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Abstract

Rechargeable Li-ion batteries (LIBs) are nowadays gaining more and more importance in

the storage of clean energy deriving from renewable sources as well as in portable devices

applications. Thus, new electrode materials are being studied by several research group

in order to constantly improve performances of LIBs.

In this context, the aim of this thesis work was to synthesize, characterize and test cycling

properties of two new cathodic materials: iron nitroprusside and its degradation product,

called Fe(CN)O.

Cubic iron nitroprusside as well as Fe(CN)O were successfully co-precipitated and thence

investigated by means of different techniques such as Mössbauer spectroscopy, CHN ele-

mental analysis, ATR-FTIR and X-rays techniques (XRD, WDX and SEM-EDX).

Good cycling properties were registered for both the materials in LIBs and post-lithium

systems such as Na and K-ion batteries. In situ analysis confirmed the hypothesis of a

reversible reaction between materials and lithium ions occurring in the potential range of

1.7 - 4.2 V vs.Li+/Li.
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Chapter 1

Introduction

1 Lithium-ion batteries

The fast world population growth combined to life modernization due to the rapid devel-

opment of new technologies have brought, in last years, to a strong increase of the demand

of primary energy, which has been met mainly by the combustion of fossil fuels [22].

Nevertheless, since fossil reserves are limited and exhaustible, oil price is increasing,

strongly influenced by the economic and geopolitic trend. This instable situation, added

to the awareness of the fuels contribution to the green-house effect, led to the development

of alternative energy resources, such as nuclear power and renewable energy.

Nuclear power stations began has been developed since the 50ies in many countries, with

powers raising to almost 350 GW at the beginning of the 21st century. Even if it is con-

sidered as a sustainable energy source that can positively reduce carbon emissions, the

disposal of radioactive wastes is a still unsolved problem; moreover, this technology is

not 100% sure and many security risks for environment and population still exist. Many

serious accidents, in fact, have happened during the 70ies, and after that, the construction

of nuclear power plants have slowed down, also because of the elevated production cost

[2].

Thus, renewable energies such as photovoltaic solar energy, wind power and geothermal

energy have gained importance. The main drawback of such renewable sources, however, is

their intrinsic intermittent character, and a difference between production and consump-

tion periods usually exist. Therefore, the increase of the higher proportion of renewable

energy in the existing energy mix is possible only by the implementation of storage sys-
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tems. Such systems will then be able to store the excess of energy produced outside the

consumption peaks, and to give it back when needed. Furthermore, the ongoing replace-

ment of the transportation means fed by fossil fuels by new generations of electric cars,

as well as the widespread increase of mobile devices require more and more stored energy

[46].

All these developments trigger a certain need for long-life and low-cost storage systems,

with high capacity and power performance as well as elevated security; the development

of lithium-ion batteries (LIBs), started at eh beginning of the 90ies and since then growing

at an increasing pace, are located in this context.

LIBs belong to the family of accumulators, i.e., rechargeable energy storage devices able to

reversibly convert chemical energy into the electric one, and thus able to store electric en-

ergy provided by an external source and to give it back on demand [26]. More specifically,

such devices, also called secondary batteries, are based on a reversible chemical reaction,

which occurs spontaneously during the discharge, and which can be reversed during the

charge by applying a current in the opposite direction. By contrast, the so-called primary

batteries cannot be recharged and their useful life ends once the reactants are consumed

during the discharge process [12].

LIBs were born as a solution to a safety problem observed in the preceding Li-metal bat-

teries. In fact, in Li-metal batteries, lithium was used directly as the negative electrode

material, and during the charge process, its electrodeposition occurred with the growth

of metal dendrites (Figure 1.1(a)) which eventually crossed over the separator and con-

tacted with the positive electrode, leading to shortcuts and often explosion hazards [56].

(a) Li dendritic growth. (b) Rapresentation of the rocking chair system

in LIBs.

Figure 1.1: Comparison between lithium-metal (a) and lithium-ion (b) batteries [56].
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Figure 1.2: Volumetric and gravimetric energy density of the principle types of batteries

[56].

To avoid this security issue, lithium metal is replaced by a different negative electrode ma-

terial able to reversibly insert/deinsert lithium. In this material lithium ions are exploited

as positive charges in the so called rocking chair system described by Goodenough and

Whittingham in 1981 [40], on which LIBs are based. In LIBs, in fact, during the discharge

lithium cations are simultaneously deinserted from the negative electrode and inserted in

the positive one. Therefore, while the average concentration of lithium in the electrolyte

remains constant during the whole process, lithium ions constantly flow from the negative

electrode to the positive one, accompanied by the flow of electrons in an external circuit

needed for the oxidation and the reduction of the electrode materials. During charge, the

flow of electrons and lithium ions is reversed (Figure 1.1(b)).

Even if lithium metal is highly reactive, it is widely used in portable batteries because

it is the most electro-positive (-3.04 V vs. SHE) and because of its lightness; these char-

acteristics make LIBs the best technology in terms of both volumetric and gravimetric

energy density, as shown in Figure 1.2.

The energy density represents the amount of electric energy deliverable by a battery per

unit of volume or weight [24] and it is expressed in W·h·kg−1:

E =
C · V
m

(1.1)

where V is the potential in Volt, m is the mass in kg and C is the nominal capacity in

A·h, i.e., the amount of electricity which the battery is able to deliver in fixed discharge
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MZ+ Abundance

(%)

Price

(€/ (CO3)
2– )

Melting pt

(°C)

E0

(Vvs.SHE)

g/mol e− Ionic radius

(�A)

C

(mAhg−1)

Li+ 0.002 240 180 -3.04 6.941 0.68 3.8

Na+ 2.3-2.8 45 98 -2.71 22.99 1.02 1.16

K+ 2.4 12 63.5 -2.93 39.10 2.27 0.68

Mg2+ 2.1-2.9 40 650 -2.37 12.15 0.74 2.20

Table 1.1: Properties of principle ions for batteries.

conditions of time and current:

C =

∫ t

0

i(t) dt = i · t (1.2)

Similarly, the theoretical capacity can be defined as the amount of charge delivered per

unit weight of active electrode material, and it is thus expressed in A·h·g−1.

Lithium-based batteries have better storage ability than other battery technologies thanks

to the low self-discharge rate and the absence of the so-called memory effect, which affects

other types of batteries. In nickel-cadmium batteries, for example, a shallow discharge

makes the battery ”remember” the final discharge conditions, and a voltage drop occurs

once the discharge capacity reaches the reminded value during following cycles.

In terms of applications, these characteristics make LIBs the best choice for application

in portable devices as well as in electric vehicles.

However, in order to overcome the limited availability of lithium on Earth, recent re-

searches have focused on post-lithium technologies, such as Na-ion, K-ion and Mg-ion

batteries. Indeed, the ionic radius and the redox potential of these ions are not very dif-

ferent from those of lithium, as resumed in Table 1.1. For this reason, such ions can be

inserted/deinserted reversibly in some materials with a mechanism very similar (but not

always identical) to that of LIBs. At the same time, their abundance and their easier

extraction make them a viable alternative to lithium-based systems.

2 Positive electrode materials for LIBs

Since Li+ ions are shuttling alternatively between the positive and the negative electrode,

both active electrode materials (AM) in LIBs must be able to reversibly host the lithium

cations. A large variety of solids have such properties and have been tested for this ap-
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plication in the last two decades, and many research group are still investigating new

compounds to find out the best compromise between all the properties (capacity, working

potential, cycle life, security, etc.)

Negative electrode materials can be divided into three different groups depending on the

reaction mechanism with Li+: conversion, alloy and insertion type materials.

Conversion type materials are usually binary compounds in the form MaXb in which M is

a transition metal such as Ni, Co and Fe and X is a nonmetal e.g. O, S, F, N etc. During

the charge, the metal is completely reduced to M0 and lithium cations form a LinX matrix

in which M0 nanoparticles are encapsulated.

Alloying-type materials can be both pure metals or metal compounds such as SnO2. the

reaction with Li+ ions proceeds in this case through a multi-step alloying mechanism,

with the formation of lithiated alloys containing different amounts of Li [24].

Even if both conversion- and alloy-type materials can reach very high nominal capacities,

their main drawback is the really high volume expansion (up to 200% for alloy-type ma-

terials) resulting from the strong structural modifications occurring during the reaction

with lithium ions [56].

For this reason, intercalation-type materials e.g. the graphite are now dominating the

LIBs market; since Li+ ions are inserted inside the electrode lattice without modifying it,

in fact, the volume expansion is avoided.

While negative electrode materials can react electrochemically with Li+ via different re-

action mechanisms almost all positive electrode materials work through the insertion

mechanism.

During the discharge, the positive electrode (often inaccurately called ”cathode”, defini-

tion that works only during the discharge process) is reduced and lithium ions can be

inserted inside its lattice. A distinction can be made between low voltage materials such

as, e.g., vanadium oxides (Figure 1.3(a)) and titanium disulfide, with working potentials

in the 2− 3.2 V vs. Li+/ range, and the nowadays more common high voltage materials.

High voltage cathode materials can be classified in three different groups depending

whether the structure of the solids allows lithium diffusion via 3D, 2D or 1D channel

systems:

• Layered lithium - transition metal oxides (e.g., LiCoO2);

• Lithium metal oxides with a spinel structure (e.g.;
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(a) Vanadium pentoxide struc-

ture.

(b) Layered structure of LCO. (c) Olivine structure

Figure 1.3: Main cathodic materials structures [38].

• Lithiated polyanionic materials (e.g., LiFePO4).

