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Chapter 1

Introduction

Figure 1.1: Grasping example.
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2 1. Introduction

In the collective imaginaries a robot is a human like machine as any androids in

science fiction. However the type of robots that you will encounter most frequently are

machinery that do work that is too dangerous, boring or onerous. Most of the robots

in the world are of this type. They can be found in auto, medical, manufacturing and

space industries. Therefore a robot is a system that contains sensors, control systems,

manipulators, power supplies and software all working together to perform a task. The

development and use of such a system is an active area of research and one of the

main problems is the development of interaction skills with the surrounding environ-

ment, which include the ability to grasp objects. To perform this task the robot needs

to sense the environment and acquire the object informations, physical attributes that

may influence a grasp. Humans can solve this grasping problem easily due to their past

experiences, that is why many researchers are approaching it from a machine learning

perspective finding grasp of an object using information of already known objects. But

humans can select the best grasp amongst a vast repertoire not only considering the

physical attributes of the object to grasp but even to obtain a certain effect. This is why

in our case the study in the area of robot manipulation is focused on grasping and inte-

grating symbolic tasks with data gained through sensors. The learning model is based

on Bayesian Network to encode the statistical dependencies between the data collected

by the sensors and the symbolic task. This data representation has several advantages.

It allows to take into account the uncertainty of the real world, allowing to deal with

sensor noise, encodes notion of causality and provides an unified network for learning.

Since the network is actually implemented and based on the human expert knowledge,

it is very interesting to implement an automated method to learn the structure as in the

future more tasks and object features can be introduced and a complex network design

based only on human expert knowledge can become unreliable. Since structure learning

algorithms presents some weaknesses, the goal of this thesis is to analyze real data used

in the network modeled by the human expert, implement a feasible structure learning

approach and compare the results with the network designed by the expert in order to

possibly enhance it. The rest of the thesis is organized as follows. Chapter II will present

Bayesian network and explain the weaknesses that justify our approach. Chapter III will

introduce our approach to structure learning. Chapter IV will outline the experimental
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results, and Chapter V will present conclusions.

Nell’immaginario collettivo un robot solitamente è una macchina umanoide come gli

androidi nella fatascienza. Tuttavia i robot che si possono incontrare più spesso sono

macchinari che svolgono lavori troppo pericolosi, noiosi, ripetitivi o semplicemente dif-

ficili. La maggior parte dei robot sono di questo tipo. Vengono spesso usati nel settore

automobilistico, medico, manifatturiero e spaziale.

Un robot è quindi un sistema composto da sensori, sistemi di controllo, manipolatori,

fonti energetiche e un software, tutte parti che insieme svolgono un compito. Lo sviluppo

e l’uso di un tal sistema è un campo attivo della ricerca e uno dei problemi maggiori

consiste nello sviluppo di capacità di interazione con l’ambiente circostante, inclusa la

capacità di afferrare oggetti. Per portare a termine questo compito il robot ha bisogno di

percepire l’ambiente esterno e acquisire le informazioni relative all’oggetto, gli attributi

fisici che potrebbero influenzare la presa. Gli esseri umani possono portare a termine

questo compito molto facilmente grazie alla loro esperienza, ed è proprio per questo che

i ricercatori affrontano questo problema nel campo dell’apprendimento automatico, em-

ulando il comportamento umano e cercando una possibile presa usando le informazioni

ottenute da oggetti già conosciuti. Tuttavia gli essere umani non solo scelgono una possi-

bile presa considerando gli attributi fisici dell’oggetto ma tengono anche in considerazione

il fine di tale azione. Ecco perchè nel nostro caso, la ricerca nel campo dell’interazione

robotica si focalizza nell’integrare dati fisici ottenuti dai sensori con informazioni sim-

boliche rappresentanti il fine dell’azione. Il nostro modello di apprendimento è basato

sulle Reti Bayesiane per integrare le dipendenze statistiche tra i dati raccolti dai sensori e

gli obiettivi simbolici. Questo tipo di rappresentazione ha diversi vantaggi. Permette di

tener in considerazione l’incertezza del mondo reale, gestendo il disturbo nelle rilevazioni

dei sensori, incapsulare nozioni di causalità a fornire un rete unica per l’apprendimento.

