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Abstract

This thesis studies some foundational issues concerning algebraic varieties,

more precisely projective ones.

The focus of the first part is on the comparison between some properties of

algebraic varieties and morphisms among them and their counterparts when

the algebraic variety is defined over the complex field. In particular we see as

notions such as separatedness and completeness translate well known topo-

logical properties of the associated analytic space, namely being Hausdorff

and being compact respectively. We will also see that an algebraic variety

is irreducible if and only if the associated analytic space is connected. Ac-

cordingly, it will be proved that the projective space is both separated and

complete. Thus, since these properties are inherited by subvarieties, all pro-

jective varieties are separated and complete. We will give a short treatment,

without proofs, of the relative counterparts of these notions, namely sepa-

rated morphism and of a proper morphism. Separated and proper morphisms

correspond to proper morphisms between analytic spaces.

In the second part we will briefly introduce the mathematical structure of

scheme, which conveniently generalizes the notion of variety, giving algebraic

geometry a greater flexibility.

We will then develop the theory of cohomology of sheaves of modules on a

given scheme and give explicit calculations of the cohomology on the projec-

tive space, by using Čech cohomology.

To conclude, we will give the proof of the Serre duality theorem, one of the

most important theorems on coherent sheaves. The proof proceed by first

considering the statement for coherent sheaves on the projective space then

generalizing it to the case of an arbitrary projective scheme.

I





Chapter 1

Separatedness and

Completeness

In this first chapter we study some topological properties of algebraic va-

rieties. We inspect two properties, namely separatedness and completeness

and then restrict our study to the affine complex space and to the projective

one.

We work on the affine n-space over k, An: the set of all n-tuples of

elements in k, where k is an algebraically closed field.

1.1 Definitions and Examples

In analytic geometry, topological properties like being Hausdorff and be-

ing compact play an important role; however, in algebraic geometry such

properties are not very meaningful. Any algebraic variety endowed with

the Zariski topology is by definition quasi-compact and, while topological

manifolds, and therefore differentiable and complex manifolds, have to be

Hausdorff spaces, an algebraic variety is Hausdorff only if it consists of a fi-

nite set of points, hence a zero dimensional space. An affine variety is in fact

defined as an irreducible closed subset of An and the only Hausdorff spaces

1



2 1. Separatedness and Completeness

that are irreducible (i.e. can’t be written as union of two closed subsets) are

finite unions of points.

As a consequence, it makes sense to replace such properties with new ones.

First consider the equivalent characterizations.

Proposition 1.1.1. Let X be a topological space. X is Hausdorff if and only

if its diagonal ∆X = {(x, x) ∈ X ×X} is closed.

Proof. Suppose first that X is Hausdorff, we want to prove that ∆X is closed

in X×X. Let (x, y) ∈ (X×X)\∆X , then x 6= y and, by definition, there exist

two disjoint open neighborhoods U, V ⊆ X such that x ∈ U , y ∈ V . Consider

U ×V : this is an open neighborhood of (x, y) in the product topology which

does not contain any point in ∆X since U, V are disjoint, hence X ×X\∆X

is closed.

Now suppose that ∆X is closed in X ×X and let x, y ∈ X be distinct. Then

(x, y) ∈ X × X\∆X which is open by assumption: there exist an open set

W ⊆ X ×X\∆X containing (x, y). But, since a basis of product topology is

given by {U ×V ;U, V ⊂ X, open}, W ⊇ U ×V , with x ∈ U , y ∈ V and U, V

open in X and disjoint by definition of W .

Proposition 1.1.2. Let X be a topological space. X is quasi-compact if and

only if, for any topological space Y , the projection map

X × Y π−→ Y

is closed.

Proof. Suppose X quasi-compact. To prove that the projection map is closed

we need the following lemma:

Tube Lemma. Let X, Y be topological spaces with X quasi-compact. If N

is an open set containing X × {ȳ}, ȳ ∈ Y, then there exists a tube X × V,
V ⊂ Y open, such that

X × {ȳ} ⊂ X × V ⊂ N.
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Proof. For any x ∈ X choose open sets Ux ⊆ X, Vx ⊆ Y such that (x, ȳ) ∈
Ux × Vx ⊆ N. By quasi-compactness of X there exist finite {Ux} that cover

X: X = Ux(1) ∪ · · · ∪ Ux(n). Define V := Vx(1) ∩ · · · ∩ Vx(n). V is open as a

finite intersection of open sets, each of which contains ȳ, then

X × {ȳ} ⊂ X × V ⊂ N.

Take C ⊂ X × Y closed, ȳ /∈ π(C) and N = X × Y \C. By the Tube

lemma there exists V ⊂ Y open such that

(X × Y \C) ∩ (X × {ȳ}) ⊂ (X × Y \C) ∩ (X × V ) ⊂ X × Y \C.

Then applying the projection π we have: ȳ ∈ V ⊆ Y \π(C), meaning that

Y \π(C) is open, hence the projection is a closed map.

Conversely, suppose that X is not quasi-compact. We want to construct a

topological space Y for which the assumption of π closed gives us a contra-

diction.

Let U = {Uα} be an open cover for X and define C = {X\U |U ∈ U}. Ele-

ments in C cannot be empty, otherwise there would exists U ∈ U such that

U = X, making X quasi-compact.

Let y /∈ X, and define Y = {y} ∪ X with the induced topology. Consider

then ∆ = {(x, x) ∈ X × Y |x ∈ X} and let ∆̄ be its closure in X × Y. By

assumption, the projection map π is closed: π(∆̄) closed in Y . Note that

y ∈ π(∆̄) : if y /∈ π(∆̄), then there exists an open neighborhood O of y in

Y \π(∆̄), but this implies that O contains some points in X, hence in π(∆̄).

From this it follows that ∃x ∈ X such that (y, x) ∈ ∆̄.

We now claim that open neighborhoods of y in Y are precisely subsets con-

taining y and some elements of C. To prove this, assume by contradiction

that there exists an open neighborhood of y, A 3 y that contains no element
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in C, then

A ∩ C = ∅, ∀C ∈ C,

A ∩ (X\U) = ∅, ∀U ∈ U,

A ∩XC = ∅,

which is impossible since it has to contain y. So x ∈ C, ∀C ∈ C which

contradicts the fact that x must be in X.

By replacing the standard topology with Zariski topology, defined by tak-

ing the open subsets to be the complements of algebraic sets, we may give,

by analogy, the following definitions.

Definition 1.1. An algebraic variety X is separated if its diagonal ∆X ⊆
X ×X is closed (w.r.t. the Zariski topology).

Note that the Zariski topology is much finer than the product topology.

Therefore if X is a separated algebraic variety, its diagonal is not necessarily

closed in the product topology. This allows X to be separated without being

Hausdorff in the Zariski topology.

Definition 1.2. An algebraic variety X is complete if, for any algebraic

variety Y , the projection morphism

X × Y π−→ Y

is closed (w.r.t. the Zariski topology).

Because the Zariski topology is finer that the product topology, on X×Y
closed subsets in the Zariski topology are way more than closed subsets in

the product topology. Thus, completeness imposes a stronger condition than

quasi-compactness. There are indeed quasi-compact algebraic varieties (all

of them) which are not complete.

We give also the following criterion for separatedness.
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Proposition 1.1.3. An algebraic variety X is separated if and only if for any

other algebraic variety Y and Y
f

⇒
g
X, f, g morphisms of algebraic varieties,

the set {y ∈ Y |f(y) = g(y)} is closed.

Proof. Suppose X separated. Consider Y
f×g−−→ X × X. Note that {y ∈

Y |f(y) = g(y)} = (f × g)−1(∆X) which has to be closed since ∆X is closed

and f × g is continuous.

Conversely, take Y = X ×X and f, g as the two canonical projections. ∆X

is precisely the set of points where the two projection coincide, which is thus

closed.

These properties pass down to closed subset:

Remark 1. X separated, Z ⊆ X closed ⇒ Z separated.

Remark 2. X complete, Z ⊆ X closed ⇒ Z complete.

To see how varieties behave with respect to these properties we inspect

some examples.

Example 1.1. Any affine variety is separated.

Consider first the affine space An. The diagonal {(x1, . . . , xn) = (y1, . . . , yn)}
is given by the finite union of hyperplanes given by coordinate-wise equalities

xi = yi, i = 1, . . . , n, which is closed by Zariski.

In general, given an algebraic set X, the coordinate ring of the cartesian

product k [X ×X] is canonically isomorphic to k [X]⊗k k [X], therefore the

diagonal can be defined by the ideal (f ⊗ 1 − 1 ⊗ f), f ∈ k [X], and it is

again closed in the Zariski topology.

Example 1.2. The affine line with doubled origin is not separated.

Let X be the union of two distinct copies of A1 where the points in A1\{0} are

identified by the identity map. Then there are two natural maps A1 ↪→ X.

The set of points in A1 that have same image under both maps is A1\{0}
which is clearly not closed in A1, then by the criterion for separatedness

proved before, the affine line with doubled origin is not separated.
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Example 1.3. Any affine variety of positive dimension is not complete.

We just prove this in the case X = A1. Consider the algebraic set {(x, y);xy−
1 = 0} ⊆ A1 × A1 (an hyperbola in A1 × A1), this is sent by the projection

map to A1\{0} which is not closed.

For higher dimensions the proof is analogous.

We note that these examples reveal similarities between the properties

just defined and those we were already familiar with. For instance, any

affine variety is Hausdorff while the affine line with doubled origin is not.

This will be motivated in the next section.

1.2 Complex Analytic Spaces

When we work over the complex field C, separatedness and completeness

can be viewed as substitutes of being Hausdorff and being compact respec-

tively. More precisely we will prove that, if an algebraic variety is defined

over C and we look at it as a complex analytic space with the standard topol-

ogy, then separatedness is equal to Hausdorffness and completeness is equal

to compactness.

At the end of the section we will also discuss about another interesting topo-

logical aspect that arise in the complex case, that is the equivalence between

irreducibility and connectedness of the associated analytic space. In this sec-

tion we will thus consider k = C.

Let X be an algebraic variety over C. We define the analytic (or standard)

topology as the topology induced by the inclusion X ↪→ Cn, using the stan-

dard topology on Cn. Because zero sets of polynomials are closed in Cn, the

standard topology is strictly finer than the Zariski topology. For instance,

Z ⊂ C is closed for the analytic topology, but not for the Zariski topology.

Furthermore, we note that any regular map is holomorphic, so we can endow

any algebraic variety X with an analytic space structure and denote it with

Xan.
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Proposition 1.2.1. Let U ⊆ Cn be non empty open dense in the Zariski

topology. Then U has to be open dense in Cn with the standard topology.

Remark 3. Note that this property is false if U is not open:

Z ⊆ C is dense for the Zariski topology, but closed for the analytic one.

Proof of proposition 1.2.1. Assume by contradiction that U is not open dense

in Cn. Then there exists an open set O, which can be assumed to be an n-

dimensional ball, such that U ∩ O = ∅. In particular O ⊂ U c where U c has

to be closed, i.e. U c = V (I), where V (I) denotes the zero set of the ideal

I ⊆ C [z1, . . . , zn]. For any f ∈ I, f has to vanish on a n-dimensional subset

in Cn, so it has to be the zero polynomial. By the Weak Nullstellensatz [4],

U c = Cn, which contradicts U being non-empty.

Proposition 1.2.2. Let X be an irreducible algebraic variety. If U ⊂ X is

Zariski open, then U it is dense in X.

Proof. X being irreducible means that any two non empty open sets in X

must have non empty intersection. But U not being dense implies that there

exists another open subset, disjoint from U , giving a contradiction.

Remark 4. Cn is irreducible: it is the zero set defined the zero ideal which

is prime, hence it corresponds to an irreducible algebraic set by the 1 − 1

correspondence of [1], I.1.4 . Therefore the previous lemmas implies that

the Zariski closure in the affine complex space of a constructible set, i.e. a

finite union of locally closed1sets, coincides with its closure in the standard

topology.

Chevalley’s theorem ([2]). Let f : X → Y be any morphism of varieties.

f maps constructible sets in X to constructible sets in Y.

Proposition 1.2.3. Let X be an algebraic variety over C, then X is sepa-

rated if and only if Xan is Hausdorff.

1A set is locally closed if it is the intersection of an open set and a closed set, or

equivalently it is open in its closure.
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Proof. Consider the identity map of topological spaces

Xan −→ X.

The map above is continuous: a closed subset for the Zariski topology has

to be closed for the analytic one, since the latter is finer.

Suppose that the diagonal ∆X is closed in X ×X, then ∆an
X has also to be

closed in (X × X)an by continuity, and for the standard topology we know

that (X ×X)an = Xan ×Xan, meaning that Xan is Hausdorff.

Conversely, let Xan be Hausdorff, so the diagonal is closed in the analytic

topology. We need to prove that it is also closed in the Zariski topology.

Consider its closure ∆̄X in X in the Zariski topology. As a consequence

of Chevalley’s theorem and remark 4, it has to coincide with the analytic

closure, but by assumption ∆X is closed in the analytic topology, therefore

∆X = ∆̄X equipped with both topologies.

Proposition 1.2.4. Let X be an algebraic variety over C, then X is complete

if and only if Xan is compact.

Proof. Suppose that Xan is compact. Then a closed subset in X×Y , for any

algebraic variety Y , is also closed in Xan×Y an and thus mapped into a closed

subset in Y an through the projection map, that is also closed in the Zariski

topology by Chevalley’s theorem and remark 4. The converse implication is

a consequence of Chow’s Lemma [2]:

Chow’s Lemma. Let X be a complete variety over an algebraically closed

field k. Then there exists a closed subvariety Y of Pnk for some n and a

surjective birational morphism Y → X.

The morphism above is in particular a continuous map, thus it maps

compact sets into compact sets and Xan is also compact.

1.2.1 Connectedness

Let X be an algebraic variety over C. It is clear that if it is connected

for the standard topology then it is an irreducible algebraic variety, since the
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standard topology is finer than the Zariski topology. What we want to do in

this section is to prove the converse: we will show that irreducibility implies

connectedness in the standard topology. In order to do this, we require the

following lemmas.

Lemma 1.2.5. Let X, Y be algebraic varieties, with Y ( X and X irre-

ducible. If Xan\Y an is connected then so it is Xan.

Proof. Suppose by contradiction that Xan = M t N , M,N disjoint non

empty closed subsets. Then

Xan\Y an = (M ∩Xan\Y an) t (N ∩Xan\Y an)

and since Xan\Y an is connected by assumption, it must be equal either to

(M ∩Xan\Y an) or (N ∩Xan\Y an), hence it must be contained either in M

or N and also does its closure.

By propositions 1.2.1 and 1.2.2, X\Y is a Zariski open and therefore dense

in X and Xan, moreover its closure coincides with the analytic closure, thus

Xan = X\Y = Xan\Y an. This implies that one of M,N must be empty,

contradicting what we have assumed before.

Lemma 1.2.6. If U ⊂ Cn open in the Zariski topology then Uan is connected.

