione media di compressione nella sezione ($\leq 0, 2f_{cd}$);			
b_w	la larghezza minima della sezione (espressa in millimetri);			
A _{sw}	l'area dell'armatura trasversale;			
S	l'interasse tra due armature trasversali consecutive;			
α	l'angolo di inclinazione dell'armatura trasversale rispetto			
	all'asse della trave;			
f'_{cd}	la resistenza a compressione ridotta del calcestruzzo			
	d'anima ($f'_{cd} = 0,5f_{cd}$	_{cd});		
α _c	il coefficiente maggio	pefficiente maggiorativo pari a:		
	1	per me	mbrature non compresse;	
	$1 + \sigma_{cp}/f_{cd}$	per	$0 \leq \sigma_{cp} < 0.25 f_{cd} ;$	
	1,25	per	$0,25 f_{cd} \le \sigma_{cp} \le 0,5 f_{cd}$;	
	$2,5(1-\sigma_{cp}/f_{cd})$	per	$0.5 f_{cd} < \sigma_{cp} < f_{cd} \; .$	

Le armature longitudinali, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate di una misura pari a:

$$a_1 = 0.9d \frac{(\cot \theta - \cot \alpha)}{2} \ge 0 \tag{2.23}$$

2.2.4 Resistenza nei confronti delle sollecitazioni torcenti

Qualora l'equilibrio statico di una struttura dipenda dalla resistenza torsionale degli elementi che la compongono, è necessario condurre la verifica di resistenza nei riguardi delle sollecitazioni torcenti.

Qualora, invece, in strutture iperstatiche, la torsione insorga solo per esigenze di congruenza e la sicurezza della struttura non dipenda dalla resistenza torsionale, non sarà generalmente necessario condurre le verifiche.

La verifica di resistenza (SLU) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed} \tag{2.24}$$

dove T_{Ed} è il valore di calcolo del momento torcente agente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2A \cdot t \cdot f'_{cd} \frac{\cot \theta}{(1 + \cot^2 \theta)}$$
(2.25)

dove t è lo spessore della sezione cava.

Per sezioni piene:

$$t = \frac{A_c}{u} \tag{2.26}$$

dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque maggiore o uguale a due volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2A \cdot \frac{A_s}{s} f_{yd} \cdot \cot\theta$$
 (2.27)

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rld} = 2A \cdot \frac{\sum A_l}{u_m} f_{yd} \frac{1}{\cot \theta}$$
(2.28)

dove si è posto:

Aarea racchiusa dalla fibra media del profilo periferico; A_s area delle staffe;

 u_m perimetro medio del nucleo resistente;

s passo delle staffe; $\sum A_1$ area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$0.4 \le \cot \theta \le 2.5 \tag{2.29}$$

Entro questi limiti, nel caso di torsione pura, può porsi:

$$\cot \theta = \left(\frac{a_l}{a_s}\right)^{\frac{1}{2}} \tag{2.30}$$

con:

$$a_{l} = \frac{\sum A_{l}}{u_{m}}$$

$$a_{s} = \frac{A_{s}}{s}$$
(2.31)

La resistenza alla torsione della trave è la minore delle tre sopra definite:

$$T_{Rd} = \min(T_{Rcd}, T_{Rsd}, T_{Rld})$$
(2.32)

Nel caso di elementi per i quali lo schema resistente di traliccio periferico non sia applicabile, quali gli elementi a pareti sottili a sezione aperta, dovranno utilizzarsi metodi di calcolo fondati su ipotesi teoriche e risultati sperimentali chiaramente comprovati.

• Sollecitazioni composte

a) <u>Torsione</u>, flessione e sforzo normale

Le armature longitudinali calcolate come sopra indicato per la resistenza nei riguardi della sollecitazione torcente devono essere aggiunte a quelle calcolate nei riguardi delle verifiche per flessione.

Si applicano inoltre le seguenti regole:

 nella zona tesa all'armatura longitudinale richiesta dalla sollecitazione di flessione e sforzo normale, deve essere aggiunta l'armatura richiesta dalla torsione; nella zona compressa, se la tensione di trazione dovuta alla torsione è minore della tensione di compressione nel calcestruzzo dovuta alla flessione e allo sforzo normale, non è necessaria armatura longitudinale aggiuntiva per torsione.

b) <u>Torsione e taglio</u>

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

$$\frac{T_{Ed}}{T_{Rcd}} + \frac{V_{Ed}}{V_{Rcd}} \le 1 \tag{2.33}$$

I calcoli per il progetto delle staffe possono effettuarsi separatamente per la torsione e per il taglio, sommando o sottraendo su ogni lato le aree richieste sulla base del verso delle relative tensioni.

Per l'angolo θ delle bielle compresse di conglomerato cementizio deve essere assunto un unico valore per le due verifiche di taglio e torsione.

2.2.5 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

Per gli elementi per cui non valgono i modelli meccanici semplici, le verifiche di sicurezza possono essere condotte con riferimento a schematizzazioni basate sull'individuazione di tiranti e puntoni.

Le verifiche di sicurezza dovranno necessariamente essere condotte nei riguardi di:

- resistenza dei tiranti costituiti dalle sole armature (R_s) ;
- resistenza dei puntoni di calcestruzzo compresso (R_c) ;
- ancoraggio delle armature (R_b) .
- resistenza dei nodi (R_n) .

Deve risultare la seguente gerarchia delle resistenze $R_s < (R_n, R_b, R_c)$.

Per la valutazione della resistenza dei puntoni di calcestruzzo, si terrà conto della presenza di stati di sforzo pluriassiali.

Le armature che costituiscono i tiranti devono essere adeguatamente ancorate nei nodi.

Le forze che agiscono sui nodi devono essere equilibrate; si deve tener conto delle forze trasversali perpendicolari al piano del nodo.

I nodi si localizzano nei punti di applicazione dei carichi, agli appoggi, nelle zone di ancoraggio dove si ha una concentrazione di armature ordinarie o da precompressione, in corrispondenza delle piegature delle armature, nelle connessioni e negli angoli delle membrature.

Particolare cautela deve essere usata nel caso di schemi iperstatici, che presentano meccanismi resistenti in parallelo.

2.2.6 Verifica dell'aderenza delle barre di acciaio con il calcestruzzo

L'ancoraggio delle barre, sia tese che compresse, deve essere oggetto di specifica verifica.

La verifica di ancoraggio deve tenere conto, qualora necessario, dell'effetto d'insieme delle barre e della presenza di eventuali armature trasversali e di confinamento.

L'ancoraggio delle barre può essere utilmente migliorato mediante uncini terminali. Se presenti, gli uncini dovranno avere raggio interno adeguato, tale da evitare danni all'armatura e, ai fini dell'aderenza, essi possono essere computati nella effettiva misura del loro sviluppo in asse alla barra. In assenza degli uncini la lunghezza di ancoraggio deve essere in ogni caso non minore di 20 diametri, con un minimo di 150 mm.

2.3 Dettagli costrutti per elementi monodimensionali: travi e pilastri

Con riferimento ai dettagli costruttivi degli elementi strutturali in calcestruzzo vengono fornite le indicazioni applicative necessarie per l'ottenimento delle prescritte prestazioni.

Dette indicazioni si applicano se non sono in contrasto con più restrittive regole relative a costruzioni in zona sismica.

2.3.1 Armatura delle travi

L'area dell'armatura longitudinale in zona tesa non deve essere inferiore a:

Capitolo II

$$A_{s,\min} = 0.26 \frac{f_{ctm}}{f_{yk}} b_t d \ge 0.0013 b_t d$$
(2.34)

- dove: b_t rappresenta la larghezza media della zona tesa (per una trave con sezione a T e piattabanda compressa, nel calcolare il valore di b_t si considera solo la larghezza dell'anima);
 - *d* è l'altezza utile della sezione;
 - f_{ctm} è il valore medio della resistenza a trazione assiale (§ 2.1.1);
 - f_{yk} è il valore caratteristico della resistenza a trazione dell'armatura ordinaria.

Negli appoggi di estremità all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio.

Al di fuori delle zone di sovrapposizione, l'area di armatura tesa o compressa non deve superare individualmente $A_{s,\min} = 0,04A_c$, essendo A_c l'area della sezione trasversale di calcestruzzo.

Le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad $A_{st} = 1,5b \ [mm^2/m]$, essendo *b* lo spessore minimo dell'anima espresso in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l'altezza utile della sezione.

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

2.3.2 Armatura dei pilastri

Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 millimetri e non potranno avere interassi maggiori di 300 millimetri. Inoltre la loro area non deve essere inferiore a:

$$A_{s,\min} = 0.10 \frac{N_{Ed}}{f_{yd}} \ge 0.003 A_c$$
 (2.35)

dove: f_{yd}

è la resistenza di calcolo dell'armatura (riferita allo snervamento);

 N_{Ed} è la forza di compressione assiale di calcolo;

 A_c è l'area di calcestruzzo.

Le armature trasversali devono essere poste ad interasse non maggiore di 12 volte il diametro minimo delle barre impiegate per l'armatura longitudinale, con un massimo di 250 millimetri. Il diametro delle staffe non deve essere minore di 6 millimetri e di un quarto del diametro massimo delle barre longitudinali.

Al di fuori delle zone di sovrapposizione, l'area di armatura non deve superare $A_{s,\min} = 0,04A_c$, essendo A_c l'area della sezione trasversale di calcestruzzo.

2.3.3 Copriferro ed interferro

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature.

Per consentire un omogeneo getto del calcestruzzo, il copriferro e l'interferro delle armature devono essere rapportati alla dimensione massima degli inerti impiegati. Il copriferro e l'interferro delle armature devono essere dimensionati anche con riferimento al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

2.3.4 Ancoraggio delle barre e loro giunzioni

Le armature longitudinali devono essere interrotte ovvero sovrapposte preferibilmente nelle zone compresse o di minore sollecitazione.

La continuità fra le barre può effettuarsi mediante:

- sovrapposizione, calcolata in modo da assicurare l'ancoraggio di ciascuna barra. In ogni caso la lunghezza di sovrapposizione nel tratto rettilineo deve essere non minore di 20 volte il diametro della barra. La distanza mutua (interferro) nella sovrapposizione non deve superare 4 volte il diametro;
- saldature, eseguite in conformità alle norme in vigore sulle saldature.
 Devono essere accertate la saldabilità degli acciai che vengono impiegati, nonché la compatibilità fra metallo e metallo di apporto nelle posizioni o condizioni operative previste nel progetto esecutivo;

 giunzioni meccaniche per barre di armatura. Tali tipi di giunzioni devono essere preventivamente validati mediante prove sperimentali.

Per barre di diametro $\emptyset > 32 mm$ occorrerà adottare particolari cautele negli ancoraggi e nelle sovrapposizioni.

2.4 Analisi statica della struttura con software di calcolo

Le analisi sono tutte eseguite tramite elaboratore, con l'utilizzo del software di calcolo Straus7 (versione 2.3). Questo programma è un ambiente grafico completamente integrato combinato con diversi solutori. La libreria di elementi finiti spazia fra le tipologie 1D, 2D e 3D; allo stesso modo anche i vincoli. Nel caso particolare del progetto in questione, si sono impiegati elementi *beam* (travi), *quad4* (lastre), *link* rigidi, *load patches* (lastre non strutturali) e *spring-damper* (molle con smorzamento viscoso). I solutori ai quali si è accennato permettono analisi statiche (risposta lineare, *buckling*, risposta non-lineare), analisi dinamiche (frequenze naturali, risposta spettrale) ed altro ancora. Materiali e loro comportamenti possono essere vari: ad esempio si è modellato il terreno come un supporto elastico non reagente a trazione.

2.4.1 Modello A (telaio a base incastrata)

Il primo modello che si è considerato al fine di valutare la risposta statica della struttura allo stato limite ultimo, sollecitato con le forze ed i carichi illustrati nel primo capitolo è il telaio in conglomerato cementizio armato completo di tutti i muri di sostegno e di tutto l'apparato delle fondazioni, le quali sono state considerate incastrate alla base. La condizione appena descritta di incastro completo è una condizione limite che può massimizzare le sollecitazioni di alcuni elementi strutturali ed inoltre è il modello più semplice che si possa concepire come inizio di una progettazione strutturale. Per quanto detto si è proceduto all'analisi completa di questo modello, dal quale si estrarranno successivamente alcuni elementi significativi ovvero i più sollecitati. Nelle seguenti immagini (Figure 2.4 e 2.5) sono mostrate due viste assonometriche del Modello A.

Figura 2.4 – Modello A (Straus7): vista assonometrica anteriore del modello a base incastrata

Figura 2.5 – Modello A (Straus7): vista assonometrica posteriore del modello a base incastrata

Lanciando il solutore per l'analisi statica, si ottengono tutti i dati di sollecitazione e deformazione relativi a ciascun elemento strutturale. Le due immagini seguenti (Figure 2.6 e 2.7) raffigurano la configurazione deformata della struttura quando questa è sollecitata con la combinazione di carico allo stati limite ultimo.

Figura 2.6 – Modello A (Straus7): vista posteriore del modello deformato

Figura 2.7 – Modello A (Straus7): vista posteriore del modello deformato

Si riporta quindi il *log file* (ovvero il tabulato di output) dell'analisi statica:

Solution commenced on 24/11/2010 at 19:11:25 Straus7 [2.3.3] [Solver Build 23040715] LINEAR STATIC SOLVER - For Intel P2-P4 CPU Name: TOGNINELLI (CPU - Intel P2/P3) Computer User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kgf Stress: kg/cm² TOTALS: Nodes : 1710 Beams : 1339 Plate : 599 Bricks : 0 Links : 132 FREEDOM CASE: "Freedom Case 1" LOAD CASES: 1. "Pesi propri" 2. "Permanenti" 3. "Accidentali" 4. "Carico neve" 5. "Tamponamenti" 6. "Spinta del terreno" STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 8010 41.7 % MATRIX FILL-IN RATIO : [K] MATRIX SIZE : 1.7 MB OPTIMUM RAM NEEDED : 687.5 KB FREE SCRATCH SPACE : 24657.4 MB SUMMATION OF APPLIED LOADS [Beams] Case FX FY MZ FZ MX MY Case Name 1 2.08521E-14 -6.44373E+05 -2.76331E-14 -2.69663E+05 3.59721E-27 -3.50452E+02 "Pesi propri" 5 0.00000E+00 -1.50584E+05 1.00974E-28 -2.27374E-11 0.00000E+00 9.09495E-12 "Tamponamenti" SUMMATION OF APPLIED LOADS [Plates] MX Case FX FY FZ MY MZ Case Name 1 3.91811E-13 -3.67918E+05 -5.53608E-14 9.28805E-10 1.12517E-41 6.41709E-11 "Pesi propri" 2 -3.24599E-13 -6.58347E+04 -9.15079E-29 0.0000E+00 0.0000E+00 0.0000E+00 "Permanenti" 3 0.00000E+00 -5.66394E+04 0.00000E+00 -4.07741E-27 3.98273E-59 3.95111E-27 "Accidentali"

Capitolo II

4 0.00000E+00 -7.87025E+04 0.00000E+00 -9.02797E-27 8.36373E-58 7.91211E-27 "Carico neve" SUMMATION OF APPLIED LOADS [Total] FΧ FY FZ MX MY MZ Case Name Case 1 4.12663E-13 -1.01229E+06 -8.29939E-14 -2.69663E+05 3.59721E-27 -3.50452E+02 "Pesi propri" 2 -3.24599E-13 -6.58347E+04 -9.15079E-29 0.00000E+00 0.00000E+00 0.00000E+00 "Permanenti" 3 0.00000E+00 -5.66394E+04 0.00000E+00 -4.07741E-27 3.98273E-59 3.95111E-27 "Accidentali" 4 0.00000E+00 -7.87025E+04 0.00000E+00 -9.02797E-27 8.36373E-58 7.91211E-27 "Carico neve" 5 0.00000E+00 -1.50584E+05 1.00974E-28 -2.27374E-11 0.00000E+00 9.09495E-12 "Tamponamenti" SUMMATION OF APPLIED LOADS [Load Vector] Case FX FY F7 MX MY M7 Case Name 1 5.72508E-13 -6.07237E+05 6.03016E-14 2.26192E+07 5.23605E-11 3.45611E+07 "Pesi propri" 2 -3.24599E-13 -6.58347E+04 2.52435E-29 8.04613E+05 -6.65414E-11 1.55239E+06 "Permanenti" 3 0.00000E+00 -5.66394E+04 0.00000E+00 8.66708E+05 3.98273E-59 4.03566E+05 "Accidentali" 4 0.00000E+00 -7.87025E+04 0.00000E+00 6.22032E+05 8.36373E-58 2.45259E+06 "Carico neve" 5 0.00000E+00 -1.50584E+05 1.00974E-28 1.10106E+07 0.00000E+00 1.25116E+07 "Tamponamenti" SUMMATION OF MOMENTS OF APPLIED LOADS ABOUT THE ORIGIN [Load Vector] Case MXO MYO MZO Case Name 1 -5.42447E+08 -7.13352E-10 -2.62341E+08 "Pesi propri" 2 -4.50794E+07 3.24609E-10 -2.86561E+07 "Permanenti" 3 -3.38180E+07 3.98273E-59 -3.56093E+07 "Accidentali" 4 -5.43075E+07 8.36373E-58 -2.89048E+07 "Carico neve" 5 -1.80738E+08 -5.16988E-26 -5.72306E+07 "Tamponamenti" Maximum and minimum pivots: 6.9564E+13(Node 71_RX), 1.9464E+04(Node 1081_DY). MAXIMUM DISPLACEMENT MAGNITUDES Case DX DY DZ RX RY R7. Case Name 1 1.46206E-02 2.51801E-01 1.72796E-02 5.06899E-04 3.68373E-05 9.21659E-04 "Pesi propri" 2 6.78198E-03 9.31096E-02 8.24846E-03 2.48123E-04 6.75227E-06 4.03634E-04 "Permanenti" 3 8.94165E-03 1.24271E-01 1.30747E-02 3.30854E-04 8.54704E-06 5.39287E-04 "Accidentali" 4 7.08951E-03 1.18507E-01 8.59950E-03 2.80469E-04 8.19441E-06 4.54158E-04 "Carico neve" 5 3.31838E-03 1.72289E-01 1.13935E-02 3.52360E-04 7.17967E-05 9.60659E-04 "Tamponamenti" Total CPU time: 2.719 Seconds (0:00:03) Solution completed on 24/11/2010 at 19:11:28 Solution time: 3 Seconds SUMMARY OF WARNING AND ERROR MESSAGES Number of Warnings: 0 Number of Errors : 0

Si riportano ora i tabulati relativi alle caratteristiche della sollecitazione negli elementi *beam* ed in particolare si focalizzerà l'attenzione su due travi, la prima a momento positivo massimo e la seconda a momento negativo massimo; in seguito si valuteranno il pilastro con massimo sforzo normale ed il pilastro soggetto al momento massimo. I dati ottenuti saranno in seguito confrontati con quelli forniti dal Modello B (telaio su suolo elastico) al fine di valutarne eventuali differenze e verificare gli elementi nella condizione più gravosa.
Tabulato 2.1 – Modello A: trave maggiormente sollecitata a momento flettente positivo (*Beam 401*).

Analisi statica Modello A (base incastrata)

Project Isolamento alla base di un edificio residenziale

Author: Gianluca Togninelli

Title

Reference: Modello A

Model: Mod_Tesi_03 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All Properties: All

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(kN)	(kN.cm)	(kN)	(kN.cm)	(kN)	(kN.cm)
Boom 401: End 2	0.0136	1 4077	3 3045	7094 2779	0 7065	50 2851
Beam 402 End 2	-0.0130	-1.4077	-15 5219	7983.3709	-1.0437	652 6857
Beam 294: End 1	0.0827	-7 6808	-66 2906	7715 3542	-0.0062	-296 4025
Beam 401: End 1	-0.0136	-0.0898	18 8198	6914 9360	-0.7965	50 2851
Beam 400: End 2	0.0021	-3.3446	31 8676	6905 1370	-0 4485	-657 5415
Beam 343: End 2	-0.3664	-29 9580	47 4195	6496,3868	3 5810	159 8000
Beam 93: End 1	0 7940	-27,9310	-91 7901	6221 1461	-7 4478	2418 5690
Beam 94: End 2	-0.3785	-29 6909	84 6521	6038 8472	0 4444	2143 7291
Beam 330 [°] End 2	-0.0046	-0.3573	46 2293	5796 1937	0.5555	230 5797
Beam 403: End 1	0.0101	-1 7239	-48 8163	5736 3369	-1 3229	1352 0987
Beam 402: End 2	-0.0123	-2 8086	-31 0372	5733 0140	-1 0437	652 6857
Beam 290: End 1	0.0074	0 1144	-43 2863	5055 6140	0.0475	322 1918
Beam 293: End 1	0.1857	-15 3901	-41 9796	4958 2460	0.5051	-526 4969
Beam 847: End 1	-0.4836	47 9682	-43 8452	4942 5421	1 9210	1237 2403
Beam 420: End 1	0.0149	-3 5981	-68 7000	4650 9663	-2 0549	88 2297
Beam 365: End 2	-0.2803	-19 9802	-3 7011	4609 6593	-1 2037	-1062 8875
Beam 292: End 1	-0.2000	30.0072	-37 1556	4432 0467	-0.3083	380 6639
Beam 419: End 2	-0.0010	4 2740	28 3753	4209 6603	-1 6355	288 6239
Beam 365: End 1	-0.2803	7 5871	12 0816	4197 6200	-1.2037	-1062 8875
Beam 291: End 1	0.1653	-14 4504	-32 9510	4021 0344	-0.2315	-548 1368
Beam 80: End 2	-0.0032	-0.5879	-52.9510	38/1 6/09	0.8837	-24 5062
Beam 352: End 2	-0.0032	-1.81/2	43 7026	3624 7617	0.0007	-15/1 2305
Beam 703: End 1	6 9183	-1563 7760	-15 6692	3404 6624	-326 6105	-10-11.2000
Beam 605: End 1	-6.8056	1626 1875	-13 7676	3245 2274	-95 0815	0.4584
Beam 801: End 1	0.0034	-0.9765	-39,8036	3231 9567	0.9031	1 5743
Beam 82' End 2	0.0034	0.6734	39,289/	3107 2452	0.9031	1.5743
Beam 1337: End 2	0.000	0.000	30.0163	3084 8378	0.0000	-468 1668
Beam 400: End 1	0.0000	-3 5486	47 3828	3074 6980	-0.4485	-657 5415
Beam 300: End 2	-0.2675	-3.7016	60 5349	3031 9885	0.2509	-3315 4421
Beam 347: End 1	-0.0640	17 6841	-5 7980	2729 6604	0.2303	156 3792
Beam 346: End 2	1 1318	33 0165	55 6284	2649 2033	1 6649	909 1269
Beam 410: End 1	-0 1901	9.3417	-28 2702	2508 5643	-0.6616	-321 6878
Beam 385: End 2	-24 9764	-249 5761	65 4120	2488 4166	16 9987	-1517 2482
Beam 704: End 1	6 9183	-1121 0041	-15 6692	2400.4100	-328 5995	-3 5452
Beam 703: End 2	6 9183	-1121.0041	-15 6692	2401.8314	-328 5995	-3 5452
Beam 831: End 1	0.5105	-15 6238	-39 4052	2332 0653	1 2815	-402 5249
Beam 606: End 1	-6.8056	1149 7960	-13 7676	2002.0000	-92 9060	0 4584
Beam 605: End 2	-6.8056	1149 7960	-13 7676	2281 4975	-92,9060	0.4584
Beam 675: End 1	-8.0296	1625 5584	-9 9473	2164 6621	-285 7021	-3 7616
Beam 1032: End 2	0.0230	0.0000	0.0000	1978 0367	0.0000	0.0000
Beam 1033: End 1	0.0000	0.0000	0.0000	1978.0367	0.0000	0.0000
Beam 431: End 1	-0.0028	-1 0444	-26 4233	19/8 1155	0.2254	-510 5696
Beam 347: End 2	-0.0640	11 4440	-20.4233	1940.1100	0.6764	156 3792
Beam 35: End 2	0.1904	10 4173	23 8066	1990 7042	1 7714	16 2556
Beam 581: End 1	0.5575	-154 4862	-8 1961	1800 2062	-287 5507	-0 7839
Beam 1050: End 1	0.0070	-104-4002 0.0000	_17 6145	1803 0071	0 0000	0.0000
Beam 323' End 2	0.0000	0.0000	17 6145	1803.0071	0.0000	0.0000
Beam 683: End 1	_2 2013	410 1083	_8 2457	1837 0030	-351 2072	-3 3005
Beam 50: End 2	-2.2913	-4 0/24	-0.2407 20.2402	1813 0850	-1 3965	-0.160/
Beam 349' End 1	-0.0202	-4.0434	_10 1220	1706 7560	0 7055	168 5160
Beam 350' End 2	-0.0700	55 03/0	31 0560	1760.0817	-3 0233	770 5530
Beam 310: End 2	-0.5563	-26 5079	31.0000	1651 2059	-3.0233	14 7877
Beam 305: End 1	-0.0000	-20.0070	-20 1603	1602 5543	1 10/2	-1/2 51/5
Beam 555. Enu 1	-0.1000	0.0224	-20.1003	1002.0040	1.1042	-1-2.0140

L Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)]

Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_03.st7 26 novembre 2010 12:44 pm

Page 1 of 43

Tabulato 2.2 – Modello A: trave maggiormente sollecitata a momento flettente negativo (*Beam 366*).

Title: Analisi statica Modello A (base incastrata)

Project: Isolamento alla base di un edificio residenziale

Author: Gianluca Togninelli Reference: Modello A

Model: Mod_Tesi_03 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All Properties: All

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(KN)	(KN.CM)	(KN)	(KN.CM)	(KN)	(KN.CM)
Beam 366: End 2	0.7732	62.8745	-129.0931	-14115.9595	-3.3051	-3397.5295
Beam 418: End 1	0.2652	-20.7607	84.4321	-6876.0899	-1.6166	2200.7434
Beam 1: End 2	-0.2412	-13.0864	-37.5111	-6624.1125	3.6708	-1522.1736
Beam 4: End 2	-0.0548	-5.4798	-74.3310	-6197.6792	-1.7465	3096.6765
Beam 370: End 2	0.6239	67.2960	-40.6515	-5477.5627	-2.2111	-991.1434
Beam 416: End 1	-0.1717	17.0010	33.7046	-4967.0351	-0.1590	-1534.1088
Beam 848: End 1	-0.3664	37.8244	73.5190	-4690.4212	3.5810	159.8000
Beam 408: End 1	-0.1082	14.8315	50.6995	-4313.6213	-0.4386	-322.1819
Beam 6: End 2	0.0000	0.0000	-40.9188	-3956.0734	0.0000	0.0000
Beam 1030: End 1	0.0000	0.0000	40.9188	-3956.0734	0.0000	0.0000
Beam 425: End 1	-0.3489	37.3963	41.5796	-3900.8737	1.9917	-936.4160
Beam 874: End 1	-0.5242	71.5190	30.1931	-3730.6011	2.0833	136.8654
Beam 1: End 1	-0.2412	7.4175	-33.5486	-3604.0741	3.6708	-1522.1736
Beam 435: End 2	0.0366	3.6129	-29.0120	-3573.5234	2.3830	-620.8971
Beam 282: End 1	-0.0917	7.1781	37.4281	-3572.2658	-0.1460	63.3647
Beam 399: End 1	-0.2675	22.1528	76.0502	-3569.6248	0.2509	-3315.4421
Beam 13: End 2	-0.0080	-2.2734	-37.7264	-3494.1574	-1.2061	6.7434
Beam 869: End 1	-0.0080	2.1771	37.6973	-3486.0866	-1.2061	6.7434
Beam 389: End 1	-0.4608	29.6585	37.8640	-3436.8888	-1.0404	418.9681
Beam 364: End 2	0.1300	18.9420	-35.2156	-3225.2191	2.6200	415.6760
Beam 3: End 2	0.0000	0.0000	-36.6804	-3178.9665	0.0000	0.0000
Beam 1057: End 1	0.0000	0.0000	36.6804	-3178.9665	0.0000	0.0000
Beam 7: End 2	0.0000	0.0000	-36.3277	-3118.1265	0.0000	0.0000
Beam 1035: End 1	0.0000	0.0000	36.3277	-3118.1265	0.0000	0.0000
Beam 348: End 2	-0.0039	1.1716	-34.3544	-3070.0375	0.0972	-558.0421
Beam 426: End 1	0.5079	-38.1591	39.7586	-3019.4303	0.7530	-3549.2607
Beam 346: End 1	1.1318	-77.3386	60.1736	-2996.1419	1.6649	909.1269
Beam 325: End 1	1.1675	-84.9713	30.0358	-2911.2565	5.8227	84.7559
Beam 258: End 1	1.5856	-116.1342	33.3379	-2841.5741	1.1399	481.5586
Beam 33: End 2	0.5812	32.1598	-32.1812	-2820.8335	1.2463	87.2021
Beam 1284: End 1	0.0242	-2.0064	38.8731	-2/6/.6616	-0.4396	-174.3297
Beam 283: End 1	0.0441	-3.7513	30.3714	-2756.3966	0.1322	652.3384
Beam 424: End 1	0.2267	-19.8234	28.2538	-2750.4449	0.0797	197.1763
Beam 1240: End 2	0.0000	0.0000	-31.6509	-2743.3206	0.0000	0.0000
Beam 1244: End 1	0.0000	0.0000	31.6509	-2743.3206	0.0000	0.0000
Beam 1336: End 2	0.0000	0.0000	-24.0885	-2694.0041	0.0000	355.5133
Beam 420: End 2	0.0149	-2.1640	-03.9477	-2599.7977	-2.0549	0.2297
Beam 1040: End 1	0.0000	0.0000	32.5224	-2592.8925	0.0000	0.0000
Beam 417: End 1	0.0733	-0.0008	22.7232	-2592.2903	-2.1435	-290.1103
Beam 9: End 2	-0.0124	-0.9998	-33.9399	-2584.0505	-5.3368	4.2932
Beam 300: End 1	0.7732	-10.5610	-113.0434	-20/0.0010	-3.3051	-3397.5295
Beam 225, End 2	-0.0124	4.0304	33.7900	-2549.9517	-5.5500	4.2952
Beam 335: End 2	-0.2766	-30.0640	-30.0679	-2047.2010	0.0775	-462.6007
Beam 201. End 1	0.0355	-2.0903	23.9017	-2391.7502	0.2775	321.0120
Beam 1258: End 2	0.0003	-4./100	20.9214	-2000.1400	-0.7343	-200.0900
Beam 265: End 2	0.2084	7.3484	-24.0004	-2209.0140	-0.7335	108 0476
Beam 200. End 4	0.12/3	-0.0986	-24.0/04	-2241./183	-1.9/02	190.94/0
Beam 255: End 1	-0.0040	16 2700	00.0001	-2197.2030	0.0001	200.0797
Beam 262: End 1	-0.3512	10.2/09	22.0100	-2102.0404	2.0001	203 7302
Beam 16: End 2	0.0224	-00.7900	20.0010 -01.440E	-21/1.0101	1 7670	3258 4059
Deam 10. Enu ∠ Boom 253: End 1	0.0534	0.2135	-21.4195	-2140.7521	1./0/2	3230.4030
Beam 203, End 1	-0.4440	24.3162	23.3043	-2100.0000 1081 F644	2.0714	211.0012
Deam 394. Enu 1	0.1104	-0.3209	22.0438	-1901.3041	-0.4910	-24.2730

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)]

Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_03.st7 26 novembre 2010 12:43 pm Tabulato 2.3 - Modello A: pilastro maggiormente sollecitato a sforzo assiale (Beam 41).

Title Analisi statica Modello A (base incastrata)

Isolamento alla base di un edificio residenziale

Autho Gianluca Togninelli

Reference Modello A

Model: Mod_Tesi_03 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All Properties: All

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(kN)	(kN.cm)	(kN)	(kN.cm)	(kN)	(kN.cm)
Beam 41: End 2	-2 0519	-436 6335	0 9585	142 2748	-422 5435	-3 3935
Beam 710: End 2	-2.0519	-305.3123	0.9585	80.9330	-420.0572	-3.3935
Beam 41: End 1	-2.0519	-305.3123	0.9585	80,9330	-420.0572	-3.3935
Beam 709: End 2	-2.0519	-173.9911	0.9585	19.5912	-417,5709	-3.3935
Beam 710: End 1	-2.0519	-173.9911	0.9585	19.5912	-417,5709	-3.3935
Beam 708: End 2	-2.0519	-42.6700	0.9585	-41.7507	-415.0847	-3.3935
Beam 709: End 1	-2.0519	-42.6700	0.9585	-41.7507	-415.0847	-3.3935
Beam 707: End 2	-2.0519	88.6512	0.9585	-103.0925	-412.5984	-3.3935
Beam 708: End 1	-2.0519	88.6512	0.9585	-103.0925	-412.5984	-3.3935
Beam 50: End 2	1.3918	22.3531	-2.5569	-137.5002	-411.4733	0.8315
Beam 707: End 1	-2.0519	219.9724	0.9585	-164.4343	-410.1121	-3.3935
Beam 734: End 2	1.3918	-66.7229	-2.5569	26.1427	-409.4843	0.8315
Beam 50: End 1	1.3918	-66.7229	-2.5569	26.1427	-409.4843	0.8315
Beam 733: End 2	1.3918	-155.7988	-2.5569	189.7857	-407.4953	0.8315
Beam 734: End 1	1.3918	-155.7988	-2.5569	189.7857	-407.4953	0.8315
Beam 732: End 2	1.3918	-244.8748	-2.5569	353.4286	-405.5062	0.8315
Beam 733: End 1	1.3918	-244.8748	-2.5569	353.4286	-405.5062	0.8315
Beam 731: End 2	1.3918	-333.9507	-2.5569	517.0715	-403.5172	0.8315
Beam 732: End 1	1.3918	-333.9507	-2.5569	517.0715	-403.5172	0.8315
Beam 731: End 1	1.3918	-423.0267	-2.5569	680.7144	-401.5282	0.8315
Beam 32: End 2	6.8581	654.1875	8.9469	982.8285	-374.0970	-3.8598
Beam 694: End 2	6.8581	215.2704	8.9469	410.2277	-372.1080	-3.8598
Beam 32: End 1	6.8581	215.2704	8.9469	410.2277	-372.1080	-3.8598
Beam 693: End 2	6.8581	-223.6467	8.9469	-162.3730	-370.1190	-3.8598
Beam 694: End 1	6.8581	-223.6467	8.9469	-162.3730	-370.1190	-3.8598
Beam 693: End 1	6.8581	-662.5639	8.9469	-734.9738	-368.1300	-3.8598
Beam 692: End 2	6.8581	-662.5639	8.9469	-734.9738	-368.1300	-3.8598
Beam 691: End 2	6.8581	-1101.4810	8.9469	-1307.5746	-366.1410	-3.8598
Beam 692: End 1	6.8581	-1101.4810	8.9469	-1307.5746	-366.1410	-3.8598
Beam 691: End 1	6.8581	-1540.3981	8.9469	-1880.1753	-364.1519	-3.8598
Beam 30: End 2	-2.2913	-323.0245	-8.2457	-800.6209	-363.6386	-3.3995
Beam 686: End 2	-2.2913	-176.3800	-8.2457	-272.8979	-361.1523	-3.3995
Beam 30: End 1	-2.2913	-176.3800	-8.2457	-272.8979	-361.1523	-3.3995
Beam 685: End 2	-2.2913	-29.7354	-8.2457	254.8250	-358.6660	-3.3995
Beam 686: End 1	-2.2913	-29.7354	-8.2457	254.8250	-358.6660	-3.3995
Beam 684: End 2	-2.2913	116.9092	-8.2457	782.5480	-356.1797	-3.3995
Beam 685: End 1	-2.2913	116.9092	-8.2457	782.5480	-356.1797	-3.3995
Beam 684: End 1	-2.2913	263.5537	-8.2457	1310.2710	-353.6935	-3.3995
Beam 683: End 2	-2.2913	263.5537	-8.2457	1310.2710	-353.6935	-3.3995
Beam 683: End 1	-2.2913	410.1983	-8.2457	1837.9939	-351.2072	-3.3995
Beam 38: End 2	-2.6002	-524.3553	0.9585	142.2748	-344.2466	-3.3935
Beam 698: End 2	-2.6002	-357.9454	0.9585	80.9330	-341.7604	-3.3935
Beam 38: End 1	-2.6002	-357.9454	0.9585	80.9330	-341.7604	-3.3935
Beam 697: End 2	-2.6002	-191.5355	0.9585	19.5912	-339.2741	-3.3935
Beam 698: End 1	-2.6002	-191.5355	0.9585	19.5912	-339.2741	-3.3935
Beam 696: End 2	-2.6002	-25.1256	0.9585	-41.7507	-336.7878	-3.3935
Beam 697: End 1	-2.6002	-25.1256	0.9585	-41.7507	-336.7878	-3.3935
Beam 40: End 2	6.9183	650.0836	-15.6692	-1609.4927	-336.5556	-3.5452
Beam 706: End 2	6.9183	207.3117	-15.6692	-606.6617	-334.5665	-3.5452
Beam 40: End 1	6.9183	207.3117	-15.6692	-606.6617	-334.5665	-3.5452
Beam 696: End 1	-2.6002	141.2843	0.9585	-103.0925	-334.3015	-3.3935
Beam 695: End 2	-2.6002	141.2843	0.9585	-103.0925	-334.3015	-3.3935
Beam 705: End 2	6.9183	-235.4602	-15.6692	396.1693	-332.5775	-3.5452

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)] Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_03.st7

26 novembre 2010 12:37 pm

Page 1 of 43

Tabulato 2.4 – Modello A: pilastro maggiormente sollecitato a momento flettente (*Beam 703*).

Analisi statica Modello A (base incastrata)

Isolamento alla base di un edificio residenziale

Author: Gianluca Togninelli

Reference: Modello A

Model: Mod_Tesi_03 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All Properties: 7: Pilastri 40x30 8: Pilastri 30x40

9: Pilastri 50x30

9. Fliasul 50x50

10: Pilastri 30x50 11: Pilastri 60x30

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(KIV)	(KN.CM)	(KN)	(KN.CM)	(KIN)	(KN.CM)
Beam 703: End 1	6.9183	-1563.7760	-15.6692	3404.6624	-326.6105	-3.5452
Beam 605: End 1	-6.8056	1626.1875	-13.7676	3245.2274	-95.0815	0.4584
Beam 703: End 2	6.9183	-1121.0041	-15.6692	2401.8314	-328.5995	-3.5452
Beam 704: End 1	6.9183	-1121.0041	-15.6692	2401.8314	-328.5995	-3.5452
Beam 606: End 1	-6.8056	1149.7960	-13.7676	2281.4975	-92.9060	0.4584
Beam 605: End 2	-6.8056	1149.7960	-13.7676	2281.4975	-92.9060	0.4584
Beam 675: End 1	-8.0296	1625.5584	-9.9473	2164.6621	-285.7021	-3.7616
Beam 581: End 1	0.5575	-154.4862	-8.1961	1899.2962	-287.5507	-0.7839
Beam 683: End 1	-2.2913	410.1983	-8.2457	1837.9939	-351.2072	-3.3995
Beam 676: End 1	-8.0296	1111.6635	-9.9473	1528.0325	-287.6911	-3.7616
Beam 675: End 2	-8.0296	1111.6635	-9.9473	1528.0325	-287.6911	-3.7616
Beam 705: End 1	6.9183	-678.2322	-15.6692	1399.0004	-330.5885	-3.5452
Beam 704: End 2	6.9183	-678.2322	-15.6692	1399.0004	-330.5885	-3.5452
Beam 582: End 1	0.5575	-115.4638	-8.1961	1325.5698	-284.8313	-0.7839
Beam 581: End 2	0.5575	-115.4638	-8.1961	1325.5698	-284.8313	-0.7839
Beam 606: End 2	-6.8056	673.4045	-13.7676	1317.7676	-90.7305	0.4584
Beam 607: End 1	-6.8056	673.4045	-13.7676	1317.7676	-90.7305	0.4584
Beam 684: End 1	-2.2913	263.5537	-8.2457	1310.2710	-353.6935	-3.3995
Beam 683: End 2	-2.2913	263.5537	-8.2457	1310.2710	-353.6935	-3.3995
Beam 165: End 1	-0.2327	16.9311	-22.2189	1059.6192	-148.5114	1.6798
Beam 687: End 1	5.6666	-1296.8667	-4.6720	1026.8235	-276.5945	-3.8398
Beam 32: End 2	6.8581	654.1875	8.9469	982.8285	-374.0970	-3.8598
Beam 46: End 2	12.7524	1199.5475	6.7053	971.4510	-176.4709	1.0530
Beam 677: End 1	-8.0296	597.7686	-9.9473	891.4029	-289.6801	-3.7616
Beam 676: End 2	-8.0296	597.7686	-9.9473	891.4029	-289.6801	-3.7616
Beam 553: End 1	-3.1478	712.0852	-3.7126	866.4294	-69.5597	-3.6047
Beam 29: End 2	-0.4159	-140.7447	6.9538	821.8242	-240.2336	-5.4131
Beam 653: End 1	-12.2799	2286.9899	-6.1897	798.8710	-43.9030	-1.7967
Beam 684: End 2	-2.2913	116.9092	-8.2457	782.5480	-356.1797	-3.3995
Beam 685: End 1	-2.2913	116.9092	-8.2457	782.5480	-356.1797	-3.3995
Beam 582: End 2	0.5575	-76.4414	-8.1961	751.8435	-282.1120	-0.7839
Beam 583: End 1	0.5575	-76.4414	-8.1961	751.8435	-282.1120	-0.7839
Beam 687: End 2	5.6666	-934.2016	-4.6720	727.8155	-278.5835	-3.8398
Beam 688: End 1	5.6666	-934.2016	-4.6720	727.8155	-278.5835	-3.8398
Beam 557: End 1	0.9251	-222.4350	-4.6853	718.9914	-67.5020	-3.1658
Beam 719: End 1	1.4501	-432.3515	-2.6577	696.8438	-89.6680	0.8315
Beam 731: End 1	1.3918	-423.0267	-2.5569	680.7144	-401.5282	0.8315
Beam 103: End 2	-0.6828	-29.7536	5.1380	663.0731	-161.6559	0.9458
Beam 553: End 2	-3.1478	491.7364	-3.7126	606.5479	-67.3842	-3.6047
Beam 554: End 1	-3.1478	491.7364	-3.7126	606.5479	-67.3842	-3.6047
Beam 46: End 1	12.7524	383.3946	6.7053	542.3135	-173.9846	1.0530
Beam 730: End 2	12.7524	383.3946	6.7053	542.3135	-173.9846	1.0530
Beam 719: End 2	1.4501	-339.5456	-2.6577	526.7491	-91.6570	0.8315
Beam 720: End 1	1.4501	-339.5456	-2.6577	526.7491	-91.6570	0.8315
Beam 732: End 1	1.3918	-333.9507	-2.5569	517.0715	-403.5172	0.8315
Beam 731: End 2	1.3918	-333.9507	-2.5569	517.0715	-403.5172	0.8315
Beam 170: End 1	-0.7583	54.0847	-10.0799	476.1733	-115.9540	3.1542

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)]

Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_03.st7

26 novembre 2010 12:47 pm

2.4.2 Modello B (telaio su suolo elastico)

Il secondo modello agli elementi finiti preso in considerazione per l'analisi statica (Modello B) è finalizzato alla rappresentazione di una condizione più realistica della struttura quando questa sia sottoposta ai carichi nella combinazione agli stati limite ultimi tenendo conto dell'interazione terreno-struttura con un modello di suolo elastico alla Winkler. A tal fine il software di calcolo Straus7 prevede un supporto elastico applicabile linearmente alle travi interessate (travi rovesce del reticolo di fondazione e fondazioni dei muri di sostegno) secondo una o ambedue le direzioni principali della sezione (Figura 2.8), che in questo caso specifico è stato caratterizzato con il parametro di sottofondo già riportato nell'Equazione (1.6) in accordo con quanto descritto al §1.1.2.

Figura 2.8 - Inserimento del supporto elastico non reagente a trazione in un elemento beam

Nelle Figure 2.9 e 2.10 è mostrato il suddetto modello spaziale su suolo elastico, mentre nelle Figure 2.11 e 2.12 si può vedere lo stesso modello nella configurazione deformata a seguito dell'applicazione statica dei carichi nella combinazione allo stato limite ultimo.

A seguire si riporteranno i tabulati relativi alle caratteristiche della sollecitazione degli elementi più sollecitati: le due travi soggette a momento massimo positivo e negativo, il pilastro con massimo sforzo normale ed il pilastro soggetto al momento massimo.