Historically, the first cathode material used in LIBs was LiCoO2, belonging to the family

of the layered lithium - transition metal oxides (with general formula Li(1-x)MO2, with M

= Co, Ni etc.). Lithium cobalt oxide (LCO)has a rock salt fcc structure with alternate

ordered (111) layers of Li+ and Co+3 cations (Figure 1.3(b)). The diffusion of Li+ in LCO

occurs with a 2D process in the Li-containing planes. During the charge process, Co+3 is

oxidized to Co+4 while Li+ ions are extracted form the structure [24].

The theoretical capacity of LCO is 274 mAh/g, corresponding to the extraction of all

the lithium; however, since this material undergoes irreversible structural changes if more

than 0.5 Li+ are extracted, its practical capacity decreases to 137 mAh/g. In fact, the

delithiated form of LCO forming beyond 4.1-4.2 V is not able to insert Li+ anymore

and becomes thermally instable [38, 56]. To avoid these problems and those related to

the high cost and toxicity of Co, new compounds based on other transition metals have

been developed. Among them, NMC compounds represent one of the best alternative to

LCO, substituting it in many commercial batteries. In these materials, in fact, a part

of the Co is replaced by Nichel and Manganese, reducing the material cost and toxicity

and improving stability and performances [31, 32]. The high voltage spinel LiMn2O4, for

example, has a comparable capacity, but Mn is not toxic and much cheaper than Co.

Moreover, since manganese was previously used in alcaline batteries, recycling methods

are already well-known.
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As LCO, lithium manganese oxide (LMO) can be cycled in the 3-4.2V and in the past

was discarded as a possible cathode material because of its low capacity at temperatures

higher than 55 ◦C, and because of its partial solubility in the electrolyte. Despite this,

many researches were done and new solutions for these drawback have been proposed.

Nowadays, new materials with an olivine (LiMgFeSiO4) structure such as LiFePO4 (Figure

1.3(c)) are commercialized. These compounds based on molecular ions as phosphates or

sulfates are safe, low cost and non-toxic, but their energy density and voltage are relatively

low.

Even if all these materials have high capacity, they are mostly known for the insertion

of Li+, and often do not work with other cations such as K+ or Mg+2. Several other

families of materials, possibly exploitable in post-lithium batteries, are therefore currently

studied, including molecular materials [45]. One of the most studied families of molecular

cathode materials is that of Prussian Blue Analogues (PBAs). PBAs usually display a

lower capacity (around 100-120 mAh/g) than the materials presented above, but are

stable, cheap and very versatile, and can easily insert other cations too.

3 Prussian Blue Analogues

Prussian Blue Analogues (PBAs) are a family of active materials derived from the well-

known Prussian Blue (PB), the first to be discovered. Indeed, PB, or ferric hexacyano-

ferrate (with formula FeIII[FeII(CN)6]) was accidentally synthesized for the first time by

the German color-maker Heinrich Diesbach in 1706 and it is considered the first synthetic

coordination compound.

Actually Diesbach, in an attempt to prepare the crimson red, accidentally added the

fundamental ingredient for the synthesis of PB: the then unknown CN– group, the real

composition of which was found out only in 1814 by Joseph Louis Gay-Lussac. After this

discovery, a huge number of new and modern methods for the synthesis of PB were de-

veloped. Thanks to its importance in PB structure, the cyanide group is named after the

blue color of PB; indeed, the Greek word kyaneos means dark blue, even if the largest

number of cyanides is colorless [57].

The Prussian Blue and its analogues, in fact, are characterized by a rigid cubic framework

with the transition metal atoms at the edges of the cube connected by the cyano groups,
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Figure 1.4: Typical PBAs structure, with green A exchangeable counterions, light blue

N, gray C, pink Fe and yellow M transition metal.

forming −NC−Fe−CN−M−NC− repeating chains, as shown in Figure 1.4. Because of

this typical structure in which the CN– group links between them octahedrally coordi-

nated sites of the metal M and of the iron forming a chain, PBAs can be considered real

inorganic polymeric compounds [23].

The exchangeable counterions (A) usually occupy zeolitic interstitial positions instead;

they assure the charge neutrality and, thanks to their mobility, they allow the ionic ex-

change which is necessary for the insertion reaction in LIBs. This regular structure is typ-

ical of the so-called soluble Prussian Blue, with general formula AIFeIII[FeII(CN)6] ·yH2O;

depending on the preparation method, this compound can have structural defects result-

ing in random vacancies in the lattice. If there is the regular absence of Fe(CN)6 groups,

the insoluble PB is formed [57].

As can be seen from its general formula (Fe III
4 [FeII(CN)6]3 · xH2O), a molecule of water

is needed to fill iron vacancies in the insoluble PB structure. Indeed, a quarter of FeII is

absent to balance charges.

Nevertheless, soluble and insoluble refer to the ability in forming colloidal solution and

not to the real solubility of the compound. This property is due, in fact, to the presence

of structural defects [5].

Owing to its intense blue color, PB was widely used by painters in the past, but later it

found application a huge number of different fields thanks to its incredible properties.

Indeed, the PB’s blue color is due to the two different oxidations states of the iron cen-
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ters. By reducing both the iron atoms to FeII, a material that is named Prussian White

(PW) after its color is obtained. The PW has a less regular polycrystalline structure and

formula K4Fe II
4 [FeII(CN)6]3. It is also possible to obtain the completely oxidized PB form,

the Berlin Green, in which an anion A– is necessary for the charge neutrality; its formula

is therefore Fe III
4 [FeIII(CN)6A]3 [33]. Thus, PB can reversibly change color according to

the iron oxidation state through electrochemical processes. Thanks to this electrochromic

disposition, that is typical of almost all PBAs, this class of materials can be used, e.g.,

for digital displays in electronic devices [37].

Furthermore, when John F. W. Hershel accidentally noted PB’s photochemical charac-

teristics, he used began to use PB for his photographic printings. By putting potassium

ferricyanide in the sunlight, in fact, the red initial material turned into the blue PB as a

result of the irradiation [57].

Thanks to their previously described ability in performing ionic exchange due to their

typical structure, Prussian Blue Analogues can be also used for environmental applica-

tions as the capture of heavy metal ions in aqueous solutions [36, 37, 49].

The presence of extremely reversible and electroactive redox couples in PBAs has stimu-

lated their application in batteries as well as in sensors for a large number of ions, e.g.,

Cs+, K+, Tl+ and NH +
4 [33].

In the last year, the Electrochemistry group of the University of Bologna has studied the

use of the Copper Hexacyanoferrate in batteries as well as proposing the possible appli-

cation of the Copper Nitroprusside [42, 43].

Among PBAs, the FeII[FeII(CN)5NO] ·H2O (Iron Nitropusside) appears to be a really at-

tractive material from the points of view of both application and characterization; in fact,

the presence of two different FeII sites, high spin and low spin (Figure 1.5(a)), makes the

Iron Nitroprusside (FeNP) very interesting to be studied by 57Fe Mössbauer spectroscopy

(technique described in Appendix 4). Furthermore, in addition to the electrochemical

properties associated with iron redox couples, the nitrosyl group can be exploited as an

electrons source since it can change its oxidation state from (NO)+ to (NO)0, to (NO)– .

For these reasons and for its PBAs typical structure able to insert and release cations, Iron

Nitroprusside was synthesized in its cubic form and characterized during this internship.

Actually, FeNP can present three different structures: cubic, monoclinic and orthorhombic

depending on the synthesis method [25, 51]. The crystal structure as well as the hydration
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(a) Figure taken from [3] (b) Hydration effect is visible in insert A, with the dehy-

drated form in the top [25].

Figure 1.5: Mössbauer spectra and XRD patterns of hydrated (in the top in (a)) and

dehydrated cubic Iron Nitroprusside.

degree can be determined using both XRD and Mössbauer spectroscopy. In this last, in

fact, a Fe(II) contribution in the range of the low spin is always visible and independent

on the amount of water and the crystalline structure; on the other hand, the high spin

Fe(II) contributions can vary according to the environment of the external iron center.

The X-ray diffractogram and the Mössbauer spectrum of cubic FeNP with different degree

of hydration are reported in Figure 1.5.

The electrochemical properties of FeNP as a possible cathode material in LIBs and post-

lithium batteries were then investigated for the first time.



Chapter 2

Experimental part

1 Synthesis

1.1 Iron nitroprusside

Iron nitroprusside (FeNP) was synthesized by co-precipitation starting from 50 mM de-

aerated solutions of Na2[Fe(CN)5NO] and (NH4)2Fe(SO4)2 · 6 H2O under Argon flux. The

solutions were cooled in an ice bath before mixing, and maintained at constant tempera-

ture under magnetic stirring; after mixing, the resulting solution was protected from light

to avoid the photodegradation of the light-sensible nitroprusside in solution [6].

From the beginning of the drop-by-drop addition of the Mohr’s Salt solution to the nitro-

prusside one, the red color, typical of Fe(II) complexes, turned into yellow-brownish and

mat. At the end of the reaction, a brownish precipitate was clearly visible.

The powder was collected by centrifugation at 20000 rpm and 10◦C for 30 minutes; sub-

sequently it was rinsed twice with distilled water ad put to dry in the dark under vacuum.

The synthesis was performed three times to test its reproducibility and samples S2 (a),

S2 (b) and S2 (c) were collected (Figure 2.1(a)).

1.2 FeNP degradation product

The same synthesis was performed also using 20 mM solutions, at room temperature

and under light exposition to investigate the degradation mechanism of the nitroprusside.

For this purpose, after the co-precipitation, the solution was aged for two days in the

sunlight and a blue-green precipitate, called Fe(CN)O (Figure 2.1(b)) was recovered by
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(a) Fe[Fe(CN)5NO] · xH2O. (b) Photodegradation product.

