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Abstract

In this thesis we will use deep learning tools to tackle an interesting and com-

plex problem of image processing called style transfer. Given a content image

and a style image as inputs, the aim is to create a new image preserving the

global structure of the content image but showing the artistic patterns of the

style image. Before the renaissance of Artificial Neural Networks, early work

in the field called texture synthesis, only transferred limited and repeatitive

geometric patterns of textures. Due to the avaibility of large amounts of

data and cheap computational resources in the last decade Convolutional

Neural Networks and Graphics Processing Units have been at the core of a

paradigm shift in computer vision research. In the seminal work of Neural

Style Transfer, Gatys et al. consistently disentangled style and content from

different images to combine them in artistic compositions of high perceptual

quality. This was done using the image representation derived from Con-

volutional Neural Networks trained for large-scale object recognition, which

make high level image informations explicit. In this thesis, inspired by the

work of Li et al., we build an efficient neural style transfer method able

to transfer arbitrary styles. Existing optimisation-based methods (Gatys et

al.), produce visually pleasing results but are limited because of the time

consuming optimisation procedure. More recent feedforward based meth-

ods, while enjoying the inference efficiency, are mainly limited by inability

of generalizing to unseen styles. The key ingredients of our approach are a

Convolutional Autoencoder and a pair of feature transform, Whitening and

Coloring, performed in the bottleneck layer. The whitening and coloring
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6 Abstract

transforms reflect a direct matching of feature covariance of the content im-

age to the given style image. The algorithm allows us to produce images of

high perceptual quality that combine the content of an arbitrary photograph

with the appearance of arbitrary well known artworks. With the intention to

understand this unconvential approach, before diving into the architectural

and implementational details, we provide an introduction to basic theoretical

concepts about machine learning as well as the necessary background notions

on artistic style transfer.



Riassunto

In questa tesi verranno utilizzati strumenti di deep learning per affrontare un

interessante e complesso problema di processamento delle immagini chiam-

ato trasferimento di stile. Dati in input un immagine di contenuto ed un

immagine di stile, lo scopo è di creare una nuova immagine che condivida

i tratti stilistici dell’immagine di stile preservando la struttura complessiva

dell’immagine di contenuto. Prima della rifioritura delle reti neurali arti-

ficiali, i primi lavori di ricerca nell’ambito della sintesi di texture, erano

limitati nel riprodurre texture dagli schemi geometrici e ripetitivi. Grazie

alla disponibilità di grandi quantità di dati e risorse computazionali a basso

costo nell’ultima decade le reti neurali convoluzionali e le unità di processa-

mento grafico (GPU) sono state al centro di un cambiamento di paradigma

in tutti gli ambiti di ricerca legati alla visione artificiale. Il brillante la-

voro di Gatys et al. che inaugurò il campo di ricerca chiamato Neural Style

Transfer, fu il primo in grado di separare la rappresentazione dello stile e

del contenuto da due immagini e ricombinarlo creando una composizione ar-

tistica di altà qualità. Questi risultati sono divenuti realizzabili grazie alla

rappresentazione esplicita di alto livello delle immagini estratta da reti neu-

rali convoluzionali allenate su larga scala per il riconoscimento di oggetti.

Questa tesi, inspirata dal lavoro di Li et al., propone un nuovo ed efficiente

metodo per il trasferimento di stili arbitrari. I metodi esistenti basati su

ottimizazione (e.g., Gatys et al.) producono risultati visivamente piacevoli

ma sono limitati dal dispendio di tempo richiesto dalla procedura iterativa di

ottimizazione. Metodi più recenti basati su reti neurali feedforward godono
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8 Riassunto

invece di un inferenza rapida ma sono limitati nella capacità di generalizzare

a stili arbitrari su cui la rete non è stata allenata. Gli ingredienti principali

del nostro approccio sono una rete Autoencoder convoluzionale ed un paio

di trasformazioni, chiamate Whitening e Coloring applicate sulla rappresen-

tazione latente. Queste trasformazioni statistiche inducono una corrispon-

denza diretta tra la covarianza della rappresentazione del contenuto e quella

dello stile. Questo algoritmo ci permette di produrre immagini visimente

piacevoli che combinino il contenuto di una qualsiasi fotografia con lo stile

di una qualsiasi opera d’arte. Per comprendere le motivazioni di questo ap-

proccio non convenzionale al trasferimento di stile, prima di addentrarci nei

dettagli architetturali ed implementativi, forniremo alcuni concetti teorici

sul machine learning ed alcune nozioni sullo stato della ricerca sul tema del

trasferimento di stile.



Chapter 1

Introduction

Elmyr de Hory was a Hungarian-born painter and art forger, who is believed

to have sold over a thousand forgeries to reputable art galleries all over the

world. The forger’s skill is a testification to the human talent and intelligence

required to reproduce the artistic details of a diverse set of paintings. In

computer vision, much work has been invested in teaching computers to

likewise capture the artistic style of a painting with the goal of conferring

this style to an arbitrary photograph in a convincing manner.

Early work on this topic concetrated on visual texture synthesis using non-

parametric models for “growing” textures one pixel at a time. Soon enough,

it was found out (Efros et al. [5]) that one may transfer a texture to an

arbitrary photograph to confer it with the stylism of a drawing. A second

line of research focused on building parametric models of visual textures

constrained to match the marginal spatial statistics of texture style images.

In recent years these spatial image statistics extracted from intermediate

feature of state-of-the-art image classifiers proved to be superior in capturing

visual textures. Pairing a secondary constraint to preserve the content of an

image, as measured by the higher level layers of the same image classification

network, extended these ideas into the field of Artistic Style Transfer [7].

Convolutional Neural Networks [14] are the aformentioned classifiers. These

9



10 Chapter 1. Introduction

type of model organize information about an image in a hierarchical and effi-

cient way using concepts like: local receptive field, shared weights and linear

downsampling. Nowdays, CNN represent the state-of-the-art for almost all

image processing tasks.

Optimizing an image to obey the constraints mentioned above is computa-

tionally expensive and yield no learned representation for the artistic style.

A line of research addressed this problem by building a secondary network,

i.e. style transfer network, to explicitly learn the transformation from a

photograph to a particular painting style. Although this method provide

computational speed, much flexibility is lost. A single style transfer network

is learned for a single painting style and a separate style transfer network

must be built and trained for each new painting style. This approach avoid

the critical ability to learn a shared representation across different styles.

In this thesis we proposed a simple yet effective method for universal style

transfer using Convolutional Neural Networks. The transfer task is formu-

lated as an image reconstruction process, with the content image features

being transformed at an intermediate layer with regard to the statistics of the

style image features. The signal whitening and coloring transforms (WCT)

are used to match the content features to those of the style directly in the deep

feature space. Transformed features are reconstructed back to RGB space by

a symmetrical convolutional decoder network. The proposed method enjoys

learning freeness at test-time, at the cost of training a general-purpose image

reconstruction decoder in advance.

Chapters Overview

Chapter 1 briefly explains the scientific context and the objectives of this

thesis.

Chapter 2 contains theoretical background about machine learning con-
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cepts used throughout the rest of the thesis. It also presents the differ-

ents research directions in the field of Artistic Style Transfer.

Chapter 3 describes the architecture of the proposed approach in details.

Particular techniques like image reconstruction, upsampling, features

whitening and coloring are analysed.

Chapter 4 explains the implementational choices made during the develop-

ment process. This chapter explains the program functionalities and

its user interface.

Chapter 5 showcase the stylization obtained with differents hyperparame-

ters configurations. In the end, some performance remarks regarding

execution time are given.

Chapter 6 draws concluding remarks on the work done and presents some

future work directions.
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Chapter 2

Background

This chapter is going to review some of the basic principles and architectures

used in Machine Learning, giving notions useful throughout the rest of this

thesis. It will also focus on the topic of style transfer reviewing the most

important research efforts in the literature and how they contributed to the

current state of the art.

2.1 Machine Learning

Machine Learning is a field of Artificial Intelligence suited for problems dif-

ficult to address by algorithmic means. Problems of this kind are: spam or

fraud detection, recognition of object in an image or of the words in a sound

recording. It is essentially a form of applied statistics trying to estimate

complicated functions using the knowledge extracted from input data.

The concept of learning in [19] is defined as: “A computer is said to learn

from experience E with respect to some class of tasks T and performance

measure P, if its performance at task in T, as measured by P, improves with

experience E”. Experience is formalized as a set of examples, in turn each

composed of a set of features that describe the relevant properties of the

example. The implementation consist of a statistical model with a fixed

number of parameters, that given an example as input, produce an output

13



14 Chapter 2. Background

value. The perfomance of the model is evaluated by an error measure that

compute the distance between the model’s output and the correct output.

The model’s parameters are optimized with respect to the perfomance metric

in order to obtain increasingly better results.

