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Sommario

In questa tesi si utilizza il formalismo dei fibrati principali per descrivere le proprietà
topologiche globali di sistemi fisici classici e quantistici che presentano simmetrie legate
all’azione del gruppo U(1). Nel primo capitolo è contenuta una esposizione della teoria
matematica dei fibrati, con un particolare riguardo ai fibrati principali ed alle strutture
differenziali definibili su di essi (forme differenziali di connessione e curvatura). Nel
secondo capitolo si impiega il formalismo precedentemente sviluppato per trattare le
proprietà del monopolo magnetico di Dirac e si ottiene una quantizzazione della carica
magnetica sulla base di considerazioni di natura topologica. Inoltre, si mostra l’impiego
dei fibrati principali U(1) nella costruzione di una descrizione Lagrangiana globale per
sistemi quali una particella carica nel campo del monopolo e una particella classica con
spin in campo magnetico. Nel terzo capitolo, si descrive teoricamente la comparsa di
una fase geometrica (fase di Berry) in sistemi quantistici che evolvono adiabaticamente
nel tempo, e si fornisce un’interpretazione geometrica di tale fase come olonomia in
un fibrato principale U(1). Il moto di una particella quantistica con spin in campo
magnetico quasi-statico e l’effetto Aharonov-Bohm vengono presentati come esempi tipici
di manifestazione di una fase geometrica.
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Introduction

The aim of the present work is to give an overview on the possible applications of the
theory of fibre bundles in investigating the global properties of some peculiar physical
systems, within both a classical and a quantum theoretical framework.
The first Chapter of the thesis will be entirely devoted to an exhaustive exposition of the
necessary topological and analytic apparatus, which is that of fibre bundle structures
(specifically, principal bundle ones) and connections over them. Roughly speaking, a
fibre bundle is a structure which locally resembles a product of spaces: each point on
a total bundle space is identified by its coordinates along a certain “fibre”and by the
position on a second space -the base manifold- where the former is attached. A projection
map allows to project down all the points in the same fibre to a single point in the base
space. In a principal bundle structure, there is a structure group (typically a Lie group)
which maps a point on a fibre to another one on the same fibre, so that the projection
map is left unchanged under the action of the group. Here it is where we make a contact
with gauge theories : if the Action of a given physical system is a function on the base
manifold of a certain principal bundle, it will be invariant with respect to the action
of the structure group, which can be therefore regarded as a gauge group. In light of
this identification, a gauge fixing is a bijiective association of each point of the base
manifold to a point on the total bundle space. This association is realized by means of
a connection on the principal bundle, the geometrical counterpart of a gauge potential:
if the latter is globally defined then we have a global gauge fixing, and this is eventually
possible only if the bundle has a trivial topological structure, i.e. it is globally (and
not only locally) a product of spaces. What is fundamental to stress is thus that the
symmetries of a certain physical systems are mirrored by the global topological features
of a bundle structure.

It is commonly thought that the theory of fibre bundles can find some relevant phys-
ical applications only when one deals with gauge field theories, i.e. continuous systems
with an infinite number of degrees of freedom. This is a false impression. Indeed, there
are many examples from the physics of point-like particles in which gauge symmetries
find an appropriate description within the framework of principal bundles. This will
be the object of Chapter 2, in which we will concentrate on two of such systems: the
Dirac magnetic monopole and the classical non-relativistic particle with spin. The Dirac
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monopole itself highlights the power of the bundle approach, since it furnishes an exam-
ple of a gauge theory (electromagnetism) in which the topological non-triviality of the
principal bundle structure directly leads to a quantization condition. Even more strik-
ing results emerge when one studies the motion of an electric charge in the field of the
monopole: the charge-monopole system does not admit a global Lagrangian description
unless one enlarges the configuration space to a principal bundle whose fibres are element
of a U(1) gauge group. In doing so, however, the system acquires a redundant degree
of freedom which cannot be eliminated through a global gauge-fixing since the bundle
is non trivial. Precisely the same situation is encountered in the study of the classical
spinning particle, whose Lagrangian is formally identical to the one of the previous sys-
tem. There is also a deeper physical reason for the analogy between the spinning particle
and the charge-monopole system, which will be explored as well. The conclusion of the
Chapter will be dedicated to the exposition of a general technique for the construction of
global Lagrangians by means of U(1) principal bundles, recovering the charge-monopole
system as an immediate application of the theory.

In Chapter 3 we will turn to the applications of the fibre bundle approach within the
context of quantum mechanics. Since the physical observables of a quantum system are
defined up to a complex phase, the appropriate geometrical background for the study of
the former naturally appears to be an U(1) principal bundle, being the state of the system
(i.e. its wavefunction) interpreted as a section over the base manifold. The starting
point will be the derivation of the geometric phase factor developed by a system which
undergoes an adiabatic evolution in time along a closed curve in a suitable parameter
space. As we will show, such a phase contains no information about the dynamics of the
system, and has to be regarded as a holonomy on the bundle over the parameter space.
That is, the geometric -or adiabatic- phase measures how much a loop in the parameter
space “fails”in remaining closed when lifted up to the total bundle space through an
adequate parallel transport rule. As an illustrative example we will consider the phase
acquired by a spinning particle moving in a slowly rotating magnetic field during a cyclic
evolution: this will enable us to clarify once again the relation intervening between
this system and that of a magnetic monopole fixed in space. Employing the geometric
tools developed so far, in the final part of the Chapter -and of the entire work- we will
focus our attention on the theoretical analysis of the so-called “Aharonov-Bohm effect”,
whose experimental observation led to a critical rethinking of the role played by the
electromagnetic potential as a physical observable in quantum mechanics.
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Chapter 1

The geometric apparatus: fibre
bundles and connections

A fibre bundle is a topological space which is locally similar to a direct product of
spaces, i.e. it is homeomorphic to a certain set X×Y, as much as a topological manifold
is locally homeomorphic to Rn. In a differentiable fibre bundle the homeomorphism
is promoted to a diffeomorphism and this allows us to build differential structures on
it, such as connections and curvature (which will be the object of the next Section).
The importance of these topological structures lies in the role they play as the ideal
framework for the geometric formulation of many physical problems. After a long but
necessary introduction on the general theory of fibre and vector bundles, we will turn to
principal bundle structures, which constitute the real mathematical groundwork for the
theory developed in the following Chapters.
Notions and results from differential geometry are widely used within the entire work:
the main references for the subject are [1], [2], [3]. For a complete and rigorous exposition
of the theory of fibre bundles the reader is instead referred to [4], [5].

1.1 Vector and principal bundles

1.1.1 Basic definitions and examples

An introductory example: the tangent bundle
Let us consider, as a starting point, the tangent bundle of a manifold. If M is an
n-dimensional manifold, its tangent bundle is defined as the (disjoint) union of all the
tangent spaces at each point:

TM ≡
⋃
p∈M

TpM . (1.1.1.1)
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The space M is called the base manifold of the total bundle space TM . Let Uα ⊂ M
be an open set and φα(p) = (x1, ..., xn) a chart over it. Then at each point p in Uα a
basis of the tangent space TpM is given by

(
∂
∂x1
|p, ..., ∂

∂xn
|p
)

so that Vp ∈ TpM reads in
coordinates1 as V i

p
∂
∂xi
|p. Now since Uα is diffeomorphic to Rn through the chart φα, and

each TpM is itself an n-dimensional vector space, then there exists a function, called
local trivialization, which establishes a diffeomorphism between TUα and Rn × Rn:

Φα : π−1(Uα) −→ Rn × Rn , V 7−→ (x1, ..., xn, V 1
p , ...V

n
p ) , (1.1.1.2)

where we have also made use of the canonical projection π : TM −→M , a surjective
map from the total space onto the manifold, such that if V ∈ TpM then π(V ) = p.
Notice that this map is not injective, since no trace is left of the particular vector V
projected onto p. In this way, π−1(Uα) = TUα, and we define π−1(p) = TpM the fibre
at p.
Consider now a different chart Φβ = (y1, ..., yn) defined on Uβ such that Uα ∩ Uβ 6= ∅.
Then if Vp ∈ TpM , p ∈ Uα ∩ Uβ, the two coordinate expressions of Vp are related by:

Vp = V i
p

∂

∂xi

∣∣∣∣
p

= Ṽ i
p

∂

∂yi

∣∣∣∣
p

=⇒ Ṽ i
p =

∂yi

∂xj

∣∣∣∣
p

V j
p . (1.1.1.3)

A consistency relation for the charts requires that det
(
∂yi

∂xj

)
6= 0, so that the matrix

which provides for the coordinate change is an element of GL(n,R). This is called the
structure group of the tangent bundle, and its elements are the transition functions
between charts on the bundle:

Ṽ i
p = (tβα(p))ij V

j
p , tβα(p) ∈ GL(n,R) . (1.1.1.4)

As we shall see, the transition functions determine the topological properties of the bun-
dle. There is another structure related with the tangent bundle, i.e. a vector field: a
map V which smoothly associates each point p in U ⊂M to a vector Vp ∈ TpM ⊂ TM .
This map is of course such that π ◦ V = idU , and it is called a local section of the
bundle. If U = M then the section is global: the topological triviality of the bundle
determines whether or not we are able to build a global section over it.
Let us now give some general definitions.

Differentiable fibre bundle. A differentiable fibre bundle is a structure (E, π,M, F,G)
consisting of the following elements:

1. Three differentiable manifolds E ,M ,F respectively called the total space, the base
space and the typical fibre.

1Summation over repeated indices is intended unless otherwise specified.
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2. A global surjective map π : E −→ M . The inverse image at each point p of M ,
Fp ≡ π−1(p) ⊂M , is called the fibre at p.

3. A structure group G for which a left action on the fibre F is defined:

Lg : G× F −→ F , (g, f) 7−→ Lg(f) ≡ gf . (1.1.1.5)

4. A set of charts (Uα , Φα) , where {Uα} is an open covering of of M and the functions:

Φα : π−1(Uα) −→ Uα × F , Φα(u) = (π(u), f) , (1.1.1.6)

which are called local trivializations of the bundle, are diffeomorphisms such that
π ◦Φ−1

α = pr1|Uα , where pr1 : M ×F −→M is the projection onto the first factor.
In other words, the local trivializations map each open set of the total space into
a subset of the product space in such a way that the following diagram commutes:

π−1(Uα) Uα × F

Uα

π

Φα

pr1|Uα

Notice that if we define the map Φ−1
α,p ≡ Φ−1

α (p , ·) : F −→ Fp , p ∈ Uα then its
inverse Φα,p : Fp −→ F is also well defined and is a diffeomorphism.

5. For each pair Ui , Uj such that M ⊃ Ui ∩ Uj 6= ∅ there is a transition function:

tij : Ui ∩ Uj −→ diff(F ) , tij(p) ≡ Φi,p ◦ Φ−1
j,p . (1.1.1.7)

In this way, the two local trivializations Φi(u) = (p, fi) , Φj(u) = (p, fj) , with
p ∈ Ui ∩ Uj , u = π−1(p), are related by a diffeomorphism between the respective
coordinates on the fibre:

(p, fi) = (p,Φi,p ◦ Φ−1
j,pfj) = (p, tij(p)fj) . (1.1.1.8)

Moreover, although it is not strictly necessary, we require the diffeomorphism tij(p),
for p fixed, to be an element of the group G.
In order to ensure consistency when passing from a chart to another, the transition
functions must obey the following cocycle conditions:

(i) tii(p) = idG p ∈ Ui ;
(ii) tij(p) = t−1

ji (p) p ∈ Ui ∩ Uj ;

(iii) tij(p) · tjk(p) = tik(p) p ∈ Ui ∩ Uj ∩ Uk .
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It is also sometimes useful to define the principal part of a local trivialization Φα as
the diffeomorphism between the fibre at a point and the typical fibre:

φα : π−1(Uα) −→ F . (1.1.1.9)

Hence, the action of the local trivialization is decomposed as:

Φα(u) = (π(u), φα(u)) . (1.1.1.10)

Strictly speaking, as any ordinary manifold, a fibre bundle must be independent of
the charts we choose. Therefore we can define two coordinate bundles

(E, π,M, F,G, {(Uα,Φα)}) , (E, π,M, F,G, {(Uβ,Φβ)}) , (1.1.1.11)

and say that they are equivalent if (E, π,M, F,G, {(Uα ∩Uβ,Φα ∩Φβ)}) is still a coor-
dinate bundle. Then the proper fibre bundle will be the equivalence class of the latter.
If there is no need to specify the typical fibre or the structure group we will often adopt
the shorthand notation E

π−→M when referring to (E, π,M, F,G).

Bundle maps and equivalence, trivial bundles.

Consider two bundles E
π−→ M and E ′

π′−→ M ′. They are said to be diffeomorphic if the
smooth maps f : M ′ → M and f̃ : E ′ → E are such that each fibre F ′p ⊂ E ′ is mapped

into Ff(p) ⊂ E, so that f ◦ π′ = π ◦ f̃ , that is, the following diagram commutes:

E′ E

M ′ M

f̃

π′ π

f

If M ′ = M and f is the identity map idM then the two bundles are equivalent (observe
that this definition of bundle equivalence is in accordance with the one previously given).
A trivial bundle is a bundle which is equivalent to the product bundle E ≡M×F : this
means that the function f̃ : E ′ →M × F is a global trivialization. It easily follows then
that if the bundle is trivial all the transition functions can be taken to be the identity
map (this is so because in the equivalence class there exists an atlas consisting of a single
chart).

Remark. The set of transition functions on a fibre bundle is not unique. In fact, let us
consider two sets of charts {(Ui,Φi)} , {(Ui,Ψi)}, with {Φi} and {Ψi} local trivializations
giving rise to equivalent bundles. For each p ∈ Ui there are two different transition
functions:

tij(p) = Φi,p ◦ Φ−1
j,p ∈ G , sij(p) = Ψi,p ◦Ψ−1

j,p ∈ G . (1.1.1.12)
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This naturally defines a map:

gi(p) : F −→ F , gi(p) ≡ Φi,p ◦Ψ−1
i,p , (1.1.1.13)

where we make the consistency requirement that gi(p) ∈ G and its action on F is at least
homeomorphic. In this way the transformation law for the transition functions reads:

sij(p) = gi(p)
−1 ◦ tij(p) ◦ gj(p) . (1.1.1.14)

Local section. Let (E, π,M, F,G) be a fibre bundle. A local section on U ⊂ M is a
map:

σ : U −→ E such that π ◦ σ = idU . (1.1.1.15)

Notice that, however, σ ◦ π is not the identity map, since π is not injective. The set
of all the smooth local sections on U is denoted by Γ(U,E): for instance, on a tangent
bundle Γ(M,TM) is the set of all the smooth vector fields on M . It is crucial to stress
that a global section on a fibre bundle does not necessarily exist: we will prove that this
is the case precisely when the latter is trivial.

Example: the cylinder and the Moebius strip
Consider a fibre bundle E

π−→ S1 whose typical fibre is a segment on the real line sym-
metric with respect to the origin, say F ≡ [−1, 1] ⊂ R. Let {U1, U2} be an open covering
of S1, with:

U1 ≡
{

(x1, x2) ∈ R2
∣∣x1 = cosφ , x2 = sinφ , φ ∈ ]0, 2π[

}
, (1.1.1.16)

U2 ≡
{

(x1, x2) ∈ R2
∣∣x1 = cosφ , x2 = sinφ , φ ∈ ]− π, π[

}
. (1.1.1.17)

The simplest choice for the respective trivializations is:

Φ1(u) = (p, t) , p = π(u) ∈ U1 , t ∈ F and Φ2(u) = (p, t) , p = π(u) ∈ U2 , t ∈ F ,
(1.1.1.18)

so that there actually is a global trivialization on π−1(U1∩U2), and the transition function
is the identity map t12(p) : t→ t. The total space is therefore the trivial bundle S1 × F
(the cylinder).
However, we can make a different choice of the transition function, in order to “twist”the
bundle over one or more points on the base manifold. For instance, let:

t12(p) :

{
t→ t, if p ∈ A
t→ −t, if p ∈ B

, (1.1.1.19)

where

A ≡
{

(x1, x2) ∈ R2
∣∣x1 = cosφ , x2 = sinφ , φ ∈ ]0, π[

}
, (1.1.1.20)

B ≡
{

(x1, x2) ∈ R2
∣∣x1 = cosφ , x2 = sinφ , φ ∈ ]π, 2π[

}
. (1.1.1.21)
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This transition function is obtained when Φ1 is defined as in Eq. (1.1.1.18) whereas:

Φ2(u) = (p, t) , p ∈ A , Φ2(u) = (p,−t) , p ∈ B . (1.1.1.22)

The non-trivial bundle represented here is a Moebius strip in which the twists occur over
the points in S1 with φ = π , φ = 2π. We could of course have chosen different points or
even more than two twists by an adequate definition of the transition functions. Notice
that in the case of the cylinder the structure group acting on F is G = {e} , while for
the Moebius strip it is the cyclic group G = {e, g} ' Z2: in both cases, G is a finite group.

Bundle reconstruction The example above suggests us that if we are given a base
space M together with an open covering {Ui} , a typical fibre F and a set of transition
functions tij(p) ∈ G, then we can reconstruct the entire bundle structure (E, π,M, F,G).
This is indeed so, and it proceeds as follows. Define:

X ≡
⋃
i

Ui × F , (1.1.1.23)

and an equivalence relation on X:

{(p, f) ∼ (q, f ′)} ⇔ {p = q ∈ Ui ∩ Uj 6= ∅ , f ′ = tij(p)f for some tij(p)} , (1.1.1.24)

where p ∈ Ui, q ∈ Uj, f ∈ F . Then the fibre bundle space is uniquely defined as the
quotient space:

E = X/ ∼≡ {[(p, f)]∼} , (1.1.1.25)

together with a global projection π : [(p, f)]∼ 7→ p and the local trivializations:

Φi : π−1(Ui) −→ Ui × F , Φi([(p, f)]∼) = (p, f) . (1.1.1.26)

This procedure shows that, once we are in possession of the base manifold and of the
typical fibre space, the topological structure of the bundle (e.g. the presence or absence
of twists in the example above) is entirely determined by the choice of the transition
functions.

1.1.2 Vector bundles

Vector bundle. A k-dimensional vector bundle is a fibre bundle (E, π,M, F,G) whose
typical fibre is a k-dimensional vector space, F ' Rk. If dim(M) = m then dim(E) =
m+ k. Further, the fibre at each point Ep ≡ π−1(p) is also a k-dimensional vector space
and we require the local trivialization at each point:

Φi : Ep −→ {p} × F , p ∈ Ui , (1.1.2.1)
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to be a linear spaces isomorphism, so that for each Ui ⊂M , π−1(Ui) ' Ui × Rk.

A few examples.
The tangent bundle TM described in the previous section is a vector bundle whose fibre
at a point TpM is isomorphic to {p} × Rn, n = dim(M).
A similar vector bundle structure is inherited by the cotangent bundle on a n-dimensional
manifold M :

T∗M =
⋃
p∈M

T∗pM . (1.1.2.2)

Let
{

∂
∂xj
|p
}
j=1,...,n

be the basis of TpM , p ∈ Ui, induced by the coordinates (x1, ..., xn).