Figure 2.1: Synthesized powders.

centrifugation and dried overnight under vacuum. This synthesis was also repeated twice,

and samples S1 (a) and S1 (b) were collected and studied.

2 Characterization

All the characterization techniques are described in detail in Appendix 4. Here only the

experimental conditions are presented.

2.1 X-ray Diffraction (XRD)

XRD measurements were performed on all the powders to characterized them from a

structural point of view. Both a X’pert PANalytical and an Empyrean diffractometers

were used in the 2θ range 5◦ ≤ 2θ ≤ 80◦ using the Cu Kα radiation (λ = 1.5418 Å). X-ray

tubes of both diffractometers operated at 45kV and 30 mA.

For all the powders, the symmetry group and unit cell parameters were determined by

profile matching using the computer program FullProf.

2.2 Mössbauer Spectroscopy

Transmission 57Fe Mössbauer spectra were recorded at room temperature using a source

of 57Co(Rh) in the constant acceleration mode. A proportional counter filled with an ap-
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propriate mixture of Kr and CO2. The velocity scale was calibrated using the magnetic six

line spectrum of a high-purity iron absorber. Hyperfine parameters (such as isomer shift,

quadrupole splitting, full line width at half-maximum and relative resonance area) were

determined by fitting the experimental data to appropriate combinations of Lorentzian

lines with a nonlinear least-square method. The values of the isomer shift are given rela-

tive to α−Fe. The spectra of the synthesized samples were measured using self-supported

pellets of the appropriate thickness. In situ Mössbauer spectroscopy was later applied

to investigate the physicochemical properties of the iron centers during discharge/charge

cycles using a specifically developed in situ cell (see Section 4) [35].

2.3 Scanning Electron Microscopy (SEM)

SEM analyses were carried out using a Hitachi S4800 FE-SEM (voltage: 5 kV). Energy

dispersive X-ray analysis (EDX) was carried out using the EDX attachment (Oxford In-

struments) of the SEM system in order to study the elemental composition of individual

particles of all the synthesized samples. The beam of electrons accelerated under vac-

uum exploited for the EDX can be in fact used in mapping configuration to study the

composition and the homogeneity of the samples.

2.4 X-Ray Fluorescence Spectroscopy (XRF)

Wavelength dispersive spectrometry (WDX) was used to determine the average elemental

composition of all the samples synthesized in this work. All WDX measurements were

performed on an Axios XRF Spectrometer.

By combining the results of this technique with the results of EDX analyses (see Section

2.3), it was possible to calculate the empirical formula of samples, enabling to confirm

the purity of iron nitroprussiate, and to identify the new compound obtained by its pho-

todegradation in suspension.

Each sample was analyzed three times and the mean values were adopted as the real ones

to calculate the generalized chemical formulas of the synthesized compounds.
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2.5 CHNSO Elemental Analysis

Combustion analysis was used to determine the amount in C,H,N,O and S in all the

synthesized samples, and the results were compared to those of EDX and XRF, often

imprecise in the quantitative determination of light elements. The ElementarVario Micro

Cube combustion analyzer used for the measurements reported in this thesis, is equipped

with a proprietary Temperature Programmed Desorption (TPD) column and a Thermal

Conductivity Detector (TCD). To measure the oxygen content of the samples, the com-

bustion analysis was performed under pyrolysis conditions too.

Each sample was analyzed three times and the mean values were adopted as the real ones

to calculate the generalized chemical formulas of the synthesized compounds.

2.6 Attenuated Total Reflection - Infrared Spectroscopy (ATR-

FTIR)

Fourier Transform Infrared (FTIR) spectra were recorded in the 540 - 4000 cm−1 wavenum-

ber range using a Nicolet Magna FTIR spectrometer equipped with an Attenuated Total

Reflection (ATR) accessory. Given the significant contribution of the air components and

of the diamond waveguide of the ATR accessory in the spectra, a background spectrum

was registered before every measurement.

3 Electrochemical tests

The electrochemical behavior of synthesized materials was tested in the galvanostatic

mode during consecutive charge/discharge cycles in a chosen potential range, versus Li

metal. Since both lithium and the electrolyte are air- and moisture-sensitive, coin cell bat-

teries were assembled in argon-filled glove box. As shown in Figure 2.2, coin cells consist

in superposed layers closed by two cases mechanically sealed after filling the cell. Positive

and negative electrode materials, usually casted on inert metal current collectors, are kept

apart by a glass-fiber separator (Whatman GF/A) soaked with the electrolyte solution.

A disk of metallic lithium was used as the anode, while the investigated material was

always at the cathode side. A 1M solution of LiPF6 in a 1:1:3 mixture of ethylene car-

bonate (EC), propylene carbonate (PC) and dimethyl carbonate (DMC), containing 2%
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Figure 2.2: Coin cell structure.

vinylene carbonate (VC) and 5% fluoroethylene carbonate (FEC) as additives, was used

as the electrolyte.

Indeed, the important role of VC in the SEI formation has already been widely investi-

gated and supported by several researches [20, 48, 54] as well as the beneficial effect of

HF derived from FEC degradation on the inhibition of dendrites formation[53]. For the

cathode, different formulation were tested in order to optimize the cycling performance.

Both materials were also tested in post-Lithium systems such as Na and K-ion batteries.

4 Operando characterization

Several of the previously presented characterization techniques were applied in the operando

configuration, i.e., by performing the measurements on the active material during dis-

charge/charge cycles. In this way, it was possible to follow the structural and physico-

chemical modifications of the electrode material during its electrochemical reaction with

Li+, thus providing vital information on the reaction mechanism. At this purpose, different

in situ cells, each adapted to a specific characterization technique, containing electrode

materials, separator and electrolyte, were used. In fact, depending on the technique, the

cells are slightly different, even though their general structure is always the same (Figure

2.3). Three different parts are screwed together: the top part, the plunger and the main

body. On the top part, which has a 20 mm hole, a 40 mm diameter beryllium window is

placed. The cathode material is deposited on the window, with an aluminum film between

them to avoid the oxidation of Be at high potential. Like in normal coin cells, a separator
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Figure 2.3: Geometry of an in situ cell [35].

soaked with the electrolyte in contact with the studied material keeps apart the electrode

and a thin Li metal counter-electrode, which is in contact with the plunger. These com-

ponents are held together by a spring pushing the plunger towards the beryllium window,

to assure the correct pressure on the cell. The plunger is thus connected to the negative

electrode and is separated by the positive main body by a Mylar film to avoid short-cut.

The main body, in fact, is fixed to the top part by six stainless steel screws. The plunger

and the main body are screwed together. To avoid air to enter in the cell, adapted gaskets

and o-ring in good condition are used between the three parts.

While the main body is the same regardless of the used technique, for the measurements

with transmission Mössbauer spectroscopy an additional Be window is placed on the top

of an empty plunger, allowing the γ−-rays to pass through the whole cell. A full plunger

is used for XRD measurements, whereas the top part of the IR in situ cell is replaced by

the ATR sample holder.

From the electrochemical point of view, a first cycle was performed between 4.2 and 1.7

V at a C/10 rate and a second discharge until 0.5 V was done to investigate the material

behavior at low potential.

The large amount of collected data was analyzed using an alternative and innovative

approach, based on chemometric tools. Principal Component Analysis was used to de-

termine the number of independent components contributing to the whole dataset, and

Multivariate Curve Resolution permitted the stepwise reconstruction of the ”pure” spec-

tral components from these results.



Chapter 3

Results and Discussion

1 Synthesis and characterization

Starting from the same mother solutions, two different compounds were synthesized: FeNP

and Fe(CN)O. The two compounds can be easily distinguished by their color: FeNP is

a brown powder, obtained by protecting the solution from sunlight, whereas Fe(CN)O

is a blue-green powder (Sample S1 (a)), and is obtained under light irradiation for two

days. The difference in color reflect a substantial difference in composition and/or in the

physico-chemical state of the iron centers, that can be readily probed by Mössbauer spec-

troscopy.

In fact, the Mössbauer spectrum of Sample S1 (a), shown in Figure 3.1, consist of a

dominant quadrupole doublet with the typical hyperfine parameters of high spin Fe+3.

This main spectral component, which represents about 85% of the iron content of the

sample as reported in Table 3.1, is accompanied by two additional doublets, represented

by the blue and the orange doublets of Figure 3.1 and counting together for about 15% of

the total resonance area. These two doublets are characterised by isomer shifts of -0.15(2)

and 0.16(1) mm/s, typical of low spin Fe+2.

These data can be compared with the spectrum of the sodium nitroprusside precursor

which was also investigated by Mössbauer spectroscopy to test its purity (Figure 3.2).

The spectrum of this reactant is identical to that reported in the literature for potassium

nitroprusside [1], with the same structure and thus Mössbauer spectrum of NaNP, and

consists of a quadrupole doublet with an isomer shift in the typical range of low-spin Fe+2,

indicating the absence of iron-containing decomposition products. On the other hand, by
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Figure 3.1: Mössbauer spectrum of the degradation product of FeNP (Sample S1 (a)).