Figura 2.9 – Modello B (Straus7): vista posteriore del modello su suolo elastico

Figura 2.10 – Modello B (Straus7): vista posteriore del modello su suolo elastico

Analisi statica della struttura non isolata alla base

Figura 2.11 – Modello B (Straus7): vista anteriore del modello deformato

Figura 2.12 – Modello B (Straus7): vista anteriore del modello deformato

Capitolo II

Nei seguenti due diagrammi è indicata la mappa dei cedimenti di fondazione per il Modello B:

Diagramma 2.1 – Modello B: mappa dei cedimenti di fondazione (vista assonometrica)

Diagramma 2.2 – Modello B: mappa dei cedimenti di fondazione (vista in pianta)

	5 - Model	llo B: trave	maggiorme	nte Analisi s	tatica Mode	llo B (suolo	elastico)
sollecitata a n	nomento flet	ttente positivo	(<i>Beam 94</i>).	Project: Isolamei	nto alla base	di un edific	io residenziale
				Author: Gianluca	a Togninelli		Reference: Modello B
Model: Mod_Tes Result type: Be Freedom case: Result case: 7: 3 Groups: All Properties: 1: Travi 30x4 2: Travi 30x4 3: Travi 40x4 4: Travi 60x4 5: Travi 30x4 6: Travi 30x7 7: Pilastri 40 8: Pilastri 30 9: Pilastri 50 10: Pilastri 30	si_Winkler2 am force/mom 1: Freedom Ca SLU [Combinat 40 25 25 25 25 25 25 70 0x30 0x40 0x50	ent ise 1 tion 1]					
10: Pilastri 3 11: Pilastri 6 12: Travi 30: 13: Travi 30: 14: Travi 70: 18: Trave 55	50x50 50x30 x60 x65 x25 5x25						
	Shear Force 1 (kN)	Bending Moment (kN.cm)	Shear Force 2 (kN)	Bending Moment (kN.cm)	Axial Force (kN)	Torque (kN.cm)	
Beam 94: End 2	-0.5524	-39.7663	101,7945	8105.4352	-2.0056	2156,7330	
Beam 330: End 2	-0.0059	-0.5377	00.0000	900E E 400			
Beam 401 End 2			68.3092	0005.5490	-0.1004	242.4406	
Doam to Linu Z	-0.0062	-1.5052	3.3153	7974.3283	-0.1004 -0.7808	242.4406 50.5959	
Beam 402: End 1	-0.0062 -0.0080	-1.5052 -1.8123	68.3092 3.3153 -15.5040	7974.3283 7973.4025	-0.1004 -0.7808 -0.8579	242.4406 50.5959 653.9327	
Beam 402: End 1 Beam 294: End 1	-0.0062 -0.0080 0.1018	-1.5052 -1.8123 -9.6434	3.3153 -15.5040 -66.4928	7974.3283 7973.4025 7737.9180	-0.1004 -0.7808 -0.8579 -0.0110	242.4406 50.5959 653.9327 -290.3060	
Beam 402: End 1 Beam 294: End 1 Beam 401: End 1	-0.0062 -0.0080 0.1018 -0.0062	-1.5052 -1.8123 -9.6434 -0.9068	-66.4928 18.3092 -15.5040 -66.4928 18.8305	7974.3283 7973.4025 7737.9180 6903.9496	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808	242.4406 50.5959 653.9327 -290.3060 50.5959	
Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905	3.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961	
Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 343: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652	
Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 343: End 2 Beam 403: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613	
Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 1 Beam 402: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327	
Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 1 Beam 402: End 1 Beam 290: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 74.2004	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 0.2647	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536	
Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 1 Beam 937: End 1 Beam 947: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 0.4807	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.935	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 43.8473	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727	
Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 1 Beam 847: End 1 Beam 420: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4995.6478 4946 9661	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61 5202	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 343: End 2 Beam 403: End 1 Beam 402: End 1 Beam 847: End 1 Beam 420: End 1 Beam 426: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 1 Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 420: End 1 Beam 420: End 1 Beam 365: End 2 Beam 293: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 1 Beam 93: End 1 Beam 365: End 2 Beam 293: End 1 Beam 419: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0182	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4945.66478 4926.9661 4926.4967 4679.6200	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7602 -534.6519 279.7411	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 1 Beam 402: End 1 Beam 402: End 1 Beam 420: End 1 Beam 365: End 2 Beam 293: End 1 Beam 419: End 2 Beam 365: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4679.6200 4667.7140	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 1 Beam 402: End 1 Beam 420: End 1 Beam 293: End 1 Beam 293: End 1 Beam 293: End 1 Beam 293: End 1 Beam 365: End 1 Beam 365: End 1 Beam 292: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 0.1827 -0.0189	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4679.6200 4667.7140 4465.6085	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692	
Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 402: End 1 Beam 402: End 1 Beam 420: End 1 Beam 420: End 1 Beam 420: End 1 Beam 419: End 2 Beam 365: End 1 Beam 365: End 1 Beam 292: End 1 Beam 292: End 1 Beam 291: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4667.6200 4667.7140 4465.6085 4012.6587	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397	
Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 403: End 1 Beam 402: End 2 Beam 290: End 1 Beam 93: End 1 Beam 420: End 1 Beam 420: End 1 Beam 419: End 2 Beam 365: End 1 Beam 292: End 1 Beam 292: End 1 Beam 89: End 2 Beam 89: End 2 Beam 89: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.00035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.55952	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4677.6200 4667.7140 4465.6085 4012.6587 3913.5409	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926	242.4406 50.5959 653.9327 -290.3060.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 401: End 1 Beam 402: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 847: End 1 Beam 847: End 1 Beam 365: End 2 Beam 365: End 1 Beam 365: End 1 Beam 365: End 1 Beam 392: End 1 Beam 89: End 2 Beam 352: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.00035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.79552	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4945.9661 4927.6094 4926.4967 4677.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 2.5557	242.4406 50.5959 653.9327 -290.3060.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 343: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 847: End 1 Beam 847: End 1 Beam 365: End 2 Beam 365: End 1 Beam 361: End 1 Beam 292: End 1 Beam 291: End 1 Beam 352: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 352: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.00159 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1170	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2736	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4679.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3142	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 400: End 2 Beam 400: End 2 Beam 343: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 847: End 1 Beam 365: End 1 Beam 365: End 1 Beam 293: End 1 Beam 293: End 1 Beam 291: End 1 Beam 352: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 703; End 1 Beam 703; End 1 Beam 105; End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.765	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.378	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4995.6478 4946.9661 4927.6094 4926.4967 4679.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1 7101	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 290: End 1 Beam 402: End 1 Beam 365: End 1 Beam 291: End 1 Beam 291: End 1 Beam 352: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 605: End 1 Beam 605: End 1 Beam 605: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9655	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4679.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 -0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -9.6879 -207.6839	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 290: End 1 Beam 402: End 1 Beam 293: End 1 Beam 291: End 1 Beam 891: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 703: End 1 Beam 1286: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 -6.4614 -30.2797 -14.6757 -6.8928 14.4194 -30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 -0.0000	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4677.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3284.4507 3181.6741 3100.9004	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -9.66879 -207.6839 -71.2415	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000	
Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 400: End 2 Beam 400: End 2 Beam 403: End 1 Beam 402: End 2 Beam 403: End 1 Beam 402: End 1 Beam 293: End 1 Beam 293: End 1 Beam 291: End 1 Beam 891: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 605: End 1 Beam 1286: End 1 Beam 1286: End 2 Beam 1335: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355 30.0163	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 49926.4967 4679.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3100.9004 3084.8378	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -71.2415 0.0000	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 -468.1668	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 402: End 1 Beam 402: End 1 Beam 420: End 1 Beam 420: End 1 Beam 420: End 1 Beam 420: End 1 Beam 419: End 2 Beam 365: End 1 Beam 419: End 2 Beam 352: End 1 Beam 891: End 1 Beam 891: End 1 Beam 105: End 1 Beam 1335: End 2 Beam 400: End 1	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000 0.0035	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000 0.0000	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355 30.0163 47.3857	3003.0490 7974.3283 7973.4025 7737.9180 6903.9496 6842.196 6477.5688 5728.0896 5724.7758 5045.6508 49950.6478 4946.9661 4927.6094 4926.4967 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3084.8378 3063.5071	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -207.6839 -71.2415 0.0000 -0.5830	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 -468.1668 -660.4961	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 290: End 1 Beam 402: End 1 Beam 427: End 1 Beam 427: End 1 Beam 429: End 2 Beam 365: End 1 Beam 419: End 2 Beam 365: End 1 Beam 292: End 1 Beam 891: End 1 Beam 891: End 1 Beam 1286: End 2 Beam 1335: End 1 Beam 1335: End 2 Beam 400: End 1 Beam 399: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.0035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000 0.0035 -0.2694	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000 0.0000 0.4.1324 -3.4197	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.5266 -13.7013 -47.5339 37.155 30.0163 47.3857 60.5491	7974.3283 7973.4025 7737.9180 6903.9496 6842.2196 6477.5688 5728.0896 5724.7758 5045.6508 4950.6478 4946.9661 4927.6094 4926.4967 4677.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3184.6741 3109.004 3084.8378 3063.5071 3020.8045	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -207.6839 -207.6839 -0.0000 -0.5830 0.0878	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 -468.1668 -660.4961 -3330.3753	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 401: End 1 Beam 402: End 2 Beam 343: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 847: End 1 Beam 847: End 1 Beam 365: End 2 Beam 365: End 1 Beam 391: End 1 Beam 891: End 1 Beam 133: End 1 Beam 133: End 1 Beam 1335: End 2 Beam 1335: End 2 Beam 1335: End 2 Beam 1335: End 2 Beam 399: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.00035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 0.0371 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000 0.0003 -0.2694 -0.2694 -0.0474	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000 0.0000 -4.1324 -3.4197 15.0123	b8.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355 30.0163 47.3857 60.5491 -8.7309	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4946.9661 4927.6094 4926.4967 4677.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3100.9004 3084.8378 3063.5071 3020.8045 2998.0110	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -71.2415 0.0000 -0.5830 0.0878 0.2774	242.4406 50.5959 653.9327 -290.3060 50.5959 -660.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 -468.1668 -660.4961 -3330.3753 125.3687	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 294: End 1 Beam 401: End 1 Beam 402: End 2 Beam 343: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 847: End 1 Beam 847: End 1 Beam 365: End 2 Beam 365: End 1 Beam 365: End 1 Beam 365: End 1 Beam 365: End 1 Beam 367: End 1 Beam 391: End 1 Beam 891: End 1 Beam 303: End 2 Beam 352: End 2 Beam 352: End 2 Beam 352: End 1 Beam 133: End 1 Beam 133: End 1 Beam 133: End 1 Beam 138: End 2 Beam 139: End 2 Beam 399: End 2 Beam 347: End 1 Beam 346: End 2 Beam 347: End 1 Beam 346: End 2 Beam 347: End 1 Beam 346: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.00035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 -0.4546 0.1827 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000 0.00035 -0.2694 -0.2694 -0.0474 1.0140	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000 0.0000 -4.1324 -3.4197 15.0123 28.4731	68.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355 30.0163 47.3857 60.5491 -8.7309 51.4623 50.2902	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4945.0611 4927.6094 4926.4967 4677.140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3100.9004 3063.5071 3020.8045 2998.0110 2941.5153	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -71.2415 0.0000 -0.5830 0.0878 0.2774 0.9742	242.4406 50.5959 653.9327 -290.3060.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 0.0000 -468.1668 -660.4961 -3330.3753 125.3687 841.2346	
Beam 402: End 1 Beam 402: End 1 Beam 402: End 1 Beam 401: End 1 Beam 400: End 2 Beam 403: End 2 Beam 403: End 2 Beam 403: End 1 Beam 402: End 2 Beam 93: End 1 Beam 93: End 1 Beam 847: End 1 Beam 420: End 1 Beam 420: End 1 Beam 365: End 2 Beam 365: End 1 Beam 361: End 1 Beam 291: End 1 Beam 891: End 1 Beam 703: End 1 Beam 1286: End 2 Beam 1335: End 2 Beam 1335: End 2 Beam 400: End 1 Beam 1286: End 2 Beam 400: End 1 Beam 399: End 2 Beam 392: End 2	-0.0062 -0.0080 0.1018 -0.0062 0.00035 -0.4119 0.0112 -0.0080 -0.0002 0.7104 -0.4807 -0.4546 0.1827 -0.0189 -0.4546 -0.3812 0.1613 0.0698 -0.0230 0.0072 7.1179 -6.7655 2.9650 43.2325 0.0000 0.0035 -0.2694 -0.2694 -0.0474 1.0140 -0.8860 0.0072	-1.5052 -1.8123 -9.6434 -0.9068 -3.7905 -34.6738 -1.8546 -2.5858 0.8729 -23.3074 46.9305 -6.1614 -30.2797 -14.6757 6.8928 14.4194 30.2688 -14.3858 6.6357 -1.9360 -0.3929 -1593.5998 1616.3788 -33.0672 0.0000 0.0000 -4.1324 -3.4197 15.0123 28.4731 -45.1702 3.0000	b8.3092 3.3153 -15.5040 -66.4928 18.8305 31.8704 47.2105 -48.7831 -31.0193 -43.1993 -74.2624 -43.8473 -69.4739 -5.2484 -41.6736 26.8310 10.5344 -37.4721 -32.8820 45.5952 43.7933 -41.2730 -15.9256 -13.7013 -47.5339 37.1355 30.0163 37.3857 60.5491 -8.7309 51.4623 53.8002 37.8202	7974.3283 7973.4025 7737.9180 6903.9496 6894.2196 6477.5688 5728.0896 5724.7758 5045.6508 4980.0520 4950.6478 4945.9661 4927.6094 4926.4967 4679.6200 4667.7140 4465.6085 4012.6587 3913.5409 3646.1606 3563.7043 3449.8494 3234.4507 3181.6741 3100.9004 3063.5071 3020.8045 2998.0110 2941.5153 2842.9802	-0.1004 -0.7808 -0.8579 -0.0110 -0.7808 -0.5830 3.7443 -0.9755 -0.8579 0.0806 -9.3647 1.7328 -4.1074 -2.7176 0.4128 -3.3181 -2.7176 -0.1710 -0.3224 -0.2926 1.1402 3.5957 -328.3143 -96.6879 -207.6839 -71.2415 0.0000 -0.5830 0.0878 0.2774 0.9742 -2.183 3.567	242.4406 50.5959 653.9327 -290.3060.4961 158.8652 1353.3613 653.9327 314.3536 2357.6414 1234.2727 61.5202 -1071.7607 -534.6519 279.7411 -1071.7607 374.1692 -536.0397 12.4463 -1537.6804 -44.2144 0.0964 1.7101 0.0000 0.0000 0.0000 -468.1668 -660.4961 -3330.3753 125.3687 841.2346 20.0903 -44.2144	

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)] Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_Winkler2.st7 27 novembre 2010 11:21 am

Page 1 of 33

Tabulato	2.6 –	Modello	B:	trave	maggiormente
sollecitata	a mom	ento fletter	te n	egativo	(<i>Beam 366</i>).

™e: Analisi statica Modello B (suolo elastico)

Project: Isolamento alla base di un edificio residenziale

Autho Gianluca Togninelli Reference: Modello B

Model: Mod_Tesi_	Winkler2					
Result type: Bear	n force/moment					
Freedom case: 1:	Freedom Case 1	1				
Pecult case: 7 SI		11				
		1				
Groups: All						
Properties:						
1: Travi 30x40	i i i i i i i i i i i i i i i i i i i					
2: Travi 50x25	,					
3 [.] Travi 40x25						
4: Travi 60x25						
4. Travi 00x25						
5: Travi 30x25						
6: Travi 30x70	1					
7: Pilastri 40x3	30					
8: Pilastri 30x4	40					
9 [.] Pilastri 50x?	30					
10: Pilaetri 30	v50					
11. Dilectri 60						
11: Pliastri 60)	100					
12: Travi 30x6	U					
13: Travi 30x6	5					
14: Travi 70x2	.5					
18: Trave 55x2	25					
	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(kN)	(kN.cm)	(kN)	(kN.cm)	(kN)	(kN.cm)
eam 366: End 2	1.0300	83 8248	-130 8269	-14055 3441	-6 1544	-3474 8565
eam 370: End 2	0.9436	99 0997	-54 5792	-6847 2234	-4 1597	-820 5351
eam 1: End 2	-0 2934	-16.2668	-37 3496	-6650 1682	3 8017	-1530 2428
eam 4: End 2	-0.0310	-3.6932	-74,2362	-6193,7774	-1.2275	3098.5465
eam 416: End 1	-0.0547	11.2710	48,7004	-6093.6839	-2.0728	-1548.6689
Beam 418: End 1	0.1763	-14.5474	82.6356	-6078.0277	-3.3971	2172.1985
Beam 874: End 1	-0.7263	99.0571	35.6084	-4791.1262	3.0403	17.0473
Beam 848: End 1	-0.4119	41.5209	73.3100	-4670.5723	3.7443	158.8652
Beam 408: End 1	-0.0974	15.8634	50.7361	-4327.3674	-0.7257	-321.6065
Beam 325: End 1	1.2803	-94.2043	42.8506	-4148.6347	7.0430	49.4642
eam 1030: End 1	0.0000	0.0000	40.9188	-3956.0734	0.0000	0.0000
eam 6: End 2	0.0000	0.0000	-40.9188	-3956.0734	0.0000	0.0000
eam 425: End 1	-0.4015	41.7094	41.9183	-3954.0272	1.7536	-970.4318
3eam 1: End 1	-0.2934	8.6730	-33.3871	-3643.8581	3.8017	-1530.2428
Beam 435: End 2	0.0417	4.2322	-28.8286	-3613.2087	2.3999	-623.0890
Beam 399: End 1	-0.2694	22.6201	76.0644	-3582.1821	0.0878	-3330.3753
Beam 348: End 2	-0.0128	0.6094	-37.5165	-3569.1297	-0.1692	-552.7724
Beam 282: End 1	-0.1385	10.5916	37.3644	-3566.8095	-0.1590	76.8408
Seam 330: End 1	-0.0059	0.4089	75.7680	-3520.6229	-0.1004	242.4406
Beam 13: End 2	-0.0075	-2.1660	-37.7981	-3512.1903	-0.9916	7.7605
Com 380: End 1	-0.0075	1.99/2	37.0237	-3404.3356	-0.9916	1.1005
Ream 364: End 2	-0.5040	32.0901 27 8056	37.0002	-3433.3330	-1.0007	420.0920
eam 1057: End 1	0.19/1	0.0000	-30.0400	-3233.5197	0.0000	410.9400
eam 3' End 2	0.0000	0.0000	-36 6804	-3178 0665	0.0000	0.0000
eam 1035' End 1	0.0000	0.0000	36.3277	-3118 1265	0.0000	0.0000
eam 7: End 2	0.0000	0.0000	-36.3277	-3118 1265	0.0000	0.0000
Beam 426' End 1	0.6390	-48 0216	39 7751	-3022 0012	1 3275	-3563 9825
Beam 33: End 2	0.6248	34 3694	-32 2662	-2820 7713	1 2298	67 8716
Beam 424: End 1	0.2503	-22 7621	28.4173	-2782 1993	-0.5895	217.0544
Doom OE9: End 1	0.2000		20.1110	2.02.1000	5.0000	
eam 200. End 1	0.9937	-75,7205	32,5294	-2773.9283	1.8073	667.903F
eam 283: End 1	0.9937	-75.7205 -5.6150	32.5294 30.4473	-2773.9283 -2764.2320	1.8073 0.1555	667.9036 650.0724
eam 283: End 1 Seam 283: End 1 Seam 1334: End 2	0.9937 0.0691 0.0000	-75.7205 -5.6150 0.0000	32.5294 30.4473 -24.0885	-2773.9283 -2764.2320 -2694.0041	1.8073 0.1555 0.0000	667.9036 650.0724 355.5133

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)] Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_Winkler2.st7 27 novembre 2010 11:20 am

Tabulato 2.7 - Modello B: pilastro maggiormente sollecitato a sforzo normale (Beam 168).

Analisi statica Modello B (suolo elastico)

Project: Isolamento alla base di un edificio residenziale

Autho Gianluca Togninelli

Title

Reference Modello B

Model: Mod_Tesi_Winkler2 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All Properties: All

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(kN)	(kN.cm)	(kN)	(kN.cm)	(kN)	(kN.cm)
Beam 168 [.] End 2	1 1913	236 3009	-0 5937	-105 7996	-476 3681	0.9509
Beam 168: End 1	1.1913	164.8216	-0.5937	-70.1781	-474.0372	0.9509
Beam 955: End 2	1,1913	164.8216	-0.5937	-70,1781	-474.0372	0.9509
Beam 955: End 1	1.1913	93.3424	-0.5937	-34.5566	-471,7064	0.9509
Beam 954: End 2	1,1913	93.3424	-0.5937	-34.5566	-471,7064	0.9509
Beam 954: End 1	1.1913	21.8632	-0.5937	1.0648	-469.3755	0.9509
Beam 953: End 2	1,1913	21,8632	-0.5937	1.0648	-469,3755	0.9509
Beam 50: End 2	0.3793	-137.2438	1.7802	539.6796	-468.0582	21.8812
Beam 952: End 2	1.1913	-49.6161	-0.5937	36.6863	-467.0446	0.9509
Beam 953: End 1	1.1913	-49.6161	-0.5937	36.6863	-467.0446	0.9509
Beam 50: End 1	0.3793	-161.5197	1.7802	425.7471	-466.0692	21.8812
Beam 734: End 2	0.3793	-161.5197	1.7802	425.7471	-466.0692	21.8812
Beam 952: End 1	1.1913	-121.0953	-0.5937	72.3077	-464.7137	0.9509
Beam 733: End 2	0.3793	-185.7956	1.7802	311.8146	-464.0802	21.8812
Beam 734: End 1	0.3793	-185.7956	1.7802	311.8146	-464.0802	21.8812
Beam 733: End 1	0.3793	-210.0715	1.7802	197.8821	-462.0912	21.8812
Beam 732: End 2	0.3793	-210.0715	1.7802	197.8821	-462.0912	21.8812
Beam 731: End 2	0.3793	-234.3475	1.7802	83.9496	-460.1022	21.8812
Beam 732: End 1	0.3793	-234.3475	1.7802	83.9496	-460.1022	21.8812
Beam 731: End 1	0.3793	-258.6234	1.7802	-29.9829	-458.1131	21.8812
Beam 167: End 2	-3.6143	-725.8066	-2.5853	-504.2313	-443.5987	0.6611
Beam 167: End 1	-3.6143	-508.9487	-2.5853	-349.1157	-441.7340	0.6611
Beam 951: End 2	-3.6143	-508.9487	-2.5853	-349.1157	-441.7340	0.6611
Beam 951: End 1	-3.6143	-292.0909	-2.5853	-194.0002	-439.8693	0.6611
Beam 950: End 2	-3.6143	-292.0909	-2.5853	-194.0002	-439.8693	0.6611
Beam 949: End 2	-3.6143	-75.2331	-2.5853	-38.8846	-438.0046	0.6611
Beam 950: End 1	-3.6143	-75.2331	-2.5853	-38.8846	-438.0046	0.6611
Beam 948: End 2	-3.6143	141.6247	-2.5853	116.2309	-436.1399	0.6611
Beam 949: End 1	-3.6143	141.6247	-2.5853	116.2309	-436.1399	0.6611
Beam 948: End 1	-3.6143	358.4826	-2.5853	271.3465	-434.2752	0.6611
Beam 159: End 2	1.8223	363.7492	-1.8213	-337.8874	-417.0040	0.9509
Beam 935: End 2	1.8223	254.4124	-1.8213	-228.6084	-414.6731	0.9509
Beam 159: End 1	1.8223	254.4124	-1.8213	-228.6084	-414.6731	0.9509
Beam 934: End 2	1.8223	145.0756	-1.8213	-119.3294	-412.3423	0.9509
Beam 935: End 1	1.8223	145.0756	-1.8213	-119.3294	-412.3423	0.9509
Beam 933: End 2	1.8223	35.7388	-1.8213	-10.0503	-410.0114	0.9509
Beam 934: End 1	1.8223	35.7388	-1.8213	-10.0503	-410.0114	0.9509
Beam 932: End 2	1.8223	-73.5980	-1.8213	99.2287	-407.6805	0.9509
Beam 933: End 1	1.8223	-73.5980	-1.8213	99.2287	-407.6805	0.9509
Beam 932: End 1	1.8223	-182.9348	-1.8213	208.5077	-405.3496	0.9509
Beam 41: End 2	-1./160	-441.2481	0.8055	118.5378	-395.3010	2.0461
Beam 41: End 1	-1.7160	-331.4239	0.8055	66.9844	-392.8148	2.0461
Beam 710: End 2	-1./160	-331.4239	0.8055	66.9844	-392.8148	2.0461
Beam 709: End 2	-1./160	-221.5998	0.8055	15.4311	-390.3285	2.0461
Beam 710: End 1	-1./160	-221.5998	0.8055	15.4311	-390.3285	2.0461
Beam 709: End 1	-1./160	-111.//57	0.8055	-36.1223	-387.8422	2.0461
Beam 708: End 2	-1./160	-111.//5/	0.8055	-36.1223	-387.8422	2.0461
Beam 708: End 1	-1./160	-1.9516	0.8055	-87.6756	-385.3560	2.0461
Beam 707: End 2	-1./160	-1.9516	0.8055	-87.6756	-385.3560	2.0461
Beam 30: End 2	-2.2445	-332.2969	-10.1054	-967.9589	-384.3200	2.0/4/
Beam /U/: End 1	-1./160	107.8726	0.8055	-139.2290	-382.869/	2.0461
Beam 666; End 2	-2.2445	-188.64/6	-10.1054	-321.2157	-381,8338	2.0/4/
Deam SU. End 1	-2.2445	-188.64/6	-10.1054	-321.2157	-301.8338	2.0747

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)]

Model file: C\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_Winkler2.st7 27 novembre 2010 11:16 am

Page 1 of 42

Tabulato 2.8 – Modello B: pilastro maggiormente sollecitato a momento flettente (Beam 703).

Title Analisi statica Modello B (suolo elastico)

Isolamento alla base di un edificio residenziale

Aut Gianluca Togninelli

Modello B

Model: Mod_Tesi_Winkler2 Result type: Beam force/moment Freedom case: 1: Freedom Case 1 Result case: 7: SLU [Combination 1] Groups: All **Properties:** 7: Pilastri 40x30

8: Pilastri 30x40

9: Pilastri 50x30

10: Pilastri 30x50

11: Pilastri 60x30

	Shear Force 1	Bending Moment 1	Shear Force 2	Bending Moment 2	Axial Force	Torque
	(KN)	(KN.CM)	(KN)	(KN.CM)	(KN)	(KN.CM)
Beam 703: End 1	7.1179	-1593.5998	-15.9256	3449.8494	-328.3143	0.0964
Beam 605: End 1	-6.7655	1616.3788	-13.7013	3234.4507	-96.6879	1.7101
Beam 183: End 1	2.9650	-33.0672	-47.5339	3181.6741	-207.6839	0.0000
Beam 1286: End 2	43.2325	0.0000	37.1355	3100.9004	-71.2415	0.0000
Beam 704: End 1	7.1179	-1138.0532	-15.9256	2430.6140	-330.3033	0.0964
Beam 703: End 2	7.1179	-1138.0532	-15.9256	2430.6140	-330.3033	0.0964
Beam 165: End 1	4.6044	-484.2318	-8.3664	2334.2011	-93.7736	-3.1336
Beam 606: End 1	-6.7655	1142.7957	-13.7013	2275.3575	-94.5125	1.7101
Beam 605: End 2	-6.7655	1142.7957	-13.7013	2275.3575	-94.5125	1.7101
Beam 683: End 1	-2.2445	385.9498	-10.1054	2265.7575	-371.8887	2.0747
Beam 581: End 1	0.4692	-123.2241	-9.3621	2236.9440	-286.2393	0.8243
Beam 675: End 1	-7.7943	1588.0450	-9.8047	2149.6488	-280.5664	-0.1233
Beam 1285: End 2	0.5153	-109.9939	17.7745	1882.5568	-71.8732	0.0000
Beam 165: End 2	4.6044	-161.9272	-8.3664	1748.5556	-95.9491	-3.1336
Beam 684: End 1	-2.2445	242.3004	-10.1054	1619.0142	-374.3750	2.0747
Beam 683: End 2	-2.2445	242.3004	-10.1054	1619.0142	-374.3750	2.0747
Beam 582: End 1	0.4692	-90.3801	-9.3621	1581.5944	-283.5199	0.8243
Beam 581: End 2	0.4692	-90.3801	-9.3621	1581.5944	-283.5199	0.8243
Beam 675: End 2	-7.7943	1089.2116	-9.8047	1522.1482	-282.5554	-0.1233
Beam 676: End 1	-7.7943	1089.2116	-9.8047	1522.1482	-282.5554	-0.1233
Beam 704: End 2	7.1179	-682.5066	-15.9256	1411.3787	-332.2924	0.0964
Beam 705: End 1	7.1179	-682.5066	-15.9256	1411.3787	-332.2924	0.0964
Beam 607: End 1	-6.7655	669.2125	-13.7013	1316.2643	-92.3370	1.7101
Beam 606: End 2	-6.7655	669.2125	-13.7013	1316.2643	-92.3370	1.7101
Beam 46: End 2	9.3541	536.1711	8.3754	1210.1159	-190.9950	151.4923
Beam 158: End 2	2.7955	561.4863	5.8061	1187.5934	-232.6258	0.9509
Beam 170: End 1	82.5609	-1470.7435	-15.3437	1168.0876	-95.5210	-132.3563
Beam 32: End 2	6.8428	654.5281	9.6360	1083.2376	-374.6355	-0.1733
Beam 653: End 1	-12.0225	2246.4002	-7.9533	1037.3670	-15.9889	-1.0733
Beam 189: End 2	3.7928	771.9560	4.9306	1013.2865	-88.7870	-124.9627
Beam 687: End 1	5.8851	-1330.8276	-4.3723	989.7906	-276.1066	-0.1617
Beam 29: End 2	-0.3288	-129.0102	8.1455	979.0902	-242.4968	-0.1212
Beam 684: End 2	-2.2445	98.6511	-10.1054	972.2709	-376.8612	2.0747
Beam 685: End 1	-2.2445	98.6511	-10.1054	972.2709	-376.8612	2.0747
Beam 186: End 2	-2.6250	-597.9131	4.7778	961.4862	-193.2602	-12.8822
Beam 583: End 1	0.4692	-57.5360	-9.3621	926.2448	-280.8006	0.8243
Beam 582: End 2	0.4692	-57.5360	-9.3621	926.2448	-280.8006	0.8243
Beam 677: End 1	-7.7943	590.3781	-9.8047	894.6476	-284.5444	-0.1233
Beam 676: End 2	-7.7943	590.3781	-9.8047	894.6476	-284.5444	-0.1233
Beam 158: End 1	2.7955	393.7545	5.8061	839.2282	-230.2950	0.9509
Beam 931: End 2	2.7955	393.7545	5.8061	839.2282	-230.2950	0.9509
Beam 103: End 2	-0.6449	-22.1867	6.1949	811.6366	-159.8520	2.6976
Beam 944: End 1	0.5441	-66.0156	-4.9765	774.7961	-179.6211	-3.0161
Beam 45: End 2	-2.8281	-398.8773	3.6563	733.9794	-328.4983	21.3458
Beam 687: End 2	5.8851	-954.1841	-4.3723	709.9658	-278.0956	-0.1617
Beam 688: End 1	5.8851	-954.1841	-4.3723	709.9658	-278.0956	-0.1617

Straus7 Release 2.3.3 [Licenced to:BuRaoLoGY (tm)] Model file: C:\Documents and Settings\Gianluca\Desktop\Modello Tesi LS\Mod_Tesi_Winkler2.st7 27 novembre 2010 11:24 am

Page 1 of 14

Segue il *log file* dell'analisi statica del Modello B:

Solution commenced on 26/11/2010 at 18:51:36 Straus7 [2.3.3] [Solver Build 23040715] LINEAR STATIC SOLVER - For Intel P2-P4 CPU Computer Name: TOGNINELLI (CPU - Intel P2/P3) User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kqf Stress: kg/cm^2 TOTALS: Nodes : 1709 Beams : 1337 Plate : 599 Bricks : 0 Links : 108 FREEDOM CASE: "Freedom Case 1" LOAD CASES: 1. "Pesi propri" 2. "Permanenti" 3. "Accidentali" 4. "Carico neve" 5. "Tamponamenti" 6. "Spinta del terreno" STORAGE SCHEME: Sparse SORTING METHOD: AMD 8775 NUMBER OF EQUATIONS : 49.5 % MATRIX FILL-IN RATIO : [K] MATRIX SIZE : 2.1 MB 937.5 KB OPTIMUM RAM NEEDED : FREE SCRATCH SPACE : 24405.6 MB SUMMATION OF APPLIED LOADS [Beams] FY FZ MX MY Case FΧ M7 Case Name 1 2.25722E-14 -6.42943E+05 -2.86015E-14 -2.69663E+05 1.30042E-25 -3.50452E+02 "Pesi propri" 5 0.00000E+00 -1.50584E+05 1.00974E-28 -2.45564E-11 0.00000E+00 5.45697E-12 "Tamponamenti" SUMMATION OF APPLIED LOADS [Plates] Case FX FY FZ MX MY MZ Case Name 1 3.91811E-13 -3.67918E+05 -5.53608E-14 9.28805E-10 1.12517E-41 6.41709E-11 "Pesi propri" 2 -3.24599E-13 -6.58347E+04 -6.62643E-29 0.00000E+00 0.00000E+00 0.00000E+00 "Permanenti" 3 0.00000E+00 -5.66394E+04 0.00000E+00 -4.07741E-27 3.98273E-59 3.95111E-27 "Accidentali" 4 0.00000E+00 -7.87025E+04 0.00000E+00 -9.02797E-27 8.36373E-58 7.91211E-27 "Carico neve"

```
SUMMATION OF APPLIED LOADS [Total]
Case
      FX
                    FY
                                FΖ
                                             MX
                                                         MY
                                                                     MZ
                                                                             Case Name
  1 4.14383E-13 -1.01086E+06 -8.39623E-14 -2.69663E+05 1.30042E-25 -3.50452E+02
                                                                             "Pesi propri"
  2 -3.24599E-13 -6.58347E+04 -6.62643E-29 0.00000E+00 0.00000E+00 0.00000E+00
                                                                              "Permanenti"
  3 0.00000E+00 -5.66394E+04 0.00000E+00 -4.07741E-27 3.98273E-59 3.95111E-27
                                                                              "Accidentali"
  4 0.00000E+00 -7.87025E+04 0.00000E+00 -9.02797E-27 8.36373E-58 7.91211E-27
                                                                             "Carico neve"
  5 0.00000E+00 -1.50584E+05 1.00974E-28 -2.45564E-11 0.00000E+00 5.45697E-12
                                                                             "Tamponamenti"
SUMMATION OF APPLIED LOADS [Load Vector]
Case
         FΧ
                     FY
                                 FΖ
                                             MX
                                                         MY
                                                                     MZ
                                                                             Case Name
  1 5.72486E-13 -1.01068E+06 5.02724E-14 2.29285E+07 2.99727E-11 3.76997E+07
                                                                             "Pesi propri"
  2 -3.24599E-13 -6.58347E+04 5.36425E-29 8.04613E+05 -6.65414E-11 1.55239E+06
                                                                             "Permanenti"
  3 0.00000E+00 -5.66394E+04 0.00000E+00 8.66708E+05 3.98273E-59 4.03566E+05
                                                                             "Accidentali"
  4 0.00000E+00 -7.87025E+04 0.00000E+00 6.22032E+05 8.36373E-58 2.45259E+06
                                                                             "Carico neve"
  5 0.00000E+00 -1.50584E+05 1.00974E-28 1.13415E+07 0.00000E+00 1.49296E+07
                                                                             "Tamponamenti"
SUMMATION OF MOMENTS OF APPLIED LOADS ABOUT THE ORIGIN [Load Vector]
                             MZo
Case
                    MYo
                                         Case Name
        MXo
  1 -9.28208E+08 -7.11000E-10 -4.11390E+08 "Pesi propri"
  2 -4.50794E+07 3.24609E-10 -2.86561E+07 "Permanenti"
  3 -3.38180E+07 3.98273E-59 -3.56093E+07 "Accidentali"
  4 -5.43075E+07 8.36373E-58 -2.89048E+07 "Carico neve"
  5 -1.80738E+08 -5.16988E-26 -5.72306E+07 "Tamponamenti"
Maximum and minimum pivots: 2.5452E+13(Node 71 RY), 1.9464E+04(Node 1080 DY).
MAXIMUM DISPLACEMENT MAGNITUDES
Case
         DX
                    DY
                                 DZ
                                             RX
                                                         RY
                                                                     RZ
                                                                             Case Name
  1 5.53510E-02 5.36372E-01 2.71389E-01 7.91961E-04 9.04267E-04 8.88722E-04 "Pesi propri"
  2 1.93422E-02 1.19968E-01 2.30514E-02 2.65689E-04 8.68727E-05 4.05869E-04
                                                                             "Permanenti"
  3 2.12466E-02 1.57339E-01 2.86458E-02 3.51726E-04 9.22292E-05 5.47801E-04 "Accidentali"
  4 2.21541E-02 1.47427E-01 2.51950E-02 3.00056E-04 9.59537E-05 4.45901E-04 "Carico neve"
  5 1.87870E-02 2.42812E-01 4.04216E-02 3.71709E-04 9.45226E-05 9.57927E-04 "Tamponamenti"
Total CPU time: 2.266 Seconds ( 0:00:02 )
Solution completed on 26/11/2010 at 18:51:38
Solution time: 2 Seconds
SUMMARY OF WARNING AND ERROR MESSAGES
Number of Warnings: 0
```

Number of Errors : 0

Si confrontano ora i risultati della risposta statica ottenuti analizzando il Modello A ed il Modello B:

Tabella 2.2 – Elementi maggiormente sollecitati staticamente nei Modelli A e B

Sollecitazione	Modello A	Modello B
Momento positivo (trave)	<i>Beam 401</i> (30x40)	Beam 94 (30x40)
Momento negativo (trave)	<i>Beam 366</i> (30x65)	<i>Beam 366</i> (30x65)
Sforzo normale (pilastro)	<i>Beam 41</i> (50x30)	Beam 168 (30x40)
Pressoflessione (pilastro)	<i>Beam 703</i> (30x40)	<i>Beam 703</i> (30x40)

Confrontando i risultati dell'analisi statica dei Modelli A e B, si sono quindi scelti gli elementi più sollecitati, ma anche i più significativi (evidenziati in Tabella 2.2). Come si noterà in seguito (Tabella 2.3) i due modelli, pur avendo vincolamenti differenti, tesi a valutare alcuni differenti aspetti strutturali, forniscono risultati alquanti vicini: questo è indice di una corretta modellazione.

Elemento Beam	Modello A	Modello B
94 (Trave 30x40)	$M_d = 7984 \ kN \cdot cm$	$M_d = 8105 \ kN \cdot cm$
[Momento positivo massimo]	$T_d = 93 \ kN$	$T_d = 102 \ kN$
<i>366</i> (Trave 30x65)	$M_d = 14116 \ kN \cdot cm$	$M_d = 14055 \ kN \cdot cm$
[Momento negativo massimo]	$T_d = 129 \ kN$	$T_d = 131 kN$
41 (Pilastro 50x30)	$N_d = 423 \ kN$	$N_d = 394 \ kN$
[Sforzo normale massimo]	$M_d = 143 \ kN \cdot cm$	$M_d = 119 \ kN \cdot cm$
703 (Pilastro 30x40)	$N_d = 327 \ kN$	$N_d = 329 \ kN$
[Pressoriessione con momento massimo]	$M_d = 3405 \ kN \cdot cm$	$M_d = 3450 \ kN \cdot cm$

Tabella 2.3 – Sollecitazioni di progetto degli elementi più significativi (analisi statica)

I valori evidenziati in Tabella 2.3 sono le sollecitazioni di progetto che vengono qui di seguito utilizzate per la verifica dei quattro elementi scelti.

2.4.3 Verifica della trave soggetta a momento massimo positivo (Beam 94)

Si riportano le sollecitazioni di progetto dell'elemento Beam 94:

$$M_{Sd} = 81 \, kN \cdot m \tag{2.36}$$

$$T_{Sd} = 102 \, kN$$
 (2.37)

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 40 centimetri. In Figura 2.13 è illustrata la sezione completa delle armature longitudinali ed a taglio che si vanno qui di seguito a verificare.

Dai calcoli effettuati considerando la geometria e le armature longitudinali della sezione di Figura 2.13, si è ottenuto il seguente momento resistente:

$$M_{Rd} = 104 \, kN \cdot m \tag{2.38}$$

Figura 2.13 – Trave soggetta a momento massimo positivo (Beam 94).

Si procede quindi alla verifica nei confronti del momento sollecitante di progetto che fornisce esito positivo (in quanto quest'ultimo è inferiore del momento resistente di progetto), con rottura allo stato limite ultimo in Campo 3:

 $M_{Rd} = 104 \ kN \cdot m > M_{Sd} = 81 \ kN \cdot m \quad \text{Verificato} \tag{2.38}$

Per quanto riguarda il taglio, la resistenza di progetto a questa sollecitazione sarà la minore fra le due di seguito calcolate (in accordo con quanto descritto al §2.2.3):

$$T_{Rsd} = 126 \, kN \tag{2.40}$$

$$T_{Rcd} = 403 \ kN$$
 (2.41)

Si avrà quindi il seguente taglio resistente di progetto:

$$T_{Rd} = 126 \, kN$$
 (2.42)

Anche la verifica a taglio fornisce quindi esito positivo, essendo:

$$T_{Rd} = 126 \, kN > T_{Sd} = 101 \, kN \quad \text{Verificato} \tag{2.43}$$

2.4.4 Verifica della trave soggetta a momento massimo negativo (Beam 366)

Si riportano le sollecitazioni di progetto dell'elemento Beam 366:

$$M_{Sd} = 142 \ kN \cdot m \tag{2.44}$$

$$T_{Sd} = 129 \, kN$$
 (2.45)

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 65 centimetri. In Figura 2.14 è illustrata la sezione completa delle armature longitudinali ed a taglio che si vanno qui di seguito a verificare.

Dai calcoli effettuati considerando la geometria e le armature longitudinali della sezione di Figura 2.14, si è ottenuto il seguente momento resistente:

$$M_{Rd} = 181 \, kN \cdot m \tag{2.46}$$

Figura 2.14 – Trave soggetta a momento massimo negativo (Beam 366).

Si procede quindi alla verifica nei confronti del momento sollecitante di progetto che fornisce esito positivo (in quanto quest'ultimo è inferiore del momento resistente di progetto), con rottura allo stato limite ultimo in Campo 3:

$$M_{Rd} = 181 \, kN \cdot m > M_{Sd} = 142 \, kN \cdot m \quad \text{Verificato} \tag{2.47}$$

Per quanto riguarda il taglio, la resistenza di progetto a questa sollecitazione sarà la minore fra le due di seguito calcolate (in accordo con quanto descritto al §2.2.3):

$$T_{Rsd} = 216 \, kN \tag{2.48}$$

$$T_{Rcd} = 683 \ kN$$
 (2.49)

Si avrà quindi il seguente taglio resistente di progetto:

$$T_{Rd} = 216 \ kN$$
 (2.50)

Anche la verifica a taglio fornisce quindi esito positivo, essendo:

$$T_{Rd} = 216 \ kN > T_{Sd} = 129 \ kN \quad \text{Verificato} \tag{2.51}$$

2.4.5 Verifica del pilastro soggetto a sforzo normale massimo (Beam 41)

Si riportano le sollecitazioni di progetto dell'elemento Beam 41:

$$N_{Sd} = 423 \ kN$$
 (2.52)

$$M_{Sd} = 1,4 \ kN \cdot m \tag{2.53}$$

Il suddetto elemento è un pilastro presso-inflesso avente dimensione minore pari a 30 centimetri ed dimensione maggiore pari a 50 centimetri. In Figura 2.15 è illustrata la sezione completa delle armature longitudinali che si vanno qui di seguito a verificare.

Figura 2.15 – Pilastro soggetto a sforzo normale massimo (Beam 41).

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale:

$$M_{Ed} = e \cdot N_{Ed} = 0,025 \cdot 423 = 11 \ kN \cdot m \tag{2.54}$$

Si procede quindi alla verifica allo stato limite ultimo calcolando il momento resistente di progetto e valutando che sia superiore a M_{Ed} (se quest'ultimo è maggiore di M_{Sd}); si ottiene quindi:

 $M_{Rd} = 166 \ kN \cdot m > M_{Ed} = 11 \ kN \cdot m$ Verificato (2.55)

Si visualizza qui di seguito (Grafico 2.1) la verifica a pressoflessione sul dominio di interazione fra sforzo normale e momento flettente (Dominio M-N): la verifica risulta soddisfatta con rottura allo stato limite ultimo (SLU) in Campo 3 (linea blu del Grafico 2.1).

Grafico 2.1 – Dominio di interazione M-N: verifica del pilastro compresso (Beam 41)

2.4.6 Verifica del pilastro soggetto a flessione massima (Beam 703)

Si riportano le sollecitazioni di progetto dell'elemento Beam 703:

$$N_{Sd} = 329 \, kN$$
 (2.56)

$$M_{Sd} = 34,5 \ kN \cdot m \tag{2.57}$$

Il suddetto elemento è un pilastro presso-inflesso avente dimensione minore pari a 30 centimetri ed dimensione maggiore pari a 40 centimetri. In Figura 2.16 è illustrata la sezione completa delle armature longitudinali che si vanno qui di seguito a verificare.

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale:

$$M_{Ed} = e \cdot N_{Ed} = 0,020 \cdot 329 = 6,6 \ kN \cdot m \tag{2.58}$$

Capitolo II

Figura 2.16 – Pilastro soggetto a momento flettente massimo (Beam 703).

Si procede quindi alla verifica allo stato limite ultimo calcolando il momento resistente di progetto e valutando che sia superiore a M_{Sd} (oppure a M_{Ed} se è maggiore di quest'ultimo); si ottiene quindi:

 $M_{Rd} = 104 \ kN \cdot m > M_{Ed} = 34,5 \ kN \cdot m$ Verificato (2.59) Si visualizza qui di seguito (Grafico 2.2) la verifica a pressoflessione sul dominio di interazione fra sforzo normale e momento flettente (Dominio M-N): la verifica risulta soddisfatta con rottura allo SLU in Campo 3 (linea blu).

Grafico 2.2 – Dominio di interazione M-N: verifica del pilastro inflesso (Beam 703)

CAPITOLO III

Analisi modale e analisi dinamica con spettro di risposta

3.1 Introduzione e aspetti normativi dell'analisi lineare dinamica

L'analisi dinamica lineare consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

Devono essere considerati tutti i modi con massa partecipante significativa. È opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%.

Per la combinazione degli effetti relativi ai singoli modi deve essere utilizzata una combinazione quadratica completa (CQC) degli effetti relativi a ciascun modo, quale quella indicata nella seguente espressione:

$$E = \left(\sum_{j}\sum_{i} \rho_{ij} E_i E_j\right)^{1/2} \tag{3.1}$$

dove: E_i è il valore dell'effetto relativo al modo *j*;

 ρ_{ij} è il coefficiente di correlazione tra il modo *i* e il modo *j*, così definito:

$$\rho_{ij} = \frac{8\xi^2 \beta_{ij}^{3/2}}{\left(1 + \beta_{ij}\right) \left[\left(1 - \beta_{ij}\right)^2 + 4\xi^2 \beta_{ij} \right]}$$
(3.2)

nella quale:

 ξ è lo smorzamento viscoso dei modi *i* e *j*;

 β_{ij} è il rapporto tra l'inverso dei periodi di ciascuna coppia *i-j* di modi ($\beta_{ij} = T_j/T_i$).

Per quanto detto, si procede quindi partendo dalle analisi modali dei modelli di calcolo.

3.2 Analisi modale e sua determinazione per i modelli di calcolo

L'analisi modale è uno strumento molto utile nell'ingegneria in quanto permette di studiare le caratteristiche di vibrazione (modi di vibrare e frequenze naturali) di una struttura trovando le soluzioni dell'equazione omogenea del moto di tale sistema ovvero la soluzione dell'equazione in assenza di forzanti esterne. Applicata ad un sistema discreto a n gradi di libertà (MDOF) è possibile scomporre il sistema in altrettanti oscillatori semplici non forzati (SDOF) e disaccoppiare l'equazione matriciale in un sistema di nequazioni linearmente indipendenti (disaccoppiamento modale); a questo punto è facile ricavare la forma di ogni modo di vibrazione (forma modale), il suo periodo di vibrazione (o la rispettiva frequenza naturale) nonché l'eventuale smorzamento introdotto. Avendo la soluzione delle n equazioni degli oscillatori semplici, quest'analisi si presta agevolmente ad essere una base di partenza per altre analisi più specifiche come ad esempio l'analisi spettrale: introducendo la forzante in ognuna delle equazioni si otterrà la risposta di ogni singolo oscillatore, le quali verranno poi combinate in modo opportuno riassemblando quindi il sistema e fornendo la risposta della struttura.

Con l'ausilio dell'elaboratore e grazie al software Straus7 si è quindi provveduto alla determinazione dei modi di vibrare e delle frequenze naturali di ogni modo per ognuno dei singoli modelli già visti (Modello A e Modello B) e per un ulteriore Modello C, costituito dalla sola sovrastruttura. Questa scelta è dipesa dal fatto che modelli completi, come è in particolare il Modello A, sono dotati di una enorme massa dislocata nelle opere di fondazione che nel caso limite in cui vengano vincolate con incastro al terreno (per l'appunto il caso del Modello A) può notevolmente inficiare i risultati delle analisi spettrali in quanto la suddetta massa vincolata non viene sufficientemente movimentata dalle forzanti introdotte, anche il comportamento generato non è quindi realistico.

Il Modello C (sovrastruttura) è quindi stato ottenuto eliminando fondazioni e muri di sostegno collegati, mantenendo i pilastri del piano interrato e sostituendo le opere soppresse con incastri al piede dei pilastri.

3.2.1 Modello A: forme modali e frequenze naturali

Si riporta il *log file* dell'analisi modale del Modello A:

```
Solution commenced on 24/11/2010 at 19:11:59
Straus7 [2.3.3] [Solver Build 23040715]
NATURAL FREQUENCY SOLVER - For Intel P2-P4 CPU
Computer Name: TOGNINELLI (CPU - Intel P2/P3)
User Logon Name: Gianluca
Usable Physical Memory: 1024 MB
Usable Virtual Memory: 2048 MB
SOLVER UNITS:
Length: cm
Mass : kg
Force : kgf
Stress: kg/cm<sup>2</sup>
TOTALS:
Nodes : 1710
Beams : 1339
Plate : 599
Bricks :
          0
Links : 132
FREEDOM CASE: "Freedom Case 1"
MASS MATRIX OPTION:
Beam elements : Lumped
Plate elements : Lumped
Global Matrix : Full (for off-diagonal terms)
Non-struc masses: Included
                 - "Pesi propri"
                 - "Permanenti"
                 - "Accidentali"
                 - "Carico neve"
                 - "Tamponamenti"
                 - "Spinta del terreno"
STORAGE SCHEME: Sparse
SORTING METHOD: AMD
NUMBER OF EQUATIONS : 8010
                        41.7 %
MATRIX FILL-IN RATIO :
[K] MATRIX SIZE :
                           1.7 MB
[M] MATRIX SIZE :
                           1.0 MB
                        687.5 KB
OPTIMUM RAM NEEDED :
FREE SCRATCH SPACE : 24657.2 MB
```

Maximum and minimum pivots: 6.9564E+13(Node 71_RX), 1.9464E+04(Node 1081_DY).