The dual basis on T∗M is then {dxj|p}, dxj
(

∂
∂xk

)
= δjk. As for the tangent bundle, if

ω ∈ T∗pM then in two local charts we have:

ω = ωidx
i = ω̃jdy

j =⇒ ω̃j = ωi
∂xi

∂yj

∣∣∣∣
p

≡ (tβα(p))ijωi , (1.1.2.3)

where tβα(p) ∈ GL(n,R) is the transition function between the trivializations:

Φα(ω) = (x1, ..., xn, ω1, ...ωn) , Φβ(ω) = (y1, ..., yn, ω̃1, ...ω̃n) , (1.1.2.4)

for p ∈ Uα ∩ Uβ. It is well known that the matrix acting on the components of ω is the
inverse transpose of the one acting on the components of V ∈ TpM . The sections on M
are in this case one-form fields: Γ(M,TM) = Ω1(M).
The structure of a cotangent bundle is that of a dual bundle: if (E, π,M, F ) is a vector
bundle then the former is defined as (E∗, π,M, F ∗) being E∗ (F ∗) the set of linear maps
from E (F ) to R. If {ei(p)} is a basis of Fp , p ∈ M , its dual basis {ẽj(p)} on F ∗p is

simply defined by ẽj(p)(ei(p)) = δji .
Other vector bundles which we will consider in the following are the line bundles,

i.e. vector bundles whose characteristic fibres are one-dimensional spaces, F ' R or
F ' C. The cylinder and the Moebius strip considered earlier are respectively a trivial
and a non-trivial real line bundle. As an example, associated with a free non-relativistic
quantum particle moving in R3 there is the trivial complex line bundle isomorphic to
R3 × U(1), of which the wave function ψ(x) is just a section. When we are instead
considering the motion in the field of a magnetic monopole then the complex line bundle
is non trivial and the base space becomes R3 \ 0, which is homotopic to S2 [6].

Local frames.
The fact that the fibre at each point is a vector space allows us to build reference frames
over vector bundles. Suppose that, ∀p ∈ Ui , {ẽ1(p), ..., ẽk(p)} is a basis for Ep. Then
the sections:

σµ : Ui −→ σµ(Ui) ⊂ π−1(Ui) , σµ(p) = ẽµ(p) , µ = 1, ..., k , (1.1.2.5)
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are said to define a local frame over Ui. Once we have a local frame, an associated
local trivialization is naturally defined. Indeed, let V ≡ V µẽµ(p) = V µσµ(p) ∈ Ep ; the
associated local trivialization over Ui is:

Φi : π−1(Ui) −→ Ui × Rk , Φi(V
µẽµ(p)) = (p, {V 1, ..., V k}) . (1.1.2.6)

Conversely, if we consider the canonical basis of Rk, eµ = (0, ..., 1, ..., 0) then by the above
definition Φ−1

i (p, eµ) = ẽµ(p) so that we are led to define the (local) trivial section
induced by Φi as:

σµ : p 7−→ Φ−1
i (p, eµ) . (1.1.2.7)

Therefore we can always build a local trivialization on a vector bundle when a local
frame is given and vice versa.
Let now {ẽ1(p), ..., ẽk(p)} and {ẽ′1(p), ..., ẽ′k(p)} be two local frames on the fibre over
p ∈ Ui ∩ Uj. Then a local change of frame is given by:

ẽα(p) = Gβ
α(p) ẽ′β(p) , G(p) ∈ GL(k,R) . (1.1.2.8)

Thus, ∀V ∈ Ep:

V = V αẽα(p) = V ′β ẽ′β(p) =⇒ V α = Gα
β(p)−1V ′β , (1.1.2.9)

where Gβ
α(p)Gα

γ (p)−1 = δβγ . The transition functions performing a local change of frames
are thus matrices with non vanishing determinant:

tij : Ui ∩ Uj −→ GL(k,R) , tij(p) = {Gα
β(p)} s.t. (1.1.2.10)

Φi(V ) = (p, {V α}) = (p, {Gα
β(p)−1V ′β}) , Φj(V ) = (p, {V ′β}) . (1.1.2.11)

This result of course generalizes what we have seen in the case of the tangent and cotan-
gent bundle, where the transition functions realize admissible transformations between
physical reference frames.

Remark. Let σ and σ′ be sections of a vector bundle E
π−→ M defined over U ⊂ M .

Then Γ(U,E) acquires a linear structure if one defines sections sum and multiplication
by a scalar:

(σ + σ′)(p) ≡ σ(p) + σ′(p) , (φσ)(p) ≡ φ(p)σ(p) , (1.1.2.12)

with p ∈ U , φ : U → R. Therefore it is possible to define ∀p ∈ M a null section σ0

such that:
Φi(σ0(p)) = (p, 0) , (1.1.2.13)

being 0 the null vector of F ' Rk: since the latter is unchanged under the action of the
transition functions tij(p) ∈ GL(k,R) the null section is independent of any particular
choice of the local trivializations. Moreover, being defined at every point of M , σ0 is also
a global section.
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1.1.3 Principal bundles

Principal bundle. A principal bundle (P, π,M,G) is a bundle whose fibre F is identi-
cal2 to the structure group G. The left action Eq. (1.1.1.5) is then just the usual group
multiplication. In addition, there is a right action of G on P :

Rg : P ×G −→ P , (u, g) 7−→ Rg(u) ≡ ug , (1.1.3.1)

which is fibre-preserving. This means that If u ∈ π−1(p) , p ∈ M , g ∈ G then also
ug ∈ π−1(p). Equivalently:

π(ug) = π(u) ∀u ∈ P , g ∈ G , (1.1.3.2)

so that two points which are related by the right action of G stay in the same fibre.
Further, consider a local trivialization:

Φi : π−1(Ui) −→ Ui ×G , u 7−→ (π(u), φ(u)) ≡ (p, hi) . (1.1.3.3)

The right action on π−1(Ui) is defined by:

Φi(ug) = (π(ug), φ(ug)) ≡ (π(u), φ(u)g) = (p, hig) (1.1.3.4)

=⇒Φ−1
i (p, hig) = ug = Φ−1

i (p, hi)g ∀u ∈ π−1(Ui) . (1.1.3.5)

The definition is well-posed, since it is independent of the chosen trivialization; In-
deed, if p ∈ Ui ∩ Uj:

ug = Φ−1
i (p, hig) = Φ−1

i (p, tji(p)hjg) = Φ−1
j (p, hjg) . (1.1.3.6)

Moreover, the action is transitive and free. This comes from the very definition of the
action and from the properties of the right group multiplication G×G→ G [3]. Namely,

1. G acts transitively on itself and π−1(p) ' G so the property is inherited:

∀u1 , u2 ∈ π−1(p)∃! g ∈ G s.t. u1 = u2g . (1.1.3.7)

In this way we can reconstruct a whole fibre through the action of G:

π(u) = p =⇒ π−1(p) = {ug , g ∈ G} . (1.1.3.8)

2. Suppose that ug = u for some u ∈ P . Then in a local trivialization we have:

ug = Φ−1
i (p, hig) = Φ−1

i (p, hi)g = Φ−1
i (p, hi) = u , (1.1.3.9)

so that the action is actually free:

ug = u , u ∈ P =⇒ g = e ∈ G . (1.1.3.10)
2By which we mean globally diffeomorphic.
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Canonical local trivialization.
Suppose that we have a local section on a principal bundle (P, π,M,G) , σi : p 7−→
σi(p) ∈ π−1(p) , p ∈ Ui ⊂ M . Since the G-action is free and transitive, for each
u ∈ π−1(p) there is a unique gu ∈ G such that u = σi(p)gu. Consequently, we can define
a local trivialization as follows:

Φi : u 7−→ (p, gu) so that σi(p) = Φ−1
i (p, e) . (1.1.3.11)

This is called the canonical local trivialization on Ui. Thus,

Φ−1
i (p, g) = Φ−1

i (p, e)g = σi(p)g ∀p ∈ Ui , g ∈ G . (1.1.3.12)

Having at our disposal the canonical trivializations we can show how the transition
functions relate different local sections on the same fibre. Let Φi , Φj be the canonical
trivializations corresponding to the sections σi , σj , and p ∈ Ui ∩ Uj 6= ∅. Then:

σi(p) = Φ−1
i (p, e) = Φ−1

j (p, tji(p)e) = Φ−1
j (p, tji(p)) (1.1.3.13)

= Φ−1
j (p, e)tji(p) = σj(p)tji(p) . (1.1.3.14)

In the physical applications, as we shall see, through local sections one builds local gauge
potentials over the base manifold, and the transition functions represent admissible gauge
transformations between them.

Associated bundles.
It is always possible to obtain a vector bundle from a principal one. Suppose (P, π,M,G)
is a principal bundle and F is a differential manifold such that, togheter with the right
action on P , there is a left G-action on F :

(u, f) 7−→ (ug, g−1f) , ∀(u, f) ∈ P × F, g ∈ G . (1.1.3.15)

The associated fibre bundle is then (PF , π,M, F ), where PF ≡ (P×F )/ ∼ is the quotient
space defined with respect to the equivalence relation:

{(u, f) ∼ (w, h)} ⇔ {g ∈ G|w = ug , h = g−1f} . (1.1.3.16)

Let us consider the more specific case in which F ' V is a k-dimensional vector space.
Then if ρ : G −→ GL(k,R) denotes the k-dimensional representation of G [7], the total
vector space PV ≡ (P × V )/ ∼ is obtained as above by identifying the points (u, v) and
(ug, ρ(g)−1v).
Therefore we have a fibre bundle (PV , π̃,M, V ), where the canonical projection is defined
as follows:

π̃ : PV −→M , π̃(u, v) ≡ π(u) , (1.1.3.17)
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being π : P −→M the projection on the principal bundle. The definition is well-posed,
meaning that π̃ is independent of a particular choice in the equivalence class. Indeed, if
u ∈ P , v ∈ V , g ∈ G:

π(u) = π(ug) =⇒ π̃(ug, ρ(g)−1v) = π(ug) = π̃(u, v) . (1.1.3.18)

Further, the local trivializations are naturally defined by:

Φi : π̃−1(Ui) −→ Ui × V , [(u, v)]∼ 7−→ (u, v) . (1.1.3.19)

It is also possible to build up a principal bundle once a vector bundle is given. In fact, as
we have shown, in a vector bundle the transition functions tij are elements of GL(n,R),
so that the latter can be regarded as the structure group and by adopting the same
transition functions the principal bundle is build following the reconstruction procedure
exposed in Section 1.1.1.

Remark. The previous construction clarifies the geometry (and the physics) underlying
a principal bundle structure (P, π,M,G): the base manifold of the latter is always dif-
feomorphic to the space of orbits P/G, that is, the space obtained by the identification
of points of P lying on the same fibre, related by the action of G:

P/G = {[u]∼} , [u]∼ ≡ {w ∈ P s.t. w = ug , g ∈ G} . (1.1.3.20)

In the following Chapter we will see how does this identification physically lead to the
addiction of redundant gauge degrees of freedom.

1.1.4 The Hopf Map

As an important example of a principal bundle we will now consider in detail the Hopf
fibration of the three-sphere and its generalizations.
In 1931 H. Hopf showed that the hypersphere S3 can be mapped onto the ordinary sphere
S2 in such a way that each distinct circle of S3 corresponds to a point in S2 [9]. Stated
in other terms, since S1 ' U(1), there is a principal bundle structure (S3, π, S2, U(1)),
often denoted by S1 → S3 → S2. A graphical representation of the fibration is given in
Figure 1.1. The bundle is obviously non trivial since3 S3 6= S2 ×U(1), and the fibration
proceeds as follows.
Let us consider an embedding of the three-sphere in R4 and of the two-sphere in R3:

S3 ={(x1, x2, x3, x4) ∈ R4|(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1} , (1.1.4.1)

S2 ={(y1, y2, y3) ∈ R3|(y1)2 + (y2)2 + (y3)2 = 1} . (1.1.4.2)

3This can be inferred by a connectedness argument. In fact, S3 = S2 × U(1) would imply π1S
3 =

π1(S2×U(1)) ' π1(S2)⊕π1(U(1)), where we have used a property of the fundamental group of product
spaces [6]: π1(X × Y) ' π1(X) × π1(Y) ' π1(X) ⊕ π1(Y). However, the left-hand side π1(S2) is the
trivial group, while the right-hand side π1(U(1))is isomorphic to Z, so that we have an absurd.
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Figure 1.1: Hopf fibration of the three sphere. On the left, a pictorial representation of
S3, whose different fibres are in different colors: each fibre corresponds to a point of the
same color on S2, on the right. The image is taken from [8]

The Hopf fibration is defined by the canonical projection

π : S3 → S2 , (x1, x2, x3, x4) 7→ (y1, y2, y3) , (1.1.4.3)

with: 
y1 = 2(x1x3 + x2x4)

y2 = 2(x2x3 − x1x4)

y3 = (x1)2 + (x2)2 − (x3)2 − (x4)2

(1.1.4.4)

and it is easily checked that (y1)2 + (y2)2 + (y3)2 = 1. We have now to define the local
trivializations and the corresponding transition functions; a useful way to do that in
view of further generalizations is by a shift to complex variables. Define z0 ≡ x1 + ix2 ,
z1 ≡ x3 + ix4 so that the embedding condition for S3 becomes:

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 =⇒
∣∣z0
∣∣2 +

∣∣z1
∣∣2 = 1 . (1.1.4.5)

Let also SN , SU ⊂ S2 be two open charts covering the northern and the southern
hemisphere respectively, so that SN ∩ SS is an (arbitrarily) thin strip containing the
equator. Let then (X, Y ) and (U, V ) be the stereographic coordinates of a point in
the southern hemisphere projected from the North Pole and of a point in the northern
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hemisphere projected from the South Pole respectively, i.e.:4

(X, Y ) =

(
y1

1− y3
,

y2

1− y3

)
,y ∈ SS , (U, V ) =

(
y1

1 + y3
,− y2

1 + y3

)
,y ∈ SN .

(1.1.4.7)
Then if we define Z = X + iY and W = U + iV we easily find:

Z =
y1 + iy2

1− y3
=
x1 + ix2

x3 + ix4
=
z0

z1
,y ∈ SS , (1.1.4.8)

W =
y1 − iy2

1 + y3
=
x3 + ix4

x1 + ix2
=
z1

z0
,y ∈ SN . (1.1.4.9)

(1.1.4.10)

In this way the coordinates Z, W are well defined on all US, UN respectively and are
contained within the unitary circle in the complex plane so that the latter is put in a
bijective map with S2. Therefore, using the complex coordinates z0, z1, Z, W we can
define the local trivializations:

ΦS : S3 ⊃ π−1(SS) 7→ SS × U(1) , ΦS(z0, z1) ≡
(
Z,

z1

|z1|

)
, (1.1.4.11)

ΦN : S3 ⊃ π−1(SS) 7→ SS × U(1) , ΦN(z0, z1) ≡
(
W,

z0

|z0|

)
. (1.1.4.12)

Notice that z0 6= 0 on SN and z1 6= 0 on SS so the maps are well defined. Since on the
equator Seq ⊂ SS ∩ SN , y3 = 0 we have |z0| = |z1| = 1/

√
2 therein. Therefore:

ΦS|Seq(z0, z1) ≡ (Z,
√

2z1) , ΦN |Seq(z0, z1) ≡ (W,
√

2z0) . (1.1.4.13)

Then on the equator the change of coordinates is performed by an U(1)-valued transition
function:

tNS : Seq ' S1 −→ U(1) , (1.1.4.14)

tNS(y) ≡ z0

z1
= y1 + iy2 = exp{iα} for some α ∈ R . (1.1.4.15)

4The stereographic coordinates on Sn ≡ {(x1, ..., xn+1) ∈ Rn+1|
∑n+1
i=1 (xi)2 = 1} are obtained by

projecting the points of the sphere on an equatorial plane from an arbitrary pole; e.g. if we choose the
North Pole:

(x1, ..., xn+1) 7→
(

x1

1− xn+1
, ...,

xn

1− xn+1

)
, (1.1.4.6)

and the map only fails at the projection pole. If we take the South Pole to be the latter we only have
to change xn+1 7→ −xn+1 in the denominators. Notice that with the stereographic coordinates over S2

it is customary to introduce a change of sign when the projection pole is (0, 0,−1), in order to maintain
the right-handedness of the axis in the projective plane.
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This transition function has to be single-valued all along the equator so that α = 2πn ,
n ∈ Z. Thus, through the transition function tNS, the Hopf fibration of the-three sphere
represents a homotopy class [6] of the first U(1) fundamental group, π1(U(1)) ' Z. This
is a feature shared by all the U(1) principal bundles that will show up in the description
of Dirac’s magnetic monopole.

The above construction can be generalized to other spaces in the following way. First
consider the natural isomorphisms (indeed, diffeomorphisms) between the real three-
sphere and the complex one-sphere:

S3 ' S1
C ≡ {(z0, z1) ∈ C2|

∣∣z0
∣∣2 +

∣∣z1
∣∣2 = 1} , (1.1.4.16)

and between the real two-sphere and the complex projective plane:

S2 ' CP 1 = {[(z0, z1)]} , [(z0, z1)] ≡ {λ(z0, z1)|λ ∈ C \ 0} . (1.1.4.17)

The Hopf map Eq. (1.1.4.3) reads then:

π : S1
C −→ CP 1 , (z0, z1) 7→ [(z0, z1)] . (1.1.4.18)

The fact that this is actually the map defined above can be inferred by observing that
if (z0, z1) is in S1

C then this is true also for λ(z0, z1) , |λ| = 1, and all such points are
mapped to a single one in CP 1 so there is still an U(1) “gauge freedom”.
Then if we consider the quaternion algebra:

H ≡ {q = t+ ix+ iy + iz + iz|(t, x, y, z) ∈ R4} , (1.1.4.19)

with:

i2 = j2 = k2 = 1 (1.1.4.20)

ij = −ji = k, jk = −kj = i, ki = −ik = j; (1.1.4.21)

the following isomorphisms immediately follow:

S3 ' {q ∈ H| |q|2 = 1}, S7 ' S1
H ≡ {(q0, q1) ∈ H2|

∣∣q0
∣∣2 +

∣∣q1
∣∣2 = 1} . (1.1.4.22)

The Hopf map still has the same form:

π : S1
H −→ HP 1 , (q0, q1) 7→ [(q0, q1)] , (1.1.4.23)

where:

HP 1 = {[(q0, q1)]} , [(q0, q1)] ≡ {λ(q0, q1)|λ ∈ H \ 0} ' S4 . (1.1.4.24)

Now the points (q0, q1) and η(q0, q1) , |η| = 1 are both in S7 and get projected down
to a single point, so that the fibration is S3 ' SU(2) → S7 → S4. Curiously, this
generalization still has a physical meaning, being used in the description of the so-
called “instantons”, particular solutions of the Yang-Mills free equations [3]. Using the
octonions it is still possible to define an Hopf map S7 → S15 → S8, even though strictly
speaking this is not a principal bundle since S7 is not a group (multiplication rule is not
associative). The peculiar feature of the Hopf Map in all those mentioned case is however
that all three of the bundle space, base manifold and typical fibre are hyperspheres.
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1.1.5 Triviality of bundles

We shall conclude the Section by illustrating some results on triviality of bundles. Let
us first give a few definitions.

Pull-back bundle. Let E
π−→M be a fibre bundle with typical fibre F , N a differentiable

manifold and f : N →M . the pullback space of E by the function f is:

f ∗E ≡ {(p, u) ∈ N × E|f(p) = π(u)} . (1.1.5.1)

Then if we define the maps f̃ : f ∗E → E and π̃ : f ∗E → N by f̃(p, u) = u, π̃(p, u) = p
the following holds by construction:

π ◦ f̃ = f ◦ π̃ , (1.1.5.2)

so that f ∗E
π̃−→ N inherits the structure of a pullback bundle. If N ≡ M and f = idM

the two bundles are obviously equivalent.

Homotopic maps. Let M and M ′ be differentiable manifolds and f , g : M ′ −→M . f
and g are homotopic maps if there exists a smooth map F : M ′ × [0, 1] −→M s.t.:

F (p, 0) = f(p) , F (p, 1) = g(p) ∀p ∈M ′ . (1.1.5.3)

We need now a technical lemma, the proof of which can be found in [4]:

Lemma. Let E
π−→ M be a fibre bundle whose fibre is F , and f , g : N −→ M be

homotopic maps. Then the pullback bundles over N , f ∗E and g∗E, are equivalent.