Site QS(mm/s) IS(mm/s) LW(mm/s) Area(%)

Sample 1 (a)

Fe(II) LS 1.98(3) -0.15(2) 0.44(4) 9(1)

Fe(II) LS 0.63(2) 0.16(1) 0.25(3) 6(1)

Fe(III) HS 0.66(1) 0.35(1) 0.42(1) 85(1)

Sample 2 (b)

Fe(II) LS 1.90(1) -0.28(1) 0.30(1) 51(2)

Fe(II) HS 1.44(1) 1.11(1) 0.38(1) 36(1)

Fe(II) HS 2.62(2) 1.15(1) 0.30(4) 7(1)

Fe(II) HS 0.45(2) 1.10(2) 0.30(4) 7(1)

Sample R1

Fe(II) LS 1.69(2) -0.26(1) 0.25(2) 100

Table 3.1: Mössbauer parameters of the new photodegradation product, FeNP and the

reactant NaNP.
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Figure 3.2: Registered Mössbauer spectrum of Na2[Fe(CN)5NO] · 2 H2O.

comparing this spectrum with those of the FeNP samples, it is clear that they do not

contain any unreacted sodium nitroprusside.

The oxidation of the iron center is probably due to the internal photoredox process be-

tween Fe+2, which is oxidized to Fe+3, and the NO+ ligand, which is reduced to NO. Now,

low-spin Fe+3 complexes are much more labile than the corresponding ones containing

low-spin Fe+2, facilitating the exchange of the nitrosyl and of some of the cyanide ligands

with water molecules, which are present in large majority. Indeed, the exchange of strong

field ligands such as cyanide with weak field ones such as water is the most probable

reason for the formation of a new compound containing high-spin Fe+3.

In any case, the substitution of the cyanide ligands with water molecules does not seem

to be complete, since otherwise an iron oxide/hydroxide compounds would precipitate,

and no blue-green iron oxide/hydroxides are known. Moreover, the observation of minor

amounts of low-spin Fe+2 species could be associated with iron centers bonded to a larger

number of cyanide ligands, in a sort of exchange equilibrium with several iron species with

general formula [FeIII(CN)n(H2O)6-n]+3–n and a variable value of n.

The synthesis of such new compound was repeated several times, in order to obtain it in

a purer form. The best condition for this synthesis were found by letting the solution in

the sunlight for 48 hours (Sample S1 (b)). Even though the Mössbauer spectrum of this

new sample is very similar to that of Sample S1 (a), differences were detected in the XRD

patterns of the two compounds. In fact, while the analysis of Sample 1 (b) revealed a

completely amorphous compound, some crystalline impurities are still present in sample
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Figure 3.3: Mössbauer spectrum of Sample 2(b) (FeNP).

S1 (a).

Similarly, several different experimental conditions were tested to optimize the synthesis of

the desired FeNP, in order to obtain it without impurities. The mother solutions were kept

cold to maximise the precipitation of the wanted compound, and protected from sunlight

as much as possible to avoid the degradation of the nitroprusside complex. Under these

conditions, the preparation of different sample batches lead to very reproducible samples.

All of them are in fact characterized by almost identical Mössbauer spectra, showing the

presence of at least four quadrupole doublets (Figure 3.3): the dominant doublet cor-

responds to the starting nitroprusside unit containing low-spin Fe+2, and accounts for

about 50% of the total resonance area (and thus correspond to half of the iron centers).

The three other doublets have very similar isomer shifts, typical of high spin Fe+2, and

variable quadrupole splitting, and corresponds to different local coordinations of the iron

centres in the structure (iron coordinated to the nitrogen side of the cyanide groups, and

to 0, 1 or 2 water molecules), as explained by Reguera et al. [50]. Indeed, the obtained

spectra are practically identical to those shown in the literature for the cubic form of iron

nitroprusside (cf. Figure 1.5(a)) [51].

In any case, no trivalent iron is contained in the different FeNP samples, confirming the

suppression of the internal photo-induced electron exchange when the mother solution is

protected from sunlight. Moreover, by comparing the hyperfine parameters of the different

doublets of sample S2 (b) reported in Table 3.1 with those of sample S1 and of the sodium

nitroprusside precursor, it is interesting to notice that no contributions from these two
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Figure 3.4: Fit and XRD pattern of FeNP (Sample 2 (c)).

compounds are visible in the spectrum of FeNP.

The three FeNP synthesized samples were also analyzed by XRD. The profile matching

of the measured diffraction patterns (Figure 3.4) confirmed the presence of a single crys-

talline phase with a cubic Fm− 3m symmetry, with no noticeable crystalline impurities.

The lattice parameter a was then calculated to be 10.324(1) Å, in line with previously

published data (cf. Figure 1.5(b)) [25].

Well-shaped cubic crystals were also clearly visible by SEM images (Figure 3.5(a) and

3.5(b)) for all synthesized samples. However, the particle size for sample S2 (a) is slightly

larger than for sample S2 (b). This difference in morphology is presumably attributed to

the temperature of the synthesis. In fact, even though all the syntheses were performed

with the mother solutions constantly kept in ice baths, the temperature in the laboratory

changed noticeably. Therefore, sample 2 (b) was synthesized at a temperature probably

higher than S2 (a), and an increase of the temperature might have induced a difference

in the nucelation and growth mechanism of the particles.

The FTIR spectra of FeNP and Fe(CN)O, together with that of the reference compound

sodium nitroprusside Na2[Fe(CN)5NO] · 2 H2O, are shown in Figure 3.6. In this case, for

the sake of clearness only the spectra of one sample per type of compound (sample S2 (b)

for FeNP and sample S1 (a) for Fe(CN)O) are shown, since the spectra of the different
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(a) S2 (a) SEM image. (b) S2 (b) SEM image.

Figure 3.5: Temperature influence on crystals size in FeNP synthesis.

syntheses did not differ much among them. These spectra can be compared to those found

in the literature [51].

In sodium nitroprusside, two strong peaks corresponding to the stretching of the NO

group are expected at 1954 and 1941 cm −1 [10]. Indeed these two peaks converge in a

broad band centered at 1955 cm −1. Similar peaks are found also in the spectra of FeNP,

in agreement with the literature. In the case of Fe(CN)O, this band is also visible, even

though very weak in intensity. This finding confirms the lability of the NO group caused

by the photoinduced redox process at the iron center during the synthesis, as explained

previously.

Similarly, the signal of the C-N stretching of pristine sodium nitroprusside is represented

by a group of peaks centered at 2150 cm −1. A similar signal, even though stronger in in-

tensity and slightly shifted to higher wavelenght, is also found for FeNP, in full agreement

with the literature ([51]). However, this is not the case for Fe(CN)O, where only a single

intense band is observed around 2200 cm −1. This observation on the one hand confirms

the presence of cyanide ligands bonded to the iron center in Fe(CN)O, and on the other

hand is in line with a change of the coordination sphere as well as of the oxidation/spin

state of the transition metal ion in this new compound, in agreement with the results of

Mössbauer spectroscopy.

In the spectrum of Fe(CN)O, an additional large band containing several contributions

is visible at about 1100 cm −1. This band resemble the typical one of sulfates, and may

correspond to a small residual amount of sulfate in the powder, which let suppose that
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Figure 3.6: IR spectra of FeNP (sample S2 (b)), Fe(CN)O (sample S1 (a)) and of the

nitroprusside precursor (noted R1).

Â§

Technique C/Fe N/Fe O/Fe N/C

WDX 4.52 2.94 3.41 0.65

EDX 1.05 0.75 1.60 0.71

Table 3.2: WDX and EDX data for Fe(CN)O (measured on sample S1 (a)).

the powder was probably not appropriately rinsed.

These hypotheses are supported by the elemental analyses performed on Fe(CN)O by

EDX and WDX analysis. These two methods are in fact complementary: indeed, while

EDX can be concentrated on single particles and/or used in mapping mode, thus provid-

ing important information on the homogeneity of the sample, WDX provides the average

composition of the whole material. On the other hand, while EDX is performed under

vacuum in the SEM microscope, and can therefore modify the composition of a sample

containing volatile species, WDX is performed in air and should not produce modifica-

tions. By comparing the data reported in Table 3.2, carbon and nitrogen signals appear

to be slightly larger in WDX analysis. These results point to the presence of partially

volative CN-containing species in this compound.

The characteristic features of H2O molecules, i.e., the large band between 3000 and 3500

cm −1 as well as the sharp one around 1560 cm −1 are clearly visible in the spectra of

both Fe(CN)O and FeNP. In the case of the different preparation batches of FeNP, the

bands of water in sample S2 (a) are more pronounced than in S2 (b) and S2 (c) (Figure

3.7), suggesting an higher degree of hydration than for the other two preparations. This
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Figure 3.7: Water characteristic peak in the three FeNP samples.

result is not surprising, since differently from S2 (a), S2 (b) and S2 (c) were dried under

vacuum and are thus expected to be less hydrated. To confirm this hypothesis, however,

the chemical composition of the different batches was studied by combining the results of

EDX, WDX and CHNS elemental analysis.

At first, the composition of different particles was analyzed by SEM-EDX in order to

obtain informations about the homogeneity of the sample by comparing the results of

different sampling points. For Sample 2 (b), here reported as example, the three points

represented in Figure 3.8 were analyzed and compared. As it can be clearly seen from the

SEM image, the sample appears homogeneous from a morphological point of view and

this result is confirmed by the EDX elemental analysis reported in Table 3.3.

Figure 3.8: SEM image of Sample 2 (b) (FeNP) with indications on sampling points for

EDX analysis.
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Element Mass % Atomic %

Spectrum 4

C 20.55 36.06

N 27.20 39.78

O 6.48 8.29

S 0.29 0.18

Fe 45.49 16.69

Spectrum 5

C 20.83 35.25

N 27.15 39.41

O 6.92 8.80

S 0.43 0.27

Fe 44.67 16.26

Spectrum 6

C 20.07 34.30

N 27.20 39.86

O 6.94 8.91

S 0.30 0.25

Fe 45.39 16.68

Table 3.3: EDX results for FeNP (Sample 2 (b)) in the sampling points indicated in

Figure 3.8

Thus, since the synthesized samples composition can be considered homogeneous among

sample particle, the mean elemental composition of each FeNP sample registered through

EDX and WDX (Table 3.4) can be taken into account as a representative value of all the

sample.