Proof. Let V := Cn\U, x, y ∈ Uan and L a line through x, y. L is not con-

tained in any irreducible component of V , otherwise V would contain both

x and y. Therefore L∩ V is a finite set {y1, . . . , ym}. Note that Lan is home-

omorphic to C, while Lan ∩Uan is homeomorphic to C\{y1, . . . , ym} which is

connected. Then Lan ∩ Uan is also connected and x, y are contained in the

same connected component of Uan. Since x, y were chosen arbitrarily, Uan is

connected.

We will also need two additional analytic lemmas from [3], VII.2.4.

Lemma 1.2.7. Let S ( Cn be an algebraic variety and g an analytic function

on Cn\San. If g is bounded in a neighborhood of any point s ∈ San, then it can

be extended to an analytic function on all Cn, and the extension is unique.
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Lemma 1.2.8 (Liouville’s theorem). Let f be an analytic function on Cn.

If there is a constant C such that

|f(z)| < C|z|k for z = (z1, . . . , zn) where |z| = max |zi|,

then f is a polynomial of degree ≤ k.

Finally we are now able to prove the main theorem on the connectedness of

an irreducible algebraic varietyX, reducing to a simpler problem by assuming

X affine. We recall first some properties of regular morphisms and field

extensions. These will clear up the proof of the following lemma that will be

fundamental in order to prove the main theorem.

Remark 5. Let X, Y be affine varieties and f : X → Y ⊂ An
k be a regular

morphism.

Then f induces ring homomorphism

f ∗ : k [Y ]→ k [X]

where if h ∈ k [Y ] then f ∗(h) is given by h ◦ f .

If we assume f(X) to be dense in Y , then f ∗ : k [Y ] ↪→ k [X] corresponds to

an isomorphic inclusion: f ∗(h) = 0 if and only if h(f(x)) = 0 for any x ∈ X,
hence h vanishes on f(X) = Y , i.e. h = 0 in k [Y ].

We can also extend f ∗ : k [Y ] ↪→ k [X] in an obvious way to an isomorphic

inclusion of the field of fractions: f ∗ : k(Y ) ↪→ k(X).

Recall also the definition of the degree of f : if X, Y have the same dimension,

the degree of the field extension f ∗(k(Y )) ⊂ k(X) is:

degf = [k(X) : f ∗(k(Y ))] .

If f is assumed to be finite2, then its degree is finite and the primitive element

theorem of Galois [9] implies that, when chark=0, any field extension of

finite degree is simple, i.e. there exists an element α ∈ k(X) such that

2A morphism f : X → Y is said to be finite if k [X] is integral over k [Y ], i.e. any

element in k [X] is the root of a monic polynomial over k [Y ].
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k(X) = f ∗(k(Y ))(α). α is called a primitive element.

It is also a consequence of the primitive element theorem and proposition

A.7 [3] that α can be chosen in k [X] .

Lemma 1.2.9. Let X be an irreducible variety. Then there exists an open

subset U ⊂ X and a finite morphism f : U → V , V Zariski open subset of

the affine space Cn such that the following conditions hold:

(a) U is isomorphic to a hypersurface V (F ) ⊂ V × C, defined by F = 0,

where F (t) ∈ C [z1, . . . , zn] [t] ⊂ C [V × C] is an irreducible polynomial

over C [z1, . . . , zn] with leading coefficient 1, and f is induced by the

projection V × C→ V.

(b) The continuous map f : Uan → V an is an unramified cover3.

Proof. By Noether normalization theorem [3] there exists a finite morphism

f : X → Cn, with n=dimX , which is surjective by the properties of finite

morphisms ([3], I.5.3).

Let y ∈ Cn, and α ∈ C [X] as in the previous remark that takes all distinct

values at the points in {f−1(y)}. Thus, C(X) = C(z1, . . . , zn)(α).

Let F (t) ∈ C [z1, . . . , zn] [t] be the minimal polynomial of α, then, when

replacing the coefficients of F with their values at y, it has m =degF=degf

distinct roots α(xi), i = 1, . . . ,m, which is a sufficient condition for f to be

unramified at y.

Let V be an open neighborhood of y on which f is unramified and U :=

f−1(V ). Then f : U → V is still a finite map.

Define A′ := C [z1, . . . , zn] [α] = C [z1, . . . , zn] /(F (t)), then we can write

A′ = C [U ′], for some U ′ ⊂ V × C, defined by the equation F (t) = 0.

Theorem 1.2.10. If X is an irreducible algebraic variety over C, then Xan

is connected.

3f : X → Y is a cover if for any y ∈ Y there is an open neighborhood V s.t. f−1(V ) =

U1 t · · · t UN , where Uj are disjoint and f(Uj) is homeomorphic to V for any j.

f is said to be unramified at y ∈ Y if the number of inverse images of y is equal to degf .

f is unramified if it is unramified at any point in Y .
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Proof. Consider U, V, f : U → V as in lemma above. By lemma 1.2.5 it is

sufficient to prove that Uan is connected.

1. Suppose by contradiction that

Uan = M1 tM2, M1,M2 disjoint, non-empty closed subsets.

Since finite morphisms are surjective and such that closed sets are

mapped into closed sets and open sets are mapped into open sets ([3],

I.5.3), f(M1), f(M2) are both open and closed in V an, that is connected

by lemma 1.2.6. Thus

f(M1) = f(M2) = V an.

2. Consider the restriction f |M1 : M1 → V an. This is still an unramified

cover and let r be the number of inverse images in M1 of any point

y ∈ V an. Since the same holds for M2, we will have r < m =degf =

[C(U) : f ∗(C(V ))] .

3. Let y ∈ V an, and choose a neighborhood Vy of y for which f−1(Vy) =

U1 t · · · tUr, where Ui are disjoint for i 6= j and for all i = 1, . . . r, the

restrictions f |Ui : Ui → Vy are homeomorphisms. Denote by fi = f |Ui
such restrictions.

4. Recall what we have noted in the remark and let α ∈ C [U ] be integral

over C [z1, . . . , zn], hence algebraic over C [z1, . . . , zn] ∼= f ∗(C [z1, . . . , zn])

by the isomorphic inclusion induced by f , and a primitive element of

the field extension C(V ) ⊂ C(U), i.e. C(U) = C(V )(α).

Denote also by αi the restrictions of α to Ui, i = 1, . . . , r, and by

g1, . . . , gr the elementary symmetric functions in α1, . . . , αr :

gi :=
∑

1≤j1<···<ji≤r

αj1 . . . αji .

5. g1, . . . , gr are analytic functions in V an :

Let uj = f−1(y), j = 1, . . . ,m. Local parameters at uj ∈ U are de-

fined as regular functions at uj in C(U) that form a basis for the tan-

gent space at uj, hence they have a simple zero at ui. By point (a)
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from the previous lemma, U ⊂ V × C is defined by a polynomial

F (t) ∈ C [z1, . . . , zn] [t] and, since local parameters at uj are by def-

inition locally invertible at uj ∈ U ⊂ V × C, the implicit function

theorem implies that they can be expressed as analytic functions in

f ∗(z1), . . . , f
∗(zn) with z1, . . . , zn ∈ C.

Moreover, in a small neighborhood of y, because C(V ) = C(U)(α), α

is an analytic function in the local parameters at y.

It is a result from [3] II.2 that local parameters at a point x generate all

regular function at that point in the local ring at x. Thus, by observing

that the homeomorphisms f−1i defined in 3. induce ring homomor-

phisms (f−1i )∗ : C(Ui)→ C(Vy), the functions (f−1i )(α) are analytic on

Vy in the coordinates z1, . . . , zn ∈ C.
Then by definition, g1, . . . , gr are also analytic functions in the coordi-

nates z1, . . . , zn ∈ C, on V an.

6. g1, . . . , gr are analytic functions in Cn :

since V ⊂ Cn is open, Cn\V =: S is an algebraic set. Let s ∈ San.

α was chosen in 4. algebraic over C [z1, . . . , zn] ∼= f ∗(C [z1, . . . , , zn]),

hence it satisfies an algebraic equation of degree l ≥ m

αl + f ∗(a1)α
l−1 + · · ·+ f ∗(al) = 0, with ai ∈ C [z1, . . . , zn] . (1.1)

Note that (f−1i )(α) are roots of this equation, therefore the gi are

bounded in any compact neighborhood of s and lemma 1.2.7 implies

that gi are analytic on the whole affine space.

7. g1, . . . , gr are actually polynomials:

set |z| := maxi=1,...,n |zi| for any z = (z1, . . . , zn) ∈ Cn.

For any x ∈ M1, α(x) is the l-th root of an algebraic equation with

coefficients f ∗(aj)(x) = aj(f(x)), thus the following inequality4 holds

|α(x)| ≤ 1 +maxj=1,...,l|aj(f(x))|
4This is the Cauchy bound : for any univariate polynomial a0+aix+ · · ·+anx

n, an 6= 0,

each root is bounded by 1 + max{
∣∣∣an−1

an

∣∣∣ , . . . , ∣∣∣ a0

an

∣∣∣}.
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Since aj ∈ C [z1, . . . , zn], for any ε > 0 there exists a constant C such

that

|α(x)| < C|z|k for|z| > ε,

where k denotes the maximum of the degrees of aj, j = 1, . . . , l.

Because we have noted that (f−1i )(α) are roots of the equation (1.1),

they satisfies the same inequality:

|(f−1i )∗(α)(z)| < C|z|k for all i = 1, . . . , r.

Thus

|gi(z)| ≤
∑

1≤j1<···<ji≤r

| max
k=1,...,i

{αjk}|i ≤ C ′|z|ik i = 1, . . . , r,

hence they have polynomial growth and by lemma 1.2.8 they are poly-

nomials in z1, . . . , zn.

8. What we have proved in 7. implies that there exists p1, . . . , pr ∈
C [z1, . . . , zn] that restricts to g1, . . . , gr in Vy. Furthermore, since gi, i =

1, . . . , r are the elementary symmetric function in αi, i = 1, . . . , r, they

satisfies the following identity

r∏
i=1

(λ− αi) = λn − g1(α1, . . . , αr)λ
n−1 + · · ·+ (−1)rgr(α1, . . . , αn).

By taking λ = α and extending to all U , we get

αr − f ∗(p1)αr−1 + · · ·+ (−1)rf ∗(pr) = 0. (1.2)

9. We will see now that the equation (1.2) gives us a contradiction, con-

cluding the proof.

In fact, what we have done until now can be repeated for M2 : there

exist two polynomials P1, P2 ∈ C [z1, . . . , zn] [t] of degree < m such that

Pj(α) = 0 on Mj, j = 1, 2. Then

P1(α)P2(α) = 0
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on C [U ] that is an integral domain: C [U ] is an integral domain if and

only if U is irreducible ([4] 5.§1) which is true by assumption. This

implies that α satisfies a polynomial equation of degree < m which is

impossible since the minimal polynomial of α has degree m.

1.3 The Projective Space

Now consider the projective space Pn over an algebraically closed field

k. In this section we’ll prove that Pn, and all projective varieties, are both

separate and complete.

Recall that Pn has an open covering U =
⋃n
i=0 Ui where

Ui = {[x0, . . . , xn] ∈ Pn|xi 6= 0} (1.3)

with isomorphisms ϕi : Ui → An.

Remark 6. Pn is an algebraic variety.

Pn is quasi-compact and the local rings (Ui,Oi) are clearly affine algebraic

varieties, where O is the sheaf such that, for all i, Oi is defined by the

isomorphism ϕi, hence it is isomorphic to the ring of polynomial equation in

n coordinates and coefficients in k. What is left to prove is that O is well

defined in the intersections, i.e. ∀i, j, Uij = Ui ∩ Uj is open in both Ui and

Uj (which is trivial in our case) and Oi|Uij ∼= Oj|Uij.
Without loss of generality, suppose i = 0, j = 1,

U0 = {[x0, . . . , xn] ∈ Pn|x0 6= 0}, O0 = k

[
x1
x0
, . . . ,

xn
x0

]

U1 = {[x0, . . . , xn] ∈ Pn|x1 6= 0}, O1 = k

[
x0
x1
, . . . ,

xn
x1

]
.

Then

U0,1 = {x ∈ U0|x1 6= 0} ⊆ U0,
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and it corresponds to the inclusion of rings

k

[
x1
x0
, . . . ,

xn
x0

]
↪→ k

[
x1
x0
, . . . ,

xn
x0
,
x0
x1

]
.

Similarly,

U1,0 = {x ∈ U1|x0 6= 0} ⊆ U1,

k

[
x0
x1
, . . . ,

xn
x1

]
↪→ k

[
x0
x1
, . . . ,

xn
x1
,
x1
x0

]
.

Clearly U0,1 = U1,0 and the isomorphism in k(x0, . . . , xn) is given by the map

k

[
x1
x0
, . . . ,

xn
x0
,
x0
x1

]
1−1−−→ k

[
x0
x1
, . . . ,

xn
x1
,
x1
x0

]
x0
x1
7→ x1

x0

xi
x0
7→ xi

x0

(
x1
x0

)−1
, i = 2, . . . , n.

This can be done ∀ i, j.

To prove that all projective varieties are separated and complete, by re-

marks 1. and 2. it is sufficient to prove that Pn is separated and complete.

Remark 7. Separatedness of Pn follows automatically from the separatedness

of An: let (x, y) ∈ Pn × Pn be in the closure of the diagonal. Pn has an atlas

consisting of n+1 charts isomorphic to An and, since x, y are in the closure of

the diagonal, it is possible to find an open affine set U ∼= An, containing both

x and y, and we have already proved that the affine space is separated, with

diagonal defined by {x = y}, and this proves that the diagonal is closed in Pn.

On the other hand, we observe that completeness of Pn follows from the

main result from Elimination Theory:

Given r polynomials f1, . . . , fr ∈ k [x0, . . . , xn, y1, . . . , ym], homogeneous in

the variables x0, . . . , xn, there exist g1, . . . , gs ∈ k [y1, . . . , ym] such that ∀(a1 . . . , am) ∈
km, for which gj(a1, . . . , am) = 0, j = 1, . . . , s, there exists (b0, . . . , bn) ∈ kn+1

such that

fi(b0, . . . , bn, a1, . . . , am) = 0, ∀i = 1, . . . , r.
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In other terms, this is equivalent to claim that the projection π of Pn × Am

onto Am maps an algebraic set V (f1, . . . , fr) ⊆ Pn × Am to an algebraic set

V (g1, . . . , gs) ⊆ Am, hence the projection is closed.

This is the content of the Projective Extension Theorem, proved in [4] 8.§5.

We will give another proof instead. We do it by recalling the well known

Nakayama’s Lemma. Let M be a finitely generated R-module, and A ⊂ R

be an ideal such that M = A ·M. Then there is an element f ∈ 1 +A which

annihilates M.

Proof. Let m1, . . . ,mn be the generators of M as an R-module. By assump-

tion

mi =
n∑
j=1

aij ·mj, ∀i = 1, . . . , n, where aij ∈ A.

Then
n∑
j=1

(δij − aij)mj = 0, where δij is the Kronecker delta.

By multiplying on the left by the adjoint of the matrix (δij − aij)ij, one

finds that f := det(δij−aij) satisfies f ·mk = 0, ∀ k, and clearly f ∈ 1+A.

Theorem 1.3.1. Pn is complete.

Proof. Let Y be an algebraic variety and

π : Pn × Y −→ Y

be the projection map. By definition of algebraic variety, Y is a finite union

of affine varieties, thus, in each of these, a subset is closed if and only if it

is closed in Y and therefore we may assume that Y is affine with coordinate

ring R = k [Y ].