This process of automatic learning is useful if our learnt approximation func-

tion can perform well not only on already-seen training data but especially on

unseen real-world data, thus, achieving the generalisation propriety. If the

input examples are independent and identically distributed (denoted i.i.d.)

the inductive learning assumption guarantees us generalisation when the ex-

perience data feeded to the model is sufficiently large. This computational

exstensive data-driven process is feasible nowdays thanks to the hardware

improvement of the last decade.

A distinction between learning algorithms concerns how the experience data,

also called dataset, encodes the function to be approximated. From that per-

spective, we have supervised learning, when the target function is com-

pletely specified by the training data in the form of associated labels. In an

unsupervised learning setting instead, the system will learn to uncover

patterns and find groups in the dataset which contain no explicit descrip-

tion of a target concept. Unsupervised learning involves observing several

examples of a random vector of feature x and attempting to implicitly or

explicitly learn the probability distribution p(x) that generated the dataset;

while supervised learning involves observing several examples of a random

vector of features x and an associated value or vector y, then learning to

predict y from x, usually by estimating the conditioned probability p(y|x).

The process of learning can be seen as a search in a function space H =

h | h : X −→ Y for the function h that fits better the not-known target func-

tion f according to the error measure. If the model h is too complex and

specialized over the peculiarities of the instances of the training set we are

in a situation of overfitting; instead if the model is too simple and does not
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Figure 2.1: Supervised learning (left) find the best fitting line to categorize

data points vs Unsupervised learning (right) discover structural properties

of the feature space as grouping (also called clusters).

allow to express the complexity of the observations (low capacity model) we

are in a situation of underfitting. This is illustrated by Figure 2.2

Figure 2.2: Approximation possible outcomes: underfitting (left), desired

(center), overfitting (right).

2.1.1 Artificial Neural Networks

Under the field of Machine Learning there is a family of models that take

their inspiration from the way the brain is configured. The brain is composed

by a huge amount (around 1011) of neurons connect together in a very big

and intricate and network. Neurons send informations to others neurons

through an axon and receive informations through structures called synapses

(approximately 103 synapses per neuron). Artificial Neural Networks (ANN),

also just called Neural Networks, use this connectionist approach for decision
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making and learning.

The basic unit of a Neural Networks is an artificial neuron. Its main job is

to compute a weighted linear combination of the inputs received from other

neurons. The result is then passed into a particular nonlinear function called

activation function. The result of such function is the output of a neuron

and gets immediately propagated to others. The idea of an artificial neuron

was developed in the 1950s and 1960s by the scientist Frank Rosenblatt [21],

inspired by earlier work by Warren McCulloch and Walter Pitts [18].

The first artificial neuron was called perceptron. It had binary inputs and

a binary output computed by a step function that emitted 1 if the input

was larger than some fixed threshold. Networks made of perceptrons were

expressive enough to calculate every boolean function. The problem of the

perceptron was its mathematical instability when updating the weights due

to the step function shape.

Research on the field led to better perfoming activation functions. In partic-

ular, the sigmoid function has a shape similar to a threshold function but has

the benefit of derivability in all its real-valued domain. Derivability plays a

major role in the optimization of such neural networks as we will see shortly.

The principal kind of Artificial Neural Networks are feedforward models.

The neuron’s topology of such models is a directed directed acyclic graph

(i.e., no loops and backward connections). Among feedforward models, the

Multi Layer Perceptron (MLP) is the most basic architecture. We can see

an example of it in Figure 2.3. Neurons are grouped in layers, which are

stacked one next to each other. The input values flows forward from the

input layer to the output layer triggering the computation at each layer.

The expressive power of ANN comes from the nonlinearity of the activation

function, allowing MLP with hidden layers to approximate any nonlinear

function (universal approximation theorem [9]).
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Figure 2.3: Example of a feedforward neural network with 4 neurons in

the input layer, 5 neurons in the hidden layer and only one neuron in the

output layer. Such small ANN can be trained to perform tasks like binary

classification or logistic regression.

The largest difference between linear models and ANN regards training pro-

cedure and the fact that the nonlinearity of neural networks causes the loss

function to be nonconvex. This means that neural networks are usually

trained by using iterative gradient-based optimizer algorithms that drive the

loss function to a very low value. Stochastic Gradient Descend is the

most used optimization algorithm of this kind. It doesn’t have a conver-

gence guarantee and it is sensible to the initial configuration of the model’s

parameters.

The aformentioned optimization algorithm repeats a two phase cycle: for-

ward propagation and parameters update. After evaluating the model on

some input vector, the derivatives of the loss function with respect to the

model’s parameters are computed at each neuron. The optimizer implement

this by calling an internal procedure called back-propagation that use the

chain rule of calculus to calculate derivatives efficiently. These derivatives,

also called gradients, are used by the optimizer to adjust the model’s param-
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eters in the attempt to find a global minimum of the loss function.

2.1.2 Deep Learning

Very simply, a neural network with more than one hidden layer is called deep.

Deep models in the recent years outperformed the former state of the art in

a lot of tasks. We will briefly investigate the reason of this improvement and

later we will consider various deep architectures.

The curse of dimensionality is the problem that arise when dealing with

high dimensional random variables that can have an exponantial number of

configurations. Since the order of possible configurations is computationally

intractable, a good generalisation on unseen inputs seems to be very difficult

if not an impossible goal to achieve [1].

Deep learning exploits the powerful prior of compositionality allowing com-

plex features to be computed in terms of simpler ones in a hierarchical or-

ganization. These models are powerful and flexible approximators and are

capable, for example, of understanding text or images but they need a lot

more training data than “shallow” networks.

Training deep models is not an easy task for various mathematical problems

like vanishing gradient, local minimums and overfitting. Dropout is a tech-

nique that usually helps alleviate these problems by removing with a fixed

probability some neuron connections temporarily.

2.1.2.1 Convolutional Neural Networks

In the last decade these kind of deep neural networks gained popularity

and established themselves as the gold standard for AI tasks regarding com-

puter vision. The key ingredients of their expressiveness and efficiency are:

loose connectivity (a neuron is only influenced by a small subset of adja-

cent neurons) and shared weights (every neuron act as a convolutional filter

performing the same operation on different areas of its input).
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If we were to process an image of size n × n with a MLP we would have to

use one neuron per pixel for a total of n2 neurons and n3 parameters in the

input layer. Local connectivity drastically reduce the number of parameters

improving efficiency and reducing overfitting risk. This approach works really

well on images because the relevant characteristics of a photo are usually

formed by pixels near to each other.

Performing a convolution, as shown in Figure 2.4, can also be seen as ap-

plying a filter to an image. During training we let the network learn the

right sequence of filters, adjusting weights during backpropagation phase, to

perform better for the task at hand.

A convolutional filter work on all input channels combining them in one

feature map. If we consider the output of all the convolutional filters inside

a convolutional layer we are dealing with a feature volume that can take up

a lot of memory for big input images.

It is common to periodically insert a pooling layer between successive con-

volutional layers. Its goal is to progressively reduce the spatial size of the

representation to reduce the amount of parameters and computation in the

network. This layer operates by sliding like a convolutional filter and resize

the input spatially using a simple max or average operation on a group of

adjacent pixels.

CNN for image recognition tasks have a few fully connected layers at the

end for making the classification based on the features extracted from the

convolutional layers as we see in Figure 2.5. These nets ouput a confidence

score for each category and the highest is selected as the predicted class.

2.1.2.2 Autoencoders

An autoencoder is a neural network trained to reconstruct the input data out

of a learned internal representation. Internally, it is composed of an encoder

function h = f(x) which produce a compact representation of the input,
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Figure 2.4: Application of a convolutional kernel to an input image. Input

pixels are linear combinated with the kernel’s parameter. This operation is

repeated by sliding the kernel all over the input image. The size of the out-

put image, also called feature map, is determined by a few hyperparameters

of the convolutional layer. These hyperparameters are: the size of the ker-

nel (receptive field), the number of pixels shifted when moving the kernel

(stride) and the artificial enlargment of the input to allow kernel application

on the borders (padding).
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Figure 2.5: Representation of the VGG19 architecture [22] features volume

evolution. In green we have convolutional layers, in blue max pooling layers

and in purple fully connected layers.

called code, and a decoder function r = g(h) that attempts the reconstruc-

tion of the input to the original size.

They are trained in a self-supervised way, usually using the quadratic re-

construction (input-output difference) error, to perform a form of lossy data

compression that works well for data with strong correlations. AE are data-

specific, which means that they will only be able to compress well data similar

to what they have been trained on.

Reconstructing the input that we already have is not the main goal of the

autoencoders. Since they are forced to prioritize which aspects of the in-

put to encode, they often learn useful properties of the data. In fact, the

low-dimensional representation learned by an autoencoder is an approxima-

tion of the Principal Component Analysis (PCA). Autoencoders for different

tasks (e.g. dimensionality reduction, data denoising) usually have a different

architecture.