Looking at EDX data, it should also be considered that the carbon tape used as sample

support could influence the measured carbon content to a different extent which depends

upon the powder concentration in the analyzed point. However, EDX data are coherent

with those obtained by WDX ones; in contrast with Fe(CN)O, in FeNP volatile groups are

not present and IR data are thus more trustworthy. Through CHN elemental analysis it

was then possible to calculate the amount of water and the general formula of compounds.
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Sample C/Fe N/Fe O/Fe N/C

EDX

S2 (a) 2.80 2.36 0.71 0.84

S2 (b) 2.46 2.31 0.64 0.94

S2 (c) 2.11 2.35 0.50 1.11

WDX

S2 (a) 2.64 2.58 0.51 0.98

S2 (b) 2.51 2.42 0.57 0.96

S2 (c) 2.73 2.74 0.48 1.00

Table 3.4: FeNP EXD and WDX results for each synthesized batch.

Sample C[%] H[%] N[%] O[%] Fe[%]

S2 (a) 15.88 2.95 23.13 26.54 30.45

S2 (b) 17.55 2.42 25.12 25.93 28.55

S2 (c) 19.02 1.65 27.29 23.07 28.78

Table 3.5: FeNP elementary analysis results.

Results for FeNP are reported in Table 3.5.

As suggested by FTIR spectra, the amount of hydrogen, from which the H2O content

was calculated, in S2 (a) is greater than in S2 (b) and S2 (c).This is undoubtedly due

to different conditions in drying: S2 (b) and S2 (c) were in fact dried under vacuum and

they are thus less hydrated.

The average formula for FeNP is therefore [Fe2(CN)5.27NO0.72] · xH2O, with x depending

on the drying conditions. This formula is evidently very similar to the expected one, i.e.,

[Fe2(CN)5NO1] · xH2O. It is interesting to notice that by summing together the number of

NO+ and CN– , one obtains a total number of 5,99 ligands, very similar to the expected

value of six ligands coordinated to the high spin iron center.

On the other hand, since the compound named Fe(CN)O was never reported in liter-

ature to the best of our knowledge, its chemical composition was harder to determine.

By comparing the EDX and WDX results of samples S1 (a) and S1 (b) (Table 3.2 and

Table 3.6), it appears immediately clear that the sample S1 (b) is purer, as suggested by
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Technique C/Fe N/Fe O/Fe N/C

WDX 2.22 2.00 1.42 0.90

EDX 2.01 1.52 1.08 0.76

Table 3.6: FeNP (S1 (b)) WDX and EDX results.

Figure 3.9: SEM image of Sample 1 (b) with indications on some sampling points for

EDX analysis.

XRD analysis early in this chapter. In fact, the two XRF analyses of this sample are more

similar between them than in the case of sample S1 (a).

Despite this, as it clearly appears in Figure 3.9, Sample 1 (b) is not so homogeneous

neither and some compact particles are visible among the amorphous Fe(CN)O. The

composition of these blocks as well as the the bulk one was investigated both using the

mapping mode and concentrating the analysis on single particles.

In Figure 3.10, the results of the mapping mode composition analysis are shown. Here

it is represented the superposition of different images for each element detected by the

EDX analysis. Since each color is representative for an element and it appears more or less

intense depending on the element concentration, it is easy to have a clear idea on the ele-

mental composition of the sample. If we focus on one of the compact particles previously

shown in Figure 3.9, such as the one in the right corner of Figure 3.9, a more intense blue

color corresponding to the oxygen is clearly visible. Moreover, by analyzing single images

a high concentration in sulfur and in iron is also registered, while the nitrogen and the

carbon are completely absent. The presence of iron oxide and sulfates already suggested
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Figure 3.10: SEM-EDX image of the degradation product in Sample 1 (b). Each color

is representative for an element: yellow is for Fe, green for N, pink for S, light blue for O

and red for C.

by the FTIR peaks between 500 and 600 cm−1, and at about 1100 cm−1, respectively (cf.

Figure 3.6 are thence confirmed.

In the bulk of the sample, however, the concentration of the different elements appears

to be very homogeneous, allowing one to calculate the average elemental composition

of the sample previously reported in Table 3.6. By considering the ratio of the light el-

ements coming from the results of CHN elemental analysis of sample S1 (b), the best

representative formula of Sample 1, which results: Fe2(CN)3.17O1.93] · xH2O.

2 Electrochemical tests

Both FeNP and Fe(CN)O were tested in half cells versus lithium metal to investigate

their electrochemical mechanism and performance. The results for the two materials will

be presented in two separate sections for the sake of clarity.

2.1 Iron Nitroprusside

Since the use of Iron Nitroprusside in batteries had not been investigated yet and limited

information is available in literature, the first charge/discharge cycles were carried out

at different potential ranges. For this purpose, PTFE-based electrodes containing 75% of

FeNP, 20% of carbon black and 5% of PTFE were mounted in coin-cells vs. lithium metal.
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Figure 3.11: Galvanostatic cycles of FeNP in PTFE-based electrode.

Electrodes were prepared by mixing the active material (FeNP) with carbon black and

PTFE in an agate mortar until a thin film was obtained. This last was then collected and

dried under vacuum at 80◦C overnight. Coin-cells were then assembled in the glovebox as

previously explained in Chapter 2 Section 3 and tested. Since the Open Circuit Voltage

(OCV) of FeNP cells was measured at 3.15 V vs. Li+/Li, galvanostatic cycles were initially

performed at a C/10 rate between 2 and 4.2 V vs. Li0. This range was then increased

by 0.5 V every five cycles to check the reversibility of the reaction at increasingly low

potentials.

The galvanostatic cycles, shown in Figure 3.11, are quite reversible in the first range

down to 2 V, with the insertion of about 0.5 mol of Li per mol of FeNP (calculated using

the theoretical formula Fe2[(CN)5NO]) with a rather good coulombic efficiency (calculate

using Equation 3.1) estimated at 97.1 % after five cycles. A similar result is found by

decreasing the potential to 1.5 V, with the reaction of additional 0.5 mol of Li per mole

of FeNP. When the potential is decreased to lower values, a long plateau appears around

1.3 V vs. Li+/Li. At the end of this long plateau, a strong increase of the polarization

is observed upon charge, and in the following cycles the battery capacity rapidly fades

to 0 Ah/g. At a more careful analysis of the electrochemical curves, it can be seen that

the long irreversible plateau starts already slightly before 1.5 V, causing a slight decrease

in efficiency already during the first cycle down to 1.5 V vs. Li+/Li. In summary, FeNP

seems to cycle well at potentials above 1.7 V, whereas the irreversible reaction that occurs

between 1.7 and 1.0 V vs. Li+/Li produces a material that is not able to react electro-
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Figure 3.12: Comparison between the three synthesized active materials: S2 (a) in

AN064, S2 (b) in AN066 and S2 (c) in AN069.

chemically with lithium anymore.

Efficiency = (
Ccharge

Cdischarge

) · 100 (3.1)

This same test was performed for the three synthesized FeNP batches, and practically the

same behaviour was found for all of them. As an example, the first cycles for these three

materials are shown in Figure 3.12. Since the electrochemical behavior of the three sam-

ples is virtually identical, in agreement with the results of their chemical characterization

showing their high chemical similarity, only the tests for sample S2 (a) will be shown here.

Different formulations of FeNP electrodes, with different amounts and type of binders

and carbon additives were tested in order to determine the best conditions for cycling.

During these preparation, a slurry containing the active material, the carbon additive

and the binder suspended/dissolved in an appropriate liquid is tape casted on the sur-

face of a metal current collector using the Doctor Blade technique. The preparation of

slurry-based electrodes is a particular critical procedure; in fact, the active material has

to be well mixed with the binder and the carbon before adding an appropriate quantity of

liquid. The obtained mixture has to be mechanically agitated in a ball mill for 30 minutes

and spread on a collector foil using a blade of a definite height, producing a suspension

film of a definite thickness (150 µm for the electrodes prepared in this work). The resulting

slurry has to be as homogeneous as possible in order to obtain a uniform dispersion of the

active material on the current collector; furthermore a good adherence of the slurry to the

collector must be obtained. After drying, 9.5 mm diameter circular electrodes are cut out
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Figure 3.13: Galvanostatic cycles of FeNP in CMC-based slurry.

from the electrode film, and put to dry under vacuum at 80◦C overnight. For FeNP an

aluminum foil was used as the collector since copper would be oxidized during the charge

process up to 4.2 V vs. Li+/Li (the redox potential of copper in non-aqueous electrolyte

is about 3.2 V vs. Li+/Li).

A first slurry was prepared with 70% of active material, 10% of carboxymethyl cellulose

(CMC), 10% of CB, 10% of vapor grounded carbon fiber (VGCF) and water as the sol-

vent. Galvanostatic cycles were performed on several CMC-based electrodes between 1.7

and 4.2 V vs. Li+/Li at a rate of C/10. After a normal first discharge, similar to those

obtained with PTFE-based electrodes (see 3.11), a long plateau appears during the first

charge between 3.8 and 4.2 V (Figure 3.13) in all the performed tests. As a consequence,

the capacity begins to fall down from a starting value of 30 mAh/g to 9.5 mAh/g.