Then Pn×Y is covered by n+1 open Vi = Ui×Y , with Ui as in (1.3), whose

coordinate rings are R
[
x0
xi
, . . . , xn

xi

]
.

Let Z ⊆ Pn × Y be closed, take y ∈ Y \π(Z), and let m = I(y) be the
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corresponding maximal ideal. We want to show that there is an open in

Pn × Y containing y.

For any i, Z∩Vi and Ui×{y} are closed in Vi and they have empty intersection:

(Z ∩ Vi) ∩ (Ui × {y}) = ((Z ∩ Ui)× π(Z)) ∩ (Ui × {y}) = ∅.

Fix some i and denote V = Vi, with coordinate ring R [X1, . . . , Xn] where

X1 = x0
xi
, . . . , Xn = xn

xi
.

By taking the associated vanishing ideals, and applying Weak Nullstellen-

satz [4], we get the following equality

I(Z ∩ V ) + m ·R [X1, . . . , Xn] = R [X1, . . . , Xn] .

This implies

a+
∑
j

mjgj = 1, (1.4)

where a ∈ I(Z ∩ V ) ⊆ R [X1, . . . , Xn], mj ∈ m and gj ∈ R [X1, . . . , Xn] .

Recall that the homogenization of a is a homogeneous polynomial a′ ∈
R [x0, . . . , xn] of degree m such that

a′(x0, . . . , xn) = xmi · a(
x0
xi
, . . . ,

xn
xi

).

We note also that from a′ we can construct another homogeneous polynomial

ã ∈ R [x0, . . . , xn]N with the following property

ã

(
x0
xj
, . . . ,

xn
xj

)
∈ I(Z ∩ Vj), for all j. (1.5)

Since a′ is homogeneous, we can write

a′
(
x0
xj
, . . . ,

xn
xj

)
=

a′

xmj
,

which is clearly zero on Z ∩ Vj ∩ V.
Suppose that it is not zero on Z ∩ Vj, then we can consider instead

ã := a′
(
x0
xj
, . . . ,

xn
xj

)
· xi
xj

=
a′

xm+i
j

· xi = a

(
x0
xi
, . . . ,

x0
xi

)
·
(
xi
xj

)m+1
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which must be zero on both Z ∩ Vj ∩ V and Z ∩ Vj ∩ V c, hence on Z ∩ Vj as

wanted.

Thus ã satisfies (1.5) and we denote AN ⊂ SN := R [x0, . . . , xn]N the vector

space of such polynomials.

Multiplying (1.4) by xNi with N large enough gives

ã(x0, . . . , xn) +
∑
j

mjg
′
j = xNi , g′j ∈ SN ,

⇒ xNi ∈ AN + m · SN , for all i.

By taking N even bigger, and repeating for each i, all monomials in

R [x0, . . . , xn] of degree N are in AN + m · SN , i.e.

SN = AN + m · SN . (1.6)

Taking the quotient of (1.6) gives:

SN/AN = m · SN/AN .

Then by Nakayama’s Lemma there exists f ∈ R + m such that

f · SN/AN = 0⇔ f · SN ⊂ AN

⇔ f · xNi ∈ AN , ∀i,

⇔ f ∈ I(Z ∩ Vi), ∀i,

meaning that f vanishes on π(Z), i.e. V (f)c is an open neighborhood of y

contained in Y \π(Z), which is thus open.

Note that Pn being complete reflects the fact that the projective space is

compact over the complexes, accordingly to what we have said in the previ-

ous section.

1.4 Separated and Proper Morphisms

We now treat briefly the properties discussed in this chapter in terms of

morphisms between varieties: we will define separated and proper morphisms
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which are the counterparts of topological separatedness and completeness,

respectively.

To be more precise, such morphisms are usually defined in the category

of schemes, which is an enlargement of the category of algebraic varieties.

Nonetheless, we will continue to work with algebraic varieties, and use the

language of schemes starting from the next chapter.

Definition 1.3. Let f : X → Y be a morphism of varieties. f is separated

if the diagonal morphism ∆X/Y : X → X ×Y X5 is a closed immersion.

In this case we also say that X is separated over Y .

Remark 8. X is a separated algebraic variety over k if and only if the struc-

ture morphism f : X → Speck is separated.

Proof. Recall that we are considering k as an algebraically closed field. We

will see in the next chapter that Speck consists of a point, hence the fiber

product over Speck coincides with the cartesian product, meaning that the

morphism being separated is equal to topological separatedness.

Here we give some results about separatedness, without proofs.

Proposition 1.4.1 ([1]).

(a) Open and closed immersions are separated;

(b) composition of separated morphisms are separated;

(c) separatedness is stable under base change6;

(d) products of separated morphisms are separated;

(e) if f : X → Y and g : Y → Z are two morphisms and if g ◦ f is

separated, then f is separated;

5It is a property of the category of schemes that the fiber product always exists.
6A property of morphisms of varieties is said to be stable under base change if for any

morphism X → Y satisfying that property, all base changes X×Y Y ′ → Y ′ also have that

property.
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(f) A morphism f : X → Y is separated if and only if Y can be covered by

open subsets Vi such that f−1(Vi)→ Vi is separated for each i.

Such properties can actually be extended to a whole class of schemes,

called ‘noetherian’.

In ordinary topology, properness is a useful geometric property which is

indeed a relative version of compactness. Here is a true fact about proper

maps: suppose that X and Y are Hausdorff spaces and Y is locally compact

(which again, we think of varieties as always being such), then a map f : X →
Y is proper if and only if it is universally closed, i.e. for any topological space

Z the map f×idZ : X×Z → Y ×Z is closed. This gives sufficient motivation

to make the following definition plausible:

Definition 1.4. Let f : X → Y be a morphism of varieties. f is proper if

it is separated and universally closed. f is said to be universally closed if it

is closed and, for any morphism Y ′ → Y, the morphism f ′ : X ×Y Y ′ → Y ′,

obtained by base change, is also closed.

Remark 9. Actually, the definition of properness for a morphism of schemes

requires to be of ‘finite type’, but we can omit this because we will see that

the associated scheme to a variety is always of finite type.

Remark 10. X is a complete algebraic variety over k if and only if the struc-

ture morphism f : X → Speck is proper.

Similarly to separated morphisms, the following properties hold and can

be extended to all noetherian schemes.

Proposition 1.4.2 ([1]).

(a) Closed immersions are proper;

(b) compositions of proper morphisms are proper;

(c) proper morphisms are stable under base change;
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(d) products of proper morphisms are proper;

(e) if f : X → Y and g : Y → Z are two morphisms and if g ◦ f is proper

and g is separated, then f is proper;

(f) A morphism f : X → Y is proper if and only if Y can be covered by

open subsets Vi such that f−1(Vi)→ Vi is proper for each i.

There is an important class of proper morphisms:

Definition 1.5. Let f : X → Y be a morphism of varieties. f is projective

if it factors into a closed immersion i : X → PnY , where PnY := Pn × Y and

the projection PnY → Y .

Theorem 1.4.3. A projective morphism of varieties is proper.

Proof. To prove this, we will use the properties in the above proposition. By

definition, a projective morphism f : X → Y is the composition of a closed

immersion, that is proper by (a), and a projection p : Pn × Y → Y. From

(b) it is sufficient to prove that the latter is proper, but this follows by the

completeness of the projective space, proved in the previous section.

As we have seen for the topological properties corresponding to separat-

edness and properness, the latter also translate in a well known morphism

between complex varieties, viewed as complex analytic spaces. This, as one

can foresee, is the counterpart of the topological property of compactness: a

proper map, i.e. a continuous map such that the inverse image of a compact

is compact.

Let X, Y be complex algebraic varieties and Xan, Y an the associated an-

alytic spaces. Let f : X → Y be a regular morphism, we denote with

f an : Xan → Y an the same map, viewed as a morphism between analytic

spaces.

Proposition 1.4.4. f : X → Y over C is separated if and only if fan is

separated.
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Proof. Let ∆ : X → X×Y Y and ∆an : Xan → Xan×Y an Y an be the diagonal

immersions. It is a consequence of remark 4. that ∆(X) is closed in X ×Y Y
if and only if ∆an(Xan) is closed in Xan ×Y an Y an.

Theorem 1.4.5. f : X → Y over C is proper if and only if fan is proper

with respect to the analytic topology.

Proof. Suppose f is proper. Since f an being proper is a local property on

Y an, we may assume Y affine. Then, by Chow’s Lemma, there exists a closed

subvariety X ′ of Pn and a surjective birational morphism

g : X ′ → X.

The morphism (f ◦ g)an = f an ◦ gan is projective, hence proper by theorem

1.4.3. gan is surjective, thus by proposition 1.4.2 (e) f an must be proper.

Conversely, suppose f an is proper. By proposition 1.4.4, f is separated, so

we need to prove that it is universally closed, and it suffices to prove that f

is closed, since the morphism

f ′ : X ×Y Y ′ → Y ′

is closed if (f ′)an is proper.

Let T ⊆ X be closed. By Chevalley’s Theorem, f(T ) is a constructible set

and we have

f an(ϕ−1(T )) = ψ−1(f(T )),

where ϕ, ψ are the canonical morphisms ϕ : Xan → X, ψ : Y an → Y.

Since f an is proper, ψ−1(f(T )) must be closed in Y an:

ψ−1(f(T )) = ψ−1(f(T )).

This implies f(T ) = f(T ) i.e. f closed and, for what we observed above,

proper.

The most useful criteria to check separatedness and properness are the

valuative criteria.
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Intuitively, they enable one to reduce checking to curves or, more precisely,

germs of curves. For instance, a complex analytic space X is Hausdorff if

and only if any holomorphic map f : D∗ → X has at most one extension

to f̂ : D → X (here D∗ denotes the punctured disc and D := D∗ ∪ {0} the

disc).

Similarly, X is compact if and only if any holomorphic map f : D∗ → X

has a unique extension f̂ : D → X. However, such criteria are defined using

schemes, therefore we will first define the structure of a scheme and then

discuss it at a later time.



Chapter 2

Schemes and Sheaves of

Modules

This chapter contains some basic definitions and results from the Theory

of schemes which is the language that we will use to develop the topics that

will be treated in the next chapters.

We will give the notions of scheme, morphism of schemes, sheaf of modules

focusing mainly on coherent sheaves.

2.1 Schemes

Similarly to an algebraic variety, that is obtained by gluing together affine

varieties, a scheme is something that locally looks like an ‘affine scheme’. In

this section we define affine schemes and construct their structure sheaf in

order to define a scheme. We will also focus on an important class of schemes:

the projective spectrum of a ring.

2.1.1 Affine Schemes

Let A be a commutative ring with unit.

We define the Spectrum of A, denoted by SpecA, to be the set of all prime

25
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ideals of A.

If a ⊆ A is an ideal, then we define the subset

V (a) := {p ∈ SpecA|a ⊆ p} ⊆ SpecA.

Remark 11. Let a, b ⊆ A be ideals. Then V (a) ⊆ V (b) if and only if
√
a ⊇

√
b.

To see this, it suffices to note that the radical of an ideal is the intersection

of all prime ideals containing it ([5] I.1.14).

We define the Zariski topology on SpecA by taking as closed subsets all

subsets of the form V (a). It’s easy to verify that

1. V (
∑

aλ) =
⋂
V (aλ);

2. V (a ∩ b) = V (a) ∪ V (b).

Therefore {V (a)} defines a topology. To be more precise, the open sets

are

D(a) = SpecA\V (a)

for some ideal a. Let f ∈ A, D(f) = SpecA\V ((f)) = {p ∈ SpecA|f /∈ p}.
Then if a ⊆ A is an ideal,

D(a) = {p ∈ SpecA|a 6⊆ p} =
⋃
f∈a

D(f).

So {D(f)|f ∈ A} is a basis for the Zariski topology just defined.

SpecA will be our model of ‘affine scheme’.

From a geometrical point of view, it is in fact very similar to an affine variety:

Remark 12. SpecA is Hausdorff if and only if A is zero dimensional:

Let p ∈ SpecA. V (p) = {p′|p′ ⊇ p}, then p is a closed point if and only

if it is maximal. Consequently SpecA is Hausdorff if and only if its Krull

dimension1 is 0.

1The Krull dimension of A is the supremum of all integers n such that there exists a

chain of length n of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn = p, for any prime ideal p.
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Remark 13. SpecA is quasi-compact:

Consider a open covering of SpecA

SpecA =
⋃

f∈R⊆A

D(f).

since D(1) = SpecA, 1 has to be in R, hence it is a finite linear combination

of elements is R: 1 =
∑N

i=1 cifi, fi ∈ R, so we find a finite covering

SpecA =
N⋃
i=1

D(fi).

To make the definition more accurate, we endow X =SpecA with a sheaf

of rings OX , called its structure sheaf.

For any U ⊆ X open, we define OX(U) to be the set of functions

s : U −→ qp∈UAp

where Ap is the localization of A at p w.r.t. the multiplicative system A\p,

such that s(p) ∈ Ap and s is locally the quotient of elements in A, i.e. ∀p ∈ U
there exists a open neighborhood V of p where ∀q ∈ V , s(q) = a/f ∈ Aq, a ∈
A, f /∈ q.

Take the identity to be the element which gives 1 in each Ap. Since sums

and products of functions are again such, OX(U) is a commutative ring with

unit.

If V ⊆ U are two open subsets, the projection

qp∈UAp −→ qp∈VAp

clearly restricts OX(U) to OX(V ) and gives the structure of a presheaf.

Remark 14. Let f, g ∈ A.

D(f) ⊆ D(g)⇔ V ((f)) ⊇ V ((g))
Rk. 11⇔

√
(f) ⊆

√
(g)

⇔ f ∈
√

(g)⇔ fm = h · g, for some m ⇔ Ag ⊆ Af ,
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where Af denotes the localization of A w.r.t. the multiplicative system

{f, f 2, . . . }. This gives an inclusion map Ag −→ Af .

Furthermore, if p ∈ D(f), then f /∈ p, so we get a natural map Af −→ Ap,

and the following commutative diagram

Ag Af

Ap

Thus

lim−→
f /∈p

Af = Ap.

Lemma 2.1.1. Suppose D(f) =
⋃
αD(fα). If g ∈ Af has image 0 in all

rings Afα, then g = 0.

Proof. See Lemma 1 in [2] II.§1.

Lemma 2.1.2. Suppose D((f)) =
⋃
αD(fα), and gα ∈ Afα are such that

∀α, β, gα and gβ have same image on Afαfβ (if not empty). Then there exists

g ∈ Af that has image gα in Afα , ∀α.

Proof. See Lemma 2 in [2] II.§1.

The two lemmas above are sufficient to prove that OX is a sheaf. To be

more precise, (X,OX) is a locally ringed space:

Proposition 2.1.3. Let f ∈ A, then

1. OX(D(f)) ∼= Af ;

2. The stalk of OX at p is Ap: (OX)p ∼= Ap.

Proof. 1. Consider the map

Af −→ qp∈D(f)Ap.

By Lemma 1 this map is injective, and by Lemma 2 it is surjective.
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2. By definition,

(OX)p := lim−→
p∈D(f)

OX(D(f))
1.
= lim−→

f /∈p
Af = Ap.