Since this thesis is about image processing, we will focus on autoencoders

composed of a convolutional encoder and decoder (see Figure 2.6). Convolu-
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tional Autoencoders (CAE) are state-of-art tools for unsupervised learning

of convolutional filters. Features extracted by these filters can be later used

to perform any task that requires a compact representation of the input, like

style transfer.

Figure 2.6: Example of a fully convolutional autoencoders working on a

RGB image. The convolutional decoder can use deconvolutions (also called

traspose convolutions) or upsampling layers to upsample the feature maps

back to the original input size.

2.2 Artistic Style Transfer

Style transfer is a topic in the field of computer vision researching the inter-

play between the content and the style of images. The goal of the discipline

is to produce an output image that exhibit the desired style (for example, a

famous painting) while preserving the semantic content of an input image.

Artistic style transfer, in the beginning, was considered to be a generalisation

of texture synthesis, which study how to extract and transfer the texture from

a source image to a target image. Results were usually not impressive because

only low-level features were captured and transferred.

2.2.1 Neural Style Transfer

Recently, inspired by the power of Convolutional Neural Networks (CNN),

Gatys et al. [7] in their seminal work, reproduced with great success the
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style of famous paintings on natural images. They proposed to represent the

content of a photo as the features responses from a pre-trained CNN, and

to model the style of an artwork as the summary features statistics. The

second-order (Gram-based) statistics they used were able to model a wide

varieties of both natural and non-natural textures. These statistics represent

the correlation between filters responses in differents layers of the same pre-

trained CNN.

Looking at Figure 2.7 the scientific offsprings following Gatys et al. can be

distinguished on how the output image is constructed.

Figure 2.7: A taxonomy of artistic style transfer techniques. For the biblio-

graphic references see [10].

“Slow” methods transfers the style by iteratively optimising an image. Start-

ing from an initial random noise image, these techniques perform gradient-

descend optimizing a loss function often composed by a content-related com-

pontent and a style-related compontent. “Faster” methods address the effi-

ciency issue by putting the burden on the training stage. In fact, at testing

stage the stylization is obtained quickly by a single feed-forward sweep at the
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cost of training in advance a model on a large set of content images for one

or more style images.

Depending on the number of artistic styles a single network can reproduce,

these “Fast” methods are further subdivided into three categories: single

style, multiple styles and arbitrary style. The approach we consider in this

thesis belong to the latter category and it is inspired by the recent work of Li

et al. [16]. It exploits a series of feature transformations in order to transfer

an arbitrary style in a learning free manner.

In the proposed approach, the first few layers of a pre-trained CNN network

are used as an encoder and the corresponding decoder is trained for image

reconstruction. A pair of feature transforms called Whitening and Colouring

Transformations (WCT) are applied on the feature maps between the en-

coder and decoder. Denoting the content image Ic and the style image Is the

stylised output I is computed as follows: I = Dec(WCT (Enc(Ic), Enc(Is))).

The algorithm is built on the observation that the whitening transforma-

tion can remove the style related information from the content image while

preserving the overall structure.

Therefore, receiving content activations Enc(Ic) from the encoder, whitening

transformation can filter the original style out of the content features and

return a filtered representation with only content information. Then, by

applying colouring transformation, the style patterns contained in Enc(Is)

are incorporated into the filtered content representation, and the stylised

result I can be obtained by decoding the transformed features.



Chapter 3

Architecture

This chapter will cover in great details the structure of the model proposed

by Li et al. [16], explained briefly in the end of the previous chapther. A few

sections of this chapter require some notions of statistics and linear algebra.

3.1 Style representation

The key challenge in Style Transfer is how to extract effective representation

of the style and then match it to the content image. Convolutional Neu-

ral Networks have proved to be very effective at capturing characteristics

of images. Thus, after the seminal work of Gatys et al. almost all succes-

sive approaches used the features extracted by convolutionals filters as the

representation of the images.

The representation encoded by the feature maps of a CNN is usually sum-

marized in a statical form of features correlation called Gram Matrix. Con-

sidering a feature volume as in Figure 3.1, we first reshape the tensor into a

H ×W grid of C-dimensional vectors. The outer products between a pair of

these vectors gives a C×C matrix measuring features co-occurence of filters

at these two positions. Averaging over all such matrices we get a resulting

Gram Matrix of shape C × C.

25
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Figure 3.1: The feature volume is a tensor of shape C ×H ×W . The Gram

Matrix G ∈ RC×C is computed as Gij =
C∑

k=1

FikFjk for all filter activations

Fi. [6]

3.1.1 Covariance matrix

The Gram matrix in [15] is empirically shown to be sensitive to features scale

and poses difficulty in capturing heterogeneous style statistics. Motivated

by this observation, we modify the original Gram matrix computation by

subtracting F before calculating the outer products, where F is defined as

the mean of all activations in the current layer of the convolutional net. This

newly obtained matrix is namely the normalized covariance matrix [2], whose

elements gives an estimate about how much filters activations in all feature

maps share similar behaviour and variation.

3.2 Image reconstruction

Despite the recent rapid progress in Neural Style Transfer, existing methods

often trade off between generalization, quality and efficiency, which means

that optimization-based methods can handle arbitrary styles with pleasing

visual quality but at the expense of high computational costs, while feed-

forward approaches can be executed efficiently but are limited to a fixed

number of styles or compromised visual quality.

The proposed approach formulate the task of style transfer as an image re-

construction process, with the content features being transformed, at inter-

mediate layers, with regard of style features in the midst of feed-forward
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passes. This simple yet effective method enjoys style-agnostic transfer at the

cost of marginally compromised visual quality and execution efficiency.

The proposed architecture employ the notorious VGG19 CNN trained for the

ImageNet [4] recognition task as the feature extractor. Another net is needed

for inverting features back to the RGB space. This net (see Figure 3.2b) is

a symmetrical VGG19 decoder responsible for the reconstruction part.

The overall architecture is a general-purpose image reconstruction Convolu-

tional Autoencoders. We can visualize it Figure 3.2a.

(a) The overall VGG19 convolutional autoencoder architecture

used.

(b) The

input image

reconstruc-

tion task on

which the

autoencoder

is trained.

3.2.1 Upsampling

To enlarge a input feature map produced by a CNN to a greater spatial extent

the natural solution seems to be the use of traspose convolutional layers (also

called deconvolutions or fractionally-strided convolutions). These layers learn
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to do the reverse operation of the convolution. They take each pixel of the

input image, multiply it by all the values in a n ×m kernel to get a n ×m
weighted kernel to put in the output image. Where these kernels overlaps in

the output image the values are simply summed.

The need for transposed convolutions generally arise from the desire to have a

convolution’s complementary operation, in order to go from something that

has the shape of the output of some convolution, to something that has the

shape of its input while maintaining a connectivity pattern compatible with

said convolution. In our use case, we would like to employ such operation in

the decoder architecture.

Unfortunately, deconvolutions can easily have uneven overlap, in particular

this happens when the kernel size (the output window size) is not divisible

by the stride (the spacing between elements in the input). This leds into

putting more output values in some places than others, generating bright

colors and checkerboard artifacts.

These artifacts are really hard to avoid completely with traspose convolutions

and doing so, often involves sacrificing some of the model’s capacity by posing

restriction on the set of possible filters [20]. In addition, the presence of these

artifacts doesn’t depend on the type of training done on the deconvolutional

layers but it is intrinsic to the method.

Another approach to the problem, is to separate upsampling to a higher

resolution from convolution to compute features. For example, you might

resize the image using some linear techinque of interpolation and then do a

convolutional layer. This seems to discourage high-frequency artifacts really

well in a variety of training settings, for example, in Generative Adversarial

Networks.

For of this motivations, the decoder designed in this thesis employ nearest

neighbour upsampling layers for enlarging feature maps followed by standard

convolutional layers.
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Figure 3.3: The neural style transfer by Johnson et al. [11]. Stylization suffer

from checkerboard artifacts (i.e. high-frequency repeating patterns) in the

stylized images on the bottom.
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3.2.2 Decoder training

Since successive layers of a Convolutional Neural Network encode informa-

tions about an image at different levels of abstraction, it is also useful to

experiment style transfer at different levels in a similar manner. For this

reason we divide the VGG19 network in five blocks as denoted in Figure

3.2a. Each successive block is a sequence of convolutional and max pooling

layers up to some fixed depth. These blocks are denoted “Relu X 1” where

X = 1, . . . , 5 is indicating the depth of the block and “Relu” stands for

Rectified Linear Unit, which is the activation function employed by VGG19.

Given the features extracted by such blocks, the authors trained accordingly

five decoder blocks for image reconstruction. The loss function used for

training is composed by a reconstruction loss and a feature loss. It is defined

as follows:

L = ‖Io − Ii‖22 + λ‖φ(Io)− φ(Ii)‖22 (3.1)

where Ii, Io are the input image and reconstructed output and φ is the VGG

encoder that extracts the features. In addition {λ ∈ R | 0 ≤ λ ≤ 1} is a

hyperparameter to balance the two losses.