The occurring irreversible reaction was initially thought to be due to an irreversible reac-

tion between the active material and the water possibly still present in the sample. Indeed,

since the same electrolyte (1M LiPF6 in EC/PC/3DMC with 2% of VC and 5% of FEC)

was used for both pellet and slurry batteries, its influence in the irreversible reaction can

be excluded.

Another FeNP slurry was then prepared with N-Methyl-2-pyrrolidone (NMP) instead of

water and the polyvinylidene fluoride (PVDF) as binder maintaining the same mass per-

cent as with CMC. Unfortunately, the electrochemical behavior of PVDF-based electrodes

was exactly the same of CMC-based electrodes, with the very same plateau during the

first charge. Other PVDF slurries were thence prepared with different amounts of solvent
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Figure 3.14: Specific Capacity and Coulombic Efficiency trends for FeNP PTFE-based

electrodes vs. Li metal.

and different drying steps, but the problem could not be solved, and no appropriate cycles

could be obtained starting from slurry-based electrode.

Thus, this type of electrodes were abandoned, and only new PTFE-based electrodes were

prepared and cycled in batteries in order to obtain additional information on the perfor-

mances of FeNP as electrode material in LIB. Using this electrode preparation method,

rather reversible cycles were obtained in the previously chosen range at a C/10 rate. A

significant decrease in capacity, however, occurs during the first 10 cycles; after that, the

capacity is fairly stable with a small decreasing trend and steady efficiency around 100%

(Figure 3.14).

Only preliminary cycing tests were conducted with FeNP electrodes versus Na and K. The

obtained cycling curves are very similar to those observed with lithium, indicating that

Na+ and K+ ions react in a similar very reversible way with FeNP (Figure 3.15); however,

the obtained capacities are slightly lower than those obtained with Li, never exceeding 30

mAh/g.

The study conducted during this thesis, given the relatively short period of the internship,

can be considered only as preliminary assessment of the cycling properties of FeNP. More

detailed tests should therefore be conducted in order to improve its cycling performance.
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Figure 3.15: Galvanostatic cycles of FeNP pellets against Sodium and Potassium.
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Figure 3.16: Galvanostatic cycles and corresponding performances of Fe(CN)O pellets.

2.2 Fe(CN)O

The electrochemical mechanism and performance possible Fe(CN)O in LIBs was also

investigated. PTFE-based electrodes were prepared with 75% of active material and 20%

of CB. With this formulation, Fe(CN)O reacts between 3.5 and 2.6 V vs. Li+/Li in an

highly reversible way; at this potential, the reduction of Fe3+ to Fe2+ is expected. A

remarkable electrochemical behavior is observed in the potential range between 1.7 and

4.2 V vs. Li+/Li at a C/10 rate (Figure 3.16(a)). In fact, if the cycling potential is

maintained in this range, the specific capacity remains rather stable and higher than 100

mAh/g during the first 25 cycles, with a coulombic efficiency approaching 99% (Figure

3.16(b)). At lower potentials, however, the material undergoes an irreversible reaction and

the battery performance rapidly collapses.

The same CMC and PVDF formulations used for FeNP were tested also on Sample 1

(a). Since this sample was demonstrated to be not pure, results should be interpreted

keeping in mind that the pure Fe(CN)O might react in a slightly different way. From

all performed tests, a peculiar behavior have to be pointed out for both the CMC and
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Figure 3.17: Galvanostatic cycles and corresponding performances of Fe(CN)O in CMC-

based slurry.

the PVDF formulation. Even if most of the slurry-based electrodes works pretty well, in

fact, a plateau similar to that of FeNP is visible in some disparate cases (Figure 3.17(a)).

Despite this, the battery keeps cycling well with a beginning specific capacity of around

110 mAh/g slightly decreasing to 70 mAh/g in following cycles (Figure 3.17(b)).

However, the observed parasite reaction occurring in both FeNP and Fe(CN)O with

slurry-based formulations is not necessarily the same; even if the trend of the galvanic

cycle is the same for both the materials, the plateau begins at a lower potential (3.2 V

vs. Li+/Li) in Fe(CN)O than in FeNP batteries. However, purer Fe(CN)O slurry-based

electrodes should also be tested in order to draw any conclusion about this reaction.

As for FeNP, some Fe(CN)O PTFE-based electrodes were tested in galvanostatic cycles

also versus Na and K (Figure 3.18). Different results were obtained for the two metals.

Indeed, K+ ions does not react with the active material; on the other hand, really good

cycles were obtained in sodium batteries (Figure 3.18(a)). A specific capacity of 77.2

mAh/g was obtained when cycling the material between 2 and 4 V vs. Na0 at a C/10

rate.

3 Operando characterization

After the analysis of cycling properties and performance of FeNP, also its electrochemical

mechanism was investigated during cycling by means of operando analyses. In this way,

it is possible to correlate the observed electrochemical features with the physico-chemical

evolution of the material during the charge/discharge cycles, as previously described in

Section 4 of Chapter 2.
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Figure 3.18: Galvanostatic cycles of Fe(CN)O pellets in Sodium and Potassium batteries.

3.1 FeNP

As pointed out in the results of electrochemical tests, the electrochemical cycle of FeNP

can be substantially divided into two parts: between 4.2 and 1.7 V vs. Li+/Li a reversible

reaction occurs, while beyond 1.7 V the material is irreversibly transformed in a species

unable to react with Li ions anymore. Therefore, both these potential ranges were inves-

tigated by operando XRD in order to obtain information on the evolution of FeNP and

confirmation about the involved reactions and materials. In order to study the reversibil-

ity of the mechanism, a first discharge/charge cycle was operated between 1.7 and 4.5

V vs. Li+/Li, while the second discharge was conducted till low potentials (Figure 3.19).

XRD patterns were measured continuously at constant interval of two hours in order to

monitor the evolution of the electrochemical reaction.

A good and clear interpretation of operando results is possible only by correlating both

the information in our possession (the galvanostatic cycle and XRD patterns) and it is

therefore important to identify characteristic points for each process. Thus, each regis-

tered spectrum is reported on the electrochemical cycle of Figure 3.19 in yellow points,

with numbers and red points to indicate diffractograms corresponding to the beginning

of each important electrochemical process. The very first point corresponds to pristine

FeNP, i.e., the starting material before cycling. During the first two hours no current is

applied and the potential of the relaxing battery is registered. The beginning of the first

discharge corresponds therefore to the second diffractogram, the end of the first discharge

to the 8th and so on. Bearing in mind these consideration and looking at the whole XRD
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Figure 3.19: Correlation between electrochemical cycle and XRD patterns registered for

FeNP during the in situ XRD analysis.

Figure 3.20: Operando XRD patterns of FeNP.

dataset represented in Figure 3.20 it is now possible to distinguish the development of the

different electrochemical processes and analyze them in a global context.

In Figure 3.20, a cartographic view of all the registered XRD patterns is shown. The 2θ

angle is represented in the abscissa, while the evolution of the patterns can be followed in

the ordinate. Different colors correspond to different intensities of the peaks, going from

blue (the background signal) to red (the highest peaks). From an overall point of view,

important changes especially in the principal peaks at 17.5◦, 24.5◦, 35◦and 39◦are clearly

visible all over the graph. Moreover, the characteristic peaks of the beryllium window of

the in situ cell at 42◦and 44◦are obviously not to be taken into account in the analysis.

Actually, since an aluminum foil was used in order to protect the above mentioned win-

dow, data below 0.5 V vs. Li+/Li (pattern 70) are to consider not very representative
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Figure 3.21: FeNP XRD patterns from a frontal view. Each color correspond to a different

diffractogram, from the pristine (dark blue) to the last one (dark red).

since they are influenced by the reduction of the aluminum foil.

In addition, during the first discharge, an irreversible decrease in the intensity with a

consequent broadening of all the peaks is clearly visible. After that, looking closer at the

profile corresponding to the first charge and the following discharge till 1.7 V vs. Li+/Li

(pattern 28), reversible changes can be observed. All the signals result in fact to be right

shifted and decreased in intensity; moreover peaks at 17.5 ◦and 24.5 ◦are split into two.

Almost the same pattern of the end of the first discharge is then recovered in the 28th

diffractogram, as it can be clearly seen in Figure 3.21; here light blue lines that represent

patterns corresponding to the end of the second discharge, understood as till 1.7 V vs.

Li+/Li, are comparable to the Pristine one, represented in dark blue, even if smaller in

intensity as previously evidenced, confirming the hypothesis of a first reversible reaction

in the chosen potential range. Even though it was not possible to identify exactly the

phase formed at the end of the discharge, the observed reversible evolution of the peaks

indicates that the initial phase is perfectly recovered at the end of the charge. The split-

ting of the peaks, on the other hand, indicates a modification of the space group of the

pristine structure of FeNP, with a possible lowering of the symmetry. In any case, in this

potential range, the material seems to work through the reversible insertion of lithium in

the structure.

After that the material gradually becomes almost completely amorphous, with the still

presence of small peaks clearly visible in both Figure 3.20 and 3.21. Indeed the pattern of
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Figure 3.22: Correlation between electrochemical cycle and 57Fe Mössbauer spectra reg-

istered for Fe(CN)O during the operando analysis.

the residual crystalline phase, represented by dark orange and light red nuances, appears

very similar to the one indicated by Reguera et al. [50] for the monoclinic FeNP charac-

terized by the two peaks between 16.5◦and 18◦clearly visible in the registered spectra.