Dato che l’implementazione della rete utilizzata è basata unicamente sulle conoscienze

di un esperto, siamo interessati a implementare un sistema automatico per apprendere

la struttura dei dati siccome in futuro potranno venir aggiunti più obiettivi e oggetti

aumentando cos̀ı la complessità della rete e rendendo la progettazione manuale basata

solo sul giudizio umano inaffidabile. Gli obiettivi di questa tesi sono di analizzare i



4 1. Introduction

dati usati dalla rete progettata manualmente, implementare un possibile approccio per

l’apprendimento che possa ovviare alle debolezze degli algoritmi di apprendimento e

confrontare i risultati ottenuti con la rete progettata dall’esperto umano possibilmente

incrementandone le prestazioni. La tesi è organizzata come segue. Il Capitolo II presenta

le reti Bayesiane e evidenzia le debolezze che giustificano il nostro approccio. Il Capi-

tolo III descrive il nostro approccio per l’apprendimento della struttura. Il Capitolo IV

illustra i nostri risultati mentre nel Capitolo V vengono presentate le nostre conclusioni

e sviluppi futuri.



Chapter 2

Bayesian Networks

2.1 Overview

Bayesian network (BN), also known as belief networks belong to the family of prob-

abilistic graphical models. These graphical structures are used to represent knowledge

about an uncertain domain. In particular, each node in the graph represents a random

variable, while the edges between the nodes represent probabilistic dependencies among

the corresponding random variables. Our specific problem is to use Bayesian networks in

robotics to encode the statistical dependencies between objects attributes, grasp actions

and a set of task constraints, and use the model as a knowledge base that allows robots

to reason at a high-level manipulation tasks. Since the input data is usually continu-

ous and noisy, the problem is very high-dimensional and has complex distribution on

many variables, that is why we choose to use Bayesian network as it provides a good

representation of the joint distribution of such complex problem domains. A Bayesian

network is a probabilistic graphical model that represent a set of random variables and

their dependencies using a directed acyclic graph (DAG) where every node is labeled

with a specific probabilistic information [18],[19],[25],[17]. The full specification [28] is

the following.

1. A set of random variables makes up the nodes of the network. Variables may be

discrete or continuous.

5
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2. A set of directed links or edges connects pair of nodes. If there is an edge from

node X to node Y, X is said to be a parent of Y.

3. Each node Xi has a conditional probability distribution P (Xi|Parents (Xi)) that

quantifies the effect of the parents on the node.

4. The graph has no directed cycles (and hence, is a directed, acyclic graph or DAG).

Figure 2.1: Example of a Bayesian network for the wet grass problem.

The topology of the network, as it can be seen in the example in Fig. 2.1, specifies

the conditional independence relationships that hold in the domain. Any arrow from a

node X to a node Y (e.g X = Cloudy, Y = rain) implies that X has a direct influence

on Y. Once the topology of the network is defined, it is needed to specify the proba-

bility distribution of each variable, given its parents. In the figure each distribution is

represented as a conditional probability table (CPT). Each row in the CPT show the

conditional probability of the variable for a conditioning case. A conditioning case is

simply a combination of the parents value. A network provides a complete description
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of the domain. Every entry in the full joint probability distribution can be calculated

from network. Every entry value, denoted by P (X1 = x1 ∧ ... ∧ Xn = xn), is given by

the formula:

P (X1 = x1 ∧ ... ∧Xn = xn) =
∏n

i=1 P (Xi|Parents (Xi)).