Given this structure, we can now define a scheme.

Definition 2.1. An affine scheme is a locally ringed space (X,OX) isomor-

phic to the spectrum of some ring.

Definition 2.2. A scheme is a locally ringed space (X,OX) such that ∀x ∈
X there exists an open neighborhood U that, together with OX |U , is affine.

Example 2.1. Let k be a field, (0) is the only prime ideal on a field, hence

Speck consists in only a point and its structure sheaf is k.

This also explains remarks 8 and 10 in section 1.4.

Example 2.2. Define the affine space over k as An
k := Speck [x1, . . . , xn] . Its

closed points, i.e. its maximal ideals, are in 1-1 correspondence with ordered

n-tuples of elements of k by Weak Nullstellensatz [2], and therefore with the

affine space An
k as a variety.

2.1.2 Projective schemes

Here we consider an important class of schemes: the Projective spectrum

of a graded ring.

Let S be a graded ring and S+ =
⊕

d>0 Sd its irrelevant ideal, we denote

ProjS to be the set of all homogeneous prime ideals which do not contain

all of S+, and define the Zariski topology on ProjS by taking as closed sets,

those of the form

V (a) = {p ∈ ProjS|p ⊇ a}, a homogeneous ideal in S.

Analogously to the affine case, we can define a sheaf of rings on X = ProjS:

take T as the multiplicative system consisting of all homogeneous elements
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of S\p, with p prime ideal, and denote by S(p) the subring of T−1S consisting

of all fractions f
g
, with f, g homogeneous of the same degree. We define

the structure sheaf OX by taking, for any open set U , OX(U) as the set of

functions

s : U → qp∈US(p)

such that s(p) ∈ S(p) and s is locally a quotient.

By repeating what we’ve done for the affine case, it can be proved that this

is indeed a sheaf and ProjS is a locally ringed space: for any p ∈ ProjS, the

stalk at p is isomorphic to the local ring S(p).

We can say more:

Proposition 2.1.4. ProjS is a scheme.

Proof. ProjS is already a locally ringed space, therefore it is sufficient to

prove that it can be covered by open affine schemes. Note that, since elements

in ProjS cannot contain all of S+, a cover is given by open sets

D+(f) = ProjS\V ((f)) = {p ∈ ProjS|f /∈ p}

with f ∈ S+ homogeneous.

We want to show that there is an isomorphism of ringed space

(ϕ, ϕ#) : (D+(f),OProjS(D+(f)))→ (SpecS(f),OSpecS(f)
)

where S(f) is the subring of Sf of elements of degree 0 and the map ϕ is

defined by

ϕ(a) = aSf ∩ S(f), a ⊆ S homogeneous ideal,

where aSf denotes the smallest ideal in Sf containing ϕ(a). Then for any

p ∈ D+(f), ϕ(p) ∈ SpecS(f) and it is bijective by localization properties. By

noticing also that ∀a ⊆ S homogeneous, p ⊇ a⇔ ϕ(p) ⊇ ϕ(a) this is indeed

a homeomorphism.

Furthermore, if p ∈ D+(f) then S(p) and (S(f))ϕ(p) are isomorphic as local

rings. This induces a morphism from the structure sheaf on SpecS(f) to the

direct image of the structure sheaf on ProjS restricted to D+(f)

ϕ# : OSpecS(f)
→ ϕ∗(OProjS|D+(f))
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which is an isomorphism.

Example 2.3. Define the projective n-space over k as Pnk :=Projk [x0, . . . , xn] .

The set of closed points is exactly the projective space, as a variety: closed

points in Projk [x0, . . . , xn] are homogeneous maximal ideals 6= (x0, . . . , xn)

which are in a 1-1 correspondence with points in Pn :

(aixj − ajxi|i, j = 0, . . . , n)
1−1↔ (a0, . . . , an) ∈ Pn.

By putting this together with the definition of affine space as a scheme,

we observe that the topological space of a scheme has more points than the

corresponding variety. This suggests that the notion of schemes generalizes

the notion of variety. We will see in the next section that this is actually

true.

2.2 Varieties as Schemes

The category of schemes is in fact an enlargement of the category of

varieties. To prove this, we give first the following definitions.

Definition 2.3. Let S be a fixed scheme. A scheme over S is a scheme X,

together with a morphism X → S.

An S-morphism from X to Y , where X, Y are schemes over S, is a morphism

X → Y compatible with the given morphisms to S.

We denote Sch(k) the category of schemes over k (meaning over Speck),

or k-schemes, together with Speck-morphisms, and Var(k) the category of

varieties where morphisms are regular maps.

Proposition 2.2.1. Let X be a scheme, Z ⊂ X irreducible closed subset.

There exists only one point z ∈ Z such that Z = {z}. z is called a generic

point.

Proof. If U ⊂ X is an open affine scheme such that Z ∩ U 6= ∅ then
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1. any point dense in Z must be in Z ∩ U : any non empty open subset

has to contain it;

2. if z ∈ Z∩U and {z} ⊃ Z∩U then z is dense in Z, otherwise Z wouldn’t

be irreducible.

So we can assume Z = V (a), for some ideal a. But closed irreducible subset

in a scheme are of the form V (p), p prime, and V (p) = {p}.

Proposition 2.2.2. Let k be an algebraically closed field. There is a natural

fully faithful functor

t : Var(k)→ Sch(k),

i.e. ∀X, Y ∈ Var(k)

tX,Y : HomVar(k)(X, Y )→ HomSch(k)(t(X), t(Y ))

is bijective.

Proof. First, we define t as a functor of topological spaces. Let X be a

topological space, we define

t(X) := {Y ⊆ X|Y closed and irreducible}

and a topology on t(X), by taking as closed sets t(Y ) ⊆ t(X), with Y ⊆ X

closed.

Let f : X1 → X2 be a continuous map between topological spaces, then we

get a map

t(f) :t(X1)→ t(X2)

Y 7→ f(Y )
(2.1)

which is continuous, hence t is indeed a functor of topological spaces.

Define

α :X → t(X) (2.2)

P 7→ {P} (2.3)
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continuous map. From proposition 2.2.1 there is a 1-1 correspondence be-

tween points of X and closed irreducible subsets in X, i.e. points of t(X).

Furthermore this induces a bijection between open sets in X and open sets

in t(X) which allows us to define t(f)# between sheaves.

Take X as an algebraic variety (V,OV ), we prove that (t(V ), α∗(OV )) is a

k-scheme.

Since any variety is covered by affine varieties, we can assume V affine, with

coordinate ring A := k [V ]. Consider the following morphism of locally ringed

spaces

β :(V,OV )→ (SpecA,OSpecA)

P 7→ mP

where mP is the maximal ideal corresponding to the point P . By Weak

Nullstellensatz there is a bijection of V onto the set of closed points in SpecA.

So β gives a homeomorphisms onto its image.

∀U ⊆ SpecA open, define the ring homomorphism

OSpecA(U)→ β∗(OV )(U) = OV (β−1(U))

that takes a section s ∈ OSpecA(U) and defines a regular map from β−1(U)

to k as follows: for any P ∈ β−1(U), take the image of s in the stalk

OSpecA,β(P )
∼= AmP and pass to the quotient AmP \mP

∼= k. s is regular by

definition of section in OSpecA(U), and this gives the isomorphisms of rings

OSpecA(U) ∼= OV (β−1(U)).

By recalling that prime ideals of A are in 1-1 correspondence with irre-

ducible closed subsets of V , we have that (SpecA,OSpecA) is isomorphic to

(t(V ), α∗(OV )), so the latter is indeed an affine scheme.

It is in fact a scheme over Speck: because (Speck,OSpeck) consists of a point

with structure sheaf given by the field k, as we have seen in example 2.1, it is

sufficient to give an homomorphism of rings k → OV that maps any λ ∈ k to

the corresponding constant function. Therefore (t(V ), α∗(OV )) is a scheme

over Speck.
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What is left to prove is the bijection of t when restricted to morphisms.

We note the following first:

1. V affine variety, t(V ) =SpecA, A = k [V ]. p ∈ t(V ) is a closed point if

and only if it is a maximal ideal, hence the residue field k(p) := Ap\pAp

is k;

2. Let f : X → Y be a morphism of schemes and p ∈ X such that

k(p) = k. The ring morphism OY → f∗OX induces a map between

residue fields k(f(p))→ k(p) which are both extensions of k and gives

the following inclusions

k ↪→ k(f(p)) ↪→ k(p) = k

⇒ k(f(p)) = k.

Now fix V,W affine and consider F : V → W, G : V → W regular maps.

Recall from (2.1) that t(F ) maps irreducible closed subsets of V to their

closure in t(W ). To prove injectivity suppose t(F ) = t(G), by 1. and 2.

we see that a morphism of schemes maps closed points to closed points, and

these correspond to the points of the varieties, so we have that ∀P ∈ V

F (P ) = F (P ) = t(F )(P ) = t(G)(P ) = G(P ) = G(P ),

thus F = G as regular maps.

To prove surjectivity, instead, let

(ϕ, ϕ#) : (t(V ), α∗OV )→ (t(W ), α∗OW )

be a morphism of schemes. From what we have proved above, we have the

following isomorphisms:

(t(V ), α∗OV ) ∼= (SpecAV ,OSpecAV ),

(t(W ), α∗OW ) ∼= (SpecAW ,OSpecAW ),

which give the commutative diagram
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(t(V ), α∗OV ) (t(W ), α∗OW )

(SpecAV ,OSpecAV ) (SpecAW ,OSpecAW )

(ϕ,ϕ#)

(ψ,ψ#)

By restricting ψ# on global sections we get F# : AW → AV which induces a

morphism of varieties F : V → W. To conclude the proof we need to prove

that this F is such that ϕ = t(F ), meaning that if Y is a closed irreducible

subset of V then ϕ(Y ) is the closure of F (Y ) in t(W ).

Since closed irreducible subsets correspond to prime ideals, Y has to cor-

respond to a prime ideal p ∈SpecAV . ψ(p) = (F#)−1(p), or by the com-

mutativity of the diagram above, ϕ(Y ) = Z((F#)−1(p)) where Z(·) denotes

the zero set operator. Now take a closed set in W containing F (Y ), where

Y = Z(p). By applying the vanishing ideal operator and the the zero set

operator we get that such closed set has to contain the zero set of (F#)−1(p),

hence Z((F#)−1(p)) is exactly the closure of F (Y ) and this concludes the

proof.

To be more precise, we want to identify the image of the functor t in

Sch(k). To do so, we need to distinguish some classes of schemes.

Definition 2.4. A scheme X is integral if for any open set U ⊆ X, the ring

OX(U) is an integral domain.

Definition 2.5. A scheme X is locally noetherian if it can be covered by

open affine subsets SpecAi, Ai noetherian ring. X is noetherian if it is locally

noetherian and quasi-compact.

Definition 2.6. A morphism f : X → Y of schemes is of finite type if

there exists a covering of Y by open affine subsets Vi =SpecBi such that,

for each i, f−1(Vi) can be covered by a finite number of open affine subsets

Uij =SpecAij, Aij finitely generated Bi-algebra.

Because every finitely generated k-algebra is noetherian, if follows imme-

diately that every k-scheme of finite type is noetherian.
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Recall the definition 1.5 of projective morphism between varieties. Here’s

the analogue in terms of schemes:

Definition 2.7. Let Y be a scheme. We denote by PnY := PnZ ×SpecZ Y the

projective n-space over Y . A morphism f : X → Y of schemes is projective

if it factors into a closed immersion i : X → PnY for some n, followed by the

projection PnY → Y.

A morphism f : X → Y is quasi-projective if it factors into an open immer-

sion j : X → X ′ and a projective morphism g : X ′ → Y.

Remark 15. Let V be a variety over k algebraically closed field. t(V ) is an

integral noetherian scheme of finite type over k.

Proof. Since V can be covered by a finite number of open affine varieties

Vi, then, by the proof of Proposition 2.2.2. t(V ) can be covered by a finite

number of open affine schemes SpecAi where each Ai is the coordinate rings

of the affine variety Vi, which is an integral domain and a finitely generated

k-algebra, hence noetherian.

Proposition 2.2.3 ([1]). Let k be an algebraically closed field. the image of

the functor

t : Var(k)→ Sch(k)

is the set of quasi-projective integral schemes of finite type over k. The image

of projective varieties is the set of projective integral schemes of finite type

over k.

Schemes are indeed a generalization of varieties. Therefore from now

on we will work on schemes, but clearly what we will do will also hold for

algebraic varieties. In particular, we are now able to give the Valuative

criteria mentioned at the end of chapter 1.

We first redefine separated and proper morphisms in terms of schemes.

Definition 2.8. Let f : X → Y be a morphism of schemes. f is separated

if the diagonal morphism ∆X/Y : X → X ×Y X is a closed immersion.
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Definition 2.9. Let f : X → Y be a morphism of schemes. f is proper if it

is separated, of finite type and universally closed.

Proposition 2.2.4 ([1]). Any morphism of affine schemes is separated.

Theorem 2.2.5 ([1]). A projective morphism of noetherian schemes is proper.

A quasi-projective morphism of noetherian schemes is of finite type and sep-

arated.

2.2.1 Valuative Criteria of Separatedness and Proper-

ness

Definition 2.10. Let B be an integral domain, Q its field of fractions. B

is a valuation ring if, for each x 6= 0, x ∈ Q, either x ∈ B or x−1 ∈ B (or

both).

Example 2.4.

• Any field F is a valuation ring;

• if F is a field, the ring of formal power series F [[X]] is a valuation ring.

Let f : X → Y a morphism of schemes with X noetherian.

Valuative criterion of Separatedness. f is separated if and only if the

following condition holds. For any field K and for any valuation ring R

with quotient field K, given a morphism of SpecK to X and a morphism of

SpecR to Y that make the following diagram commutative

SpecK X

SpecR Y

i f

where i is the morphism induced by the inclusion R ⊆ K, there is at most

one morphism SpecR→ X making the whole diagram commutative.
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As we have anticipated at the end of chapter 1, we can think of SpecR

as the germ of a curve, and SpecK as the germ minus the origin. Thus the

criterion says that X is separated over Y if and only if, given a map from a

germ of a curve to Y and a lift outside the origin to X, there is at most one

way to lift the map from the entire germ.

Example 2.5. Let X be the affine line with double origin over k, hence

Y =Speck.

Take SpecR to be the germ of the affine line at the origin, R is the localization

of k [X] at the maximal ideal, and consider the map of the germ minus the

origin to X. The map from the entire germ can be extended over the origin

in two different ways (mapping the origin to one of the two origins in X)

and thus fails the valuative criterion for separatedness. As we have already

proved in the first chapter, the affine line with double origin is indeed not

separated.

Valuative criterion of Properness. f is proper if and only if the following

condition holds. For any field K and for any valuation ring R with quotient

field K, given a morphism of SpecK to X and a morphism of SpecR to Y

that make the following diagram commutative

SpecK X

SpecR Y

i f

where i is the morphism induced by the inclusion R ⊆ K, there is a unique

morphism SpecR→ X making the whole diagram commutative.

On the other hand, X is proper over Y if and only if, given a map from a

germ of a curve to Y and a lift outside the origin to X, there is exactly one

way to lift the map from the entire germ.