3.2 Fe(CN)O

In the case of Fe(CN)O, the amorphous nature of the sample unfortunately does not allow

one to follow the evolution of the sample during cycling by operando XRD. It was therefore

decided to follow its electrochemical mechanism by operando Mössbauer spectroscopy. In

this way, it is possible to identify the evolution of the oxidation state of the iron at any

point during the charge/discharge cycling. Similarly to the case of FeNP, also for Fe(CN)O

cycles quite reversibly down to 1.7 V vs Li+/Li, while after this potential the reaction

becomes irreversible. Also in this case, therefore, it was decided to make the material

undergo a full cycle between 4.2 and 1.7 V, and to push the second discharge down to

lower potentials (0.6 V in this case).

The evolution of the electrochemical potential of the in situ cell during cycling is shown

in Fig. 3.22, together with the number of the measured Mössbauer spectra. The first

discharge stops at spectrum #12, and the first charge at spectrum #20. The second

discharge finishes at spectrum #37, corresponding to a potential of 0.6 V vs. Li+/Li.As
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Figure 3.23: Operando 57Fe Mössbauer spectra of Fe(CN)O during cycling vs. Li.

for operando XRD, the evolution of the Mössbauer spectra is shown as a cartographic view

in Fig. 3.23. The horizontal dotted lines correspond to the end of a charge or discharge

process.

In order to extract the maximum valuable information from the whole series of spectra,

the whole dataset was globally analyzed using a statistical method based on Principal

Component Analysis (PCA) [39]. This approach is a chemometric factor analysis tool able

to determine the minimal particular structures in multivariate spectral datasets. Once the

number of principal components is determined by PCA, a Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS) algorithm is used for the stepwise reconstruction

of the pure spectral components which are necessary for interpreting the whole multiset of

operando Mössbauer spectra.[18, 29, 30, 52] PCA and MCR-ALS were successfully applied

to evaluate operando X-ray absorption spectroscopy and transmission X-ray microscopy

data in studies of catalytic [7, 8, 28] and battery materials [4, 13, 34, 55]. In particular,

it has already been applied to study battery materials by Mössbauer spectroscopy [14].

The inspection of PCA variance plot, of the shape of the principal components and of the

evolution of the scores (shown respectively in Fig. 3.24(a) and 3.24(b)) shows that more

than 99.3% of the variance of the whole set of Mössbauer spectra is described using the

first three principal components, and that the following ones express mainly experimental

noise. This number of principal component defined by PCA was then fed to the MCR-

ALS algorithm. In this way, it was possible to determine the 3 pure spectra which are

necessary to reconstruct the whole set of operando data. These component can now be
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(a) Variance plot. (b) Test in K battery.

Figure 3.24: Results of the PCA analysis of the full dataset of operando

Mössbauer spectra measured during cycling of Fe(CN)O.

(a) MCR-ALS components (b) MCR-ALS concentrations

Figure 3.25: Pure spectral components obtained from the MCR-ALS analysis of the

operando Mössbauer data and evolution of their concentration during cycling.

treated as normal Mössbauer spectra, and fitted in the traditional way.

The 3 reconstructed pure spectra are shown in Fig. 3.25(a) together with the evolution

of their relative concentration during cycling. Their respective fit is shown in shown in

Fig. 3.26, while the respective hyperfine parameters are shown in Table 3.7 Component 1

can be fitted with the same three quadrupole doublets used to fit the spectrum of pristine

Fe(CN)O. It is interesting to notice that the two components relative to low spin Fe+2

are slightly more intense than in the spectrum of the material measured after synthesis.

This modification might be due to the instability of the material in the electrolyte, with

the possible reaction of structural water (bonded to the iron centers) inducing a change

in local coordination.

Component 2, on the other hand, can be easily fitted using two quadrupole doublets

with an isomer shift close to 1 mm/s. Such a value is typical of high spin divalent iron.
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(a) MCR1 (b) MCR2 (c) MCR3

Figure 3.26: Fitting of the pure components obtained from the MCR-ALS analysis of

the operando Mössbquer spectra.

The use of two different components reflects the multiplicity of divalent iron sites in the

sample, which must be connected to different local environments.

Component 3, finally, is fitted with three different doublets with very different isomer

shifts. While the weakest doublet has large values of quadrupole splitting and isomer

shift, and is very similar to the divalent iron components of Component 2, the other

two components are very typical of iron metal nanoparticles with sizes below 5 nm, thus

undergoing superparamagnetic relaxation [17]. By putting together these results, one can

Site QS (mm/s) IS (mm/s) LW (mm/s) Area (%)

Component 1

Fe(II) LS 1.94(9) -0.19(5) 0.34(9) 13(4)

Fe(II) LS 0.69(5) -0.10(4) 0.31(4) 13(4)

Fe(III) HS 0.69(2) 0.33(2) 0.44(5) 73(4)

Component 2

Fe(II) HS 2.27(4) 1.03(2) 0.60(7) 74(5)

Fe(II) HS 1.43(5) 1.03(2) 0.60(7) 26(5)

Component 3

Fe(O)(+Fe(III)) 0.91(5) 0.25(3) 0.50(4) 33(4)

Fe(O) 0.31(6) 0.00(6) 0.50(4) 37(4)

Fe(III) HS 1.6(2) 1.05(8) 1.2(4) 3

Table 3.7: 57Fe Mössbauer hyperfine parameters of the pure components obtained from

the MCR-ALS analysis of the operando Mössbquer spectra.
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try to describe the whole lithiation/delithiation cycling mechanism of Fe(CN)O:

• During the first discharge, a gradual reduction of Fe+3 to Fe+2 is observed. Towards

the end of the discharge, a minor part of this divalent iron is converted to Fe metal

nanoparticles. At least two different contributions of divalent iron are detected,

indicating a multiplicity of different iron sites in the sample (possible differences in

the coordination environment, i.e., difference in type of ligands and/or distortion of

the octahedral coordination.

• During the first charge, the divalent iron is oxidized back to Fe+3. Interestingly, the

newly formed trivalent iron has the same hyperfine parameters of pristine FeNP,

indicating a perfect reversibility of the mechanism. The fraction of zerovalent iron,

however, does not seem to get oxidized during charge, indicating that these iron

species were irreversibly converted during the first discharge.

• After the reduction of Fe+3 to Fe+2, the divalent iron get further reduced to iron

metal nanoparticles. Since the reduction was stopped at 0.6 V vs. Li+/Li , however,

the reduction is not yet complete, and some divalent iron is left in the sample. The

trivalent iron, however, has totally disappeared at the end of the second discharge.

In summary, operando Mössbauer spectroscopy provides a very clear view of the reaction

mechanism, indicating that only the reaction of Fe+3 to Fe+2 is reversible, and therefore

the battery should be cycled only in the high voltage range to avoid the irreversible

transformation of the initial compound to iron metal.



Chapter 4

Final remarks and future outlook

Iron Nitroprusside (FeNP) was successfully synthesized by co-precipitation of two equimo-

lar solution of Na2[Fe(CN)5NO] · 2 H2O and (NH4)2Fe(SO4)2 · 6 H2O. The synthesis was

performed three times and a thorough characterization of the sample demonstrated its

purity as well as a good reproducibility of the synthetic method; the general formula was

calculated to be [Fe2(CN)5.27NO0.72] · xH2O.

FeNP was tested in LIBs, and a good cycle life was obtained between in the potential

range between 1.7 and 4.2 V vs. Li+/Li when using with PTFE-based electrodes at a C/10

rate in coin-cells. In these conditions, the specific capacity resulted to be stable around

60 mAh·g−1, with a very high coulombic efficiency. Nevertheless, more tests are necessary

in order to find a better electrode formulation which is able to exploit the interesting

electrochemical properties of this material.

The electrochemical mechanism of FeNP in LIBs was studied by operando XRD. The

obtained results underlined the complete reversibility of the reaction in a potential range

above 1.7 V vs. Li+/Li, where the electrochemical reaction seems to occur through an

insertion mechanism.

While studying FeNP synthesis, its degradation mechanism was studied and a new inter-

esting compound, named Fe(CN)O and containing mainly trivalent iron, was successfully

synthesized and identified as Fe2(CN)3.17O1.93] · xH2O thanks to a thoroughgoing charac-

terization procedure. Its electrochemical properties were investigated and this material

demonstrated to react reversibly with Li+ ions, with a specific capacity of 110 mAh·g−1,

greater than FeNP.

Given its amorphous nature, the electrochemical mechanism of Fe(CN)O in LIBs could
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not be studied by XRD. The use of operando Mössbauer spectroscopy, however, allowed

us to follow the evolution of the iron species in the sample. In this case, only the reaction

of Fe+3 to Fe+2, occurring above 1.7 V vs. Li+/Li was found to be reversible, whereas,

at lower potentials, divalent iron is irreversibly converted to iron metal nanoparticles,

causing a rapid loss of the capacity.



Appendix A

Characterization methods

1 X-ray Diffraction (XRD)

After the discovery of X-rays in 1895 by Wilhelm Conrad Röntgen, it was only in 1912

that the X-ray diffraction phenomenon is found out by Walter Friedrich, Paul Knipping

and Max Laue. Initially carried out to study the X-ray’s exact nature, their experiment

led them to realize that, thanks to their small wavelength, X-rays could be used to inves-

tigate the inner structure of a crystal [15].

This discovery, confirmed by William Lawrance Bragg and his father, William Henry

Bragg in that same year, brought to the development of the new science of X-ray crystal-

lography [19].

X-rays are electromagnetic radiations with wavelengths in the Ångstrøm range, produced

when any electrically charged particle of sufficient kinetic energy is rapidly decelerated.

When an X-ray strikes an electron (the scatterer) of an atom, secondary spherical waves of

the same energy of the incident ones are emanated from the scatterer. This phenomenon

is called elastic scattering and, in particular conditions, it can originate a diffracted beam

[44].