A first result on triviality of a generic fibre bundle follows from the previous lemma.
Consider a manifold M which is contractible to a point, i.e. there exists a homotopy
F : M × [0, 1] −→M such that:

∀p ∈M F (p, 0) = p , F (p, 1) = p0 , (1.1.5.4)

being p0 ∈ M fixed. Define a function ht : M 3 p 7→ F (p, t) ∈ M , t ∈ [0, 1], so that
h0(p) ≡ idM and h1(p) = p0 ∀p ∈ M . Consider now the two pullback bundles (over M)
h∗0E and h∗1E. Since h0 is the identity map, h∗0E ≡ E, while h∗1E is the pullback of
the trivial bundle {p0} × F and hence it is itself trivial: h∗1E ' M × F . But from the
previous lemma h∗0E and h∗1E are equivalent bundle, so that E is a trivial bundle. In
synthesis, we have obtained the following:

Theorem. Let E → M be a fibre bundle. If M is contractible to a point, then the
bundle is trivial.
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The result is rather strong: it means that, whichever choice we make of the transition
functions, if the topological structure of M is “good enough”, we can only build trivial
bundles over it. Note however that the converse is in general not true.
We shall now give a necessary and sufficient condition under which a principal bundle is
trivial.

Theorem. A principal bundle is trivial if and only if it admits a global section.

Proof. The sketch of the proof strictly follows from the natural association of a trivial-
ization to each section and vice versa. Consider a fibre bundle (P, π,M,G) and a global
section σ ∈ Γ(M,P ), σ : p 7→ σ(p) ∈ π−1(p). Let g ∈ G; by the definition of principal
bundle if σ(p) ∈ π−1(p) then also σ(p)g ∈ π−1(p), and since the action is transitive and
free any u ∈ P is uniquely written as u = σ(p)gu, gu ∈ G. Moreover, the section is
global, so that when p varies in M we can uniquely obtain each point in P . Therefore
there is a global trivialization:

Φ : P −→M ×G , σ(p)g 7→ (p, g) , (1.1.5.5)

which is (at least) a global homeomorphism, so that P 'M ×G and hence trivial.
Conversely, if P 'M ×G and Φ : P −→M ×G is a global trivialization, then for each
g ∈ G there is a global section:

σg : M −→ P , σg(p) ≡ Φ−1(p, g) , (1.1.5.6)

and this concludes the proof.

Remark. As we previously remarked, every vector bundle admits a global null section
and therefore the existence of a global section does not ensure the triviality of the bundle
in this case. However, we can always build a principal bundle from a vector one, and
they will have the same transition functions. Consequently, we easily find that a vector
bundle is trivial if and only if its associated principal bundle is trivial.

1.2 Connections and curvature

A connection on a manifold is a rule which specifies how to compare vectors in tangent
spaces at different points, that is, it defines a parallel transport on that space; by in-
specting how a vector is parallel transported one can tell whether the manifold is flat
or there is a non vanishing curvature. If the manifold is endowed with a metric tensor
field, i.e. there is a notion of length of curves and angles between vectors, a connection
can be uniquely derived from a compatibility condition between the metric and the par-
allel transport rule: this gives rise to the covariant calculus on Riemannian manifold, a
fundamental geometric tool for the development of general relativity. The aim of this
section is to introduce the covariant calculus on principal bundles. We will follow the
line of [3], [4] and [1].
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1.2.1 Connections and connection one-forms on principal bun-
dles

Horizontal and vertical subspaces
Let (P, π,M,G) be a principal bundle and Gp ≡ π−1(p) , p ∈M . The vertical subspace
VuP at u ∈ Gp is a subset of TuP consisting of all the vectors tangent to the fibre at
that point, i.e.

VuP ≡
{
A#
p s.t. A#

p (f) =
d

dt
(f(u exp{tA}))

∣∣∣
t=0
, A ∈ g

}
, (1.2.1.1)

where f ∈ C∞(P,R) , t is real and g is the Lie Algebra of the (connected) structure group
G, so that each element g ∈ G can be expressed as g = exp{tA} for some A ∈ g. To see
that the definition is well-posed observe that since P is a principal bundle if π(u) = p
then also π(ug) = p∀g ∈ G so that the integral curve of A ∈ g starting at u:

φAp : R −→ P , φAp (t) ≡ u exp{tA} = ug , (1.2.1.2)

lies entirely in Gp. The vector field A# : P → VuP is then naturally defined and
it is sometimes referred to as the fundamental vector field generated by A. From the
properties of the exponential function it can be easily shown [3] that the map # : A 7→
A#
u establishes a natural algebras homomorphism between g and VuP , that is, the two

linear spaces are isomorphic and the Lie parenthesis are preserved:

[A,B]#u = [A#
u , B

#
u ] ∀A ,B ∈ g . (1.2.1.3)

Notice also that if we consider the pushforward [1] of the canonical projection map:

π∗ : TuP −→ Tπ(u)M , (π∗Vu)(f) ≡ Vu(f ◦ π) , (1.2.1.4)

for all the smooth functions f : M → R, then the vertical subspace VuP might be
equivalently defined as the kernel of π∗, since ∀A# ∈ VuP we have:

(π∗A
#)(f) =

d

dt
(f(π(u exp{tA})))

∣∣∣
t=0

=
d

dt
(f(π(u)))

∣∣∣
t=0

= 0 . (1.2.1.5)

The horizontal subspace HuP at u ∈ P is a complement set of VuP in TuP ; the
former is in general not uniquely specified unless a connection is given, i.e. a rule which
allows us to write at each point p ∈ P the tangent space TuP as a direct sum of the
vertical and horizontal subspaces. Formally:

Connection. Let (P, π,M,G) be a principal bundle. A connection on it is a choice
of horizontal spaces {HuP}u∈P ⊂ TuP such that:
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(i) ∀u ∈ P TuP = VuP ⊕HuP .

(ii) Each smooth vector field X ∈ Γ(P,TP ) is separated into a horizontal and a vertical
component:

X = Xh +Xv , Xv ∈ Γ(P,VuP ) , Xv ∈ Γ(P,HuP ) . (1.2.1.6)

(iii) For any u ∈ P , g ∈ G:
Rg∗(HuP ) = HugP , (1.2.1.7)

where Rg∗ : TuP → TugP is the pushforward of the right action, (Rg∗Vu)(f) ≡
Vu(f ◦Rg)∀f ∈ C∞(P,R).

Condition iii) in the definition above means that the right action on the fibre Gp

induces a map between horizontal spaces at different points in the same fibre, so that all
the spaces {HuP}, u ∈ π−1(p), are defined once one of them is given. As we shall see,
this also ensures that if a point u ∈ π−1(p) is parallel transported so are the points ug,
g ∈ G.
This definition of a connection does not give us a hint on how to practically associate a
horizontal subspace to each point. The latter is yielded by a connection one-form on
the bundle:

Connection one-form. A connection one-form on a principal bundle (P, π,M,G) (also
known as an Ehresmann connection) is a Lie-algebra-valued one form5 ω ∈ Ω1(P )⊗g
such that:

(i)
∀A ∈ g , ∀u ∈ P ω(A#

u ) ≡ A , (1.2.1.10)

being A# the fundamental vector field generated by A, A#(u) ≡ A#
u ∈ VuP ' g.

(ii)
∀ g ∈ G , R∗gω ≡ Adg−1ω , (1.2.1.11)

where Adg−1 : g→ g is an adjoint map on the algebra [1] and R∗gω is the pullback
of ω induced by the right action.

5This is an example of a vector-valued one form. A general V -valued k-form on a manifold P is a
multilinear map :

φ : TP ∧ ... ∧ TP −→ V , (1.2.1.8)

being V a vector space. The set of all such forms is then denoted as Ωk(P )⊗ V , and if {ei}i=1,...,n is a
basis of V , dim(V ) = n we can write the most general form φ ∈ Ωk(P )⊗ V as:

φ =

i=n∑
i=1

φi ⊗ ei , φi ∈ Ωk(P ) . (1.2.1.9)
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If we consider a finite dimensional representation of the structure group, so that we
can identify G ' GL(n,R), then equality ii) assumes a more manageable form:

(R∗gωug)(Xu) ≡ ωug(Rg∗Xu) = g−1ωu(Xu)g , (1.2.1.12)

with Xu ∈ TuP , ωu ≡ ω(u) ∈ T∗uP . A connection one-form ωu is just a projection of
TuP into the vertical component VuP ' g, and the horizontal subspace HuP at a point
u ∈ P can therefore be defined as the the kernel of the former:

HuP ≡ {Xu ∈ TuP |ωu(Xu) = 0} . (1.2.1.13)

It is now quite straightforward to verify that this definition is consistent with the one of
a connection given above. Indeed, since by construction ∀u ∈ P Im(ωu) = VuP and by
definition Ker(ωu) = HuP it immediately follows that TuP = HuP ⊕ VuP . Moreover,
take Xu ∈ HuP and consider its pushforward induced by Rg, Rg∗Xu ∈ TugP . Then,
being ωu(Xu) = 0:

ωug(Rg∗Xu) ≡ (R∗gωug)(Xu) = g−1ωu(Xu)g = 0 =⇒ Rg∗Xu ∈ HugP . (1.2.1.14)

But Rg∗ is an invertible map so that each Y ∈ HugP is written as Y = Rg∗Xu for some
Xu ∈ HuP ; this eventually proves that Rg∗(HuP ) = HugP . A connection and a connec-
tion one-form are then completely equivalent, but the approach we have adopted has the
advantage to distinguish between the (purely geometric) separation of TuP in its two
subspaces and the practical way to obtain such a separation.

The local connection form. Let us observe that a connection one-form is defined
on the entire bundle P . Therefore, if {Ui} is an open covering of M and {σi} , σi :
Ui −→ π−1(Ui) are the corresponding local section, it is possible to define the local
connection one forms Ai as the pullbacks of ω induced by the sections:

Ai ≡ σ∗i (ω) ∈ Ω1(Ui)⊗ g , (1.2.1.15)

so that by definition:

∀ p ∈ Ui , ∀Xp ∈ TpUi Ai(Xp) ≡ ωσi(p)(σi∗Xp) . (1.2.1.16)

However, of far more importance is the converse result, that is, the fact that is always
possible to reconstruct an Ehresmann connection once that a set of Lie-algebra-valued
one-forms Ai ∈ Ω1(Ui)⊗ g is given; further, the connection can be made unique if some
consistency conditions are fulfilled.

Theorem. Let (P, π,M,G) be a principal bundle, Ui ⊂ M , σi : Ui −→ π−1(Ui) ,
Ai ∈ Ω1(Ui) ⊗ g. Then there exists a connection one-form ω ∈ Ω1(P ) ⊗ g such that
Ai = σ∗i (ω).
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Proof. Let p ∈ Ui and gi ∈ G be the only element6 such that, for any u ∈ π−1(Ui),
u = σi(p)gi if Φi(u) = (p, gi), being Φi the canonical local trivialization on π−1(Ui).
Then let ωi ∈ Ω1(π−1(Ui))⊗ g be defined by:

ωi ≡ g−1
i π∗Ai gi + g−1

i dgi , (1.2.1.17)

where d denotes the exterior derivative7 on P . Now let X ∈ TpM , so that we have
σi∗X ∈ Tσi(p) and gi = e at u = σi(p). Therefore:

(σ∗i ωi)(X) ≡ ωi(σi∗X) = (π∗Ai)(σ∗iX) + dgi(σ
∗
iX)

= Ai(π∗σi∗X) + σ∗iX(e) = Ai(X) , (1.2.1.19)

the last equality following from the identity π∗σi∗ = idTpM . Since the above equation
holds for any X ∈ TpM we have:

σ∗i ωi = Ai . (1.2.1.20)

A direct calculation [3] shows that properties i) and ii) of the definition of a connection-
one form are satisfied by ωi; accordingly, an Ehresmann connection on P is given by:

ω ∈ Ω1(P )⊗ g such that ω|π−1(Ui) ≡ ωi ∀Ui ⊂M . (1.2.1.21)

Let us now examine the problem of uniqueness. Clearly the connection one-form
obtained above is uniquely defined if, for each pair of open sets Ui , Uj ⊂M with a non-
empty intersection, we have ωi = ωj on Ui ∩ Uj. This leads to a peculiar transformation
law which must be fulfilled by the Ai’s. To derive the latter we need the following
intermediate result:

Lemma. Let (P, π,M,G) be a principal bundle, p ∈ Ui ∩ Uj, σi and σj local sections
defined respectively over Ui , Uj; let also tij : Ui ∩ Uj → G be the transition function.
Then:

σj∗X = Rtij∗(σi∗X) + (t−1
ij dtij(X))# ∀X ∈ TpM . (1.2.1.22)

6This is a little abuse of notation, since we are denoting gi ≡ gi(u).
7By the footnote above, gi : π−1(Ui)→ G , so that dgi is actually a g-valued one-form on π−1(Ui).

In particular, if u ∈ π−1(Ui) , Xu ≡ d
dt

∣∣∣
t=0

, gi,u = exp{tA} , A ∈ g we have:

dgi,u(Xu) ≡ Xu(gi,u) =
d

dt

∣∣∣
t=0

exp{tA} = A . (1.2.1.18)
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By applying the one form ω defined by Eq. (1.2.1.17) and Eq. (1.2.1.21) to both
sides of Eq. 1.2.1.22 we get:

(σ∗jω)(X) = (R∗tijω)(σi∗X) + ω(t−1
ij dtij(X))#

= t−1
ij ω(σi∗X)tij + t−1

ij dtij(X) , (1.2.1.23)

where in the last equality we have made use of both the defining properties i) and ii).
Since Eq. (1.2.1.23) holds for any X, we finally get the transformation law for the local
connections:

Aj = t−1
ij Aitij + t−1

ij dtij . (1.2.1.24)

U(1) bundles and the electromagnetic potentials. Let us now make a brief contact
with gauge theories, considering electromagnetism as a simple example. First, we recall
that a principal bundle (P, π,M,G) is trivial if and only if it admits a global section
σ : M → P . By what we have seen, if such a section does exist then it is also possible
to define a global connection one-form on M , A ≡ σ∗ω. As we shall see, in a physical
theory which admits some gauge degrees of freedom, we can globally “fix the gauge”if
(and only if) there is a global section on the manifold M in which our Lagrangian (or our
Action) takes values: this suggests us that the “gauge potential(s)”of the theory must
be identified with the local connection(s) on M . This is indeed so, as is shown by a plain
calculation in the case of electromagnetism.

Let (P, π,M,U(1)) be a principal bundle, and Ai, Aj two local connection forms over
the overlapping regions Ui , Uj. The transition function tij : Ui∩Uj → U(1) is given by:

tij(p) ≡ exp{iΛ(p)} , Λ(p) ∈ R , (1.2.1.25)

so that Eq. (1.2.1.24) becomes:

Aj(p) = t−1
ij (p)Aitij(p) + t−1

ij (p)dtij(p)

= Ai(p) + idΛ(p) . (1.2.1.26)

If {xµ} is a set of coordinates on Ui ∩ Uj then Eq. (1.2.1.26) reads in components:

(Aj)µ = (Ai)µ + i∂µΛ , (1.2.1.27)

which is indeed a very familiar expression, since if we define the four-potential Aµ ≡
(−A0,A) ≡ −iAµ the above equation simply represents a gauge transformation of the
latter, namely8:

(Aj)µ = (Ai)µ + ∂µΛ . (1.2.1.28)

8We are implicitly referring to a four-dimensional manifold M endowed with the Minkowski metric
gµν = diag{−1, 1, 1, 1}.

25



This entitles our hypothesis on the physical meaning of the local connections. Finally,
also recall the result of Section 1.1.5 according to which a bundle over a contractible man-
ifold is necessarily trivial. This means that electromagnetism in R4 (with the Minkowski
metric) is described by a trivial bundle (P ' R4 × U(1), π,R4, U(1)): this is confirmed
by the fact that we can globally fix a gauge in that situation (e.g. the transverse gauge
or the Lorenz gauge). Things become more involved when we deal with topologically
non trivial base manifolds, as we shall see in the case of the the magnetic monopole and
the spinning particle.

1.2.2 Parallel transport and holonomy

As we have already anticipated, a connection on a principal bundle allows us to define
a unique notion of parallel transport throughout the fibres in the total space. Roughly
speaking, we would say that a point is parallel transported along a curve γ̃ in the to-
tal bundle space P with respect to a given curve γ in the base manifold M if γ is the
projection of γ̃, i.e. π(γ̃) = γ. However, this definition is not accurate enough to ensure
the uniqueness of γ̃, since the tangent vector of the latter at a point u ∈ P can span the
entire space TuP and thus γ and γ̃ might be not parallel at all. What we need is that γ̃
be the horizontal lift of γ:

Horizontal lift of a curve. Let (P, π,M,G) be a principal bundle and γ : [0, 1]→M
a curve in M . γ̃ : [0, 1]→ P is a horizontal lift of γ if:

(i) π(γ̃(t)) = γ(t) ∀ t ∈ [0, 1];

(ii) if X̃ is the tangent vector field to γ̃, then X̃ ∈ Hγ̃(t)P ∀ t ∈ [0, 1]; equivalently,

π∗(X̃) = X, where X ≡ d
dt

is tangent to γ.

If we have a connection one-form ω on P , then by Eq. (1.2.1.13) ω(X̃) = 0 so that exis-
tence and uniqueness of the horizontal lift simply follow from the fundamental theorems
on ordinary differential equations:

Theorem. Let γ : [0, 1] → M be a curve in M starting at p0 = γ(0). Then there is a
unique horizontal lift γ̃ ∈ C1([0, 1], P ) such that γ̃(0) = u0 , u0 ∈ π−1(p0).

Proof. Let Ui be a chart on M containing γ, γ([0, 1]) ⊂ Ui ⊂ M , and let σi : Ui →
π−1(Ui) be a section on it. Define then a curve on P by γ̃(t) ≡ σi(γ(t))gi(t) for some
gi(t) ≡ gi(γ(t)) ∈ G: it is not restrictive to suppose that σi(γ(0)) = γ̃(0), so that
gi(0) = e. By construction, condition i) of the definition of horizontal lift is verified.
Now let X ≡ d

dt
be tangent to γ(t) at p = γ(0), so that X̃ ≡ γ̃∗ is tangent to γ̃ at

u = γ̃(0). by adapting Eq. (1.2.1.22) to the present context we have:

X̃ = gi(t)
−1(σi∗X)gi(t) + [gi(t)

−1dgi(X)]# . (1.2.2.1)
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We further impose ω(X̃) = 0, which ensures condition ii) to hold. By the previous Eq.
(1.2.2.1) we get:

0 = ω(X̃) = 0 = gi(t)
−1ω((σi∗X))gi(t) + gi(t)

−1 dgi(t)

t

=⇒ dgi(t)

dt
= −ω((σi∗X))gi(t) = −Ai(X)gi(t) , (1.2.2.2)

since by definition ω(σi∗X) = (σ∗i ω)(X) ≡ Ai(X) and dgi(d/dt) = dgi(t)/dt. Eq.
(1.2.2.2) is then a firs-order ordinary differential equation for gi(t) with initial condition
gi(0) = e, whose formal solution is:

gi(γ(t)) =P exp

{
−
∫ t

0

Aiµ
dxµ

dt
dt

}
(1.2.2.3)

=P exp

{
−
∫ γ(t)

γ(0)

Aiµ(γ(t)) dxµ

}
, (1.2.2.4)

being {xµ} a set of local coordinates on Ui and P a time-ordering operator 9 (see e.g. [10]),
whose action is required since in general g is not commutative, so that the exponential
might not be well-defined. The horizontal lift is then given by ˜γ(t) = σi(γ(t))gi(t).

Since our choice of the initial value gi(0) = e is arbitrary, we might also choose a
different horizontal lift γ̃′. However, it is easy to see as an immediate corollary of the
previous theorem that if γ̃′ is such that γ̃′(0) = γ(0)g, g ∈ G, then also γ̃′(t) = γ(t)g at
any time t ∈ [0, 1].
We are now ready to give the definition of parallel transport on a fibre bundle along a
given curve and to introduce the notion of holonomy.

Parallel transport. Let (P, π,M,G) be a principal bundle, γ : [0, 1] → M a curve,
u0 ∈ π−1(γ(0)), and γ̃ the unique horizontal lift of γ through u0. The parallel trans-
ported of the point u0 along γ is the point u1 ≡ γ̃(1) ∈ π−1(γ(1)).