Another important aspect of the training procedure is the dataset used. In

order to guarantee universal style transfer, the model, in addition to have

a great approximation capacity, needs also to be able to invert features ex-

tracted from a wide variety of inputs. To enable such general-purpose image

reconstruction task, the COCO (Common Objects in COntext) [17] large-

scale dataset was chosen for training. Created in 2014, up today it counts

over 330.000 images containing complex everyday scenes with (91 different

categories of) objects in their natural context.
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3.3 Features transformations

This section will explain the transformations performed in the deep feature

space. The input of these transformations are the feature activations of the

bottleneck layer, located in the middle between the encoder and the decoder

part of the convolutional autoencoder. The goal of these transformations is

to combine the content with the characteristics extracted from the style in a

visually pleasing way.

The type of transformations we will use are composed of two steps and are

called Whitening and Colouring Transformations (WCT). These transforma-

tions reflect a direct matching of feature covariance of the content image to

the style image, transforming the extracted content features such that they

exhibit the same statistical characteristics as the style features. They are

able to achieve this goal in an almost effortless manner compared to the

optimization of the Gram matrix-based cost.

3.3.1 Data whitening

Normalization is a data preprocessing technique useful in many machine

learning applications. The reason comes from the fact that important pat-

terns in the data often correspond to the relative relationships between the

different input dimensions. Therefore, you can make the task of learning

and recognizing these patterns easier by removing the constant offset and

standardizing the scales. This principle gets more important when dealing

with real-world data that usually have a large number of dimensions. There

can now be dependencies among the dimensions, which we can think of as

patterns within the data. For example, consider an image of a blue ocean

(Figure 3.4) that is missing a single pixel, the value of that pixel is not

independent of the nearby pixels; it is almost certainly blue.

The degree of linear dependence between the dimensions is captured by the

covariance matrix cov(X) = Σ of the input data. Σ is a symmetric D × D
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Figure 3.4: In order to determin the value of the missing pixel Xi

we have to consider the joint probability distribution of all the D in-

put dimensions. Using the chain rule of probability this rewrites as

the product of conditional probabilities p(X) = p(X1, X2, . . . , XD) =

p(X1)p(X2|X1) . . . p(XD|X1, X2, . . . , XD−1).

matrix where Σi,j contains the covariance between dimension i and dimension

j. The diagonal entries of this matrix contains the variance of each dimension.

Normalization of multi-dimensional variables is called statistical whitening.

Whitening is a linear transformation that transforms a vector of random

variables X with a known covariance matrix Σ into a vector of new variables

Z whose covariance is the identity matrix cov(Z) = I, meaning that they are

uncorrelated and each have variance 1 (see Figure 3.5). The transformation

is called “whitening” because it modify the input vector to resemble a white

noise vector.

Formally, on input a d-dimensional vector X = (X1, . . . , XD) the result of

the whitening Z is computed as:

Z = W (x− µ) (3.2)

The input x is centered by subtracting the mean vector µ and it is multiplied

by a D×D whitening matrix W . Such matrix should satisfy the conditions:
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Figure 3.5: Left: the covariance matrix of the 3,072-dimensions (32x32x3)

images in the notorious CIFAR10 dataset [13]. Black indicates a low value,

white a high value. Dimensions are highly inter-dependent. Right: the

covariance matrix after the whitening procedure. Dimensions are now com-

pletely uncorrelated.

cov(Z) = I

ZZT = I

(W (X − µ))(W (X − µ))T = I

(W (X − µ))(X − µ)TW T = I

WΣW T = I

WΣW TW = W

W TW = Σ−1

(3.3)

However these conditions aren’t very restrictive on W and there are actually

infinetely many choices of W . This is demonstrated by the fact that taking

an orthogonal matrix Q (i.e. QQT = 1), if we put W = QΣ−1/2 we get:

W TW = (QΣ−1/2)TQΣ−1/2 = (Σ−1/2)TQTQΣ−1/2 =

(Σ−1/2)T IΣ−1/2 = Σ−1 (3.4)

that is independent of the choice of Q. From a geometrical standpoint this

phenomenon is called rotational freedom. Kessy et al. in [12] discussed the
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optimality of various choices for W . Among these, Zero-phase Components

Analysis (ZCA) whitening maximize the average cross-covariance between

each dimension of the whitened and original data and uniquely produces a

symmetric cross-covariance matrix φ = cov(Z,X). Roughly speaking, this

means that it is the method preserving most of the informations in the orig-

inal data minimizing the total squared distance ||X − Z||2.

ZCA whitening choice for W is W = Σ−1/2. The covariance matrix Σ by

definition is assumed to be symmetric and positive semi-definite. Thus, it

is possible to obtain an eingendecomposition Σ = EDET where D is the

diagonal matrix containing the eingenvalues of Σ and E is the orthogonal

matrix containing its eingenvectors on the columns. The inverse square root

matrix of Σ is: Σ−1/2 = ED−1/2ET where the exponentation is computed

element-wise.

The overall ZCA whitening computation used in this thesis proceeds as fol-

lows:

f̂c = EcD
−1/2
c ET

c fc (3.5)

where (i) fc are the input content image features, (ii) the multiplication for

the eingenvectors matrix ET
c remove correlation between the components,

(iii) the multiplication for the scaled eingvalues D−1/2 normalize the compo-

nents to unit-variance and (iv) the final multiplication for Ec “rotate-back”

data from the eingenbasis space to the features space.

The example in Figure 3.6 show a ZCA whitened image. It visually resem-

ble the input image with a “washed out” effect, which remove informations

related to colors and style but preserves edges and semantic content of the

image. This follows from the optimality of the ZCA whitening method in

maximazing the cross-covariance between the original and the whitened fea-

tures.
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Figure 3.6: Reconstructed whitened features. The features from VGG19

Relu 4 1 are whitened and then decoded back to original size. The whitened

image maintains global content structure but style is removed (e.g., the stroke

patterns of the Starry Night are gone in the whitened image).

3.3.2 Coloring

The coloring transformation shares similar spirit with the whitening trans-

formation. In fact, it can be seen as an inverse of the whitening transform. It

is applied to confer to the whitened features the patterns of the style image.

Coloring transforms the white noise vector f̂c into a random vector matching

the mean and the covariance matrix of the style features fs.

The first step is always to zero-center fs by subtracting its mean vector.

Then we compute its covariance matrix Σ = fsf
T
s and perform an eigende-

composition yielding Σ = EsDsE
T
s as in the whitening procedure.

The overall coloring computation used in this thesis proceeds as follows:

f̂cs = EsD
1/2
s ET

s f̂c (3.6)

Then, we re-center f̂cs summing the mean vector. The colored result f̂cs will

have f̂csf̂cs
T

= fsf
T
s as wanted.

To demonstrate the effectiveness of Whitening and Colouring Transforma-

tions, we compare it with histogram matching, a commonly used feature ad-

justament techinque. An image histogram is a chart that acts as a graphical

representation of the tonal distribution in a digital image. It plots every tonal

value (i.e. RGB value) present in the image on the x-axis and its frequency

(i.e. number of times it appears) on the y-axis. Given two images, a refer-

ence image and a target image, their histograms are calculated. Then, the
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cumulative distribution functions [3] of the two histograms are computed and

used to derive a mapping for every color intesity value. Then, this mapping

is applied on each pixel of the reference image.

The channel-wise histogram matching [8] method determines a mapping func-

tion such that the mapped fc has the same cumulative histogram as fs. As

shown in the comparison of Figure 3.7, it is clear that the HM method helps

in transferring the global color of the style image but fails to capture salient

visual patterns. In fact patterns are broken into pieces and local structures

are misrepresented. In contrast, the proposed WCT method captures pat-

terns that reflect the style image better. This can be explained by the fact

that the HM method does not consider the correlations between features

channels, which are exactly what the covariance matrix is designed for.

Figure 3.7: Comparison between HM and WCT coloring strategies on two

differents content-style image pairs.

3.4 Stylization pipeline

So far we have developed a procedure for stylizing some reference content

image to another target style style. We also know that succesive layers of a

Convolutional Neural Networks represent the input at an increasingly higher

level of abstraction: low-level features like edges and colors are encoded in

the first layers and higher-level features like faces and objects are encoded in

the last layers. This can be explained by the increasing size of receptive field

and feature complexity in the network hierarchy.

A lot of Neural Style Transfer methods leveraged this hierarchical organi-
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zation to fully capture the characteristics of style resulting in an enhanced

stylization. For this purpose, it was developed an additional multi-level styl-

ization pipeline. The workflow is illustrated in Figure 3.8. The content image

C is input to the system only one time at the beginning. The style image S

instead, is input to the system multiple times at every VGG19 block.