Example 2.6. We can use the valuative criterion of properness to prove that

the projective space over k is complete.
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Consider X = Pnk → Y =Speck.

Given SpecK → X and SpecR →Speck, they induce respectively the mor-

phisms k [x0, . . . , xn]d≥0 → K and k → R.

Thus, any solution of a homogeneous polynomial is given by (X0, . . . , Xn),

Xi ∈ K such that they cannot be all zero and, by rescaling the coordinates

such that they all belong to R and one of them is a unit in R, we may

assume that all Xi ∈ R where X0 is a unit. We can then extend the mor-

phism SpecK → X to SpecR → X by defining the induced morphism that

maps the coordinates xi/x0 in the affine subset D+(x0) ∼=Speck
[
x1
x0
, . . . , xn

x0

]
to Xi/X0 ∈ R.
Because the projective space is separated, the extension is unique and thus

the valuative criterion of properness is satisfied.

Summing up, a morphism of schemes f is separated if and only if it

satisfies the existence part of the valuative criteria, while it is proper if and

only if it satisfies the uniqueness part.

2.3 Sheaves of Modules on a given scheme

Fix (X,OX) ringed space.

Definition 2.11. A sheaf of OX−modules, or simply an OX−module, is

a sheaf F of abelian groups on X such that, ∀U ⊆ X open, F(U) is an

OX(U)−module and, ∀V ⊆ U open, the restriction map

F(U)→ F(V )

is compatible with the module structures via the ring homomorphisms

OX(U)→ OX(V ),

i.e. the diagram
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OX(U)×F(U) F(U)

OX(V )×F(V ) F(V )

is commutative.

Definition 2.12. A morphism of OX−modules is a morphism

F → G

such that ∀U ⊆ X open

F(U)→ G(U)

is a homomorphism of OX(U)-modules.

We will consider (X,OX) scheme, using the definitions above we will thus

get sheaves of modules on a given scheme and morphisms of such.

2.3.1 Locally Free Sheaves

Definition 2.13. An OX−module F is locally free if X can be covered by

open sets U for which F|U is a free OX |U−module, i.e. there exists a basis

{s1, . . . , sr} ⊆ F(U). r is said to be the rank 2 of F on U .

Remark 16. if X is connected, then the rank of a locally free OX−module is

the same on every open set.

Definition 2.14. A locally free sheaf of rank 1 is called an invertible sheaf.

Remark 17. Locally free sheaves are equivalent to the notion of vector bun-

dles. In particular, an invertible sheaf is a vector bundle of rank one, i.e a

line bundle.

2r might also be infinite.



2.3 Sheaves of Modules on a given scheme 41

2.3.2 Coherent Sheaves

Let A be a commutative ring with unit. By repeating the construction

of the structure sheaf of the affine scheme X =SpecA, we can define on it a

sheaf M̃ , associated to an A−module M , instead of A :

For any p ∈ SpecA, let Mp be the localization of M at p.

∀U ⊆ SpecA open, we define M̃(U) as the set of functions

s : U → qp∈UMp

s.t. ∀p ∈ U, s(p) ∈Mp and it is locally a quotient.

Clearly this is again a sheaf, using the obvious restriction maps.

Mp is naturally an Ap−module, hence M̃(U) is an OX(U)−module, meaning

that M̃ is an OX−module. Moreover, by repeating exactly what we have

done when constructing OX and replacing A with M ,

1. For any f ∈ A, M̃(D(f)) ∼= Mf .

2. For any p ∈ SpecA, (M̃)p ∼= Mp.

3. Γ(X, M̃) = M, where Γ is the global section functor.

Definition 2.15. Let (X,OX) be a scheme. A sheaf of OX−modules F is

quasi-coherent if X can be covered by open subsets Ui = SpecAi, such that

for each i there exists an Ai−module Mi with F|Ui ∼= M̃i. If we can take the

modules Mi to be finitely generated, we say F is coherent.

Example 2.7. The structure sheaf OX is trivially quasi-coherent, and in

fact coherent.

Proposition 2.3.1. An OX−module F is quasi-coherent if and only if for

every open affine subset U = SpecA of X, there is an A−module M such

that F|U ∼= M̃. If X is noetherian, then F is coherent if and only if the same

is true and M can be taken to be a finitely generated A−module.
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Proposition 2.3.2. Let f : X → Y be a morphism of noetherian schemes.

If G is a coherent sheaf on Y, then f ∗G is coherent on X.

Proof. By the previous proposition, we may assume both X and Y affine,

where X =SpecA, Y =SpecB.

Because G is coherent on Y, it is of the form M̃, where M is a finitely

generated B-module.

Then, by definition f ∗(G) is the tensor product

f−1G ⊗f−1OY OX ,

and, for any U ⊂ X open,

f ∗G(U) = M̃(f(U))⊗f−1OY OX(U) = (M ⊗B A)∼(U),

since localization commutes with the tensor product. Therefore f ∗G is of the

form (M ⊗B A)∼ where M ⊗B A is a finitely generated A-module, proving

that f ∗G is coherent.

On the other hand, if F is a coherent sheaf on X, it is not true in general

that the direct image f∗F is coherent on Y. It is true when the morphism f

is finite3.

Proposition 2.3.3. Let f : X → Y be a finite morphism of noetherian

schemes. If F is a coherent sheaf on F, then f∗F is coherent on Y.

Proof. By assumption, Y is covered by affine subsets Vi =SpecBi and Ui :=

f−1(Vi) is equal to SpecAi, where each Ai is a finitely generated Bi−algebra.

Moreover, because F is coherent, F|Ui ∼= M̃i, where each Mi is a finitely

generated Ai-module, hence a finitely generated Bi−module.

Then, for any i, f∗F|Vi is of the form M̃i, where Mi is considered as a

Bi−module.

3A morphism f : X → Y of schemes is finite if there is a covering of Y by open affine

subsets Vi =SpecBi, such that each f−1(Vi) is also affine and equal to SpecAi, where Ai

is a Bi−algebra which is a finitely generated Bi−module.
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We are also interested in the projective case. What we have done while

constructing M̃, can also be done on ProjS, with S graded ring. As M̃ was

our model to check if a sheaf was either quasi-coherent or not, the same works

for the projective case.

2.3.3 Twisted Sheaves

Let’s focus on the projective case and recall the construction of M̃ : let

S =
⊕

d∈Z Sd be a graded ring, X =ProjS.

Take M := Sd, which is clearly an S-module, and define M̃ as usual. We get

a coherent sheaf and we denote it with OX(d).

Definition 2.16. We callOX(1) the twisting sheaf of Serre. For anyOX−module

F we also denote by F(d) the twisted sheaf F ⊗OX OX(d).

Here are some properties:

Proposition 2.3.4.

(a) OX(n) is an invertible sheaf on X;

(b) OX(n)⊗OX(m) ∼= OX(n+m). This implies

OX(n) ∼=
n⊗
i=1

OX(1).

We also give an example to better understand the twisting sheaf of Serre.

Example 2.8. Let S = A [x0, . . . , xn], X =ProjS = PnA. By proposition 2.3.4

(a), OX(d) is an invertible sheaf for each d, so we can think of it as a line

bundle.

Let {Ui}i=0,...,n be the standard open covering of PnA. Transition functions

are defined by

gij =

(
xi
xj

)d
,

and sections on an open set U are given by sections

si ∈ OX(U ∩ Ui)
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such that

si = gijsj on U ∩ Ui ∩ Uj.

Consider h(x0, . . . , xn) ∈ S, homogeneous of degree d. The identification

si =
h

xdi
= h

(
x0
xi
, . . . ,

xn
xi

)
allows us to identify the vector space of global sections of the twisted sheaf

OX(d) with the vector space of homogeneous polynomials of degree d.

In particular, when d = 1, OX(1) can be read as the sheaf of ‘coordinates’

for PnA, since the xi are literally the coordinates for the projective n−space.

This gives motivation to the importance of the twisting sheaf: when S is

a polynomial ring, it recovers the algebraic information about the grading of

S that was lost when we considered fractions of degree 0 while constructing

OX , where X = ProjS.

Definition 2.17. We define the graded S-module associated to OX to be

Γ∗(OX) :=
⊕
n∈Z

Γ(X,OX(n)),

and we give it the structure of graded S-module as follows.

Any s ∈ Sd determines in a natural way a global section s ∈ Γ(X,OX(d)). For

any t ∈ Γ(X,OX(n)) we define the product s · t ∈ Γ(X,OX(n+ d)) to be the

tensor product s⊗ t by using the natural map OX(d)⊗OX(n) ∼= OX(n+ d),

given by proposition 2.3.4 (b).

Proposition 2.3.5. Let A be a ring, S = A [x0, . . . , xr], X =ProjS = PrA.
Then Γ∗(OX) ∼= S.

Proof. Recall that, while proving that ProjS is a scheme, we have observed

that an open affine covering of ProjS is given by {D+(f); f ∈ S+ homogeneous},
and since S+ is generated by xi, i = 0, . . . , r,

U = {Ui}i=0,...,r; Ui := D+(xi)
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is an open affine cover for X. Take t ∈ Γ(X,OX(n)) = OX(n)(X), and call

ti the restrictions to the opens of the cover U:

ti = t|Ui ∈ OX(n)(Ui),

such that ti = tj on Ui ∩ Uj where

D+(xi) ∩D+(xj) = {p ∈ ProjS|xi /∈ p and xj /∈ p}

= {p ∈ ProjS|xixj /∈ p}

= D+(xixj).

By the interpretation of the twisting sheaf given in the previous example, ti

is a homogeneous element of degree n in the localization Sxi .

Restricting ti to D+(xixj) is equal to taking its image through the natural

map

Sxi → Sxixj .

Summing over all n ∈ Z, we get that elements in Γ∗(OX) can be identified

with (r+ 1)−tuples (t0, . . . , tr) such that ti ∈ Sxi for all i, and they agree on

intersections, so we can conclude that

Γ∗(OX) =
r⋂
i=0

Sxi .

Note that xi are non zero divisors in S, so the maps

S → Sxi , Sxi → Sxixj

are all injective and clearly all these localizations are subrings of Sx0,...,xr .

Let g ∈ Sx0,...,xr , it can be uniquely written as

xm0
0 . . . xmrr f(x0, . . . , xr), mk ∈ Z, f ∈ S, not divisible by any xi.

g ∈ Sxi if and only if the only variable that might appear at the denominator

is xi, i.e. if each mk ≥ 0 ∀k 6= i.

Then g ∈ Sxixj if and only if mk ≥ 0 ∀k 6= i and ∀k 6= j, hence for all k.

Therefore Sxixj = S and also
⋂r
i=0 Sxi = S.
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Thus, we will only consider S as a polynomial ring.

Finally, we give the following result that allows us to write coherent sheaves

in terms of twisted sheaves. This will be very useful in the last chapter.

Definition 2.18. Let F be an OX−module. F is generated by global sections

if there is a family of global sections {si ∈ Γ(X,F)}i∈I , such that for any

x ∈ X the images of si in the stalk Fx generate it as an Ox−module.

Remark 18. Any coherent sheaf F on an affine scheme X =SpecA, with

A noetherian, is generated by a finite number of global sections: by prop.

2.3.1 F is of the form M̃, where M is a finitely generated A−module and

Γ(X, M̃) = M. So it is sufficient to take {si}i=1,...,N as the generators of M

as an A−module.

Let X be a projective scheme over a noetherian ring A. Then, by defini-

tion, there is a closed immersion i : X → PrA, for some r. Let O(1) be the

twisting sheaf on the projective space. We denote by OX(1) := i∗(O(1)) the

inverse image of O(1), that is still a coherent sheaf by proposition 2.3.2.

Theorem 2.3.6. Let X be a projective scheme over a noetherian ring A, and

F a coherent sheaf on X. There is an integer n0 such that, for any n ≥ n0,

F(n) can be generated by a finite number of global sections.

Proof. Without loss of generality we can assume X = PrA. In fact a closed

immersion is a finite morphism (a closed immersion is such that the preimage

of any open affine SpecB is still an open affine SpecA and the map induced

on the structure sheaves is surjective, meaning that A is a finitely generated

B−module), therefore i∗F is coherent on the projective space by prop. 2.3.3,

and global sections of (i∗F)(n) = i∗(F(n)) are the same of F(n).

An open cover of X is given by {D+(xi)}i=1,...,r, and by coherence of F , for

each i, there is a finitely generated Bi−module Mi such that F|D+(xi)
∼= M̃i,

where Bi = A [x0/xi, . . . , xn/xi] .

For any i, let sij be the generators of Mi, that are finite by assumption. It is a
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consequence of the sheaf axioms and the definition of localization that there

in an integer n such that xni sij extends to a global section tij ∈ Γ(X,F(n)).

Choose n that works for all i, j. Then F(n) corresponds to a Bi−module

on D+(xi) with generators xni sij which is isomorphic to Mi because of the

isomorphism induced by ×xni . Therefore the global sections tij generate all

F(n).

Corollary 2.3.7. Any coherent sheaf F on X can be written as a quotient

of a sheaf E , where E =
⊕N

i=1OX(−q), q >> 0.

Proof. Let q >> 0, F(q) is generated by a finite number of global section by

the theorem that we have just proved. Therefore we have a surjection

N⊕
i=1

OX → F(q)→ 0,

then, tensoring with OX(−q), gives

N⊕
i=1

OX(−q)→ F → 0.





Chapter 3

Cohomology

3.1 Sheaf Cohomology

In this chapter, we will discuss the cohomology of sheaves on a separated

and noetherian scheme, focusing on coherent sheaves. We will introduce both

the derived functor approach of Grothendieck and Čech cohomology and use

the latter to calculate explicitly the cohomology of the twisted sheaves O(d)

on a projective space Pn, defined in the previous chapter.

Recall first some basic definitions from homological algebra.

Let A be an abelian category, that is an additive category in which there ex-

ist well-behaved kernels and cokernels for each morphism, so that the notion

of exact sequence makes sense in A.

Definition 3.1. A cochain complex A• in an abelian category A is a collec-

tion of objects Ai of A, i ∈ Z, together with morphisms di : Ai → Ai+1 such

that di ◦ di+1 = 0 for all i. di are called coboundary maps.

Definition 3.2. To any complex A• we can associate the cohomology objects

hi(A•) :=
kerdi

imdi−1
.

49
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Definition 3.3. A morphism of complexes f : A• → B• is a collection of

maps f i : Ai → Bi that commutes with the coboundary maps.

Any such morphism induces a morphism on the cohomology objects:

h•(f) : h•(A•)→ h•(B•).

Definition 3.4. Two morphisms of complexes f, g : A• → B• are homotopic

if there exists k : A• → B• of degree −1, i.e. ki : Ai → Bi−1 for each i, such

that f − g = dk + kd.

Remark 19. If f, g are homotopic then they induce the same morphism on

cohomology, i.e. h•(f) = h•(g).

Theorem 3.1.1 (Snake lemma). Let

0→ A• → B• → C• → 0

be a short exact sequence of complexes in A. Then the induced sequence in

cohomology

0→ h0(A•)→ h0(B•)→ h0(C•)→ h1(A•)→ . . .

is exact.

3.1.1 Derived Functors Cohomology

Let Ab be the category of abelian groups, and A any abelian category.