Capitolo III

Nodal displacement components used in starting vector: 899[RY] 898[RY] 900[RY] 901[RY] 382[DY] 1097[DY] 731[DX] 733[DX] 1479[DZ] 732[DX] 734[DX] 735[DX] 736[DX] 915[DY] 914[DY] 738[DX] 739[DX] 740[DX] 296[DY] 1474[DZ] 1327[DY] 1326[DY] ITERATION 1 Current Frequencies (Hz) 4.84715E+00 1.85085E+01 3.09104E+01 3.36372E+01 3.57795E+01 3.94810E+01

 4.95493E+01
 5.51860E+01
 6.26570E+01
 6.39814E+01
 7.24155E+01
 7.58954E+01

 7.67666E+01
 7.87424E+01
 8.80632E+01
 9.87254E+01
 1.03524E+02
 1.03920E+02

 1.12465E+02
 1.18715E+02
 1.33087E+02
 1.40136E+02
 1.44384E+02

 ITERATION 2 Current Frequencies (Hz) 4.39711E+00 4.96925E+00 6.01992E+00 1.66380E+01 1.91060E+01 2.12628E+01 2.23886E+01 2.45018E+01 2.67782E+01 3.36369E+01 3.57256E+01 3.87171E+01 4.10162E+01 5.36416E+01 5.96894E+01 6.38943E+01 7.29356E+01 7.73182E+01 8.46201E+01 8.80108E+01 9.61967E+01 1.03177E+02 1.08939E+02 Relative Difference 1.02350E-01 2.72461E+00 4.13468E+00 1.02171E+00 8.72679E-01 8.56807E-01

 1.21314E+00
 1.25232E+00
 1.33985E+00
 9.02120E-01
 1.02699E+00
 9.60258E-01

 8.71618E-01
 4.67935E-01
 4.75359E-01
 5.45135E-01
 4.19393E-01
 3.44063E-01

 3.29060E-01
 3.48874E-01
 3.83483E-01
 3.58212E-01
 3.25367E-01

 ITERATION 3 Current Frequencies (Hz) 4.39092E+00 4.87091E+00 5.90109E+00 1.14728E+01 1.19558E+01 1.33369E+01 1.53331E+01 1.68455E+01 1.86261E+01 1.89507E+01 2.00404E+01 2.08363E+01 3.06452E+01 3.29796E+01 3.36412E+01 3.63392E+01 3.91038E+01 5.86988E+01 6.36655E+01 7.51449E+01 7.76809E+01 8.17533E+01 9.04016E+01 Relative Difference 1.41016E-03 2.01875E-02 2.01370E-02 4.50214E-01 5.98061E-01 5.94289E-01

 4.60147E-01
 4.54504E-01
 4.37670E-01
 7.74964E-01
 7.82679E-01
 8.58157E-01

 3.38423E-01
 6.26507E-01
 7.74294E-01
 7.58274E-01
 8.65178E-01
 3.17201E-01

 3.29136E-01
 1.71215E-01
 2.38357E-01
 2.62050E-01
 2.05058E-01

 ITERATION 4 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 1.02153E+01 1.13498E+01 1.24591E+01 1.28075E+01 1.42211E+01 1.52617E+01 1.55874E+01 1.78885E+01 1.81981E+01 1.87964E+01 1.93927E+01 2.23417E+01 3.09663E+01 3.36371E+01 3.57451E+01 3.64475E+01 3.87758E+01 4.62628E+01 6.43890E+01 7.77732E+01 Relative Difference 1.16826E-063.04862E-051.02481E-041.23100E-015.33890E-027.04560E-021.97200E-011.84539E-012.20449E-012.15775E-011.20299E-011.44973E-016.30371E-017.00625E-015.05757E-011.73511E-011.62522E-016.42148E-017.46772E-019.37931E-016.79124E-012.69677E-011.62374E-01 ITERATION 5 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.97128E+00 1.13435E+01 1.20392E+01 1.21438E+01 1.26510E+01 1.29642E+01 1.39087E+01 1.50925E+01 1.52742E+01 1.71105E+01 1.74102E+01 1.85935E+01 1.95571E+01 2.27120E+01 3.09437E+01 3.11540E+01 3.36334E+01 3.59202E+01 3.73426E+01 5.98241E+01 Relative Difference 1.72343E-10 2.27587E-08 1.78630E-07 2.44723E-02 5.56010E-04 3.48760E-02 5.46496E-02 1.24109E-01 1.77218E-01 1.20693E-01 1.85257E-01 1.91423E-01 9.85339E-02 1.13870E-01 2.01590E-01 5.83379E-01 4.81023E-01 1.55168E-01 1.69915E-01 1.52895E-01 2.87931E-01 7.24278E-01 3.00033E-01

```
ITERATION 6
Current Frequencies (Hz)
 4.39091E+00 4.87077E+00 5.90048E+00 9.87406E+00 1.00397E+01 1.11582E+01
 1.13432E+01 1.20471E+01 1.26151E+01 1.36984E+01 1.48452E+01 1.49436E+01
 1.51969E+01 1.68613E+01 1.70570E+01 1.85559E+01 1.87600E+01 2.13602E+01
 2.37671E+01 3.07972E+01 3.11505E+01 3.36979E+01 3.53600E+01
Relative Difference
 3.91607E-13 1.33184E-10 1.21131E-09 9.84553E-03 1.29867E-01 7.89554E-02
 7.05832E-02 5.01315E-02 2.76716E-02 1.53500E-02 1.66582E-02 2.21248E-02
 1.25922E-01 3.25528E-02 9.00756E-02 5.39516E-02 2.10662E-01 4.48660E-01
 3.10803E-01 9.20950E-02 1.53119E-01 1.08160E-01 6.91857E-01
ITERATION 7
Current Frequencies (Hz)
 4.39091E+00 4.87077E+00 5.90048E+00 9.84482E+00 9.86375E+00 1.10834E+01
 1.13431E+01 1.20440E+01 1.25557E+01 1.26119E+01 1.36812E+01 1.48204E+01
 1.51821E+01 1.65867E+01 1.68866E+01 1.75657E+01 1.81268E+01 1.90043E+01
 2.07538E+01 2.15943E+01 3.04213E+01 3.26846E+01 3.36092E+01
Relative Difference
 0.00000E+00 5.50329E-13 3.87169E-12 2.97057E-03 1.78356E-02 6.74599E-03
 5.73931E-06 2.57425E-04 4.73315E-03 8.61535E-02 8.50758E-02 8.31337E-03
 9.69043E-04 1.65563E-02 1.00932E-02 5.63748E-02 3.49337E-02 1.23964E-01
 1.45191E-01 4.26169E-01 2.39712E-02 3.10020E-02 5.20939E-02
ITERATION 8
Current Frequencies (Hz)
 4.39091E+00 4.87077E+00 5.90048E+00 9.83664E+00 9.84974E+00 1.10763E+01
 1.13431E+01 1.19819E+01 1.20438E+01 1.26115E+01 1.36782E+01 1.48125E+01
1.51781E+01 1.63479E+01 1.67276E+01 1.68888E+01 1.75083E+01 1.88108E+01
1.96368E+01 2.03493E+01 2.17107E+01 2.29849E+01 3.07113E+01
Relative Difference
1.21366E-15 5.65281E-15 1.09884E-14 8.31615E-04 1.42168E-03 6.40076E-04
 2.46060E-07 5.17955E-03 4.25033E-02 3.14264E-05 2.22379E-04 5.29584E-04
 2.64172E-04 1.46080E-02 9.50641E-03 4.00817E-02 3.53241E-02 1.02916E-02
 5.68839E-02 6.11822E-02 4.01208E-01 4.22004E-01 9.43600E-02
ITERATION 9
Current Frequencies (Hz)
 4.39091E+00 4.87077E+00 5.90048E+00 9.83538E+00 9.84903E+00 1.10756E+01
 1.13431E+01 1.18910E+01 1.20437E+01 1.26114E+01 1.36773E+01 1.40582E+01
1.48102E+01 1.51766E+01 1.61194E+01 1.62309E+01 1.68209E+01 1.73616E+01
1.87651E+01 1.91528E+01 1.98255E+01 2.07609E+01 3.08284E+01
Relative Difference
1.21366E-15 1.82349E-15 2.25790E-15 1.28144E-04 7.29571E-05 6.37627E-05
 2.10228E-08 7.64652E-03 7.81002E-06 5.06588E-06 6.46708E-05 5.36585E-02
 2.48408E-02 7.71762E-02 3.77276E-02 4.05292E-02 4.08704E-02 8.34681E-02
 4.64507E-02 6.24699E-02 9.50938E-02 1.07122E-01 3.79972E-03
ITERATION 10
Current Frequencies (Hz)
 4.39091E+00 4.87077E+00 5.90048E+00 9.83530E+00 9.84898E+00 1.10756E+01
 1.13431E+01 1.18777E+01 1.20437E+01 1.26114E+01 1.33043E+01 1.36771E+01
 1.48094E+01 1.51760E+01 1.58964E+01 1.61879E+01 1.68036E+01 1.73264E+01
1.85954E+01 1.88682E+01 1.95275E+01 2.04365E+01 2.30455E+01
Relative Difference
1.01138E-15 1.82349E-16 1.50526E-16 8.07368E-06 4.73795E-06 5.95890E-06
 2.05514E-09 1.11423E-03 8.46304E-07 8.29936E-07 2.80359E-02 2.78665E-02
 5.72925E-05 3.65353E-05 1.40316E-02 2.65889E-03 1.02424E-03 2.03154E-03
 9.12744E-03 1.50845E-02 1.52578E-02 1.58752E-02 3.37717E-01
```

ITERATION 11 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18758E+01 1.20437E+01 1.26114E+01 1.32469E+01 1.36770E+01 1.48091E+01 1.51759E+01 1.58025E+01 1.61773E+01 1.67953E+01 1.73162E+01 1.84568E+01 1.88459E+01 1.93042E+01 2.01642E+01 2.98093E+01 Relative Difference 4.04553E-16 7.29395E-16 1.05369E-15 5.35834E-07 3.26080E-07 5.43822E-07 2.07984E-10 1.62088E-04 1.19256E-07 1.34658E-07 4.33024E-03 4.59581E-06 1.74859E-05 1.12959E-05 5.93745E-03 6.57185E-04 4.96267E-04 5.91718E-04 7.50962E-03 1.18719E-03 1.15694E-02 1.35046E-02 2.26902E-01 **ITERATION 12** Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18755E+01 1.20437E+01 1.26114E+01 1.32430E+01 1.36770E+01 1.48091E+01 1.51758E+01 1.57638E+01 1.61731E+01 1.67913E+01 1.73111E+01 1.83630E+01 1.88380E+01 1.91479E+01 1.98708E+01 3.05880E+01 Relative Difference 2.02277E-16 1.09409E-15 1.95684E-15 3.47449E-08 2.18229E-08 4.84777E-08 2.21528E-11 2.25635E-05 1.61502E-08 2.04747E-08 3.00976E-04 1.05676E-06 5.24162E-06 3.56544E-06 2.45514E-03 2.55023E-04 2.36775E-04 2.90376E-04 5.10897E-03 4.16349E-04 8.16335E-03 1.47649E-02 2.54558E-02 **ITERATION** 13 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18755E+01 1.20437E+01 1.26114E+01 1.32425E+01 1.36770E+01 1.48090E+01 1.51758E+01 1.57484E+01 1.61714E+01 1.67895E+01 1.73083E+01 1.82639E+01 1.88216E+01 1.90184E+01 1.90747E+01 2.10121E+01 Relative Difference 0.00000E+00 1.09409E-15 4.51579E-16 2.19511E-09 1.42884E-09 4.37532E-09 2.41292E-12 3.07466E-06 2.12670E-09 3.06715E-09 3.64406E-05 2.29609E-07 1.50224E-06 1.11551E-06 9.82142E-04 1.08224E-04 1.08363E-04 1.66128E-04 5.42481E-03 8.71027E-04 6.80504E-03 4.17377E-02 4.55730E-01 ITERATION 14 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18755E+01 1.20437E+01 1.26114E+01 1.32424E+01 1.36770E+01 1.48090E+01 1.51758E+01 1.57427E+01 1.61706E+01 1.67888E+01 1.73066E+01 1.79987E+01 1.84051E+01 1.88375E+01 1.89798E+01 2.53132E+01 Relative Difference 0.00000E+00 0.00000E+00 6.02106E-16 1.37795E-10 9.27182E-11 4.07844E-10 2.56357E-13 4.16155E-07 2.76710E-10 4.65620E-10 8.48127E-06 4.78212E-08 4.28705E-07 3.55218E-07 3.62400E-04 4.69866E-05 4.49833E-05 9.83541E-05 1.47324E-02 2.26302E-02 9.60324E-03 4.99522E-03 1.69915E-01 **ITERATION** 15 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18755E+01 1.20437E+01 1.26114E+01 1.32423E+01 1.36770E+01 1.48090E+01 1.51758E+01 1.57404E+01 1.61703E+01 1.67884E+01 1.73056E+01 1.76769E+01 1.83033E+01 1.88325E+01 1.89412E+01 2.48795E+01 Relative Difference 2.02277E-16 1.82349E-16 1.50526E-16 8.65756E-12 5.96088E-12 3.89185E-11 2.75619E-14 5.62716E-08 3.79416E-11 7.03630E-11 2.04696E-06 1.06053E-08 1.24145E-07 1.15682E-07 1.42303E-04 2.08456E-05 1.96702E-05 5.82210E-05 1.82065E-02 5.56310E-03 2.64940E-04 2.03904E-03 1.74306E-02

ITERATION 16 Current Frequencies (Hz)

4.39091E+004.87077E+005.90048E+009.83529E+009.84898E+001.10755E+011.13431E+011.18755E+011.20437E+011.26114E+011.32423E+011.36770E+011.48090E+011.51758E+011.57395E+011.61701E+011.67883E+011.73050E+01 1.74700E+01 1.82668E+01 1.88294E+01 1.89171E+01 2.18373E+01 Relative Difference 2.02277E-16 0.00000E+00 6.02106E-16 5.39845E-13 3.78755E-13 3.76024E-12 2.97544E-15 7.57459E-09 5.28409E-12 1.06261E-11 4.31322E-07 2.41094E-09 3.59423E-08 3.79189E-08 5.83490E-05 9.39552E-06 9.08809E-06 3.45959E-05 1.18413E-02 1.99883E-03 1.69296E-04 1.27335E-03 1.39312E-01 ITERATION 17 Current Frequencies (Hz) 4.39091E+00 4.87077E+00 5.90048E+00 9.83529E+00 9.84898E+00 1.10755E+01 1.13431E+01 1.18755E+01 1.20437E+01 1.26114E+01 1.32423E+01 1.36770E+01 1.48090E+01 1.51758E+01 1.57391E+01 1.61701E+01 1.67882E+01 1.73046E+01 1.73348E+01 1.82460E+01 1.88267E+01 1.89015E+01 3.60093E+01 Relative Difference 0.00000E+00 0.00000E+00 1.05369E-15 3.32323E-14 2.38075E-14 3.70811E-13 7.83010E-16 1.01904E-09 7.39383E-13 1.63503E-12 9.52410E-08 5.52081E-10 1.05493E-08 1.26110E-08 2.40899E-05 4.27373E-06 4.31810E-06 2.10907E-05 7.80128E-03 1.13944E-03 1.39956E-04 8.28544E-04 3.93564E-01 ITERATION 18 Current Frequencies (Hz)

 4.39091E+00
 4.87077E+00
 5.90048E+00
 9.83529E+00
 9.84898E+00
 1.10755E+01

 1.13431E+01
 1.18755E+01
 1.20437E+01
 1.26114E+01
 1.32423E+01
 1.36770E+01

 1.48090E+01
 1.51758E+01
 1.57390E+01
 1.61700E+01
 1.67882E+01
 1.72517E+01

 1.73044E+01
 1.82328E+01
 1.88245E+01
 1.88910E+01
 3.41033E+01

 Relative Difference 2.02277E-16 0.00000E+00 1.95684E-15 9.03052E-16 1.44288E-15 3.60867E-14 1.56602E-15 1.37191E-10 1.04278E-13 2.53536E-13 2.03031E-08 1.27283E-10 3.12757E-09 4.24101E-09 9.94909E-06 1.95506E-06 2.08372E-06 3.06646E-03 1.75725E-03 7.20193E-04 1.20409E-04 5.54295E-04 5.58873E-02

FINAL FREQUENCY RESULTS

Mode	Eigenvalue	Frequency	Frequency
		(rad/s)	(Hertz)
1	7.61147855E+02	2.75889082E+01	4.39091111E+00
2	9.36599923E+02	3.06039201E+01	4.87076515E+00
3	1.37446777E+03	3.70738151E+01	5.90048093E+00
4	3.81886413E+03	6.17969589E+01	9.83529148E+00
5	3.82949792E+03	6.18829372E+01	9.84897536E+00
6	4.84272585E+03	6.95896964E+01	1.10755442E+01
7	5.07955492E+03	7.12709964E+01	1.13431314E+01
8	5.56754809E+03	7.46160042E+01	1.18755059E+01
9	5.72633534E+03	7.56725534E+01	1.20436609E+01
10	6.27893478E+03	7.92397298E+01	1.26113947E+01
11	6.92290984E+03	8.32040254E+01	1.32423319E+01
12	7.38482945E+03	8.59350304E+01	1.36769849E+01
13	8.65789773E+03	9.30478249E+01	1.48090213E+01
14	9.09205592E+03	9.53522727E+01	1.51757855E+01
15	9.77941562E+03	9.88909279E+01	1.57389800E+01
16	1.03224182E+04	1.01599302E+02	1.61700312E+01
17	1.11266935E+04	1.05483143E+02	1.67881636E+01

Total CPU time: 5.562 Seconds (0:00:06)

```
Solution completed on 24/11/2010 at 19:12:05
Solution time: 6 Seconds
SUMMARY OF WARNING AND ERROR MESSAGES
Number of Warnings: 0
Number of Errors : 0
```

Si riportano di seguito, corredati di immagini, i primi e più significativi modi di vibrare con le relative frequenze naturali ed i loro inversi (ovvero i periodi naturali):

• Modo 1 (Modello A)

È un modo puramente torsionale che sottolinea l'aspetto fondamentale del comportamento dinamico di questa struttura avente pianta irregolare con centro di torsione esterno.

Figura 3.1 – Modello A (Straus7) – Analisi modale: modo 1.

Questo modo è caratterizzato dai seguenti parametri:

$$f_1 = 4,39 \, Hz$$
 (3.3)

$$T_1 = 0,228 s \tag{3.4}$$

• Modo 2 (Modello A)

Il secondo modo del Modello A è puramente traslazionale nella direzione Z del software, che adotta il piano X-Z come orizzontale.

Figura 3.2 – Modello A (Straus7) – Analisi modale: modo 2.

Questo modo è caratterizzato dai seguenti parametri:

$$f_2 = 4,87 Hz$$
 (3.5)

$$T_2 = 0,205 s \tag{3.6}$$

• Modo 3 (Modello A)

È il modo con prevalente traslazione nella seconda direzione orizzontale (direzione X) avente anche una componente torsionale.

Figura 3.3 – Modello A (Straus7) – Analisi modale: modo 3.

Questo modo è caratterizzato dai seguenti parametri:

$$f_3 = 5,90 \, Hz$$
 (3.7)

$$T_3 = 0,170 s \tag{3.8}$$

• *Modi 4, 5 e 6 (Modello A)*

Questi modi non sono interessanti in senso fisico, ma matematicamente rappresentano modi di vibrazione locali di alcune membrature.

Figura 3.4 – Modello A (Straus7) – Analisi modale: modo 4.

z x

Figura 3.5 – Modello A (Straus7) – Analisi modale: modo 5.

• Modo 7 (Modello A)

Il settimo modo torna ad essere traslazionale in direzione X con una parte di movimento torsionale.

Figura 3.6 – Modello A (Straus7) – Analisi modale: modo 7.

Questo modo è caratterizzato dai seguenti parametri:

$$f_7 = 11,1 \, Hz \tag{3.9}$$

$$T_7 = 0,090 \ s \tag{3.10}$$

3.2.2 Modello B: forme modali e frequenze naturali

Si riporta il *log file* dell'analisi modale del Modello B:

Solution commenced on 26/11/2010 at 18:51:48 Straus7 [2.3.3] [Solver Build 23040715] NATURAL FREQUENCY SOLVER - For Intel P2-P4 CPU Computer Name: TOGNINELLI (CPU - Intel P2/P3) User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kgf Stress: kg/cm²

TOTALS: Nodes : 1709 Beams : 1337 Plate : 599 Bricks : 0 Links : 108 FREEDOM CASE: "Freedom Case 1" MASS MATRIX OPTION: Beam elements : Lumped Plate elements : Lumped Global Matrix : Full (for off-diagonal terms) Non-struc masses: Included - "Pesi propri" - "Permanenti" - "Accidentali" - "Carico neve" - "Tamponamenti" - "Spinta del terreno" STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 8775 MATRIX FILL-IN RATIO : 49.5 % [K] MATRIX SIZE : 2.1 MB [M] MATRIX SIZE : 1.1 MB OPTIMUM RAM NEEDED : 937.5 KB FREE SCRATCH SPACE : 24405.6 MB Maximum and minimum pivots: 2.5452E+13(Node 71_RY), 1.9464E+04(Node 1080_DY). Nodal displacement components used in starting vector: 898[RY] 897[RY] 899[RY] 900[RY] 382[DY] 1096[DY] 730[DX] 732[DX] 1478[DZ] 731[DX] 735[DX] 733[DX] 914[DY] 913[DY] 734[DX] 738[DX] 737[DX] 739[DX] 296[DY] 1473[DZ] 1326[DY] 1325[DY] ITERATION 1 Current Frequencies (Hz) 5.22235E+00 1.26165E+01 1.48122E+01 1.96574E+01 3.35194E+01 3.36372E+01 3.69573E+01 4.47888E+01 5.01749E+01 5.61825E+01 6.39814E+01 6.71741E+01 7.10380E+01 7.49581E+01 8.70452E+01 8.80630E+01 9.86311E+01 1.03524E+02 1.04846E+02 1.11489E+02 1.30494E+02 1.35758E+02 1.43906E+02 ITERATION 2 Current Frequencies (Hz) 4.20798E+00 4.46109E+00 5.50064E+00 5.80821E+00 9.06734E+00 1.01955E+01 1.09176E+01 1.88338E+01 1.96627E+01 2.29309E+01 2.53892E+01 3.33031E+01 3.36420E+01 3.45573E+01 3.64495E+01 6.27263E+01 6.38410E+01 6.68140E+01 7.22065E+01 8.72123E+01 9.24399E+01 9.97661E+01 1.02996E+02 Relative Difference 2.41058E-01 1.82812E+00 1.69282E+00 2.38441E+00 2.69672E+00 2.29920E+00 2.38511E+00 1.37811E+00 1.55178E+00 1.45007E+00 1.52003E+00 1.01705E+00

1.11158E+00 1.16910E+00 1.38810E+00 4.03925E-01 5.44948E-01 5.49442E-01 4.52032E-01 2.78360E-01 4.11664E-01 3.60760E-01 3.97191E-01 ITERATION 3 Current Frequencies (Hz) 3.46667E+00 4.19198E+00 4.20318E+00 4.40339E+00 5.39696E+00 8.72457E+00 9.31200E+00 9.78499E+00 1.16087E+01 1.17986E+01 1.30716E+01 1.50470E+01 1.73163E+01 1.86691E+01 2.27405E+01 2.57841E+01 3.24222E+01 3.36475E+01 3.49355E+01 3.83114E+01 4.36129E+01 6.58444E+01 6.96496E+01 Relative Difference 2.13838E-01 6.41977E-02 3.08684E-01 3.19031E-01 6.80083E-01 1.68601E-01

 1.72422E-01
 9.24763E-01
 6.93785E-01
 9.43535E-01
 9.42318E-01
 1.21327E+00

 9.42796E-01
 8.51037E-01
 6.02849E-01
 1.43276E+00
 9.69052E-01
 9.85708E-01

 1.06685E+00
 1.27641E+00
 1.11955E+00
 5.15180E-01
 4.78778E-01

 ITERATION 4 Current Frequencies (Hz) 3.44706E+00 4.18576E+00 4.19630E+00 4.40315E+00 5.39587E+00 8.70325E+00 9.22118E+00 9.54026E+00 9.87316E+00 1.10106E+01 1.12490E+01 1.17850E+01 1.28820E+01 1.39192E+01 1.45805E+01 1.48245E+01 1.63678E+01 1.79932E+01 1.99165E+01 2.89721E+01 3.02609E+01 3.36345E+01 3.64877E+01 Relative Difference 5.69041E-03 1.48494E-03 1.64097E-03 5.40822E-05 2.02359E-04 2.45019E-03 9.84985E-03 2.56524E-02 1.75789E-01 7.15677E-02 1.62023E-01 2.76798E-01 3.44221E-01 3.41251E-01 5.59649E-01 7.39288E-01 9.80848E-01 8.70007E-01 7.54098E-01 3.22355E-01 4.41232E-01 9.57642E-01 9.08853E-01 ITERATION 5 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69615E+00 9.15337E+00 9.22114E+00 9.24804E+00 9.52146E+00 9.87350E+00 1.11216E+01 1.12444E+01 1.17249E+01 1.25988E+01 1.35838E+01 1.43448E+01 1.60178E+01 1.63015E+01 1.78531E+01 2.02041E+01 2.78973E+01 3.35802E+01 Relative Difference 1.01026E-06 4.24561E-06 1.30251E-06 9.43392E-08 3.72811E-07 8.16129E-04

 7.40772E-03
 3.46078E-02
 6.75944E-02
 1.56395E-01
 1.39312E-01
 5.96491E-02

 1.45636E-01
 1.87150E-01
 1.57291E-01
 9.13374E-02
 1.41030E-01
 1.23324E-01

 2.21761E-01
 6.22806E-01
 4.97755E-01
 2.05657E-01
 8.65817E-02

 ITERATION 6 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69072E+00 8.94312E+00 9.05045E+00 9.22013E+00 9.38472E+00 9.51879E+00 9.87123E+00 1.12395E+01 1.16535E+01 1.23059E+01 1.34504E+01 1.42347E+01 1.54638E+01 1.57201E+01 1.69045E+01 1.82230E+01 2.24438E+01 2.35531E+01 Relative Difference 1.51485E-09 1.36853E-08 4.40722E-09 2.44606E-10 3.01178E-09 6.25309E-04 2.35099E-02 1.88597E-02 3.02685E-03 1.45703E-02 3.72643E-02 1.26668E-01 4.36961E-04 6.12936E-03 2.38042E-02 9.91521E-03 7.73486E-03 3.58275E-02 3.69838E-02 5.61136E-02 1.08719E-01 2.42982E-01 4.25728E-01 ITERATION 7 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69017E+00 8.92708E+00 9.01524E+00 9.21970E+00 9.30647E+00 9.51849E+00 9.87091E+00 1.12389E+01 1.16407E+01 1.22680E+01 1.34125E+01 1.42070E+01 1.52060E+01 1.53559E+01 1.63432E+01 1.66483E+01 1.69736E+01 1.70801E+01 Relative Difference 2.84808E-12 8.93141E-11 2.93980E-11 1.09954E-12 2.87296E-11 6.23528E-05 1.79624E-03 3.90592E-03 4.65451E-05 8.40869E-03 3.04962E-05 3.24583E-05 5.26494E-05 1.09687E-03 3.08719E-03 2.82614E-03 1.95185E-03 1.69575E-02 2.37134E-02 3.43418E-02 9.45865E-02 3.22280E-01 3.78972E-01 **ITERATION 8** Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69013E+00 8.92606E+00 9.01361E+00 9.21967E+00 9.30293E+00 9.51848E+00 9.87087E+00 1.12389E+01 1.16388E+01 1.22621E+01 1.33987E+01 1.41878E+01 1.43247E+01 1.50950E+01 1.56471E+01 1.58606E+01 1.60800E+01 1.98905E+01 Relative Difference 8.88937E-15 1.04037E-12 3.40558E-13 1.45234E-14 2.53654E-13 5.40294E-06 1.14465E-04 1.80546E-04 3.54612E-06 3.80170E-04 1.71787E-06 3.44432E-06 5.97224E-06 1.62023E-04 4.85961E-04 1.03262E-03 1.34805E-03 6.15221E-02 1.72844E-02 4.44870E-02 4.96644E-02 5.55669E-02 1.41291E-01 ITERATION 9 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92595E+00 9.01350E+00 9.21967E+00 9.30218E+00 9.51848E+00 9.87087E+00 1.12388E+01 1.16384E+01 1.22577E+01 1.26643E+01 1.34042E+01 1.41711E+01 1.48073E+01 1.52526E+01 1.57733E+01 1.59266E+01 2.08346E+01 Relative Difference 2.57663E-16 1.46412E-14 4.44482E-15 6.05143E-16 1.64603E-15 5.00303E-07 1.25879E-05 1.22639E-05 5.56331E-07 8.03310E-05 2.15550E-07 6.80156E-07 1.09136E-06 3.26892E-05 3.52263E-04 5.79910E-02 5.84623E-02 1.08363E-02 1.94290E-02 2.58669E-02 5.53066E-03 9.63413E-03 4.53129E-02 **ITERATION** 10 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30194E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.16192E+01 1.16388E+01 1.22641E+01 1.33984E+01 1.41513E+01 1.46041E+01 1.51579E+01 1.57241E+01 1.58792E+01 1.71592E+01 Relative Difference 2.57663E-16 6.36574E-16 2.11658E-16 2.62229E-15 1.81064E-15 5.10733E-08 2.16367E-06 1.52823E-06 1.54781E-07 2.57614E-05 5.22261E-08 2.11991E-07 1.04641E-06 1.65895E-03 5.31799E-02 3.26306E-02 4.30184E-04 1.40093E-03 1.39129E-02 6.24893E-03 3.13248E-03 2.98364E-03 2.14191E-01 ITERATION 11 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30191E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13752E+01 1.16384E+01 1.22632E+01 1.33970E+01 1.41347E+01 1.45084E+01 1.51147E+01 1.56922E+01 1.58649E+01 1.78166E+01 Relative Difference 3.86494E-16 1.27315E-15 4.23316E-16 0.00000E+00 0.00000E+00 4.62324E-09 2.56882E-07 1.67435E-07 2.30705E-08 4.05211E-06 8.58701E-09 4.35990E-08 1.96554E-06 2.14459E-02 3.72477E-05 7.24882E-05 1.03867E-04 1.17299E-03 6.59857E-03 2.85742E-03 2.02929E-03 9.05854E-04 3.68968E-02 **ITERATION** 12 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30190E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13257E+01 1.16383E+01 1.22630E+01 1.33965E+01 1.41233E+01 1.44624E+01 1.50903E+01 1.56716E+01 1.58592E+01 2.40944E+01 Relative Difference 3.86494E-16 6.36574E-16 1.69326E-15 0.00000E+00 1.48143E-15 3.66266E-10 2.28784E-08 1.41204E-08 2.34241E-09 4.24365E-07 1.00366E-09 5.75111E-09 1.65434E-06 4.37174E-03 1.02355E-06 1.36904E-05 3.98842E-05 8.05265E-04 3.18152E-03 1.61533E-03 1.31833E-03 3.57998E-04 2.60551E-01

ITERATION 13

Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30190E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13157E+01 1.16383E+01 1.22630E+01 1.33963E+01 1.41162E+01 1.44381E+01 1.50738E+01 1.56543E+01 1.58555E+01 1.74458E+01 Relative Difference 3.86494E-16 8.48765E-16 6.34974E-16 2.01714E-15 1.48143E-15 2.79749E-11 1.89153E-09 1.11957E-09 2.15897E-10 4.01457E-08 1.06677E-10 6.70195E-10 5.76186E-07 8.83094E-04 2.31116E-07 3.57701E-06 1.67518E-05 5.04349E-04 1.68383E-03 1.09809E-03 1.10014E-03 2.32627E-04 3.81099E-01 ITERATION 14 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30190E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13137E+01 1.16383E+01 1.22630E+01 1.33962E+01 1.41122E+01 1.44252E+01 1.50630E+01 1.56413E+01 1.58529E+01 2.12079E+01 Relative Difference 5.15326E-16 4.24383E-16 6.34974E-16 6.05143E-16 0.00000E+00 2.12322E-12 1.52991E-10 8.54233E-11 1.92828E-11 3.67293E-09 1.10391E-11 7.42013E-11 1.29143E-07 1.74368E-04 5.66323E-08 9.56845E-07 6.90224E-06 2.87485E-04 8.91904E-04 7.13344E-04 8.34319E-04 1.64647E-04 1.77389E-01 **ITERATION** 15 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30190E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13133E+01 1.16383E+01 1.22630E+01 1.33961E+01 1.41099E+01 1.44184E+01 1.50566E+01 1.56325E+01 1.58513E+01 2.33643E+01 Relative Difference 0.00000E+00 8.48765E-16 4.23316E-16 2.01714E-16 0.00000E+00 1.62098E-13 1.23717E-11 6.54771E-12 1.71746E-12 3.35112E-10 1.14269E-12 8.16621E-12 2.57303E-08 3.43342E-05 1.40883E-08 2.57161E-07 2.83149E-06 1.56170E-04 4.73078E-04 4.28105E-04 5.60295E-04 9.91392E-05 9.22952E-02 ITERATION 16 Current Frequencies (Hz) 3.44706E+00 4.18574E+00 4.19629E+00 4.40315E+00 5.39587E+00 8.69012E+00 8.92593E+00 9.01348E+00 9.21966E+00 9.30190E+00 9.51848E+00 9.87086E+00 1.12388E+01 1.13133E+01 1.16383E+01 1.22630E+01 1.33961E+01 1.41087E+01 1.44144E+01 1.50515E+01 1.56237E+01 1.58497E+01 1.76679E+01 Relative Difference 0.00000E+00 2.12191E-16 4.23316E-16 8.06857E-16 1.64603E-16 1.24691E-14 1.00640E-12 5.19497E-13 1.57604E-13 3.09978E-11 1.21304E-13 9.22653E-13 5.16353E-09 6.99619E-06 3.53992E-09 7.32873E-08 1.23716E-06 8.73386E-05 2.75793E-04 3.34444E-04 5.64113E-04 1.04627E-04 3.22415E-01 FINAL FREQUENCY RESULTS Mode Eigenvalue Frequency Frequency (rad/s) (Hertz) 1 4.69090146E+02 2.16584890E+01 3.44705559E+00 2 6.91679579E+02 2.62998019E+01 4.18574347E+00

3 6.95169766E+02 2.63660722E+01 4.19629073E+00 7.65397356E+02 2.76658157E+01 4.40315132E+00 4 1.14942973E+03 3.39032407E+01 5 5.39586834E+00 6 2.98134004E+03 5.46016487E+01 8.69012228E+00 3.14533177E+035.60832575E+018.92592765E+003.20734014E+035.66333836E+019.01348295E+00 7 8 3.35575293E+03 5.79288609E+01 9.21966456E+00 9 10 3.41588579E+03 5.84455798E+01 9.30190292E+00

```
11
       3.57679925E+03
                         5.98063479E+01
                                           9.51847590E+00
  12
                         6.20204580E+01
                                           9.87086247E+00
       3.84653721E+03
 13
       4.98653249E+03
                         7.06153842E+01
                                           1.12387875E+01
  14
       5.05283525E+03
                         7.10832980E+01
                                           1.13132582E+01
  15
       5.34738574E+03
                         7.31258213E+01
                                           1.16383359E+01
  16
       5.93677673E+03
                         7.70504817E+01
                                           1.22629650E+01
  17
       7.08465366E+03
                         8.41703847E+01
                                           1.33961328E+01
Total CPU time: 5.203 Seconds ( 0:00:05 )
Solution completed on 26/11/2010 at 18:51:54
Solution time: 5 Seconds
SUMMARY OF WARNING AND ERROR MESSAGES
Number of Warnings: 0
Number of Errors : 0
```

Si riportano di seguito, corredati di immagini, i primi e più significativi modi di vibrare con le relative frequenze naturali ed i loro inversi (ovvero i periodi naturali):

• Modo 1 (Modello B)

È un modo poco significativo in quanto locale.

Figura 3.7 – Modello B (Straus7) – Analisi modale: modo 1.

• Modo 2 (Modello B)

Il secondo modo del Modello B ha una componente locale, poi presenta una traslazione lungo X associata ad una leggera torsione.

Figura 3.8 – Modello B (Straus7) – Analisi modale: modo 2.

Questo modo è caratterizzato dai seguenti parametri:

$$f_2 = 4,19 \, Hz$$
 (3.11)

$$T_2 = 0,239 \, s \tag{3.12}$$

• Modo 3 (Modello B)

È il modo con prevalente componente torsionale; presenta anche una componente locale.

Figura 3.9 – Modello B (Straus7) – Analisi modale: modo 3.

Questo modo è caratterizzato dai seguenti parametri:

$$f_3 = 4,20 \, Hz \tag{3.13}$$

$$T_3 = 0,238 \, s \tag{3.14}$$

• Modo 4 (Modello B)

Questo modo ha prevalente traslazione in direzione Z.

Figura 3.10 – Modello B (Straus7) – Analisi modale: modo 4.

Questo modo è caratterizzato dai seguenti parametri:

$$f_4 = 4.40 \, Hz \tag{3.15}$$

$$T_4 = 0,227 \, s \tag{3.16}$$

• Modo 5 (Modello B)

Il quinto modo torna ad avere una traslazione in direzione X, ma in questo caso la traslazione è associata ad una componente assiale, qui più evidente rispetto al Modello A per via del supporto elastico con cui si è modellato il terreno.

Questo modo è caratterizzato dai seguenti parametri:

$$f_5 = 5,40 \, Hz \tag{3.17}$$

$$T_5 = 0,185 s \tag{3.18}$$

Figura 3.11 – Modello B (Straus7) – Analisi modale: modo 5.

Prima di passare al Modello C, si riportano nella seguente tabella i primi modi di vibrare visti sopra per i modelli A e B:

	Ν	Iodello A	Modello B		
	Periodo [s]	Descrizione	Periodo [s]	Descrizione	
Modo 1	0,228	torsionale	0,290	modo locale	
Modo 2	0,205	traslazionale Z	0,239	trasl. X + torsionale	
Modo 3	0,170	trasl. X + torsionale	0,238	torsionale	
Modo 4	0,102	modo locale	0,227	traslazionale Z	
Modo 5	0,102	modo locale	0,185	trasl. Y + assiale	
Modo 6	0,090	modo locale	0,115	modo locale	
Modo 7	0,088	trasl. X + torsionale	0,112	modo locale	

Tabella 3.1 – Confronto fra i primi modi di vibrare dei Modelli A e B.

3.2.3 Modello C: illustrazione, forme modali e frequenze naturali

Il Modello C viene ottenuto dal Modello A già visto, privandolo delle sottostrutture e sostituendo a queste ultime degli incastri situati quindi alla base dei pilastri del piano interrato. Questo modello è adatto a cogliere il comportamento reale della struttura in vibrazione ed in particolare proprio della sovrastruttura quando a quest'ultima verrà applicato l'input sismico.

Capitolo III

Di seguito è illustrato il Modello C in vista assonometrica anteriore e posteriore (Figure 3.12 e 3.13), mentre nelle Figure 3.14 e 3.15 si può vedere il modello deformato dalle azioni statiche allo stato limite ultimo.

Figura 3.12 – Modello C (Straus7): vista anteriore della sovrastruttura.

Figura 3.13 – Modello C (Straus7): vista posteriore della sovrastruttura.

Analisi modale e analisi dinamica con spettro di risposta

Figura 3.14 – Modello C (Straus7): vista anteriore della sovrastruttura deformata.

Figura 3.15 – Modello C (Straus7): vista posteriore della sovrastruttura deformata.

Si riporta il *log file* dell'analisi modale del Modello C:

Solution commenced on 05/10/2010 at 18:18:44 Straus7 [2.3.3] [Solver Build 23040715] NATURAL FREQUENCY SOLVER - For Intel P2-P4 CPU

```
Computer
            Name: TOGNINELLI (CPU - Intel P2/P3)
User Logon Name: Gianluca
Usable Physical Memory: 1024 MB
Usable Virtual Memory: 2048 MB
SOLVER UNITS:
Length: cm
Mass : kg
Force : kgf
Stress: kg/cm^2
TOTALS:
Nodes : 1202
Beams : 1036
Plate : 328
Bricks :
            0
Links : 110
FREEDOM CASE: "Freedom Case 1"
MASS MATRIX OPTION:
Beam elements : Lumped
Plate elements : Lumped
Global Matrix : Full (for off-diagonal terms)
Non-struc masses: Included
                   - "Pesi propri"
                   - "Permanenti"
                   - "Accidentali"
                   - "Carico neve"
                   - "Tamponamenti"
                   - "Spinta del terreno"
STORAGE SCHEME: Sparse
SORTING METHOD: AMD
NUMBER OF EQUATIONS :
                          6348
MATRIX FILL-IN RATIO :
                             46.9 %
[K] MATRIX SIZE :
                              1.4 MB
                            741.9 КВ
[M] MATRIX SIZE :
OPTIMUM RAM NEEDED :
                             687.5 KB
                          26386.2 MB
FREE SCRATCH SPACE :
Maximum and minimum pivots: 1.1995E+13(Node 95_RY), 1.8025E+04(Node 812_DZ).
Nodal displacement components used in starting vector:
 660[RY]
           659[RY] 661[RY] 662[RY]
                                               374[DY]
 857[DY]
            1127[DZ]
                       676[DY]
                                   675[DY]
                                               288[DY]
1122[DZ]
            358[DY]
                       1087[DY]
                                  1086[DY]
                                              1088[DY]
1090[DY]
            1089[DY]
                      1091[DY]
                                  1093[DY]
ITERATION 1
Current Frequencies (Hz)
3.94451E+00 1.05892E+01 3.06428E+01 3.36372E+01 3.84896E+01 3.91776E+01
4.01112E+01 4.04845E+01 4.29463E+01 5.45102E+01 6.39812E+01 6.58693E+01
7.30953E+01 8.80631E+01 1.03524E+02 1.03889E+02 1.04213E+02 1.37721E+02
```

```
1.42274E+02 1.70104E+02
ITERATION 2
Current Frequencies (Hz)
 3.63814E+00 3.77923E+00 4.73097E+00 1.50801E+01 1.67775E+01 1.97834E+01
 2.04810E+01 2.23625E+01 2.35168E+01 2.89143E+01 3.36369E+01 3.88048E+01
 3.91387E+01 3.98481E+01 4.72962E+01 6.38377E+01 6.81843E+01 8.79729E+01
 1.03133E+02 1.04213E+02
Relative Difference
 8.42084E-02 1.80195E+00 5.47706E+00 1.23056E+00 1.29413E+00 9.80323E-01
 9.58456E-01 8.10374E-01 8.26199E-01 8.85237E-01 9.02115E-01 6.97455E-01
 8.67594E-01 1.20997E+00 1.18885E+00 6.27395E-01 5.28404E-01 5.65492E-01
 3.79517E-01 6.32266E-01
ITERATION 3
Current Frequencies (Hz)
 3.61770E+00 3.76195E+00 4.48952E+00 1.03437E+01 1.30289E+01 1.42331E+01
 1.61548E+01 1.78511E+01 1.81752E+01 1.88707E+01 2.09671E+01 2.33398E+01
 3.36337E+01 3.70856E+01 3.76795E+01 3.93830E+01 3.96918E+01 6.31113E+01
 6.74648E+01 1.04105E+02
Relative Difference
 5.65063E-03 4.59447E-03 5.37816E-02 4.57902E-01 2.87716E-01 3.89956E-01
 2.67798E-01 2.52724E-01 2.93894E-01 5.32231E-01 6.04271E-01 6.62600E-01
 1.63677E-01 7.44895E-02 2.55226E-01 6.20947E-01 7.17845E-01 3.93933E-01
 5.28694E-01 1.03851E-03
ITERATION 4
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48900E+00 1.01380E+01 1.25683E+01 1.34297E+01
 1.41842E+01 1.50927E+01 1.67696E+01 1.73959E+01 1.81800E+01 1.85601E+01
 1.88834E+01 1.94792E+01 2.54976E+01 3.36348E+01 3.49311E+01 3.94636E+01
 6.41986E+01 6.96691E+01
Relative Difference
 6.86405E-06 5.49678E-06 1.16659E-04 2.02927E-02 3.66429E-02 5.98210E-02
 1.38925E-01 1.82762E-01 8.38183E-02 8.47767E-02 1.53304E-01 2.57526E-01
 7.81122E-01 9.03859E-01 4.77766E-01 1.70900E-01 1.36288E-01 5.99228E-01
 5.08765E-02 4.94278E-01
ITERATION 5
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48899E+00 1.01331E+01 1.24898E+01 1.25230E+01
 1.37602E+01 1.46817E+01 1.48068E+01 1.64496E+01 1.69354E+01 1.72562E+01
 1.82671E+01 1.85388E+01 1.88661E+01 2.23861E+01 2.94046E+01 3.36432E+01
 3.93161E+01 5.30397E+01
Relative Difference
 7.04474E-09 1.75068E-09 3.06389E-07 4.82384E-04 6.28761E-03 7.24064E-02
 3.08186E-02 2.79987E-02 1.32557E-01 5.75271E-02 7.34915E-02 7.55585E-02
 3.37386E-02 5.07282E-02 3.51500E-01 5.02483E-01 1.87945E-01 1.73005E-01
 6.32885E-01 3.13529E-01
ITERATION 6
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19997E+01 1.25131E+01
 1.35822E+01 1.42090E+01 1.47365E+01 1.62464E+01 1.64322E+01 1.68252E+01
 1.74633E+01 1.76615E+01 1.84692E+01 1.88310E+01 2.11140E+01 2.63188E+01
 3.36340E+01 3.78841E+01
Relative Difference
 2.60327E-12 1.34492E-12 3.99198E-10 1.70288E-05 4.08407E-02 7.89108E-04
 1.31021E-02 3.32666E-02 4.77453E-03 1.25057E-02 3.06210E-02 2.56164E-02
 4.60272E-02 4.96707E-02 2.14906E-02 1.88791E-01 3.92660E-01 2.78297E-01
 1.68937E-01 4.00051E-01
```

ITERATION 7 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19599E+01 1.25123E+01 1.35595E+01 1.41774E+01 1.47222E+01 1.59464E+01 1.61240E+01 1.66202E+01 1.70038E+01 1.72421E+01 1.82698E+01 1.87352E+01 1.96719E+01 2.09999E+01 2.64477E+01 3.36048E+01 Relative Difference 4.91021E-16 2.47901E-15 2.70075E-13 7.29196E-07 3.32509E-03 6.95011E-05 1.67364E-03 2.22823E-03 9.69219E-04 1.88152E-02 1.91149E-02 1.23339E-02 2.70256E-02 2.43223E-02 1.09176E-02 5.11324E-03 7.33089E-02 2.53282E-01 2.71718E-01 1.27343E-01 **ITERATION 8** Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19572E+01 1.25121E+01 1.35578E+01 1.41742E+01 1.47181E+01 1.56567E+01 1.60627E+01 1.65293E+01 1.68682E+01 1.71627E+01 1.81980E+01 1.85998E+01 1.90419E+01 2.02524E+01 2.08411E+01 3.72619E+01 Relative Difference 2.33235E-15 3.06926E-15 4.55071E-15 3.88820E-08 2.25536E-04 1.11835E-05 1.31151E-04 2.22854E-04 2.76884E-04 1.85029E-02 3.81739E-03 5.49984E-03 8.03918E-03 4.62787E-03 3.94052E-03 7.28211E-03 3.30828E-02 3.69047E-02 2.69014E-01 9.81462E-02 ITERATION 9 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01 1.35576E+01 1.41736E+01 1.47168E+01 1.55721E+01 1.60299E+01 1.65013E+01 1.68228E+01 1.71376E+01 1.81505E+01 1.84259E+01 1.89048E+01 1.96337E+01 2.04945E+01 3.13778E+01 Relative Difference 2.33235E-15 1.65268E-15 3.75928E-15 1.33099E-09 1.78072E-05 1.83241E-06 1.39114E-05 4.13126E-05 9.02206E-05 5.43665E-03 2.04555E-03 1.69809E-03 2.69871E-03 1.46511E-03 2.61877E-03 9.43793E-03 7.25309E-03 3.15151E-02 1.69156E-02 1.87524E-01 ITERATION 10 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01 1.35575E+01 1.41735E+01 1.47164E+01 1.55460E+01 1.60130E+01 1.64916E+01 1.68036E+01 1.71253E+01 1.81110E+01 1.83092E+01 1.88684E+01 1.94512E+01 2.02828E+01 2.34007E+01 Relative Difference 4.91021E-16 0.00000E+00 9.89284E-16 7.36213E-11 1.94322E-06 3.05010E-07 1.97330E-06 9.44882E-06 3.08308E-05 1.67868E-03 1.05966E-03 5.87815E-04 1.14100E-03 7.16750E-04 2.17978E-03 6.37383E-03 1.92781E-03 9.38019E-03 1.04375E-02 3.40891E-01 ITERATION 11 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01 1.35575E+01 1.41735E+01 1.47162E+01 1.55364E+01 1.60045E+01 1.64879E+01 1.67941E+01 1.71188E+01 1.80757E+01 1.82452E+01 1.88526E+01 1.93372E+01 2.01276E+01 2.44326E+01 Relative Difference 1.59582E-15 7.08290E-16 5.93571E-16 5.24760E-12 2.39915E-07 5.28607E-08 3.56870E-07 2.27196E-06 1.07443E-05 6.12422E-04 5.25994E-04 2.25996E-04 5.66375E-04 3.82240E-04 1.95463E-03 3.50585E-03 8.36981E-04 5.89663E-03 7.70919E-03 4.22350E-02 **ITERATION** 12