2.2 Structure Learning Background

Usually the network is specified by an expert and then it is used to perform infer-

ence. But in complex cases it is not feasible and unreliable. In these cases the network

structure is learned from data using an automated method. There are two very different

approaches to structure learning: constraint-based and search-and-score. The constraint-

based approach starts with a fully connected graph and remove edges when a certain

condition is met. The search-and-score approach performs a search through the space

of possible DAGs, and returns the best one found using a scoring function. Using an

automated method to learn the Bayesian network structure of a system or environment

gives researchers useful information about the causal relationships among variables. But

it is very hard to learn the network when we have to handle continuous data especially

when distribution is not Gaussian or when we have to deal with a case that is not full ob-

served having missing data or hidden variables. As a consequence most Bayesian network

structure learning algorithms work with discrete data. As data are often continuous and

networks really complex, a common approach to learn the structure with an automated

method is to previously discretize the data.
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2.2.1 Discretization

Figure 2.2: Example of discretization from bi-dimensional data, the numbered points are
continuous data and the areas defined by the edges are the discrete values. In this case
we want to discretize the data into 9 possible discrete states.

In statistics and machine learning, discretization refers to the process of converting

continuous features or variables to discretized or nominal features. There are two possible

approach of discretization:

Hard : consists of defining boundaries for the data we want to discretize and turning

the continuous features into discrete ones usually using a proximity function. As in

Fig. 2.2 an area delimited by red edges is a discrete value and every continuous data

point inside it assume the discrete value of that area. Looking at the example, the

continuous data point number 23 will be turned to the discrete value of 1, assuming

we number the discrete areas from top left corner to bottom right.

Soft : the continuous value is not turned directly to the value of the nearest bound but its

value is ‘spread’ to other possible discrete values using a spreading function. This



2.2 Structure Learning Background 9

method, suggested by Imme Ebert-Uphoff [7], has a linear Gaussian distribution as

spreading function and the deviation value of the distribution determines how much

every continuous data point will be spread over the discrete boundaries. With a

deviation equal to zero the soft discretization behave exactly as the hard one.

Soft Discretization with Multidimensional Spreading Function

Following this idea we implemented an algorithm that, given high-dimensional data

and a list of bounds, soft discretizes them using a multidimensional gaussian distribution

and learns the parameters of the built discrete Bayesian network using the soft evidences

as in Fig. 2.3.

Figure 2.3: Example of soft discretization in 2 dimensions and how the discrete states
are affected by the spreading function.
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Gaussian Mixture Models

Figure 2.4: Overview of Gaussian mixture model (GMM) approach to discretize data.
In the example it can be seen the distribution of sample bi-dimensional data and the
components calculated by the algorithm.

Gaussian Mixture Models (GMMs) are among the most statistically mature methods

for clustering. It consists in the assignment of a set of observations into subsets (called

clusters) so that observations in the same cluster are similar in some sense. Clusters are

assigned by selecting the component that maximizes the posterior probability.

2.2.2 Structure Learning Methods

There are three different approaches for structure learning for continuous data re-

gardless of the specific algorithm used for the structure learning [11]:

Pre Discretization : the data are discretized prior to application of the learning al-
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gorithm. There are different techniques for the discretization of data. The most

common one could be Equal-width and Equal-frequency binning. In the first case

the range of values for each variable is divided into k equally sized intervals where

k is pre-defined. Arbitrary values of k are usually chosen but there are also other

methods [20] to determine values of k. Equal-frequency binning, on the other hand,

assigns to each interval an equal number of values.

Integrated Discretization : The integrated approaches [9],[22],[31] require a starting

discretization, usually equal-frequency binning, and they hold the discretization

fixed while learning the structure and hold the learning while discretizing. The

procedures stop repeating when the termination condition is met.

Direct : These approaches adapt the learning of the structure to handle continuous

data [1],[30].

All the approaches are evaluated and compared in terms of quality of the structure

learned and efficiency of the process [11]. The data used for the comparison are both gen-

erated from well-known Bayesian networks and from real data with unknown structure.

The simulated data produced for the comparison use some well-known networks(e.g.

Alarm) with a number of variables between 20 and 56 and edges between 25 and 66.

For pre and integrated discretization approaches the number of possible discrete values

k is 2 or 3 and for each network different sets of data are generated with size from 500

to 5000. It seems that the best overall method is the direct, as it works well both for

simulated and real data but still all the approaches have good and bad points to take

into consideration.