Parallel transport therefore defines a map between fibres at different points, namely:

Γ(γ̃) : G0 ≡ π−1(γ(0))→ G1 ≡ π−1(γ(1)) , u0 7→ u1 . (1.2.2.6)

From the uniqueness of horizontal lift it also follows that each point u0g ∈ G0 is mapped
into a unique u1g = Γ(γ̃)(u0g) ∈ G1; further, if Rg is the right action then:

(RgΓ(γ̃))(u0) = u1g , (Γ(γ̃)Rg)(u0) = Γ(γ̃)(u0g) . (1.2.2.7)

9If A1(t) , A2(t) , ..., An(t) are time-dependent matrices P acts as follows:

P [A1(t1)A2(t2) ...An(tn)] ≡ Ai1(ti1)Ai2(ti2) ...Ain(tin) , (1.2.2.5)

being ti1 ≤ ti2 ≤ ...tin .
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Figure 1.2: Parallel transport of the points u0, u0g along a curve γ.

Thus we find that the right action and the parallel transport commute:

Rg ◦ Γ(γ̃) = Γ(γ̃) ◦Rg . (1.2.2.8)

Let us now consider how parallel transport affects loops. Take two curves γ1 , γ2 :
[0, 1] → M such that γ1(0) = γ2(0) = p0 , γ1(1) = γ2(1) = p1 and construct their
horizontal lifts such that γ̃1(0) = γ̃2(0) = u0: nothing ensures that is also γ̃1(1) = γ̃2(1);
as a consequence, if we consider a single loop at a point p, i.e. γ : [0, 1] → M ,
γ(0) = γ(1) = p, then in general γ̃(0) 6= γ̃(1). Hence, a loop γ at p ∈ M , together
with a connection one-form ω which assures uniqueness of the horizontal lift, defines an
automorphism on the fibre at p:

hγ : π−1(p)→ π−1(p) , hγ(γ̃(0)) = γ̃(1) , (1.2.2.9)

which, in view of Eq. (1.2.2.8), is compatible with the right action on the fibre, that is
hγ(ug) = hγ(u)g.
Now, for any given loop γ, γ̃(0) and γ̃(1) are in general different points but still on the
same fibre, and must therefore be related by the right action of some g ∈ G. The set of
such elements is a proper subgroup ofG, and is known as the holonomy group (at a point):
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Holonomy group. Let u ∈ P , π(u) = p ∈M , and

Lp(M) ≡ {γ : [0, 1]→M |γ(0) = γ(1)} , (1.2.2.10)

be the set of loop based at p. The holonomy group at u is:

Hu ≡ {g ∈ G|hγ(u) = ug , γ ∈ Lp(M)} . (1.2.2.11)

With an appropriate definition of the inverse of a loop and of loops product one easily
checks that Hu is indeed a group [3].

Remark. Let Ui ⊂M be a chart with coordinates {xµ}, Ai = Aiµdxµ a local connection
over Ui and γ a loop in Ui. Let also u ∈ P , gγ ∈ Hu such that hγ(u) = ugγ. Then
from Eq. (1.2.2.3) one immediately sees that the coordinate expression of the holonomy
group element gγ is:

gγ = P exp

{
−
∮
γ

Aiµdxµ
}
. (1.2.2.12)

The physical meaning of this expression will become evident later on, when we will deal
with the Berry phase in quantum mechanics.

1.2.3 Curvature

Strictly related to the notion of parallel transport there is that of covariant derivation.
Through the covariant derivative of a connection, we can define the curvature of a prin-
cipal bundle and show how the latter determines the appearence of holonomy: that is,
loops are not preserved by the horizontal lift if the bundle is not “flat”.
Covariant derivation of differential forms generalizes the notion of exterior derivation [2],
[1]. The latter is a map which takes a k-form on a manifold M into a (k + 1)-form, and
this is immediately extended to vector-valued differential forms:

d : Ωk(M)⊗ V −→ Ωk+1(M)⊗ V , dφ ≡ (dφα)⊗ eα , (1.2.3.1)

where α = 1, ..., dim(V ), φα ∈ Ωk(M) and {eα} ⊂ V is a basis. Then we can give the
the following definitions:

Covariant derivative on a principal bundle. Let (P, π,M,G) be a principal bun-
dle endowed with an Ehresmann connection ω ∈ Ω1(P ) ⊗ g; let V be a vector space,
φ ∈ Ωk(P ) ⊗ V , u ∈ P and X1, ..., Xk+1 ∈ TuP . The covariant derivative of φ is the
map:

D : Ωk(P )⊗ V −→ Ωk+1(P )⊗ V ,
Dφ(X1, ..., Xk+1) ≡ dφ(Xh

1 , ..., X
h
k+1) , (1.2.3.2)
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where Xh
i ∈ HuP is the horizontal component of the vector, ωu(X

h
i ) = 0.

Curvature. the curvature two-form Ω on a principal bundle P is the covariant derivative
of the Ehresmann connection:

Ω ≡ Dω ∈ Ω2(P )⊗ g . (1.2.3.3)

Take g ∈ G. Recalling that if G ⊂ GL(n,R) then R∗gω = g−1ωg, and that the right
action preserves the horizontal subspaces, (Rg∗X)h = Rg∗(X

h), we easily find that the
right action acts on the curvature as:

R∗gΩ = g−1Ωg . (1.2.3.4)

Moreover, there is an useful equation which relates the actions of a connection one-form
and that of a curvature on vectors, namely:

Ω(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )] u ∈ P , X , Y ∈ TuP , (1.2.3.5)

so that we can write:
Ω = dω + ω ∧ ω . (1.2.3.6)

Eq. (1.2.3.6) is known as the Cartan’s structure equation, for a derivation of which
the reader is referred to [1]: as we shall momentarily see, it embodies the geometric
meaning of the curvature.

Consider indeed two horizontal vectors X, Y ∈ HuP , so that ω(X) = ω(Xh) = 0 and
ω(Y ) = ω(Y h) = 0. Then:

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]) = −ω([X, Y ]) , (1.2.3.7)

where the first equation is a general property of the exterior derivative on one-forms. By
Eq. (1.2.3.6) it follows that:

Ω(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )] = −ω([X, Y ]) . (1.2.3.8)

Now let (Ui, {xµ}) be a chart on M and γ ∈ Ui an infinitesimal parallelogram whose
corners are Q = {0, 0, ..., 0}, R = {ε, 0, ..., 0}, S = {ε, δ, ..., 0}, T = {0, δ, ..., 0}. If we
define the coordinate vectors V ≡ ∂

∂x1
, W ≡ ∂

∂x2
then εV and δW approximately agree

to the lengths of the edges QR and QT respectively. Further, let γ̃ be the horizontal lift
of γ induced by ω and X, Y its tangent vectors in HP such that π∗X = εV , π∗Y = δW .
It follows then:

π∗([X, Y ]h) = π∗([X
h, Y h]) = εδ[V,W ] = εδ

[
∂

∂x1
,
∂

∂x2

]
= 0 , (1.2.3.9)
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Figure 1.3: Geometrical meaning of the curvature on a principal bundle.

which means that [Xh, Y h] = [X, Y ] is a vertical vector, [X, Y ] ∈ VP . Since geomet-
rically [X, Y ] measures the distance of the two ending points obtained by horizontally
lifting the curves QR ∩ RS and QT ∩ TS (see Figure 1.3), this means that γ is not a
closed curve, because the lifted ending points of the aforementioned paths lie in the same
fibre (π−1(S)) but are not the same points. Their vertical distance is precisely measured
by the curvature. In fact, if [X, Y ] ∈ VP then ∃A ∈ g such that [X, Y ] = A#, and
therefore:

Ω(X, Y ) = −ω([X, Y ]) = −A . (1.2.3.10)

However, since the discrepancy between the ending points of the horizontal lift of a closed
loop is given by an element of the holonomy group, there must be a relation between the
latter and the curvature. This is the object of the following theorem, a proof of which is
found in [1]:

Theorem. (Ambrose-Singer). Let (P, π,M,G) be a principal bundle, with M a con-
nected manifold, and let hu be the Lie algebra of the holonomy group Hu at u ∈. Then
hu is a subalgebra of g, given by:

hu = {A = Ωu(X, Y ) |X, Y ∈ HuP} ⊂ g ' VuP . (1.2.3.11)

The local expression of curvature. Let σ : M ⊃ U −→ P be a local section of a
principal bundle P and ω an Ehresmann connection over it. As much as it is possible
to define a local connection A = σ∗ω, which is a one-form over U , it is also possible to
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define the local form of the curvature Ω of P , which will be a g-valued two-form on U :

F ≡ σ∗Ω ∈ Ω2(U)⊗ g . (1.2.3.12)

By Cartan’s structure equation (1.2.3.6) and by observing that the pullback of a one-
form commutes with the exterior derivative and with the wedge product [2], [1], i.e. for
any three one-forms ω, ρ, η we have σ∗dω = dσ∗ω and σ∗(ρ∧ η) = σ∗ρ∧ σ∗η, we find an
expression of F as a function of the local connection A:

F = dA+A ∧A , (1.2.3.13)

so that for each X , Y ∈ TU :

F(X, Y ) = dA(X, Y ) + [A(X),A(Y )] . (1.2.3.14)

If we now introduce a set of coordinates {xµ} over U, so that we can write A = Aµdxµ

and F = 1
2
Fµνdxµdxν then Eq. (1.2.3.13) reads in components:

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ] . (1.2.3.15)

Recall now the relation established in Section 1.2.1 between local connection one-
forms and gauge potentials, namely in the case of U(1) principal bundles, whereAµ ≡ iAµ
can be regarded as an electromagnetic four-potential. Since U(1) is commutative, Eq.
(1.2.3.15) simplifies into Fµν = ∂µAν − ∂νAµ; therefore if we set Fµν ≡ iFµν :

Fµν = ∂µAν − ∂νAµ , (1.2.3.16)

which shows that Fµν is nothing but the electromagnetic field tensor. An immediate
generalization then leads us to the conclusion that the local expression of the curvature
two-form on a principal bundle must be identified with the strength field tensor associated
to the gauge potential.

Finally, consider the overlapping charts Ui , Uj ⊂ M and the respective sections σi,
σj. Let also tij be the transition function on Ui ∩ Uj. From the transformation law
Eq. (1.2.1.24) and the identity dt−1 = −t−1dt t−1 we obtain the compatibility condition
between Fi and Fj, that is, the transformation law for the local form of the curvature:

Fj = Adt−1
ij
Fi = t−1

ij Fitij . (1.2.3.17)

Once again, if we examine the specific case of U(1), the previous equation simply reduces
to Fj = Fi, which expresses the well known gauge-invariance of the electromagnetic field
under the transformation of the four-potential.
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Chapter 2

U(1) bundles and gauge theories in
classical physics

In the present Chapter, we will apply the mathematical tools previously introduced to the
study of two physical systems: the magnetic monopole and the classical non-relativistic
spinning particle. As we shall see, the construction of an U(1) principal bundle over
the configuration space becomes essential if one wants to provide a global Lagrangian
description for such systems. Starting from these particular models, we will prove a
general result on the construction of global Lagrangians through U(1) principal bundles.
Within this context, we will also show how some purely topological considerations yield
a quantization prescription for the magnetic monopole and related systems. The main
references for this Chapter are [11], [12].

2.1 Magnetic monopole

In 1931 P.A.M. Dirac proposed an adjustment to the Maxwell’s equations in order to
allow for the existence of an hypothetical magnetic monopole, i.e. a point-like magnetic
charge [11]. If such a particle did exist1, Maxwell’s equation would assume the more
symmetrical form (in the standard Gaussian cgs units):{

∇ · E = 4πρe

∇ ·B = 4πρm
and

{
c∇× E + ∂tB = −4πjm

c∇×B− ∂tE = +4πje
, (2.1.0.1)

where the new terms ρm, jm respectively represent the magnetic charge density and
magnetic current density. In spite of the evident symmetry, these equations give now
rise to some problems when one tries to define the electromagnetic potentials. Leaving
aside the interacting equations on the right-hand side, we shall now turn to the analysis

1There is currently no reliable empirical evidence of the existence of the latter in nature.
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of the magnetic field generated by a Dirac’s monopole. In the following, unless otherwise
specified, we will employ Gaussian cgs units.

2.1.1 Physical and geometric setting of the monopole

Suppose that a monopole of charge g is kept in a fixed position at r = 0, so that Gauss’s
Law reads:

∇ ·B = 4πgδ(3)(r) . (2.1.1.1)

Now since ∇(1/r) = −r/r3 and the fundamental solution of the 3-dimensional Laplace
operator is given by ∇2(1/r) = −4πδ(3)(r) , the above equation is solved by a Coulomb-
like field:

B =
gr

r3
=
gr̂

r2
. (2.1.1.2)

Eq. (2.1.1.1) thus implies that B is no more solenoidal, i.e. that does not exist a regular
potential A such that

B = ∇×A , (2.1.1.3)

holds everywhere. In fact if it existed we would have, by Stokes’theorem:∮
S

B · dS =

∫
V

∇ · (∇×A) d3r = 0 , (2.1.1.4)

for every closed 2-surface S such that S = ∂V . This is of course absurd since if we take
S to be the sphere of unitary radius centered in the origin then the integration of Eq.
(2.1.1.1) immediately gives:∮

S

B · dS =

∫
V

∇ ·B d3r = 4πg . (2.1.1.5)

However it is clear that Eq. (2.1.1.3) must hold almost everywhere, since ∇ ·B = 0 for
any r 6= 0. In his original work Dirac explicitly found a vector potential such that Eq.
(2.1.1.3) is fulfilled everywhere except for a line, which he chose to be the positive axis
z > 0:

AS(r) =

(
gy

r(r − z)
, − gx

r(r − z)
, 0

)
= −g(1 + cos θ)

r sin θ
eφ = ASφeφ , (2.1.1.6)

where, adopting spherical coordinates, eφ = − sinφex + cosφey. Indeed, the right-hand
side of the previous equation diverges only at θ = 0, while is regular at θ = π and a
direct calculation furnishes:

∇×AS =
1

r sin θ

∂

∂θ
(ASφ sin θ) =

g

r2
r̂ θ 6= 0 . (2.1.1.7)
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The solution of Eq. (2.1.1.5) is therefore written as

B = ∇×AS + 4πgδ(x)δ(y)Θ(z)ez , (2.1.1.8)

being Θ(z) the Heaviside distribution. The above potential is defined and smooth ev-
erywhere except for a line emanating from the monopole (this is a so-called Dirac string
singularity) and in a completely analogous way we might have chosen the singularity to
lie in the negative semiaxis, by defining:

AN(r) =

(
−gy

r(r + z)
,

gx

r(r + z)
, 0

)
=
g(1− cos θ)

r sin θ
eφ = ASφeφ , (2.1.1.9)

hence in this case:
B = ∇×AN − 4πgδ(x)δ(y)Θ(−z)ez . (2.1.1.10)

Nonetheless, there is a way to avoid the string singularity. Indeed, one could use more
than a single potential, e.g. by adopting AS in the southern hemisphere and AN in the
northern and “pasting”them together through an appropriate gauge transformation along
the equator. The idea was brought up by Wu and Yang [13], who also gave a description
of the monopole gauge potentials in terms of connection one-forms on a U(1) principal
bundle.
First, let us notice that at the equator (θ = π/2 , φ ∈ [0, 2π]) the potentials are related
by a transformation of the form AN = AS + ∇Λ. In fact, from Eq. (2.1.1.6) and Eq.
(2.1.1.9):

AN −AS =
2g

r sin θ
eφ = ∇(2gφ) , Λ ≡ 2gφ . (2.1.1.11)

This is obviously an admissible gauge transformation since B is left unchanged; moreover,
∇(2gφ) is singular only at θ = 0 , π; and Eq. (2.1.1.11) is therefore well defined on the
equatorial strip. The total magnetic flux through a closed 2-surface S = SS ∪ SN
containing the monopole is then given by:

Φ =

∮
S

B · dS =

∫
SN

(∇×AN) · dS +

∫
SS

(∇×AS) · dS

=

∮
∂SN

AN · dr +

∮
∂SS

AS · dr =

∮
∂S

(AN −AS) · dr

=

∮
∂S

∇(2gφ) · dr = 4πg , (2.1.1.12)

where we have used again Stokes’ theorem and assumed the orientation of the equatorial
boundary ∂S to be that of ∂SN . As expected, the result is in agreement with Eq.
(2.1.1.5).

We shall now turn to the topological description of the system [3]. The (static) field
of the monopole is defined in R3 \ {0} but since the relevant homotopy properties of
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this space are the same of the 2-sphere [6] we can limit ourselves to the study of an
U(1) principal bundle over S2, (P, π, S2, U(1)). Let {SN , SS} be an open covering of the
sphere, with the two hemispheres intersecting along the equator:

SN ≡ {(θ, φ)|θ ∈ [0, π/2 + ε] , φ ∈ [0, 2π[} , (2.1.1.13)

SS ≡ {(θ, φ)|θ ∈ [π/2− ε, π] , φ ∈ [0, 2π[} . (2.1.1.14)

Let then ΦN and ΦS be the local trivializations over π−1(SN) , π−1(SS), whose actions
are given by:

ΦN(u) = (p , eiαN ) , ΦS(u) = (p , eiαS) , αN , αS ∈ [0, 2π] (2.1.1.15)

∀u ∈ π−1(SN ∩ SS) , p = π(u). Then at each point p = p(φ) on the equator we have a
transition function gNS(p) : U(1) −→ U(1) , gNS(p) = einφ with n an integer so that the
function is single-valued. The transition function precisely characterizes the topological
structure of the bundle since n, being integer, specifies the homotopy class of the latter
in the first homotopy group π1(U(1)) ' Z. The fibre coordinates are related on the
equator by:

eiαN = einφeiαS , (2.1.1.16)

and when n = 0 the bundle is trivial, i.e. P ' S2 × S1, while if n 6= 0 the fibre bundle
is “twisted”on the equator. Furthermore, since U(1) is abelian, the right and left action
of an element g = eiΛ ∈ U(1) over P are equivalent and the structure group’s action on
a fibre is represented by:

ΦN(ug) = (p , ei(αN+Λ)) , ΦS(ug) = (p , ei(αS+Λ)) . (2.1.1.17)

Supposed n 6= 0, the gauge properties of the magnetic monopole system are described
by a connection on a non trivial U(1) bundle. Indeed, on the two charts SS and SN
previously defined we have two local sections: σN : SN −→ P , σS : SS −→ P through
which we can construct two local connection one-forms, i.e. local gauge potentials:

AN = σ∗Nω , AS = σ∗Sω , (2.1.1.18)

being ω a given Ehresmann connection on P . AN and AS can be taken of the Wu-Yang
form:

AN =
ig(1− cos θ)

r sin θ
dφ , AS = −ig(1 + cos θ)

r sin θ
dφ , (2.1.1.19)

since if we consider a generic transition function on the equator:

gNS : SS ∩ SN ⊃ S1 −→ U(1) , gNS(φ) = eiα(φ) , (2.1.1.20)
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with α : S1 −→ R, then we immediately find that the transformation law for the local
connections on S1 is:

AN = g−1
NSASgNS + g−1

NSdgNS = AS + idα

=⇒ dα = i(AS −AN) =
2g

r sin θ
dφ = 2gdφ ; (2.1.1.21)

where we have used the fact that r = 1 and θ = π/2. Eq.(2.1.1.11) is therefore repro-
duced, with AN ≡ −iAN , AS ≡ −iAS.

Finally, when φ runs from 0 to 2π , α(φ) undergoes the variation:

∆α =

∫ 2π

0

2g dφ = 4πg , (2.1.1.22)

and, in accordance to what previously said, the above quantity must be an integer
multiple of 2π for gNS to be uniquely defined on the equator:

∆α = 2πn =⇒ 2g = n ∈ Z . (2.1.1.23)

We have thus obtained a quantization condition for the monopole in a purely topological
way. Eq. (2.1.1.23) shows that it is the (dimensionless) “strength”of the monopole which
eventually yields the homotopy class of the bundle: the latter is trivial only if the former
is absent.