Figure 3.8: Multi-level stylization pipeline schematic. The result obtained

by matching higher level statistics of the style is treated as the new content

to continue to match lower-level information of the style.

The preffered block-ordering is descendent: the first coarse stylization I5 is

obtained from Relu 5 1 and it is regarded as the new input content image to

the next stylization level that adjust lower-level features of the style. Inter-

mediate results (Ix x = 5, 4, 1) are shown in Figure 3.9. These results have

the expected behaviour: higher layer features first capture the main aspects

of the style and lower layer features further improve details.
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(a) Content image (b) Style image

Figure 3.9: The first three images show intermediate results of the multi-

level coarse-to-fine stylization pipeline. From the left respectively: I5, I4,

I1. The last image on the right is a fine-to-coarse stylization. This approach

fails because low-levels information cannot be preserved after manipulating

higher-level features.
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Implementation

This chapter will discuss some of the implementational choices made dur-

ing the developing process of the proposed style transfer techinque. It will

also give a practical explanation about the functionalities of the program

and the purpose of the user arguments. Therefore, this chapter will con-

tain a few source code snippets with syntax highlighting. All the source

code is open-source and available at https://github.com/pietrocarbo/

deep-transfer.

4.1 Framework

The programming language of choice for the project is Python (v3.6). Launched

in 1991, it had become the de-facto standard for almost all Data Science re-

lated disciplines as machine learning and computer vision. It is a dynamically-

typed, object-oriented, interpreted language with several functional features.

Python’s dynamic nature and simple syntax make it perfect for fast pro-

totyping. In fact, Data Science development process requires fast iterations

with focus on data and algorithms. Moreover, Python’s open-source libraries

ecosystem is mature and solid. It offers packages for almost all math and

data-processing needs.

To install the needed software packages we need another tool called a package

39

https://github.com/pietrocarbo/deep-transfer
https://github.com/pietrocarbo/deep-transfer


40 Chapter 4. Implementation

manager. It is a command line application with a central repository of avail-

able packages. The developer can use a package manager to install, update

or remove specific packages in his system. For this project, we used the Ana-

conda Python distribution that offers the largest data-science collection of

packages in its repository. This distribution comes with the conda package

manager, which we used to download and install packages in a project-specific

virtual environment.

Maybe the most important choice about the development environment re-

garded the machine learning framework to use. Even sticking only to Python,

several options remain available. Keras framework it is essentially a simpler

wrapper API over a more complex framework (e.g. Tensorflow). For this rea-

son it doesn’t offer a lot of flexibility when implementing low-level operations

in-between layers of a neural net. Since performing WCT transformations in

the bottleneck layer was a requirement of the project, Keras was discarded

from the options.

The choice, in the end, lied on the PyTorch framework, developed by the

Facebook Artificial Intelligence Research (FAIR) group. At its core PyTorch

provides tensor computations with GPU acceleration and deep neural net-

works with automatic differentiation. Another important aspect is its tight

integration with the Python language which make it feel more native most

of the times. In fact, it shares a very similar API syntax with the notorius

NumPy library for scientific computation. PyTorch is still in beta-version

(v0.4.1) but has reached an important level of maturity and it’s quickly

gaining momentum in the research community.

4.1.1 Dynamic Computational Graph

Another possible framework choice was Tensorflow, developed by Google

Brain. It offers many of the functionalties of PyTorch; it became the stan-

dard for production environments and it also offers support for mobile appli-

cations. Both aformentioned frameworks operate on tensors and view models

https://pytorch.org
https://www.tensorflow.org/
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as a directed acyclic graphs (DAG) but they differ drastically in the construc-

tion of such graphs.

In TensorFlow you define graph statically before a model can run. All com-

munication with outer world is performed via special objects as tf.Session

and tf.Placeholder which are tensors substituted by external data at run-

time. In PyTorch things are way more imperative and dynamic: you can

define, change and execute nodes of a neural net as you go, without session

interfaces or placeholders.

Basically, all deep learning frameworks maintain a computational graph that

describe the exact order and number of operations that need to be performed.

Many deep learning framwork (e.g. Tensorflow) follow a “Define and Run”

philosophy, building a static data-flow graph in advance and later feed data

to it. With this approach, many optimizations regarding memory alloca-

tion and data parallelism are straightforward. On the other hand, newer

frameworks as PyTorch follow a “Define by Run” philosophy, where the or-

der and number of computations is programmatically defined. This is useful

when dealing with inputs of variable size, when building Recurrent Nets used

widely for Natual Language Processing tasks and, in general, whenever we

want flexibility in the feedforward pass.

In PyTorch this flexibility is obtained through the Dynamic Computational

Graph abstraction. In the context of this thesis’s project, this enabled to

embed control-flow statements in the convolutional autoencoder’s computa-

tional graph.

4.2 Lua dependencies

We already said that the proposed approach is training-free at test time. This

is because the authors of the paper pretrained the five needed decoders for

image reconstruction. They implemented the architecture in the Lua using

https://www.lua.org
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the Torch framework. Therefore, the trained models were exported in the

serialization format of Torch which is t7.

PyTorch share some of the syntax and routine implementation with Torch

(i.e. same C and CUDA libraries backends) and, therefore, offers a t7 deserial-

ization procedure called torch.utils.serialization.load_lua. However,

unlike the PyTorch framework, this routine is not entirely cross-platform. In

fact, deserialization fails on Windows machine. Digging further it, the Torch

wiki clearly states that Windows is not supported.

In order to regain platform-independence, we decided to use a third-party

tool to convert t7 files in another format easier to read. This tool, on input a

t7-encoded model, produces two files: a Python file containing the sequence

of layer definitions (see next section) and another file with pth extension

containing the model weights. The pth format is the official PyTorch binary

serialization format and pth weigths can be easily loaded into an existing

model with model.load_state_dict in a cross-platform way.

4.3 Model definition

In this section we will see the actual VGG19 model definition layer by layer.

We will show snippets for the encoder and decoder Relu 5 1 block. Shallower

blocks will not be shown because they have the same parameters but lesser

layers.

4.3.1 Encoder

The encoder model in Listing 1 is an instance of torch.nn.Sequential class.

The model contains layers in the order in which they are passed to the con-

structor. Convolutional layers torch.nn.Conv2d have the following param-

eters list (in channels, out channels, kernel size, stride=1, padding=0, . . . ).

http://torch.ch/
https://github.com/clcarwin/convert_torch_to_pytorch
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torch.nn.ReflectionPad2d layer add a border of one pixel around the im-

age using the specular pixel (i.e. the pixel at the opposite side of the image).

torch.nn.MaxPool2d layer look at groups of 2×2 pixels and retain only the

maximum value.

4.3.2 Decoder

The encoder model in Listing 2 is also an instance of torch.nn.Sequential

class. Padding is as in the encoder. The main difference are the torch.

nn.UpsamplingNearest2d layers that act as a reverse of the MaxPooling

operation and enlarge the spatial extent of the feature maps. Convolutional

layer are used only to compute feature as described in section 3.2.1.

4.4 Argument parsing

The program was developed as a command-line application. The user must

give the appropriate textual arguments to launch the desired task. The list

of the application functionalities is discussed in the following sections.

The command-line interface was written using the argparse module of the

Python Standard Library. This module provides an ArgumentParser object

with methods to add arguments that will be parsed from the sys.argv list.

It also automatically generates help and usage messages and issues errors

when users give the program invalid arguments.

In Listing 3 we can see the definition of the argument parser object with

its description message. No arguments in our implementation is declared as

required. At line 6 we can see the definition of a string arguments that will

be stored inside parser.content, which will be the content image of the

stylization. At line 10 we are defining a boolean argument with a default

value of False when it is not given. At line 24 we are defining an argument

which can only be a real-valued number or else the parser will trow an error.