1. The number of discrete values k for pre and integrated discretization methods is

really small and independent from the distribution of continuous data, as we notice

in our test on Incinerator network (Sec. 3.2) as we increase the number of discrete

values the accuracy increase but with a cost in complexity.

2. The discretization used by Lawrence Fu in his work [11] is only hard and it could

be interesting to see how a soft discretization approach could influence the learning

of the structure of a network.
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3. A discretized approach could include other possible benefits like the efficiency of

the learning algorithms and the aid in understanding the data [6], and if it is

believed that variables are naturally discrete but there are continuous due to noise,

then discretization is justified [12]. On the other hand even with soft discretization

there is still a loss of information.

4. The learning is very hard when we have to deal with missing data or hidden nodes

in the network.

5. Direct methods threats all data as Gaussian and this can not be good when we

have to deal with continuous data with a different distribution.

Considering all the weaknesses of learning approaches and the nature of real data

we want to analyze, we think that a feasible learning approach can be one base on the

pre-discretization of data.

2.3 Parameter Learning Background

Assuming we have already defined or learned the structure of the network, to fully

represent the joint probability distribution, it is necessary to specify for each node X

the probability distribution. The data we use for the structure learning can be con-

sidered evidences, instantiation of some or all of the random variables describing the

domain. Given evidences the learning process basically calculates the probability of each

hypothesis and makes prediction of that basis.

2.4 Our approach

The Bayesian network we want to analyze is developed in Matlab using the BNT

package [24] and it is built using both continuous and discrete nodes, in particular

continuous node are determined by multidimensional data. For this reason the first thing

to do is to study a possible discretization approach to turn the continuous nodes into

discrete nodes. Studying the BNT soft discretization package we use a soft discretization

approach for our data using a spreading function following the idea given by Imme
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Ebert-Uphoff [7]. However the soft discretization package gives an algorithm for linear

continuous data so we enhance this approach to use a spreading function into more

dimensions. The soft discretized data could be later used for parameter learning.

2.5 Structure Learning Algorithms

Usually a Bayesian network is specified by an expert and is then used to perform

inference. However, defining the network structure by human expert is not easy, es-

pecially when many variables are included. For this reason automatically learning the

structure of a Bayesian network is a problem pursued within machine learning. The basic

is to develop an algorithm to recover the structure of the direct acyclic graph (DAG) of

the network. The first and simple idea could be to evaluate all the possible graph of a

network and choose the best one. Since this solution has a high complexity it is only

feasible to make an exhaustive search with decent performances for networks with at

least 8 nodes [27]. Given that the majority of algorithms used in structure learning use

search heuristics. In the following sections we introduce some of the algorithms of the

BNT structure learning package [8] used for learning in our tests.

Causality Search : the PC algorithm (after its authors, Peter and Clark) [30], [26] use

a statistical test to evaluate the conditional dependencies between variables and

the result is evaluated to build the network structure.

Maximum Weight Spanning Tree : (MWST) [3] given a graph G, calculates a span-

ning tree (subgraph of G) that contains all the vertices of G. The algorithm asso-

ciates a weight to each edge that could be either the mutual information between

the two variables [3] or the score variation when a node becomes a parent of an-

other [14]. The algorithm needs an initialization node considered the root of the

tree.

K2 : algorithm heuristically searches for the most probable network structure given the

data. The algorithm requires an order over the nodes of the network that could

be an uniform prior of the structure or a topological order over the nodes where a
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node can only be parent of a lower-ordered node. According to the given order as

input the first node can’t have any parent [4].

Greedy Search : (GS) is an algorithm that follows the heuristic of choosing the local

optimal at each stage with the hope of finding the global optimum. In network

structure learning the algorithm takes an initial graph, calculate the neighborhood,

compute the score for every DAG in the neighborhood and choose the best one as

starting point for the next iteration. A neighbor of the DAG G is a defined as a

graph that differ from G by one insertion, reversion or deletion of an edge.