2.1.2 Electric charge quantization

Let us now derive the electric charge quantization condition in the presence of a monopole.
The Hamiltonian of a point-like particle with electric charge e and mass m moving in an
electromagnetic field is [14]:

H =
1

2m

(
p− e

c
A
)2

+ eφ , (2.1.2.1)

being A and φ the vector and scalar potentials. The Lagrangian in turn reads:

L =
1

2
mṙ2 +

e

c
A · ṙ− eφ . (2.1.2.2)

Here we make the important observation that the canonical momentum p and velocity
ṙ are related by:

p ≡ ∂L

∂ṙ
= mṙ +

e

c
A , (2.1.2.3)

i.e. p is not the kinetic momentum: this is so because the potential contains a linear
term in ṙ. If we limit ourselves to the field generated by a Dirac monopole, so that φ = 0,
the (time independent) Schroedinger equation for the particle is:

Ĥψ(r) ≡ 1

2m

(
p̂− e

c
Â
)2

ψ(r) = E ψ(r) . (2.1.2.4)
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When the vector potential undergoes the local transformation A 7→ A + ∇Λ(r) the
Hamiltonian changes as:

Ĥ 7→ Û †ĤÛ , Û ≡ exp

(
−ieΛ

~c

)
, (2.1.2.5)

as can be seen by recalling that in the position space p̂ψ(r) ≡ −i~∇ψ(r) and then
“completing the square”. The Schroedinger equation however must be gauge-invariant,
and this is achieved only if under the same transformation the wave function acquires a
phase factor :

ψ(r) 7→ exp

(
ieΛ

~c

)
ψ(r) . (2.1.2.6)

If we consider the two Wu-Yang potentials of a magnetic monopole related according to
Eq. (2.1.1.11) then:

ψS(r) 7→ exp

(
−i2egφ

~c

)
ψN(r) . (2.1.2.7)

Let now φ vary from 0 to 2π along the equator; the wave function is required to be
single-valued and this is possible only if

2eg

~c
= n , n ∈ Z . (2.1.2.8)

The above relation is the famous Dirac quantization condition [11], [15], which reduces to
Eq. (2.1.1.23) if one puts ~ = e = c = 1. Eq. (2.1.2.8) however leads to a very remarkable
conclusion: the fact that, if one hypothesizes the existence of a single magnetic monopole,
then all the electric charges must be quantized.

2.1.3 Motion of an electric charge in the field of the monopole

We will now discuss the classical Hamiltonian and Lagrangian formalism for the motion
of a non-relativistic charged particle in the field of a Dirac monopole [12], [16]. As we
shall see, the peculiar features of the system are once again elegantly described within the
topological framework of U(1) principal bundles: specifically, this is realized by employ-
ing the Hopf fibration of the three-sphere (see Section 1.1.4). For the sake of simplicity,
we shall only consider separated magnetic and electric charge: the generalization to the
case of Dyons (i.e. particles with both electric and magnetic charge) can be found in [17].

Equations of motion.
Let r = (r1, r2, r3) denote the position of the particle, whose electric charge is2 −e, and

2The minus signs is chosen in order to present the Lagrangian of the system in a convenient fashion.
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let m be the reduced mass of the monopole-charge system. The magnetic field, as pre-
viously shown, is B = gr

r3
; the motion is governed by the Lorentz force equation, which

-in the absence of any other source an with c = 1- reads:

F = −eṙ×B =
eg

r3
r× ṙ . (2.1.3.1)

Define now n ≡ eg. Then Eq. (2.1.3.1) can be written in components:

mr̈i =
nεijkrj ṙk

r3
, i = 1, 2, 3 . (2.1.3.2)

Remark. Since we are dealing with the classical case, the quantity n in the above equa-
tion could in principle assume any real value. However, if one considers the quantization
condition Eq. (2.1.2.8) and puts ~ = c = 1 then it follows that n must be half-integer :
this result establishes a first contact with the spinning particle system which we will
treat later on.

It is quite instructive to decompose the motion in its radial and angular components,
by defining:

ri ≡ rr̂i ,
3∑
i=1

r̂i
2 = 1 . (2.1.3.3)

Then Eq. 2.1.3.2 splits into:

r̈ = r
∑
i

˙̂ri
2

,
d

dt
[mεijkrj ṙk + nr̂i] = 0 , i = 1, 2, 3 . (2.1.3.4)

The radial equation is that of a free particle, as we expected from the very structure of
Eq. (2.1.3.1). The angular equation however shows that, if we identify the bracketed
expression with the conserved total angular momentum, the latter must be written as:

J ≡ mr× ṙ + nr̂ . (2.1.3.5)

That is, the presence of the magnetic charge determines an additional piece nr̂ which
can be interpreted as a helicity along the line joining the charge and the monopole, and
proportional to the “intensity”of the latter:

J · r̂ = n . (2.1.3.6)

We will come back to this fact in the following. Let us now turn to the Hamiltonian and
Lagrangian description of the system.

The Hamiltonian and Lagrangian formalism.
We shall make the assumption that the moving particle is forbidden to occupy the same
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position of the monopole, so that the configuration space of the system is R3 \ 0. One
would then naturally define the Hamiltonian of the charged particle as a function on the
cotangent bundle of the configuration space, whose canonical coordinates are {(r,p)}.
In this way, given the Hamiltonian Eq. (2.1.2.1) (with φ = 0 and e 7→ −e), the equations
of motion would immediately follow from the canonical Poisson Brackets:

{ri, rj} = {pi, pj} = 0 , {ri, pj} = δij . (2.1.3.7)

However, it will turn out more useful to adopt a sightly different approach, that is, to
define the Hamiltonian on the tangent bundle of the configuration space, as a function
of coordinates and velocities:

H(r,v) ≡ 1

2
mv2 . (2.1.3.8)

The reasons of this choice will become less obscure in the following Section. In order to
obtain the equations of motion we now have to regard r and v as independent variables
and appropriately define the Poisson Brackets:

{ri, rj} =0 , (2.1.3.9)

{ri, vj} =
δij
m
, (2.1.3.10)

{vi, vj} =− nεijkrk
m2r3

; (2.1.3.11)

so that we have:

ṙi = {ri, H} = vi , v̇i = {vi, H} =
nεijkrj ṙk
mr3

. (2.1.3.12)

The correct equations are thus reproduced.
The Lagrangian L, which in virtue of our choice is defined in the same space of the
Hamiltonian, is given by:

L(r,v) =
1

2
mv2 +

e

c
A(r) · v , (2.1.3.13)

and is easily obtained by temporarily replacing v = 1
m

(p− e
c
A) in the Hamiltonian and

then taking its Legendre transformation. However, if A is the Dirac vector potential pre-
viously considered, then there is a string singularity along which the Lagrangian is not
defined and thus the configuration space is not entirely accessible; if instead we choose to
use two different potentials in two different domains of R3\0 to avoid the singularity then
the respective Lagrangians also differ. In both cases, while the Hamiltonian Eq. (2.1.3.8)
does not explicitly contain the potential and is thus globally defined, the Lagrangian Eq.
(2.1.3.13) can be only local. In order to provide a global Lagrangian description, we need
to enlarge the configuration space to an U(1) principal bundle.
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Global Lagrangian.
Notice that the decomposition Eq. (2.1.3.3) in radial and angular motion establishes a
diffeomorphism:

R3 \ {0} → R+ × S2 , r 7→ (r, r̂) , (2.1.3.14)

and therefore we can regard M ≡ R+ × S2 as the actual configuration space of the
particle.
We can now define a bundle structure (P, π,M,U(1)) as follows. Let P be the product
space:

P = R+ × SU(2) = {(r, s)|r > 0 , s†s = 1 , det(s) = 1} . (2.1.3.15)

The canonical projection from P to M is the map

π : SU(2) ' S3 −→ S2 , π(r, s) ≡ (r, r̂) , (2.1.3.16)

where r̂ = (r̂1, r̂2, r̂3) is such that the following holds:

R̂ ≡ σir̂i = sσ3s
−1 . (2.1.3.17)

Here σ1, σ2, σ3 denote the three Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.1.3.18)

It is not difficult to see that the map defined by Eq. (2.1.3.17) is nothing but the Hopf
fibration of S3, although it is presented in a compact and coordinate-free fashion. Indeed,
if we adopt the defining two-dimensional matrix representation of SU(2) we can write
s ∈ SU(2) as:

s =

(
z0 , z1

−z̄1 , z̄0

)
, z0 , z1 ∈ C s.t.

∣∣z0
∣∣2 +

∣∣z1
∣∣2 = 1 , (2.1.3.19)

where z0 , z1 must be regarded as time-dependent. Then Eq. (2.1.3.17) reads:(
r̂3 , r̂1 − ir̂2

r̂1 + ir̂2 , −r̂3

)
=

(
|z0|2 − |z1|2 , 2z0z̄1

2z̄0z1 , |z1|2 − |z0|2
)
. (2.1.3.20)

If we define (x1, x2, x3, x4) ∈ S3 so that z0 = x1 + ix2 , z1 = x3 + ix4 then3 the previous
equation simply reproduces Eq. (1.1.4.4) with the substitution y 7→ r̂.

3Notice that this correspondence establishes the natural isomorphism between S3 and the matrix
representation of SU(2).
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We will now show that the global Lagrangian (defined in P ) which yields the required
equations of motion is:

L(r, s) =
1

2
mṙ2 + inTr(σ3s

−1ṡ)

=
1

2
mṙ2 +

1

4
mr2Tr

(
˙̂
R2
)

+ inTr(σ3s
−1ṡ) , (2.1.3.21)

where we used the identity Tr(R̂
˙̂
R) ≡ Tr(σir̂iσj ˙̂rj) = 0 to write the second expression so

that the dependence on r(t) , s(t) is made explicit.

By observing that Tr
˙̂
R2 = 2

∑
i

˙̂r2
i the Euler-Lagrangian equation for r immediately

reduces to the radial equation:

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 =⇒ r̈ = r

∑
i

˙̂ri
2

= 0 . (2.1.3.22)

Concerning the evolution of the SU(2) coordinate (i.e. the angular motion), a faster and
more elegant approach consists in performing a direct variation of s ∈ SU(2) without
any regard to a particular parametrization of the group (which, we recall, is topologically
a 3-dimensional manifold and we would therefore need to write down three equations).
Namely, since a generic element s ∈ SU(2) can be written in terms of the Lie-Algebra
generators:

s = exp{(iλiσi)}, with iλ · σ ≡ iλiσi ∈ su(2) , λi = λi(t) , i = 1, 2, 3 ; (2.1.3.23)

we have the first order variation:

δs = exp{(i(λ+ ε) · σ)} − exp{(iλ · σ)} = iε · σ exp{(iλ · σ)} = iε · σ s ≡ iεiσis ,
(2.1.3.24)

up to terms of order ε2. Because s−1 = s† we also have δs−1 = −is−1ε · σ, and hence we
get the variations:

δR̂ = i[ε · σ, R̂] , δTr
(
σ3s
−1ṡ
)

= iTr
(
ε̇ · σR̂

)
. (2.1.3.25)

Using these equations and the cyclic identity for the trace operator:

Tr(A[B,C]) = Tr(B[C,A]) ∀A,B,C ∈ GL(n) , (2.1.3.26)

we arrive at:

δL = 0 =⇒Tr

{
ε · σ d

dt

{
−1

2
[R̂,mr2 ˙̂

R] + nR̂

}}
(2.1.3.27)

=Tr

{
εiσi

d

dt

{
−1

2
mr2[r̂jσj , ˙̂rkσk] + nr̂lσl

}}
(2.1.3.28)

=0 . (2.1.3.29)
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Recalling that [σi, σj] = 2iεijkσk and Tr(σiσj) = 2δij, with a little algebra Eq. (2.1.3.27)
leads to:

d

dt

{
− i

2
[R̂,mr

˙̂
R] + nR̂

}
= 0 , (2.1.3.30)

which in turn one easily shows equivalent to dJi
dt

= 0 so that both the radial and the
angular equations of motion are fully reproduced.

Gauge properties and bundle construction.
As we have seen, the fibre bundle structure we are dealing with is the Hopf fibration of the
three sphere U(1)→ S3 → S2, and the global Lagrangian is defined in the total space.4

It is convenient to represent the associated U(1) gauge group as the one-dimensional
subgroup of SU(2) generating rotations around the z-axis:

U(1) '
{
g ≡ exp

(
iσ3θ

2

)
= diag

{
eiθ/2 , e−iθ/2

}∣∣∣ θ = θ(t)

}
. (2.1.3.31)

The group acts on the enlarged space S3 ' SU(2) by the right multiplication:

Rg : SU(2)× U(1) −→ SU(2) , Rg(s) ≡ sg = s exp

(
iσ3θ

2

)
, (2.1.3.32)

and the action -as expected- is free, transitive and fibre preserving, since Eq. (2.1.3.17) is
left unchanged and this means that π(sg) = π(s), for every s ∈ SU(2) and g ∈ U(1). As
we have already anticipated, this implies that the system admits an U(1) gauge degree
of freedom. Indeed, the equations of motion Eq. (2.1.3.4), being written in terms of the
variables (r, r̂) in the base manifold, are unaffected by the transformation Eq. (2.1.3.32)
and are thus gauge-invariant; on the other hand the Lagrangian Eq. (2.1.3.21) depends
on s and is therefore only weakly invariant. By this we mean that under the action Eq.
(2.1.3.32) L acquires an additional time-derivative, as one can easily check5

L(r, s) 7−→ L′(r, s) ≡ L(r, sg) = L(s, g)− nθ̇ . (2.1.3.34)

This is indeed a gauge freedom since the Action then only changes by a constant, leading
to the same equations of motion.

Through the Hopf-fibration we have therefore obtained a global Lagrangian descrip-
tion, but at the price of being now left with an unavoidable U(1) gauge degree of freedom.

4For the sake of accuracy, the fibration is actually U(1) → R+ × S3 → R+ × S2. However, since π
trivially maps r ∈ R+ into itself, we can safely take P ≡ S3 , M ≡ S2.

5It is sufficient to the see that the argument of the Trace operator changes as

σ3s
−1ṡ 7→ σ3 exp{−iσ3θ/2}s−1

d

dt
[s exp{iσ3θ/2}] = σ3s

−1ṡ+ i
θ

2
1 . (2.1.3.33)

:
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In fact, a global gauge fixing is not possible, since the bundle is not trivial. Namely, fix-
ing a global gauge means that we are able to find a map σ̃ : S2 −→ SU(2) which is a
global section on the bundle, so that is smooth ∀r̂ ∈ S2 and:

σir̂i = s (r̂)σ3s (r̂)−1 , s (r̂) ≡ σ̃(r̂) ; (2.1.3.35)

that is, π ◦ σ̃ = idS2 . Such a connection of course cannot exist since S3 6= S2 × S1.
However, we can still find a section which is discontinuous only at a point; if we choose
the latter to be the South Pole r̂ = (0, 0,−1), such a function is:

s (r̂) =
1

2

{
α1− 1

α
[σ3 , σir̂i]

}
, α ≡ [2(1 + r̂3)]1/2 . (2.1.3.36)

A direct calculation shows that s (r̂) is indeed an element of SU(2). Through this gauge
fixing we can rewrite the interacting term in the Lagrangian Eq. (2.1.3.21):

inTr
{
σ3s(r̂)

−1ṡ(r̂)
}

=
nε3ij r̂i ˙̂rj
1 + r̂3

. (2.1.3.37)

The result is remarkable: when we (locally) fix the redundant gauge degree of freedom
the Dirac string singularity shows up, whereas is absent in the Lagrangian 2.1.3.21 which
is only weakly gauge-invariant, so that we gain one and lose one.

We conclude the section by recovering also the Wu and Yang singularity-free formu-
lation. Let us cover S2 with two charts which are as usual the northern and southern
hemispheres SN , SS: this yields the two local sections σ̃N , σ̃S and the respective func-
tions sN(r̂) , sS(r̂), where sN is defined as in Eq. (2.1.3.37) and sS only differs by a
change of sign in the definition of α, i.e. αS ≡ [2(1 − r̂3)]1/2. Along the equator we
therefore have:

σir̂i =sS (r̂)σ3sS (r̂)−1 = sN (r̂)σ3sN (r̂)−1

=⇒ tNSσ3t
−1
NS = σ3 , tNS ≡

[
sN(r̂)−1sS(r̂)

]
. (2.1.3.38)

Eq. (2.1.3.38) shows that sS and sN belong to the same fibre and are related by a change
of coordinates in the overlapping region:

sN(r̂) = sS(r̂) exp

{(
iσ3θ

2

)}
, for some θ = θ(t) . (2.1.3.39)

That is, the transition function is an element of the gauge structure group. It immediately
follows that in SS ∩SN the two local Lagrangians differ again by a total time derivative:

LN = LS − nθ̇ . (2.1.3.40)
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2.2 Non-relativistic spinning particle

The classical treatment of a particle with spin [18] is much similar to the one of an
electric charge in the field of a magnetic monopole. Also in this case we can readily get
a global Hamiltonian description, while the Lagrangian one cannot be achieved through
a canonical Legendre transformation in the phase space but requires the use of a non
trivial fibre bundle.

2.2.1 Hamiltonian and Lagrangian description

Let x = (x1, x2, x3) and p = (p1, p2, p3) denote the position and momentum of the
particle. Define also its spin S = (S1, S2, S3) to be a vector with fixed magnitude:

S2 =
∑
i

S2
i ≡ λ2 . (2.2.1.1)

If λ does not vary then the configuration space is M ≡ R3 × S2. Since the particle
has spin, it is also endowed with a magnetic moment µ ≡ µS, µ ≡ −µBgs, so that
in the presence of an external magnetic field B = (B1, B2, B3) the interacting (global)
Hamiltonian reads:

H = H0 + µB · S , (2.2.1.2)

where H0 = p2

2m
is the Hamiltonian of the free particle.

Since the energy is given and the equations of motion for x , p , S are known (see e.g.
[14]), we can easily reproduce them within the Hamiltonian description by means of the
canonical Poisson Brackets6:

{xi, xj} = {pi, pj} = 0 , (2.2.1.3)

{xi, pj} = δij , (2.2.1.4)

{Si, Sj} = εijkSk . (2.2.1.5)

Notice incidentally that the last bracket is defined in perfect analogy with the canoni-
cal one for the orbital angular momentum. Now, with regard to the Hamiltonian Eq.
(2.2.1.2), we have:

ẋi ={xi, H} =
pi
m
, (2.2.1.6)

ṗi ={pi, H} = −µSj
∂Bj

∂xi
, (2.2.1.7)

Ṡi ={Si, H} = µεijkBjSk . (2.2.1.8)

6One might directly obtain the evolution of x and p through the Hamilton’s equations of motion.
However, as we shall see, this is more problematic in the case of S.
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The last two equations reduce to ṗi = 0 , Ṡi = 0 in the free case (B = 0).
Once the Hamiltonian of a system is given, we can often get its Lagrangian by per-

forming a Legendre transformation: this happens when our coordinates and momenta
are canonical. This means that if the configuration space is an n-dimensional manifold
M whose global coordinates are (Q1, ..., Qn), then there is a global chart for the phase
space T∗M = {(Q1, ..., Qn, P1, ...Pn)} and the latter is endowed with a globally defined
symplectic form [19]:

ω = dQi ∧ dPi ∈ Ω2(T∗M) , (2.2.1.9)

which induces the canonical Poisson brackets:

{Qi, Qj} = {Pi, Pj} = 0, {Qi, Pj} = δij . (2.2.1.10)

Under this circumstances, if the Hamiltonian H is a regular function on T∗M with a
non-vanishing Hessian determinant then the Legendre transformation simply maps:

T∗M 3 H 7→ L ≡ Q̇iPi −H ∈ TM , Q̇i ≡
∂H

∂Pi
; (2.2.1.11)

and the procedure of course also works in the reverse direction. In the present case,
however, our system of coordinates is not canonical. In fact, we can set Qi = xi , Pi = pi
for i = 1, 2, 3, but then Q4 , P4 should be functions of the spin vector S which in turn
spans a 2-dimensional sphere isomorphic to S2. Hence, since there does not exist a global
chart on the latter, any choice of (Q4(S), P4(S)) is singular for at least one7 S.