Additional checks on the arguments (i.e. existence of files and folders, floats

https://docs.python.org/3/library/argparse.html
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1 import torch.nn as nn

2

3 vgg_conv5_1 = nn.Sequential( nn.Conv2d(3,3,(1, 1)),

4 nn.ReflectionPad2d((1, 1, 1, 1)),

5 nn.Conv2d(3,64,(3, 3)),

6 nn.ReLU(),

7 nn.ReflectionPad2d((1, 1, 1, 1)),

8 nn.Conv2d(64,64,(3, 3)),

9 nn.ReLU(),

10 nn.MaxPool2d((2, 2),(2, 2),(0, 0),ceil_mode=True),

11 nn.ReflectionPad2d((1, 1, 1, 1)),

12 nn.Conv2d(64,128,(3, 3)),

13 nn.ReLU(),

14 nn.ReflectionPad2d((1, 1, 1, 1)),

15 nn.Conv2d(128,128,(3, 3)),

16 nn.ReLU(),

17 nn.MaxPool2d((2, 2),(2, 2),(0, 0),ceil_mode=True),

18 nn.ReflectionPad2d((1, 1, 1, 1)),

19 nn.Conv2d(128,256,(3, 3)),

20 nn.ReLU(),

21 nn.ReflectionPad2d((1, 1, 1, 1)),

22 nn.Conv2d(256,256,(3, 3)),

23 nn.ReLU(),

24 nn.ReflectionPad2d((1, 1, 1, 1)),

25 nn.Conv2d(256,256,(3, 3)),

26 nn.ReLU(),

27 nn.ReflectionPad2d((1, 1, 1, 1)),

28 nn.Conv2d(256,256,(3, 3)),

29 nn.ReLU(),

30 nn.MaxPool2d((2, 2),(2, 2),(0, 0),ceil_mode=True),

31 nn.ReflectionPad2d((1, 1, 1, 1)),

32 nn.Conv2d(256,512,(3, 3)),

33 nn.ReLU(),

34 nn.ReflectionPad2d((1, 1, 1, 1)),

35 nn.Conv2d(512,512,(3, 3)),

36 nn.ReLU(),

37 nn.ReflectionPad2d((1, 1, 1, 1)),

38 nn.Conv2d(512,512,(3, 3)),

39 nn.ReLU(),

40 nn.ReflectionPad2d((1, 1, 1, 1)),

41 nn.Conv2d(512,512,(3, 3)),

42 nn.ReLU(),

43 nn.MaxPool2d((2, 2),(2, 2),(0, 0),ceil_mode=True),

44 nn.ReflectionPad2d((1, 1, 1, 1)),

45 nn.Conv2d(512,512,(3, 3)),

46 nn.ReLU(),

47 )

Listing 1: VGG19 Encoder Relu 5 1 block definition.
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1 import torch.nn as nn

2

3 feature_invertor_conv5_1 = nn.Sequential(

4 nn.ReflectionPad2d((1, 1, 1, 1)),

5 nn.Conv2d(512,512,(3, 3)),

6 nn.ReLU(),

7 nn.UpsamplingNearest2d(scale_factor=2),

8 nn.ReflectionPad2d((1, 1, 1, 1)),

9 nn.Conv2d(512,512,(3, 3)),

10 nn.ReLU(),

11 nn.ReflectionPad2d((1, 1, 1, 1)),

12 nn.Conv2d(512,512,(3, 3)),

13 nn.ReLU(),

14 nn.ReflectionPad2d((1, 1, 1, 1)),

15 nn.Conv2d(512,512,(3, 3)),

16 nn.ReLU(),

17 nn.ReflectionPad2d((1, 1, 1, 1)),

18 nn.Conv2d(512,256,(3, 3)),

19 nn.ReLU(),

20 nn.UpsamplingNearest2d(scale_factor=2),

21 nn.ReflectionPad2d((1, 1, 1, 1)),

22 nn.Conv2d(256,256,(3, 3)),

23 nn.ReLU(),

24 nn.ReflectionPad2d((1, 1, 1, 1)),

25 nn.Conv2d(256,256,(3, 3)),

26 nn.ReLU(),

27 nn.ReflectionPad2d((1, 1, 1, 1)),

28 nn.Conv2d(256,256,(3, 3)),

29 nn.ReLU(),

30 nn.ReflectionPad2d((1, 1, 1, 1)),

31 nn.Conv2d(256,128,(3, 3)),

32 nn.ReLU(),

33 nn.UpsamplingNearest2d(scale_factor=2),

34 nn.ReflectionPad2d((1, 1, 1, 1)),

35 nn.Conv2d(128,128,(3, 3)),

36 nn.ReLU(),

37 nn.ReflectionPad2d((1, 1, 1, 1)),

38 nn.Conv2d(128,64,(3, 3)),

39 nn.ReLU(),

40 nn.UpsamplingNearest2d(scale_factor=2),

41 nn.ReflectionPad2d((1, 1, 1, 1)),

42 nn.Conv2d(64,64,(3, 3)),

43 nn.ReLU(),

44 nn.ReflectionPad2d((1, 1, 1, 1)),

45 nn.Conv2d(64,3,(3, 3)),

46 )

Listing 2: VGG19 Decoder Relu 5 1 block definition.
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in the correct interval, etc..) regarding the semantic of the application are

done by the validate_args function which receives the parser object as

argument.

4.5 Logging

The application execution is monitored through event logging. For this pur-

pose it was used the Python Standard Library logging module. It provides

a lot of flexibility and functionalities by means of:

• loggers objects expose the interface that application code directly uses.

• handlers send the log records (created by a logger) to the appropriate

destinations.

• formatters are used to specify, for each handler, the layout of the log

record.

In our implementation, the logger object was instantiated to output log

records to two destinations: in the terminal window and in the logs.txt

text file. These two handlers have been set on different severity levels: the

command line handler is on a more verbose level (DEBUG) than the file

handler (INFO). Following the same principle, the two handlers have a dif-

ferent formatting layout. Terminal messages also contain the file and the line

number from which they were generated.

4.6 Input Output

In this section we will discuss how the program read and write data, in the

form of images, from and to the operative system.

https://docs.python.org/3.6/library/logging.html
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1 import argparse

2

3 parser = argparse.ArgumentParser(description='Pytorch implementation ' \

4 'of arbitrary style transfer via CNN features WCT trasform',

5 epilog='Supported image file formats are: jpg, jpeg, png')

6 parser.add_argument('--content', help='Path of the content image ' \

7 '(or a directory containing images) to be trasformed')

8 parser.add_argument('--style', help='Path of the style image (or ' \

9 ' a directory containing images) to use')

10 parser.add_argument('--synthesis', default=False, action='store_true',

11 help='Flag to syntesize a new texture.')

12 parser.add_argument('--stylePair', help='Path of two style images ' \

13 '(separated by ``,'') to use in combination')

14 parser.add_argument('--mask', help='Path of the binary mask image ' \

15 'to trasfer the style pair in the corrisponding areas')

16 parser.add_argument('--contentSize', type=int, help='Reshape ' \

17 'content image to have the new specified maximum size')

18 parser.add_argument('--styleSize', type=int, help='Reshape ' \

19 'style image to have the new specified maximum size')

20 parser.add_argument('--outDir', default='outputs', help='Path ' \

21 'of the directory where stylized results will be saved')

22 parser.add_argument('--outPrefix', help='Name prefixed in the ' \

23 'saved stylized images')

24 parser.add_argument('--alpha', type=float, default=0.2,

25 help='Hyperparameter balancing the blending between ' \

26 'original content features and WCT-transformed features')

27 parser.add_argument('--beta', type=float, default=0.5,

28 help='Hyperparameter balancing the interpolation between ' \

29 'the two images in the stylePair')

30 parser.add_argument('--no-cuda', default=False, action='store_true',

31 help='Flag to enables GPU (CUDA) accelerated computations')

32 parser.add_argument('--single-level', default=False, action='store_true',

33 help='Flag to switch to single level stylization')

34

35 parser.parse_args()

Listing 3: Command line arguments parsing configuration.
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4.6.1 Dataloader

In most of the use cases, the user indicate as a command line argument

the path of a content image and a style image. These paths can be single

images or folders containing at least one image. These images should have

a jpg, jpeg or png extension. Once the paths are validated, images are

read into the program as PyTorch Tensors by the function load_img as in

Listing 4. The open method from the PIL library is used to load the image in

the standard 3-channel 8-bit RGB format at its original size. When resizing

is needed, in order to keep the aspect-ratio, we need to find the image’s

longer dimension. This dimension is set to the new size and the shorter

dimension is scaled in order to keep the original sizes proportion intact.

Lastly, the torchivision.transforms.to_tensor method converts the PIL

Image with shape (H ×W × C) with pixel values in the range [0, 255] to a

torch.FloatTensor of shape (C ×H ×W ) in the range [0.0, 1.0].

1 import PIL

2 import numpy as np

3 from PIL import Image

4 import torchvision.transforms.functional as transforms

5

6 def load_img(path, new_size):

7 img = Image.open(path).convert(mode='RGB')

8 if new_size:

9 width, height = img.size

10 max_dim_ix = np.argmax(img.size)

11 if max_dim_ix == 0:

12 new_shape = (int(new_size * (height / width)), new_size)

13 img = transforms.resize(img, new_shape, PIL.Image.BICUBIC)

14 else:

15 new_shape = (new_size, int(new_size * (width / height)))

16 img = transforms.resize(img, new_shape, PIL.Image.BICUBIC)

17 return transforms.to_tensor(img)

Listing 4: Image reading function.

The object responsible for loading in images is an instance of the

ContentStylePairDataset class. This class is an implementation of the

https://pillow.readthedocs.io/
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abstract class torch.utils.data.Dataset, which is one of the many useful

object-oriented abstractions of PyTorch. The methods to implement are:

__len__ that return the total number of elements in the dataset, __getitem_

_ that return a single element of the dataset by indexing between 0 and

__len__. The constructor of the ContentStylePairDataset class appends

every combination of content-style paths to a list. __len__ method simply

returns the lenght of this list. When requested an image, the __getitem__

method call the load_img function to load and return it.