Current Frequencies (Hz)

```
3.61768E+003.76193E+004.48899E+001.01329E+011.19570E+011.25121E+011.35575E+011.41735E+011.47161E+011.55327E+011.60005E+011.64865E+011.67890E+011.71152E+011.80468E+011.82111E+011.88449E+011.92469E+01
 2.00258E+01 2.70251E+01
Relative Difference
 3.68266E-16 7.08290E-16 3.95714E-16 3.92334E-13 3.22138E-08 9.37162E-09
 6.76381E-08 5.81272E-07 3.76945E-06 2.40582E-04 2.54282E-04 8.59085E-05
 3.03906E-04 2.06594E-04 1.60028E-03 1.87307E-03 4.13203E-04 4.69117E-03
 5.08503E-03 9.59304E-02
ITERATION 13
Current Frequencies (Hz)

      3.61768E+00
      3.76193E+00
      4.48899E+00
      1.01329E+01
      1.19570E+01
      1.25121E+01

      1.35575E+01
      1.41735E+01
      1.47161E+01
      1.55312E+01
      1.59985E+01
      1.64859E+01

      1.67861E+01
      1.71134E+01
      1.80247E+01
      1.81907E+01
      1.88406E+01
      1.91681E+01

      1.99379E+01
      2.30002E+01

Relative Difference
 0.00000E+00 4.72193E-16 1.97857E-16 3.06785E-14 4.59267E-09 1.67935E-09
 1.31445E-08 1.57682E-07 1.32147E-06 9.74118E-05 1.22371E-04 3.23942E-05
 1.70187E-04 1.10021E-04 1.22930E-03 1.12375E-03 2.23837E-04 4.11457E-03
 4.40961E-03 1.74998E-01
ITERATION 14
Current Frequencies (Hz)
3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01
1.35575E+01 1.41735E+01 1.47161E+01 1.55306E+01 1.59976E+01 1.64857E+01
1.67845E+01 1.71124E+01 1.80091E+01 1.81776E+01 1.88380E+01 1.91007E+01
1.98696E+01 2.45987E+01
Relative Difference
 0.00000E+00 2.36097E-16 1.97857E-16 3.33081E-15 6.69148E-10 2.99177E-10
 2.57639E-09 4.39985E-08 4.57107E-07 3.86871E-05 5.74407E-05 1.20918E-05
 9.72611E-05 5.33290E-05 8.62548E-04 7.17896E-04 1.39855E-04 3.52405E-03
 3.43598E-03 6.49853E-02
ITERATION 15
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01
 1.35575E+01 1.41735E+01 1.47161E+01 1.55303E+01 1.59972E+01 1.64857E+01
1.67836E+01 1.71120E+01 1.79977E+01 1.81684E+01 1.88363E+01 1.90403E+01
 1.98157E+01 2.70610E+01
Relative Difference
 4.91021E-16 2.36097E-16 1.97857E-16 1.57775E-15 9.73969E-11 5.30331E-11
 5.11015E-10 1.24011E-08 1.57709E-07 1.57224E-05 2.72240E-05 4.79061E-06
 5.65614E-05 2.70706E-05 6.34499E-04 5.08564E-04 9.11786E-05 3.17522E-03
 2.71814E-03 9.09908E-02
ITERATION 16
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01
1.35575E+01 1.41735E+01 1.47161E+01 1.55302E+01 1.59969E+01 1.64856E+01
1.67830E+01 1.71117E+01 1.79879E+01 1.81607E+01 1.88351E+01 1.89762E+01
1.97583E+01 2.11425E+01
Relative Difference
 0.00000E+00 3.54145E-16 0.00000E+00 8.76528E-16 1.38537E-11 9.05862E-12
 1.01223E-10 3.47416E-09 5.30727E-08 6.43322E-06 1.29212E-05 2.03835E-06
 3.29871E-05 1.52362E-05 5.45334E-04 4.19317E-04 6.20824E-05 3.37767E-03
 2.90684E-03 2.79932E-01
ITERATION 17
Current Frequencies (Hz)
 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01
 1.35575E+01 1.41735E+01 1.47161E+01 1.55302E+01 1.59969E+01 1.64856E+01
```

Capitolo III

1.67827E+01 1.71116E+01 1.79816E+01 1.81559E+01 1.88343E+01 1.89293E+01 1.97135E+01 2.14726E+01 Relative Difference 2.45511E-16 0.00000E+00 5.93571E-16 2.62958E-15 1.89298E-12 1.43888E-12 1.96960E-11 9.36669E-10 1.62114E-08 2.28478E-06 5.38956E-06 8.45153E-07 1.79168E-05 6.99361E-06 3.47836E-04 2.64810E-04 4.24501E-05 2.47454E-03 2.27018E-03 1.53697E-02 ITERATION 18 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01 1.35575E+01 1.41735E+01 1.47161E+01 1.55302E+01 1.59968E+01 1.64856E+01 1.67825E+01 1.71115E+01 1.79771E+01 1.81522E+01 1.88337E+01 1.88852E+01 1.96798E+01 2.39819E+01 Relative Difference 2.45511E-16 0.00000E+00 9.89284E-16 1.75306E-15 2.65777E-13 2.37944E-13 3.94709E-12 2.60813E-10 5.29164E-09 9.07693E-07 2.48201E-06 3.74300E-07 1.07259E-05 3.46028E-06 2.51834E-04 2.07872E-04 3.10018E-05 2.34014E-03 1.71231E-03 1.04633E-01 ITERATION 19 Current Frequencies (Hz) 3.61768E+00 3.76193E+00 4.48899E+00 1.01329E+01 1.19570E+01 1.25121E+01 1.35575E+01 1.41735E+01 1.47161E+01 1.55302E+01 1.59968E+01 1.64856E+01 1.67824E+01 1.71115E+01 1.79736E+01 1.81489E+01 1.88320E+01 1.88358E+01 1.96553E+01 2.04487E+01 Relative Difference 0.00000E+00 1.18048E-16 7.91428E-16 8.76528E-16 3.19408E-14 3.66286E-14 7.75398E-13 6.63785E-11 1.55950E-09 3.23199E-07 1.05946E-06 1.62008E-07 5.82661E-06 1.71605E-06 1.96177E-04 1.80526E-04 9.03378E-05 2.61862E-03 1.24779E-03 1.72783E-01

FINAL FREQUENCY RESULTS

Mode	Eigenvalue	Frequency	Frequency
		(rad/s)	(Hertz)
1	5.16677054E+02	2.27305313E+01	3.61767642E+00
2	5.58702680E+02	2.36368923E+01	3.76192826E+00
3	7.95532264E+02	2.82051815E+01	4.48899406E+00
4	4.05348648E+03	6.36669968E+01	1.01329172E+01
5	5.64423220E+03	7.51281053E+01	1.19570093E+01
6	6.18043565E+03	7.86157468E+01	1.25120847E+01
7	7.25639557E+03	8.51844796E+01	1.35575310E+01
8	7.93070591E+03	8.90545109E+01	1.41734656E+01
9	8.54960252E+03	9.24640607E+01	1.47161123E+01
10	9.52167543E+03	9.75790727E+01	1.55301918E+01
11	1.01024380E+04	1.00510885E+02	1.59968042E+01
12	1.07292561E+04	1.03582123E+02	1.64856068E+01
13	1.11190945E+04	1.05447117E+02	1.67824299E+01
14	1.15594271E+04	1.07514776E+02	1.71115081E+01

Total CPU time: 3.766 Seconds (0:00:04)

Solution completed on 05/10/2010 at 18:18:48 Solution time: 4 Seconds

SUMMARY OF WARNING AND ERROR MESSAGES Number of Warnings: 0 Number of Errors : 0 Si riportano di seguito, corredati di immagini, i primi e più significativi modi di vibrare con le relative frequenze naturali ed i loro inversi (ovvero i periodi naturali):

• Modo 1 (Modello C)

È un modo puramente torsionale che coglie il comportamento principale dell'edificio in oscillazione dato dalla particolare forma in pianta.

Figura 3.16 – Modello B (Straus7) – Analisi modale: modo 1.

Questo modo è caratterizzato dai seguenti parametri:

$$f_1 = 3,62 \, Hz \tag{3.19}$$

$$T_1 = 0,276 s \tag{3.20}$$

• Modo 2 (Modello C)

Il secondo modo del Modello C è completamente traslazionale nella direzione Z.

Questo modo è caratterizzato dai seguenti parametri:

$$f_2 = 3,76 \, Hz$$
 (3.21)

$$T_2 = 0,266 s \tag{3.22}$$

Capitolo III

Figura 3.17 – Modello C (Straus7) – Analisi modale: modo 2.

• Modo 3 (Modello C)

Questo modo ha una componente traslazionale in direzione X associata ad una oscillazione assiale.

Figura 3.18 – Modello C (Straus7) – Analisi modale: modo 3.

Questo modo è caratterizzato dai seguenti parametri:

$$f_3 = 4,49 \, Hz$$
 (3.23)

$$T_3 = 0,223 s \tag{3.24}$$

• Modo 4 (Modello C)

Questo modo torna ad appartenere alla categoria dei modi torsionali. È un modo superiore che vede la rotazione dell'ultimo impalcato (la copertura) in controfase rispetto al resto dell'edificio.

Figura 3.19 – Modello C (Straus7) – Analisi modale: modo 4.

Questo modo è caratterizzato dai seguenti parametri:

$$f_4 = 10,13 \, Hz \tag{3.25}$$

$$T_4 = 0,099 s \tag{3.26}$$

• Modi 5, 6 e 7 (Modello C)

Da questo punto in poi, i modi diventano tutti di tipo locale.

Figura 3.20 – Modello C (Straus7) – Analisi modale: modo 5.

Figura 3.21 – Modello C (Straus7) – Analisi modale: modo 6.

Figura 3.22 – Modello C (Straus7) – Analisi modale: modo 7.

3.3 Analisi dinamica lineare con spettro di risposta (Spectral Response)

Ottenuti quindi i risultati delle analisi modali di ognuno dei modelli ideati, si procede con l'analisi dinamica lineare con spettro di risposta. Gli spettri in questione (espressi in termini di accelerazione) sono quelli illustrati ai paragrafi §1.3.6 e §1.3.7, i quali tengono conto del tipo di struttura, del suo comportamento e dei parametri caratterizzanti il sito di costruzione. In merito al comportamento della struttura, qui si è visto nel precedente paragrafo come il fabbricato abbia una spiccata tendenza verso le oscillazioni di tipo torsionale: sono quindi giustificate le scelte fatte sui coefficienti necessari per la determinazione degli spettri di progetto allo stato limite di salvaguardia della vita (SLV); si veda in merito il §1.3.4.

Se la risposta viene valutata come in questo caso mediante analisi dinamica in campo lineare, essa può essere calcolata separatamente per ciascuna delle tre componenti; la risposta a ciascuna componente, ove necessario, è combinata con gli effetti pseudo-statici indotti dagli spostamenti relativi prodotti dalla variabilità spaziale della componente stessa, utilizzando la radice quadrata della somma dei quadrati (SRSS). Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc.) sono combinati successivamente, applicando la seguente espressione:

$$1,00E_x + 0,30E_y + 0,30E_z \tag{3.27}$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi. La componente verticale viene tenuta in conto ove necessario.

In questa analisi con spettro di risposta si è utilizzata una combinazione degli effetti dei modi di tipo CQC (*Complete Quadratic Combination*) che è in grado di cogliere la correlazione fra i modi ovvero l'influenza reciproca quando siano vicini oppure lontani di periodo. Il software Straus7 raggiunge quindi questo risultato risolvendo ogni oscillatore semplice (il generico modo di vibrare) dopo avervi inserito la forzante, costituita dall'accelerazione ricavata dallo spettro di risposta per quel determinato periodo moltiplicata per la massa di competenza.

L'analisi spettrale è stata svolta per ogni modello precedentemente introdotto ottenendo variazioni accettabili sui risultati finali, ma dato che nei Modelli A e B la considerevole massa delle sottostrutture rimane vincolata, risulta impossibile ottenere dai suddetti modelli una percentuale di massa partecipante almeno dell'85% (il minimo da normativa). Si riporteranno quindi i risultati dell'analisi e le verifiche di alcuni elementi di controllo del solo Modello C (sovrastruttura).

3.3.1 Modelli A e B: considerazioni sull'esito dell'analisi spettrale

In questo paragrafo si vuole porre l'attenzione sul concetto di massa partecipante introdotto al §3.1 e più specificatamente sui limiti dettati dalle nuove normative (D.M. 14 gennaio 2008).

Si riporta il *logfile* dell'analisi dinamica lineare con spettro di risposta relativo al Modello A (struttura a base incastrata):

Solution commenced on 24/11/2010 at 19:12:16 Straus7 [2.3.3] [Solver Build 23040715] SPECTRAL RESPONSE SOLVER - For Intel P2-P4 CPU Computer Name: TOGNINELLI (CPU - Intel P2/P3) User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kgf Stress: kg/cm^2 TOTALS: Nodes : 1710 Beams : 1339 Plate : 599 Bricks : 0 Links : 132 FREEDOM CASE: "Freedom Case 1" SPECTRUM TYPE : Response EXCITATION : Seismic Acceleration NUMBER OF CASES: 3 RESULTS SIGN : Absolute RAYLEIGH DAMPING INPUT DATA Frequency 1: 4.04479E+00 Hz Damping Ratio 1: 1.00000E+00 % Frequency 2: 4.30969E+00 Hz Damping Ratio 2: 1.00000E+00 % DAMPING COEFFICIENTS Alpha = 2.62200E-01Beta = 3.81005E-04 STORAGE SCHEME: Sparse SORTING METHOD: AMD

NUMBI	ER OF EQUATIONS	: 8010		
[M]	MATRIX SIZE	: 1.0	MB	
FREE	SCRATCH SPACE	: 24655.9	MB	
MODAL	DATA			
Mode	Frequency	Damping Ratio		
1	4.390911E+00	1.000766E-02		
2	4.870765E+00	1.011389E-02		
3	5.900481E+00	1.059884E-02		
4	9.835291E+00	1.389394E-02		
5	9.848975E+00	1.390737E-02		
б	1.107554E+01	1.514091E-02		
7	1.134313E+01	1.541676E-02		
8	1.187551E+01	1.597153E-02		
9	1.204366E+01	1.614828E-02		
10	1.261139E+01	1.674984E-02		
11	1.324233E+01	1.742622E-02		
12	1.367698E+01	1.789641E-02		
13	1.480902E+01	1.913480E-02		
14	1.517579E+01	1.953975E-02		
15	1.573898E+01	2.016467E-02		
16	1.617003E+01	2.064529E-02		
17	1.678816E+01	2.133766E-02		
Spect	tral Table : S	Spettro di risp	posta SLV orizz	zontale
Mode	Spectral Value	Excitation	Amplitude	Participation(%)
1	2.437970E+02	1.112257E+01	3.562577E+00	18.336
2				7 107
_	2.437970E+02	6.934513E+00	1.805054E+00	/.14/
3	2.437970E+02 2.437970E+02	6.934513E+00 1.355223E+01	1.805054E+00 2.403834E+00	27.221
3 4	2.437970E+02 2.437970E+02 2.395020E+02	6.934513E+00 1.355223E+01 1.097411E+00	1.805054E+00 2.403834E+00 6.882467E-02	27.221 0.178
3 4 5	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02	27.221 0.178 0.232
3 4 5 6	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02	7.127 27.221 0.178 0.232 0.114
3 4 5 6 7	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01	7.127 27.221 0.178 0.232 0.114 2.518
3 4 5 6 7 8	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04	7.127 27.221 0.178 0.232 0.114 2.518 0.000
3 4 5 6 7 8 9	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03	27.221 0.178 0.232 0.114 2.518 0.000 0.007
3 4 5 6 7 8 9 10	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03	7.127 27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001
3 4 5 6 7 8 9 10 11	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.373129E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05	7.127 27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.001 0.000
3 4 5 6 7 8 9 10 11 12	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.373129E+02 2.371121E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.001 0.000 0.012
3 4 5 6 7 8 9 10 11 12 13	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.373129E+02 2.371121E+02 2.366444E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01 1.757849E-01	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03 4.804689E-03	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.000 0.012 0.005
3 4 5 6 7 8 9 10 11 12 13 14	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.373129E+02 2.371121E+02 2.366444E+02 2.365078E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01 1.757849E-01 8.265106E-01	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03 4.804689E-03 2.149967E-02	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.000 0.012 0.005 0.101
3 4 5 6 7 8 9 10 11 12 13 14 15	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.373129E+02 2.371121E+02 2.366444E+02 2.365078E+02 2.363105E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01 1.757849E-01 8.265106E-01 2.052203E+00	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03 4.804689E-03 2.149967E-02 4.958959E-02	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.000 0.012 0.005 0.101 0.624
3 4 5 6 7 8 9 10 11 12 13 14 15 16	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.371121E+02 2.366444E+02 2.365078E+02 2.363105E+02 2.361688E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01 1.757849E-01 8.265106E-01 2.052203E+00 8.637879E-02	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03 4.804689E-03 2.149967E-02 4.958959E-02 1.976279E-03	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.001 0.000 0.012 0.005 0.101 0.624 0.001
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.437970E+02 2.437970E+02 2.395020E+02 2.394902E+02 2.385492E+02 2.383710E+02 2.380403E+02 2.379419E+02 2.376291E+02 2.371121E+02 2.366444E+02 2.365078E+02 2.361688E+02 2.359782E+02	6.934513E+00 1.355223E+01 1.097411E+00 1.250229E+00 8.782709E-01 4.121968E+00 1.474434E-02 2.144240E-01 7.886014E-02 3.328626E-04 2.894297E-01 1.757849E-01 8.265106E-01 2.052203E+00 8.637879E-02 5.190046E-03	1.805054E+00 2.403834E+00 6.882467E-02 7.818714E-02 4.326300E-02 1.934338E-01 6.303937E-04 8.909789E-03 2.984497E-03 1.141032E-05 9.293008E-03 4.804689E-03 2.149967E-02 4.958959E-02 1.976279E-03 1.100720E-04	27.221 0.178 0.232 0.114 2.518 0.000 0.007 0.001 0.000 0.012 0.005 0.101 0.624 0.001 0.000

EXCITATION CASE 2: "Sisma orizzontale Z" Direction Vector: (3.000000E-01, 0.000000E+00, 1.000000E+00) Spectral Table : Spettro di risposta SLV orizzontale

EXC	CITATION FACTORS	FOR CASE 2:	"Sisma orizzoni	tale Z"
Mode	Spectral Value	Excitation	Amplitude	Participation(%)
1	2.437970E+02	2.680636E+00	8.586124E-01	1.065
2	2.437970E+02	1.885118E+01	4.906963E+00	52.670
3	2.437970E+02	2.611019E+00	4.631309E-01	1.010
4	2.395020E+02	3.658036E+00	2.294156E-01	1.983
5	2.394902E+02	4.214508E+00	2.635680E-01	2.633
6	2.385492E+02	2.926712E+00	1.441678E-01	1.270
7	2.383710E+02	1.939175E+00	9.100067E-02	0.557
8	2.380403E+02	6.759828E-04	2.890161E-05	0.000
9	2.379419E+02	4.192549E-01	1.742096E-02	0.026
10	2.376291E+02	1.194364E-01	4.520125E-03	0.002
11	2.373129E+02	1.798790E-04	6.166138E-06	0.000
12	2.371121E+02	9.389618E-02	3.014819E-03	0.001
13	2.366444E+02	2.134883E-01	5.835228E-03	0.007
14	2.365078E+02	1.096083E+00	2.851194E-02	0.178
15	2.363105E+02	4.074542E-01	9.845753E-03	0.025
16	2.361688E+02	1.056679E-01	2.417599E-03	0.002
17	2.359782E+02	1.439668E-02	3.053291E-04	0.000
TOTAL	MASS PARTICIPATI	: :		61.429%

Limitando il precedente *logfile* alla sola parte dei sismi orizzontali è possibile notare come in nessuna delle due direzioni la percentuale di massa partecipante sia notevolmente inferiore al minimo di legge che è pari all'85%.

Al fine di un successivo confronto con la corrispettiva immagine relativa agli altri modelli, si riportano le configurazioni deformate (dal sisma lungo X e dal sisma lungo Z) del Modello A:

Figura 3.22 - Modello A (Straus7) - Analisi dinamica lineare: deformazione (sisma X - CQC)

Figura 3.23 - Modello A (Straus7) - Analisi dinamica lineare: deformazione (sisma Z - CQC)

Analogamente si riporta il *logfile* relativo al Modello B (struttura su suolo elastico):

Solution commenced on 26/11/2010 at 18:52:04 Straus7 [2.3.3] [Solver Build 23040715] SPECTRAL RESPONSE SOLVER - For Intel P2-P4 CPU Computer Name: TOGNINELLI (CPU - Intel P2/P3) User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kgf Stress: kg/cm² TOTALS: Nodes : 1709 Beams : 1337 599 Plate : Bricks : 0 108 Links : FREEDOM CASE: "Freedom Case 1" SPECTRUM TYPE : Response : Seismic Acceleration EXCITATION NUMBER OF CASES: 3 RESULTS SIGN : Absolute

RAYLEIGH DAMPING INPUT DATA Frequency 1: 4.04479E+00 Hz Damping Ratio 1: 1.00000E+00 % Frequency 2: 4.30969E+00 Hz Damping Ratio 2: 1.00000E+00 % DAMPING COEFFICIENTS Alpha = 2.62200E-01Beta = 3.81005E-04 STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 8775 [M] MATRIX SIZE : 1.1 MB FREE SCRATCH SPACE : 24402.9 MB MODAL DATA Mode Frequency Damping Ratio 1 3.447056E+00 1.017905E-02 9.995004E-03 2 4.185743E+00 3 4.196291E+00 9.995100E-03 4 4.403151E+00 1.000911E-02 5 5.395868E+00 1.032554E-02 6 8.690122E+00 1.280278E-02 7 8.925928E+00 1.302160E-02 8 9.013483E+00 1.310369E-02 9 9.219665E+00 1.329871E-02 10 9.301903E+00 1.337714E-02 11 9.518476E+00 1.358533E-02 12 9.870862E+00 1.392887E-02 13 1.123879E+01 1.530894E-02 14 1.131326E+01 1.538586E-02 15 1.163834E+01 1.572345E-02 16 1.226297E+01 1.637979E-02 17 1.339613E+01 1.759223E-02 EXCITATION CASE 1: "Sisma orizzontale X" Direction Vector: (1.000000E+00, 0.000000E+00, 3.000000E-01) Spectral Table : Spettro di risposta SLV orizzontale EXCITATION FACTORS FOR CASE 1: "Sisma orizzontale X" Mode Spectral Value Excitation Amplitude Participation(%) 1.257529E+00 2.437970E+02 6.535667E-01 0.239 1 2 2.437970E+02 6.031197E+00 2.125822E+00 5.506 3 2.437970E+02 1.277159E+01 4.479014E+00 24.690 4 5.605888E+00 1.785607E+00 4.757 2.437970E+02 5 2.437970E+02 1.126287E+01 2.388883E+00 19.201 6 2.406232E+02 1.883439E+00 1.520119E-01 0.537 7 2.403688E+02 6.764892E-01 5.169785E-02 0.069 8 9.648680E-01 0.141 2.402777E+02 7.228304E-02 2.477219E+00 9 2.400701E+02 1.772199E-01 0.929 4.924029E-01 2.399899E+02 10 3.459474E-02 0.037 11 2.397852E+02 0.004 1.639851E-01 1.099340E-02 12 2.394713E+02 1.386627E+00 8.632634E-02 0.291

1/	2.5/2101010702	2.1412200-01	1.0319908-02	0.015
17	2 3724048+02	3 1415500-01	1 0519968-02	0 015
16	2.378176E+02	1.936790E-01	7.758465E-03	0.006
15	2.381838E+02	1.458586E-01	6.496850E-03	0.003
14	2.383905E+02	3.109046E-02	1.466834E-03	0.000
13	2.384395E+02	4.494115E+00	2.148937E-01	3.057

TOTAL MASS PARTICIPATION:

59.482%

EXCITATION CASE 2: "Sisma orizzontale Z" Direction Vector: (3.000000E-01, 0.000000E+00, 1.000000E+00) Spectral Table : Spettro di risposta SLV orizzontale

EXCII	ATION	FA	CTORS	FOR	CASE	2:	"Sis	na	orizz	zontal	le z"		
Mode	Spect	ral	Value	9	Exci	tati	on		Ampli	tude	Partic	ipation	1(%)
1	2.4	379	70E+0	2 4	.3612	207E+	+00	2.	26662	0E+00		2.879	
2	2.4	379	70E+0	2 5	.5875	521E-	-01	1.	96943	9E-01		0.047	
3	2.4	379	70E+0	27	.0441	L52E-	+00	2.	47039	4E+00		7.511	
4	2.4	379	70E+0	21	.8329	72E-	+01	5.	83844	5E+00	5	0.856	
5	2.4	379	70E+0	2 5	.3711	L08E-	-01	1.	13922	6E-01		0.044	
6	2.4	062	32E+0	21	.7298	357E-	+00	1.	39616	3E-01		0.453	
7	2.4	036	88E+0	2 4	.3248	392E-	-02	3.	30511	8E-03		0.000	
8	2.4	027	77E+0	21	.6137	729E-	-01	1.	20892	4E-02		0.004	
9	2.4	007	01E+0	2 3	.0736	576E-	-01	2.	19890	4E-02		0.014	
10	2.3	998	99E+0	28	.5005	534E-	-01	5.	97222	0E-02		0.109	
11	2.3	978	52E+0	21	. 8779	923E-	+00	1.	25894	1E-01		0.534	
12	2.3	947	13E+0	2 2	.9876	559E+	+00	1.	86000	7E-01		1.351	
13	2.3	843	95E+0	22	.4230)08E+	+00	1.	15860	2E-01		0.889	
14	2.3	839	05E+0	2 4	.5851	13E-	-01	2.	16323	5E-02		0.032	
15	2.3	818	38E+0	2 2	2.7842	216E-	-01	1.	24014	8E-02		0.012	
16	2.3	781	76E+0	2 2	2992	259E-	-01	9.	21045	5E-03		0.008	
17	2.3	724	04E+0	2 5	5.3204	25E-	-02	1.	78162	5E-03		0.000	

TOTAL MASS PARTICIPATION:

64.743%

EXCITATION CASE 3: "Sisma verticale" Direction Vector: (0.000000E+00, 1.000000E+00, 0.000000E+00) Spectral Table : Spettro di risposta SLV verticale

EXCITATION FACTORS FOR CASE 3: "Sisma verticale"

Mode	Spectral Value	Excitation	Amplitude	Participation(%)
1	4.109701E+01	4.789887E-03	4.196423E-04	0.000
2	4.980794E+01	3.511243E-01	2.528451E-02	0.012
3	4.991726E+01	4.884093E-01	3.507065E-02	0.023
4	5.258967E+01	7.397914E-01	5.083031E-02	0.053
5	6.462181E+01	6.047001E-01	3.399670E-02	0.035
6	7.914653E+01	2.520959E+01	6.692466E-01	61.685
7	7.914653E+01	1.184359E+01	2.980224E-01	13.615
8	7.914653E+01	1.009485E+01	2.491075E-01	9.891
9	7.914653E+01	2.072271E+00	4.887519E-02	0.417
10	7.914653E+01	5.570119E-01	1.290604E-02	0.030
11	7.914653E+01	6.168945E+00	1.365049E-01	3.694
12	7.914653E+01	8.602306E+00	1.770014E-01	7.183
13	7.914653E+01	1.013428E-01	1.608519E-03	0.001

7.914653E+01 14 2.028222E-02 3.176963E-04 0.000 7.914653E+01 1.093115E+00 1.617917E-02 0.116 15 16 7.914653E+01 1.642590E+00 2.189829E-02 0.262 7.914653E+01 2.760055E+00 0.739 17 3.083408E-02 TOTAL MASS PARTICIPATION: 97.757% Total CPU time: 17.172 Seconds (0:00:17) Solution completed on 26/11/2010 at 18:52:22 Solution time: 18 Seconds SUMMARY OF WARNING AND ERROR MESSAGES Number of Warnings: 0 Number of Errors : 0

Anche in questo caso il minimo di 85% della massa partecipante da normativa non viene raggiunto se non per il sisma verticale, dovuto al fatto che la struttura è posizionata sul supporto elastico. Non si rilevano sostanziali differenze nei dati rispetto ai precedenti (Modello A). Come detto in precedenza questi due modelli (Modelli A e B) si rivelano inefficaci nello studio dinamico di questa struttura con elevata massa localizzata nelle sottostrutture e minimamente sollecitata orizzontalmente.

Sempre al fine di un successivo confronto con gli altri modelli, nelle successive immagini si riportano le configurazioni deformate (dal sisma lungo X e dal sisma lungo Z) del Modello B:

Figura 3.24 – Modello B (Straus7) – Analisi dinamica lineare: deformazione (sisma X – CQC)

Figura 3.25 – Modello B (Straus7) – Analisi dinamica lineare: deformazione (sisma Z – CQC)

3.3.2 Modello C: risultati dell'analisi dinamica con spettro di risposta

Come di consueto si riporta inizialmente il *logfile* di questa analisi dinamica lineare con spettro di risposta:

Solution commenced on 05/10/2010 at 18:34:44 Straus7 [2.3.3] [Solver Build 23040715] SPECTRAL RESPONSE SOLVER - For Intel P2-P4 CPU Computer Name: TOGNINELLI (CPU - Intel P2/P3) User Logon Name: Gianluca Usable Physical Memory: 1024 MB Usable Virtual Memory: 2048 MB SOLVER UNITS: Length: cm Mass : kg Force : kgf Stress: kg/cm² TOTALS: Nodes : 1202 Beams : 1036 Plate : 328 Bricks : 0 Links : 110 FREEDOM CASE: "Freedom Case 1"

SPECTRUM TYPE : Response : Seismic Acceleration EXCITATION NUMBER OF CASES: 3 RESULTS SIGN : Absolute RAYLEIGH DAMPING INPUT DATA Frequency 1: 4.04479E+00 Hz Damping Ratio 1: 1.00000E+00 % Frequency 2: 4.30969E+00 Hz Damping Ratio 2: 1.00000E+00 % DAMPING COEFFICIENTS Alpha = 2.62200E-01Beta = 3.81005E-04 STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 6348 [M] MATRIX SIZE : 741.9 KB FREE SCRATCH SPACE : 26383.4 MB MODAL DATA Mode Frequency Damping Ratio 1 3.617676E+00 1.009779E-02 3.761928E+00 1.004930E-02 2 3 4.488994E+00 1.002124E-02 4 1.013292E+01 1.418787E-02 5 1.195701E+01 1.605711E-02 6 1.251208E+01 1.664410E-02 7 1.355753E+01 1.776687E-02 8 1.417347E+01 1.843724E-02 9 1.471611E+01 1.903248E-02 10 1.553019E+01 1.993259E-02 11 1.599680E+01 2.045191E-02 12 1.648561E+01 2.099832E-02 13 1.678243E+01 2.133122E-02 1.711151E+01 2.170120E-02 14 EXCITATION CASE 1: "Sisma orizzontale X" Direction Vector: (1.000000E+00, 0.000000E+00, 3.000000E-01) Spectral Table : Spettro di risposta SLV orizzontale EXCITATION FACTORS FOR CASE 1: "Sisma orizzontale X" Mode Spectral Value Excitation Amplitude Participation(%) 1 2.437970E+02 1.174945E+01 5.544043E+00 29.360 2 2.437970E+02 4.936928E+00 2.154291E+00 5.184 3 2.437970E+02 1.591007E+01 4.875764E+00 53.835 4 2.392521E+02 3.747518E+00 2.211927E-01 2.987 5 2.379922E+02 9.521263E-02 4.014694E-03 0.002 6 2.376817E+02 6.565399E-02 2.524863E-03 0.001 2.733792E-01 8.935051E-03 7 2.371660E+02 0.016 8 2.368978E+02 1.378437E+00 4.117522E-02 0.404 9 2.366801E+02 1.151328E-02 3.187241E-04 0.000 10 2.363820E+02 1.419019E-02 3.522809E-04 0.000

2.362248E+02 1.498164E-01 3.503149E-03 0.005 11 2.360697E+02 7.057731E-01 1.552872E-02 12 0.106 13 2.359799E+02 3.212407E-02 6.817673E-04 0.000 0.483 14 2.358840E+02 1.507676E+00 3.076595E-02 _____ TOTAL MASS PARTICIPATION: 92.382% EXCITATION CASE 2: "Sisma orizzontale Z" Direction Vector: (3.000000E-01, 0.000000E+00, 1.000000E+00) Spectral Table : Spettro di risposta SLV orizzontale EXCITATION FACTORS FOR CASE 2: "Sisma orizzontale Z" Mode Spectral Value Excitation Amplitude Participation(%) 1 2.437970E+02 5.664418E+00 2.672787E+00 6.824 2 2.437970E+02 1.933227E+01 8.435882E+00 79.485 3 3.823 2.392521E+02 1.827596E+00 1.078716E-01 0.710 4 2.392521E+02 1.827596E+00 1.078716E-01 2.379922E+02 3.171522E-01 1.337290E-02 2.376817E+02 1.379089E-01 5.303581E-03 2.371660E+02 1.815471E-01 5.933633E-03 2.368978E+02 1.860745E+00 5.558224E-02 2.366801E+02 8.867254E-02 2.454737E-03 2.363820E+02 2.071852E-01 5.143512E-03 2.362248E+02 2.068966E+00 4.837853E-02 2.360697E+02 4.410671E+00 9.704549E-02 5 0.021 6 0.004 0.007 7 0.007 0.736 0.002 0.009 0.910 8 9 10 11 12 2.360697E+02 4.410671E+00 9.704549E-02 4.137 13 2.359799E+02 1.341845E-01 2.847791E-03 0.004 14 2.358840E+02 2.731673E-01 5.574309E-03 0.016 _____ TOTAL MASS PARTICIPATION: 96.689% EXCITATION CASE 3: "Sisma verticale" Direction Vector: (0.000000E+00, 1.000000E+00, 0.000000E+00) Spectral Table : Spettro di risposta SLV verticale EXCITATION FACTORS FOR CASE 3: "Sisma verticale" Mode Spectral Value Excitation Amplitude Participation(%) 1 4.297843E+01 1.354993E-02 1.127115E-03 0.000

 4.490806E+01
 8.177084E-02
 6.572672E-03

 5.372943E+01
 5.495613E-02
 3.711681E-03

 7.914653E+01
 2.461276E-02
 4.805776E-04

 7.914653E+01
 1.134471E-01
 1.590817E-03

 7.914653E+01
 5.001271E+00
 6.404617E-02

 2 0.002 0.001 3 0.000 4 0.003 5 5.798 6 7 7.914653E+01 2.184680E+00 2.382861E-02 1.106 7.914653E+01 2.008432E-02 2.004366E-04 0.000 8 7.914653E+011.914679E+001.772483E-027.914653E+015.605553E-014.659475E-037.914653E+013.789126E+002.968552E-027.914653E+011.741813E-011.284884E-03 0.850 9 10 0.073 3.328 11 12 0.007 7.914653E+01 9.815558E-01 6.986786E-03 0.223 13

7.914653E+01 4.237187E+00 2.901170E-02

TOTAL MASS PARTICIPATION:

14

15.554%

4.162

Total CPU time: 9.047 Seconds (0:00:09) Solution completed on 05/10/2010 at 18:34:53 Solution time: 9 Seconds SUMMARY OF WARNING AND ERROR MESSAGES Number of Warnings: 0 Number of Errors : 0

In questo caso, rispetto alle analisi effettuate sui Modelli A e B, si supera con successo il limite di legge per la massa partecipante ottenendo i seguenti dati:

- massa partecipante all'azione sismica orizzontale in direzione X: 92,4%
- massa partecipante all'azione sismica orizzontale in direzione Z: 96,7%

Più specificatamente è possibile vedere anche il contributo dei singoli modi di vibrare alla risposta spettrale: per quanto riguarda la direzione orizzontale X è il modo 3 (traslazionale in X) coadiuvato dal modo 1 (torsionale) a fornire il contributo principale, mentre per il sisma orizzontale in direzione Z il modo 2 (traslazionale in Z) è preponderante assieme ad una piccola percentuale degna di nota fornita ancora dal modo 1 (torsionale).

Nelle immagini seguenti è mostrata la configurazione deformata data dalle azioni sismiche nelle tre direzioni:

Figura 3.26 – Modello C (Straus7) – Analisi dinamica lineare: deformazione (sisma X – CQC)

Figura 3.27 – Modello C (Straus7) – Analisi dinamica lineare: deformazione (sisma Z – CQC)

Figura 3.28 - Modello C (Straus7) - Analisi dinamica lineare: deformazione (sisma Y - CQC)

Si conclude questa fase di analisi andando a verificare alcuni elementi significativi del Modello C (sovrastruttura). A questo scopo in fase di analisi statica di questo modello è stata creata una ulteriore combinazione delle azioni, la cosiddetta combinazione sismica (si veda §1.3.8), ai risultati della quale si dovranno sommare le sollecitazioni dovute prima al sisma orizzontale in una direzione (direzione X) e poi in quella ortogonale (direzione Z), avendo applicato i coefficienti visti nell'Equazione (3.27) all'azione sismica. È da notare che l'azione sismica è ciclica e quindi la sollecitazione fornita dal

software in valore assoluto assumerà segno positivo e successivamente segno negativo nell'evolversi del moto: tali sollecitazioni dovranno quindi essere sommate alle azioni statiche nella condizione più gravosa.

Come già fatto in precedenza, si sono scelti quattro elementi (due travi e due pilastri) fra quelli più sollecitati, ai quali saranno sommate le azioni sismiche nei due casi suddetti (sisma in direzione X e in direzione Z). Si elencano di seguito gli elementi scelti:

- (e.1) *Beam 283*: trave soggetta a momento positivo massimo;
- (e.2) *Beam 318*: trave soggetta a momento negativo massimo;
- (e.3) *Beam 30*: pilastro soggetto a sforzo normale massimo;
- (e.4) Beam 566: pilastro soggetto a momento flettente massimo.

Si procede quindi alla verifica di questi singoli elementi del Modello C.

3.3.3 Verifica dell'elemento (e.1) – Trave 30x60

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 60 centimetri. In Figura 3.29 è illustrata la sezione completa delle armature longitudinali ed a taglio che si vanno qui a verificare.

Si riportano le sollecitazioni di progetto dell'elemento *Beam 283*:

Sollecitazioni	Momento flettente	Taglio
Statica	$M = 41,54 \ kN \cdot m$	$T = 34,98 \ kN$
Sismica (dir. X)	$ M = 69,07 \ kN \cdot m$	$ T = 50,71 \ kN$
Sismica (dir. Z)	$ M = 33,00 \ kN \cdot m$	$ T = 26,29 \ kN$
SLV – direzione X	$M_{Sd}^X = 110,61 \ kN \cdot m$	$T_{Sd}^X = 85,69 \ kN$
SLV – direzione Z	$M_{Sd}^Z = 74,54 \ kN \cdot m$	$T_{Sd}^Z = 61,27 \ kN$

 Tabella 3.2 – Modello C: sollecitazioni di progetto SLV dell'elemento (e.1)

Dai calcoli effettuati considerando la geometria e le armature longitudinali della sezione di Figura 3.29, si è ottenuto il seguente momento resistente:

$$M_{Rd} = 165,52 \ kN \cdot m \tag{3.28}$$

Figura 3.29 – Elemento (e.1): trave 30x60 (*Beam 283*).

Si procede quindi con le verifiche nei confronti dei due momenti sollecitanti di progetto che forniscono esito positivo (in quanto questi ultimi sono inferiori al momento resistente di progetto), entrambe con rottura allo stato limite ultimo in Campo 3:

$$M_{Rd} = 165,52 \ kN \cdot m > M_{Sd}^X = 110,61 \ kN \cdot m$$
 Verificato (3.29)

$$M_{Rd} = 165,52 \ kN \cdot m > M_{Sd}^Z = 74,54 \ kN \cdot m$$
 Verificato (3.30)

Per quanto riguarda il taglio, la resistenza di progetto a questa sollecitazione sarà la minore fra le due di seguito calcolate (in accordo con quanto descritto al §2.2.3):

$$T_{Rsd} = 197,06 \, kN \tag{3.31}$$

$$T_{Rcd} = 627,48 \, kN \tag{3.32}$$

Si avrà quindi il seguente taglio resistente di progetto:

$$T_{Rd} = 197,06 \, kN \tag{3.33}$$

Anche le verifiche a taglio forniscono quindi esito positivo, essendo:

$$T_{Rd} = 197,06 \ kN > T_{Sd}^X = 85,69 \ kN$$
 Verificato (3.34)

$$T_{Rd} = 197,06 \ kN > T_{Sd}^Z = 61,27 \ kN$$
 Verificato (3.35)

3.3.4 Verifica dell'elemento (e.2) – Trave 30x65

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 65 centimetri. In Figura 3.30 è illustrata la

Capitolo III

sezione completa delle armature longitudinali ed a taglio che si vanno qui a verificare.

Si riportano le sollecitazioni di progetto dell'elemento Beam 318:

Sollecitazioni	Momento flettente	Taglio
Statica	$M = 67,18 \ kN \cdot m$	$T = 58,67 \ kN$
Sismica (dir. X)	$ M = 21,32 \ kN \cdot m$	$ T = 11,50 \ kN$
Sismica (dir. Z)	$ M = 16,12 \ kN \cdot m$	$ T = 7,76 \ kN$
SLV – direzione X	$M_{Sd}^X = 88,50 \ kN \cdot m$	$T_{Sd}^X = 70,17 \ kN$
SLV – direzione Z	$M_{Sd}^Z = 83,30 \ kN \cdot m$	$T_{Sd}^Z = 66,43 \ kN$

 Tabella 3.3 – Modello C: sollecitazioni di progetto SLV dell'elemento (e.2)

Dai calcoli effettuati considerando la geometria e le armature longitudinali della sezione di Figura 3.30, si è ottenuto il seguente momento resistente:

$$M_{Rd} = 180,51 \, kN \cdot m \tag{3.36}$$

Figura 3.30 – Elemento (e.2): trave 30x65 (*Beam 318*).

Si procede quindi con le verifiche nei confronti dei due momenti sollecitanti di progetto che forniscono esito positivo (in quanto questi ultimi sono inferiori al momento resistente di progetto), entrambe con rottura allo stato limite ultimo in Campo 3:

$$M_{Rd} = 180,51 \ kN \cdot m > M_{Sd}^X = 88,50 \ kN \cdot m$$
 Verificato (3.37)

$$M_{Rd} = 180,51 \ kN \cdot m > M_{Sd}^Z = 83,30 \ kN \cdot m$$
 Verificato (3.38)

Per quanto riguarda il taglio, la resistenza di progetto a questa sollecitazione sarà la minore fra le due di seguito calcolate (in accordo con quanto descritto al §2.2.3):

$$T_{Rsd} = 216,81 \, kN \tag{3.39}$$

$$T_{Rcd} = 683,51 \, kN \tag{3.40}$$

Si avrà quindi il seguente taglio resistente di progetto:

$$T_{Rd} = 216,81 \, kN \tag{3.41}$$

Anche le verifiche a taglio forniscono quindi esito positivo, essendo:

$$T_{Rd} = 216,81 \ kN > T_{Sd}^X = 70,17 \ kN$$
 Verificato (3.42)

$$T_{Rd} = 216,81 \ kN > T_{Sd}^{X} = 66,43 \ kN$$
 Verificato (3.43)

3.3.5 Verifica dell'elemento (e.3) – Pilastro 30x50

Il suddetto elemento è un pilastro di bordo avente dimensione maggiore pari a 50 centimetri e dimensione minore pari a 30 centimetri. In Figura 3.31 è illustrata la sezione completa delle armature longitudinali ed a taglio che si vanno qui di seguito a verificare.

Si riportano le sollecitazioni di progetto dell'elemento Beam 30:

Sollecitazioni	Sforzo normale	Momento flettente 1	Momento flettente 2
Statica	$N = 260,35 \ kN$	$M_1 = 1,50 \ kN \cdot m$	$M_2 = 5,23 \ kN \cdot m$
Sismica (dir. X)	N = 39,34 kN	$ M_1 = 26,24 \ kN \cdot m$	$ M_2 = 76,01 \ kN \cdot m$
Sismica (dir. Z)	$ N = 37,09 \ kN$	$ M_1 = 39,31 kN \cdot m$	$ M_2 = 40,69 \ kN \cdot m$
SLV – direzione X	$N_{Sd1}^{X} = 299,69 \ kN$ $N_{Sd2}^{X} = 221,01 \ kN$	$M_{Sd1}^X = 27,74 \ kN \cdot m$	$M_{Sd2}^X = 81,24 \ kN \cdot m$
SLV – direzione Z	$N_{Sd1}^{Z} = 297,44 \ kN$ $N_{Sd2}^{Z} = 223,26 \ kN$	$M_{Sd1}^Z = 40,81 \ kN \cdot m$	$M_{Sd2}^Z = 45,92 \ kN \cdot m$

 Tabella 3.4 – Modello C: sollecitazioni di progetto SLV dell'elemento (e.3)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso se ottengono quattro, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,025 \cdot 299,69 = 7,49 \ kN \cdot m \tag{3.44}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 299,69 = 5,99 \ kN \cdot m \tag{3.45}$$

$$M_{Ed1}^Z = e_1 \cdot N_{Sd1}^Z = 0,025 \cdot 297,44 = 7,44 \ kN \cdot m \tag{3.46}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 297,44 = 5,95 \ kN \cdot m \tag{3.47}$$

PILASTRO 50x30

stØ8/15" in campata L=130

Figura 3.31 – Elemento (e.3): pilastro 30x50 (Beam 30).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alle armature di Figura 3.31 si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 75,36 \ kN \cdot m \tag{3.48}$$

$$M_{Rd2} = 166,05 \ kN \cdot m \tag{3.49}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z): Analisi modale e analisi dinamica con spettro di risposta

$$\left(\frac{M_{Sd1}^{X}}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^{X}}{M_{Rd2}}\right) = 0,86 < 1 \quad \text{Verificato} \tag{3.50}$$

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,82 < 1 \quad \text{Verificato} \tag{3.51}$$

Si visualizzano qui di seguito (Grafico 3.1) la verifica a pressoflessione nel dominio basato sul *Secondo Metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite ultimo di Salvaguardia della Vita (SLV).

Grafico 3.1 – Dominio di interazione M-N: verifica dell'elemento(e.3)

3.3.6 Verifica dell'elemento (e.4) – Pilastro 40x30

Il suddetto elemento è un pilastro di bordo avente dimensione maggiore pari a 40 centimetri e dimensione minore pari a 30 centimetri. In Figura 3.32 è illustrata la sezione completa delle armature longitudinali ed a taglio che si vanno qui di seguito a verificare.

Capitolo III

Si riportano le sollecitazioni di progetto dell'elemento Beam 566:

Sollecitazioni	Sforzo normale	Momento flettente 1	Momento flettente 2
Statica	$N = 184,25 \ kN$	$M_1 = 6,86 \ kN \cdot m$	$M_2 = 18,61 \ kN \cdot m$
Sismica (dir. X)	N = 34,31 kN	$ M_1 = 8,12 \ kN \cdot m$	$ M_2 = 23,89 \ kN \cdot m$
Sismica (dir. Z)	$ N = 15,76 \ kN$	$ M_1 = 31,81 \ kN \cdot m$	$ M_2 = 9,81 \ kN \cdot m$
SLV – direzione X	$N_{Sd1}^{X} = 218,56 \ kN$ $N_{Sd2}^{X} = 149,94 \ kN$	$M_{Sd1}^X = 14,98 \ kN \cdot m$	$M_{Sd2}^X = 42,50 \ kN \cdot m$
SLV – direzione Z	$N_{Sd1}^{Z} = 200,01 \ kN$ $N_{Sd2}^{Z} = 168,49 \ kN$	$M_{Sd1}^Z = 38,67 \ kN \cdot m$	$M_{Sd2}^Z = 28,42 \ kN \cdot m$

 Tabella 3.5 – Modello C: sollecitazioni di progetto SLV dell'elemento (e.4)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso se ottengono quattro, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 218,56 = 4,37 \ kN \cdot m \tag{3.52}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 218,56 = 4,37 \ kN \cdot m \tag{3.53}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 200,01 = 4,00 \ kN \cdot m \tag{3.54}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 200,01 = 4,00 \ kN \cdot m \tag{3.55}$$

Figura 3.32 – Elemento (e.4): pilastro 30x50 (*Beam 566*).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alle armature di Figura 3.32 si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 128,55 \ kN \cdot m \tag{3.56}$$

$$M_{Rd2} = 91,31 \, kN \cdot m \tag{3.57}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^{X}}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^{X}}{M_{Rd2}}\right) = 0,58 < 1 \quad \text{Verificato} \tag{3.58}$$

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,61 < 1 \quad \text{Verificato} \tag{3.59}$$

Si visualizzano qui di seguito (Grafico 3.2) la verifica a pressoflessione nel dominio basato sul *Secondo Metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite ultimo di Salvaguardia della Vita (SLV).