Therefore, as it was the case for the monopole (although the reason is slightly differ-
ent), it is not possible to build up a global Lagrangian over R3×S2. Nevertheless, we can
still derive a global Lagrangian description defined on an enlarged configuration space
R3 × SU(2) by employing the very same procedure worked out for the monopole. We
can relate a matrix s ∈ SU(2) to a spin vector through the Hopf map π : SU(2)→ S2:

π(s) = S s.t. S · σ ≡ Siσi = λsσ3s
−1 , (2.2.1.12)

so that the constraint Eq. (2.2.1.1) is automatically fulfilled.
We will now show that the Lagrangians which yield the correct equations of motion

for x and S in the free and interacting case are respectively:

L0 =
1

2
mẋ2 + iλTr

(
σ3s
−1ṡ
)
, (2.2.1.13)

and
L1 = L0 − µB · S = L0 −

µ

2
Tr(SB) , (2.2.1.14)

7Incidentally we may observe that if one employs standard spherical coordinates then the singularity
is on the polar axis, as it was the case for the Dirac string in the monopole system.
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where S ≡ Siσi = λsσ3s
−1 , B ≡ Biσi. Observe that the formal structure of the

free Lagrangian is identical to that of the charge-monopole system, with the simple
substitution n 7→ λ. We will come back on this analogy.
For both the free and the interacting Lagrangian the motion of the position coordinates
is readily given by the Euler-Lagrange equations:

∂LA
∂xi
− d

dt

∂LA
∂ẋi

= 0 A = 0, 1 , (2.2.1.15)

which yield:

mẍi = 0 , mẍi = −µSj
∂Bj

∂xi
, i = 1, 2, 3 . (2.2.1.16)

As we did before, the evolution of the SU(2) parameter is obtained by a direct first-order
variation:

δs ≡ iε · σ s =⇒ δs−1 = −is−1ε · σ . (2.2.1.17)

Hence we get, for the Lagrangian L0:

δL0 = −λTr
(
σ3s
−1ε̇ · σs

)
= −2Siε̇i = 0 −→ Ṡi = 0 , (2.2.1.18)

where the last equality follows from an integration by parts. The calculation for L1 is
just a bit more involved; from Eq. (2.2.1.17) and using again the cyclic identity Eq.
(2.1.3.26) we have:

δL1 = δL0 − i
µ

2
Tr([S,B]ε · σ) = 0 , (2.2.1.19)

which again, after an integration by parts, yields Ṡi = µεijkBjSk. The equations of
motion for both x and S are thus fully recovered.

2.2.2 Gauge properties; relation between the massless spinning
particle and the Charge-Monopole System

The classical spinning particle share the same gauge properties of the charge-monopole
system previously described, and therefore also the same description in terms of fibre
bundles. Namely, if we neglect the translational degrees of freedom (i.e. x ∈ R3) then we
have a principal bundle structure (SU(2) ' S3, S2, π, U(1)) which is the Hopf fibration
of the sphere with the map defined by Eq. (2.2.1.12). If we employ the representation
of U(1) defined by Eq. (2.1.3.31) then the right action on the total bundle space SU(2)
is given also in this case by:

Rg : SU(2)× U(1) −→ SU(2) , Rg(s) ≡ sg = s exp

(
iσ3θ

2

)
. (2.2.2.1)

Since Eqs. (2.2.1.6) - (2.2.1.8) only involve variables in the base manifold R3 × S2

they are gauge-invariant, i.e. unaffected by Eq. (2.2.2.1). This is of course so because
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π(sg) = π(s) ∀s ∈ SU(2) , g ∈ U(1). The Lagrangians LA in turn are weakly invariant
since they are function on the total bundle space8 and therefore they change as:

L(r, s) 7−→ L′(r, s) ≡ L(r, sg) = L(s, g) + λθ̇ . (2.2.2.2)

The above equation is completely analogous in form to Eq. (2.1.3.34), so that also in
this case the Action is unaffected and the gauge freedom cannot globally fixed since the
bundle is not trivial. Namely, if we define a section:

σ̃ : S2 −→ SU(2) , σ̃(S) ≡ s(S) s.t. Siσi = λs(S)σ3s(S)−1 , (2.2.2.3)

then the latter cannot be continuous for every S ∈ S2 and is therefore not a global
section, because S3 6= S2 × S1.

We shall conclude the Section highlighting some features which establish a relation
between the charge-monopole system and the spinning particle from a more physical
point of view. As we have already pointed out, the Lagrangians of the systems are
basically the same, if one identifies the “classical”spin of the particle with the quan-
tity n = eg. A more precise correspondence will be formulated in Section 3.3 within
the framework of quantum mechanics. However, the physical reasons underlying this
identification remain quite obscure unless one turns to the relativistic description of the
spinning particle. Without entering into details (for which the reader is referred to [12]),
we shall limit ourselves to a few considerations on the dynamics of a relativistic massless
spinning particle.

Let us start by observing that, in view of the Poisson Brackets Eqs. (2.1.3.9) ,
(2.1.3.11), when one quantizes the charge-monopole system through the standard Dirac
prescription [20], the result is a system which is localized is the position space but is
not so in the velocity space, since [vi, vj] 6= 0. On the other hand, if one considers the
Hamiltonian of a massless spinning particle (c = 1):

H = |p| , (2.2.2.4)

endowed with the canonical Poisson Brackets (or equivalently, commutation relations):

{pi, pj} =0 , (2.2.2.5)

{ri, pj} =δij , (2.2.2.6)

{ri, rj} =− λεijk
pk
p3

; (2.2.2.7)

then the dynamical relation between r and p is given by:

d

dt

[
εijkrjpk + λ

pi
p

]
= 0 , (2.2.2.8)

8For the sake of precision, this is true only for L0, whose domain is R3×SU(2), while the interacting
Lagrangian L1, in view of the additional term, is a function on R3 × SU(2)× S2; however, this is of no
influence since the interaction energy µB · S is obviously gauge-invariant.
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while Eqs. (2.2.2.5) , (2.2.2.7) are constraints which show that the particle is localized in
the momentum space and not in the position one (as it expected for a massless spinning
particle in a relativistic quantum description). In Eq. (2.2.2.6), λ is the helicity of
the particle, which is related to an Irreducible Representation of the proper ortochronus
Poincarè group9 (e.g. we have a photon for λ = 1 and a massless neutrino for λ =

1/2). Moreover, one shows that the Ji’s, Ji ≡
[
εijkrjpk + λpi

p

]
, i = 1, 2, 3, generate

the rotation of the system. Therefore, if one compares Eq. (2.2.2.8) with the radial
equation Eq. (2.1.3.4) it is clear that the product n = eg actually represents a helicity
provided the charge-monopole system is not localized in the velocity space. For the sake
of completeness, we also observe that the Lagrangian Eq. (2.1.3.21) is the analogous of
the non-relativistic limit for the photon Lagrangian:

L = pp̂kṙk − iλTr[σ3s
−1ṡ] , (2.2.2.9)

where s ∈ SU(2), pk ≡ pp̂k and σkpk = sσ3s
−1.

2.3 U(1) bundles and global Lagrangians

The two systems we have studied so far (i.e. the monopole-charge system and the
spinning particle) are characterized by the following peculiar feature: there exists a
phase space endowed with a globally defined energy function, and a symplectic form
(equivalently, Poisson Brackets) is also globally defined therein; however, those systems
do not admit global canonical coordinates in that space and therefore a global Lagrangian
cannot be found by means of a Legendre transformation. The latter can nonetheless
be performed locally, so that local Lagrangians are obtained in appropriate domains
of the manifold. A global Lagrangian for the above systems was built by enlarging
the configuration space to a non-trivial U(1) bundle. We shall now present a general
procedure for finding a global Lagrangian whenever local ones are given togheter with
a globally defined Hamiltonian (and the respective symplectic form). The most salient
results can be synthesized in the following points:

(i) A “quantization”condition must be fulfilled in order for the bundle construction to
work. This condition emerges classically and has a pure geometric origin. Friedman
and Sorkin [17] found that this “light”quantization condition for a system of several
interacting electric and magnetic point-like particles is the following:

eigj
ekgl

= q ∈ Q , (2.3.0.1)

9It is interesting to note that in the most general relativistic case (i.e. when we allow m 6= 0) there

also emerges a non trivial bundle fibration U(1)→ P↑+ → P
↑
+/U(1) within the Lagrangian description.
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where the ei’s and gi’s are the electric and the magnetic charges respectively. This
condition implies that the two types of charged are separately quantized10, but it
is still a less stringent result than the quantization Eq. (2.1.2.8) found by Dirac
using the Schroedinger equation.

(ii) If the above requirement is fulfilled than the global Lagrangian is found by in-
troducing additional U(1) degrees of freedom, i.e. a fibre bundle structure: it is
remarkable that nothing more involved of an U(1) principal bundle is required,
independently of the specific functional form of the Lagrangian.

2.3.1 A technical result

The procedure we will adopt to work out the global Lagrangian is based on the following
result, due to A. Weil [21].

Theorem. Let M be a paracompact manifold11 and Ω ∈ Ω2(M) a closed two-form on
M , dΩ = 0. Let also: ∮

Σ

Ω = 2πνλ , ν ∈ Z , (2.3.1.1)

for every closed two-surface Σ ⊂ M , where λ ∈ R is constant and ν is characteristic of
Σ.
Then there exists a principal bundle (P,M, π, U(1)) and an exact two-form Ω̃ ∈ Ω2(P )
which is the pullback of Ω induced by the canonical projection π : P −→M , i.e.:

1. Ω̃ = dΛ , for some Λ ∈ Ω1(P ) ;

2. Ω̃ = π∗Ω .

Before proceeding with the proof, we make a few observations. The exact form Ω̃,
being globally defined on P , is a “gauge-invariant”two-form: as we know, this means that
if σi : Ui → P , σj : Uj → P are two local sections, Ui ∩ Uj 6= ∅, then σ∗i Ω̃ = σ∗j Ω̃. Thus,

we may regard Ω̃ as a curvature two-form and Ω as its local expression. In conventional
situations in classical mechanics, there exists a global symplectic form dpi∧dqi (in global
canonical coordinates) which is exact, since:

dpi ∧ dqi = d(pidq) . (2.3.1.2)

10To convince oneself of this it is sufficient to take ei = ek and gj = gl, which respectively show the
quantization of the magnetic and of the electric charge.

11A paracompact space is a topological space in which any open covering admits a locally finite
refinement, i.e. for each point in the space there exists a neighbourhood which intersects only a finite
number of open sets of the covering.
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Then this theorem states under which conditions a symplectic form which is closed but
not exact can be turned into an exact one in a total bundle space.
As we will see, Eq. (2.3.1.1) is precisely what gives rise to the quantization condition.

Proof. if λ = 0 then Ω is exact; henceforth we shall assume that λ 6= 0. Since M is
paracompact, it admits an open covering {Uα}α∈A, Uα ⊂ M which is contractible, i.e.
for any Ã ⊂ A the set

⋂
α∈Ã is either empty or can be smoothly contracted to a point.

In each of these sets the converse Poincarè lemma is therefore valid. So consider the
overlapping open sets Uα , Uβ ,∈M : there exist some locally defined one forms Θα , Θβ

such that:
Ω|Uα = dΘα , Ω|Uβ = dΘβ . (2.3.1.3)

Hence,

d(Θα −Θβ) = 0 on Uα ∩ Uβ =⇒ Θα −Θβ ≡ dfαβ , fαβ ∈ C1(Uα ∩ Uβ,R) . (2.3.1.4)

Consider now a third subset Uγ such that Uγ∩Uα∩Uβ 6= ∅ and then define two functions
fαγ , fβγ as in Eq. 2.3.1.4. We have:

d(fαβ + fβγ + fγα) = 0 on Uα ∩ Uβ ∩ Uγ , (2.3.1.5)

so that fαβ + fβγ + fγα is constant on the intersection and we can take that constant to
be:

fαβ + fβγ + fγα = 2πναβγλ , ναβγ ∈ Z , λ ∈ R . (2.3.1.6)

One can prove that the above relation is equivalent to the condition Eq. (2.3.1.1) in the
statement of the theorem (see [21]). Eq. (2.3.1.6) allows us to define the map:

gαβ : Uα ∩ Uβ −→ U(1) , p 7−→ gαβ(p) ≡ exp

(
ifαβ
λ

)
; (2.3.1.7)

and analogously for gαγ, gβγ. By construction (notice that fαβ = −fβα) these maps fulfill
the cocycle conditions:

gαα(p) = id , p ∈ Uα
gαβ(p) = gβα(p)−1 , p ∈ Uα ∩ Uβ
gαβ(p) · gβγ(p) · gγα(p) = id , p ∈ Uα ∩ Uβ ∩ Uγ

so that they are actually transition functions which make P an U(1) bundle over M .
Indeed, if π is the canonical projection map π : P →M , the local trivializations:

Φα : π−1(Uα)→ Uα × U(1) , Φβ : π−1(Uβ)→ Uβ × U(1) , (2.3.1.8)

are related on the fibre over Uα ∩ Uβ 3 p by:

Φ−1
α (p, h(α)) = Φ−1

β (p, h(β)) = Φ−1
β (p, h(α)gαβ(p)) , h(α) , h(α) ∈ U(1) . (2.3.1.9)
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Now define a one-form over Uα, which in a local chart is written as:

mα ≡ −iλ(h(α))−1dh(α) ∈ Ω1(Uα) , (2.3.1.10)

so that:

mα −mβ = −iλ(h(α))−1dh(α) + iλ(h(β))−1dh(β)

= −iλ(h(α))−1dh(α) + iλ(h(α)gαβ)−1dh(α)gαβ

= −iλ(h(α))−1dh(α) + iλ(h(α))−1g−1
αβgαβdh(α) + iλ(h(α))−1g−1

αβh
(α)dgαβ

= iλg−1
αβdgαβ = −dfαβ , (2.3.1.11)

which is a one-form on Uα ∩ Uβ. From Eq. (2.3.1.4) and Eq. (2.3.1.11) we then get:

Θα +mα = Θβ +mβ , (2.3.1.12)

so that the one-form
Θ̃ ≡ Θ̃α + m̃α , (2.3.1.13)

with Θ̃α ≡ π∗Θα, m̃α ≡ π∗mα, is a globally defined one form on P . Finally, since
dm̃α = π∗(dmα) = 0, we can write Ω̃ ≡ dΘ̃; the proof is thus completed.

2.3.2 Global Lagrangians through fibre bundles

We shall now apply the previous result to our physical context. In doing that, we shall
regard the Hamiltonian as a function of coordinates and velocities, rather than of co-
ordinates and momenta, so that it will be defined in the tangent bundle TM of the
configuration space, as well as all the local Lagrangians. This is also the main reason for
the choice we made in defining the Hamiltonian of the charged particle in Section 2.1.3.

Construction of the Lagrangian.
Let M be a 2n-dimensional paracompact manifold which represents the configuration
space of the system and {Uα}α∈A be an open covering of the latter. Further, let
(x1, ..., xn, ẋ1, ..., ẋn) be a local set of coordinates12 for the tangent bundle TUα over
Uα. Suppose that:

(i) The system at stake admits local Lagrangians L(α) defined on the TUα ’s.

(ii) The Hamiltonian is globally defined on TM =
⋃
α TUα, so that in local coordinates:

H(α) ≡ ∂L(α)

∂ẋi
ẋi − L(α) =

∂L(β)

∂ẋi
ẋi − L(β) ≡ H(β) , (2.3.2.1)

on each non-empty intersection TUα∩ TUβ.

12We shall omit Greek indices referring to the set when there is no risk of ambiguity.
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(iii) There is a globally defined two-form ω ∈ Ω2(M). In local coordinates:

ω(α) ≡ d

(
∂L(α)

∂ẋi
dxi
)

= d

(
∂L(β)

∂ẋi
dxi
)

= ω(β) . (2.3.2.2)

This is of course nothing but the canonical symplectic form, as one sees when
turning to the conjugate coordinates and momenta: dpi ∧ dxi = d(pi ∧ dxi).

(iv) The symplectic form Eq. (2.3.2.2) fulfills the quantization condition Eq. (2.3.1.1),
which we recall: ∮

Σ

ω = 2πνλ , ν = 0,±1,±2, ... (2.3.2.3)

for any closed two-dimensional surface Σ ∈ M . Again, λ is a real constant and ν
characterizes Σ.

The important result we are now able to prove is that if conditions i) to iv) are satisfied
then there exists an U(1) principal bundle P over M and a global Lagrangian defined
on TM .

To work out the global Lagrangian we only need adapt to the present context the
procedure exposed in the previous section. So let us define a one-form ψα ≡ ∂L(α)

∂ẋi
dxi

on Uα ⊂ M and analogously for all the other open subsets of the covering. Then Eq.
(2.3.2.2) implies:

d(ψα − ψβ) = d

[
∂

∂ẋi
(
L(α) − L(β)

)
dxi
]

= 0 on Uα ∩ Uβ , (2.3.2.4)

so that ψα − ψβ is a closed one-form on Uα ∩ Uβ, and since the latter is a contractible
set the form is locally exact, i.e. ∃fαβ ∈ C1(Uα ∩ Uβ) such that (ψα − ψβ)|Uα∩Uβ = dfαβ.
Proceeding exactly as above, we ask fαβ to satisfy Eq. (2.3.1.6) (which is equivalent
to Eq. (2.3.2.3)) so that we can build an U(1) bundle P with fibres over M and the
one-forms m so that Eq.(2.3.1.10) holds in each set Uα. Then the form:

ξ ≡ ψα +mα , (2.3.2.5)

is globally defined on M , and therefore

d(π∗ξ) = π∗(dξ) = π∗ω ∈ Ω2(P ) , (2.3.2.6)

being π the canonical projection.
We can now proceed to find the Lagrangian. The energy condition Eq. (2.3.2.1) can

be rewritten as:

L(α) − L(β) =
∂fαβ
∂xi

ẋi , (2.3.2.7)
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and therefore the Lagrangian

L̃ = π∗
(
L(α) − iλ(h(α))−1 dh(α)

dt

)
, (2.3.2.8)

with h(α) ∈ U(1), is globally defined on TP : this follows from −iλ(h(α))−1dh(α)
(

d
dt

)
=

mα

(
d
dt

)
∈ TUα. Moreover, the last term on the right-hand side of the above equation

is the total time-derivative of a function, so that L(α) , L(β) give the same equation of
motion. This shouldn’t be surprising, since the Eq. (2.3.2.8) represents an U(1) gauge
transformation on the total bundle space, under which the global Lagrangian is known
to be only weakly invariant.

The charge-monopole system
To see how (and when) does this result practically work let us turn once again to the
charge-monopole system. Suppose that (ξ1, ..., ξ2n) is a coordinate set for the phase space
TM and the globally-defined symplectic form ω is expressed using these coordinates as:

ω =
1

2!
ωij(ξ)dξ

i ∧ dxj , ωij(ξ) ≡ {ξi ; ξj} , (2.3.2.9)

where { ; } are the Poisson Brackets defined in Section 2.1.3 by Eqs. (2.1.3.9) - (2.1.3.11)
and we lower and raise indices with the euclidean metric so that ωijω

jk = δki and there is
no distinction between covariant and contravariant indices. Taking (r1, r2, r3, v1, v2, v3)
as coordinates then Eq. (2.3.2.9) reads:

ω = 2mdvi ∧ dri +
Fij
2

dri ∧ drj , Fij ≡ n
εijkrk
r3

, (2.3.2.10)

for i , j , k ∈ {1, 2, 3}. If we consider a closed two-surface Σ = ∂V in TM (which is a
six-dimensional space), then if the latter does not include the monopole (i.e. the origin
of the r-space) Stokes’ theorem yields:∮

Σ

ω =

∫
V

dω = 0 , (2.3.2.11)

being the symplectic form locally exact. However, generalizing what we have seen in
Section 2.1.1, if one takes the two sphere S2 in the r-space (with outward orientation)
then a direct calculation furnishes

∫
S2 ω = −4πn. We may now observe that the inte-

gration over the most generic closed two-surface Σ in TM can be obtained by multiple
integrations over S2 with different orientations, and therefore we can write:∫

Σ

ω = 4πnνn = 2πλν , λ ≡ 2n , ν ≡ νn ∈ Z . (2.3.2.12)
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We have thus shown that this simple system satisfies the condition Eq. (2.3.2.3). It is
fundamental to stress that Eq. (2.3.2.12) is not a constraint on the possible values of
n which, following the convention of Section 2.1.3, is given by n = eg and is therefore
real-valued. There is no physical quantization yet and the above equation is only used
to define λ and ν, only the latter being explicitly defined as an integer.