The dataset object, in the main function of the application, is wrapped inside

a Dataloader container. This provides a single or multi-process iterator over

the dataset used to stylize multiple images in a single for loop.

4.6.2 Image saving

The stylized output images are saved using the torchvision.utils.save_

image function. In order to distinguish multiple outputs very easily the out-

puts filenames are designed as follows:

outPrefix contentName stylized by styleName alpha alphaValue.contentExtension

The command line argument --outDir indicates a particular folder to save

the ouput images in.

4.7 Functionalities

Apart from style transfer, the application offers other functionalities enabled

by giving different combinations of command line arguments (see Listing 3

for the complete list). The functionalities available are:

1. style transfer. On input one content image path (--content) and

one style image path (--style), the application stylize the former ac-
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cording to the latter. An optional parameter --alpha (0 ≤ α ≤ 1)

balance the amount of stylization and content preservation.

2. texture synthesis. On input one texture image path (--style) and

the flag --synthesis, the application produce a novel texture similar

to the texture given.

3. style transfer interpolation. On input a content image path (--content)

and two style image paths (--stylePair) separated by a single comma,

the application stylize the former according to the the characteristics of

both style images. An optional parameter --beta (0 ≤ β ≤ 1) balance

the transferring between the two styles.

4. texture synthesis interpolation. On input two texture image paths

(--stylePair) and the flag --synthesis, the application produce a

novel texture similar to both textures given.

5. spatial control. On input a content image path (--content), two

style image paths (--stylePair) and a binary mask image path (--mask),

the application stylize the foreground of the content image using the

first style image and the background using the second style image.

4.8 Model behavior

The basic PyTorch abstraction for creating neural networks is the class

torch.nn.Module. The convolutional Autoencoder, the Encoder and De-

coder models we created all inherit from torch.nn.Module. The Encoder

and Decoder model objects as class fields of the Autoencoder. The meth-

ods to implement are: __init__ that is responsible for layers definition and

hyperparameter setting and forward that describes programmatically the

forward pass.

The __init__ method of the Autoencoder is responsible for creating the

Encoder and Decoder VGG19 blocks. The forward method of the Autoen-
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coder calls the stylize function to get the result. This function passes the

input to the Encoder and the Decoder blocks, that are, recalling Section

4.3, torch.nn.Sequential containers. The container, in turn, passes the

input through all the layers inside it triggering the computation. To bet-

ter illustrate the process, we present in Listing 5 the code of the multi-level

stylization model.

The Autoencoder take as input of the constructor the command line argu-

ments args. These are used to set its hyperparameters. The mask image,

if present, is loaded into memory straight away. The multi-level pipeline

described in Section 3.4 needs five encoder and five decoder blocks at differ-

ent depths. They are instantieted and appended to the class attribute lists

encoders and decoders. In the forward pass we need to perform five autoen-

coder sweeps at differents depths. Thus, the forward function has a for loop

iterating over the indices of the encoders list. This index is given, along

with others parameters, to the stylize function responsible for encoding

the images, combining with feature WCT and returning the reconstructed

output.

During implementation one of the concern regarded memory saving. Our

model hold in memory ten VGG19 blocks along with all their parameters.

This can lead to Out of Memory (OOM) error on memory limited machines.

In order to do not make the problem worse, intermediate stylization results

are not kept in memory. In fact, the variable content_img at line 44 of

Listing 5 is overwritten at each iteration with the latest stylization output.

OOM errors can still happen if the input images have a big resolution (i.e.

usually above 1920×1080). In this case it is preferable to use the --contentSize

and/or --styleSize command line arguments to resize input images instead

of switching to the single-level stylization model using --single-level com-

mand line argument.
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1 import PIL

2 import torch

3 from PIL import Image

4 import torch.nn as nn

5 from log_utils import get_logger

6 from feature_transforms import wct, wct_mask

7 from encoder_decoder_factory import Encoder, Decoder

8 import torchvision.transforms.functional as transforms

9 log = get_logger()

10

11 class MultiLevelWCT(nn.Module):

12 def __init__(self, args):

13 super(MultiLevelWCT, self).__init__()

14 self.svd_device = torch.device('cpu')

15 self.cnn_device = args.device

16 self.alpha = args.alpha

17 self.beta = args.beta

18

19 if args.mask:

20 self.mask_mode = True

21 self.mask = Image.open(args.mask).convert('1')

22 else:

23 self.mask_mode = False

24 self.mask = None

25

26 self.e1 = Encoder(1)

27 self.e2 = Encoder(2)

28 self.e3 = Encoder(3)

29 self.e4 = Encoder(4)

30 self.e5 = Encoder(5)

31 self.encoders = [self.e5, self.e4, self.e3, self.e2, self.e1]

32

33 self.d1 = Decoder(1)

34 self.d2 = Decoder(2)

35 self.d3 = Decoder(3)

36 self.d4 = Decoder(4)

37 self.d5 = Decoder(5)

38 self.decoders = [self.d5, self.d4, self.d3, self.d2, self.d1]

39

40 def forward(self, content_img, style_img,

41 additional_style_flag=False, style_img1=None):

42 for i in range(len(self.encoders)):

43 if additional_style_flag:

44 content_img = stylize(i, content_img, style_img,

45 self.encoders, self.decoders, self.alpha,

46 self.svd_device, self.cnn_device,interpolation_beta=

47 self.beta, style1=style_img1,

48 mask_mode=self.mask_mode, mask=self.mask)

49 else:

50 content_img = stylize(i, content_img, style_img,

51 self.encoders, self.decoders, self.alpha,

52 self.svd_device, self.cnn_device)

53 return content_img

Listing 5: Multi-level stylization model.
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4.9 Features WCT

The source code of the Whitening and Colouring Transformations (WCT)

described theoretically in Section 3.3 is given in Listing 6.

First of all, the tensor cf containing the features are converted to double-

precision decimal format for the following operations. The 3D features vol-

ume is reshaped to a 2D matrix using the view function. Then, each feature

channel is normalized by subtracting its empirical mean before computing

the covariance matrix. Since the eigendecomposition seen in 3.3 does not ex-

ists for non symmetric positive-semidefinite matrices, the covariance matrix

is decomposed using the Singular Value Decomposition (SVD).

The overall whitening Equation 3.5 is calculated on line 21 and the coloring

Equation 3.6 have its Python counterpart on line 41. This method can be

used to combine multiple feature volumes together. In fact, Listing 6 omits

it for brevity but when a second style image (i.e. s1f) is given to the applica-

tion, this gets also colored with the whitened features as the first style. The

two colored features are blended together with a simple linear combination

balanced by beta (see comment on line 47).



54 Chapter 4. Implementation

1 import torch

2

3 def wct(alpha, cf, sf, s1f=None, beta=None):

4 # whitening phase

5 cf = cf.double()

6 c_channels, c_width, c_height = cf.size(0), cf.size(1), cf.size(2)

7 cfv = cf.view(c_channels, -1) # new shape C × (h ∗ w)
8 c_mean = torch.mean(cfv, 1) # calculate means row-wise

9 c_mean = c_mean.unsqueeze(1).expand_as(cfv)

10 cfv -= c_mean

11 # cov(X) = Σ = XXT

N−1

12 c_covm = torch.mm(cfv, cfv.t()).div((c_width * c_height) - 1)

13 c_u, c_e, c_v = torch.svd(c_covm, some=False) # c covm = c u ∗ c e ∗ c vT
14 k_c = c_channels

15 for i in range(c_channels):

16 if c_e[i] < 0.00001:

17 k_c = i

18 break

19

20 c_d = (c_e[0:k_c]).pow(-0.5)

21 whitened = torch.mm(torch.mm(torch.mm(c_v[:, 0:k_c],

22 torch.diag(c_d)), (c_v[:, 0:k_c].t())), cfv)

23

24 # coloring phase

25 sf = sf.double()

26 _, s_width, s_heigth = sf.size(0), sf.size(1), sf.size(2)

27 sfv = sf.view(c_channels, -1)

28 s_mean = torch.mean(sfv, 1)

29 s_mean = s_mean.unsqueeze(1).expand_as(sfv)

30 sfv -= s_mean

31

32 s_covm = torch.mm(sfv, sfv.t()).div((s_width * s_heigth) - 1)

33 s_u, s_e, s_v = torch.svd(s_covm, some=False)

34 s_k = c_channels # same as content's channels

35 for i in range(c_channels):

36 if s_e[i] < 0.00001:

37 s_k = i

38 break

39

40 s_d = (s_e[0:s_k]).pow(0.5)

41 colored = torch.mm(torch.mm(torch.mm(s_v[:, 0:s_k],

42 torch.diag(s_d)), s_v[:, 0:s_k].t()), whitened)

43

44 cs0_features = colored + s_mean.resize_as_(colored)

45 target_features = cs0_features.view_as(cf)

46 # if s1f (additional style image): cs1_features = wct(s1f)

47 # target_features = β ∗ cs0 features+ (1.0− β) ∗ cs1 features
48

49 ccsf = alpha * target_features + (1.0 - alpha) * cf

50 return ccsf.float().unsqueeze(0)

Listing 6: Feature Whitening and Coloring transforms.
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Evaluation

In this chapter we will illustrate and analyse the experimental results of the

application. We will compare results obtained with differents architectures

and user-controlled hyperparameters. In the end, we give some performance-

related remarks.