Grafico 3.2 – Dominio di interazione M-N: verifica dell'elemento(e.4)

3.4 Il principio di gerarchia delle resistenze (Capacity Design)

Per gerarchia delle resistenze (o *capacity design* come spesso citato nella letteratura tecnica americana) si intende l'insieme di regole da seguire nella progettazione degli elementi strutturali (travi, pilastri, nodi, ecc.) in base al comportamento e all'importanza che essi assumono nella costruzione: si cerca di sfruttare la duttilità degli elementi favorendo i meccanismi che possano sfruttare tale proprietà, come la flessione, rispetto ad altri meccanismi di rottura di tipo fragile, come il taglio.

3.4.1 Pilastri: sollecitazioni di calcolo

Per ciascuna direzione e ciascun verso di applicazione delle azioni sismiche, si devono proteggere i pilastri dalla plasticizzazione prematura adottando opportuni momenti flettenti di calcolo; tale condizione si consegue qualora, per ogni nodo trave-pilastro ed ogni direzione e verso dell'azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente γ_{Rd} , in accordo con la formula:

$$\sum M_{C,Rd} \ge \gamma_{Rd} \cdot \sum M_{b,Rd} \tag{3.60}$$

dove:

 $\gamma_{Rd} = \begin{cases} 1,30 & \text{strutture in CD}^{"}A" \\ 1,10 & \text{strtture in CD}^{"}B" \end{cases};$

 $M_{C,Rd}$ è il momento resistente del generico pilastro convergente nel nodo, calcolato per i livelli di sollecitazione assiale presenti nelle sollecitazioni sismiche delle azioni;

 $M_{b,Rd}$ è il momento resistente della generica trave convergente nel nodo.

Nell'Equazione (3.60) si assume il nodo in equilibrio ed i momenti, sia nei pilastri che nelle travi, tra loro concordi. Nel caso in cui i momenti nel pilastro al di sopra ed al di sotto del nodo siano tra loro discordi, al denominatore dell'Equazione (3.60) va posto il solo valore maggiore; il minore va sommato ai momenti di plasticizzazione delle travi.
Per la sezione di base dei pilastri del piano terreno si adotta come momento di calcolo il maggiore tra il momento risultante dall'analisi ed il momento $M_{C,Rd}$ della sezione di sommità del pilastro.

Il suddetto criterio di gerarchia delle resistenze non si applica alle sezioni di sommità dei pilastri dell'ultimo piano.

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio da utilizzare per le verifiche ed il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore $M_{C,Rd}^{s}$ ed inferiore $M_{C,Rd}^{i}$ secondo l'espressione:

$$V_{Ed} = \gamma_{Rd} \cdot \frac{M_{C,Rd}^s + M_{C,Rd}^i}{l_p} \tag{3.61}$$

nella quale l_p è la lunghezza del pilastro. Nel caso in cui i tamponamenti non si estendano per l'intera altezza dei pilastri adiacenti, le sollecitazioni di taglio da considerare per la parte del pilastro priva di tamponamento sono calcolati utilizzando l'Espressione (3.61), dove l'altezza l_p è assunta pari alla estensione della parte di pilastro priva di tamponamento.

3.4.2 Nodi trave-pilastro: classificazione e verifiche di resistenza

Si definisce nodo la zona del pilastro che si incrocia con le travi ad esso concorrenti.

La resistenza del nodo deve essere tale da assicurare che non pervenga alla rottura prima delle zone della trave e del pilastro ad esso adiacenti. Sono da evitare, per quanto possibile, eccentricità tra l'asse della trave e l'asse del pilastro concorrenti in un nodo.

Si distinguono due tipi di nodi:

• *nodi interamente confinati*, così definiti quando in ognuna delle quattro facce verticali si innesta una trave. Il confinamento si considera

realizzato quando, su ogni faccia del nodo, la sezione della trave copre per almeno i 3/4 la larghezza del pilastro e, su entrambe le coppie di facce opposte del nodo, le sezioni delle travi si ricoprono per almeno i 3/4 dell'altezza;

nodi non interamente confinati: tutti i nodi non appartenenti alla categoria precedente.

Il taglio agente in direzione orizzontale in un nodo deve essere calcolato tenendo conto delle sollecitazioni più gravose che, per effetto dell'azione sismica, si possono verificare negli elementi che vi confluiscono. In assenza di più accurate valutazioni, la forza di taglio agente nel nucleo di calcestruzzo del nodo può essere calcolata, per ciascuna direzione dell'azione sismica, come:

$$V_{jbd} = \gamma_{Rd} \cdot (A_{s1} + A_{s2})f_{yd} - V_C \quad \text{per nodi interni}$$
(3.62)

$$V_{jbd} = \gamma_{Rd} \cdot A_{s1} \cdot f_{yd} - V_C \quad \text{per nodi esterni}$$
(3.63)

in cui $\gamma_{Rd} = 1,20$; A_{s1} e A_{s2} sono rispettivamente l'area dell'armatura superiore ed inferiore della trave e V_c è la forza di taglio nel pilastro al di sopra del nodo, derivante dall'analisi in condizioni sismiche.

La verifica di resistenza del nodo deve essere effettuata per le sole strutture in CD"A". Si ometter quindi tale procedura di verifica.

3.4.3 Verifica dell'elemento (e.3): nodo 44

In accordo con la procedura si verifica illustrata al §3.4.1 si procede alla verifica del nodo 44 ai fini del rispetto del principio di gerarchia delle resistenze.

Al pilastro, avente dimensioni 30x50 centimetri (Figura 3.31), sono innestate due travi di sezione 30x40 centimetri (Figura 2.13); si riportano i momenti resistenti di progetto degli elementi indicati:

 $M_{C,Rd} = 166,05 \ kN \cdot m \tag{3.64}$

 $M_{b,Rd} = 104,00 \ kN \cdot m \tag{3.65}$

Applicando l'Equazione (3.60) si ottiene:

$$\sum M_{C,Rd} = 2 \cdot 166,05 = 332,10 \ kN \cdot m \tag{3.66}$$

$$\gamma_{Rd} \cdot \sum M_{b,Rd} = 1,10 \cdot (2 \cdot 104,00) = 228,80 \ kN \cdot m \tag{3.67}$$

$$332,10 \ kN \cdot m > 228,80 \ kN \cdot m$$
 verificato (3.68)

3.4.4 Verifica dell'elemento (e.4): nodo 39

In accordo con la procedura si verifica illustrata al §3.4.1 si procede alla verifica del nodo 39 ai fini del rispetto del principio di gerarchia delle resistenze.

Al pilastro, avente dimensioni 30x40 centimetri (Figura 3.32), sono innestate due travi di sezione 30x40 centimetri (Figura 2.13); si riportano i momenti resistenti di progetto degli elementi indicati:

$$M_{C,Rd} = 128,55 \ kN \cdot m \tag{3.69}$$

$$M_{b,Rd} = 104,00 \ kN \cdot m \tag{3.70}$$

Applicando l'Equazione (3.60) si ottiene:

$$\sum M_{C,Rd} = 2 \cdot 128,55 = 257,10 \ kN \cdot m \tag{3.71}$$

$$\gamma_{Rd} \cdot \sum M_{b,Rd} = 1,10 \cdot (2 \cdot 104,00) = 228,80 \ kN \cdot m \tag{3.72}$$

$$257,10 \ kN \cdot m > 228,80 \ kN \cdot m$$
 verificato (3.73)

Capitolo III

CAPITOLO IV

Fondamenti di protezione sismica con isolamento alla base

4.1 Introduzione e concetti di base

In risposta alla costante ricerca di trovare nuovi e migliori modi per proteggere i nuovi edifici e quelli esistenti dagli effetti devastanti dei terremoti, negli ultimi quarant'anni sono stati proposti numerosi dispositivi. A seguito di questi sistemi innovativi, l'*isolamento alla base* è stato impiegato in un vasto numero di edifici, ponti, impianti nucleari e altre strutture, con apprezzabili risultati. L'isolamento sismico alla base è quindi entrato a far parte delle strategie di progettazione sismica a disposizione dell'ingegnere strutturale.

Figura 4.1 - Comportamento schematico di: (a) struttura isolata alla base; (b) struttura convenzionale

L'isolamento alla base è una tecnica grazie alla quale una struttura è protetta dagli effetti di danneggiamento dei terremoti grazie all'istallazione alla base della struttura di elementi flessibili che aumentano il periodo fondamentale della struttura fino ad un valore sufficientemente lontano dal periodo dominante del sisma atteso, oppure grazie ad elementi scorrevoli che entrano in funzione quando i carichi laterali superano un livello predefinito. In questo modo, le deformazioni indotte da un sisma si ritroveranno principalmente al livello di questi elementi flessibili o scorrevoli e la struttura si muoverà essenzialmente come un corpo rigido (Figura 4.1).

In pratica, i sistemi di isolamento alla base richiedono più che semplici elementi flessibili o scorrevoli; in generale richiedono:

- un elemento flessibile che aumenti il periodo naturale della struttura, o un elemento scorrevole che impedisca la trasmissione delle forze sismiche alla struttura oltre un certo livello;
- uno smorzatore o un meccanismo di dissipazione di energia che riduca l'inflessione degli elementi flessibili, o elementi scorrevoli equivalenti;
- 3. un meccanismo che fornisca necessaria rigidezza all'edificio in modo da prevenire deformazioni e vibrazioni dovute a carichi che si presentino con una certa frequenza, come il vento o sismi minori.

Figura 4.2 – Possibili soluzioni di posizionamento dei dispositivi di isolamento in edifici isolati alla base. (a) Al piede dei pilastri del piano interrato, (b) in testa ai pilastri del piano interrato, (c) al piede dei pilastri del primo piano, (d) in testa ai pilastri del primo piano.

La posizione del piano di isolamento è determinata in base ai vincoli del sito, al tipo di struttura, al costo di costruzione ed altri fattori relazionati. In Figura 4.2 sono mostrati alcuni possibili disposizioni del piano di isolamento per costruzioni sia prive che aventi piani interrati. Alcuni vantaggi e svantaggi sono associati a ciascuno di questi posizionamenti: in ogni caso sono presenti costi aggiuntivi e dettagli speciali per consentire movimenti differenziali delle componenti non strutturali come le scale, i condotti e le reti impiantistiche che attraversano il piano di isolamento. Indipendentemente da dove sia dislocato il piano di isolamento, i dispositivi di isolamento sono sempre posizionati dove sia facilmente possibile effettuare ispezioni, manutenzione ed eventuali sostituzioni. Inoltre è preferibile inserire un diaframma rigido al di sopra o al di sotto dei dispositivi di isolamento per poter distribuire uniformemente i carichi laterali.

Nel caso dei ponti, tuttavia, il principale intento è la protezione della sottostruttura siccome risulta essere la parte più vulnerabile del ponte nei confronti degli effetti sismici. In generale, l'isolamento sismico di un ponte è un semplice intervento che, per molti ponti, coinvolge solamente la sostituzione degli appoggi utilizzati per assecondare gli effetti termici con dispositivi di isolamento sismico. Per le nuove costruzioni, sostanzialmente, gli isolatori sismici riducono le forze nelle pile, eliminando il bisogno di dettagli costruttivi duttili. Per gli interventi di *retrofit*, l'isolamento sismico è efficace nel correggere: (a) l'inadeguata rigidezza degli appoggi e delle connessioni presenti; (b) l'inadeguata rigidezza e duttilità delle pile; (c) l'inadeguata lunghezza della travatura principale.

4.2 Isolatori sismici (Isolation Bearings)

Una varietà di sistemi e dispositivi sono stati proposti per isolare sismicamente le strutture: rulli, piastre scorrevole con attrito, manicotti e cavi di sospensione. Tuttavia, i sistemi sui quali si sono effettuati test e ricerche e che sono attualmente impiegati nelle costruzioni sono: (a) isolatori in gomma armata, (b) appoggi scorrevoli e (c) molle elicoidali d'acciaio.

4.2.1 Isolatori in gomma armata

Gli isolatori in gomma armata, sono formati da fogli di acciaio e gomma (o altri composti elastomerici come il neoprene) sovrapposti alternati e fissati con la tecnica della vulcanizzazione (Figura 4.3). Spesso in aggiunta vengono fissate due piastre d'acciaio alle estremità superiore ed inferiore del cuscinetto per facilitare la connessione dell'isolatore alla sottostruttura e alla sovrastruttura. Inoltre viene posto un ricoprimento in gomma sul mantello del cuscinetto per proteggere gli strati d'acciaio dalla corrosione.

Figura 4.3 – Isolatore elastomerico in gomma armata sezionato: particolare delle lamine d'armatura in acciaio e del ricoprimento laterale anti-corrosione.

Gli isolatori in gomma armata posseggono una elevata capacità portante per i carichi verticali, ma allo stesso tempo una grande deformabilità orizzontale dovuta al basso valore del modulo di taglio della gomma (tipicamente compreso fra 0,5 e 1,0 MPa) che non subisce effetti nonostante la presenza degli strati d'acciaio. Di conseguenza, gli isolatori in gomma armata, possono facilmente sopportare ampie deformazioni laterali (Figura 4.4); inoltre, richiedono una manutenzione minima non avendo parti mobili e componenti esposte alla corrosione. Il loro collasso si verifica alla formazione ed incremento di difetti nella gomma. Tuttavia, tecniche di realizzazione accurate e controlli di qualità possono prevenire la formazione di questi difetti. Il costo di questi dispositivi è relativamente elevato perché il loro processo di produzione è davvero elaborato: questo richiede che le piastre d'acciaio dell'armatura siano tagliate in una specifica dimensione, sabbiate (carteggiate) a secco e pulite chimicamente; poi devono essere ricoperte con un composto collante e interposte ai fogli di gomma per essere unite con la vulcanizzazione. Successivamente gli strati alternati di fogli d'acciaio e gomma vengono sottoposti a pressatura per alcune ore; alla fine viene applicato un ricoprimento ignifugo per proteggere gli isolatori da eventuali incendi.

Diversi tipi di isolatori in gomma armata sono stati proposti e applicati in edifici di recente costruzione; queste tipologie sono:

- a. isolatori in gomma a basso smorzamento (LDRB);
- b. isolatori in gomma con perno interno in piombo (LRB);
- c. isolatori in gomma ad alto smorzamento (HDRB).

Figura 4.4 – Isolatore in gomma armata sottoposto ad ampia deformazione a taglio.

a. Isolatori in gomma a basso smorzamento (Low-Damping Rubber Bearings)

Come mostrato in Figura 4.5, gli isolatori in gomma a basso smorzamento sono costruiti più o meno nello stesso modo dei generici isolatori in gomma armata sopra descritti, ovvero, sono costituiti da due spesse piastre d'acciaio terminali e da diversi spessori d'acciaio alternati a fogli di gomma. La gomma viene vulcanizzata e vincolata agli spessori d'acciaio in un'unica operazione realizzata a caldo e sotto pressa in una forma. Come detto prima, gli spessori d'acciaio evitano la bombatura della gomma e conferiscono rigidezza nei confronti dei carichi verticali. Tuttavia questi spessori non forniscono alcun effetto sulla rigidezza verso i carichi verticali, che dipende dal basso valore del modulo di taglio della gomma. Il comportamento della gomma a taglio è lineare fino al 100% dello sforzo di taglio e anche di più (Figura 4.6).

Il rapporto di smorzamento degli LDRB è compreso fra il 2% ed il 3% di quello critico. In virtù del loro basso smorzamento, questi isolatori sono normalmente impiegati insieme a dispositivi supplementari di smorzamento come smorzatori viscosi, barre d'acciaio o di piombo e dispositivi ad attrito.

Capitolo IV

Figura 4.5 – Componenti di un isolatore in gomma a basso smorzamento (LDRB).

Figura 4.6 – Tipico legame forza-deformazione per isolatori LDRB in gomma a basso smorzamento (linea tratteggiata) e isolatori LRB con perno in piombo (linea continua).

I vantaggi degli smorzatori in gomma a basso smorzamento sono molti: sono semplici da costruire, facili da modellare e le loro proprietà meccaniche non sono influenzate dalla velocità di applicazione del carico, dalla temperatura, dalla storia di carico o dall'invecchiamento. Non sono soggetti a *creep* (deformazione viscosa nel tempo a carico costante) e la stabilità a lungo termine del modulo di taglio è ottima. L'unico svantaggio è che i dispositivi supplementari di smorzamento richiedono generalmente di limitare la deformazione laterale a livelli ragionevoli; questi dispositivi supplementari, inoltre, richiedono connessioni elaborate e nel caso di smorzatori metallici, questi ultimi sono soggetti a fenomeni di fatica a baso numero di cicli (fatica oligociclica).

Assumendo un legame elastico lineare, se viene trascurato l'effetto delle forze assiali, la rigidezza orizzontale degli isolatori in gomma a basso smorzamento è espressa da:

$$K_h = \frac{GA}{\Sigma t} \tag{4.1}$$

dove: *G* è il modulo di taglio della gomma;

A è l'area della sezione trasversale del cuscinetto in gomma;

 Σt è lo spessore totale della gomma.

Analogamente la rigidezza verticale è esprimibile dalla relazione:

$$K_{\nu} = \frac{E_c A_s}{\Sigma t} \tag{4.2}$$

dove A_s è l'area di unione degli spessori d'acciaio con la gomma; E_c è il modulo di elasticità cubica (*bulk modulus*) del sistema gomma-acciaio, che per un cuscinetto circolare può essere così determinato:

$$E_c = \left(\frac{1}{6GS^2} + \frac{4}{3K}\right)^{-1}$$
(4.3)

dove *K* è il *bulk modulus* della gomma (tipicamente pari a 2000 MPa) e *S* è il *fattore di forma* così definito:

$$S = \frac{\text{area di gomma caricata}}{\text{area di gomma libera di bombarsi}}$$
(4.4)

Il fattore di forma per un cuscinetto circolare di diametro D e spessore t è pari a D/4t, mentre per un cuscinetto quadrato di lato a e spessore t è pari a a/4t. Un fattore di forma appropriato per un isolatore sismico è compreso fra 10 e 20.

b. Isolatori in gomma con perno in piombo (Lead-Rubber Bearings)

L'isolatore in gomma con perno in piombo è stato inventato in Nuova Zelanda nel 1977 ed è stato impiegato nell'isolamento sismico di vari edifici in Nuova Zelanda, Giappone e Stati Uniti d'America. L'isolatore in gomma con perno in piombo (LRB) è simile all'isolatore in gomma a basso smorzamento (LDRB) ad eccezione del perno in piombo che si trova al centro del dispositivo (Figura 4.7). Il piombo è un materiale metallico a struttura cristallina che manifesta un legame forza-deformazione elastoplastico e una tensione di snervamento relativamente bassa (circa 10 MPa). Si ha quindi che l'inserimento di un perno in piombo nel cuscinetto, adeguatamente confinato dalle piastre d'acciaio, permette all'isolatore LRB di dissipare energia per isteresi, dopo che la deformazione a taglio del cuscinetto supera la deformazione di snervamento del perno in piombo. Di conseguenza, l'isolatore con perno in piombo, fornisce una dissipazione di energia potenziale in un unico dispositivo compatto grazie all'iniziale elevata rigidezza (più di 10 volte la rigidezza post-snervamento) precedente lo snervamento del perno in piombo e alla bassa rigidezza post-snervamento equivalente alla rigidezza a taglio della gomma. Inoltre, l'energia tensionale immagazzinata nel perno in piombo e nella gomma durante un terremoto, fornisce una forza di richiamo che ricentra la struttura riportandola nella sua configurazione iniziale dopo la fine del sisma.

Figura 4.7 – Componenti di un isolatore LRB con perno in piombo.

La presenza di questa forza di richiamo è stata confermata da test su tavole vibranti e da rilevazioni su strutture isolate tramite questi dispositivi (LRB) che

hanno subito terremoti; nei test sperimentali, gli isolatori in gomma con perno in piombo studiati, si sono ricentrati dopo una deformazione di 2,5 centimetri rispetto alla loro posizione iniziale. Lo svantaggio di questi isolatori (LRB) è la non-linearità introdotta dal perno in piombo e il conseguente improvviso cambio di rigidezza del cuscinetto che provoca una risposta della sovrastruttura nei modi ad alta frequenza, aumentando le accelerazioni delle masse strutturali nel caso in cui il perno in piombo non entri in funzione; questa risposta ai modi ad alta frequenza potrebbe incidere sulle prestazioni attese dall'edificio e dalle sue componenti non strutturali.

Gli isolatori LRB possono essere efficacemente modellati con un legame bilineare forza-deformazione (Figura 4.6). Di conseguenza, le semplici formule già presentate per gli isolatori in gomma a basso smorzamento (LDRB) sono applicabili agli LRB, ad eccezione dell'espressione della rigidezza orizzontale, valida solamente per la parte della curva forzadeformazione che si trova dopo lo snervamento del perno in piombo. Si noti inoltre che il progetto di strutture con isolamento alla base che impieghino questo tipo di isolatori in gomma, richiede un'analisi non lineare. Ciononostante è consuetudine modellare il legame forza-deformazione dell'isolatore in gomma con perno in piombo (LRB) con un sistema equivalente lineare, viscoso e smorzato caratterizzato da una rigidezza efficace e da un rapporto di smorzamento efficace (§ 4.3.5).

c. Isolatori in gomma ad alto smorzamento (High-Damping Rubber Bearings)

Gli isolatori in gomma ad alto smorzamento (HDRB) sono isolatori armati costruiti con una gomma composita che manifesta un elevato rapporto di smorzamento intrinseco. Questa gomma ad alto smorzamento viene fabbricata con l'aggiunta di polvere di carbonio, oli, resine ed altri *filler* (riempitivi) ricavati dalla gomma naturale. Lo smorzamento degli HDRB non è né viscoso, né isteretico; lo smorzamento effettivo è compreso fra il 10 e il 20% del 100% dello sforzo di taglio. Il livello minimo è riferito alle gomme con bassa durezza (durezza al durometro di 50-55) e basso valore del modulo di taglio (circa 0,34 MPa); il livello massimo è riferito alle gomme con elevata durezza (durezza al durometro 70-75) ed elevato modulo di taglio (circa 1,40 MPa). Il metodo di vulcanizzazione, incollaggio e costruzione di questo tipo di isolatori è lo stesso utilizzato per qualsiasi altro isolatore in gomma armato. La gomma naturale composita con sufficiente smorzamento proprio da eliminare la necessità di dispositivi supplementari di smorzamento fu sviluppata nel 1982 dal *Malaysian Rubber Producers' Research Association of United Kingdom*. In molti degli edifici isolati costruiti in Giappone, Italia, Cina, Stati Uniti d'America e Indonesia sono stati impiegati isolatori di tipo HDRB.

Figura 4.8 – Tipico legame forza-deformazione di isolatori HDRB.

Il legame forza-deformazione degli isolatori in gomma ad alto smorzamento (HDRB) con sforzi di taglio minori del 20% è caratterizzato da una elevata rigidezza (Figura 4.8). Al di fuori dell'intervallo 20-120% dello sforzo di taglio, il modulo di taglio assume bassi valori abbastanza costanti; a grandi sforzi, il modulo aumenta ancora a causa dello sviluppo di tensioni di cristallizzazione nella gomma. Gli isolatori HDRB forniscono una elevata rigidezza iniziale, essenziale per la resistenza alle azioni del vento e dei sismi minori che non generano movimenti apprezzabili. Quando l'intensità delle sollecitazioni aumenta, la rigidezza si riduce e il sistema di isolamento diviene efficace. Oltre lo sforzo di taglio compreso fra il 250 e il 300%, la rigidezza aumenta nuovamente a causa di effetti di indurimento, funzionando come valvola di sicurezza verso sismi severi e inaspettati.

Un'analisi lineare effettuata con la rigidezza iniziale, può essere usata per stimare la risposta della struttura isolata sottoposta all'azione del vento e di altri carichi di bassa entità. Analogamente, l'analisi lineare può essere eseguita con la rigidezza corrispondente a sforzi moderati per stimare la risposta del sistema sottoposto a carichi sismici di progetto. Per le azioni sismiche superiori a quelle di progetto, il sistema può essere analizzato impiegando un modello bilineare dove la rigidezza dopo lo snervamento sia molto maggiore di quella iniziale.

Gli isolatori ad alto smorzamento HDRB offrono parecchi vantaggi: (a) combinano in un singolo elemento la deformabilità e la dissipazione di energia potenziale, che sono i requisiti necessari per un sistema di isolamento efficiente; (b) sono semplici da progettare e da costruire; (c) sono compatti e questo semplifica le operazioni di istallazione. Tuttavia, le caratteristiche meccaniche del materiale di questi isolatori è molto sensibile alla temperatura rispetto ai materiali degli isolatori LDRB; inoltre manifestano una dipendenza dalla storia di carico, nonostante alcuni composti abbiano solo piccole manifestazioni di questo effetto o anche nessuna. Quando sono soggetti ad ampi cicli di carico, mostrano una elevata rigidezza efficace, tanto nel primo ciclo quanto in quelli successivi; generalmente le caratteristiche meccaniche del materiale si stabilizzano dopo il terzo ciclo di carico.

4.2.2 Isolatori scorrevoli

I sistemi scorrevoli sono meccanismi che forniscono la possibilità, alla struttura, di scorrere quando sottoposta a carichi laterali che superino certi livelli di soglia. Sfruttando dispositivi con basso coefficiente d'attrito, questi isolatori permettono la trasmissione delle forze di taglio dal terreno alla sovrastruttura, fino a un determinato livello al di sopra del quale iniziano a scorrere evitando una ulteriore trasmissione di queste forze. L'entità delle forze trasmesse alla sovrastruttura durante un sisma violento è quindi indipendente dall'intensità del terremoto.

Gli isolatori scorrevoli sono veramente efficaci nella mitigazione degli effetti sismici. Inoltre, sono relativamente economici e di dimensioni compatte. Tuttavia, non hanno la capacità di ricentrare la sovrastruttura nella sua posizione iniziale dopo un evento sismico che abbia messo in funzione il sistema scorrevole. Più generalmente non generano forze di ricentraggio; questo significa che un possibile spostamento residuo conseguente ad un evento sismico, diminuisce la quantità di spostamento che è possibile incamerare durante terremoti successivi. Questo può comportare una condizione di insicurezza ogni volta che due sismi violenti si presentino l'uno di seguito all'altro in un breve lasso di tempo, come nel caso di una forte scossa di assestamento che si verifichi dopo un violento terremoto. Perciò, molti di questi sistemi scorrevoli, sono progettati in associazione a meccanismi di ricentraggio per evitare questo problema. Un altro svantaggio è che generano rilevanti accelerazioni nei modi di vibrare ad alta frequenza, dovute al brusco scorrimento che si verifica al superamento delle forze d'attrito, le quali possono interessare il contenuto e gli arredi dell'edificio. Le proprietà attritive degli isolatori a scorrimento sono influenzate dalla composizione e dalle condizioni delle superfici di scorrimento, dalla pressione applicata al dispositivo, dalla velocità di scorrimento, dalla corrosione e dalla temperatura.

Gli isolatori a scorrimento utilizzati in applicazioni pratiche sono:

- A. isolatori a scorrimento Electricité-de-France;
- B. isolatori a scorrimento TASS (TAisei Shake Suppression);
- C. isolatori a pendolo scorrevole.

A. Isolatori a scorrimento Electricité-de-France

Questi isolatori a scorrimento furono sviluppati dal *Spie-Batignolles Batiment Travaux Public e Electricité-de-France*. Combinano un isolatore in neoprene armato con due piastre ad attrito che scorrono l'una rispetto all'altra; una di queste piastre è un piatto in lega di piombo e bronzo fissato all'isolatore; l'altra è un piatto in acciaio inossidabile ancorato alla sovrastruttura (Figura 4.9). La superficie del piatto in lega di piombo e bronzo viene scanalata per permettere la fuoriuscita dei detriti che possono formarsi per l'usura dei componenti e prevenire il danneggiamento della superficie di scorrimento. Sotto queste condizioni, la superficie di scorrimento manifesta essenzialmente un attrito alla Coulomb con un *coefficiente di attrito* compreso fra 0,18 e 0,22 per pressioni di 2÷15 MPa, per qualsiasi velocità di scorrimento. L'isolatore in questione è progettato in modo che lievi e modesti sismi sono contrastati soltanto dalla deformazione elastica del cuscinetto in gomma, mentre i terremoti più forti vengono contrastati sia dalla deformazione elastica del neoprene che dallo scivolamento della piastra in lega di piombo e bronzo sulla piastra di acciaio inossidabile; l'attrito fra le piastre genera una forza di smorzamento aggiuntiva oltre a quella fornita dal cuscinetto in gomma. Il sistema, tuttavia, non comprende un dispositivo di ricentraggio e potrebbe rimanere una deformazione permanente dopo un terremoto.

Figura 4.9 – Isolatore a scorrimento Electricité-de-France.

Questo sistema fu sviluppato nei primi anni '70 con l'intento di standardizzare il progetto degli impianti nucleari: Electricité-de-France sviluppò un impianto nucleare standard in grado di resistere ad accelerazioni

orizzontali al suolo di 0,2g. L'intenzione fu quella di sviluppare un sistema di isolamento che, per forze di progetto simili, prescindesse dai parametri sismici del sito di costruzione; in questo modo l'impianto standard poteva essere semplicemente isolato con questo dispositivo, anche in aree ad elevata sismicità, considerando accelerazioni orizzontali inferiori al livello richiesto. Il sistema ebbe successo e soddisfacendo gli obiettivi iniziali venne impiegato nel progetto di quattro impianti nucleari situati a Koeberg (Sud Africa), Karun River (Iran), Cruas e Le Pellirin (Francia).

B. Isolatori a scorrimento TASS (TAisei Shake Suppression)

Gli isolatori a scorrimento TASS (TAisei Shake Suppression) furono sviluppati dalla Taisei Corporation in Giappone; sono composti da un appoggio in gomma armata, piastre scorrevoli in acciaio inossidabile e da una molla in neoprene, il tutto posizionato come illustrato in Figura 4.10. Alla base dell'appoggio in gomma armata viene applicato un foglio di Teflon, le molle orizzontali sono fabbricate con gomma cloroprenica (neoprene) e non portano carichi verticali, l'appoggio in gomma armata e le piastre scorrevoli sostengono i carichi verticali trasmessi dalla sovrastruttura e riducono le forze sismiche orizzontali grazie allo scorrimento. Le molle orizzontali contengono gli spostamenti degli appoggi con la loro debole rigidezza laterale e forniscono una forza di ricentraggio. Sotto l'effetto di sismi deboli o moderati, lo spostamento della sovrastruttura deforma lateralmente i cuscinetti in gomma, ma le superfici scorrevoli non entrano in funzione; sotto l'effetto di forti e violenti terremoti, le superfici scorrevoli entrano in azione assieme alla deformazione degli appoggi in gomma. Il coefficiente di attrito lungo le superfici di scorrimento dipende dalla pressione applicata e dalla velocità di scorrimento: per basse velocità di scorrimento, il coefficiente di attrito è dell'ordine di 0,05 mentre per la condizione di esercizio dell'isolatore assume valori di 0,10÷0,15. La curva forza-deformazione di un isolatore TASS assomiglia ad una curva bilineare, dove la rigidezza iniziale è fornita dalla somma delle rigidezze degli appoggi in gomma e delle molle in neoprene, mentre la rigidezza dopo lo snervamento è la rigidezza delle molle orizzontali.

Le rigidezze degli appoggi in gomma e delle molle orizzontali in neoprene sono scelte in modo che il periodo a corpo rigido della struttura isolata prima dello slittamento sia compresa fra 1 e 2 secondi e il periodo dopo lo snervamento sia di circa 5 secondi.

Figura 4.10 – Isolatore a scorrimento TASS (TAisei Shake Suppression).

La forte rigidezza iniziale e la rigidezza post-snervamento del sistema è controllata da differenti parametri indipendenti, perciò un significante abbattimento dell'input sismico al suolo può essere ottenuto con una corretta scelta di questi parametri. Svantaggio di questo sistema è la duttilità del cuscinetto di neoprene che non permette a quest'ultimo di sostenere carichi verticali; altro svantaggio è l'influenza della velocità di scorrimento sul coefficiente di attrito lungo la superficie di scivolamento, che complica la modellazione del sistema. Tre sono gli edifici (tutti in Giappone) nei quali è stato applicato questo sistema: il *Technology Research Center* della *Taisei Corporation* a Yokohama, una piscina coperta nella penisola di Isu e un edificio per uffici a Yokkaichi.

C. Isolatori a pendolo scorrevole

Gli isolatori a pendolo scorrevole sono dispositivi scorrevoli autocentranti. Come mostrato in Figura 4.11a, questo isolatore è composto da

un cursore scorrevole articolato che può muoversi in una sede sferica la cui superficie è in acciaio inossidabile; comprende anche un ritegno cilindrico che limita gli spostamenti laterali e protegge i componenti interni da contaminazioni ambientali. Il cursore scorrevole articolato è rivestito da un materiale composito a minimo attrito ed elevata resistenza alla pressione applicata (tipicamente materiali derivati del Teflon con una pressione applicabile di 275 MPa).

Figura 4.11 – Sezione di un isolatore a pendolo scorrevole: (a) in posizione centrata con descrizione delle componenti; (b) in posizione deformata.

A causa dell'attrito fra le superfici di scorrimento, le strutture che impiegano questo tipo di dispositivi, rispondono a forze di basso livello come strutture convenzionali non isolate; cioè possono resistere al vento e a piccoli terremoti senza scivolamenti. Una volta che vengano superate le forze di attrito, la struttura risponde come un pendolo libero avente una risposta dinamica dipendente dal periodo naturale dello stesso pendolo, con uno smorzamento generato dalle forze di attrito. L'isolamento sismico è ottenuto grazie all'allungamento del periodo naturale della sovrastruttura. Inoltre, quando i cursori scorrono lungo le superfici sferiche, provocano un innalzamento della sovrastruttura (Figura 4.11b), che sviluppa una forza gravitativa ricentrante che aiuta a riportare la struttura nella sua posizione iniziale. Gli isolatori a pendolo scorrevole riuniscono quindi gli elementi fondamentali di un sistema di isolamento in un elemento compatto e allo stesso tempo hanno una propria capacità di ricentraggio della sovrastruttura.

Figura 4.12 – Schema dell'isolatore a pendolo scorrevole a corpo libero.

Il principio base di funzionamento di un isolatore a pendolo scorrevole può essere illustrato con chiarezza con lo schema a corpo libero mostrato in Figura 4.12; in questo schema è possibile vedere come la forza laterale, necessaria per indurre uno spostamento laterale nell'isolatore a pendolo, sia uguale alla somma delle componenti orizzontali della forza normale e della forza d'attrito tangente alla superficie sferica di scorrimento. Questa forza risulta essere:

dove è il peso portato dall'isolatore e è la forza di attrito.

È anche possibile vedere come le componenti orizzontale e verticale dello spostamento siano rispettivamente pari a:

$$u = R\sin\theta \tag{4.6}$$

$$v = R(1 - \cos\theta) \tag{4.7}$$

dove R è il raggio di curvatura della superficie sferica. Di conseguenza, la forza F può essere così espressa:

$$F = \frac{W}{R\cos\theta}u + \frac{F_f}{\cos\theta}$$
(4.8)

Inoltre, notando che il primo termine del membro destro della precedente formula (4.8) rappresenta la forza di ricentraggio del sistema, la rigidezza dell'isolatore dopo l'inizio dello scivolamento è esprimibile con la seguente espressione:

$$K = \frac{W}{R\cos\theta} \tag{4.9}$$

Tuttavia, per piccoli valori dell'angolo θ , si può assumere $\cos \theta \approx 1$; si possono quindi approssimare *F* e *K* come segue:

$$F = \frac{W}{R}u + \mu W \operatorname{sign}(\dot{u})$$
(4.10)

$$K = \frac{W}{R} \tag{4.11}$$

dove la forza di attrito è stata sostituita con il prodotto del *coefficiente di attrito* μ per il peso W e \dot{u} è la componente orizzontale della velocità di slittamento. Inoltre, se la sovrastruttura viene assunta infinitamente rigida, il periodo naturale della struttura isolata è approssimabile con:

$$T = 2\pi \sqrt{\frac{W}{Kg}} = 2\pi \sqrt{\frac{R}{g}}$$
(4.12)

La precedente espressione (4.12) mostra come il periodo naturale della struttura isolata sia indipendente dalla massa della sovrastruttura, ma dipenda solamente dalla geometria dell'isolatore ed in particolare dal suo raggio di curvatura; questo significa anche che il periodo naturale della struttura non cambia al variare del peso o che è indifferente come quest'ultimo venga assunto. Un tipico legame forza-spostamento per l'isolatore a pendolo scorrevole è illustrato in Figura 4.13.

Figura 4.13 – Tipico legame forza-deformazione di un isolatore a pendolo scorrevole.

Una versione migliorata dell'isolatore a pendolo scorrevole è il cosiddetto isolatore a triplo pendolo; questo isolatore è formato da unità indipendenti con superfici concave sferiche: un cursore scorrevole interno, due cursori scorrevoli concavi secondare e due superfici concave scorrevoli principali (si veda la Figura 4.15). Il cursore interno scorre lungo le due superfici concave degli scorrevoli secondari i quali a loro volta scorrono lungo le superfici principali. Le proprietà dei componenti di questo isolatori, vengono scelte in modo tale da attivare il cursore interno e gli scorrevoli secondari sequenzialmente, quando vengano sottoposti a forti movimenti al suolo: in Figura 4.15 è mostrata la sequenza nella quale entrano in azione i suddetti componenti. In questo modo, il periodo naturale della struttura isolata è corto e lo smorzamento dato dall'attrito è piccolo per movimenti del suolo piccoli e frequenti. Questo comporta scarse accelerazioni strutturali e una minore partecipazione dei modi ad alta frequenza. Tuttavia, quando gli spostamenti al suolo aumentano, il periodo naturale della struttura isolata e lo smorzamento per attrito crescono, comportando basse forze di taglio alla base e minimi spostamenti dell'isolatore. Il risultato globale è una riduzione delle dimensioni e dei costi degli isolatori nonché una minore dimensione degli spazi tecnici necessari per consentire gli spostamenti degli isolatori. Nel caso di una progettazione con medesimi parametri di spostamento al suolo, l'ingombro in pianta di apparecchi a triplo pendolo è il 60% della dimensione degli isolatori a pendolo scorrevole.

Figura 4.14 – Componenti di un isolatore a triplo pendolo.

Figura 4.15 – Sezioni di un isolatore a triplo pendolo in diverse posizioni.

Gli isolatori a pendolo scorrevole sono stati utilizzati per isolare edifici, ponti ed altro ancora. Strutture degne di nota, isolate con questi dispositivi, sono il nuovo terminal internazionale del *San Francisco's International Airport* (uno dei più grandi edifici isolati degli Stati Uniti) e il *Benicia-Martinez Bridge* in California, dove ciascuno degli isolatori ha un diametro di 4 metri e un peso di 178 kN (Figura 4.16).

Figura 4.16 – Isolatore sismico a pendolo scorrevole utilizzato nel Benicia-Martinez Bridge.

4.2.3 Molle elicoidali in acciaio

Le molle elicoidali sono state utilizzate nell'isolamento dalle vibrazioni nei macchinari per molti anni, principalmente per la loro elevata flessibilità sia verticale che orizzontale. Sono state altresì usate per l'isolamento sismico, in modo particolare quando sia richiesto un isolamento tridimensionale, come nel caso delle attrezzature degli impianti nucleari. Siccome lo smorzamento nelle molle elicoidali d'acciaio è talmente minimo da essere trascurabile, si utilizzano congiuntamente a smorzatori viscosi per eliminare le risonanze e limitare gli spostamenti nelle molle. Inoltre, le strutture isolate con queste molle, mostrano un forte accoppiamento fra i loro spostamenti orizzontali e le oscillazioni, che derivano dalla flessibilità verticale delle molle. Perciò questo è un sistema pratico nei casi in cui lo spostamento orizzontale addizionale prodotto dalle oscillazioni non è eccessivo.

Alcuni vantaggi dell'utilizzo delle molle elicoidali d'acciaio per la costruzione di un sistema di isolamento sono: l'assenza di *creep*, l'assenza di deterioramento nel tempo, la facile ispezionabilità e la facile sostituzione.

Un sistema che impieghi molle e smorzatori viscosi per l'isolamento sismico è il sistema GERB, sviluppato in Germania originalmente per l'isolamento dalle vibrazioni dei macchinari. Questo sistema utilizza grosse molle elicoidali d'acciaio flessibili in entrambe le direzioni orizzontale e verticale, associate a smorzatori tridimensionali.

Lo smorzatore appartiene della famiglia degli smorzatori ad olio, ha un pistone di forma speciale che si muove all'interno di un fluido viscoso (un gel di silicone). La Figura 4.17 mostra un tipico isolatore a molla GERB. Questo sistema fu implementato in due abitazioni a Santa Monica, in California, le quali furono fortemente colpite dal terremoto di Northridge del 1994; la loro risposta a questo sisma, fu monitorata da strumenti affidabili e apparentemente, il sistema di isolamento risultò efficace sulla riduzione delle accelerazioni di piano, confrontate con quelle di abitazioni senza isolamento sismico delle quali si avevano osservazioni. Capitolo IV

Figura 4.17 – (a) Isolatore con smorzamento a quattro molle GERB, (b) Schema costruttivo di uno smorzatore viscoso per isolatori a molle elicoidali d'acciaio.

4.3 Metodi di analisi

4.3.1 Modello lineare a due gradi di libertà

Per capire il comportamento degli edifici isolati è istruttivo considerare un semplice modello a due gradi di libertà con molle lineari e smorzamento viscoso lineare. La semplicità del modello permette di capire intuitivamente il comportamento del sistema. Tuttavia è importante ricordarsi che molti dispositivi di isolamento mostrano un legame non lineare intrinseco; perciò, per tali sistemi, un'analisi basata su questo modello può solamente essere approssimata e nonostante accurate stime della loro risposta, la si può ottenere attraverso la tecnica di linearizzazione equivalente descritta in seguito (§ 4.3.5).

• Equazioni del moto

Si consideri il sistema a due gradi di libertà mostrato in Figura 4.18 dove m_s , c_s e k_s sono rispettivamente la massa, lo smorzamento costante e la rigidezza della struttura. Analogamente m_b , c_b e k_b rappresentano rispettivamente le masse, i due smorzamenti costanti e le rigidezze del sistema di isolamento. Le due rigidezze e i due smorzamenti costanti sono assunti per rimanere costanti nel tempo e le forze di smorzamento del sistema sono assunte essere di tipo viscoso e lineare. Inoltre, u_g , u_b e u_s rappresentano rispettivamente gli spostamenti assoluti del terreno, della massa del sistema di isolamento e della massa della struttura al generico tempo t. Con riferimento al diagramma di corpo libero mostrato in Figura 4.19a, l'equazione del moto per le masse strutturali può essere così scritta:

$$-c_s(\dot{u}_s - \dot{u}_b) - k_s(u_s - u_b) = m_s \ddot{u}_s$$
(4.13)

Analogamente, l'equazione del moto per le masse isolate (Figura 4.19b) è:

$$-c_b(\dot{u}_b - \dot{u}_g) - k_b(u_b - u_g) - c_s(\dot{u}_s - \dot{u}_b) - k_s(u_s - u_b) = m_b\ddot{u}_b$$
(4.14)

La precedente espressione, considerando la (4.13), può essere così riscritta:

$$-c_b(\dot{u}_b - \dot{u}_g) - k_b(u_b - u_g) = m_b \ddot{u}_b + m_s \ddot{u}_s$$
(4.15)

In termini degli spostamenti relativi $v_s = u_s - u_b$ e $v_b = u_b - u_g$, le espressioni (4.13) e (4.15) possono essere riscritte nella seguente altra forma:

$$-c_b \dot{v}_b - k_b v_b = m_b (\ddot{v}_b + \ddot{u}_g) + m_s (\ddot{v}_s + \ddot{v}_b + \ddot{u}_g)$$
(4.16)

$$-c_{s}\dot{v}_{s} - k_{s}v_{s} = m_{s}(\ddot{v}_{s} + \ddot{v}_{b} + \ddot{u}_{g})$$
(4.17)

oppure

$$(m_b + m_s)\ddot{v}_b + m_s\ddot{v}_s + c_b\dot{v}_b + k_bv_b = -(m_s + m_b)\ddot{u}_g$$
(4.18)

e

è la massa totale del sistema.

Figura 4.18 – Modello a due gradi di libertà di un edificio isolato e spostamenti associati.

È interessante notare come per una struttura perfettamente rigida, cioè quando per tutti gli istanti temporali, si trasforma l'equazione del moto del sistema:

(4.24)

La precedente espressione (4.24) corrisponde all'equazione del moto del sistema di isolamento considerando come massa quella totale della struttura e del sistema di isolamento. Analogamente, quando il sistema di isolamento è

perfettamente rigido, ovvero quando per ogni istante, l'equazione del moto del sistema diventa:

(4.25)

che è l'equazione del moto nel caso in cui la struttura sia direttamente collegata al terreno.

Figura 4.20 – Diagramma di corpo libero delle: (a) masse strutturali, (b) masse di isolamento.

• Frequenze naturali

Il coefficiente rappresenta il rapporto delle masse, così definito:

mentre e sono le frequenze naturali nominali:

Inoltre, i coefficienti e rappresentano i rapporti di smorzamento nominali:

Dividendo l'equazione (4.18) per m e l'equazione (4.19) per m_s , introducendo i parametri definiti nelle equazioni (4.26) e (4.28), le equazioni del moto del sistema possono altresì esprimersi come di seguito:

$$\ddot{v}_b + \gamma \ddot{v}_s + 2\xi_b \omega_b \dot{v}_b + \omega_b^2 v_b = -\ddot{u}_g \tag{4.29}$$

$$\ddot{v}_b + \ddot{v}_s + 2\xi_s\omega_s\dot{v}_s + \omega_s^2v_s = -\ddot{u}_g \tag{4.30}$$

Per le libere oscillazioni, le due precedenti espressioni possono essere così ridotte:

$$\ddot{v}_b + \gamma \ddot{v}_s + \omega_b^2 v_b = 0 \tag{4.31}$$

$$\ddot{v}_b + \ddot{v}_s + \omega_s^2 v_s = 0 \tag{4.32}$$

o altresì in forma matriciale:

$$\begin{bmatrix} 1 & \gamma \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \ddot{v}_b \\ \ddot{v}_s \end{bmatrix} + \begin{bmatrix} \omega_b^2 & 0 \\ 0 & \omega_s^2 \end{bmatrix} \begin{bmatrix} v_b \\ v_s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(4.33)

Siccome nel caso delle oscillazioni libere si ha:

$$\begin{cases} \ddot{v}_b \\ \ddot{v}_s \end{cases} = -\omega^2 \begin{cases} v_b \\ v_s \end{cases}$$
 (4.34)

l'equazione (4.33) può essere così riscritta:

$$\left(\begin{bmatrix} \omega_b^2 & 0\\ 0 & \omega_s^2 \end{bmatrix} - \omega^2 \begin{bmatrix} 1 & \gamma\\ 1 & 1 \end{bmatrix} \right) \begin{pmatrix} v_b\\ v_s \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
(4.35)

dove ω è la *frequenza naturale fondamentale* della insieme struttura-sistema di isolamento. Dovendo essere valida per ogni spostamento relativo, l'equazione (4.35) costituisce l'*equazione caratteristica*:

$$\begin{vmatrix} \omega_b^2 - \omega^2 & -\omega^2 \gamma \\ -\omega^2 & \omega_s^2 - \omega^2 \end{vmatrix} = 0$$
(4.36)

Esplicitando il determinante della precedente espressione (4.36) si ha:

$$(\omega_b^2 - \omega^2) (\omega_s^2 - \omega^2) - \omega^4 \gamma = 0$$
 (4.37)

oppure

$$(1 - \gamma)\omega^4 - (\omega_b^2 + \omega_s^2)\omega^2 + \omega_b^2\omega_s^2 = 0$$
(4.38)

dove la soluzione è:

$$\omega^{2} = \frac{1}{2(1-\gamma)} \left[\omega_{b}^{2} + \omega_{s}^{2} \mp \sqrt{(\omega_{b}^{2} + \omega_{s}^{2})^{2} - 4(1-\gamma)\omega_{b}^{2}\omega_{s}^{2}} \right]$$
(4.39)

oppure

$$\omega^{2} = \frac{1}{2(1-\gamma)} \left[\omega_{b}^{2} + \omega_{s}^{2} \mp \sqrt{(\omega_{b}^{2} - \omega_{s}^{2})^{2} - 4\gamma \omega_{b}^{2} \omega_{s}^{2}} \right]$$
(4.40)

Di seguito sono mostrate le approssimazioni al primo ordine per le due frequenze naturali del sistema. Il rapporto ε fra il quadrato delle frequenze naturali nominali del sistema di isolamento e della struttura fissa è così definito:

$$\varepsilon = \frac{\omega_b^2}{\omega_s^2} \tag{4.41}$$

e si consideri che deve essere dell'ordine di 10^{-2} . In funzione di questo nuovo parametro e trascurando i termini di ordine superiore, l'equazione (4.40) può essere così riscritta:

$$\omega^2 = \frac{\omega_s^2}{2(1-\gamma)} \Big[1 + \varepsilon \mp \sqrt{1 - 2\varepsilon(1-2\gamma)} \Big]$$
(4.42)

la quale, dopo la sostituzione della radice con la sua approssimazione al secondo ordine, assume la forma:

$$\omega^{2} = \frac{\omega_{s}^{2}}{2(1-\gamma)} \left\{ 1 + \varepsilon \mp \left[1 - \varepsilon(1-2\gamma) - \frac{\varepsilon^{2}}{2}(1-2\gamma)^{2} \right] \right\}$$

$$= \frac{\omega_{s}^{2}}{2(1-\gamma)} \left\{ 1 + \varepsilon \mp \left[1 - \varepsilon(1-2\gamma) \left(1 - \gamma\varepsilon + \frac{\varepsilon}{2} \right) \right] \right\}$$

$$(4.43)$$

Di conseguenza,

$$\omega_1^2 = \frac{\omega_s^2}{2(1-\gamma)} \left\{ 1 + \varepsilon - \left[1 - \varepsilon(1-2\gamma) \left(1 - \gamma\varepsilon + \frac{\varepsilon}{2} \right) \right] \right\}$$

$$= \frac{\omega_s^2 \varepsilon}{2(1-\gamma)} (1 - \gamma - \gamma\varepsilon + \gamma^2 \varepsilon) = \omega_b^2 (1 - \gamma\varepsilon)$$

(4.44)

e analogamente,

$$\omega_2^2 = \frac{\omega_s^2}{2(1-\gamma)} \left\{ 1 + \varepsilon + \left[1 - \varepsilon(1-2\gamma)\left(1-\gamma\varepsilon + \frac{\varepsilon}{2}\right) \right] \right\}$$

$$= \frac{\omega_s^2}{2(1-\gamma)} \left(2 + 2\gamma\varepsilon^2 + 2\gamma\varepsilon - 2\gamma^2\varepsilon^2 - \frac{\varepsilon^2}{2} \right)$$
(4.45)

la quale, dopo aver trascurato i termini del secondo ordine, può essere così ridotta:

$$\omega_2^2 = \frac{\omega_s^2}{(1-\gamma)} (1+\gamma\varepsilon) \tag{4.46}$$

Si noti così, come per bassi valori del rapporto ω_b/ω_s , la frequenza naturale fondamentale della struttura isolata è leggermente minore della frequenza naturale nominale del sistema di isolamento. Al contrario, la seconda frequenza naturale è leggermente maggiore della frequenza naturale nominale della struttura considerata fissa alla base. In altre parole, la frequenza naturale fondamentale della struttura isolata è prossimo alla frequenza nominale del sistema di isolamento e la seconda frequenza naturale è prossima alla frequenza naturale della struttura fissa.