Fix an object A in A, the functor

Hom(·, A) :A→ Ab

B 7→ Hom(B,A)

is a contravariant left exact functor.

Definition 3.5. An object I in A is injective if the functor Hom(·, I) is

exact.
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Definition 3.6. An abelian category A has enough injectives if each object in

A can be embedded in an injective object, i.e. it is isomorphic to a subobject

of an injective object in A.

Lemma 3.1.2. If A has enough injectives then any object A in A admits an

injective resolution, which is a long exact sequence

0→ A→ I0 → I1 → . . .

where each Ij is injective.

Proof. Embed A in I0. Then embed the cokernel of the inclusion ε : A→ I0

in an injective I1 and take I0 → I1 to be the composition I0 → cokerε→ I1,

and so on.

Suppose A is an abelian category with enough injectives and let F : A→
B be a covariant left exact functor. Then, for any object A in A choose an

injective resolution

0→ A→ I0 → I1 → . . .

If we apply the functor F on the complex obtained forgetting about A we

still get a complex F (I•).

Definition 3.7. We define RiF , i ≥ 0, to be the right derived functors of

F , where

RiF (A) := hi(F (I•)).

Remark 20. Let F be a left exact functor, A ∈ A and 0→ A→ I0 → I1 →
. . . an injective resolution. By left exactness of F, 0 → F (A) → F (I0) →
F (I1) is exact, therefore

R0F (A) = kerF (d0) : F (I0)→ F (I1) = imF (ε) : F (A)→ F (I0) = F (A).

For any short exact sequence 0 → A → B → C → 0, then the long exact

sequence in cohomology is

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ . . .

Thus the right derived functors RiF ‘measure’ how far is F from being exact.
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Moreover right derived functors are independent of the choice of the in-

jective resolutions. This is because of the following

Theorem 3.1.3 ([10]). Let 0 → B → I• be an injective resolution and

0 → A → J• an arbitrary resolution. Then any morphism f : A → B

induces a unique morphism of complexes f • : J• → I•, up to homotopy.

The theorem above implies that any two injective resolutions of the same

object, 0→ A→ I•, 0→ A→ J•, are homotopic equivalent, i.e. there exist

f : I• → J• and g : J• → I• such that f ◦ g and g ◦ f are homotopic to the

respective identity maps of I• and J•.

Thus, by remark 19

hi(F (I•)) ∼= hi(F (J•)),

for each i, meaning that RiF (A) is well defined.

Actually we could say more: sometimes it is more useful to use resolutions

which are not necessarily injective.

We will in fact consider acyclic resolutions.

Definition 3.8. A object A of A is F−acyclic if RiF (A) = 0 for i > 0.

A resolution of A, 0→ A→ C• is F−acyclic if each Ci is F−acyclic.

Proposition 3.1.4. Let F : A→ B be a left exact functor, I injective in A,

then I is F−acyclic.

Proof. It suffices to consider the injective resolution 0 → I → I → 0 and

compute RiF (I).

Proposition 3.1.5 ([10]). If 0→ A→ J• is an F−acyclic resolution, then

there exists a natural isomorphism RiF (A) ∼= hi(F (J•)).

Let X be a topological space, and denote with

Ab the category of abelian groups,

Ab(X) the category of sheaves of abelian groups on X, which are both abelian
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categories.

Consider the global section functor

Γ(X, ·) :Ab(X)→ Ab

F 7→ F(X).

Proposition 3.1.6. Γ(X, ·) is a covariant left exact functor, i.e. for any

short exact sequence of sheaves

0→ F ϕ−→ G ψ−→ H → 0,

the sequence

0→ Γ(X,F)→ Γ(X,G)→ Γ(X,H)

is exact.

Proof. Let U ⊆ X open, and consider

0→ F(U)
ϕ(U)−−−→ G(U)

ψ(U)−−−→ H(U).

ϕ being an injective morphism of sheaves implies that ϕ(U) is injective,

therefore it is sufficient to prove that imϕ(U) =kerψ(U).

By definition of exactness for a sequence of sheaves, for any p ∈ U , the

sequence induced at the level of stalks is exact:

0→ Fp
ϕp−→ Gp

ψp−→ Hp → 0. (3.1)

Take a section s ∈ Γ(U,F), for each p ∈ U

(ψ(U)(ϕ(U)(s)))p = ψp(ϕp(s)) = 0

by exactness of (3.1). Hence ψ(U)(ϕ(U)(s)) = 0 and imϕ(U) ⊆kerψ(U).

Now take v ∈kerψ(U), by exactness of (3.1), ∀p ∈ U , there exists sp ∈ Fp
such that ϕ(sp) = vp ∈ Gp.
Then, by definition of stalks, there exists a covering {Ui} of U and si ∈ F(Ui)

such that

ϕ(si) = v|Ui . (3.2)
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Thus

ϕ(si|Ui∩Uj) = v|Ui∩Uj = ϕ(sj|Ui∩Uj), if Ui ∩ Uj not empty.

Therefore

si|Ui∩Uj = sj|Ui∩Uj

by injectivity of ϕ.

Using the fact that F is a sheaf, we get that there exists s ∈ F(U) such that

s|Ui = si for all i, and together with (3.2), we have that ϕ(U)(s) = v, i.e.

kerψ(U) ⊆imϕ(U).

Proposition 3.1.7. The category Ab(X) has enough injectives.

Proof. See [1] III, corollary 2.3.

Thus, for what we have said at the beginning of the subsection, the right

derived functors of the global section functor are well defined and we can

give the following definition.

Definition 3.9. For any sheaf F of abelian groups on X, the cohomology

groups of F are the groups

H i(X,F) := RiΓ(X,F).

3.1.2 Čech Cohomology

Most of the times, cohomology defined using derived functors is impossi-

ble to calculate, in these cases, we will use instead Čech cohomology. We will

see in fact that the two definitions agree when we consider coherent sheaves

on separated and noetherian schemes.

Let X be a topological space, and let F be a sheaf of abelian groups. Suppose

that an open covering U = {Ui}i∈I of X is given.
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Definition 3.10. For q = 0, 1, 2, . . . define the q-th cochain group of F with

respect to U as

Cq(U,F) :=
∏

i0,...,iq∈I

F(Ui0,...,iq),

where Ui0,...,iq = Ui0 ∩ · · · ∩ Uiq . Elements in Cq(U,F) are called q-cochains.

The q-th coboundary operator is defined as follows

∂ :Cq(U,F)→ Cq+1(U,F)

(∂f)i0,...,iq+1 :=

q+1∑
j=0

(−1)jfi0,...,̂ij ,...,iq+1
|Ui0,...,iq+1

.

Lemma 3.1.8. Let ∂ be the coboundary operator defined above. Then ∂2 = 0.

Proof. It is sufficient to note that, when applying ∂2, we omit each couple of

indices twice, with opposite signs.

Therefore C•(U,F) is a cochain complex, with coboundary map ∂, so we

can define the cohomology objects.

Definition 3.11. The group

Ȟq(U,F) := hq(C•(U,F)) =
ker∂ : Cq(U,F)→ Cq+1(U,F)

im∂ : Cq−1(U,F)→ Cq(U,F)

is the q−th cohomology group of F with respect to the covering U.

Proposition 3.1.9. The group Ȟ0(U,F) is independent of the covering U

and

Ȟ0(X,F) := Γ(X,F).

Proof. Let U = {Ui}i∈I be any open covering of X.

Ȟ0(U,F) := ker∂ : C0(U,F)→ C1(U,F).

By definition of cochains, any element α in C0(U,F) is given by {αi ∈ F(Ui)}.
Then, for any i < j, (∂α)ij = αj − αi.
Note that α ∈ ker∂ iff αi = αj in Ui ∩ Uj.
Then by the sheaf axioms α ∈ ker∂ : C0(U,F)→ C1(U,F) iff α ∈ Γ(X,F).
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However, for higher values of q, the cohomology groups may depend on

the covering.

Let U = {Ui}i∈I , V = {Vj}j∈J be two covering of X. V is said to be finer

than U, and we denoted it with V < U, if there is a map τ : J → I such that

Vj ⊂ Uτ(j) for every j ∈ J.
From τ we can define a mapping on the cohomology groups for each q:

τUV :Cq(U,F)→ Cq(V,F)

τUV(fi0,...,iq) = gj0,...,jq ,

where gj0,...,jq = fτ(j0),...,τ(jq) for j0, . . . , jq ∈ J.
This mapping commutes with ∂, thus it induces a morphism of the cohomol-

ogy groups Ȟq(U,F)→ Ȟq(V,F) and we denote it also by τUV.

It can also be proved (see [12]) that this map is independent of the choice of

τ, thus the direct limit

lim−→
U

Ȟq(U,F)

is well defined.

Definition 3.12. We define

Ȟq(X,F) := lim−→
U

Ȟq(U,F)

to be the q−th Čech cohomology group of the topological space X with co-

efficients in the sheaf F .

In certain cases, we can calculate the cohomology groups using only one

covering of X.

Definition 3.13. Let F be a sheaf of abelian groups on X, a Leray cover

of X is a cover U = {Ui}i∈I of X such that for every non empty finite set

{i1, . . . , in} ⊂ I, and for all q > 0, Ȟq(Ui1,...,in ,F) = 0. Moreover, we say that

F is acyclic over U.
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Theorem 3.1.10 (Leray). Let F be a sheaf of abelian groups on a topological

space X and let U be a Leray cover for X. Then

Ȟq(U,F) = Ȟq(X,F) = Hq(X,F)

for any q, where H•(X,F) denotes the derived functor cohomology.

Remark 21. Note that the last equality is a consequence of proposition 3.1.5,

since F being acyclic over U means that the resolution of F in the category

Ab(X) is Γ(X, ·)−acyclic.

Theorem 3.1.11 ([6]). Let X be a separated and noetherian scheme, and F
a quasi-coherent sheaf on X. Then any cover of X consisting of open affine

schemes is a Leray cover.

As a consequence, the definitions of cohomology of (quasi-)coherent sheaves

on separated and noetherian schemes given in the last two subsections are

equivalent, when we consider an open affine cover. From now on we will

thus consider only separated and noetherian schemes so that there will be

no ambiguity when talking about cohomology.

3.1.3 Cohomology on an Affine Scheme

Before focusing on the projective space, we compute first the cohomology

of a coherent sheaf on an affine scheme.

We will need the following definition.

Definition 3.14. A sheaf F on a topological space X is flasque if for any

inclusion V ⊂ U of open sets, the restriction map F(U)→ F(V ) is surjective.

Proposition 3.1.12. Let 0 → F → G → H → 0 be a short exact sequence

of sheaves on a topological space X.

(a) If F is flasque, then for any open set U ⊆ X, the sequence

0→ F(U)→ G(U)→ H(U)→ 0

is short exact.



58 3. Cohomology

(b) F ,G flasque ⇒ H flasque.

Proof. (a) We already know that the global section functor is left exact, so

it is sufficient to prove that G(U)→ H(U) is surjective.

Let s ∈ H(U), define

T := {(V, t);V ⊆ U open, t ∈ G(V ) such that t is mapped to s|V inH}.

T is not empty by exactness of the sequence of sheaves. We define a

partial ordering on T :

(V, t) < (V ′, t′) iff V ⊆ V ′ and t′|V = t.

If {(Vα, tα)|α ∈ A} is a totally ordered subset of T , then V :=
⋃
α∈A Vα

is an open containing all Vα and there exists one t ∈ G(V ) such that

t|Vα = tα by the sheaf axioms.

Thus, by Zorn lemma, there exists (V, t) maximal in T.

Let x ∈ U , W ⊂ U a small neighborhood of x, and t′ ∈ G(W ) mapping

to s|W in H.
t′|W∩V − t|W∩V maps to 0 inH,

then, again by exactness, it must come from some r ∈ F(W ∩ V ).

F being flasque implies that ∃ r′ ∈ F(W ) such that r′|W∩V = r.

Take t′ as the image of such r′, then t, t′ restrict to the same section on

W ∩ V and there exists t̃ ∈ G(W ∪ V ) such that

t̃|W = t′ and t̃|V = t.

By maximality, x ∈ W ∩V = V , hence x ∈ V and U = V , which proves

surjectivity.

(b) It follows directly from (a).

Lemma 3.1.13. Let (X,OX) be a locally ringed space. Any injective1 OX-

module is flasque.

1An injective sheaf is an injective object in the category of abelian sheaves on a topo-

logical space.
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Proof. ∀ U ⊆ X open, let OU denote the sheaf obtained restricting OX on

U and extending to 0 outside U , and let I be an injective OX− module. For

any V ⊂ U open set, we have the inclusion of OX−modules

0→ OV → OU .

Since I is injective, applying the contravariant functor Hom(·, I) gives us the

surjection

Hom(OU , I)=

I(U)

→ Hom(OV , I)→ 0=

I(V )

.

Proposition 3.1.14. If F is flasque, then H i(X,F) = 0 ∀i > 0.

Proof. Ab(X) has enough injectives, so we can embed F in an injective object

I of Ab(X) and get the following short exact sequence

0→ F → I → F/I → 0.

F is flasque by assumption and I is flasque by the previous lemma. Then

by proposition 3.1.12 (b) the quotient F/I must also be flasque, and by (a)

we have the following short exact sequence:

0→ Γ(X,F)→ Γ(X, I)→ Γ(X,F/I)→ 0. (3.3)

I being injective implies that H i(X, I) = 0 for all i > 0 by proposition 3.1.4.

Look at the long exact sequence in cohomology:

0→ H0(X,F)→ H0(X, I)→ H0(X,F/I)→ H1(X,F)→ 0→ . . .

· · · → 0→ H i−1(X,F/I)→ H i(X,F)→ 0→ . . .

We get: H1(X,F) = 0 by (3.3) and H i(X,F) ∼= H i−1(X,F/I) for all i ≥ 2.

But F/I is also flasque, so by induction we have that H i(X,F) = 0 ∀i >
0.

Remark 22. This shows that flasque sheaves are Γ(X, ·)−acyclic, therefore

by prop. 3.1.5 we can use flasque resolutions to compute cohomology.
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Theorem 3.1.15. Let X =SpecA, with A noetherian. For any (quasi-)

coherent sheaf F on X, H i(X,F) = 0 ∀i > 0.

Proof. Let M = Γ(X,F), and take the injective resolution M → I• in the

category of A−modules. We get an exact sequence of sheaves

0→ M̃ → Ĩ•

on X, where F = M̃, and each Ĩ i is flasque by the previous lemma. Applying

Γ allows us to recover 0 → M → I•, hence H0(X,F) = F(X) = M and

H i(X,F) = 0 since Ĩ i are flasque for all i > 0.

Clearly the theorem above holds for any noetherian affine scheme. The

converse is also true:

Theorem 3.1.16 ([1]). Let X be a noetherian scheme. X is affine if and

only if H i(X,F) = 0 for any quasi-coherent sheaf F and all i > 0.

For arbitrary sheaves on a noetherian topological space, we also give the

following result, due to Grothendieck.

Theorem 3.1.17 ([1] Vanishing theorem of Grothendieck). Let X be a

noetherian topological space of dimension n. Then for all i > n and all

sheaves of abelian groups F on X, H i(X,F) = 0.