It is also possible to derive the more general relation Eq. (2.3.0.1) in a simple way.
Indeed, suppose that an additional monopole is introduced in the system. For the sake
of simplicity we shall assume that the latter can interact only with the electric charge,
i.e. we neglect any monopole-monopole interaction. Taking as a coordinate the relative
distance between this monopole and the electric charge, r′ = (r′1, r

′
2, r
′
3), the symplectic

form Eq. (2.3.2.10) gains the term:

1

2
n′
εijkr

′
k

r′3
dr′i ∧ dr′j , (2.3.2.13)

being n′ ≡ eg′. Eq. (2.3.2.12) therefore becomes:∫
Σ

ω = 4πnνn + 4πn′νn′ , νn , νn′ ∈ Z. (2.3.2.14)

Comparing the above result with Eq. (2.3.2.3) one then gets:

λν = 2nνn + 2n′νn′ . (2.3.2.15)

Since this holds for any two-surface Σ, we may choose the latter such that νn = 0 (we
recall that ν is characteristic of the surface): this implies that λ = nk , k = 2νn

ν
∈ Q; by

choosing instead Σ such that ν ′n = 0 one gets λ = n′k , k ∈ Q and therefore the ratio
n
n′

is rational. By adding also another electric charge to the system one arrives at the
quantization condition found by Friedman and Sorkin, Eq. (2.3.0.1).
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Chapter 3

Bundle connections and curvature in
quantum mechanics: the geometric
phase

The main purpose of this Chapter is to elucidate the geometrical meaning of the adiabatic
phase acquired by a quantum system during a slow evolution in time. Once again, we will
work within the mathematical framework of principal bundles. Namely, the invariance of
the observables of a quantum system under a phase transformation of the wavefunction
is precisely mirrored by the choice of U(1) as the typical fibre. After a general exposition
of the theory, we will turn to two illustrative examples, which are on their own of a
discrete physical interest: the spinning particle in a slowly varying magnetic field and
the Aharonov-Bohm effect. We will follow the original works on the topic [22], [23], [24],
while the notation employed is that of [3].

3.1 Adiabatic evolution of a quantum system and

the Berry phase

Suppose that we have a quantum system which is described by a Hamiltonian H(R(t)),
where R(t) ≡ (R1(t), ..., Rn(t)) are some time-varying parameters. The evolution of the
system is governed by the Schroedinger equation:

H(R(t)) |ψ(t)〉 = i
d

dt
|ψ(t)〉 , (3.1.0.1)

where we have put ~ ≡ 1. Suppose further that at a fixed time, say e.g. t = 0,
the energy spectrum is discrete with non-degenerate orthonormal eigenvalues |n,R(0)〉,
n ∈ N. The adiabatic theorem states that under this assumption, if the time evolution
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of the parameters R(t) is slow enough and the system is initially found in a given energy
eigenstate |ψ(0)〉 = |n,R(0)〉, with:

H(R(0)) |n,R(0)〉 = En(R(0)) |n,R(0)〉 , (3.1.0.2)

then at a later time t > 0 the system is always in the same eigenstate, which evolves in
time altogether with the Hamiltonian:

H(R(t)) |n,R(t)〉 = En(R(t)) |n,R(t)〉 . (3.1.0.3)

Stated in other words, if the evolution is adiabatic then the eigenstates change their
functional form in such a way that no level crossing takes place. A derivation of the
conditions for an adiabatic evolution is found in Appendix A.

A naive guess for the solution of Eq. (3.1.0.1) with the initial condition Eq. (3.1.0.2)
is then of the form:

|ψ(t)〉 = exp

[
−i
∫ t

0

En(R(s)) ds

]
|n,R(t)〉 ≡ exp[iηd(t)] |n,R(t)〉 , (3.1.0.4)

where the phase factor keeps track of the evolution of the system and is therefore a
dynamical phase. As a consequence of the above equation, if at a certain time t the
system is back in its original configuration, i.e. R(t) = R(0), then it is also found in the
initial eigenstate, up to the dynamical phase factor: |ψ(t)〉 = exp[iηd(t)] |ψ(0)〉. However
a direct substitution of Eq. (3.1.0.4) in Eq. (3.1.0.1) shows that this is not a solution. As
it was first observed by M.V.Berry in 1983 [23], there is a further contribution to the phase
factor, which has a purely geometric character and leads to observable consequences. We
shall now derive this geometric phase.
Let:

|ψ(t)〉 = exp [iη(t)] |n,R(t)〉 , |ψ(0)〉 = |n,R(0)〉 . (3.1.0.5)

The total phase1 η(t) is found by substitution of Eq. (3.1.0.5) in Eq. (3.1.0.1). On
account of the adiabatic assumption Eq. (3.1.0.3) this gives:

i
d |ψ(t)〉

dt
= i

(
i
dη

dt
|n,R(t)〉+

d

dt
|n,R(t)〉

)
exp[iη(t)] (3.1.0.6)

for the right-hand side and:

H(R(t)) |ψ(t)〉 = En(R(t)) exp[iη(t)] |n,R(t)〉 (3.1.0.7)

for the left-hand side. Equating both sides and left-multiplying by 〈n,R(t)| we get a
differential equation for η:

dη

dt
= −En(R(t)) + i 〈n,R(t)| d

dt
|n,R(t)〉 , (3.1.0.8)

1Notice that the phase must be a function of the eigenstate and should be then more accurately
denoted by η(n, t).
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so that an immediate integration yields:

η(t) = −
∫ t

0

En(R(s)) ds+ i

∫ t

0

〈n,R(s)| d

ds
|n,R(s)〉 ds ≡ ηd(t) + ηg(t) . (3.1.0.9)

Together with the expected dynamical phase ηd a new term ηg has appeared, and one
must argue its dependence only on the geometric path followed by the system during the
evolution because the energy is “confined”in the first term:

ηg(t) = i

∫ t

0

〈n,R(s)| d

ds
|n,R(s)〉 ds = i

∫
γ

〈n,R| ∇R |n,R〉 dR , (3.1.0.10)

being γ = {R(t) , 0 ≤ s ≤ t} a path in the parameter space. We can therefore write:

|ψ(t)〉 = exp [iηd(t)] exp [iηg(t)] |n,R(t)〉 . (3.1.0.11)

Remark. Being En(R(t)) real for all t, iηd(t) is obviously purely imaginary. We can
observe that, in view of the orthonormality condition 〈n,R(t)|m,R(t)〉 = δn,m, this is so
also for iηg. Indeed:

2 Re

{
〈n,R(s)| d

ds
|n,R(s)〉

}
= 〈n,R(s)| d

ds
|n,R(s)〉+

(
d

ds
〈n,R(s)|

)
|n,R(s)〉

=
d

ds
(〈n,R(s)| |n,R(s)〉) = 0 ,

so that:

ηg(t) = − Im

{∫ t

0

〈n,R(s)| d

ds
|n,R(s)〉 ds

}
. (3.1.0.12)

Now suppose that the system executes a closed loop Γ in the parameter space, that
is R(T ) = R(0) for some T > 0. Then we have:

ηg(t) = − Im

{∮
Γ

〈n,R| ∇R |n,R〉 dR

}
. (3.1.0.13)

Since the integrand is not necessarily an exact one-form (i.e. 〈n,R(s)| d
ds
|n,R(s)〉 is not

a total time derivative) the geometric phase might not vanish along a closed loop. Berry
showed that this is indeed the case.2

Moreover, the geometric phase which is developed in such a situation is gauge invari-
ant, that is, it can’t be made to vanish by performing a gauge transformation on the
instantaneous eigenkets:

|n,R(t)〉 7→ |n,R(t)〉′ ≡ exp[iα(R(t))] |n,R(t)〉 . (3.1.0.14)

2Notice that there is however an important situation in which the geometric phase is absent; that is
when the energy eigenstates |n,R(t)〉 can be chosen real (as it is evident by inspecting Eq. (3.1.0.12)).

58



In fact we can easily check that under this transformation the integrand changes as:

〈n,R| ∇R |n,R〉 7→ 〈n,R| exp[−iα(R)]∇R (exp[−iα(R)] |n,R〉)
= 〈n,R| ∇R |n,R〉+ i∇R(α(R)) , (3.1.0.15)

and by an integration of the above transformation rule we get:

ηg(t) 7→ ηg(t)
′ ≡ ηg(t)− α(R(t)) + α(R(0)) =⇒ ηg(T ) = ηg(T )′ . (3.1.0.16)

The above equation eventually shows the gauge invariance of the Berry phase developed
along a closed loop. However, there is another reason which makes Eq. (3.1.0.15)
particularly suggestive, that is, the fact that the quantity:

∇× 〈n,R| ∇R |n,R〉 (3.1.0.17)

is gauge invariant independently of the particular transformation the system undergoes.
One is then lead to make a contact with electromagnetism, by regarding 〈n,R| ∇R |n,R〉
as the analogous of a vector potential and its curl as the respective magnetic field. In
this way, the geometric phase Eq. (3.1.0.13) would naturally appear as a magnetic flux
throughout the surface enclosed by Γ. We will come back on this analogy in the next
Sections.

3.2 The geometric phase as a holonomy on a U(1)

bundle

We shall now give a description of the geometric phase within the framework we have
developed in the first Chapter, that is, principal bundles and connections over them.
Consider the parameter space manifold M , whose local coordinates are R = (R1, ..., Rn).
At each point p ∈M we have a Hamiltonian H(R) whose normalized n-th eigenstate is
|n,R〉: this will be henceforth denoted simply by |R〉, since we are assuming that the
evolution is adiabatic and there is no state transition. The relevant quantum states are
defined up to a phase, so that we can introduce an equivalence relation:

|R〉 ∼ |R〉′ ⇔ |R〉 = g |R〉 , g ∈ U(1) , (3.2.0.1)

and define the total space over U as P ≡ {[|R〉]∼ ; R ∈ M}. If we further define a
canonical projection:

π : P −→M , π[|R〉] ≡ |R〉 , (3.2.0.2)

then we have specified a principal U(1) bundle P over M , and through local sections we
can fix the phase of the quantum state |R〉 at each point R on M . Therefore, as we had
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already anticipated in Section 1.1.2, local sections of U(1) bundles are in this context
the geometric representations of wavefunctions. Let:

σ : M ⊃ U → P , σ(R) ≡ |R〉 = e |R〉 , (3.2.0.3)

be the trivial local section over U . The corresponding local trivialization Φ : π−1(U)→
U × U(1) is then given by:

Φ(|R〉) = (R, e) , (3.2.0.4)

and the U(1) right action on P (equivalent to the left one) is:

|R〉 g = σ(R)g = Φ−1((R, e)g) = Φ−1(R, g) . (3.2.0.5)

We can now provide the principal bundle with a connection. We define the Berry’s
connection over U ⊂ M as the local connection one-form3 A ∈ Ω1(U) which in local
coordinates R = (R1, ..., Rn) is given by:

A ≡ AµdRµ = 〈R| d |R〉 = 〈R| ∂

∂Rµ
|R〉 dRµ . (3.2.0.6)

This is an anti-Hermitian connection, since:

0 =
∂

∂Rµ
(〈R|R〉) =

(
∂ 〈R|
∂Rµ

)
|R〉+ 〈R|

(
∂ |R〉
∂Rµ

)
≡
(
A†
)µ

+Aµ . (3.2.0.7)

Now, if Ui and Uj are two overlapping charts over M whose respective sections are
σi(R) = |R〉i and σj(R) = |R〉j then the latter are related by a transition function
tij : Ui ∩ Uj → U(1) as |R〉j = |R〉i tij = tij |R〉i. Consequently:

Aj =j 〈R| d |R〉j = tij(R)∗i 〈R| [(d |R〉i)tij(R) + |R〉i (dtij(R))]

= Ai + tij(R)−1dtij(R) , (3.2.0.8)

where we have used the normalization of the eigenstate and the unitarity of the structure
group, i.e. tij(R)∗ = tij(R)−1. This is nothing but the consistency law Eq. (1.2.1.24)
in the case of an abelian structure group. Therefore a set of local Berry’s connections
{Ai} over Ui ⊂ M define through their pullbacks an unique Ehresmann connection on
(P, π,M,U(1)). Further, if one sets tij(R) ≡ exp{iΛ(R)} the electromagnetic gauge
transformation Eq. (1.2.1.27) is recovered. This supports our previous suggestion on the
mathematical affinity between the vector potential and the Berry phase, being both just
U(1) connections on a principal bundle. The same relationship is of course shared by
the electromagnetic field tensor and the local Berry’s curvature, where the latter is
given by:

F = dA = (d 〈R|) ∧ (d |R〉) =

(
∂ 〈R|
∂Rµ

)(
∂ |R〉
∂Rν

)
dRµ ∧ dRν . (3.2.0.9)

3Observe that the Lie Algebra u(1) is one-dimensional so that Ω1(U, u(1)) ' Ω1(U,R).
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We can now proceed and unveil the role played by the adiabatic phase within this geo-
metric framework. First, let us define -for each energy level n and instant of time t- a
“rescaled”Hamiltonian:

H̃(R(t)) ≡ H(R(t))− En(R(t)) . (3.2.0.10)

The eigenvalue relation fulfilled by the instantaneous normalized n-th eigenvector |R(t)〉,
Eq. (3.1.0.3), reads then:

H̃(R(t)) |R(t)〉 = 0 , (3.2.0.11)

while the modified Schroedinger equation (i.e. Eq. (3.1.0.1) with H replaced by H̃) is
solved by:

|ψ(t)〉 = exp[iηg(t)] |R(t)〉 , (3.2.0.12)

being ηg(t) the geometric phase defined by Eq. (3.1.0.12), as one could have also (clum-
sily) inferred by taking En ≡ 0 in Eq. (3.1.0.9). The dynamical phase has thus been
discarded and will make no appearance in our further considerations. Consider then a
loop in the parameter space:

γ : [0, 1] −→ U ⊂M , γ(t) ≡ R(t) . (3.2.0.13)

If σ(R(t)) = |R(t)〉 is a local section over U and the respective local connection form A
is given by Eq. (3.2.0.6) then we can follow the procedure adopted in Section 1.2.2 and
build the horizontal lift of γ with respect to A in P :

R̃(t) ≡ γ̃(t) = σ(R(t))g(R(t)) , (3.2.0.14)

where the usual choice g(R(0)) = e ∈ U(1) has been made. The variation of the group
element g(R(t)) with respect to t is given by:

dg(t)

dt
= −A

(
d

dt

)
g(t) , (3.2.0.15)

that is:
dg(t)

dt
g(t)−1 = −A

(
d

dt

)
= −〈R(t)| d

dt
|R(t)〉 . (3.2.0.16)

The previous equation defines a rule for parallel transporting a point along the lifted
curve. If we now set g(t) ≡ exp[iη(t)] then η(t) is easily recognized as the geometric
phase, since Eq. (3.2.0.16) yields:

i
dη

dt
= −〈R(t)| d

dt
|R(t)〉 = −〈R(t)| ∇R |R(t)〉 dR

dt
, (3.2.0.17)
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M

R(0)R(t)

|R(0)〉

R̃(1) = eiη(1) |R(0)〉

R̃(t)

Figure 3.1: Adiabatic phase as a holonomy on a principal bundle.

which is nothing but Eq. (3.1.0.8) once that one has neglected the dynamical term. After
an immediate integration we have:

η(t) = i

∫ t

0

〈R(s)| d

ds
|R(s)〉 ds =⇒ η(1) = i

∮
γ

〈R| d |R〉 = i

∮
γ

AµdRµ . (3.2.0.18)

Finally, the parallel transported of the point R(0) = R(1) as a function of the Berry’s
connection is given by:

R̃(1) = exp[iη(1)] |R(0)〉 = exp

[
−
∮
γ

AµdRµ

]
|R(0)〉 , (3.2.0.19)

where we have used the fact that |R(0)〉 = |R(1)〉. The previous equation elucidates the
meaning of the geometric phase acquired by a particle which slowly moves along a loop
as a holonomy on the U(1) bundle built over the parameter space: exp[iη(1)] measures
the distance between the horizontal lift of the starting and the ending point of the loop
(see Figure 3.1). The interpretation of the adiabatic phase as a holonomy was firstly
given by B. Simon [24].

It is of course also possible to express the previous result in terms of the curvature
F = dA; if S is a closed two surface in M whose boundary is ∂S = γ then Eq. (3.2.0.19)
implies:

R̃(1) = exp

[
−
∫
S

FµνdRµ ∧ dRν

]
|R(0)〉 . (3.2.0.20)
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3.3 Spinning particle in a slowly varying magnetic

field

As a simple application of the theory previously exposed we shall now derive the geo-
metric phase developed by a particle with a spin magnetic moment in the presence of
an adiabatically changing magnetic field. As we shall see, also in the quantum case a
surprising similarity between this system and that of a magnetic monopole sitting at a
fixed point in space shows up.

Suppose that a spin-1/2 particle is in the presence of a time varying magnetic field
B(t) whose modulus B is fixed. The spin operator for the particle is ŝ = ~σ̂

2
so that

the spin magnetic moment is µ̂s = −µBgeσ̂
2

= −µBσ̂, where we have assumed the spin
g-factor to be ge = 2. Then, neglecting the translational degrees of freedom and taking
R(t) ≡ µBB(t) as coordinates on the parameter manifold, the Hamiltonian of the system
is an immediate generalization of Eq. (2.2.1.2):

H(R(t)) = −µ̂B ·B(t) = R(t) · σ̂ =

(
R3 , R1 − iR2

R1 + iR2 , −R3

)
. (3.3.0.1)

The time varying parameter is then the direction of the magnetic field, with R(t) =
(R1(t), R2(t), R3(t)) spanning a two-sphere. Therefore, if the magnetic field has a fixed
magnitude, we can take with no loss of generality M ≡ S2 as the parameter base mani-
fold. Notice that this situation is dual to the one described in Section 2.2, in which the
spin vector S was regarded as varying on a sphere.
Eq. (3.3.0.1) describes a two-state system, for which it is known that, at a fixed time t,
the energy eigenvalues are ±|R| and the Schroedinger equation Eq. (3.1.0.1) reads:

(R · σ̂) |R〉± = ±|R| |R〉± . (3.3.0.2)

Let us now adopt spherical coordinates in the R space, so that:

R1 = R sin θ cosφ , R2 = R sin θ sinφ , R3 = R cos θ ; (3.3.0.3)

with θ ∈ [0, π] , φ ∈ [0, 2π]. It is well known from the Pauli theory of two-state systems
that if we consider the two eigenvectors of σ̂3 (that is, the spin eigenstates when the
magnetic field is along the z-axis, B = Be3):

|+1〉 ≡
(

1
0

)
, |−1〉 ≡

(
0
1

)
, σ̂3 |±1〉 = ± |±1〉 , (3.3.0.4)

then the eigenvectors |R〉± , i.e. spin eigenstates when the angular coordinates of the
field are given by Eq. (3.3.0.3), are obtained by a “rotation”of |+1〉 and |−1〉; namely:

|R〉+ = cos(θ/2) |+1〉+ exp(iφ) sin(θ/2) , (3.3.0.5)

|R〉− = − exp(−iφ) sin(θ/2) |+1〉+ cos(θ/2) |−1〉 . (3.3.0.6)
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Let us concentrate on the positive eigenvalue. According to what we did in the previous
section, we can introduce a Hamiltonian:

H̃(R) ≡ H(R)− 1|R| , (3.3.0.7)

so that the zero-energy eigenstate is precisely given by Eq. (3.3.0.5):

|R〉N ≡ |R〉+ =

(
cos(θ/2)
eiφ sin(θ/2)

)
= [2R(R +R3)]−1/2

(
R +R3

R1 + iR2

)
. (3.3.0.8)

Here the subscript “N”denotes the fact that this eigenvector is singular when R = −R3,
i.e. θ = π, and this parametrization is valid only on the Northern hemisphere SN ⊂ S2.
One immediately verifies that N 〈R|R〉N = 1. On the southern hemisphere SS ⊂ S2

we must choose a different eigenvector; a good choice consists in simply rotating |R〉N
around the z-axis, that is:

|R〉S ≡ exp(−iφ) |R〉N

=

(
e−iφ cos(θ/2)

sin(θ/2)

)
= [2R(R−R3)]−1/2

(
R1 − iR2

R−R3

)
. (3.3.0.9)

One can immediately check that |R〉S is normalized and satisfies H̃(R) |R〉S = 0 (and
must therefore not be confused with the negative eigenstate defined in Eq. (3.3.0.6)).
Moreover, |R〉S is singular when R = +R3 (θ = 0) and is thus well defined on SS.