2.6 Summary of Bayesian Network

In this chapter we introduced Bayesian networks, a probabilistic graphical model that

we use as a knowledge base that allows robots to reason at a high-level manipulation

tasks. We decide to use this model because the input of our problem is continuous, noisy

and very high-dimensional and Bayesian network provides a good representation of the

joint distribution of such complex problem domains. We want to implement an approach

to learn the structure automatically because it is not feasible and unreliable for an expert

to specify a network in complex cases. We introduced the most common approaches to

learn the structure of a network underlining the weaknesses to understand which one can

be used in our case. We also introduced the most frequently used learning algorithms

that we use in our experiments to develop our approach to learn the structure of our

network.



Chapter 3

Structure Learning Experiments on

Well-Known Networks

3.1 Overview

Before learning the structure of real data generated by the selected grasp planner

we decided to study the behavior of both discretization and structure learning using

well-known Bayesian networks as ground truth networks. Using sampled data from

different networks we want to test how each algorithm performs in term of recover the

true structure of the network and the quality of it using a Bayesian scoring function.

Our tests focus on the following matters to discover any possible problem.

Discretization : in our tests we use equal-binning and GMMs approach. We desire to

know how they can influence the learning, which one is working better and how

the learning differ if we change the number of boundaries or components of the

discretization.

Learning algorithm : we use different algorithms in our tests to compare the perfor-

mances and discover the weaknesses.

Complexity : we want to figure out how the learning behaves if we increase the number

of nodes of the network we want to learn.

15
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Size of dataset : we want to figure out the algorithms performances with different

datasets. The aim is to detect algorithms that perform well with a datasets of a

size as small as the real data produced by the selected grasp planner.

The Bayesian networks we used for our purposes are Incinerator [5], Car [13] and In-

surance [10] respectively composed by 9, 12 and 27 nodes. Our experiments highlight

that increasing the number of components or boundaries of the discretization the learn-

ing have a significant improvement but that costs in efficiency. Moreover learning the

structure of networks with a high number of nodes is really hard. Given those problems,

we develop new approaches illustrated later to address them.

Figure 3.1: Activity diagram showing the experiment made with Incinerator network.
First, we discretize the mixed network with two different approaches: Gaussian Mixture
Model (Bnet 5) and Equal Boundaries. Four different networks are discretized with
Equal boundaries approach changing the number of discrete boundaries (Eqb 1,2,3,4).
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3.2 Discretization experiment on Incinerator network

Figure 3.2: Structure of the modified Incinerator network with 7 discrete nodes and 2
continuous nodes.

The first test used the well known Incinerator Bayesian network of 9 nodes but with

some changes because we wanted to test structure learning with a discretized network.

The network used in the experiment has the same DAG (Fig.3.2) as the original one but

the nodes are modified as follows:

• Discrete nodes: 1,2,4,5,6,8,9

• 2-dimensional gaussian mixture node: 3

• 3-dimensional gaussian mixture node: 7

The data for node 3 and 7 were generated by some multiple dimensional Gaussian

distributions. Given that Bayesian network with both continuous and discrete nodes,

the aim of the test was to figure how the learning of the structure could be influenced

by the discretization of the data for the continuous nodes. For that reason first of

all we discretized the continuous node data with two different approaches: the Gaussian

mixture approach to find clusters as it can be seen in Fig.2.4 and equal space subdivision
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where data are spread in areas of the same width as in the example in Fig.2.2. Using this

approach we built different Bayesian networks with discretized data for the continuous

nodes as in Fig. 3.1.

Bnet Node 3 Node 7
states bounds states bounds

Eqb 1 4 2x2 8 2x2x2
Eqb 2 6 2x3 18 3x3x2
Eqb 3 9 3x3 27 3x3x3
Eqb 4 4 1x4 16 1x4x4
Gcomp 4 - 8 -

Table 3.1: Number of discrete states for the Bayesian networks nodes created after
discretization. Eqb 1 to 4 are discrete networks where the continuous nodes of the
ground truth network are discretized with the equal boundary approach while Gcomp is
discretized using Gaussian Mixture Models.

Bnet 5000 10000 20000 50000 Avg
Eqb 1 0% 0% 0% 8% 1%
Eqb 2 0% 9% 0% 10% 5%
Eqb 3 0% 19% 2% 28% 13%
Eqb 4 0% 1% 4% 13% 4%
Gcomp 0% 12% 12% 2% 7%

Table 3.2: Percentage of runs that return a network’s structure exactly the same as the
ground truth.