3.2 Cohomology on the Projective Space

Let S = A [x0, . . . , xr] , with A noetherian, and X = PrA.
Take F :=

⊕
n∈ZOX(n). This is a coherent sheaf and it is a result from [1]

III.2.9 that sheaf cohomology on a noetherian scheme commutes with infinite

direct sums, hence

H i(X,F) =
⊕
n∈Z

H i(X,OX(n)). (3.4)

We have already seen in chapter 2 that an open affine covering for X is given

by open sets Ui := D+(xi), i = 0, . . . , r. Then by theorem 3.1.11, U = {Ui}
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is a Leray cover for X and we can use Čech cohomology to compute (3.4).

Note also that restricting to D+(xj0 . . . xjq) is equal to take the image in

the localization

Sxj0 ...x̂jk ...xjq → Sxj0 ...xjq .

Thus

F(Uj0...jq)
∼= Sxj0 ...xjq

and the Čech complex is given by

C•(U,F) :
∏

Sxj0
∂0−→
∏

Sxj0xj1
∂1−→ . . .

∂r−1

−−→ Sx0...xr
∂r−→ 0.

1. If i > r,

then H i(X,F) = 0 by the Vanishing theorem of Grothendieck, in fact

the complex vanishes above degree r. Thus H i(X,OX) = 0.

2. If i = 0,

we have thatH0(X,F) =
⊕

n∈ZH
0(X,OX(n)) =

⊕
n∈Z Γ(X,OX(n)) =

Γ∗(OX) ∼= S by proposition 2.3.5 and H0(X,OX(n)) = Γ(X,OX(n)) =

Sn.

3. If i = r,

Hr(X,F) =
ker∂r

im∂r−1
=
Sx0...xr
im∂r−1

,

where

∂r−1 :
r∏
j=0

Sx0...x̂j ...xr → Sx0...xr .

Elements in Sx0...xr are of the form

xm0
0 . . . xmrr f(x0, . . . , xr), mj ∈ Z, f ∈ S,

and they belong to im∂r−1 if at least one xj is not appearing in the

denominator, i.e. mj ≥ 0 for some j.

Thus Hr(X,F) is an A−module with a basis given by monomials

xm0
0 . . . xmrr such that mj < 0 for all j = 0, . . . , r, and those of degree n

are form a basis for Hr(X,OX(n)).
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4. If 0 < i < r,

we want to show that H i(X,F) = 0, and consequently H i(X,OX) = 0.

We will prove this by induction on r.

For r = 1, there is nothing to prove, so let r > 1.

If we localize the complex C•(U,F) by inverting xr, we get the com-

plex corresponding to F|Ur with respect to the open affine covering

Ur := {Ui∩Ur} of Ur = D+(xr) which is affine, thus by theorem 3.1.16,

H i(Ur,F|Ur) = 0.

Since localization is an exact functor, it commutes with cohomology,

i.e H i(X,F)xr = 0, hence every element in H i(X,F) is annihilated by

some power of xr.

Thus proving that H i(X,F) = 0 is equal to prove that the multiplica-

tion by any power of xr, hence by xr itself, is injective.

To do so, consider the short exact sequence

0→ S(−1)
×xr−−→ S → S/(xr)→ 0.

{xr = 0} defines an hyperplane H ∼= Pr−1A , so the sequence above gives

the short exact sequence of sheaves

0→ OX(−1)→ OX → OH → 0.

Twisting for each n ∈ Z and taking the sum, we get the short exact

sequence

0→ F(−1)→ F → FH → 0, (3.5)

and the induced long exact sequence in cohomology

0→ F(−1)(X)→ F(X)→ FH(X)→ H1(X,F(−1))→

→ H1(X,F)→ H1(X,FH)→ H2(X,F(−1))→ . . .

By (3.5), H1(X,F(−1)) = 0 and, since H ∼= Pr−1A , we can apply the

induction hypothesis on FH that gives

H i(X,FH) = 0 for all 0 < i < r − 1.
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Then from the long exact sequence we get the isomorphisms

H i(X,F(−1)) ∼= H i(X,F) for all 0 < i < r − 1

which imply that the multiplication ×xr is bijective for all 0 < i < r−1,

and for i = r − 1, we have

0→ Hr−1(X,F(−1))→ Hr−1(X,F)→ Hr−1(X,FH)

which implies that the multiplication ×xr is injective, as wanted.

All these computations prove the following

Theorem 3.2.1. Let X = PrA, with A noetherian. Then

(a) H i(X,OX(n)) = 0 for all 0 < i < r;

(b) H i(X,OX(n)) = 0 for all i > r;

(c) Hr(X,OX(−r − 1)) ∼= A;

(d) The natural map

H0(X,OX(n))×Hr(X,OX(−n− r − 1))→ Hr(X,OX(−r − 1)) ∼= A

is a perfect pairing of A−modules.

Proof. (a), (b) follows by the previous computation.

(c) By the computation above, recall that Hr(X,F) has a basis given by

monomials

xm0
0 . . . xmrr such that mj < 0 for all j = 0, . . . , r.

The grading of each of these monomials is
∑r

j=0mj and
∑r

j=0mj =

−r − 1 if and only if mj = −1 for each j, since the mj must all be

strictly negative.

Thus Hr(X,OX(−r − 1)) has only one generator, namely x−10 . . . x−1r

and we get the desired isomorphism of A-modules.
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(d) Note first that for n < 0, H0(X,OX(n)) = 0 and Hr(X,OX(−n− r −
1)) = 0 because n being negative implies that −n− r−1 > −r−1 and

there are no monomials with all negative exponents of degree strictly

bigger that −r − 1. So (d) is trivial if n < 0.

Assume n ≥ 0, H0(X,OX(n)) has a basis given by monomials

xl00 . . . x
lr
r such that lj ≥ 0 and

r∑
j=0

lj = n.

Then the pairing is given by

H0(X,OX(n))×Hr(X,OX(−n− r − 1))→ Hr(X,OX(−r − 1))

(xl00 . . . x
lr
r , x

m0
0 . . . xmrr ) 7→ xl0+m0

0 . . . xlr+mrr

with lj ≥ 0;
∑r

j=0 lj = n and mj < 0;
∑r

j=0mj = −n− r− 1, where the

right hand side is always zero unless it is x−10 . . . x−1r for what we have

seen in (c).

Then, by defining the dual of xl00 . . . x
lr
r as the multiplication by

x−l0−10 . . . x−lr−1r in Hom(Hr(X,OX(−n− r− 1)), Hr(X,OX(−r− 1))),

we get the isomorphism H0(X,OX(n)) ∼= Hom(Hr(X,OX(−n − r −
1)), Hr(X,OX(−r − 1))), i.e. a perfect pairing.

The computations above, can also be generalized to any projective scheme

over a noetherian ring.

Theorem 3.2.2. Let A be a noetherian ring, and X a projective scheme with

closed immersion j : X ↪→ PrA where OX(1) is the inverse image through j of

the twisting sheaf of Serre on the projective space. Then if F is a coherent

sheaf on X, for any i ≥ 0, H i(X,F) is a finitely generated A−module and

there exists an integer n0, depending on F , such that

H i(X,F(n)) = 0 for n ≥ n0, i > 0.



3.2 Cohomology on the Projective Space 65

Proof. We have already seen that F coherent implies that j∗F is also coherent

in PrA. Moreover their cohomology is the same: H i(X,F) = H i(PrA, j∗F).

Indeed, by remark 22, cohomology can be computed using flasque resolutions

and, if J • is a flasque resolution of F on X, then clearly j∗J • is still flasque

on PrA and for any i

Γ(PrA, j∗J i) = j∗J i(PrA) = I i(j−1PrA) = J i(X) = Γ(X,J i).

Therefore we may assume X = PrA.
If F = OX , the proof follows directly by the computation on the projective

space, recalling that, when i = r, Hr(X,OX(n)) is generated by monomials

whose variables have all negative powers, so it suffices to choose n positive.

When F is an arbitrary coherent sheaf we prove the theorem using descend-

ing induction. If i > r, then H i(X,F) = 0 by the Vanishing theorem of

Grothendieck.

Let i ≤ r, we use corollary 2.3.7 and write F as a quotient of a finite direct

sum of twisted sheaves E =
⊕
OX(qk), for some integers qk. Let R be the

kernel of the projection E → F , R is still a coherent sheaf and we have the

following short exact sequence:

0→ R→ E → F → 0,

that induces the long exact sequence in cohomology

· · · → H i(X, E)→ H i(X,F)→ H i+1(X,R)→ . . . ,

where H i(X, E) is a finitely generated A−module, because finite sum of such,

and H i+1(X,R) is a finitely generated A−module by inductive hypothesis.

Hence H i(X,F) is also a finitely generated A−module.

By twisting for some n >> 0, the induced long exact sequence in cohomology

becomes

· · · → H i(X, E(n))→ H i(X,F(n))→ H i+1(X,R(n))→ . . . .

For each i, H i(X, E(n)) = 0 since the same holds for OX(n + qk), and

H i+1(X,R(n)) = 0 by the inductive hypothesis. Therefore H i(X,F(n)) =

0.





Chapter 4

Serre Duality

4.0.1 Ext Groups and Sheaves

Let (X,OX) be a noetherian scheme.

Denote by Mod(X) the category of OX−modules. For any two objects F ,G
in Mod(X), let Hom(F ,G) be the group of OX−module homomorphisms.

For any U ⊂ X open, F|U is an OX |U−module and the presheaf U 7→
Hom(F|U ,G|U) is a sheaf that we denote it by Hom(F ,G), which is also an

OX−module.

Fix F as above and consider the covariant left exact functors

Hom(F , ·) : Mod(X)→ Ab,

Hom(F , ·) : Mod(X)→Mod(X).

Since they are covariant left exact functors and Mod(X) has enough injectives

by [1], III.2.2, their right derived functors are well defined.

Definition 4.1. Let

Exti(F , ·) := RiHom(F , ·),

Exti(F , ·) := RiHom(F , ·)

For any i and G in Mod(X), Exti(F ,G) is called ext group and Exti(F ,G) is

called ext sheaf.

67
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Remark 23. From what we have seen in chapter 3.1

Ext0 = Hom, Ext0 = Hom. (4.1)

Proposition 4.0.3. Let G ∈Mod(X). Then

(a) Ext0(OX ,G) = G;

(b) Exti(OX ,G) = 0 for all i > 0;

(c) Exti(OX ,G) = H i(X,G), for all i ≥ 0.

Proof. Note thatHom(OX , ·) is the identity functor. Then by (4.1) Ext0(OX ,G) =

Hom(OX ,G) = G and for i > 0 its right derived functors are zero by the ex-

actness of the identity functor.

On the other hand, Hom(OX , ·) is Γ(X, ·), thus Exti(OX ,G) = RiHom(OX ,G) =

RiΓ(X,G) = H i(X,G) for any i.

Proposition 4.0.4 ([1]). Let L be a locally free sheaf of finite rank and

L∨ = Hom(L,OX) be its dual. Then for any F ,G ∈Mod(X),

Exti(F ⊗ L,G) ∼= Exti(F ,L∨ ⊗ G),

Exti(F ⊗ L,G) ∼= Exti(F ,L∨ ⊗ G) ∼= Exti(F ,G)⊗ L∨.

Proposition 4.0.5 ([1]). Let F be a coherent sheaf on X and G be any

OX−module. Then for any closed point x ∈ X

Exti(F ,G)x ∼= ExtiOx(Fx,Gx).

Proposition 4.0.6. Let X be a projective noetherian scheme, F a locally

free sheaf on X, G a coherent sheaf on X. Then there exist an integer n0,

depending on F and G, such that, for any n ≥ n0,

Exti(F ,G(n)) ∼= Γ(X, Exti(F ,G(n))).
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Proof. For i = 0 the proof is immediate for any n:

Γ(X, Ext0(F ,G(n))) = Γ(X,Hom(F ,G(n))) = Hom(F ,G(n)) = Ext0(F ,G(n)).

Let i > 0 and consider first the case F = OX .
By proposition 4.0.3 (c), Exti(OX ,G(n)) ∼= H i(X,G(n)). Thus, for n ≥ n0

and i > 0

H i(X,G(n)) = 0

by theorem 3.2.2.

On the other hand, Γ(X, Exti(OX ,G(n))) = 0 for i > 0 by proposition

4.0.3(b). Thus the proposition is proved when F = OX .
When F is an arbitrary locally free OX−module, because OX is coherent,

F is also coherent, hence of finite rank, therefore, by proposition 4.0.4,

Ext(F ,G(n)) ∼= Exti(OX ,F∨ ⊗ G(n)) and similarly for Ext, so we can re-

duce to the previous case.

4.0.2 The Canonical Sheaf

Recall the notion of derivation.

Definition 4.2. LetA be a commutative unitary ring. LetB be anA−module,

and M a B−module. An A−derivation is a function

d : B →M

such that, for any b, b′ ∈ B, a ∈ A,

1. d(b+ b′) = db+ db′;

2. d(bb′) = (db)b′ + b(db′)1;

3. da = 0.

An A− derivation d : B → M is said to satisfy the universal property if

for any B−module M ′ and for any A−derivation d′ : B →M ′ there exists one

and only one B−module homomorphism f : M →M ′ making the diagram

1This is the Leibniz rule.
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B M

M ′

d′

d

f

commutative.

Definition 4.3. The module of relative differential forms of B over A, de-

noted by ΩB/A, is a B−module, together with an A−derivation d : B → ΩB/A

satisfying the universal property.

Remark 24. One way to construct ΩB/A is to take the B−module generated

by the symbols db, b ∈ B and quotient out by equivalence relation defined

by properties 1,2 and 3 in the definition 4.2. Define then the derivation by

sending b to db.

The notion of module of relative differential forms can be generalized to

sheaves of rings: let X be a topological space and consider A,B sheaves of

rings and A → B a morphism of sheaves of rings.

Then B is an A−module and we define a presheaf Ω̃B/A by

U 7→ Ω̃B/A,

with restriction maps Ω̃B/A(U)→ Ω̃B/A(V ) defined by taking the restriction

B(U)→ B(V ), when V ⊂ U , which is an A(U)−derivation on Ω̃B/A(V ).

Then sheafify2 Ω̃B/A and denote by ΩB/A the sheafification.

When we are considering a scheme (X,OX) over k, as we have seen in chapter

2, we have a morphism X → Y where Y = Speck =point, with structure

sheaf k.

Then ΩOX/k is a quasi-coherent (the sheafification has the same construction

of M̃ defined in chapter 2) OX−module and we define

ΩX := ΩOX/k.

2Let F be a presheaf on a topological space X, and denote by F+(U), U ⊂ X open,

the collection of functions s : U → qP∈UFP such that, for any P ∈ U , s(P ) ∈ FP and

there exists an open neighborhood of P , V ⊂ U , and t ∈ F(V ) such that tq = s(q) ∀q ∈ V.

F+ is a sheaf and it is called the sheafification of F .
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Example 4.1. IfX is the affine space An
k , then ΩX is generated by dx1, . . . , dxn,

where x1, . . . , xn are the affine coordinates.

Definition 4.4. The canonical sheaf on a scheme X over k is the n−th

exterior algebra

ωX := ΛnΩX ,

where n =dimX.