An U(1) principal bundle structure is once again naturally defined by the previous
construction. The base manifold is S2, and for n = +1 , n = −1 there is a fibre
attached to each point corresponding to the eigenstate |n,R〉: the fibre at R ∈ M is
given by [|R〉]∼, being ∼ the equivalence relation defined in Eq. (3.2.0.1). If the adiabatic
assumption holds and there is no state change during the evolution4 then the total bundle
space is

P ≡ {[|R〉]∼ ; R ∈ S2} , (3.3.0.10)

and the canonical projection π : P −→ S2 maps each quantum state into the parameter
on which it is defined:

π : exp(iα) |R〉 7−→ R ∈ S2 . (3.3.0.11)

The bundle is not trivial since at least two charts (and two local sections accordingly)
are required to parametrize the states at each point. Notice also that when R = 0 (that
is, B = 0) then the separation between the two eigenstate |R〉+ and |R〉− ceases to exist

4In this context the adiabatic assumption simply states that when the magnetic fields rotates, the
particle keeps its magnetic moment always aligned to the former. This is approximately so when Ω� ωL,
being Ω a characteristic rotational frequency of the field and ωL ≡ 2µBB/~ the Larmor frequency of
the spin precession. Since the system has only two possible states, when the adiabatic condition breaks
then the fields rotates fast enough to make the particle “reverse”its spin.
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and there is only a doubly degenerate zero-energy state.
We can now work out the local connections on the two hemispheres. Recalling that in
local cartesian coordinates the external derivative simply reads:

d |R〉N,S =
∂|R〉N,S
∂Rµ

dRµ , µ = 1, 2, 3 ; (3.3.0.12)

a long but plain calculation [3] yields for AN ∈ Ω1(SN):

AN ≡N 〈R| d |R〉N = −iR
2dR1 −R1dR2

2R(R +R3)
. (3.3.0.13)

An analogous result holds for AS ∈ Ω1(SS):

AS ≡S 〈R| d |R〉S = +i
R2dR1 −R1dR2

2R(R−R3)
. (3.3.0.14)

The gauge potentials AN and AS can be expressed in a more suggestive form if one
turns to polar coordinates. Indeed, by Eq. (3.3.0.8), Eq. (3.3.0.9) and an elementary
application of the chain rule dRµ = ∂Rµ

∂θ
dθ + ∂Rµ

∂φ
dφ one gets:

AN =
1

2
i(1− cos θ)dφ , θ 6= π , (3.3.0.15)

AS = −1

2
i(1 + cos θ)dφ , θ 6= 0 , (3.3.0.16)

and the transformation law Eq. (3.2.0.8) reads:

AS = AN − idφ = AN + exp(iφ)d exp(−iφ) . (3.3.0.17)

Therefore one can identify the transition function tNS on the equatorial line as:

tNS : SN ∩ SS −→ U(1) , tNS(π/2, φ) ≡ exp(−iφ) . (3.3.0.18)

With this choice of coordinates one can also immediately obtain a simple expression for
the curvature two-form; namely, from Eq. (3.3.0.15) or Eq. (3.3.0.16):

F ≡ dA = i
1

2
sin θ dθ ∧ dφ, (3.3.0.19)

where the subscript has been suppressed since the curvature is gauge invariant.5

Now the analogy between this physical system and the magnetic monopole is completely
evident: in both cases we have a non-trivial P (S2, U(1)) principal bundle, and by com-
paring Eq. (3.3.0.15) and (3.3.0.16) with Eq. (2.1.1.19) (with r = 1 , θ = π/2) one can

5Specifically, minus signs “cancel out”when one takes the exterior derivative of both AN and AS .
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identify the local connections for the spinning-particle system with the local vector po-
tentials of a Wu-Yang monopole of strength g = −1/2. The U(1) gauge transformation
Eq. (2.1.1.21) and Eq. (3.3.0.17) therefore do also coincide.

We now turn to the holonomy and the adiabatic phase. The general procedure to
derive the geometric phase is the one followed in the previous section. We choose a loop
γ(t) on S2, build its horizontal lift γ̃(t) through a section σ : R(t) 7→ |R(t)〉 and parallel
transport |R(0)〉 along the loop, obtaining a map:

hR : π−1(R) −→ π−1(R) , |R(0)〉 7→ R̃(1) = exp[iη(1)] |R(0)〉 . (3.3.0.20)

The holonomy group element exp[iη(1)] is precisely the Berry phase, which in the current
situation is given by:

η(1) = i

∮
γ

A = i

∫
Σ

F = −1

2

∫
Σ

sin θ dθ ∧ dφ = −1

2
Ω(γ) , (3.3.0.21)

where dΩ = sin θ dθ ∧ dφ denotes an infinitesimal solid angle and therefore Ω(γ) is the
total solid angle swept by the magnetic field B(t) while it rotates on S2. We come then
to the conclusion that the geometric phase developed by a spinning particle when the
magnetic field (adiabatically) completes a loop is nothing but the total magnetic flux
throughout the corresponding solid angle produced by a magnetic monopole fixed at the
origin of S2.

Finally, we observe that this result is general, i.e. is valid also for different values of
the spin. Without entering into details (see [23]), the eigenvalue equation for a generic
spin operator Ŝ becomes

−µ̂s ·B |m,R〉 ≡ αR · Ŝ |m,R〉 = αm~ |m,R〉 , (3.3.0.22)

being α ≡ −µBBgs
~ and m the integer which enumerates the eigenvalues of the spin

projection along the direction of R. The spin 1/2 case obviously corresponds to m =
+1/2 , m = −1/2, and the previous result is recovered when one consider the m = 1/2
eigenvalue. Starting from Eq. (3.3.0.22) one obtains a Berry phase:

η(1) = −mΩ (γ) , (3.3.0.23)

thus showing that the general correspondence between the spin projection m and the
monopole strength g is:

m = −g . (3.3.0.24)

3.4 The Aharonov-Bohm effect

As shown in Section 1.2.3, an important feature which establishes a primary distinc-
tion between local connection one-forms (gauge potentials) and curvature (strength field
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Figure 3.2: Schematical representation of the experimental setup for the Aharonov-Bohm
effect.

tensors) is that only the latter are actually gauge invariant and can therefore represent
physical observable quantities. This is why classically is the electromagnetic field Fµν to
be of principal interest, whereas the four-potential Aµ is only of secondary importance.
However, as it was firstly predicted by W. Ehrenberg and R. E. Siday in 1949 [25] and
subsequently by Y. Aharonov and D. Bohm in a famous article published ten years later
[22], there are certain situations in quantum mechanics in which the role played by the
potentials become essential, and give rise to measurable effects. The most famous ex-
ample is provided by the Aharonov-Bohm effect, which we will now briefly expose and
describe in terms of quantum geometric phases.

An Aharonov-Bohm experimental apparatus can be schematically represented as in
Figure 3.2. Suppose that a beam of electrons with charge −e is incoming from the far
left, and that it splits into two different beams at a point distant from the measuring
apparatus. Suppose further that there is a solenoid with a finite radius R and that the
electrons are prevented from penetrating inside the latter (this is realized e.g. by placing
a shield with only two separated slits before the solenoid), so that the two beams can
only rejoin at a point on a screen far on the right from the solenoid, where the inten-
sity of the resultant superposition field of the electrons can be measured. For the sake
of simplicity, we take the solenoid to be perpendicular to the plane where the motion
occurs, so that the accessible configuration space is two dimensional.
If the solenoid is placed along the z-axis then the magnetic field B = Be3 is approxi-
mately uniform inside the solenoid and is absent everywhere out of it:

B(r) = 0 if r > R , r = (x, y, 0) . (3.4.0.1)

Therefore, if Σ is any surface in the x-y plane which encloses the solenoid then the
magnetic flux Φ through Σ is fixed and given by:

Φ ≡
∫

Σ

B · dS =

∫
Σ

∇×A · dS =

∮
∂Σ

A · dr = πBR2 , (3.4.0.2)

where the vector potential A(r) is such that ∇×A = B for each r < R and ∇×A = 0
when r > R. However, the vanishing of the curl outside of the solenoid does not imply
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that A itself is zero therein. Indeed, if one takes:

A(r) ≡
(
− yΦ

2πr2
,
xΦ

2πr2
, 0

)
=

Φ

2πr
, r ≥ R (3.4.0.3)

A(r) ≡
(
− yΦ

2πR2
,
xΦ

2πR2
, 0

)
=

Φ

2πR
, r ≤ R ; (3.4.0.4)

then it is immediate to check that Eq. (3.4.0.2) is satisfied, even though A 6= 0 outside
of the solenoid.

Remark. One might try to gauge-transform the potential defined by Eqs. (3.4.0.3) -
(3.4.0.4) so that A′ ≡ A +∇Λ is identically vanishing when r > R. Adopting spherical
coordinates, that would be possible if there existed a scalar function Λ(r, θ, φ) such that:

∇Λ(r, θ, φ) +
Φ

2πr
eθ = 0 =⇒ 1

r

∂Λ

∂θ
+

Φ

2πr
= 0 , (3.4.0.5)

where eθ ≡ − sin θex+cos θey. Up to an integration constant, the above equation admits
the solution:

Λ(r, θ, φ) = − Φ

2π
. (3.4.0.6)

Eq. (3.4.0.6) does not define an acceptable gauge transformation since Λ is not single-
valued and therefore neither is the transformed wavefunction. This means that we can’t
make A vanish everywhere through a global gauge-fixing unless we allow the latter to
be defined by a non single-valued scalar function.

Nonetheless, classically, the presence of a non-vanishing vector potential is expected
to be of no influence on the motion of the electrons, since the latter is governed by the
Lorentz force −e(v ×B) in which only the field makes an appearance. This in contrast
with the experimental evidence of an interference registered on the screen when the
two beams reunite, which indicates that the respective wavefunctions have developed a
phase shift along their separated paths. This can be explained on account of the quantum
behaviour of the particles.

Let us denote by γ1 and γ2 the two paths followed by the particles and by ψi(r, t),
i = 1, 2, the respective wavefunctions when A = 0 outside of the solenoid. When there is
instead a non vanishing vector potential the time-dependent Schroedinger equation for
the electrons reads:

Ĥψi ≡
1

2m

(
p̂− e

c
Â
)2

ψ(r, t) = i~
∂ψi
∂t

, i = 1, 2 ; (3.4.0.7)

where ~ and c have been reintroduced. As shown in Section 2.1.2 the wavefunctions
ψA
i (r, t) in this situation are obtained by gauge-transforming ψi(r, t); namely if the field

configuration is stationary (A is constant in time):

ψA
i (r, t) = exp[iη(γi)]ψi(r, t) ≡ exp

[
ie

~c

∫
γi

A(r′) dr′
]
ψi(r, t) , i = 1, 2 ; (3.4.0.8)
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being γi two different paths which both start at a very distant point P and have the same
ending point Q on the screen. Let r0, r denote the position of P and Q respectively.
Notice that the integrals appearing in the phases ηi in Eq. (3.4.0.8) would be equal if
the region where the motion takes place were simply connected: indeed, since ∇×A = 0
outside of the solenoid, the integrand is a closed one-form and therein locally exact, so
that the the integrals would depend only on the ending points. However, the region is
not simply connected because of the solenoid, so that there is an explicit dependence on
the path.

We can now compute the resulting wavefunction at r. Since the field is constant we
can neglect the explicit time dependence of ψA

i (which is simply a phase factor) so that:

ψA
1 (r) + ψA

2 (r) = exp

[
ie

~c

∫
γ1

A(r′) dr′
]
ψ1(r)

+ exp

[
ie

~c

∫
γ2

A(r′) dr′
]
ψ2(r)

= exp

[
ie

~c

∫
γ2

A(r′) dr′
]{

exp

[
ie

~c

∮
γ

A(r′) dr′
]
ψ1(r) + ψ2(r)

}
,

(3.4.0.9)

where γ ≡ γ1 ∪ (−γ2) is a loop enclosing the solenoid. Recalling Eq. (3.4.0.2) we find
that there is an observable phase shift between the two wavefunctions, which is given by:

η(γ) ≡ ie

~c

∮
γ

A(r′) dr′ =
ieΦ

~c
. (3.4.0.10)

The resulting expression is independent of γ as long as the latter actually encloses the
solenoid; otherwise, if the beams were to pass-by the solenoid remaining “on the same
side”of the latter there would be no interference.
Notice also that two different values of Φ, say Φ1 and Φ2, would cause the same shift if:

∆Φ = Φ1 − Φ2 =
2π~n
e

, n ∈ Z . (3.4.0.11)

Curiously, up to an irrelevant geometric factor, this quantization relation for the flux is
the same obtained by Dirac for the magnetic monopole, Eq. (2.1.2), with the substitu-
tion6 Φ ↔ g. It is therefore suggestive to think of the solenoid as a sort of Dirac string
singularity caused by a monopole placed at the origin.

We can now turn to the geometry underlying the Aharonov-Bohm effect and explain
the geometric phase shift in terms of holonomy. For simplicity, we take the radius of the
solenoid to be infinitesimally small (keeping the flux fixed), so that the the base manifold

6This is dimensionally consistent since a flux and a magnetic charge share the same units of mea-
surement.

69



is M ≡ R2 \ 0. The principal bundle structure is (P, π,M,U(1)), being the total space
defined by the equivalence relation of Section 3.2; the associated vector bundle is instead
E ≡ PC × C, with the sections σ : M → E once again representing wavefunctions. Let
now Aµ ≡ (0,A), with A given by Eq. (3.4.0.3), and define a local connection one-form:

A ∈ Ω1(M) , A ≡ iAµdxµ . (3.4.0.12)

Such a connection, as we know, uniquely separates (when lifted up to P through a
section) TP into a horizontal and a vertical component at each point, so that a covariant
derivative over P (Eq. (1.2.3.2)) is well defined and given by D = d+A. Since the origin
has been excluded from M we also have dA = F = 0 and the bundle is locally flat.
Now restrict the connection to the unit circle enclosing the solenoid, S1 = {eiθ 0 ≤ θ ≤
2π}, so that the connection Eq. (3.4.0.12) reads therein (r = 1 , {xµ} = θ):

A = i
Φ

2π
dθ . (3.4.0.13)

Take ψ : S1 −→ E to be a local section. By imposing that ψ is parallel transported
along S1, that is Dψ = 0, we obtain an explicit expression for the section and, so, for
the horizontal lift of the circle:(

d + i
Φ

2π
dθ

)
ψ(θ) =

dψ

dθ
dθ + i

Φ

2π
ψdθ = 0 =⇒ ψ(θ) = exp

[
−iΦθ

2π

]
; (3.4.0.14)

where we have normalized to 1 the amplitude coefficient. Up to numerical coefficients
(that one adjusts by a slight modification in the definition of D), the last term in the
equation above is precisely the Aharonov-Bohm phase factor exp[η(S1)] which we ulti-
mately recognize as a geometric phase, i.e. a holonomy:

Γ : π−1(θ = 0)→ π−1(θ = 2π) , Γ[ψ(0)] ≡ e−iΦψ(0) . (3.4.0.15)
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Appendix A

The adiabatic theorem

In Section 3.1 it was shown that if a quantum system evolves according to:1

Ĥ(t) |ψ(t)〉 = i~
d

dt
|ψ(t)〉 , t ∈ [t0, t1] , (A.1)

and the discrete, orthonormal and non-degenerate eigenstates |n, t〉 of Ĥ(t) are such that
the adiabatic assumption holds:

Ĥ(t) |n, t〉 = En(t) |n, t〉 , (A.2)

then if |ψ(t0)〉 = |n, t0〉, the state at a time t > t0 is given by:

|ψ(t)〉 = exp[iηd(t)] exp[iηg(t)] |n, t〉 , (A.3)

being ηd, ηg the dynamical and geometric phase respectively.
Following [26] we shall now derive a quantitative condition which establishes when the
evolution can be considered “slow enough”for Eq. (A.2) to hold. Let τ ≡ t1 − t0 be the
period of time in which the evolution occurs. If the (generic) state at t0 is |ψ(t0)〉 then
its evolution in time is given by:

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 , t ∈ [t0, t1] , (A.4)

where Û is the time-evolution operator of the system, which is given by:

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) , Û(t0, t0) = 1 . (A.5)

1Here we tacitly assume that the time-dependence of the Hamiltonian is contained only in the pa-
rameters R(t) so that we can use the shorthand notation H(R(t)) ≡ H(t). Notice that ~ has been
reintroduced.
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Observe that the above equation togheter with the initial condition imply the unitarity
of the evolution operator: Û(t, t0)†Û(t, t0) = 1. Eq. (A.5) is easily rewritten in the
integral form:

Û(t, t0) = 1− i

~

∫ t

t0

Ĥ(t′)Û(t′, t0) dt′ , (A.6)

whose formal solution is given by the series expansion:

Û(t, t0) = 1 +
1

i~

∫ t

t0

Ĥ(t)dt+
1

(i~)2

∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ(t′)Ĥ(t′′) +O(~−3) . (A.7)

The adiabatic approximation is valid if at the time t1 the probability to find the system
in a state other than that in which it started at t0, |ψ(t0)〉 ≡ |0〉, is very low, i.e.:

ζ ≡ 〈0|0〉 − |〈ψ(t1)|0〉|2

= 〈ψ(t1)| Û(t1, t0)†Û(t1, t0) |0〉 − 〈0| Û †(t1, t0) |0〉 〈0| Û(t1, t0) |0〉 � 1 . (A.8)

We shall now assume to work in the perburbative limit so that we can consider only the
first-order term in the series Eq. (A.7):

Û(t1, t0) ' 1 +
τ

i~
Ĥτ , Ĥτ ≡

1

τ

∫ t1

t0

dtĤ(t) . (A.9)

Notice that Ĥτ is a time-independent operator and must not be confused with the energy
mean value 〈H(t)〉 ≡ 〈ψ(t)| Ĥ(t) |ψ(t)〉. Substitution of Eq. (A.9) in Eq. (A.8) and a
little algebra yield:

ζ = 〈0| (1 + i~−1τĤτ )(1− i~−1τĤ) |0〉 − 〈0| (1 + i~−1τĤτ ) |0〉 〈0|
(
1− i~−1τĤτ

)
|0〉

=
τ 2

~2
(〈0| Ĥ2

τ |0〉 − 〈0| Ĥτ |0〉 〈0| Ĥτ |0〉) =
τ 2

~2

(
〈Ĥ2

τ 〉 − 〈Ĥτ 〉
2
)

=
τ 2σ2(Ĥτ )

~2
, (A.10)

being σ2(Ĥτ ) the squared deviation of the time-averaged Hamiltonian. The validity
condition for the adiabatic approximation reads therefore:

ζ =
τ 2σ2(Ĥτ )

~2
� 1⇒ τ � ~

〈Ĥτ 〉
. (A.11)

Notice that the above condition is consistent with the time-energy indetermination rela-
tion. For a more rigorous statement (and proof) of the adiabatic theorem the reader is
referred to [27].
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