The proposed approach offers a very convenient tradeoff. It is learning-free at

test stage and can reproduce arbitrary style without sacrifing too much effi-

ciency in the feedforward pass. In fact, compared to other recent neural style

transfer methods, called Fast Methods based on Offline Model Optimisation

in [10], the proposed approach has a similar per-image execution time.

5.1 Results

To demonstrate the effectiveness of the proposed algorithm we show the

outputs obtained for various content, style and texture images in following

sections. There is no universally accepted quantitative standard for style

transfer evaluation. For this reason, we show our results and relay on a

qualitative evaluation.

55
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5.1.1 Style transfer

In order to display style transfer results obtained on a variety of content and

style images we decided to put them in a grid (see Figure 5.2). The last six

images of the first column are the content images. The last eight images of

the first row are the style images. The element in position i, j of the grid

represent the j-th style transferred to the i-th content image. The content

images represent a wide variety of subjects (people, infrastructure, fruit, . . . )

and contexts (seaside, mountains, train station, . . . ). The style images are

also drawn from a wide array of painting movements (Futurism, Symbolism,

Expressionism, . . . ).

Without learning any style, our method is able to capture visually salient pat-

terns in the style images (e.g., waveform in the third column). Style patterns

are not transferred to only relatively smooth regions (e.g. sky background,

sea background) of the content images but also to non-smooth regions that

usually correspond to key components of the content (e.g. oranges, bridge).

It is interesting how the use of contrast and the shadowing of the stylized out-

put resemble the painting (e.g. orages reflection on the table in the fifth row).

Small details gets sometimes blurred out (e.g. childrens face in image6,1, peo-

ple in the background at the station in image7,1) but the overall message of

the artwork (i.e. color palette, edge patterns, rich local structures) is almost

always transferred to the content.

The adopted approach allows to blend multiple styles together before trans-

ferring it to the content. We decided to allow the transferring of a maximum

of two styles simultaneously because more than that usually leads to artifacts

and unrecognizable content. In Figure 5.2 we showcase the obtained result.

The image in the far left of the grid is the content image. The images on the

far right are the two styles images. In the middle there is the stylized result.

The features extracted from both styles are transferred in a selective and

interesting way. The texture and the shading of the water style is applied to

the petals of the flowers. Little sparks of yellow details from the tiger style
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Figure 5.1: Showcase of (48) style transfer results.
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are transferred to the flower’s goblets.

Figure 5.2: Showcase of two styles simultaneous transfer.

5.1.2 Texture synthesis

By setting random noise as the content image, our stylization framework

can be applied to texture synthesis. Empirically, we found out that multi-

ple iteration (3 iteration) of the multi-level stylization pipeline usually yield

better looking results. Figure 5.3 showcase the obtained results. In the left

column of the grid we have the texture images and in the right colum there

are respective synthetized results.

The results show that our method is able to effectively reproduce the refer-

ence textural effects with natural variations due to the random noise input.

Output textures seems absolutely faithful to the original when there is no ge-

ometric pattern in the starting texture image. This is the case of the bubble

texture in the middle.

5.2 User control

Given a content image and a style image pair, our approach is flexible enough

to accommodate different requirements from the user by providing some con-

trol over the stylization, including scale, weight and spatial control.
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Figure 5.3: Showcase of (3) texture synthesis results.
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5.2.1 Spatial control

Spatial control of the stylization allow users to edit an image with different

styles on different parts of the image. The grid in Figure 5.4 shows an

example of the result obtained by our approach on this task. In addition to

the content image (i.e. the women face), a binary mask white-on-black (i.e.

the eyes mask in the central column) is required as input, to indicate the

spatial correspondence between content regions and styles. The styles used

here are on the far right column of the grid. The obtained result is the first

column.

Figure 5.4: Showcase of spatial control over the style trasfer.

5.2.2 Hyperparameters

As described in Section 4.4, there a few command line arguments that adjust

the style transfer. Varying the style images size will lead to different extracted

statistics due to the fixed receptive field of the network. Therefore, the

scale control is easily achieved by adjusting the --styleSize command line

argument.

Another model’s hyperparameter to tweak is the weight control --alpha,

which control the balance between stylization and content preservation. The
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proposed method enjoys this flexibility by simply plugging this parameter in

Equation 3.6.

An example of usage of these hyperparameters is shown in Figure 5.5. The

content image is taken from Figure 5.4. The second an third image from the

left illustrate the scale control (different-sized brick patterns), while the last

three illustrate the weight control.

Figure 5.5: Showcase of the hyperparameter control over style transfer.

5.3 Performances

The application is cross-platform and can run on CPU or GPU thanks to

PyTorch CUDA accelaration and device-agnostic API. This is done by se-

lecting a PyTorch device type, identified by the string cpu or cuda:0. The

default device is the latter. CPU-only computation is selected by giving the

--no-cuda command line argument. The model object and input images

are moved to the selected device,which is used internally by the framework

to perform all the operations.

Table 5.1 show stylization wall-clock timings for various image sizes, compu-

tational devices and stylization pipelines.

Our approach is pretty time efficient on GPU. The 48 stylizations of the

768× 768-sized images in Figure 5.1 took 8 minutes (whole-process time) on

a labtop-grade GPU. The most time consuming task is the eigen decompo-

sition in WCT. It is important to note that the computational cost of this

step will not increase along with the image size because the dimension of the
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Size

Type
SingleCPU SingleGPU MultiCPU MultiGPU

256× 256 3.1757 0.8297 9.7269 1.6117

512× 512 13.2555 1.2131 40.7391 3.6235

768× 768 25.5276 1.4680 79.8720 5.7486

1080× 1080 44.7806 2.1954 125.0736 10.4855

1920× 1920 143.5199 7.1902 417.6532 42.3703

Table 5.1: Stylization timings (in seconds) with different configurations. Sin-

gleCPU stands for single-level architecture executed on the CPU, Multi-

GPU stands for multi-level architecture executed on the GPU.

covariance matrix to decompose only depends on the fixed number of filters

of the final layer (i.e. Relu 5 1 has 512 output channels). This decomposition

step is stricly CPU-based because under the hood torch.svd implementa-

tion has several calls to the LAPACK software library. To evaluate how

memory copying back and forth the GPU memory impacted performance,

we averaged ten wct calls with features of a 512 × 512 content image and a

591 × 800 style image. The CPU implementation took 4.604 seconds while

the GPU implementation took 5.312 seconds. Thus, in our implementation,

the default behaviour is to move features to the CPU memory before calling

the wct function and then, move them back to GPU memory for decoder

reconstruction.
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Conclusion

In fine art, especially painting, humans have mastered the skill to create

unique visual experiences through composing a complex interplay between

the content and style of an image. Artistic Style Transfer tried to tackle the

problem in an algorithmic way but without great sucess. The work by Gatys

et al. [7] was the first to use Convolutional Neural Networks, enabling them

to get a hierarchical image representation. Their seminal work effectively

created a new research direction called Neural Style Transfer.

In this thesis we focused on Neural Style Transfer, adopting a novel ap-

proach for transferring arbitrary styles in a learning free manner. A

convolutional neural network is used to extract a representation of the con-

tent image and style image characteristics. A symmetrical Decoder is trained

in advance for general-purpose image reconstruction. Then, the whitening

and coloring transforms (WCT) are applied in the bottleneck layer of the

Convolutional Autoencoder in order to match the statistical distribution of

the content features with the style features. These transformed features are

then reconstructed back to RGB space. The stylized result carries informa-

tions about the style image but preserves the global structure of the content

image. In order to extract all the information from the style image, this

process is applied multiple times by inverting the features produced by the

CNN at differents depth levels.
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The obtained results are visually pleasing and, most of the times, resemble

the style artwork patterns. The impressive remark is the flexibility of this

approach (applicable also for texture synthesis). Content and styles from

diverse natural domains and artistic movements can be combined together

in a creative way. NST, usually, finds its market in image editing and social

media applications. The flexibility of our approach can also support an artist

in the creative process by quickly pitching various content-stylization ideas

and also allows to spatially control the effect.

On the other hand, since inverting very deep features is a difficult task, it’s

fair to say that if the user need to preserve detailed structures of the content

image a more powerful decoder is necessary.
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