• Modi di vibrare e forme modali

Le forme modali non smorzate del sistema possono essere determinate dall'equazione (4.35), dopo aver considerato che per l'*i*-simo modo il vettore degli spostamenti è il seguente:

Detto questo, la soluzione è determinata dalla seguente equazione:

$$\left(\begin{bmatrix} \omega_b^2 & 0\\ 0 & \omega_s^2 \end{bmatrix} - \omega^2 \begin{bmatrix} 1 & \gamma\\ 1 & 1 \end{bmatrix}\right) \begin{pmatrix} 1\\ \phi_{si} \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}; \quad i = 1,2$$
(4.48)

dalla quale si ricava:

$$\omega_b^2 - \omega_i^2 (1 + \gamma \phi_{si}) = 0; \quad i = 1,2$$
(4.49)

Sostituendo nella (4.49) l'espressione semplificata trovata per ω_1^2 , si ha:

$$\omega_b^2 - \omega_b^2 (1 - \gamma \varepsilon) (1 + \gamma \phi_{s1}) = 0 \tag{4.50}$$

dalla quale si ottengono

$$\phi_{s1} = \frac{\varepsilon}{1 - \gamma \varepsilon} \approx \varepsilon \tag{4.51}$$

e

$$\begin{cases} \phi_{b1} \\ \phi_{s1} \end{cases} = \begin{cases} 1 \\ \varepsilon \end{cases}$$
 (4.52)

Analogamente, sostituendo nell'equazione (4.49) l'espressione semplificata ricavata per ω_2^2 , si ha:

$$\omega_b^2 - \frac{\omega_b^2}{1 - \gamma} (1 + \gamma \varepsilon) (1 + \gamma \phi_{s2}) = 0$$
(4.53)

dalla quale si ricavano

$$\phi_{s2} = -\frac{1}{\gamma} \left[1 - \frac{(1-\gamma)\varepsilon}{1+\gamma\varepsilon} \right] \approx -\frac{1}{\gamma} \left[1 - (1-\gamma)\varepsilon \right]$$
(4.54)

$$\begin{cases} \phi_{b2} \\ \phi_{s2} \end{cases} = \begin{cases} 1 \\ -\frac{1}{\gamma} [1 - (1 - \gamma)\varepsilon] \end{cases}$$

$$(4.55)$$

Figura 4.20 – Forme modali di un modello a due gradi di libertà isolato alla base.

Le forme modali rappresentate dalle equazioni (4.52) e (4.55) sono raffigurate in Figura 4.40. Si può notare come nel primo modo la deformazione della struttura sia piccola, quasi nulla; al contrario, la deformazione della struttura nel secondo modo è dello stesso ordine di grandezza della deformazione del sistema di isolamento, sebbene in direzione opposta. La rilevanza di questo accertamento sta nel fatto che le deformazioni del modo fondamentale sono circoscritte al livello del sistema di isolamento, ma nel secondo modo sia il sistema di isolamento che la struttura sono soggetti a rilevanti deformazioni.

• Fattori di partecipazione delle masse modali

Espressioni semplificate possono essere ottenute anche per i fattori di partecipazione del sistema, ricordando che il fattore di partecipazione per l'*i*-simo modo di un sistema a più gradi di libertà è:

$$\Gamma_{i} = \frac{L_{i}}{M_{i}} = \frac{\{\phi\}_{i}^{T}[M]\{r\}}{\{\phi\}_{i}^{T}[M]\{\phi\}_{i}}$$
(4.56)

dove: $\{\phi\}_i \in M_i$ sono rispettivamente la forma modale e la massa generalizzata del medesimo modo; [M] è la matrice delle masse del sistema e $\{r\}$ è il vettore di influenza dell'accoppiamento fra gli spostamenti del terreno e i gradi di libertà del sistema. In accordo con le equazioni (4.22), (4.23) e (4.52), per l'edificio isolato si ha:

$$M_{1} = \begin{cases} 1 \\ \varepsilon \end{cases}^{T} \begin{bmatrix} m & m_{s} \\ m_{s} & m_{s} \end{bmatrix} \begin{cases} 1 \\ \varepsilon \end{cases} \approx m + 2m_{s}\varepsilon = m(1 + 2\gamma\varepsilon)$$
(4.57)

$$L_1 = \begin{cases} 1\\ \varepsilon \end{cases}^T \begin{bmatrix} m & m_s \\ m_s & m_s \end{bmatrix} \begin{cases} 1\\ 0 \end{cases} = m + m_s \varepsilon = m(1 + \gamma \varepsilon)$$
(4.58)

e

$$\Gamma_{1} = \frac{m(1+\gamma\varepsilon)}{m(1+2\gamma\varepsilon)} = \frac{1+2\gamma\varepsilon-\gamma\varepsilon}{1+2\gamma\varepsilon} = 1 - \frac{\gamma\varepsilon}{1+2\gamma\varepsilon} \approx 1 - \gamma\varepsilon$$
(4.59)

Analogamente:

$$M_{1} = \begin{cases} 1 \\ a \end{cases}^{T} \begin{bmatrix} m & m_{s} \\ m_{s} & m_{s} \end{bmatrix} \begin{cases} 1 \\ a \end{cases} = m + 2m_{s}a + m_{s}a^{2}$$
(4.60)

$$L_{1} = \begin{cases} 1 \\ a \end{cases}^{T} \begin{bmatrix} m & m_{s} \\ m_{s} & m_{s} \end{bmatrix} \begin{cases} 1 \\ 0 \end{bmatrix} = m + m_{s}a$$
(4.61)

dove, in accordo con l'equazione (4.55):

$$a = -\frac{1}{\gamma} [1 - (1 - \gamma)\varepsilon] \tag{4.62}$$

Sostituendo l'equazione (4.62) nelle equazioni (4.60) e (4.61), si ottiene:

$$M_{2} = m - \frac{2m_{s}}{\gamma} [1 - (1 - \gamma)\varepsilon] + \frac{m_{s}}{\gamma^{2}} [1 - (1 - \gamma)\varepsilon]^{2}$$

$$\approx \frac{m(1 - \gamma)}{\gamma} [1 - 2(1 - \gamma)\varepsilon]$$

$$L_{2} = m - \frac{m}{\gamma} [1 - (1 - \gamma)\varepsilon] = m(1 - \gamma)\varepsilon \qquad (4.64)$$

dalle quali si ricava:

$$\Gamma_{1} = \frac{m(1-\gamma)\varepsilon}{\frac{m(1-\gamma)}{\gamma} [1-2(1-\gamma)\varepsilon]} = \frac{\gamma\varepsilon}{1-2(1-\gamma)\varepsilon} \approx \gamma\varepsilon$$
(4.65)

Si noti quindi, come nell'approssimazione al primo ordine di ε , il fattore di partecipazione del primo modo sia vicino all'unità, mentre quello del secondo modo risulta essere molto piccolo. Così, assieme al cambiamento delle frequenze naturali, viene mostrato perché un sistema di isolamento alla base può risultare efficace nel ridurre la risposta della struttura. Se le frequenze ω_s e ω_b sono ben separate, allora il fattore di partecipazione del secondo modo è ridottissimo: questo significa che la risposta del sistema isolato è controllata dalla risposta al primo modo della struttura stessa. Ma se ω_b è accuratamente scelta, la frequenza del primo modo del sistema isolato uscirà dal range di frequenze nelle quali i sismi hanno il più significante contenuto in frequenza di energia; si otterrà in questo modo che il movimento del terreno non venga trasmesso alla struttura isolata.

• Equazioni disaccoppiate del moto

Con le espressioni semplificate delle forme modali e dei fattori di partecipazione precedentemente trovate è ora possibile ricavare le espressioni semplificate della risposta dell'edificio isolato alla base, usando il disaccoppiamento modale. A questo scopo, esprimendolo in funzione dei modi di vibrare del sistema, il vettore $\{v\}$ definito nell'equazione (4.23) assume la forma:

$$\{v\} = \{\phi\}_1 \eta_1 + \{\phi\}_2 \eta_2 = [\{\phi\}_1 \quad \{\phi\}_2] \begin{cases} \eta_1\\ \eta_2 \end{cases} = [\phi]\{\eta\}$$
(4.66)

dove $\{\phi\}_1$ e $\{\phi\}_2$ rappresentano le forme modali del sistema, η_1 e η_2 sono le generiche coordinate modali e:

$$[\phi] = [\{\phi\}_1 \quad \{\phi\}_2], \qquad \{\eta\} = {\eta_1 \\ \eta_2}$$
(4.67)

Sostituendo l'equazione (4.66) nella (4.21) e moltiplicando per $[\phi]^T$ si ha:

$$[\phi]^{T}[M]\{\dot{\eta}\} + [\phi]^{T}[C]\{\dot{\eta}\} + [\phi]^{T}[K]\{\eta\} = -[\phi]^{T}[M]\{r\}\ddot{u}_{g}$$
(4.68)

oppure

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \{ \ddot{\eta}_1 \\ \ddot{\eta}_2 \} + \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \{ \dot{\eta}_1 \\ \dot{\eta}_2 \} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \{ \eta_1 \\ \eta_2 \} = - \{ \{ \phi \}_2^T \} [M] \{ r \} \ddot{u}_g \qquad (4.69)$$
dove

$$M_{ij} = \{\phi\}_i^T [M] \{\phi\}_j, \qquad C_{ij} = \{\phi\}_i^T [C] \{\phi\}_j, \qquad K_{ij} = \{\phi\}_i^T [K] \{\phi\}_j \qquad (4.70)$$

con *i*, *j* = 1,2.

Ma, in virtù della proprietà di ortogonalità dei modi di vibrare, ogni volta che si ha $i \neq j$, $M_{ij} = K_{ij} = 0$. Inoltre, per piccoli valori dei rapporti di smorzamento è possibile considerare C_{12} e C_{21} piccoli se paragonati a C_{11} e C_{22} e poterli considerare nulli. Di conseguenza, l'equazione (4.69) può essere così riscritta:

$$\begin{bmatrix} M_{11} & 0 \\ 0 & M_{22} \end{bmatrix} \begin{bmatrix} \ddot{\eta}_1 \\ \ddot{\eta}_2 \end{bmatrix} + \begin{bmatrix} C_{11} & 0 \\ 0 & C_{22} \end{bmatrix} \begin{bmatrix} \dot{\eta}_1 \\ \dot{\eta}_2 \end{bmatrix} + \begin{bmatrix} K_{11} & 0 \\ 0 & K_{22} \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = - \begin{bmatrix} \{\phi\}_1^T \\ \{\phi\}_2^T \end{bmatrix} [M] \{r\} \ddot{u}_g$$
(4.71)

oppure

$$M_{11}\ddot{\eta}_1 + C_{11}\dot{\eta}_1 + K_{11}\eta_1 = -L_1\ddot{u}_g \tag{4.72}$$

$$M_{22}\ddot{\eta}_2 + C_{22}\dot{\eta}_2 + K_{22}\eta_2 = -L_2\ddot{u}_g \tag{4.73}$$

Dividendo l'equazione (4.72) per M_{11} e l'equazione (4.73) per M_{22} , queste ultime assumono la forma:

$$\ddot{\eta}_1 + 2\xi_1 \omega_1 \dot{\eta}_1 + \omega_1^2 \eta_1 = -\Gamma_1 \ddot{u}_g \tag{4.74}$$

$$\ddot{\eta}_2 + 2\xi_2 \omega_2 \dot{\eta}_2 + \omega_2^2 \eta_2 = -\Gamma_2 \ddot{u}_g \tag{4.75}$$

dove ξ_i , $\omega_i \in \Gamma_i$, con i = 1,2, sono rispettivamente: i rapporti di smorzamento, le frequenze naturali e i fattori di partecipazione del sistema.

• Rapporti di smorzamento

Si possono ricavare semplici espressioni approssimate anche per i rapporti di smorzamento in funzione delle espressioni semplificate delle frequenze naturali e delle masse generalizzate. Per questo scopo, in accordo con la definizione di C_{ij} proposta nell'equazione (4.70), si definiscono:

$$C_{11} = \begin{cases} \phi_{b1} \\ \phi_{s1} \end{cases}^{T} \begin{bmatrix} c_{b} & 0 \\ 0 & c_{s} \end{bmatrix} \begin{cases} \phi_{b1} \\ \phi_{s1} \end{cases}$$
(4.76)

$$C_{22} = \begin{cases} \phi_{b2} \\ \phi_{s2} \end{cases}^{T} \begin{bmatrix} c_{b} & 0 \\ 0 & c_{s} \end{bmatrix} \begin{cases} \phi_{b2} \\ \phi_{s2} \end{cases}$$
(4.77)
le quali, in virtù delle equazioni (4.28), (4.52) e (4.55), possono essere così approssimate:

$$C_{11} = \begin{cases} 1\\ \varepsilon \end{cases}^T \begin{bmatrix} c_b & 0\\ 0 & c_s \end{bmatrix} \begin{cases} 1\\ \varepsilon \end{bmatrix} = 2\xi_b \omega_b m + 2\xi_s \omega_s m_s \varepsilon^2 \approx 2\xi_b \omega_b m$$
(4.78)

$$C_{22} = \begin{cases} 1 \\ a \end{cases}^{T} \begin{bmatrix} c_{b} & 0 \\ 0 & c_{s} \end{bmatrix} \begin{cases} 1 \\ a \end{cases} = 2\xi_{b}\omega_{b}m + 2\xi_{s}\omega_{s}m_{s}a^{2}$$
(4.79)

dove a è definito nell'equazione (4.62). Dalla definizione di rapporto di smorzamento riportata nelle equazioni (4.44) e (4.57), si ricavano:

$$\xi_{1} = \frac{C_{11}}{2\omega_{1}M_{1}} = \frac{2\xi_{b}\omega_{b}m}{2\omega_{b}(1-\gamma\varepsilon)^{1/2}m(1+2\gamma\varepsilon)} = \frac{\xi_{b}(1-2\gamma\varepsilon)}{(1-\gamma\varepsilon)^{1/2}(1-4\gamma^{2}\varepsilon^{2})}$$
(4.80)

$$\approx \frac{\xi_{b}(1-2\gamma\varepsilon)}{(1-\gamma\varepsilon)^{1/2}} \approx \xi_{b}(1-2\gamma\varepsilon)^{3/4} \approx \xi_{b}\left(1-\frac{3}{2}\gamma\varepsilon\right)$$
(4.81)

$$\xi_{2} = \frac{C_{22}}{2\omega_{2}M_{2}} = \gamma \frac{2\xi_{b}\omega_{b}m+2\xi_{s}\omega_{s}m_{s}a^{2}}{2\omega_{s}(1-\gamma\varepsilon)^{1/2}[1-2(1-\gamma)\varepsilon]m(1-\gamma)^{1/2}}$$
(4.81)

$$\approx \frac{\gamma\varepsilon^{1/2}\xi_{b}+\xi_{s}[1-(1-\gamma)\varepsilon]^{2}}{(1+\gamma\varepsilon)^{1/2}(1-\gamma)^{1/2}} \approx \frac{\gamma\varepsilon^{1/2}\xi_{b}+\xi_{s}}{(1-\gamma)^{1/2}}(1+\gamma\varepsilon)^{-1/2}$$
(4.81)

$$\approx \frac{\gamma\varepsilon^{1/2}\xi_{b}+\xi_{s}}{(1-\gamma)^{1/2}}\left(1-\frac{1}{2}\gamma\varepsilon\right)$$

È possibile vedere, come lo smorzamento del primo modo (modo isolato) sia veramente vicino al rapporto di smorzamento del sistema di isolamento e sostanzialmente non influenzato dal rapporto di smorzamento della struttura. Al contrario, il fattore di smorzamento del secondo modo (modo strutturale) è influenzato da entrambi i fattori di smorzamento del sistema di isolamento e della struttura. Infine, si può notare come lo smorzamento nel sistema di isolamento, possa fare aumentare significativamente il rapporto di smorzamento del secondo modo. Inoltre, il termine $\gamma \varepsilon^{1/2} \xi_b$ può fare accrescere in modo significativo il rapporto di smorzamento complessivo, specialmente se ξ_s è piccolo.

• Risposta massima

Le espressioni (4.74) e (4.75) rappresentano le equazioni del moto dei singoli sistemi indipendenti ad un grado di libertà. In quanto tali, possono essere espresse in funzione dell'integrale di Duhamel:

$$\eta_1 = -\frac{\Gamma_1}{\omega_{d1}} \int_0^t \ddot{u}_g e^{-\xi_1 \omega_1 (t-\tau)} \sin \omega_1 (t-\tau) d\tau \qquad (4.82)$$

$$\eta_2 = -\frac{\Gamma_2}{\omega_{d2}} \int_0^t \ddot{u}_g e^{-\xi_2 \omega_2 (t-\tau)} \sin \omega_2 (t-\tau) d\tau \qquad (4.83)$$

dove ω_{d1} e ω_{d2} sono le frequenze naturali del sistema smorzato. Inoltre, i massimi valori di queste coordinate modali possono essere ottenuti dallo spettro di risposta di \ddot{u}_g nel seguente modo:

$$(\eta_1)_{\max} = \Gamma_1 SD(\omega_1, \xi_1) \tag{4.84}$$

$$(\eta_2)_{\max} = \Gamma_2 SD(\omega_2, \xi_2) \tag{4.85}$$

Una stima della risposta massima del sistema può essere ottenuta attraverso l'applicazione del metodo di combinazione dei modi noto come *square-root-of-the-squares*:

$$\{v\}_{\max} = {{v_b} \\ v_s}_{\max} = \sqrt{\{\phi^2\}_1 (\eta_1)_{\max}^2 + \{\phi^2\}_2 (\eta_2)_{\max}^2}$$
(4.86)

oppure

$$(v_b)_{\max} = [\phi_{b1}^2 \Gamma_1 SD^2(\omega_1, \xi_1) + \phi_{b2}^2 \Gamma_2 SD^2(\omega_2, \xi_2)]^{1/2}$$
(4.87)

$$(v_s)_{\max} = [\phi_{s1}^2 \Gamma_1 SD^2(\omega_1, \xi_1) + \phi_{s2}^2 \Gamma_2 SD^2(\omega_2, \xi_2)]^{1/2}$$
(4.88)

Si possono ottenere espressioni semplificate di questi spostamenti sostituendo le espressioni semplificate trovate per le forme modali e per i fattori di partecipazione modali. Sfruttando le equazioni (4.52), (4.55), (4.59) e (4.65), si ottengono:

$$(v_b)_{\max} = [(1 - \gamma \varepsilon)^2 SD^2(\omega_1, \xi_1) + \gamma^2 \varepsilon^2 SD^2(\omega_2, \xi_2)]^{1/2}$$
(4.89)

$$(v_s)_{\max} = \{\varepsilon^2 (1 - \gamma \varepsilon)^2 SD^2(\omega_1, \xi_1) + [1 - (1 - \gamma)\varepsilon]^2 \varepsilon^2 SD^2(\omega_2, \xi_2)\}^{1/2} = \varepsilon\{(1 - \gamma \varepsilon)^2 SD^2(\omega_1, \xi_1) + [1 - (1 - \gamma)\varepsilon]^2 SD^2(\omega_2, \xi_2)\}^{1/2}$$
(4.90)

Tuttavia, per movimenti tipici del terreno in suoli rigidi, lo spostamento spettrale alle alte frequenze è sempre più piccolo che alle basse frequenze. Quindi, per questi movimenti del terreno è possibile trascurare il secondo termine del membro destro dell'equazione (4.89) e approssimare $(v_b)_{max}$ nel seguente modo:

$$(v_b)_{\max} = (1 - \gamma \varepsilon) SD(\omega_1, \xi_1)$$
(4.91)

Analogamente, se vengono trascurati i termini di ordine superiore è possibile approssimare $(v_s)_{max}$ come segue:

$$(v_s)_{\max} = \varepsilon [SD^2(\omega_1, \xi_1) + SD^2(\omega_2, \xi_2)]^{1/2}$$
(4.92)

Di conseguenza, il coefficiente di taglio alla base, definito come

$$C_{s} = \frac{k_{s}(v_{s})_{\max}}{m_{s}} = \omega_{s}^{2}(v_{s})_{\max}$$
(4.93)

viene approssimato con la seguente espressione:

$$C_{s} = \omega_{s}^{2} \varepsilon [SD^{2}(\omega_{1},\xi_{1}) + SD^{2}(\omega_{2},\xi_{2})]^{1/2}$$

= $\omega_{b}^{2} [SD^{2}(\omega_{1},\xi_{1}) + SD^{2}(\omega_{2},\xi_{2})]^{1/2}$ (4.94)

Inoltre, se viene considerato solamente il primo termine, si ottengono:

$$(v_b)_{\max} = SD(\omega_1, \xi_1) \tag{4.95}$$

$$(v_s)_{\max} = \varepsilon SD(\omega_1, \xi_1) \tag{4.96}$$

$$C_{s} = \omega_{b}^{2}SD(\omega_{1},\xi_{1}) = \omega_{b}^{2}\frac{SA(\omega_{1},\xi_{1})}{\omega_{1}^{2}} = \frac{1}{1-\gamma\varepsilon}SA(\omega_{1},\xi_{1})$$

$$\approx SA(\omega_{1},\xi_{1}) \approx SA(\omega_{b},\xi_{b})$$
(4.97)

nelle quali, per piccoli valori di ε e tipici spettri di risposta per suoli rigidi, nel progetto preliminare, il sistema di isolamento è stato progettato per spostamenti relativi di $SD(\omega_b, \xi_b)$ mentre la struttura è stata progettati per coefficienti di taglio alla base relativi a $SA(\omega_b, \xi_b)$. Si noti inoltre come la riduzione di taglio alla base introdotta dal sistema di isolamento, confrontata con il caso di struttura fissa alla base, sia all'incirca uguale a $SA(\omega_b, \xi_b)/SA(\omega_s, \xi_s)$.

In conclusione, in una struttura isolata alla base è possibile che le frequenze naturali e i rapporti di smorzamento del primo modo dipendano principalmente dalle caratteristiche del sistema di isolamento e siano essenzialmente indipendenti dalla frequenza naturale e dal rapporto di smorzamento della struttura. Inoltre, la forma del primo modo di vibrare è vicina a quella di una struttura rigida fissata su di un elemento flessibile. Ciò detto, gli spostamenti in una struttura isolata derivano in gran parte dalla deformazione degli isolatori, assieme a piccole deformazioni della struttura al di sopra del livello di isolamento. Di conseguenza, se il sistema di isolamento si comporta linearmente, la struttura isolata potrà essere considerata rigida quando si valuterà la sua risposta sismica. È possibile anche vedere come la deformazione degli isolatori possa essere sostanziale e di conseguenza sia importante considerarla nel progetto di strutture isolate alla base. Infine, si può notare come la risposta della struttura si possa ridurre anche di 5-10 volte in una struttura isolata: questo mostra chiaramente quale sia il beneficio introdotto da un sistema di isolamento alla struttura.

4.3.2 Modello di struttura rigida ad un grado di libertà (SDOF)

Come visto nel paragrafo precedente (§ 4.3.1), quando in una struttura isolata il periodo naturale del sistema di isolamento è più lungo del periodo naturale della struttura fissata alla base, il secondo modo dei sistemi combinati contribuisce minimamente alla risposta del sistema. In questi casi, perciò è conveniente assumere che la struttura sia perfettamente rigida e modellare il sistema combinato come un sistema un grado di libertà (*Single-Degree-Of-Freedom*) avente frequenza naturale e fattore di smorzamento del sistema di isolamento. In questo modo, la deformazione degli isolatori e il coefficiente di taglio alla base della struttura, che sono i parametri di interesse per il progetto del sistema, possono essere stimati in modo semplice considerando che:

$$(v_b)_{\max} = SD(\omega_b, \xi_b) \tag{4.98}$$

$$C_s = SA(\omega_b, \xi_b) \tag{4.99}$$

dove, come prima stabilito, ω_b e ξ_b rappresentano rispettivamente la frequenza naturale e il rapporto di smorzamento del sistema di isolamento. Analogamente, l'efficacia del sistema di isolamento può essere valutata con il fattore di riduzione $SA(\omega_s, \xi_s)/SA(\omega_b, \xi_b)$. Questa valida approssimazione a struttura rigida fornisce un rapido modo per stimare l'efficacia del sistema isolato alla base e l'entità della deformazione degli isolatori.

4.3.3 Modello lineare a più gradi di libertà (MDOF)

I concetti introdotti per il modello lineare a due gradi di libertà (§ 4.3.1) possono essere estesi al caso di struttura modellata come MDOF (*Multi-Degree-Of-Freedom*), ovvero a molti gradi di libertà.

• Equazioni del moto

Si consideri il sistema MDOF di Figura 4.21 e si assuma che questa struttura possegga n gradi di libertà e che sia la struttura che il sistema di isolamento siano entrambi sistemi lineari con smorzamento viscoso. Si richiamino anche le matrici [M], [C] e [K], rispettivamente la matrice delle masse, quella degli smorzamenti e la matrice di rigidezza della struttura considerata fissa alla base; e m_b , c_b e k_b , rispettivamente la massa, lo smorzamento costante e la rigidezza del sistema di isolamento. Ancora, per il generico tempo t, i valori u_i , i = 1, 2, ..., n, rappresentano gli spostamenti assoluti delle masse strutturali, mentre u_b è lo spostamento assoluto della massa dell'isolamento; u_g è lo spostamento del terreno. Inoltre, $v_i = u_i - u_b$ rappresenta lo spostamento dell'i-sima massa strutturale rispetto alla massa del sistema di isolamento e $v_b = u_b - u_g$ è lo spostamento della massa del sistema di isolamento rispetto allo spostamento del terreno. In analogia con le generiche equazioni del moto per un sistema MDOF fissato alla base, l'equazione del moto della struttura isolata, quando gli spostamenti della struttura siano riferiti allo spostamento della massa del sistema di isolamento, si può scrivere così:

$$[M]\{\dot{v}\} + [C]\{\dot{v}\} + [K]\{v\} = -[M]\{r\}\ddot{u}_b \tag{4.100}$$

oppure

$$[M]{r}\ddot{v}_{b} + [M]{\ddot{v}} + [C]{\dot{v}} + [K]{v} = -[M]{r}\ddot{u}_{g}$$
(4.101)

dove $\{v\} = \{v_1 \, v_2 \, ... \, v_n\}^T$ è il vettore che contiene gli spostamenti relativa della struttura rispetto alla massa del sistema di isolamento e $\{r\}$ è il vettore di influenza che accoppia i gradi di libertà della struttura fissata alla base al moto della massa del sistema di isolamento.

Con riferimento al diagramma di corpo libero riportato in Figura 4.22a e applicando la seconda legge di Newton, l'equazione del moto della massa del sistema di isolamento diviene:

$$-k_b v_b - c_b \dot{v}_b = m_b \ddot{u}_b \tag{4.102}$$

altresì esprimibile nella forma:

(4.103) oppure (4.104)

dove è la massa totale dell'edificio isolato. Da qui, se le equazioni (4.101) e (4.105) vengono unite in una singola equazione matriciale,

si ottiene:

(4.106)

(4.105)

dove è un vettore colonna nullo di dimensione e si è considerato

Figura 4.21 – Modello MDOF di un edificio isolato e relativi spostamenti.

Di conseguenza, l'equazione del moto del sistema combinato può essere così riscritta:

(4.107)

dove:

178

(4.109)

(4.110)

Figura 4.22 – Diagramma di corpo libero della: (a) struttura MDOF; (b) massa di isolamento.

• Frequenze naturali e forme modali

e

Nel caso non smorzato di libere oscillazioni, l'equazione (4.107) si riduce alla seguente forma:

e di conseguenza le frequenze naturali e le forme modali della struttura isolata possono essere determinati direttamente utilizzando un qualsiasi algoritmo agli autovalori e considerando che la massa e la rigidezza del sistema sono espresse dalle seguenti formule: Capitolo IV

$$[M]_{c} = \begin{bmatrix} m & \{r\}^{T}[M] \\ [M]\{r\} & [M] \end{bmatrix}, \qquad [K]_{c} = \begin{bmatrix} k_{b} & \{0\}^{T} \\ \{0\} & [K] \end{bmatrix}$$
(4.112)

• Risposta massima approssimata

Introduciamo $\{\phi\}_i$, con i = 1, 2, ..., n, che rappresenta le forme modali della struttura fissata alla base e un set di generiche coordinate modali incognite. Inoltre, $[\phi] \in \{\eta\}$ sono rispettivamente la matrice delle forme modali e il vettore delle suddette coordinate modali, così definiti:

 $[\phi] = [\{\phi\}_1 \ \{\phi\}_2 \ \cdots \ \{\phi\}_n], \qquad \{\eta\}^T = \{\eta_1 \ \eta_2 \ \cdots \ \eta_n\}$ (4.113)

Con la trasformazione modale si ha:

$$\{v\} = [\phi]\{\eta\} \tag{4.114}$$

e dopo averla moltiplicata per il trasposto di $[\phi]$, l'equazione (4.100) può esprimersi nella forma:

$$[\phi]^{T}[M][\phi]\{\ddot{\eta}\} + [\phi]^{T}[C][\phi]\{\eta\} + [\phi]^{T}[K][\phi]\{\eta\} = -[\phi]^{T}[M]\{r\}\ddot{u}_{b}$$
(4.115)

la quale, in virtù della proprietà di ortogonalità delle forme modali $\{\phi\}_i$ e assumendo che queste forme modali siano anche ortogonali alla matrice di smorzamento [*C*], può essere ridotta ad un sistema di *n* equazioni disaccoppiate:

$$M_i \ddot{\eta}_i + C_i \dot{\eta}_i + K_i \eta_i = -L_i \ddot{u}_b , \qquad i = 1, 2, \dots, n$$
(4.116)

dove:

$$M_{i} = \{\phi\}_{i}^{T}[M]\{\phi\}_{i}, \qquad C_{i} = \{\phi\}_{i}^{T}[C]\{\phi\}_{i}$$

$$K_{i} = \{\phi\}_{i}^{T}[K]\{\phi\}_{i}, \qquad L_{i} = \{\phi\}_{i}^{T}[M]\{r\}$$
(4.117)

Inoltre, dividendo per M_i e considerando che $u_b = v_b + u_g$, il sistema di equazioni può essere espresso nella forma:

$$\ddot{\eta}_i + 2\xi_{si}\omega_{si}\dot{\eta}_i + \omega_{si}^2\eta_i = -\Gamma_i(\ddot{v}_b + \ddot{u}_g), \qquad i = 1, 2, \dots, n$$
(4.118)

dove ω_{si} e ξ_{si} sono rispettivamente la frequenza naturale e il fattore di smorzamento dell'*i*-simo modo della struttura a base fissa e $\Gamma_i = L_i/M_i$ è il fattore di partecipazione corrispondente. Se la trasformazione modale espressa nell'equazione (4.114) viene ora applicata all'equazione (4.105), considerando anche che $[M]\{r\} = \{m_1 \ m_2 \ \cdots \ m_n\}^T$, si ottiene:

$$m\ddot{v}_b + \{r\}^T[M][\phi]\{\ddot{\eta}\} + c_b\dot{v}_b + k_bv_b = -m\ddot{u}_g$$
(4.119)

la quale può anche esprimersi così:

$$\sum_{i=1}^{n} \{r\}^{T} [M] \{\phi\}_{i} \ddot{\eta}_{i} + m \ddot{v}_{b} + c_{b} \dot{v}_{b} + k_{b} v_{b} = -m \ddot{u}_{g}$$
(4.120)

oppure, dopo avere diviso per *m* e considerando che $\{r\}^T[M]\{\phi\}_i = L_i$ e che $\Gamma_i = L_i/M_i$, nella forma equivalente:

$$\sum_{i=1}^{n} \frac{\Gamma_{i} M_{i}}{m} \ddot{\eta}_{i} + \ddot{v}_{b} + 2\xi_{b} \omega_{b} \dot{v}_{b} + \omega_{b}^{2} v_{b} = -\ddot{u}_{g}$$
(4.121)

dove, come detto precedentemente, ω_b e ξ_b rappresentano rispettivamente la frequenza naturale e il rapporto di smorzamento del sistema di isolamento quando la struttura è considerata perfettamente rigida.

Le equazioni (4.118) e (4.121) costituiscono le equazioni del moto della struttura isolata nelle coordinate modali. Se, facendo un'approssimazione, si considera solo l'influenza del modo fondamentale della struttura fissata alla base, le suddette equazioni del moto possono essere così semplificate:

$$\ddot{\eta}_i + 2\xi_{s1}\omega_{s1}\dot{\eta}_1 + \omega_{s1}^2\eta_1 = -\Gamma_1(\ddot{v}_b + \ddot{u}_g)$$
(4.122)

$$\frac{\Gamma_1 M_1}{m} \ddot{\eta_1} + \ddot{v}_b + 2\xi_b \omega_b \dot{v}_b + \omega_b^2 v_b = -\ddot{u}_g \tag{4.123}$$

le quali, per convenienza, possono riscriversi nel seguente modo:

$$\Gamma_{1}\ddot{v}_{b} + \frac{\Gamma_{1}^{2}M_{1}}{m}\ddot{\eta}_{1} + 2\xi_{b}\omega_{b}\Gamma_{1}\dot{v}_{b} + \omega_{b}^{2}\Gamma_{1}v_{b} = -\Gamma_{1}\ddot{u}_{g}$$
(4.124)

$$\Gamma_1 \ddot{v}_b + \ddot{\eta}_i + 2\xi_{s1}\omega_{s1}\dot{\eta}_1 + \omega_{s1}^2\eta_1 = -\Gamma_1 \ddot{u}_g \tag{4.125}$$

Confrontando le equazioni del moto del sistema isolato ad un grado di libertà descritte al paragrafo 4.4.1 con le equazioni (4.29) e (4.30) è possibile vedere come i due set di equazioni sia equivalente se si considera:

$$\gamma = \frac{\Gamma_1^2 M_1}{m} \tag{4.126}$$

e v_s , v_b , ξ_s e \ddot{u}_g , nell'equazione del modello a due gradi di libertà, siano sostituiti rispettivamente con η_1 , $\Gamma_1 v_b$, ω_{s1} e $\Gamma_1 \ddot{u}_g$. Questa equivalenza fa perciò ricordare come la risposta di un sistema MDOF isolato si possa determinare in via approssimata utilizzando le equazioni derivanti dal modello ad un grado di libertà. Più specificatamente, lo spostamento relativo della massa del sistema di isolamento rispetto al terreno, può essere determinato attraverso l'equazione (4.89), avendo cura di sostituire $\Gamma_1 v_b$, $\Gamma_1 SD(\omega_1, \xi_1)$ e $\Gamma_1 SD(\omega_2, \xi_2)$ con v_b , $SD(\omega_1, \xi_1)$ e $SD(\omega_2, \xi_2)$. Perciò, questo spostamento relativo può essere determinato con la formula:

$$(\Gamma_1 v_b)_{\max} = \Gamma_1 [(1 - \gamma \varepsilon)^2 S D^2(\omega_1, \xi_1) + \gamma^2 \varepsilon^2 S D^2(\omega_2, \xi_2)]^{1/2}$$
(4.127)

dove: γ è definito dall'equazione (4.126); ω_1 , ω_2 , ξ_1 e ξ_2 sono forniti dalle equazioni (4.44), (4.46), (4.80) e (4.81) e:

$$\varepsilon = \frac{\omega_b^2}{\omega_{s1}^2} \tag{4.128}$$

Analogamente, il valore massimo della coordinata modale η_1 , può essere ottenuto dall'equazione (4.92) dopo aver sostituito v_s , $SD(\omega_1, \xi_1) \in SD(\omega_2, \xi_2)$ con η_1 , $\Gamma_1 SD(\omega_1, \xi_1) \in \Gamma_1 SD(\omega_2, \xi_2)$ rispettivamente. Si ottiene quindi:

$$(\eta_1)_{\max} = \varepsilon \Gamma_1 [SD^2(\omega_1, \xi_1) + SD^2(\omega_2, \xi_2)]^{1/2}$$
(4.129)

Di conseguenza, in accordo con l'equazione (4.114), dopo aver trascurato i modi ad alta frequenza, lo spostamento massimo relativo della struttura rispetto alla massa del sistema di isolamento può essere considerato in via approssimata uguale a:

$$\{v\}_{\max} = \{\phi\}_1 \eta_1 = \varepsilon [SD^2(\omega_1, \xi_1) + SD^2(\omega_2, \xi_2)]^{1/2} \Gamma_1 \{\phi\}_1$$
(4.130)

L'equazione (4.130) può essere usata per stimare il valore massimo delle forze laterali ed il taglio alla base agente sulla struttura. Ciò detto, le forze laterali possono essere calcolate con la seguente equazione:

$$\{F_s\}_{\max} = [K]\{v\}_{\max} = [K]\{\phi\}_1(\eta_1)_{\max} = \omega_{s1}^2 \frac{\Gamma_1 M_1}{m_s g} (\eta_1)_{\max}$$
(4.131)

Il coefficiente di taglio alla base (taglio alla base/peso della struttura) può invece essere calcolato con la formula:

$$C_{s} = \omega_{s1}^{2} \frac{\{r\}^{T} \{F_{s}\}_{\max}}{m_{s}g} = \omega_{s1}^{2} \frac{\{r\}^{T} [M] \{\phi\}_{1}}{m_{s}g} (\eta_{1})_{\max}$$

$$= \omega_{s1}^{2} \frac{\Gamma_{1} M_{1}}{m_{s}g} (\eta_{1})_{\max} = \omega_{s1}^{2} \frac{\Gamma_{1}^{2} M_{1}}{m_{s}g} \varepsilon [SD^{2}(\omega_{1},\xi_{1}) + SD^{2}(\omega_{2},\xi_{2})]^{1/2}$$

$$(4.132)$$

dove m_s è la massa totale della struttura al netto della massa del sistema di isolamento (ovvero la massa della sovrastruttura).

4.3.4 Modello MDOF lineare con smorzamento non classico

In molte strutture isolate alla base, vengono aggiunti al sistema di isolamento smorzatori supplementari con lo scopo di ridurre gli spostamenti della massa del sistema di isolamento. I rapporti di smorzamento del sistema di isolamento, in questi casi, possono arrivare fino al 30%. Tuttavia, quando lo smorzamento del sistema di isolamento è più elevato di quello della sovrastruttura, non è possibile considerare il sistema combinato isolamentosovrastruttura classicamente smorzato. Perciò, non è nemmeno possibile assumere questo tipo di smorzamento, grazie al quale, dopo la trasformazione modale, con le forme modali non smorzate, la matrice di smorzamento del sistema viene trasformata in una matrice diagonale. Il motivo di tutto ciò è che in questi casi, gli elementi fuori diagonale della matrice di smorzamento trasformata sono dello stesso ordine di grandezza degli elementi corrispondenti della diagonale principale e perciò, questi elementi fuori diagonale non possono essere trascurati. Così, quindi, l'analisi della struttura isolata deve essere svolta con una integrazione step-by-step delle equazioni del moto o con una sovrapposizione modale complessa: quest'ultima procedura è descritta qui di seguito.

Si consideri ancora una volta la struttura isolata alla base di Figura 4.21: come mostrato nel paragrafo 4.3.3, l'equazione del moto per questo sistema, quando gli spostamenti relativi della struttura siano espressi rispetto allo spostamento della massa del sistema di isolamento, assume la forma:

$$[M]_{c}\{\ddot{v}(t)\}_{c} + [C]_{c}\{\dot{v}(t)\}_{c} + [K]_{c}\{v(t)\}_{c} = -[M]_{c}\{r\}_{c}\ddot{u}_{g}(t)$$
(4.133)

dove $[M]_c$, $[C]_c$, $[K]_c$, $\{r\}_c$ e $\{v\}_c$ sono forniti dalle equazioni (4.108), (4.109) e (4.110) e rappresentano rispettivamente la matrice delle masse, la matrice di smorzamento, la matrice di rigidezza, il vettore di influenza e il vettore degli spostamenti del sistema. Come detto precedentemente, $\ddot{u}_g(t)$ è l'accelerazione al suolo. Seguendo il metodo proposto da K. A. Foss nel 1952, descritto nel testo di Hurty e Rubinstein, si può effettuare la decomposizione modale se l'equazione viene prima ridotta al primo ordine:

$$[A]\{\dot{q}(t)\} + [B]\{q(t)\} = \{Q(t)\}$$
(4.134)

dove:

$$[A] = \begin{bmatrix} [0] & [M]_c \\ [M]_c & [C]_c \end{bmatrix}, \qquad [B] = \begin{bmatrix} -[M]_c & [0] \\ [0] & [K]_c \end{bmatrix}$$
(4.135)

$$\{q(t)\} = \begin{cases} \{\dot{v}(t)\}_c \\ \{v(t)\}_c \end{cases}, \qquad \{Q(t)\} = \begin{cases} \{0\} \\ -[M]_c\{r\}_c \ddot{u}_g(t) \end{cases}$$
(4.136)

L'equazione (4.134) ha dimensione $2(n + 1) \times 2(n + 1)$, dove n è il numero di gradi di libertà della struttura fissata alla base.

Si riporta ora l'equazione omogenea del moto:

$$[A]\{\dot{q}(t)\} + [B]\{q(t)\} = \{0\}$$
(4.137)

La soluzione della precedente equazione (4.137) è della forma:

$$\{q(t)\} = \{s\}e^{\lambda t} \tag{4.138}$$

Sostituendo quindi questa soluzione nell'equazione (4.137), si ottiene il seguente problema agli autovalori:

$$([B] + \lambda[A])\{s\} = 0 \tag{4.139}$$

il quale fornirà ancora una volta come soluzione un set di 2(n + 1) autovalori complessi λ_i ed un set di 2(n + 1) autovettori complessi $\{s\}_i$. Si può mostrare come il sistema sia sottosmorzato; questi autovalori e autovettori sono quindi ottenuti in coppie di complessi coniugati. Si può inoltre mostrare come gli autovettori ottenuti siano ortogonali rispetto alle matrici [A] e [B]:

$$\{s\}_{i}^{T}[A]\{s\}_{j} = 0 \quad e \quad \{s\}_{i}^{T}[B]\{s\}_{j} = 0; \qquad i \neq j$$
(4.140)

Inoltre, si può vedere come gli autovalori λ_i e gli autovettori $\{s\}_i$ possono essere scritti alternativamente nel seguente modo:

$$\lambda_i = -\xi_i \omega_i + i\omega_i \sqrt{1 - \xi_i^2} = -\xi_i \omega_i + i\omega_{di}$$
(4.141)

$$\{s\}_i = \begin{cases} \lambda_i \{w\}_i \\ \{w\}_i \end{cases}$$
(4.142)

dove ω_i , ω_{di} e ξ_i rappresentano rispettivamente la frequenza naturale, la frequenza naturale smorzata e il rapporto di smorzamento dell'*i*-simo modo del sistema; *i* è l'unità immaginaria; $\{w\}_i$ è la forma modale complessa di

dimensione (n + 1) relativa all'*i*-simo modo, la quale definisce l'ampiezza relativa e l'angolo di fase delle varie masse del sistema quando questo sia in condizione di libera oscillazione.