The Table 3.2 shows the percentage of times that a learning algorithm returned the

ground truth network structure. It could be seen that for a dataset of 5000 we never have

the original network back but increasing the number of data the methods become much

more accurate. It can be also noticed that the network discretized with equal boundaries

(Eqb 3) and the one discretized with the Gaussian Mixture Model (Gcomp) can recover
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the ground truth network more often for two different reasons. The network Eqb 3 is

the equal boundary network with most states for continuous nodes granting a refined

discretization. On the other hand Gcomp has less states but as the continuous data are

generated by multiple Gaussian distributions, this approach works perfectly with them.

After this first run we decided to proceed with further analysis on Eqb 3 and Gcomp to

find the algorithms that work the best.

Algorithm/Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 0% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache 7% 0% 0% 3% 2%
GS without cache 0% 10% 0% 0% 2%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 50% 10% 23% 0% 21%
GS + MWST(known root) 100% 0% 100% 100% 75%

Table 3.3: Summary of the results given by the algorithms used for structure learning of
the network Eqb3. Results are for three different algorithm with various settings: Causal-
ity Search (PC), Greedy Search (GS) and Maximum Weight Spanning Tree (MWST).
Results are in percentage of runs that return a network equal to the ground truth.

Algorithm/Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 0% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache 0% 0% 0% 0% 0%
GS without cache 0% 0% 0% 0% 0%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 0% 0% 13% 0% 3%
GS + MWST(known root) 100% 100% 0% 0% 50%

Table 3.4: Summary of the results given by the algorithms used for structure learning
of the network Gcomp. Results are in percentage of runs that return a network equal to
the ground truth.
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Algorithm/Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 100% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache 7% 17% 10% 17% 2%
GS without cache 20% 10% 3% 27% 2%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 20% 63% 37% 50% 21%
GS + MWST(known root) 0% 100% 0% 0% 75%

Table 3.5: Percentage of runs for Eqb3 that return a structure with differences in edges
from the ground truth between 1 and 5.

Algorithm/Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 100% 100% 100% 75%
Causality Search(PC) 0% 100% 100% 100% 0%
Causality Search(PC2) 100% 0% 0% 0% 0%
GS with cache 13% 3% 7% 10% 2%
GS without cache 23% 10% 0% 10% 2%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 7% 3% 13% 3% 21%
GS + MWST(known root) 0% 0% 100% 100% 75%

Table 3.6: Percentage of runs for Gcomp that return a structure with differences in edges
from the ground truth between 1 and 5.

3.2.1 Car and Insurance network experiments

The first test focused on studying how the discretization could affect the behavior

and results of algorithms. With the second test we want to see how a higher number

of nodes could influence the results. For this experiment we used the well-known Car

network shown in Fig. 3.4 and Insurance network in Fig. 3.3, the network are used as

they are originally designed with no modification to the structure or the type of node.

The initial results on the Car network shown a lower precision compared to Incinerator

network results due to a higher number of nodes. On the other hand the preliminary test
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Figure 3.4: Original structure of Car network

on Insurance network made of 27 nodes point out that the learning for a very complex

network needs unacceptable time and memory.

Figure 3.3: Original structure of Insurance network
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3.3 Consideration After the Experiments

In Section 3.1 we test most of the learning algorithms on three well-known networks

to see how they behave with different settings to implement an approach that could work

with real data from the selected grasp planner. Once get the results from the learning

we check the quality using both a scoring function based on ‘Bayesian’ score [8] and a

distance function to calculate the exact distance of the learned DAG from the ground

truth. Our experiments point out some weaknesses:

Initialization : most of the algorithms need to be initialized properly to produce a

DAG near to the ground truth, to solve this problem, as suggested in [8] we used

Maximum Weight Spanning Tree algorithm (MWST) to calculate a starting order

for the Greedy Search algorithms but still this does not solved completely the

problem of initialization as it can be seen in Table 3.3. In that example algorithms

labeled with GS2MWST and GS2MWST2 use the same approach using Greedy

Search algorithm to calculate the DAG and MWST for initialization but the results

are completely different because in the first case the algorithm is used without any

assumption on the network, so in every run the algorithm choose a random node

as initialization for MWST. On the other hand, using GS2MWST2 we suppose

to know the root node of the network and with that assumption the results are

significantly better.