Diffraction can be considered a scattering phenomenon in wich a large number of scat-

tered rays are in phase and can produce a constructive interferce. The existance of this

particular phase relation between scattered waves depends on the difference in path legth

covered by the incident beam. To have a constructive interference, this difference has to

be an integral multiple (represented by the reflection order n) of the wavelength of the
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Figure A.1: Diffraction angle according to the Bragg’s equation. Figure taken from [21].

incident ray (λ), as shown in the Bragg equation:

2d sinθ = nλ (A.1)

where the first term is the path difference and depends on the incident angle θ, that has

to be equal to the diffraction angle (Figure A.1).

If atoms are randomly arranged in the space, the scattering occurs in all directions and

diffraction conditions are not present. On the other hand, if atoms are arranged in a regu-

lar lattice (like in crystals), constructive interferences occur and diffraction beams can be

seen at angles that respect the Bragg law (Equation A.1). For other directions the elastic

scattering is not visible, since scattered waves are added in a destructive way [15].

By measuring the intensities of the diffracted beams as a function of the angle 2θ between

them and the incident X-ray, it’s possible to obtain a diffraction pattern characteristic of

the studied compound. In combination with the Bragg law, this diffraction pattern gives

information on unit cell characteristics and atom positions in the crystal lattice. There-

fore, since a long range order is necessary to see diffraction, the presence or not of narrow

diffraction lines gives information about the crystal state of the analyzed sample [44].

To obtain these measurements, a movable X-rays counter is usually used as detector. As

shown in Figure A.2, it rotates by the angle 2θ on a circumference centered in the powder

sample, that is in the form of a flat plate and rotated at the same time by an angle θ [21].

X-rays are produced in an X-ray tube in which electrons are produced and accelerated

by a potential difference. When electrons strikes the anode (or metal target), X-rays at

a specific wavelength are produced because a primary scattered electrode creates a hole
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Figure A.2: Scheme of a diffractometer taken from [21]

in the K-shell that is filled by an electrode of the L-shell (in the case of a Kα line) by

emitting an X-ray quantum [15].

2 Mössbauer Spectroscopy

Mössbauer Spectroscopy is a very sensitive spectroscopic technique that can provide de-

tailed information about the physico-chemical state of atoms in a specific environment.

It is based on the recoil-free nuclear resonance absorption of γ rays by a stable nucleus

in an excitation transition. To have this absorption phenomenon, called Mössbauer effect

and discovered by R.L. Mössbauer in 1957, the emitted γ ray is required to have the same

energy needed to excite the absorber nucleus. To investigate Fe57, for example, a Co57 γ

rays source is used. This radioactive species, in fact, decays to the excited state of Fe57 by

transforming an electron and a proton into a neutron and an electron neutrino (Electron

Capture):

p+ + e− −−→ n0 + νe (A.2)

Even if the Fe57 produced nucleus is stable from a radioactive point of view, it is in an

excited state and can decay to the ground state by emitting a γ radiation that can be

absorbed by a nucleus of the same isotope, that has a natural aboundance of 2.19 %.
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Furthermore, to observe the Mössbauer effect, both the sample and the source must be

solid, in order to dissipate in the whole lattice the recoil momentum due to the absorption.

These unwanted movements would bring to a difference in energy of 2ER (with ER recoil

energy) between the source and the absorber, avoiding the absorption of the γ ray.

The energy of the nucleus also depends on its chemical environment. Since s-orbitals have

a non-zero probability density in the nucleus, in fact, s-electrons can interact with the

positive charge of the nucleus by Coulombic interactions of different energies depending

on the electron density of external orbitals. Thus, in order to scan a proper range of en-

ergies around the resonance energy (E0), the source is moved relatively to the absorber.

When the source moves away from the sample, in fact, the wavelength λ is grater and

the energy decreases, while it increase when the source is nearer to the absorber. For this

reason Mössbauer spectra are usually reported in function of the velocity of the source in

mm·s−1.

The electronic influence of s-electrons on the nucleus, added to the different nuclear size

of the excited and the ground state, is called Electric Monopole Interaction and brings to

a shift in the resonance line from E0 (the Isomer Shift represented in Figure) given as:

IS =

(
c

E0

)
· (EA − ES) (A.3)

Nuclear energy levels can also be perturbed by Magnetic Dipole and Electric Quadrupole

interactions, causing different splitting of the signal due to the corresponding split of nu-

clear energy levels.

These three types of interactions are also called Nuclear Hyperfine Interactions and lead

to different spectra depending on the magnetic and electronic properties (e.g. oxidation

state, spin state, bonding type and site symmetry) of the investigated nucleus.

3 X-Ray Fluorescence spectroscopy

When an atom is exposed to X-rays, electrons can be expelled from inner orbitals be-

cause of the high energy of the incident radiation. These electrons create core holes in

the excited atom, that can decay either by Auger emission or by X-ray fluorescence. The

letter is a phenomenon that occurs when a secondary electron decays to fill the core hole
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emitting an X-ray photon.[44]

The emitted radiation has an element-characteristic energy equal to the difference in en-

ergy between the two orbitals involved in the electronic transition. Since each atoms has

orbitals with a characteristic energy, by measuring the energy of the fluorescence photon

it’s possible to identify the emitting atom, as in energy dispersive analysis (EDX).

In wavelength dispersive spectrometry (WDX), instead of measuring the energy of the

emitted X-ray photon, the radiation is separated by a diffraction crystal. Since energy

(E) is related to the wavelength (λ) by the Planck’s constant (h) and the speed of light

(c) as shown in the Planck’s Law (Equation A.4), EDX and WDX analysis should be

comparable.

E =
hc

λ
(A.4)

Furthermore,by measuring the intensity of each fluorescence radiation, it is possible to

determine the relative quantity of the emitting element.

4 CHNSO Elemental Analysis

Combustion analysis is a method for the quantitative determination of C, H, N and S.

It’s based on the complete combustion of the sample in determined conditions and on the

analysis of the produced oxidized compounds:

C, H, N, S
1050◦C/O2−−−−−−→ CO2(g) + H2O(g) + N2(g) + SO2(g) (A.5)

Born as a gravimetric analysis [26] and used for the first time by A. Lavoisier in 1781,

this method has been significantly improved in the following years [27].

Through the 18th and 19th centuries, important chemists as J. Gay-Lussac, W. Prout,

J. Liebig and many others optimized the technique moving from Lavoisier’s apparatus,

which required 50 mg samples, to the micro-analysis method invented by F. Pregl, Nobel

Prize in 1923 [16, 27].

Nowadays, the technique needs only about 2 mg of sample and, instead of weighing the

combustion products, they can be analyzed by different detection methods such as ther-

mal conductivity, infrared absorption, flame photometry and coulometry.
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Figure A.3: C, H, N, S elemental analyzer with gas chromatograph and thermal con-

ductivity detector [26].

Figure (A.3) represents the schema of an elemental analyzer equipped with a thermal

conductivity detector, which is preceded by a gas chromatograph to separate the mixture

of CO2, H2O, N2 and SO2.

The sample, after the melting of the tin sample holder, is oxidized at 1050◦C in a ce-

ramic crucible. Subsequently, hot WO3 catalyzes the complete combustion of C to CO2,

and metallic Cu reduces all the SO3 to SO2.The produced mixture is then separated and

detected [26].

5 Attenuated Total Reflection - Infrared Spectroscopy

(ATR-FTIR)

Infrared (IR) spectroscopy exploits the the capacity of molecules to absorb radiation fre-

quencies that match the vibrational frequencies typical of their structures. This spectro-

scopic technique enables, therefore, to observe different functional groups by monitoring

their vibrations [9].

By IR spectroscopy it is possible to observe only vibrations that are associated with

changes in the dipole moment, which depends on the variation in the electrons distri-

bution along a bond and on its length. For two identical atoms (N2 for example), the
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Figure A.4: ATR-FTIR principle [41].

dipole moment and its change during a stretching vibration are too small to observe an

IR absorption. On the other hand, functional groups like CO,CN,NO and SO 2–
4 are IR

active [11].

ATR is a sampling technique often coupled with FTIR that enables samples to be ana-

lyzed in liquid or solid form by placing them on an Internal Reflection Element (IRE),

also called waveguide.

IRE is an optical material (typically diamond or Germanium), with an higher refraction

index (n1) then the sample (n2).

An infrared light beam is sent on the sample through the ATR crystal (Figure A.4), with

an angle of incidence θi [41]. As shown by the Snell’s law (Equation A.6), if the sinus of

θi is greater then n2/n1 , there is a total internal reflection inside the IRE, since the sinus

of the refracted angle (θr) can not be grater than 1.

n1 · sin θi = n2 · sin θr => sin θr =
n1

n2

· sin θi (A.6)

Even if the light is totally reflected, the electric field of the light penetrates inside the

sample, where is absorbed and undergoes an exponential decay. This part of light is called

evanescent wave, and its penetration depth (dp) depends on the wavelength of the incident

beam (λ), θi , n1 and n2:

dp =
λ/n1

2π
√

sin 2θi − (n2/n1)2
(A.7)

From equation A.7 it results that dp decreases for smaller values of λ, and so does the

absorbance since it is related to the optical depth (b) by the Beer-Lambert-Bouguer law:

A = ε · b · c (A.8)
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where ε represents the molar absorptivity and c is the concentration of the absorbent

species [26].

At higher λ, thus, the intensity in ATR is lower then in transmission mode and the

absorbance has to be normalized for dp.

Since dp is usually between 0.5 and 5 µm, solid samples (like powders analyzed in this

work) have to be firmly clamped against the ATR crystal [47].
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