Il perché dell'ortogonalità degli autovettori $\{s\}_i$ rispetto alle matrici [A]e [B] è che la matrice che contiene tutti questi autovettori rappresenta una matrice di trasformazione che disaccoppia le equazioni ridotte del moto. In accordo con quanto detto, se [s] rappresenta la matrice che contiene i 2(n + 1)autovettori del sistema e se $\{z(t)\}$ è il vettore delle coordinate modali incognite, in seguito alla trasformazione

$$\{q(t)\} = [s]\{z(t)\} = \sum_{i=1}^{2(n+1)} \{s\}_i z_i(t)$$
(4.143)

e dopo avere moltiplicato per il trasporto di [s], sfruttando anche la sopra menzionata proprietà di ortogonalità, l'equazione (4.134) può essere trasformata in un sistema di equazioni indipendenti:

$$A_i \dot{z}_i(t) + B_i z_i(t) = Q_i(t), \qquad i = 1, 2, ..., 2(n+1)$$
 (4.144)

dove z_i è l'*i*-sima componente di $\{z\}$ e A_i , B_i e $Q_i(t)$ sono numeri complessi così definiti:

$$A_i = \{s\}_i^T [A]\{s\}_i \tag{4.145}$$

$$B_i = \{s\}_i^T [B]\{s\}_i \tag{4.146}$$

$$Q_i(t) = \{s\}_i^T \{Q(t)\}_i \tag{4.147}$$

L'equazione (4.144) è un'equazione differenziale del primo ordine a coefficienti costanti. In quanto tale, la sua soluzione può essere ottenuta in termini dell'integrale di Duhamel. Di conseguenza, assumendo condizioni iniziali nulle, si ha:

$$z_i(t) = \frac{1}{A_i} \int_{\tau=0}^t Q_i(t) e^{\lambda_i(t-\tau)} d\tau$$
(4.148)

Le equazioni (4.143) e (4.148) costituiscono la soluzione modale dell'equazione (4.134). L'equazione (4.143), tuttavia, può essere più riscritta esplicitando i termini complessi coniugati:

$$\{q(t)\} = \sum_{i=1}^{n+1} \{s\}_i z_i(t) + \sum_{i=1}^{n+1} \{\bar{s}\}_i \bar{z}_i(t)$$
(4.149)

oppure

$$\{q(t)\} = 2\sum_{i=1}^{n+1} \Re e[\{s\}_i z_i(t)]$$
(4.150)

dove la linea che soprassegna i simboli indica il complesso coniugato dello stesso, mentre la scrittura \Re e rappresenta la parte reale dell'argomento contenuto. Inoltre, in virtù della prima delle equazioni (4.136) e dell'equazione (4.142) è possibile esprimere in modo alternativo l'equazione (4.150):

$$\begin{cases} \{\dot{v}(t)\}_c \\ \{v(t)\}_c \end{cases} = 2 \sum_{i=1}^{n+1} \Re e \left[\begin{cases} \lambda_i \{w\}_i \\ \{w\}_i \end{cases} z_i(t) \right]$$
(4.151)

La parte inferiore della precedente equazione è la soluzione esplicita dell'equazione (4.133) ricercata:

$$\{v(t)\}_{c} = 2 \sum_{i=1}^{n+1} \Re e[\{w\}_{i} z_{i}(t)]$$
(4.152)

Analogamente, la sostituzione dell'equazione (4.142) e della seconda delle equazioni (4.136) nell'equazione (4.147) fornisce:

$$Q_i(t) = -\{w\}_i^T[M]_c\{r\}_c \ddot{u}_g(t)$$
(4.153)

mentre l'equazione (4.145) in combinazione con le equazioni (4.135) e (4.142) fornisce:

$$A_{i} = \{w\}_{i}^{T} (2\lambda_{i}[M]_{c} + [C]_{c})\{w\}_{i}$$
(4.154)

la quale, in virtù dell'equazione (4.141) può essere così riscritta:

$$A_i = 2(-\xi_i \omega_i + i\omega_{di})M_{ci} + C_{ci}$$

$$(4.155)$$

dove M_{ci} e C_{ci} sono rispettivamente la massa generalizzata e lo smorzamento generalizzato costante così definiti:

$$M_{ci} = \{w\}_i^T [M]_c \{w\}_i$$
(4.156)

$$C_{ci} = \{w\}_i^T [C]_c \{w\}_i \tag{4.157}$$

Inoltre, se C_{ci} è espresso in termini del rapporto di smorzamento e della frequenza naturale dell'*i*-simo modo del sistema

$$C_{ci} = 2\xi_i \omega_i M_{ci} \tag{4.158}$$

allora, A_i si può esprimere nella forma:

$$A_i = 2(-\xi_i \omega_i + i\omega_{di})M_{ci} + 2\xi_i \omega_i M_{ci} = 2i\omega_{di}M_{ci}$$
(4.159)

Dalle equazioni (4.153) e (4.159), $z_i(t)$ può essere così espresso:

$$z_{i}(t) = \frac{1}{A_{i}} \int_{\tau=0}^{t} Q_{i}(\tau) e^{\lambda_{i}(t-\tau)} d\tau = \frac{\Gamma_{ci}}{2i\omega_{di}} \int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{\lambda_{i}(t-\tau)} d\tau \qquad (4.160)$$

dove Γ_{ci} è il fattore di partecipazione complesso così definito:

$$\Gamma_{ci} = \frac{L_{ci}}{M_{ci}} = \frac{\{w\}_i^T [M]_c \{r\}_c}{\{w\}_i^T [M]_c \{w\}_i}$$
(4.161)

In maniera corrispondente, l'equazione (4.152) può essere così riscritta:

$$\{v(t)\}_{c} = -\sum_{i=1}^{n+1} \Re e \left[\frac{1}{\omega_{di}} \{w'\}_{i} \int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{\lambda_{i}(t-\tau)} d\tau \right]$$
(4.162)

dove:

$$\{w'\}_i = i\Gamma_{ci}\{w\}_i \tag{4.163}$$

Tuttavia, se $\{w'\}_i \in \lambda_i$ vengono esplicitati nelle loro parti reali ed immaginarie e se il termine esponenziale viene espresso nelle sue componenti sinusoidali e cosinusoidali, si ottiene:

$$\{v(t)\}_{c} = -\sum_{i=1}^{n+1} \Re e \left\{ \frac{1}{\omega_{di}} (\{u'\}_{i} + i\{v'\}_{i}) \int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{-\xi_{i}\omega_{i}(t-\tau)} [\cos \omega_{di}(t-\tau) + i \sin \omega_{di}(t-\tau)] d\tau \right\}$$

$$= -\sum_{i=1}^{n+1} \left[\frac{1}{\omega_{di}} \{u'\}_{i} \int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{-\xi_{i}\omega_{i}(t-\tau)} \cos \omega_{di}(t-\tau) d\tau - \frac{1}{\omega_{di}} \{v'\}_{i} \int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{-\xi_{i}\omega_{i}(t-\tau)} \sin \omega_{di}(t-\tau) d\tau \right]$$

(4.164)

dove $\{u'\}_i$ e $\{v'\}_i$ rappresentano rispettivamente la parte reale e la parte immaginaria di $\{w'\}_i$. È anche possibile esprimere in modo alternativo i due integrali dell'equazione (4.164):

$$\int_{\tau=0}^{t} \ddot{u}_{g}(\tau) e^{-\xi_{i}\omega_{i}(t-\tau)} \cos \omega_{di}(t-\tau) d\tau = -\dot{x}_{i}(t) - \xi_{i}\omega_{i}x_{i}(t)$$
(4.165)

Capitolo IV

$$\int_{\tau=0}^{t} \ddot{u}_g(\tau) e^{-\xi_i \omega_i(t-\tau)} \sin \omega_{di}(t-\tau) d\tau = -\omega_{di} x_i(t)$$
(4.166)

dove $x_i(t)$ e $\dot{x}_i(t)$ rappresentano rispettivamente lo spostamento relativo e la velocità relativa di risposta del sistema ad un grado di libertà con frequenza naturale ω_i e rapporto di smorzamento ξ_i , al generico tempo t, quando il sistema è soggetto ad una accelerazione al suolo $\ddot{u}_g(t)$. Perciò, l'equazione (4.164) può essere riscritta in termini di questi spostamenti e velocità di risposta relativi:

$$\{v(t)\}_{c} = \sum_{i=1}^{n+1} \left\{ \frac{1}{\omega_{di}} \{u'\}_{i} [\dot{x}_{i}(t) - \xi_{i} \omega_{i} x_{i}(t)] + \{v'\}_{i} x_{i}(t) \right\}$$
(4.167)

oppure

$$\{v(t)\}_{c} = \sum_{i=1}^{n+1} \{v(t)\}_{ci} = \sum_{i=1}^{n+1} [\{a'\}_{i} \dot{x}_{i}(t) - \{b'\}_{i} x_{i}(t)]$$
(4.168)

dove $\{v(t)\}_{ci}$ è il vettore che contiene gli spostamenti dell'*i*-simo modo del sistema, mentre $\{a'\}_i \in \{b'\}_i$ sono così definiti:

$$\{a'\}_{i} = \frac{1}{\omega_{di}} \{u'\}_{i}, \qquad \{b'\}_{i} = \{\nu'\}_{i} - \frac{\xi_{i}}{\sqrt{1 - \xi_{i}^{2}}} \{u'\}_{i}$$
(4.169)

I massimi valori dello spostamento $x_i(t)$ e della velocità $\dot{x}_i(t)$ possono essere determinati dallo spettro di risposta in termini di spostamento ed in termini di velocità dell'accelerazione al suolo $\ddot{u}_g(t)$. Tuttavia, siccome i valori massimi di $x_i(t)$ e $\dot{x}_i(t)$ non si presentano nello stesso istante temporale, il valore massimo dello spostamento modale $\{v(t)\}_{ci}$ non può essere determinato direttamente da questi spettri di risposta. È però possibile ottenere una approssimazione di questi valori massimi utilizzando gli spettri in questione se i termini $x_i(t)$ e $\dot{x}_i(t)$ dell'equazione (4.168) sono combinati secondo il metodo SRSS (*Square Root of the Sum of the Square*). Per quanto detto, il valore massimo dello spostamento di ogni modo del sistema può essere così approssimato:

$$\max\{v(t)\}_{ci} = [\{a'^2\}_i SV_i^2 - \{b'^2\}_i SD_i^2]^{1/2}$$
(4.170)

dove $SV_i = SV(\omega_i, \xi_i)$ e $SD_i = SD(\omega_i, \xi_i)$ sono rispettivamente le ordinate corrispondenti alla frequenza ω_i e al rapporto di smorzamento ξ_i negli spettri

di risposta in termini di velocità ed in termini di spostamento. Ognuna delle singole risposte modali massime può essere di nuovo combinata per mezzo dell'SRSS per ottenere una stima dello spostamento massimo. Ciò detto, questo spostamento massimo viene così calcolato:

$$\max\{v(t)\}_{c} = \left[\sum_{i=1}^{n+1} \max\{v^{2}(t)\}_{ci}\right]^{1/2}$$
(4.171)

Vale la pena di ricordare che l'applicabilità della regola SRSS è limitata ai sistemi con frequenze naturali adeguatamente separate. Sebbene la maggior parte delle strutture isolate alla base possegga frequenze naturali ben separate è importante tenere presente che è necessario utilizzare una regola di combinazione di tipo *double-sum* (più simile ad una semplice somma algebrica) tutte le volte che una struttura isolata abbia invece frequenze naturali vicine fra loro.

L'equazione (4.170) è espressa in termini dello spostamento spettrale e della velocità spettrale e quindi, la sua applicazione richiede la conoscenza degli spettri di risposta della sollecitazione in termini di velocità ed in termini di spostamento. In molti casi, tuttavia, lo spettro di risposta in velocità non è direttamente disponibile. Per superare questo problema, in questi casi è possibile utilizzare formule empiriche (es. Sadek ed altri) per stimare le velocità spettrali in termini delle corrispondenti pseudovelocità. Detto questo, se PSV_i rappresenta la pseudovelocità corrispondente alla velocità spettrale SV_i , si può considerare che:

$$SV_i = r_i PSV_i = r_i \omega_{di} SD_i \tag{4.172}$$

dove:

$$r_i = a_{\nu i} T_i^{b_{\nu i}} \tag{4.173}$$

nella quale:

$$a_{\nu i} = 1,095 + 0,647\xi_i - 0,382\xi_i^2 \tag{4.174}$$

$$T_i^{b_{\nu i}} = 0,193 + 0,838\xi_i - 0,621\xi_i^2 \tag{4.175}$$

In maniera corrispondente, sostituendo l'equazione (4.172) nell'equazione (4.170) e considerando l'equazione (4.169), il vettore degli spostamenti modali massimi può essere così calcolato in via approssimata:

$$\max\{v(t)\}_{ci} = SD_i [r_i^2 \{u'^2\}_i - \{b'^2\}_i]^{1/2}$$
(4.176)

Inoltre, in questi casi è disponibile solo lo spettro di risposta in accelerazione, ma si possono determinare gli spettri necessari dall'equazione che relaziona l'accelerazione spettrale $SA_i = SA(\omega_i, \xi_i)$ allo spostamento spettrale SD_i e alla velocità spettrale SV_i :

$$SA_{i} = \frac{\omega_{di}}{1 - \xi_{i}^{2}} [\omega_{di}^{2} SD_{i}^{2} + 4\xi_{i}^{2} (1 - \xi_{i}^{2}) SV_{i}^{2}]^{1/2}$$
(4.177)

dalla quale, dopo avervi inserito l'equazione (4.172), si ottiene:

$$SA_{i} = \frac{\omega_{di}SD_{i}}{1 - \xi_{i}^{2}}\sqrt{1 + 4r_{i}^{2}\xi_{i}^{2}(1 - \xi_{i}^{2})}$$
(4.178)

Si noti come per piccoli valori del rapporto di smorzamento, l'equazione (4.178) si riduca alla classica relazione $SA_i = \omega_i^2 SD_i$.

Per determinare le accelerazioni nei piani della struttura superiori al sistema di isolamento, si deve notare come nel caso di elevati rapporti di smorzamento, le forze di smorzamento non possano essere considerate trascurabili rispetto alla forze elastiche e così, le accelerazioni di piano non si possono considerare uguali al rapporto fra le forze elastiche e le masse corrispondenti. È invece necessario determinarle direttamente dall'equazione (4.100) ovvero l'equazione del moto. Quindi, nel caso di elevati rapporti di smorzamento, l'accelerazione di piano assoluta è ottenuta dalla relazione:

$$\{\ddot{u}(t)\} = \{\ddot{v}(t)\} + \{r\}_c \ddot{u}_b(t) = -[M]^{-1}([C]\{\dot{v}(t)\} + [K]\{v(t)\})$$
(4.179)

la quale, in termini di risposta modale, si può esprimere così:

$$\{\ddot{u}(t)\} = [M]^{-1} \sum_{i=1}^{n+1} \{F_i(t)\}_i = -[M]^{-1} \sum_{i=1}^{n+1} ([C]\{\dot{v}(t)\}_i + [K]\{v(t)\}_i) \quad (4.180)$$

dove $\{F_I(t)\}_i$ è il vettore delle forze di inerzia modali così definito:

$$\{F_I(t)\}_i = -[C]\{\dot{v}(t)\}_i - [K]\{v(t)\}_i$$
(4.181)

Ma in virtù dell'equazione (4.168), $\{v(t)\}_i$ e la sua derivata prima diventano:

$$\{v(t)\}_i = \{a^*\}_i \dot{x}_i(t) - \{b^*\}_i x_i(t)$$
(4.182)

$$\{ \dot{v}(t) \}_{i} = \{ a^{*} \}_{i} \ddot{x}_{i}(t) - \{ b^{*} \}_{i} \dot{x}_{i}(t)$$

= $\{ a^{*} \}_{i} \ddot{y}_{i}(t) - \{ a^{*} \}_{i} \ddot{u}_{g}(t) - \{ b^{*} \}_{i} \dot{x}_{i}(t)$ (4.183)

dove $\{a^*\}_i \in \{b^*\}_i$ sono formati rispettivamente dagli *n* elementi superiori di $\{a'\}_i \in \{b'\}_i$; $\ddot{y}_i(t) = \ddot{x}_i(t) + \ddot{u}_g(t)$ è la risposta assoluta in termini di accelerazione del sistema ad un grado di libertà con frequenza naturale ω_i e rapporto di smorzamento ξ_i con accelerazione al suolo $\ddot{u}_g(t)$. Inoltre, $\{F_I(t)\}_i$ può anche essere così espressa:

$$\{F_{I}(t)\}_{i} = -[C][\{a^{*}\}_{i}\ddot{y}_{i}(t) - \{a^{*}\}_{i}\ddot{u}_{g}(t) - \{b^{*}\}_{i}\dot{x}_{i}(t)] - [K][\{a^{*}\}_{i}\dot{x}_{i}(t) - \{b^{*}\}_{i}x_{i}(t)]$$

$$(4.184)$$

oppure

$$\{F_{I}(t)\}_{i} = -\{p\}_{i} \ddot{y}_{i}(t) + \{p\}_{i} \ddot{u}_{g}(t) + \{h\}_{i} \dot{x}_{i}(t) + \{q\}_{i} x_{i}(t)$$
(4.185)

dove:

$$\{p\}_i = [C]\{a^*\}_i \tag{4.186}$$

$$\{q\}_i = [K]\{b^*\}_i \tag{4.187}$$

$$\{h\}_i = [C]\{b^*\}_i - [K]\{a^*\}_i \tag{4.188}$$

Una stima del massimo valore di $\{F_I(t)\}_i$ può ora essere ottenuta con la combinazione dei valori massimi di ciascuno dei quattro termini del membro destro dell'equazione (4.185) utilizzando la regola SRSS. Detto questo, il valore massimo di $\{F_I(t)\}_i$ può essere considerato in via approssimata uguale a:

$$\max\{F_{I}(t)\}_{i} = \{\{p^{2}\}_{i}[\max \ddot{y}_{i}(t)] + \{p^{2}\}_{i}[\max \ddot{u}_{g}(t)] + \{h^{2}\}_{i}[\max \dot{x}_{i}(t)] + \{q^{2}\}_{i}[\max x_{i}(t)]\}^{1/2}$$

$$(4.189)$$

oppure a:

$$\max\{F_{I}(t)\}_{i} = [\{p^{2}\}_{i}(SA_{i}^{2} + PGA^{2}) + \{h^{2}\}_{i}SV_{i}^{2} + \{q^{2}\}_{i}SD_{i}^{2}]^{1/2}$$
(4.190)

dato che i valori massimi di x(t), $\dot{x}(t)$ e $\ddot{y}(t)$ sono rispettivamente uguali alle ordinate spettrali SD_i , SV_i e SA_i ed il massimo valore di $\ddot{u}_g(t)$ è il valore di picco dell'accelerazione del suolo *PGA (peak ground acceleration)* ovvero l'accelerazione spettrale a periodo pari a zero. Analogamente, i massimi valori modali ricavati dall'equazione (4.190) possono essere combinati utilizzando la stessa regola, al fine di ottenere una stima dei valori massimi delle forze

Capitolo IV

d'inerzia $\{F_I(t)\}_c$. Dall'equazione (4.180) si otterrà invece una stima delle massime accelerazioni di piano. Procedendo in ordine, si ha:

$$\max\{\ddot{u}(t)\} = [M]^{-1} \left[\sum_{i=1}^{n+1} \max\{F_i(t)\}_i\right]^{1/2}$$
(4.191)

Come le accelerazioni assolute, anche il taglio alla base della struttura non può essere determinato utilizzando solo le forze elastiche, perché nel caso di elevati rapporti di smorzamento, le forze di smorzamento e le forze elastiche possono essere dello stesso ordine di grandezza. Di conseguenza è necessario considerare quanto detto nel caso in cui si abbiano elevati rapporti di smorzamento: il taglio alla base è ottenibile dalla somma del taglio alla base generato dalle forze elastiche e del taglio alla base generato dalle forze di smorzamento. In accordo con quanto appena detto, il taglio modale alla base, al generico istante t, risulta essere:

$$V_{i}(t) = \{r\}^{T}[C]\{\dot{v}(t)\}_{i} + \{r\}^{T}[K]\{v(t)\}_{i}$$

= $\{r\}^{T}([C]\{\dot{v}(t)\}_{i} + [K]\{v(t)\}_{i})$ (4.192)

dove $\{r\}$ è il vettore di influenza già definito al paragrafo 4.3.3. Ma in virtù dell'equazione (4.181), l'equazione (4.192) può essere altresì espressa così:

$$V_i(t) = -\{r\}^T \{F_I(t)\}_i$$
(4.193)

e quindi, il massimo valore di questo taglio modale alla base può essere calcolato con la seguente espressione:

$$\max V_i(t) = -\{r\}^T \max\{F_I(t)\}_i$$
(4.194)

dove $\max\{F_I(t)\}_i$ è dato dall'equazione (4.190). Analogamente, il massimo taglio alla base può essere approssimato come segue:

$$\max V(t) = \left[\sum_{i=1}^{n+1} \max V_i(t)\right]^{1/2}$$
(4.195)

Di conseguenza, il coefficiente di taglio alla base definito ancora una volta rispetto al peso della struttura, può essere così determinato:

$$C_s = \frac{\max V(t)}{W_s} \tag{4.196}$$

dove, come definito in precedenza, W_s è il peso totale della struttura fissata alla base.

4.3.5 Modello lineare equivalente

Come visto precedentemente, molti dei dispositivi di isolamento sismico sono caratterizzati da legami fortemente non lineari e da una dissipazione isteretica di energia. Inoltre, un'adeguata analisi di strutture isolate per mezzo di questo tipo di isolatori richiede l'utilizzo di metodi di analisi *step-by-step* non lineari. Tuttavia, per la finalità di un progetto preliminare è conveniente linearizzare il suddetto legame non lineare attraverso l'uso di una rigidezza lineare equivalente e di un rapporto di smorzamento equivalente in modo che questa linearizzazione permetta di applicare uno dei metodi di analisi lineare precedentemente descritti. Una rigidezza equivalente ed un rapporto di smorzamento equivalente per un sistema di isolamento non lineare con dissipazione isteretica dell'energia, può essere determinato come mostrato in seguito.

• Rigidezza efficace

Isolatori sismici altamente non lineari, come quelli in gomma con perno in piombo, presentano un legame forza-deformazione che può essere modellato come bilineare (Figura 4.5). Di conseguenza, la rigidezza efficace di questi isolatori, può essere assunta pari alla rigidezza secante ottenuta congiungendo gli estremi positivo e negativo della deformazione sulla curva specifica forzadeformazione (Figura 4.23). Detto questo, la rigidezza efficace è esprimibile con la seguente espressione:

$$K_{eff} = \frac{K_i u_y + K_p (u_{\max} - u_y)}{u_{\max}} = (K_i - K_p) \frac{u_y}{u_{\max}} + K_p$$
(4.197)

dove K_i , K_p , u_y e u_{max} rappresentano rispettivamente la rigidezza iniziale dell'isolatore, la rigidezza dopo lo snervamento, la deformazione all'atto dello snervamento e la massima deformazione dell'isolatore lungo tutti i cicli di deformazione.

Per scopi progettuali è consuetudine assumere u_{max} di egual valore della massima deformazione attesa dell'isolatore scelto provocata dal sisma di progetto.

• Rapporto di smorzamento efficace

Analogamente, il rapporto di smorzamento equivalente può essere ottenuto dalla seguente espressione:

dove il rapportoè il fattore di perdita specifico (specific loss factor), diseguito indicato con.

Sfruttando il concetto di fattore di perdita, in accordo con l'equazione (4.198), il rapporto di smorzamento equivalente voluto è il seguente:

— (4.199)

dove è il fattore di perdita sopra menzionato, in genere determinato sperimentalmente da test sulle libere oscillazioni. L'area del ciclo di isteresi e quindi l'energia dissipata per ogni ciclo nel caso del legame bilineare forzadeformazione mostrato in Figura 4.23 è uguale a:

(4.200)

dove il lavoro di deformazione del sistema lineare equivalente è pari a

Figura 4.23 – Curva forza-deformazione bilineare e rigidezza efficace.

Benché utile per il progetto preliminare è importante ricordare che un'analisi basata su una linearizzazione equivalente non è sempre un'ottima approssimazione. Il motivo è che la rigidezza equivalente e il rapporto di smorzamento equivalente variano notevolmente con le caratteristiche specifiche e con l'intensità della sollecitazione, così come con le caratteristiche della sovrastruttura e del sistema di isolamento. Inoltre, la sostituzione di dissipatori isteretici di energia con smorzatori viscosi equivalenti comporta diverse approssimazioni che possono risultare scorrette nella pratica. Per esempio, il concetto di rapporto di smorzamento equivalente è basato su cicli di deformazione periodici completi, mentre una sollecitazione sismica irregolare provoca molti brevi cicli di deformazione, con piccole dissipazioni di energia. Questo significa che un rapporto di smorzamento equivalente può sovrastimare la dissipazione istantanea di energia durante un sisma. Un altro problema della linearizzazione equivalente è la non possibilità di valutare gli effetti dei modi ad alta frequenza e i conseguenti incrementi delle accelerazioni di piano dovuti al legame non lineare degli isolatori; è quindi necessaria una vera e propria analisi non lineare per questo scopo.

Capitolo IV

CAPITOLO V

Analisi della struttura isolata alla base e considerazioni finali

5.1 Modello D: isolatore ALGASISM HDRB HDH D 300 B350 Z 265

In questo modello nel quale si è introdotto l'isolamento sismico alla base della sovrastruttura, sono stati impiegati isolatori di tipo HDRB (*High-Damping Rubber Bearings*) a mescola dura. Il modello preciso ha la seguente denominazione: ALGASISM HDRB HDH D 300 B 350 Z 265 di fabbricazione italiana. Nei paragrafi successivi saranno riportati i dati tecnici di questo isolatore, l'illustrazione del modello e le analisi modale e dinamica lineare con spettro di risposta.

5.1.1 Isolatore HDRB ALGASISM HDH D 300 B350 Z 265

Come già anticipato questo dispositiva è costituito da una mescola di gomma dura che fornisce uno smorzamento viscoso equivalente del 16%, superiore a quelle delle mescole normali e morbide (che è attorno al 10%). In Figura 5.1 si riporta la tabelle delle caratteristiche fisico-meccaniche degli isolatori in gomma ALGA.

Caratteristiche fisico-meccaniche delle mescole Rubber compound phisical-mechanical characteristic		Mescola / Compound			
		Normale nd / Normal nd	Morbida / Soft	Normale / <i>Normal</i>	Dura / Hard
Durezza / Hardness	Shore A3	50±3	40±3	60±3	75±3
Resistenza a rottura / Tensile strength	N/mm ²	20	20	20	18
Allungamento a rottura / Tensile strain	%	600	750	600	500
Modulo di elasticità G / G Modulus	N/mm ²	0,9	0,4	0,8	1,4
Smorzamento viscoso equivalente del solo elastomero/ Viscous damping of the rubber	%	4	10	10	16
Smorzamento viscoso equivalente dell'intero isolatore / Equivalent viscous damping	%	20%-40%	20%-40% (LRS) 10% (HDS)	10	16
Isolatore corrispondente / Corresponding Isolator		LRN	LRS / HDS	HDN	HDH

Figura 5.1 – Caratteristiche fisico-meccaniche degli isolatori in gomma ALGA.

Nell'immagine seguente (Figura 5.2) si riporta invece un tipico diagramma di isteresi per gli isolatori di tipo HDRB:

Figura 5.2 – Diagramma di isteresi di un isolatore HDRB.

Si riporta infine l'estratto della scheda tecnica di questo isolatore:

Figura 5.3 – Dati tecnici degli isolatori ALGASISM.

Si procederà quindi alla modellazione di questo isolatore in accordo con quanto descritto al §4.3.5 linearizzando il ciclo di isteresi. Valutando quindi le caratteristiche della gomma che costituisce questo dispositivo, la sua deformazione massima e altri dati tecnici, si definisce la seguente rigidezza efficace:

$$K_{eff} = 20,6 \ kN/cm$$
 (5.1)

Definito questo parametro è possibile sostituire con elementi di tipo *spring-damper* gli incastri in testa ai pilastri di base della sovrastruttura, agendo quindi sul Modello C isolandolo. Segue quindi l'analisi modale della sovrastruttura isolata con ALGASISM HDRB (Modello D).

5.1.2 Modello D (isolamento HDRB ALGASISM): analisi modale

Si riporta il *log file* relativo all'analisi modale del Modello D:

```
Solution commenced on 01/12/2010 at 13:43:51
Straus7 [2.3.3] [Solver Build 23040715]
NATURAL FREQUENCY SOLVER - For Intel P2-P4 CPU
Computer Name: TOGNINELLI (CPU - Intel P2/P3)
User Logon Name: Gianluca
Usable Physical Memory: 1024 MB
Usable Virtual Memory: 2048 MB
SOLVER UNITS:
Length: cm
Mass : kg
Force : kqf
Stress: kg/cm^2
TOTALS:
Nodes : 1297
Beams : 1131
Plate : 328
Bricks :
           0
Links : 110
FREEDOM CASE: "Freedom Case 1"
MASS MATRIX OPTION:
Beam elements : Lumped
Plate elements : Lumped
Global Matrix : Full (for off-diagonal terms)
Non-struc masses: Included
                  - "Pesi propri"
                  - "Permanenti"
                  - "Accidentali"
                  - "Carico neve"
```

- "Tamponamenti" - "Spinta del terreno" STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 6534 MATRIX FILL-IN RATIO : 46.8 % [K] MATRIX SIZE : 1.4 MB : 755.4 KB [M] MATRIX SIZE OPTIMUM RAM NEEDED : 625.0 KB FREE SCRATCH SPACE : 23957.5 MB Maximum and minimum pivots: 1.1994E+13(Node 95 RY), 1.8025E+04(Node 807 DZ). Nodal displacement components used in starting vector: 655[RY] 654[RY] 656[RY] 657[RY] 369[DY] 852[DY] 283[DY] 671[DY] 670[DY] 353[DY] 1079[DY] 1078[DY] 1080[DY] 1082[DY] 1081[DY] 1083[DY] 1085[DY] 1084[DY] ITERATION 1 Current Frequencies (Hz) 1.85418E+00 3.01787E+01 3.36371E+01 3.73273E+01 3.91177E+01 4.00920E+01 4.08733E+01 5.01328E+01 6.39810E+01 6.51836E+01 7.18269E+01 8.80625E+01 1.03074E+02 1.03524E+02 1.04213E+02 1.17384E+02 1.26194E+02 1.37827E+02 1.69507E+02 ITERATION 2 Current Frequencies (Hz) 1.71958E+00 1.91063E+00 2.11294E+00 1.19818E+01 1.94966E+01 2.02802E+01 2.26177E+01 2.37349E+01 3.36323E+01 3.80677E+01 3.82685E+01 3.95487E+01 4.23974E+01 4.40287E+01 6.00614E+01 6.39430E+01 8.74209E+01 1.03078E+02 1.04213E+02 Relative Difference 7.82727E-02 1.47951E+01 1.49195E+01 2.11533E+00 1.00638E+00 9.76908E-01 8.07137E-01 1.11220E+00 9.02366E-01 7.12306E-01 8.76921E-01 1.22669E+00 1.43114E+00 1.35129E+00 7.35112E-01 8.35763E-01 4.43527E-01 3.37109E-01 6.26543E-01 ITERATION 3 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.62907E+00 1.29181E+01 1.33485E+01 1.53755E+01 1.71363E+01 1.78946E+01 1.85821E+01 1.90682E+01 3.21744E+01 3.33502E+01 3.39101E+01 3.90545E+01 3.96135E+01 4.02374E+01 6.73302E+01 1.03619E+02 Relative Difference 4.36948E-03 1.08421E-02 1.66683E-02 3.88542E-01 5.09248E-01 5.19284E-01 4.71020E-01 3.85063E-01 8.79472E-01 1.04863E+00 1.00692E+00 2.29199E-01 2.71280E-01 2.98396E-01 5.37888E-01 6.14172E-01 1.17263E+00 5.30938E-01 5.73556E-03 ITERATION 4 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58428E+00 1.18730E+01 1.24970E+01 1.40868E+01 1.42937E+01 1.48518E+01 1.49149E+01 1.66868E+01 1.82380E+01 1.87468E+01 2.40818E+01 3.35863E+01 3.36728E+01 3.94049E+01 6.28644E+01

```
6.41764E+01
Relative Difference
1.27920E-07 1.22764E-06 7.70539E-07 5.21770E-03 8.80272E-02 6.81398E-02
 9.14822E-02 1.98870E-01 2.04873E-01 2.45878E-01 1.42714E-01 7.64142E-01
7.78983E-01 4.08120E-01 1.62810E-01 1.76423E-01 2.11255E-02 7.10399E-02
 6.14594E-01
ITERATION 5
Current Frequencies (Hz)
1.71210E+00 1.89014E+00 2.07830E+00 8.58258E+00 1.16549E+01 1.24421E+01
1.29931E+01 1.33626E+01 1.39901E+01 1.47440E+01 1.60965E+01 1.67606E+01
1.69029E+01 1.83582E+01 1.94432E+01 2.44335E+01 3.35385E+01 3.93758E+01
 4.07272E+01
Relative Difference
1.04373E-11 1.20164E-10 1.55508E-10 1.97921E-04 1.87111E-02 4.41009E-03
 8.41764E-02 6.96796E-02 6.15965E-02 1.15850E-02 3.66691E-02 8.81456E-02
1.09086E-01 3.11773E-01 7.27409E-01 3.78145E-01 1.74917E-01 5.96522E-01
5.75763E-01
ITERATION 6
Current Frequencies (Hz)
1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16421E+01 1.24329E+01
1.26759E+01 1.31785E+01 1.37117E+01 1.46891E+01 1.54571E+01 1.59851E+01
1.65120E+01 1.72274E+01 1.82059E+01 1.93508E+01 2.13649E+01 3.25227E+01
3.91579E+01
Relative Difference
1.29691E-16 2.81941E-15 1.85901E-14 8.34274E-06 1.10191E-03 7.35326E-04
 2.50264E-02 1.39719E-02 2.03064E-02 3.74270E-03 4.13702E-02 4.85109E-02
 2.36746E-02 6.56382E-02 6.79593E-02 2.62660E-01 5.69793E-01 2.10717E-01
 4.00777E-02
ITERATION 7
Current Frequencies (Hz)
1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16399E+01 1.24283E+01
1.25149E+01 1.31371E+01 1.35993E+01 1.46651E+01 1.50653E+01 1.58749E+01
1.62116E+01 1.64543E+01 1.74314E+01 1.78259E+01 1.90226E+01 2.66949E+01
 3.83655E+01
Relative Difference
9.07839E-16 1.76213E-15 8.54717E-16 3.37842E-07 1.86844E-04 3.75719E-04
1.28637E-02 3.15085E-03 8.25939E-03 1.63298E-03 2.60052E-02 6.94404E-03
1.85315E-02 4.69847E-02 4.44315E-02 8.55407E-02 1.23133E-01 2.18311E-01
 2.06521E-02
ITERATION 8
Current Frequencies (Hz)
 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24236E+01
1.24757E+01 1.31234E+01 1.35587E+01 1.46512E+01 1.48391E+01 1.57338E+01
1.58797E+01 1.62678E+01 1.69702E+01 1.75886E+01 1.87869E+01 2.11959E+01
 3.28759E+01
Relative Difference
 1.81568E-15 1.05728E-15 4.27358E-16 1.53525E-08 3.23701E-05 3.76562E-04
 3.13940E-03 1.04733E-03 2.99930E-03 9.48570E-04 1.52442E-02 8.97065E-03
 2.08986E-02 1.14650E-02 2.71765E-02 1.34946E-02 1.25449E-02 2.59439E-01
1.66982E-01
ITERATION 9
Current Frequencies (Hz)
```

```
1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24230E+01 1.24729E+01 1.31211E+01 1.35528E+01 1.46459E+01 1.47976E+01 1.56160E+01
```

Capitolo V

1.58549E+01 1.61802E+01 1.68519E+01 1.74867E+01 1.86698E+01 1.97753E+01 2.52510E+01 Relative Difference 2.59383E-16 7.04852E-16 6.41038E-16 4.03408E-10 2.41446E-06 5.19016E-05 2.29794E-04 1.74279E-04 4.30841E-04 3.66742E-04 2.80640E-03 7.53810E-03 1.56432E-03 5.41667E-03 7.02073E-03 5.82916E-03 6.27107E-03 7.18351E-02 3 01961E-01 **ITERATION** 10 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31208E+01 1.35522E+01 1.46448E+01 1.47936E+01 1.55706E+01 1.58510E+01 1.61256E+01 1.68158E+01 1.74288E+01 1.85956E+01 1.92967E+01 2.10323E+01 Relative Difference 1.16722E-15 7.04852E-16 1.06840E-15 1.24276E-11 2.12673E-07 2.83670E-06 1.33228E-05 2.59294E-05 4.74380E-05 7.06551E-05 2.69546E-04 2.92182E-03 2.44649E-04 3.38647E-03 2.14663E-03 3.31854E-03 3.99087E-03 2.48054E-02 2.00582E-01 ITERATION 11 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35521E+01 1.46445E+01 1.47929E+01 1.55504E+01 1.58498E+01 1.60957E+01 1.67992E+01 1.73960E+01 1.85217E+01 1.90413E+01 2.52384E+01 Relative Difference 1.29691E-15 1.64465E-15 8.54717E-16 5.03361E-13 2.72484E-08 3.21746E-07 1.72426E-06 5.28942E-06 8.81406E-06 2.15793E-05 4.69187E-05 1.29548E-03 7.82961E-05 1.85865E-03 9.87580E-04 1.88724E-03 3.98898E-03 1.34109E-02 1.66655E-01 ITERATION 12 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46444E+01 1.47927E+01 1.55402E+01 1.58493E+01 1.60783E+01 1.67904E+01 1.73724E+01 1.84430E+01 1.88637E+01 2.92775E+01 Relative Difference 1.29691E-16 2.34951E-16 6.41038E-16 2.23532E-14 4.04057E-09 5.46397E-08 3.21570E-07 1.18882E-06 2.02004E-06 8.02995E-06 1.30862E-05 6.58173E-04 3.23638E-05 1.08159E-03 5.25017E-04 1.35730E-03 4.27162E-03 9.41700E-03 1.37960E-01 ITERATION 13 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55346E+01 1.58490E+01 1.60674E+01 1.67855E+01 1.73529E+01 1.83497E+01 1.87358E+01 2.29042E+01 Relative Difference 1.29691E-15 9.39803E-16 2.13679E-16 4.13948E-16 6.44963E-10 1.04330E-08 6.73189E-08 2.87154E-07 4.91785E-07 3.24606E-06 4.25114E-06 3.58691E-04 1.52824E-05 6.75529E-04 2.93354E-04 1.12148E-03 5.08278E-03 6.82273E-03 2.78259E-01 ITERATION 14 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01

1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55317E+01 1.58489E+01 1.60608E+01 1.67828E+01 1.73373E+01 1.82581E+01 1.86577E+01 2.55563E+01 Relative Difference 1.29691E-16 7.04852E-16 4.27358E-16 2.06974E-16 1.03958E-10 2.03081E-09 1.46399E-08 7.25445E-08 1.24110E-07 1.37483E-06 1.47659E-06 1.87695E-04 7.47002E-06 4.09784E-04 1.61296E-04 9.03215E-04 5.01866E-03 4.19012E-03 1.03774E-01 ITERATION 15 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55302E+01 1.58488E+01 1.60569E+01 1.67812E+01 1.73248E+01 1.81810E+01 1.86078E+01 2.74848E+01 Relative Difference 2.59383E-16 3.52426E-16 0.00000E+00 2.06974E-16 1.65167E-11 3.99004E-10 3.21821E-09 1.88265E-08 3.23937E-08 6.01076E-07 5.38715E-07 9.81204E-05 3.83203E-06 2.43541E-04 9.01645E-05 7.18973E-04 4.23775E-03 2.68195E-03 7.01666E-02 ITERATION 16 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55293E+01 1.58488E+01 1.60546E+01 1.67803E+01 1.73147E+01 1.81159E+01 1.85706E+01 2.04186E+01 Relative Difference 5.18765E-16 3.52426E-16 4.27358E-16 1.24184E-15 2.64161E-12 7.92271E-11 7.11103E-10 5.00130E-09 8.77777E-09 2.69043E-07 2.08840E-07 5.42933E-05 2.19449E-06 1.45870E-04 5.39349E-05 5.82727E-04 3.59376E-03 2.00034E-03 3.46068E-01 ITERATION 17 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55289E+01 1.58488E+01 1.60532E+01 1.67798E+01 1.73066E+01 1.80620E+01 1.85409E+01 2.30198E+01 Relative Difference 3.89074E-16 5.87377E-16 8.54717E-16 1.03487E-15 4.28847E-13 1.57155E-11 1.57169E-10 1.33468E-09 2.32868E-09 1.17358E-07 8.15922E-08 2.71539E-05 1.16469E-06 8.54131E-05 3.29903E-05 4.70901E-04 2.98444E-03 1.60451E-03 1.12997E-01 ITERATION 18 Current Frequencies (Hz) 1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55287E+01 1.58488E+01 1.60524E+01 1.67794E+01 1.73001E+01 1.80176E+01 1.85131E+01 2.00787E+01 Relative Difference 5.18765E-16 3.52426E-16 6.41038E-16 1.03487E-15 6.79135E-14 3.09388E-12 3.51397E-11 3.65855E-10 6.46027E-10 5.30765E-08 3.32588E-08 1.40964E-05 6.65552E-07 4.92882E-05 2.24881E-05 3.77857E-04 2.46721E-03 1.50083E-03 1.46475E-01

ITERATION 19 Current Frequencies (Hz)

1.71210E+00 1.89014E+00 2.07830E+00 8.58251E+00 1.16395E+01 1.24229E+01 1.24727E+01 1.31207E+01 1.35520E+01 1.46443E+01 1.47926E+01 1.55286E+01 1.58488E+01 1.60520E+01 1.67791E+01 1.72949E+01 1.79806E+01 1.84733E+01 1.91160E+01 Relative Difference 9.07839E-16 2.34951E-16 2.13679E-16 6.20922E-16 1.19039E-14 6.02562E-13 7.76175E-12 9.93208E-11 1.80203E-10 2.33896E-08 1.34446E-08 7.20653E-06 3.82784E-07 2.81245E-05 1.57742E-05 3.00514E-04 2.05366E-03 2.15166E-03 5.03623E-02

```
FINAL FREQUENCY RESULTS
           Eigenvalue
Mode
```

iode	Eigenvalue	Frequency	Frequency
		(rad/s)	(Hertz)
1	1.15722697E+02	1.07574484E+01	1.71210109E+00
2	1.41041441E+02	1.18760869E+01	1.89013794E+00
3	1.70520181E+02	1.30583376E+01	2.07829898E+00
4	2.90795692E+03	5.39254756E+01	8.58250600E+00
5	5.34844324E+03	7.31330516E+01	1.16394867E+01
6	6.09265326E+03	7.80554499E+01	1.24229107E+01
7	6.14155203E+03	7.83680549E+01	1.24726633E+01
8	6.79628018E+03	8.24395547E+01	1.31206626E+01
9	7.25050255E+03	8.51498828E+01	1.35520248E+01
10	8.46636495E+03	9.20128521E+01	1.46443002E+01
11	8.63869585E+03	9.29445848E+01	1.47925901E+01
12	9.51968762E+03	9.75688865E+01	1.55285706E+01
13	9.91633963E+03	9.95808196E+01	1.58487797E+01

Total CPU time: 3.656 Seconds (0:00:04)

```
Solution completed on 01/12/2010 at 13:43:55
Solution time: 4 Seconds
```

```
SUMMARY OF WARNING AND ERROR MESSAGES
Number of Warnings: 0
Number of Errors
                 : 0
```

Si riportano di seguito, corredati di immagini, i primi e più significativi modi di vibrare con le relative frequenze naturali ed i loro inversi (ovvero i periodi naturali):

• Modo 1 (Modello D)

È un modo di tipo torsionale che sottolinea ancora una volta la preferenza della struttura nei confronti di questo tipo di oscillazione.

Questo modo è caratterizzato dai seguenti parametri:

$$f_1 = 1,71 \, Hz$$
 (5.2)

$$T_1 = 0,585 s \tag{5.3}$$

Figura 5.4 – Modello D (Straus7) – Analisi modale: modo 1.

• Modo 2 (Modello D)

È un modo di tipo traslazionale in ambedue le direzioni (X e Z) con una prevalenza nella direzione Z.

Figura 5.5 – Modello D (Straus7) – Analisi modale: modo 2.

Questo modo è caratterizzato dai seguenti parametri:

$$f_2 = 1,89 \, Hz$$
 (5.4)

$$T_2 = 0,529 \, s \tag{5.5}$$

• Modo 3 (Modello D)

Si ripresenta nuovamente un modo con prevalenza torsionale.

Figura 5.6 – Modello D (Straus7) – Analisi modale: modo 3.

Questo modo è caratterizzato dai seguenti parametri:

$$f_3 = 2,08 \, Hz$$
 (5.6)

$$T_3 = 0,481 \, s \tag{5.7}$$

• Modo 4 (Modello D)

Il modo 4 è di tipo torsionale di ordine superiore, con i piani che oscillano in controfase.

Figura 5.7 – Modello D (Straus7) – Analisi modale: modo 4.

Questo modo è caratterizzato dai seguenti parametri:

$$f_4 = 8,58 \ Hz \tag{5.8}$$

$$T_4 = 0,118 s \tag{5.9}$$

• Modo 5 (Modello D)

È un modo di ordine superiore di tipo traslazionale con prevalenza del movimento in direzione Z.

Figura 5.8 – Modello D (Straus7) – Analisi modale: modo 5.

Questo modo è caratterizzato dai seguenti parametri:

$$f_5 = 11,64 \, Hz \tag{5.10}$$

$$T_5 = 0,086 s \tag{5.11}$$

Nella seguente tabella sono messi a confronto i primi modi di vibrare del Modello C (sovrastruttura fissa) e del Modello D (struttura isolata con HDRB):

	Modello C		Modello D		
	Periodo [s]	Descrizione	Periodo [s]	Descrizione	
Modo 1	0,276	torsionale	0,585	torsionale	
Modo 2	0,266	traslazionale Z	0,529	traslazionale Z-X	
Modo 3	0,223	traslazionale X	0,481	torsionale	
Modo 4	0,099	torsionale composto	0,118	torsionale composto	
Modo 5	-	modo locale	0,086	trasl. Z composto	

Tabella 5.1 – Confronto fra i primi modi di vibrare dei Modelli C e D.

5.1.3 Modello D (HDRB ALGASISM): analisi dinamica lineare

Dato che lo smorzamento della struttura ora dipende dal sistema di isolamento introdotto è possibile ricalcolare il coefficiente di riduzione dello spettro di risposta elastico nel seguente modo:

$$\eta = \sqrt{\frac{10}{(5+\xi)}} = \sqrt{\frac{10}{(5+16)}} = 0,69$$
(5.12)

Si riporta il *log file* relativo all'analisi dinamica lineare con spettro di risposta (*Spectral Response*) del Modello D:

```
Solution commenced on 01/12/2010 at 13:44:22
Straus7 [2.3.3] [Solver Build 23040715]
SPECTRAL RESPONSE SOLVER - For Intel P2-P4 CPU
Computer Name: TOGNINELLI (CPU - Intel P2/P3)
User Logon Name: Gianluca
Usable Physical Memory: 1024 MB
Usable Virtual Memory: 2048 MB
SOLVER UNITS:
Length: cm
Mass : kg
Force : kgf
Stress: kg/cm^2
TOTALS:
Nodes : 1297
Beams : 1131
Plate : 328
Bricks :
          0
Links : 110
FREEDOM CASE: "Freedom Case 1"
SPECTRUM TYPE : Response
EXCITATION : Seismic Acceleration
NUMBER OF CASES: 3
RESULTS SIGN : Absolute
RAYLEIGH DAMPING INPUT DATA
Frequency 1: 4.04479E+00 Hz Damping Ratio 1: 1.00000E+00 %
Frequency 2: 4.30969E+00 Hz Damping Ratio 2: 1.00000E+00 %
DAMPING COEFFICIENTS
Alpha = 2.62200E-01
Beta = 3.81005E-04
```
STORAGE SCHEME: Sparse SORTING METHOD: AMD NUMBER OF EQUATIONS : 6534 [M] MATRIX SIZE : 755.4 KB FREE SCRATCH SPACE : 23956.5 MB MODAL DATA Mode Frequency Damping Ratio 1 1.712101E+00 1.423622E-02 2 1.890138E+00 1.330141E-02 3 2.078299E+00 1.252720E-02 4 8.582506E+00 1.270407E-02 5 1.163949E+01 1.572465E-02 6 1.242291E+01 1.654933E-02 7 1.247266E+01 1.660219E-02 8 1.312066E+01 1.729520E-02 9 1.355202E+01 1.776091E-02 10 1.464430E+01 1.895348E-02 11 1.479259E+01 1.911670E-02 12 1.552857E+01 1.993078E-02 13 1.584878E+01 2.028692E-02 EXCITATION CASE 1: "Sisma orizzontale X" Direction Vector: (1.000000E+00, 0.000000E+00, 3.000000E-01) Spectral Table : Spettro di risposta SLV orizzontale EXCITATION FACTORS FOR CASE 1: "Sisma orizzontale X" Mode Spectral Value Excitation Amplitude Participation(%) 1 1.930339E+02 1.378062E+01 2.298709E+01 40.735 2 2.134109E+02 6.773338E+00 1.024879E+01 9.841 2.34485/E+021.454635E+012.000298E+012.407439E+027.887198E-016.529653E-022.381831E+024.132120E-011.840164E-022.377298E+022.750785E-021.073331E-032.377029E+022.552836E-019.880505E-032.373715E+025.590036E-011.952414E-022.371685E+021.921230E-016.284466E-032.367080E+021.048487E-012.931425E-032.366507E+024.305140E-011.179261E-02 2.344857E+02 1.454635E+01 2.000298E+01 45.387 3 4 0.133 0.037 5 0.000 6 7 0.014 0.067 8 0.008 9 0.002 10 11 2.366507E+02 4.305140E-01 1.179361E-02 0.040 12 2.363826E+02 1.025083E-02 2.545374E-04 0.000 2.362737E+02 2.219692E-01 5.288795E-03 13 0.011 _____ TOTAL MASS PARTICIPATION: 96.275%

EXCITATION CASE 2: "Sisma orizzontale Z" Direction Vector: (3.000000E-01, 0.000000E+00, 1.000000E+00) Spectral Table : Spettro di risposta SLV orizzontale

EXCIT	ATION FACTORS FO	OR CASE 2: "Si	sma orizzontal	e Z"
Mode	Spectral Value	Excitation	Amplitude	Participation(%)
1	1.930339E+02	1.282915E+01	2.139996E+01	35.304
2	2.134109E+02	1.289905E+01	1.951765E+01	35.690
3	2.344857E+02	1.077367E+01	1.481509E+01	24.897
4	2.407439E+02	2.744582E-01	2.272184E-02	0.016
5	2.381831E+02	1.242675E+00	5.534027E-02	0.331
6	2.377298E+02	7.873928E-02	3.072335E-03	0.001
7	2.377029E+02	3.331931E-01	1.289592E-02	0.024
8	2.373715E+02	2.492432E-02	8.705240E-04	0.000
9	2.371685E+02	6.721128E-02	2.198524E-03	0.001
10	2.367080E+02	1.644426E-02	4.597589E-04	0.000
11	2.366507E+02	2.289357E-01	6.271524E-03	0.011
12	2.363826E+02	2.754348E-02	6.839297E-04	0.000
13	2.362737E+02	5.795160E-02	1.380796E-03	0.001
TOTAL	MASS PARTICIPATI	ON:		96.277%
EXCIT	CATION CASE 3: "S	Sisma vertical	е"	
Direc	tion Vector: (O	.000000E+00,	1.000000E+00,	0.00000E+00)
Spect	ral Table : Sp	pettro di risp	osta SLV verti	cale
EXCIT	ATION FACTORS FO	DR CASE 3: "Si	sma verticale'	
Mode	Spectral Value	Excitation	Amplitude	Participation(%)
1	2.034340E+01	1.353558E-02	2.379479E-03	0.000
2	2.245123E+01	1.515420E-03	2.412273E-04	0.000
3	2.470700E+01	6.252610E-03	9.059527E-04	0.000
4	7.914653E+01	7.646723E-02	2.081226E-03	0.001
5	7.914653E+01	7.144236E-01	1.057208E-02	0.119
6	7.914653E+01	4.473813E+00	5.811701E-02	4.680
7	7.914653E+01	2.297322E+00	2.960572E-02	1.234
8	7.914653E+01	1.895530E+00	2.207452E-02	0.840
9	7.914653E+01	1.747440E+00	1.907507E-02	0.714
10	7.914653E+01	1.644203E+00	1.537058E-02	0.632
11	7.914653E+01	1.207542E+00	1.106333E-02	0.341
12	7.914653E+01	8.434852E-01	7.012723E-03	0.166
13	7.914653E+01	4.991366E-01	3.983822E-03	0.058
TOTAL	MASS PARTICIPATI	ON:		8.786%
Total	. CPU time: 8.188	3 Seconds (0:	00:08)	
Solut Solut	ion completed or ion time: 8 Seco	n 01/12/2010 a onds	t 13:44:30	
SUMMA Numbe Numbe	RY OF WARNING AN er of Warnings: (er of Errors : (ND ERROR MESSA))	GES	

È superato con successo il limite di legge per la massa partecipante fornita dai diversi modi. Si ottengono i seguenti dati:

- massa partecipante all'azione sismica orizzontale in direzione X: 96,3%
- massa partecipante all'azione sismica orizzontale in direzione Z: 96,3%

Più specificatamente è possibile vedere anche il contributo dei singoli modi di vibrare alla risposta spettrale e come siano i primi tre i più rilevanti.