Local optimum : it is possible that the result with the best ‘BIC’ score is not the

nearest to the ground truth as the greedy search algorithm can eventually find a

local optimum.

Complexity : Finally we could notice that increasing the number of nodes and complex-

ity the learning algorithm has a significant drop, high memory usage and extremely

inefficient.

Taking into consideration all this weakness we try to develop an approach that could

minimize the effects of them. First of all, to minimize the weakness of the initialization

and local optimum we use a method that does not compute a DAG but calculates a

matrix of possible edges for the network we want to learn. This method is described in
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the following paragraph 3.3.1. However this method still does not solve the problem of

the drop in accuracy of the learning increasing the size of the network. For this reason

we also test if we can get good learning results developing our method with a ‘divide and

conquer’ approach described in paragraph 3.3.2.

3.3.1 Edge Average Matrix Approach

If we want to learn the structure from real data and we do not have any clue about

a possible structure or in case we want to check if the network built by a human expert

is correct, we prefer not to take any assumption for the initialization of the learning

algorithm as a wrong assumption could produce deceiving results. Because of that we

implement an approach that explores all possible initializations and produce a matrix

as in Table 3.7 that gives hint to the user about the possible edges in the network. The

higher the percentage in a cell(i,j) is the most it is probable that the edge from the node

i to node j exists. This method does not produce a DAG as output but needs the human

expert to analyze the resulting matrix to build the DAG. It would be interesting to see

how this approach could be refined adding weights based on the complexity, quality and

equivalence of networks.

3.3.2 Network Decomposition approach

Due to the fact that the real data from the grasp planner includes 24 nodes we

want to implement a method that can give structure information for big networks. A

possible solution we implement and test is a ‘divide and conquer’ approach that, given

a network, decomposes it in smaller networks, applies the structure learning on them

and then combines the results. The first test is done on the 12 nodes Car Network and

consist in the following approach:

Decomposition : The network is decomposed to build a subset of 8 nodes networks

to cover all the possible combination of nodes. So given the car network of

nodes (1,2,3,4,5,6,7,8,9,10,11,12), the subset of networks included: (1,2,3,4,5,6,7,8),

(1,2,3,4,9,10,11,12) and (5,6,7,8,9,10,11,12). The Decomposition is independent

from the size of the network and, defined the size of the decomposed subsets(suggested
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8 nodes for complexity), the method build all the subsets covering all possible com-

bination of nodes and learn the structure of all the subsets.

Learning : After all the tests done on different learning algorithms we decide to use

Greedy Search (GS) algorithm combined with MWST to solve the initialization

problem. Given that MWST algorithm require also a root node for initialization

we decided to run the MWST algorithm as many times as the number of nodes

giving every time a different node as root. Once calculated the starting order

required for GS initialization we decide to run the algorithm multiple times for

every given order.

Dag Analysis : At the end of all runs we get as output a matrix of N*N as in Fig. 3.7

where N is the number of nodes of our network and the single element i,j represent

the percentage of times we get the corresponding edge out of the learning.

Node 1 2 3 4 5 6 7 8 9 10 11 12
1 0 94 0 0 0 0 0 0 0 0 0 0
2 7 0 3 100 93 0 0 0 0 0 0 0
3 0 4 0 0 95 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 8 5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 75 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 25 0 0 0 0 11 0
9 0 0 0 0 0 0 0 0 0 0 0 69
10 0 0 0 0 0 0 0 13 0 0 57 0
11 0 0 0 0 0 0 0 13 0 44 0 0
12 0 0 0 0 0 0 0 0 32 0 0 0

Table 3.7: Car network learning resulting matrix with ‘divide and conquer’ approach
and 6000 data. Survey percentages for original network edges are in bold. It can be seen
that only edge from node 7 to 8 is not found at all and edge from node 8 to 11 has a low
percentage but the precision increase with a higher number of data.
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Figure 3.5: Original Car Dag with edge matrix results.