When X is the projective space over the field k, we find that

ωX ∼= OX(−n− 1). (4.2)

This is a consequence of the following theorem.

Theorem 4.0.7. Let X = Pnk . Then there is an exact sequence of sheaves on

X

0→ ΩX → OX(−1)n+1 → OX → 0. (4.3)

Proof. Denote

S := k [x0, . . . , xn] , E := S(−1)n+1, the set of n+1−tuples with degree d+1,

if they have degree d in S.

A basis for E is given by e0 = (1, . . . , 0), . . . , en = (0, . . . , 1), each with degree

1.

Define then the homomorphism of graded S−modules

ϕ :E → S

ei 7→ xi i = 0, . . . , n.

Let M :=kerϕ, then we have the exact sequence

0→M → E → S,

which gives the exact sequence of sheaves

0→ M̃ → OX(−1)n+1 → OX .
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Note also that ϕ is surjective in degree ≥ 1, thus OX(−1)n+1 → OX is

surjective and

0→ M̃ → OX(−1)n+1 → OX → 0

is exact, and it suffices to prove that M̃ ∼= ΩX .

Localize both E, S at xi for some i, then Exi → Sxi is surjective, and

ej −
xj
xi
ei 7→ xj −

xj
xi
xi = 0, j 6= i

while if j = i, then ej − xj
xi
ei = 0.

Thus Mxi is a free Sxi−module of rank n with a basis

{ej
xi
− xj
x2i
ei; j 6= i}.

Recall also that, by the construction of the sheaf M̃ from M , if Ui = D+(xi),

M̃ |Ui ∼= Mxi ,

i.e. it is a free OUi−module generated by sections
ej
xi
− xj

x2i
ei; j 6= i.

On the other hand, Ui = D+(xi) ∼= Speck
[
x0
xi
, . . . xn

xi

]
, hence ΩX |Ui is a

OUi−module generated by d
(
x0
xi

)
,. . . , d

(
xn
xi

)
.

Define

ψi :ΩX |Ui → M̃ |Ui

d

(
xj
xi

)
7→ 1

x2i
(xiej − xjei).

This is clearly an isomorphisms: the basis of ΩX |Ui is mapped to the basis

of M̃Ui . In the intersections Ui ∩ Uj,

xk
xi

=
xk
xj

xj
xi
,

and by the Leibniz rule

d

(
xk
xi

)
− xk
xj
d

(
xj
xi

)
= d

(
xk
xj

)
xj
xi
, on ΩX |Ui∩Uj .
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Applying ψi, ψj to the left hand side and to the right one respectively, gives

us the same result, extending the isomorphism to all X:

ψi

(
d

(
xk
xi

)
− xk
xj
d

(
xj
xi

))
=

1

x2i
(xiek − xkei)−

xk
x2ixj

(xiej − xjei)

=
1

x2ixj
(xixjek − xjxkei − xixkej + xjxkei)

=
1

xixj
(xjek − xkej).

ψj

(
d

(
xk
xj

)
xj
xi

)
=

1

x2j
(xjek − xkej)

xj
xi

=
1

xixj
(xjek − xkej).

Therefore, taking the n−th exterior product of the short exact sequence

(4.3) allows us to write (4.2).

4.0.3 δ−Functors

Definition 4.5. Let A,B be abelian categories. A (covariant) δ−functor

from A to B is a collection of functors T = (T i)i≥0, together with morphisms

δi : T i(A′′) → T i+1(A′), for any i ≥ 0 and any short exact sequence 0 →
A′ → A→ A′′ → 0 of objects in A, such that

1. there is a long exact sequence

0→ T 0(A′)→ T 0(A)→ T 0(A′′)
δ0−→ T 1(A′)→ T 1(A)→ . . .

2. If 0 → B′ → B → B′′ → 0 is another short exact sequence, then the

diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δi

δi
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is commutative.

Remark 25. Given any functor F between abelian categories, the collection

of right derived functors RiF (·), when they are well defined, is a δ−functor.

Definition 4.6. Let T as above. It is said to be universal if for any other

δ−functor T ′ = (T ′i)i≥0 : A → B, and given any morphism of functors

f 0 : T 0 → T ′0, there exists a unique sequence of morphisms f i : T i → T ′i,

i ≥ 0, starting with the given f 0, which commutes with δi for any short exact

sequence.

Definition 4.7. An additive functor F : A → B is effaceable if, for any

object A ∈ A, there is a monomorphism u : A → M for some M , such that

F (u) = 0.

Theorem 4.0.8 ([8]). Let T = (T i)i≥0 be a covariant δ−functor. If T i is

effaceable for any i > 0, T is universal.

4.1 The Serre Duality Theorem

In this last section we will prove the most important result of this thesis,

namely the Serre duality theorem for the cohomology of coherent sheaves on

a projective scheme. We will consider first the case of the projective space

Pnk and then generalize it for an arbitrary projective scheme.

Theorem 4.1.1 (Serre duality for Pnk). Let X = Pnk ,

(a) There is a canonical isomorphism Hn(X,ωX) ∼= k.

(b) For any coherent sheaf F on X,

Hom(F , ωX)×Hn(X,F)→ Hn(X,ωX) ∼= k

is a perfect pairing of finite dimensional vector spaces over k.
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(c) For any i ≥ 0, there exists a natural isomorphisms of k−modules

Exti(F , ωX)→ Hn−i(X,F)′ := Hom(Hn−i(X,F), k).

Proof. (a) We know from (4.2) that when X = Pnk , ωX ∼= OX(−n−1), and

by theorem 3.2.1 (c), Hn(X,OX(−n− 1)) ∼= k.

(b) Let ϕ ∈ Hom(F , ωX). ϕ induces a morphism Hn(X,F)→ Hn(X,ωX),

and thus define the pairing Hom(F , ωX)×Hn(X,F)→ Hn(X,ωX) ∼= k

by (a).

To see that this pairing is perfect, we want to show that Hom(F , ωX) ∼=
Hn(X,F)′.

Suppose first that F = OX(q) for some q ∈ Z.
Then

Hom(OX(q), ωX) ∼= Hom(OX(q),OX(−n− 1)) by (4.2)

∼= Γ(X,OX(−q − n− 1))

∼= H0(X,OX(−q − n− 1)).

The natural pairing of theorem 3.2.1 (d) induces the isomorphism of

k−modules

H0(X,OX(−q − n− 1)) ∼= Hn(X,OX(q))′,

thus Hom(F , ωX) ∼= Hn(X,F)′ when F = OX(q).

This also hold if F =
⊕N

i=1O(qi), since cohomology commutes with

direct sums.

Finally, if F is an arbitrary coherent sheaf, we recall that corollary

2.3.7 allows us to write F as a quotient of a sheaf E , where E is a finite

direct sum of twisted sheaves O(−q), q >> 0.

Equivalently, F is the cokernel of a morphism of sheaves E1 → E2,
where Ei =

⊕
O(−qi), i = 1, 2. Thus we get the exact sequence

E1 → E2 → F → 0,
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and since Hom(·, ωX) and Hn(X, ·)′ are contravariant left exact func-

tors, the sequence above induces the following commutative diagram,

where the rows are exact:

0 Hom(F , ωX) Hom(E2, ωX) Hom(E1, ωX)

0 Hn(X,F)′ Hn(X, E2)′ Hn(X, E1)′

∼= ∼=

Then by the 5-lemma, Hom(F , ωX) ∼= Hn(X,F)′.

(c) For i = 0, we get exactly (b).

For i > 0, we observe that (Exti(·, ωX))i≥0 and (Hn−i(X, ·))i≥0 are both

δ−functors, therefore, if we prove that they are both universal, then

they have to be isomorphic for each i > 0. Then, using theorem 4.0.8,

it is sufficient to prove that they are both effaceable functors, for each

i > 0, and F in the category of coherent sheaves.

To do so, we use again the fact that F is the quotient of E =
⊕N

i=1OX(−q).
Then

Exti(E , ωX) =
⊕

Exti(OX(−q), ωX)

∼=
⊕

H i(X,ωX(q)) by proposition 4.0.3 (c)

∼=
⊕

H i(X,O(q − n− 1))

= 0 by theorem 3.2.1 (a).

On the other hand,

Hn−i(X, E)′ =
⊕

Hn−i(X,OX(−q))′

= 0 by theorem 3.2.1 (a) if n− i < n, i.e. i > 0.

In order to generalize the Serre duality theorem to an arbitrary projective

scheme, we need to replace the canonical sheaf with the notion of dualizing
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sheaf.

Moreover, we will also give some definitions and results of commutative al-

gebra that will be used in the proof.

Definition 4.8. Let X be a proper scheme over k, with dimX = n. A

dualizing sheaf for X is a coherent sheaf ω◦X on X, together with a trace

morphism

t : Hn(X,ω◦X)→ k

such that, for any F coherent sheaf on X, the pairing

Hom(F , ω◦X)×Hn(X,F)→ Hn(X,ω◦X),

followed by t, gives an isomorphism

Hom(F , ω◦X) ∼= Hn(X,F)′

Lemma 4.1.2. Let X be a proper scheme over k. If there exists a dualizing

sheaf for X, then it is unique, up to isomorphisms.

Proposition 4.1.3. Any projective scheme over a field k has a dualizing

sheaf.

To be more precise, the dualizing sheaf of the proposition above, is

ω◦X := ExtrP (OX , ωP ),

where X ↪→ PNk =: P is a closed immersion making X projective and

r = N−dimX.

Definition 4.9. Let (A,m) be a local ring. A is Cohen-Macaulay if its depth

is equal to its Krull dimension.

The depth of a local ring A is the maximum length of a regular sequence in m,

that is a sequence of elements x1, . . . , xr ∈ m such that, for any i = 1, . . . , r,

xi is a non-zero divisor of A/(x1, . . . , xi−1).
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It follows by the definition that the depth of A is always less or equal

than its Krull dimension.

Definition 4.10. Let A be a ring. An A−module P is said to be projective

if the functor Hom(P, ·) : A−Mod→ Ab is exact, where A−Mod denotes

the category of A−modules.

Proposition 4.1.4 ([13]). Let M be an A−module. Then

pdM ≤ n if and only if Exti(M,N) = 0 for all i > n and all A−modules N,

where pdM denotes the projective dimension of M , that is the least length

of a projective resolution3 of M.

Proposition 4.1.5 ([13]). If A is a regular local ring of dimension n and M

is a finitely generated A−module, then

pdM + depthM = n.

Theorem 4.1.6 (Serre duality for a projective scheme). Let X be a projec-

tive scheme of dimension n over an algebraically closed field k. Let ω◦X be a

dualizing sheaf on X and OX(1) the inverse image of the twisting sheaf on

the projective space through the closed immersion j : X → PNk . Then:

(a) For any i ≥ 0 and F coherent sheaf on X, there exist natural functorial

maps

θi : Exti(F , ω◦X)→ Hn−i(X,F)′.

(b) The following are equivalent:

(i) X is Cohen-Macaulay4 and equidimensional5.

3The definition of a projective resolution is obtained from the definition of an injective

resolution by replacing injective objects with projective ones.
4A scheme X is Cohen-Macaulay if it is locally noetherian and its local ring A at any

point is Cohen-Macaulay.
5X is equidimensional if all its irreducible components have the same dimension.
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(ii) For any locally free sheaf F on X, H i(X,F(−q)) = 0 for i < n,

q >> 0.

(iii) θi from (a) are isomorphisms.

Proof. (a) Observe that (Exti(F , ω◦X))i≥0 and (Hn−i(X,F)′)i≥0 are both

δ−functors and θ0 is the map given by the definition of dualizing

sheaf. Thus, by definition of universal δ−functor, we need to prove

that (Exti(F , ω◦X))i≥0 is universal, and it is sufficient to show that

Exti(F , ω◦X) is effaceable for i > 0 by theorem 4.0.8.

Recall that F can be written as a quotient of E =
⊕
OX(−q), q >> 0.

Then Exti(E , ω◦X) ∼=
⊕

H i(X,ω◦X(q)) which is 0 for i > 0 and q >> 0

by theorem 3.2.2.

(b)

(i)⇒(ii) Since X is Cohen-Macaulay and equidimensional by assumption,

for any closed point x ∈ X and F locally free sheaf on X,

depthFx = n.

Let P := PNk , and consider j : X ↪→ P. Set A := OP,j∗(x),
where j∗(x) = x, j induces a surjective morphism of local rings

A → OX,x, hence depthAFx = depthFx = n. Because P is non

singular, A is regular: dimA =dimP = N and, by proposition

4.1.5, pdAFx = N − n.
Then, by propositions 4.0.5 and 4.1.4, for any OP−module G,

ExtiP (F ,G)x = ExtiA(Fx,Gx) = 0 ,∀i > N − n. (4.4)

From the Serre duality theorem proved for P , we find that, for

q >> 0,

H i(X,F(−q))′ ∼= ExtN−iP (F , ωP (q))

where ExtN−iP (F , ωP (q)) ∼= Γ(X, ExtN−iP (F , ωP (q))) by proposi-

tion 4.0.6, and the latter is 0 if i < n by (4.4).
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(ii)⇒(i) Take F = OX , and fix i > N−n.We claim that ExtiP (OX , ωP (q)) =

0 :

Γ(P, ExtiP (OX , ωP (q))) ∼= ExtN−iP (OX , ωP (q)) by proposition 4.0.6

∼= H i(X,OX(−q))′

by the Serre duality theorem for the projective space, and it is

zero by assumption.

Then, by proposition 4.0.5, ExtiA(OX,x, A) = 0 for all i > N − n
which implies pdA(OX,x) ≤ N−n and depthOX,x ≥ n by proposi-

tion 4.1.4. and 4.1.5. Therefore X is Cohen-Macaulay and equidi-

mensional.

(ii)⇒(iii) We have already proved in (a) that (Exti(F , ω◦X))i≥0 is a universal

δ−functor, thus, if we prove that (Hn−i(X,F)′)i≥0 is also univer-

sal, θi are isomorphisms. We use again the fact that it is sufficient

to prove that Hn−i(X,F)′ is an effaceable functor for i > 0 and

this is true by assumption since, as usual, we can write F as a

quotient of E =
⊕
OX(−q), q >> 0.

(iii)⇒(ii) By assumption, for any locally free sheaf F , q >> 0, H i(X,F(−q))′ ∼=
Extn−i(F(−q), ω◦X). Consider the right hand side:

Extn−i(F(−q), ω◦X) ∼= Extn−i(OX ,F∨ ⊗ ω◦X(q)) by prop. 4.0.4

∼= Hn−i(X,F∨ ⊗ ω◦X(q)) by prop. 4.0.3(c)

that is 0 when i < n by the generalization of the computation of

cohomology on a projective scheme.

Corollary 4.1.7. Let X be a projective Cohen-Macaulay scheme over k, of

equidimension n. Then for any F locally free sheaf on X there are natural

isomorphisms

H i(X,F) ∼= Hn−i(X,F∨ ⊗ ω◦X)′ ∀i ≥ 0.
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Proof.

H i(X,F) ∼= Extn−i(F , ω◦X)′ by the previous theorem

∼= Extn−i(OX ,F∨ ⊗ ω◦X)′ by proposition 4.0.4

∼= Hn−i(X,F∨ ⊗ ω◦X)′ by proposition 4.0.3 (c).
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