Nelle immagini seguenti è mostrata la configurazione deformata data dalle azioni sismiche nelle tre direzioni:

Figura 5.9 – Modello D (Straus7) – Analisi spettrale: sisma CQC direzione X.

Figura 5.10 – Modello D (Straus7) – Analisi spettrale: sisma CQC direzione Z.

Alfine di confrontare i Modelli C e D, si riportano degli elementi verificati allo stato limite di salvaguardia della vita (SLV) per il Modello C:

- (e.1) *Beam 283*: trave soggetta a momento statico positivo massimo;
- (e.2) *Beam 318*: trave soggetta a momento statico negativo massimo;
- (e.3) *Beam 30*: pilastro soggetto a sforzo normale statico massimo;
- (e.4) Beam 566: pilastro soggetto a momento flettente statico massimo.

Si procede quindi al confronto delle azioni in combinazione sismica fra il Modello D ed il Modello C e alla eventuale verifica degli elementi che dovessero registrare un incremento delle sollecitazioni.

5.1.4 Elemento (e.1) – Trave 30x60

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 60 centimetri. In Figura 3.29 è illustrata la sezione completa delle armature longitudinali ed a taglio.

Si riportano le sollecitazioni di progetto dell'elemento Beam 283:

	MODELLO D	MODELLO C
Sollecitazione	Momento flettente	Momento flettente
Statica	$M = 41,54 \ kN \cdot m$	$M = 41,54 \ kN \cdot m$
Sismica (dir. X)	$ M = 0,13 \ kN \cdot m$	$ M = 69,07 \ kN \cdot m$
Sismica (dir. Z)	$ M = 0,14 \ kN \cdot m$	$ M = 33,00 \ kN \cdot m$
SLV – direzione X	$M_{Sd}^X = 41,67 \ kN \cdot m$	$M_{Sd}^X = 110,61 \ kN \cdot m$
SLV – direzione Z	$M_{Sd}^Z = 41,68 \ kN \cdot m$	$M_{Sd}^Z = 74,54 \ kN \cdot m$
Sollecitazione	Taglio	Taglio
Statica	$T = 34,98 \ kN$	$T = 34,98 \ kN$
Sismica (dir. X)	$ T = 0,52 \ kN$	$ T = 50,71 \ kN$
Sismica (dir. Z)	$ T = 0,48 \ kN$	$ T = 26,29 \ kN$
SLV – direzione X	$T_{Sd}^X = 35,50 \ kN$	$T_{Sd}^X = 85,69 \ kN$
SLV – direzione Z	$T_{Sd}^Z = 35,46 \ kN$	$T_{Sd}^Z = 61,27 \ kN$

 Tabella 5.2 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (e.1)

Con le armature predisposte il suddetto elemento risulta automaticamente verificato data la drastica riduzione delle azioni rispetto al Modello C.

5.1.5 Elemento (e.2) – Trave 30x65

Il suddetto elemento è una trave in altezza avente base pari a 30 centimetri ed altezza pari a 65 centimetri. In Figura 3.30 è illustrata la sezione completa delle armature longitudinali ed a taglio.

Si riportano le sollecitazioni di progetto dell'elemento Beam 318:

	MODELLO D	MODELLO C
Sollecitazione	Momento flettente	Momento flettente
Statica	$M = 41,54 \ kN \cdot m$	$M = 67,18 \ kN \cdot m$
Sismica (dir. X)	$ M = 4,00 \ kN \cdot m$	$ M = 21,32 \ kN \cdot m$
Sismica (dir. Z)	$ M = 3,60 \ kN \cdot m$	$ M = 16,12 \ kN \cdot m$
SLV – direzione X	$M_{Sd}^X = 45,54 \ kN \cdot m$	$M_{Sd}^X = 88,50 \ kN \cdot m$
SLV – direzione Z	$M_{Sd}^Z = 45,14 \ kN \cdot m$	$M_{Sd}^Z = 83,30 \ kN \cdot m$
Sollecitazione	Taglio	Taglio
Statica	$T = 34,98 \ kN$	$T = 58,67 \ kN$
Sismica (dir. X)	$ T = 6,40 \ kN$	$ T = 11,50 \ kN$
Sismica (dir. Z)	$ T = 8,45 \ kN$	$ T = 7,76 \ kN$
SLV – direzione X	$T_{Sd}^X = 41,38 \ kN$	$T_{Sd}^X = 70,17 \ kN$
SLV – direzione Z	$\overline{T_{Sd}^{Z}} = 43,43 \ kN$	$\overline{T_{Sd}^Z} = 66,43 \ kN$

 Tabella 5.3 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (e.2)

Le sollecitazioni sono decisamente ridotte rispetto al Modello C grazie all'introduzione dell'isolamento e mantenendo la stessa geometria e le medesime armature, la sezione rimane verificata.

5.1.6 Elemento (e.3) – Pilastro 30x50

Il suddetto elemento è un pilastro di bordo avente dimensione maggiore pari a 50 centimetri e dimensione minore pari a 30 centimetri. In Figura 5.11a è illustrata la sezione completa delle armature longitudinali ed a taglio.

Qui di seguito (Tabella 5.4) si riportano le sollecitazioni di progetto dell'elemento *Beam 30* relativamente ai Modelli D e C ai fini del confronto delle stesse fra la condizione di struttura isolata e la condizione precedente (sovrastruttura incastrata rigidamente alla sottostruttura).

Capitolo V

	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 260,35 \ kN$	$N = 260,35 \ kN$
Sismica (dir. X)	$ N = 15,00 \ kN$	$ N = 39,34 \ kN$
Sismica (dir. Z)	$ N = 14,03 \ kN$	$ N = 37,09 \ kN$
SIV direzione V	$N_{Sd1}^X = 275,35 \ kN$	$N_{Sd1}^X = 299,69 \ kN$
SLV – urezione A	$N_{Sd2}^X = 245,35 \ kN$	$N_{Sd2}^X = 221,01 \ kN$
SIV directions 7	$N_{Sd1}^Z = 274,38 \ kN$	$N_{Sd1}^Z = 297,44 \ kN$
SLV – urezione L	$N_{Sd2}^Z = 246,32 \ kN$	$N_{Sd2}^Z = 223,26 \ kN$
Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 1,50 \ kN \cdot m$	$M_1 = 1,50 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 13,94 \ kN \cdot m$	$ M_1 = 26,24 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 19,62 \ kN \cdot m$	$ M_1 = 39,31 kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 15,44 \ kN \cdot m$	$M_{Sd1}^X = 27,74 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 21,12 \ kN \cdot m$	$M_{Sd1}^Z = 40,81 kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 5,23 \ kN \cdot m$	$M_2 = 5,23 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 39,30 \ kN \cdot m$	$ M_2 = 76,01 kN \cdot m$
Sismica (dir. Z)	$ M_2 = 39,52 \ kN \cdot m$	$ M_2 = 40,69 \ kN \cdot m$
SLV – direzione X	$M_{Sd2}^{X} = 44,53 \ kN \cdot m$	$M_{Sd2}^{X} = 81,24 \ kN \cdot m$
SLV – direzione Z	$M_{Sd2}^{Z} = 44,75 \ kN \cdot m$	$M_{Sd2}^{Z} = 45,92 \ kN \cdot m$

 Tabella 5.4 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (e.3)

Le sollecitazioni risultano ridotte rispetto al Modello C grazie all'introduzione dell'isolamento e mantenendo la stessa geometria e le medesime armature, la sezione rimane verificata. Tuttavia, può essere interessante nel caso dei pilastri (che sono gli elementi che solitamente subiscono di più l'azione sismica orizzontale), vedere come potrebbero essere ridotte le armature, mantenendo la geometria della sezione e ipotizzando costanti le sollecitazioni indicate in Tabella 5.4 per il Modello D in questione.

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

Analisi della struttura isolata alla base e considerazioni finali

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,025 \cdot 274,38 = 6,86 \ kN \cdot m \tag{5.13}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 274,38 = 5,49 \ kN \cdot m \tag{5.14}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,025 \cdot 246,32 = 6,16 \ kN \cdot m \tag{5.15}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 246,32 = 4,93 \ kN \cdot m$$
(5.16)

Figura 5.11 – Elemento (e.3): pilastro 30x50 (Beam 30).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alle nuove armature di Figura 5.11b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 60,20 \ kN \cdot m \tag{5.17}$$

$$M_{Rd2} = 106,91 \, kN \cdot m \tag{5.18}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^X}{M_{Rd1}} + \frac{M_{Sd2}^X}{M_{Rd2}}\right) = 0,67 < 1 \quad \text{Verificato}$$
(5.19)

Capitolo V

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,77 < 1 \quad \text{Verificato} \tag{5.20}$$

Si visualizzano qui di seguito (Grafico 5.1) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Grafico 5.1 – Dominio per la pressoflessione deviata: verifica dell'elemento(e.3)

5.1.7 Elemento (e.4) – Pilastro 40x30

Il suddetto elemento è un pilastro di bordo avente dimensione maggiore pari a 40 centimetri e dimensione minore pari a 30 centimetri. In Figura 5.12 è illustrata la sezione completa delle armature longitudinali ed a taglio.

Si riportano le sollecitazioni di progetto dell'elemento *Beam 566* relativamente ai Modelli D e C ai fini del confronto delle stesse fra la condizione di struttura isolata e la condizione precedente (sovrastruttura incastrata rigidamente alla sottostruttura).

	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 184,25 \ kN$	$N = 184,25 \ kN$
Sismica (dir. X)	$ N = 17,92 \ kN$	N = 34,31 kN
Sismica (dir. Z)	$ N = 17,34 \ kN$	$ N = 15,76 \ kN$
SIV dinoziono V	$N_{Sd1}^X = 202,17 \ kN$	$N_{Sd1}^X = 218,56 \ kN$
SLV – arezione A	$N_{Sd2}^X = 166,33 \ kN$	$N_{Sd2}^X = 149,94 \ kN$
SIV diversions 7	$N_{Sd1}^{Z} = 201,59 \ kN$	$N_{Sd1}^Z = 200,01 \ kN$
SLV – airezione L	$N_{Sd2}^Z = 166,91 kN$	$N_{Sd2}^Z = 168,49 \ kN$
Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 6,86 \ kN \cdot m$	$M_1 = 6,86 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 63,75 \ kN \cdot m$	$ M_1 = 8,12 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 71,73 \ kN \cdot m$	$ M_1 = 31,81 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 70,61 \ kN \cdot m$	$M_{Sd1}^X = 14,98 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 78,59 \ kN \cdot m$	$M_{Sd1}^Z = 38,67 \ kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 18,61 \ kN \cdot m$	$M_2 = 18,61 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 19,12 \ kN \cdot m$	$ M_2 = 23,89 \ kN \cdot m$
Sismica (dir. Z)	$ M_2 = 16,56 \ kN \cdot m$	$ M_2 = 9,81 \ kN \cdot m$
SLV – direzione X	$M_{Sd2}^{X} = 37,73 \ kN \cdot m$	$M_{Sd2}^{X} = 42,50 \ kN \cdot m$
SLV – direzione Z	$M_{Sd2}^{Z} = 35,17 \ kN \cdot m$	$M_{Sd2}^{Z} = 28,42 \ kN \cdot m$

 Tabella 5.5 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (e.4)

In questa situazione, essendo questo pilastro un elemento molto particolare (zona critica sottostante alla porzione di solaio sospesa) si registra un incremento delle sollecitazioni rispetto al calcolo del Modello C: questo può essere dovuto ad un minore coinvolgimento dei pilastri limitrofi che esercitano una minore azione collaborante in questa situazione (Modello D). Si valuterà quindi se le armature precedentemente predisposte siano ancora sufficienti per assorbire le azioni sollecitanti.

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 202,17 = 4,04 \ kN \cdot m \tag{5.21}$$

$$M_{Ed2}^{X} = e_2 \cdot N_{Sd1}^{X} = 0,020 \cdot 202,17 = 4,04 \ kN \cdot m$$
(5.22)

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 201,59 = 4,03 \ kN \cdot m$$
(5.23)

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 201,59 = 4,03 \ kN \cdot m \tag{5.24}$$

Figura 5.12 – Elemento (e.4): pilastro 30x50 (Beam 566).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alle armature di Figura 5.12 si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 128,55 \ kN \cdot m \tag{5.25}$$

$$M_{Rd2} = 91,31 \, kN \cdot m \tag{5.26}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^{X}}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^{X}}{M_{Rd2}}\right) = 0,59 < 1 \quad \text{Verificato}$$
(5.27)

Analisi della struttura isolata alla base e considerazioni finali

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}}\right) + \left(\frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0.82 < 1 \quad \text{Verificato} \tag{5.28}$$

Si visualizzano qui di seguito (Grafico 5.2) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

5.2 Valutazioni su azioni, resistenze e coefficienti di sicurezza dei pilastri

L'introduzione di un sistema di isolamento in un edificio è una strategia progettuale volta al raggiungimento di prestazioni maggiori della struttura quando sottoposta alle azioni sismiche, che si traduce in un conseguente abbattimento delle sollecitazioni in quasi tutta la sovrastruttura. Questo apre la possibilità di potere ridimensionare gli elementi della sovrastruttura che nel caso di soluzione a base fissa dovevano farsi carico dell'intera sollecitazione sismica, bilanciando quindi con questa procedura l'investimento fatto per introdurre i dispositivi di isolamento sismico. A tal fine si sono analizzati sei pilastri fra quelli più gravati dall'input sismico nella soluzione a base fissa (Modello C) per poi valutarli con le azioni della struttura isolata (Modello D) ed eventualmente riprogettarli con sezione ridotta. Queste valutazione possono dare la misura del beneficio che si può trarre dall'isolamento.

Si elencano gli elementi analizzati:

- (p.1) elemento *beam* 822: pilastro 50x30;
- (p.2) elemento *beam* 634: pilastro 30x50;
- (p.3) elemento *beam* 157: pilastro 30x50;
- (p.4) elemento *beam* 64: pilastro 30x40;
- (p.5) elemento *beam* 87: pilastro 40x30;
- (p.6) elemento *beam* 37: pilastro 50x30.

Si procede quindi al confronto, eventuale ridimensionamento e verifica di questi elementi, considerando che le sollecitazioni si mantengano costanti nonostante il ridimensionamento delle sezioni.

5.2.1 Elemento (p.1): pilastro 50x30

Qui di seguito (Tabella 5.6) si riportano le sollecitazioni di progetto dell'elemento *Beam 822* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Beam 822	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 201,35 \ kN$	$N = 201,35 \ kN$
Sismica (dir. X)	$ N = 28,22 \ kN$	$ N = 33,51 \ kN$
Sismica (dir. Z)	$ N = 23,03 \ kN$	$ N = 38,78 \ kN$
SIV directione V	$N_{Sd1}^X = 229,57 \ kN$	$N_{Sd1}^X = 234,86 \ kN$
SLV – airezione X	$N_{Sd2}^X = 178,32 \ kN$	$N_{Sd2}^X = 167,84 \ kN$
SIV dimensione 7	$N_{Sd1}^Z = 224,38 \ kN$	$N_{Sd1}^Z = 240,13 \ kN$
SLV – arezione L	$N_{Sd2}^Z = 178,32 \ kN$	$N_{Sd2}^Z = 162,57 \ kN$

Tabella 5.6 – *Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.1)*

Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 0,45 \ kN \cdot m$	$M_1 = 0,45 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 0$	$ M_1 = 73,45 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 0$	$ M_1 = 105,46 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 0,45 \ kN \cdot m$	$M_{Sd1}^X = 73,90 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 0,45 \ kN \cdot m$	$M_{Sd1}^Z = 105,91 \ kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 0,05 \ kN \cdot m$	$M_2 = 0,05 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 0$	$ M_2 = 20,79 \ kN \cdot m$
2		
Sismica (dir. Z)	$ M_2 = 0$	$ M_2 = 8,57 \ kN \cdot m$
Sismica (dir. Z) SLV – direzione X	$ M_2 = 0$ $M_{Sd2}^{X} = 0,05 \ kN \cdot m$	$ M_2 = 8,57 \ kN \cdot m$ $M_{Sd2}^X = 20,84 \ kN \cdot m$

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 229,57 = 4,59 \ kN \cdot m \tag{5.29}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 229,57 = 4,59 \ kN \cdot m \tag{5.30}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 224,38 = 4,49 \ kN \cdot m \tag{5.31}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 224,38 = 4,49 \ kN \cdot m \tag{5.32}$$

b) PILASTRO 30x30

Figura 5.13 – Elemento (p.1): a) pilastro 50x30; b) pilastro 30x30 (Beam 822).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.13b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 38,17 \ kN \cdot m \tag{5.33}$$

$$M_{Rd2} = 38,17 \ kN \cdot m \tag{5.34}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^{X}}{M_{Rd1}} + \frac{M_{Sd2}^{X}}{M_{Rd2}}\right) = 0,27 < 1$$
 Verificato (5.35)

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,27 < 1$$
 Verificato (5.36)

Si visualizzano qui di seguito (Grafico 5.3) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

70.00 60.00 50.00 40.00 My (kNm) 30.00 20.00 10.00 0.00 0.00 20.00 40.00 80.00 100.00 120.00 Mx (kNm)

Grafico 5.3 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.1)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^{I} = \frac{8,1}{2,4} = 3,38 \tag{5.37}$$

5.2.2 Elemento (p.2): pilastro 30x50

Qui di seguito (Tabella 5.7) si riportano le sollecitazioni di progetto dell'elemento *Beam 634* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Beam 634	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 108,54 \ kN$	$N = 108,54 \ kN$
Sismica (dir. X)	N = 25,61 kN	$ N = 22,46 \ kN$
Sismica (dir. Z)	$ N = 22,57 \ kN$	$ N = 16,87 \ kN$
SIV directione V	$N_{Sd1}^X = 134,15 \ kN$	$N_{Sd1}^X = 131,00 \ kN$
SLV – arezione A	$N_{Sd2}^X = 82,93 \ kN$	$N_{Sd2}^X = 86,08 \ kN$
SIV directions 7	$N_{Sd1}^Z = 131,11 \ kN$	$N_{Sd1}^Z = 125,41 \ kN$
SLV – arezione L	$N_{Sd2}^{Z} = 85,97 \ kN$	$N_{Sd2}^{Z} = 91,67 \ kN$
Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 1,23 \ kN \cdot m$	$M_1 = 1,23 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 12,75 \ kN \cdot m$	$ M_1 = 27,88 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 13,38 \ kN \cdot m$	$ M_1 = 39,26 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 13,98 \ kN \cdot m$	$M_{Sd1}^X = 29,11 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 14,61 \ kN \cdot m$	$M_{Sd1}^Z = 40,49 \ kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 2,08 \ kN \cdot m$	$M_2 = 2,08 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 13,95 \ kN \cdot m$	$ M_2 = 20,79 \ kN \cdot m$
Sismica (dir. Z)	$ M_2 = 11,31 \ kN \cdot m$	$ M_2 = 8,57 \ kN \cdot m$
SLV – direzione X	$M_{Sd2}^{X} = 16,03 \ kN \cdot m$	$M_{Sd2}^{X} = 22,87 \ kN \cdot m$
SLV – direzione Z	$M_{Sd2}^{Z} = 13,39 \ kN \cdot m$	$M_{Sd2}^{Z} = 10,65 \ kN \cdot m$

 Tabella 5.7 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.2)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente

flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 134,15 = 2,68 \ kN \cdot m \tag{5.38}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 134,15 = 2,68 \ kN \cdot m \tag{5.39}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 131,11 = 2,62 \ kN \cdot m \tag{5.40}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 131,11 = 2,62 \ kN \cdot m \tag{5.41}$$

Figura 5.14 – Elemento (p.2): a) pilastro 50x30; b) pilastro 30x30 (Beam 634).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.14b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 38,17 \ kN \cdot m \tag{5.42}$$

$$M_{Rd2} = 38,17 \ kN \cdot m \tag{5.43}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z): Analisi della struttura isolata alla base e considerazioni finali

$$\left(\frac{M_{Sd1}^X}{M_{Rd1}} + \frac{M_{Sd2}^X}{M_{Rd2}}\right) = 0,79 < 1 \quad \text{Verificato}$$
(5.44)

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,74 < 1 \quad \text{Verificato} \tag{5.45}$$

Si visualizzano qui di seguito (Grafico 5.4) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Grafico 5.4 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.2)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^{I} = \frac{8,1}{6,4} = 1,27 \tag{5.46}$$

5.2.3 Elemento (p.3): pilastro 30x50

Qui di seguito (Tabella 5.8) si riportano le sollecitazioni di progetto dell'elemento *Beam 157* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Capitolo V

Beam 157	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 201,35 \ kN$	$N = 201,35 \ kN$
Sismica (dir. X)	$ N = 12,44 \ kN$	$ N = 20,30 \ kN$
Sismica (dir. Z)	N = 20,71 kN	$ N = 55,09 \ kN$
SIV directione V	$N_{Sd1}^X = 213,79 \ kN$	$N_{Sd1}^X = 221,65 \ kN$
SLV – unexione A	$N_{Sd2}^X = 188,91 \ kN$	$N_{Sd2}^X = 181,05 \ kN$
SIV dimensione 7	$N_{Sd1}^Z = 222,06 \ kN$	$N_{Sd1}^Z = 256,41 kN$
SLV – airezione L	$N_{Sd2}^Z = 180,64 \ kN$	$N_{Sd2}^Z = 146,26 \ kN$
Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 0,06 \ kN \cdot m$	$M_1 = 0,06 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 0$	$ M_1 = 16,19 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 0$	$ M_1 = 37,80 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 0,06 \ kN \cdot m$	$M_{Sd1}^X = 16,25 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 0,06 \ kN \cdot m$	$M_{Sd1}^Z = 37,86 kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 0,55 \ kN \cdot m$	$M_2 = 0,55 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 0$	$ M_2 = 74,42 \ kN \cdot m$
Sismica (dir. Z)	$ M_2 = 0$	$ M_2 = 35,21 \ kN \cdot m$
SLV – direzione X	$M_{Sd2}^X = 0,55 \ kN \cdot m$	$M_{Sd2}^{X} = 74,97 \ kN \cdot m$
SLV – direzione Z	$M_{Sd2}^Z = 0,55 \ kN \cdot m$	$M_{Sd2}^{Z} = 35,76 \ kN \cdot m$

 Tabella 5.8 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.3)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^{X} = e_1 \cdot N_{Sd1}^{X} = 0,020 \cdot 213,79 = 4,28 \ kN \cdot m \tag{5.47}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 213,79 = 4,28 \ kN \cdot m \tag{5.48}$$

$$M_{Ed1}^Z = e_1 \cdot N_{Sd1}^Z = 0,020 \cdot 222,06 = 4,44 \ kN \cdot m \tag{5.49}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 222,06 = 4,44 \ kN \cdot m \tag{5.50}$$

Figura 5.15 – Elemento (p.3): a) pilastro 50x30; b) pilastro 30x30 (Beam 157).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.15b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 38,17 \ kN \cdot m \tag{5.51}$$

$$M_{Rd2} = 38,17 \ kN \cdot m \tag{5.52}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^X}{M_{Rd1}} + \frac{M_{Sd2}^X}{M_{Rd2}}\right) = 0,23 < 1 \quad \text{Verificato}$$
(5.53)

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,23 < 1 \quad \text{Verificato} \tag{5.54}$$

Si visualizzano qui di seguito (Grafico 5.5) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Capitolo V

Grafico 5.5 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.3)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^{I} = \frac{8.0}{1.9} = 4.21 \tag{5.55}$$

5.2.4 Elemento (p.4): pilastro 30x50

Qui di seguito (Tabella 5.9) si riportano le sollecitazioni di progetto dell'elemento *Beam 64* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Beam 64	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 100,84 \ kN$	$N = 100,84 \ kN$
Sismica (dir. X)	$ N = 25,10 \ kN$	$ N = 31,42 \ kN$
Sismica (dir. Z)	$ N = 45,28 \ kN$	$ N = 66,93 \ kN$
SIV directione V	$N_{Sd1}^X = 125,94 kN$	$N_{Sd1}^X = 132,26 kN$
SLV – airezione X	$N_{Sd2}^X = 75,74 \ kN$	$N_{Sd2}^X = 69,42 \ kN$
SIV directions 7	$N_{Sd1}^Z = 146,12 \ kN$	$N_{Sd1}^Z = 167,77 \ kN$
SLV – an exione L	$N_{Sd2}^{Z} = 55,56 kN$	$N_{Sd2}^{Z} = 33,91 kN$

 Tabella 5.9 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.4)

Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 1,16 \ kN \cdot m$	$M_1 = 1,16 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 14,88 \ kN \cdot m$	$ M_1 = 15,95 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 20,93 \ kN \cdot m$	$ M_1 = 34,25 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 16,08 \ kN \cdot m$	$M_{Sd1}^X = 17,11 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 22,09 \ kN \cdot m$	$M_{Sd1}^Z = 35,41 \ kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Sollecitazioni Statica	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$	$Momento flettente 2$ $M_2 = 1,11 \ kN \cdot m$
Sollecitazioni Statica Sismica (dir. X)	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 40,74 \ kN \cdot m$	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 51,82 \ kN \cdot m$
Sollecitazioni Statica Sismica (dir. X) Sismica (dir. Z)	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 40,74 \ kN \cdot m$ $ M_2 = 30,54 \ kN \cdot m$	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 51,82 \ kN \cdot m$ $ M_2 = 15,87 \ kN \cdot m$
Sollecitazioni Statica Sismica (dir. X) Sismica (dir. Z) SLV – direzione X	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 40,74 \ kN \cdot m$ $ M_2 = 30,54 \ kN \cdot m$ $M_{Sd2}^X = 41,85 \ kN \cdot m$	Momento flettente 2 $M_2 = 1,11 \ kN \cdot m$ $ M_2 = 51,82 \ kN \cdot m$ $ M_2 = 15,87 \ kN \cdot m$ $M_{Sd2}^X = 52,93 \ kN \cdot m$

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 125,94 = 2,52 \ kN \cdot m \tag{5.56}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 125,94 = 2,52 \ kN \cdot m \tag{5.57}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 146,12 = 2,92 \ kN \cdot m \tag{5.58}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 146,12 = 2,92 \ kN \cdot m \tag{5.59}$$

a) PILASTRO 40x30

b) PILASTRO 40x30

Figura 5.16 – Elemento (p.4): a) pilastro 40x30; b) pilastro 40x30 (Beam 64).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.16b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 55,14 \ kN \cdot m \tag{5.60}$$

$$M_{Rd2} = 58,94 \ kN \cdot m \tag{5.61}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^{X}}{M_{Rd1}} + \frac{M_{Sd2}^{X}}{M_{Rd2}}\right) = 0.82 < 1$$
 Verificato (5.62)

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0,76 < 1 \quad \text{Verificato} \tag{5.63}$$

Si visualizzano qui di seguito (Grafico 5.6) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Grafico 5.6 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.4)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^I = \frac{7,9}{7,0} = 1,13 \tag{5.64}$$

5.2.5 Elemento (p.5): pilastro 40x30

Qui di seguito (Tabella 5.10) si riportano le sollecitazioni di progetto dell'elemento *Beam 87* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Beam 87	MODELLO D	MODELLO C
Sollecitazioni	Sforzo normale	Sforzo normale
Statica	$N = 113,80 \ kN$	$N = 113,80 \ kN$
Sismica (dir. X)	$ N = 17,33 \ kN$	$ N = 14,64 \ kN$
Sismica (dir. Z)	$ N = 20,16 \ kN$	$ N = 35,41 \ kN$
SIV dinariona V	$N_{Sd1}^X = 131,13 \ kN$	$N_{Sd1}^X = 128,44 \ kN$
SLV – utrezione A	$N_{Sd2}^X = 96,47 \ kN$	$N_{Sd2}^X = 99,16 \ kN$
SIV dinationa 7	$N_{Sd1}^Z = 133,96 \ kN$	$N_{Sd1}^Z = 149,21 \ kN$
SLV – alrezione L	$N_{Sd2}^{Z} = 93,64 \ kN$	$N_{Sd2}^{Z} = 78,66 kN$
Sollecitazioni	Momento flettente 1	Momento flettente 1
Statica	$M_1 = 2,30 \ kN \cdot m$	$M_1 = 2,30 \ kN \cdot m$
Sismica (dir. X)	$ M_1 = 25,86 \ kN \cdot m$	$ M_1 = 11,39 \ kN \cdot m$
Sismica (dir. Z)	$ M_1 = 36,46 \ kN \cdot m$	$ M_1 = 64,41 \ kN \cdot m$
SLV – direzione X	$M_{Sd1}^X = 28,16 \ kN \cdot m$	$M_{Sd1}^X = 13,69 \ kN \cdot m$
SLV – direzione Z	$M_{Sd1}^Z = 38,76 \ kN \cdot m$	$M_{Sd1}^Z = 66,71 kN \cdot m$
Sollecitazioni	Momento flettente 2	Momento flettente 2
Statica	$M_2 = 0,63 \ kN \cdot m$	$M_2 = 0,63 \ kN \cdot m$
Sismica (dir. X)	$ M_2 = 17,35 \ kN \cdot m$	$ M_2 = 13,98 \ kN \cdot m$
Sismica (dir. Z)	$ M_2 = 14,18 \ kN \cdot m$	$ M_2 = 6,62 \ kN \cdot m$
SLV – direzione X	$M_{Sd2}^{X} = 17,98 \ kN \cdot m$	$M_{Sd2}^{X} = 14,61 kN \cdot m$
SLV – direzione Z	$M_{Sd2}^Z = 14,81 \ kN \cdot m$	$M_{Sd2}^Z = 7,25 \ kN \cdot m$

 Tabella 5.10 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.5)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente

flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 131,13 = 2,62 \ kN \cdot m \tag{5.65}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 131,13 = 2,62 \ kN \cdot m \tag{5.66}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 133,96 = 2,68 \ kN \cdot m \tag{5.67}$$

$$M_{Ed2}^{Z} = e_2 \cdot N_{Sd1}^{Z} = 0,020 \cdot 133,96 = 2,68 \ kN \cdot m \tag{5.68}$$

Figura 5.17 – Elemento (p.5): a) pilastro 40x30; b) pilastro 40x30 (Beam 87).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.17b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 55,14 \, kN \cdot m \tag{5.69}$$

$$M_{Rd2} = 58,94 \ kN \cdot m \tag{5.70}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^X}{M_{Rd1}} + \frac{M_{Sd2}^X}{M_{Rd2}}\right) = 0,80 < 1 \quad \text{Verificato}$$
(5.71)

$$\left(\frac{M_{Sd1}^Z}{M_{Rd1}} + \frac{M_{Sd2}^Z}{M_{Rd2}}\right) = 0.87 < 1 \quad \text{Verificato}$$
(5.72)

Si visualizzano qui di seguito (Grafico 5.7) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Grafico 5.7 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.5)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^{I} = \frac{7,9}{6,0} = 1,32 \tag{5.73}$$

5.2.6 Elemento (p.6): pilastro 50x30

Qui di seguito (Tabella 5.11) si riportano le sollecitazioni di progetto dell'elemento *Beam 37* relativamente ai Modelli D e C ai fini del confronto fra le soluzioni a base fissa ed isolata:

Beam 37	MODELLO D	MODELLO C		
Sollecitazioni	Sforzo normale	Sforzo normale		
Statica	$N = 211,21 \ kN$	$N = 211,21 \ kN$		
Sismica (dir. X)	$ N = 20,48 \ kN$	$ N = 14,64 \ kN$		
Sismica (dir. Z)	$ N = 22,36 \ kN$	$ N = 35,41 \ kN$		
SLV – direzione X	$N_{Sd1}^X = 231,69 \ kN$	$N_{Sd1}^X = 225,85 \ kN$		
	$N_{Sd2}^X = 190,73 \ kN$	$N_{Sd2}^X = 196,57 \ kN$		
SLV – direzione Z	$N_{Sd1}^Z = 233,57 \ kN$	$N_{Sd1}^Z = 246,62 \ kN$		
	$N_{Sd2}^Z = 188,85 \ kN$	$N_{Sd2}^Z = 175,80 \ kN$		
Sollecitazioni	Momento flettente 1	Momento flettente 1		
Statica	$M_1 = 2,37 \ kN \cdot m$	$M_1 = 2,37 \ kN \cdot m$		
Sismica (dir. X)	$ M_1 = 50,64 \ kN \cdot m$	$ M_1 = 44,77 \ kN \cdot m$		
Sismica (dir. Z)	$ M_1 = 67,54 \ kN \cdot m$	$ M_1 = 115,95 \ kN \cdot m$		
SLV – direzione X	$M_{Sd1}^X = 53,01 \ kN \cdot m$	$M_{Sd1}^X = 47,14 \ kN \cdot m$		
SLV – direzione Z	$M_{Sd1}^Z = 69,91 kN \cdot m$	$M_{Sd1}^Z = 118,32 \ kN \cdot m$		
Sollecitazioni	Momento flettente 2	Momento flettente 2		
Statica	$M_2 = 5,43 \ kN \cdot m$	$M_2 = 5,43 \ kN \cdot m$		
Sismica (dir. X)	$ M_2 = 20,56 \ kN \cdot m$	$ M_2 = 26,90 \ kN \cdot m$		
Sismica (dir. Z)	$ M_2 = 20,69 \ kN \cdot m$	$ M_2 = 11,38 kN \cdot m$		
SLV – direzione X	$M_{Sd2}^{X} = 25,99 \ kN \cdot m$	$M_{Sd2}^{X} = 32,33 \ kN \cdot m$		
SLV – direzione Z	$M_{Sd2}^{Z} = 26,12 \ kN \cdot m$	$M_{Sd2}^{Z} = 16,81 kN \cdot m$		

 Tabella 5.11 – Modelli D e C: sollecitazioni di progetto SLV dell'elemento (p.6)

In accordo con la procedura di analisi della sezione già illustrata al §2.2.2 occorre definire un ulteriore parametro di sollecitazione ovvero la componente flettente dello sforzo normale. In questo caso si ottengono quattro momenti, due relativi ai momenti flettenti 1 e 2 nel caso di sisma in direzione X e altri due relativi ai momenti flettenti 1 e 2 nel caso di sisma orizzontale in direzione Z:

$$M_{Ed1}^X = e_1 \cdot N_{Sd1}^X = 0,020 \cdot 231,69 = 4,63 \ kN \cdot m \tag{5.74}$$

$$M_{Ed2}^X = e_2 \cdot N_{Sd1}^X = 0,020 \cdot 231,69 = 4,63 \ kN \cdot m \tag{5.75}$$

$$M_{Ed1}^{Z} = e_1 \cdot N_{Sd1}^{Z} = 0,020 \cdot 233,57 = 4,67 \ kN \cdot m$$
(5.76)

$$M_{Ed2}^Z = e_2 \cdot N_{Sd1}^Z = 0,020 \cdot 233,57 = 4,67 \ kN \cdot m \tag{5.77}$$

Figura 5.18 – Elemento (p.6): a) pilastro 50x30; b) pilastro 50x30 (Beam 37).

I momenti M_{Ed1}^X , M_{Ed2}^X , M_{Ed1}^Z , M_{Ed2}^Z appena calcolati vanno quindi confrontati rispettivamente con i momenti M_{Sd1}^X , M_{Sd2}^X , M_{Sd1}^Z , M_{Sd2}^Z ; si sceglieranno i valori maggiori fra ciascuna coppia dei due gruppi come momenti sollecitanti per la verifica della sezione.

In relazione alla nuova sezione di Figura 5.18b si calcolano quindi i momenti resistenti nelle due direzioni 1 e 2 degli assi della sezione:

$$M_{Rd1} = 60,20 \ kN \cdot m \tag{5.78}$$

$$M_{Rd2} = 106,91 \, kN \cdot m \tag{5.79}$$

Trovandoci in un caso di pressoflessione deviata, occorre applicare l'Equazione (2.15) descritta al §2.2.2. Seguono quindi le verifiche allo stato limite ultimo di salvaguardia della vita (SLV) per le due azioni sismiche (direzione X e direzione Z):

$$\left(\frac{M_{Sd1}^X}{M_{Rd1}} + \frac{M_{Sd2}^X}{M_{Rd2}}\right) = 0,86 < 1 \quad \text{Verificato} \tag{5.80}$$

$$\left(\frac{M_{Sd1}^{Z}}{M_{Rd1}} + \frac{M_{Sd2}^{Z}}{M_{Rd2}}\right) = 0.91 < 1$$
 Verificato (5.81)

Si visualizzano qui di seguito (Grafico 5.8) la verifica a pressoflessione sul dominio fornito dal *Secondo metodo di Bresler*: la verifica risulta soddisfatta allo Stato Limite di Salvaguardia della Vita (SLV).

Grafico 5.8 – Dominio per la pressoflessione deviata: verifica dell'elemento (p.6)

Si calcola quindi il coefficiente di sicurezza del pilastro ridimensionato, considerando un aumento proporzionale delle sollecitazioni (sforzo normale e momenti flettenti) in virtù del calcolo condotto in capo lineare.

$$\gamma^{I} = \frac{8,3}{7,4} = 1,12 \tag{5.82}$$

Avendo eseguito questi calcoli di ridimensionamento, si può capire come una buona percentuale delle sezioni dei pilastri possa essere ridotta anche notevolmente se viene introdotto l'isolamento nella struttura: nella metà dei pilastri analizzati è stato possibile ridurre la dimensione maggiore della sezione da 50 a 30 centimetri e in ogni caso si ha sempre avuto un beneficio in termini di riduzione delle armature.

5.3 Effetti dell'isolamento sui coefficienti di sicurezza dei pilastri

Un ulteriore indice di prestazione utile al raffronto fra la struttura a base fissa e la struttura isolata è il primo indice di sicurezza: questo viene calcolato sul dominio di resistenza delle sezioni analizzate considerando incrementi lineari e proporzionali dei momenti flettenti e dello sforzo normale.

Al fine di confrontare i due modelli (Modello D e Modello C), si riporteranno nella seguente tabella (Tabella 5.12) i valori di questo coefficiente per ciascuno dei due modelli, relativamente agli elementi analizzati al precedente paragrafo (§5.2): in questa operazione, per poter dedurre dei risultati affidabili e avere la misura dell'eventuale beneficio introdotto con l'isolamento, i coefficienti di sicurezza sono stati calcolati mantenendo la medesima sezione (geometria ed armature) del Modello C, ovvero le sezioni non ridotte. I coefficienti di sicurezza riportati nel paragrafo precedente sono invece calcolati relativamente alle sezioni ridotte: è quindi possibile vedere anche un ulteriore confronto con questi ultimi.

Elemento	Beam	MODELLO C	MODELLO D Descrizione	
(p.1)	822	$\gamma^I = 1,20$	$\gamma^I = 8,67$	pilastro 50x30
(p.2)	634	$\gamma^I = 1,67$	$\gamma^I = 3,52$	pilastro 30x50
(p.3)	157	$\gamma^I = 1,29$	$\gamma^I = 8,56$	pilastro 30x50
(p.4)	64	$\gamma^I = 1,04$	$\gamma^I = 1,14$	pilastro 30x40
(p.5)	87	$\gamma^I = 1,03$	$\gamma^I = 1,37$	pilastro 40x30
(p.6)	37	$\gamma^I = 1,29$	$\gamma^I = 1,36$	pilastro 50x30

Tabella 5.12 – Coefficienti di sicurezza di alcuni pilastri dei Modelli C e D

Come si può notare dai dati ottenuti, il beneficio che si ha in sicurezza può essere una risorsa: questo permette la riduzione di armature o dell'intera sezione con il conseguente risparmio di materiali, ritornando quindi ad avere il livello di sicurezza precedente negli elementi.

5.4 Modello D: gerarchia delle resistenze

Occorrerebbe a questo punto, a seguito della riduzione delle sezioni dei pilastri, verificare nuovamente che ciascun nodo della struttura rispetti il principio di gerarchia delle resistenze. Queste verifiche non vengono qui eseguite non essendo stato analizzato il modello con gli elementi ridotti. Le verifiche risultano però automaticamente soddisfatte nel caso che gli elementi strutturali mantengano le sezioni del Modello C (si veda §3.4).

5.5 Gli spostamenti relativi di piano: confronto fra i Modelli D e C

Un ultimo indicatore di confronto fra il Modello D (struttura isolata) e il Modello C (sovrastruttura fissa) è lo spostamento massimo relativo di piano (anche detto *drift di piano*). Questo indicatore si rivela molo utile nelle analisi agli stati limite di esercizio.

Nella seguente tabella sono riportati gli spostamenti sia assoluti che relativi del primo impalcato (preso poi come riferimento), del secondo impalcato e della copertura, valutati su di una pilastrata d'angolo che ha fornito i valori massimi durante le analisi:

		MODELLO C		MODELLO D	
		Spostamento relativo	Spostamento assoluto	Spostamento relativo	Spostamento assoluto
Sisma CQC direzione X	Nodo 3	0 (rif.)	0,18	0 (rif.)	1,71
	Nodo 6	0,24	0,42	0,20	1,91
	Nodo 77	0,17	0,59	0,13	2,04
Sisma CQC direzione Z	Nodo 3	0 (rif.)	0,20	0 (rif.)	1,73
	Nodo 6	0,23	0,43	0,22	1,95
	Nodo 77	0,13	0,56	0,12	2,07

 Tabella 5.13 – Spostamenti assoluti e relativi di piano (Modelli C e D)

Si nota quindi come compaiano anche alcuni effetti sugli spostamenti di piano, dovuti alle minori sollecitazioni agenti sugli elementi della sovrastruttura isolata alla base.

5.6 Considerazioni finali

Il tema dell'isolamento sismico è molto vasto e si presta a non poche complicazioni nella modellazione e nella previsione del comportamento strutturale. Il comportamento degli apparecchi utilizzati nell'isolamento, quando sottoposti a condizioni vicine al collasso della struttura manifesta spiccate non-linearità che meriterebbero opportune valutazioni con analisi al passo. Si può però anche ragionare più facilmente, partendo da modelli più semplici, valutando attentamente i dettagli critici e i particolari costruttivi. Si dovrà avere cura, se necessario, di rivalutare il dimensionamento degli elementi una volta isolata la struttura e reimplementare un nuovo modello che tenga conto delle variazioni introdotte, costituendo quindi un processo iterativo di progettazione.

La deduzione finale è che l'isolamento apporta molti vantaggi, specialmente (come visto) sulla riduzione delle azioni, ma la vera risorsa di questi sistemi non risiede tanto nel comportamento limite ultimo delle strutture (nel quale è anche più difficile valutare il guadagno apportato), bensì nella loro risposta alle situazioni di esercizio, siano esse dovute al vento oppure ai terremoti. È in queste situazioni che gli edifici isolati esprimono tutte le loro potenzialità, mantenendo la funzionalità delle strutture e adeguati livelli di comfort agli utenti: anche non potendo ridurre ulteriormente gli spettri di risposta relativi agli stati limite di esercizio, che rimangono simili allo spettro elastico, l'aumento di periodo apporta grande vantaggio permettendo di arrivare in zone degli spettri di risposta più favorevoli.

Anche per quanto riguarda l'aspetto della non regolarità strutturale, il sistema isolato assume comportamenti migliori nei confronti del danno, andando a regolarizzare il tipo di oscillazione: in questo specifico caso, la struttura aveva spiccati effetti torsionali che a seguito dell'isolamento sono stati in buona parte convertiti in traslazioni orizzontali, diminuendo le sollecitazioni nella struttura.

Le strutture con isolamento alla base, rispetto a tutti gli aspetti illustrati, garantiscono la completa operatività nei confronti degli obiettivi prestazionali prefissati in fase di progettazione.

BIBLIOGRAFIA

A. Castellani, E. Faccioli, Costruzioni in zona sismica, HOEPLI, 2008

R. Calzona, C. Cestelli Guidi, Il calcolo del cemento armato, HOEPLI, 1992

A. Migliacci, F. Mola, Progetto agli stati limite delle strutture in c.a., CEA, 2003

P. Pozzati, Teoria e tecnica delle strutture (vol. 1), UTET, 2005

P. Pozzati, C. Ceccoli, *Teoria e tecnica delle strutture (voll. 2* e 2**)*, UTET, 1996

P. Pozzati, C. Ceccoli, Teoria e tecnica delle strutture (vol. 3), UTET, 1992

F. Leonhardt, E. Moennig, *C.a. & C.a.p.: calcolo di progetto & tecniche costruttive (vol. III)*, Edizioni di Scienza e Tecnica, 1977

M. Dolce, D. Cardone, F.C. Ponzo, A. Di Cesare, *Progetto di Edifici con Isolamento Sismico*, IUSS Press, 2004

E. Cosenza, G. Maddaloni, G. Magliulo, M. Pecce, R. Ramasco, *Progetto antisismico di edifici in cemento armato*, IUSS Press, 2004

A. Martelli, U. Sannino, A. Parducci, F. Braga, *Moderni sistemi e tecnologie antisismici*, 21mo SECOLO, 2008

A.K. Chopra, Dynamics of structures, Prentice Hall, 2006

R. Villaverde, *Foundamental concepts of earthquake engineering*, CRC Press
– Taylor & Francis Group, 2009

C. Christopoulos, A. Filiatrault, *Principles of passive supplemental damping and seismic isolation*, IUSS Press, 2006

F. Naeim, J.M. Kelly, *Design of seismic isolated structures: from theory to practice*, John Wiley & Sons, 1999

Bibliografia

M. Higashino, S. Okamoto, *Response control and seismic isolation of buildings*, Routledge – Taylor & Francis Group

S.L. Kramer, Geotechnical earthquake engineering, Prentice Hall, 1996

Norme Tecniche per le Costruzioni (D.M. 14 gennaio 2008)

Sito internet dell'azienda ALGA S.p.A.

RINGRAZIAMENTI

Un primo ringraziamento va al mio Relatore, il Professor Claudio Mazzotti, che ha ricoperto un importante ruolo in questi anni di studi universitari, nell'insegnamento, nell'attività di tirocinio in laboratorio e nella preparazione di entrambe le tesi che ho svolto nella mia carriera universitaria.

Un secondo ringraziamento va all'Ing. Giuseppe Herman e a tutti i suoi collaboratori dello studio di ingegneria per avermi fornito il soggetto di questa tesi e tutto il materiale necessario per sviluppare questo progetto con grande disponibilità.

Ringrazio anche i compagni di studio con i quali ci siamo sostenuti a vicenda in questo percorso, con i quali si è creata una salda e profonda amicizia che porterò per sempre con me: grazie Barbara, Elio e Giacomo.

Grazie anche alle mie passioni e soprattutto grazie alla musica, che mi accompagna fin dai primi anni della mia vita: nonostante sia stato difficile continuare anche gli studi musicali parallelamente a quelli universitari, i miei clarinetti sono stati spesso la giusta via per ritrovare energie nuove dopo ogni esame.

L'ultimo ringraziamento e il più speciale va a Sara e ai miei genitori, Maria e Giuliano, che sempre hanno creduto in me, valorizzando le mie capacità, sostenendomi nei momenti difficili, rallegrandosi con me per ogni piccolo o grande traguardo che ho raggiunto. È anche soprattutto grazie a voi se oggi sono giunto fino a qui.