Node 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.8: Car network reconstruction with 15000 data points considering an edge when
the probability in the edge matrix is higher than 75. It can be seen that the calculated
DAG is equal to the ground truth.

It can be noticed in Fig.3.5 and Fig.3.7 that the majority of edges of the original

network are detected by the algorithm with a good percentage. Some of the edges are

detected with a low percentage or the algorithm can not tell for sure the orientation and

only one edge is not learned at all. For example the test learn that there is a connection

between node 10 and 11 but there is a probability of 57% that this edge is from node 10

to 11 and 44% that is the other way round, this is caused mainly by the DAG equivalence
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determined by the Bayes’ rule:

P (A,B,C) = P (A)P (B|A)P (C|B) = P (A|B)P (B)P (C|B) = P (A|B)P (B|C)P (C).

Though increasing the size of the dataset we can get better results as shown in Table

3.8. Another possible implementation of this approach can be an exaustive search and

evaluation of all possible DAG [8] for every subset of nodes and combine the results

depending on the quality of every DAG.

3.3.3 BIC Score Search Approach

Figure 3.6: BIC tree search approach overview. Here the tree is expanded to level 2 as
example.

As previously said, one of the weaknesses of learning algorithms is the local maximum

problem. In the previous section we illustrate two approaches that can reduce this issue

but we also consider to develop an alternative approach based on tree search. For this test

we use Car network, K2 search algorithm, MSWT as initialization and a scoring function

based on BIC score to classify the results. This experiment is really computational intense

so we decide to use K2 search algorithm because, even if it is not precise as GS, this

algorithm is faster. The idea is to run at every step K2 learning algorithm for any possible
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starting order, calculate the score for the resulting DAG and consider only the starting

orders that give the best score for the next step of learning. To avoid local maximum the

approach could expand the tree of possible results to a given depth as in Fig. 3.6 before

calculating the score and cutting the useless choices. Even if we can get good results

from this approach, due to the poor efficiency we decide to focus the attention on the

other two methods.

3.4 Summary of Experiments

The experiments examined different learning situations and algorithms. Results were

measured by the quality of learned structure and efficiency. The equal boundary dis-

cretization approach with the highest number of discrete states yielded the best results

but the efficiency dropped significantly. GMMs discretization gave also good results

keeping the efficiency at affordable level. Then we consider to choose the discretization

method for real data depending on their distribution and dimensionality to have the

best result with a good efficiency. However learning the structure of networks with many

nodes it is very difficult especially for networks with nodes more than 20 when we also

have to deal with really poor efficiency and memory usage by the learning algorithms.

To deal with this problem we think to use our network decomposition approach 3.3.2.

Finally the majority of algorithms revealed an initialization weakness that we face with

our Edge Average Matrix Approach 3.3.1 as no ground truth network for real data is

known.
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Chapter 4

Grasp Planning

4.1 Overview

After all the tests done on well-known networks our attention focused on learning the

structure of the network given real data computed by the selected grasp planner. The

complete system architecture is shown in Fig.4.1. To generate a set of grasping hypothe-

ses for each pair of object-hand we use the grasp planner BADGr, Box Approximation,

Decomposition and Grasping [16], [15]. The grasp hypotheses are then calculated by

the simulation environment GraspIt [21], a simulation environment to provide data gen-

eration and visualization of experiments. Grasp features are then extracted from the

simulator and a human expert label them with task feature [29].

Task :

This feature refers to basic task that involves grasping or manipulation of an object.

Every task is formally defined as a manipulation segment that starts and ends

with both hands free and the object in a stationary state. The tasks taken in

consideration for the classification of grasps are: hand-over, pouring and tool-use .

Objects :

This subset of features specify the physic attributes of the grasped object and are:

size, convexity, zernike, shape class vector, shape class and eccentricity.

29
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Figure 4.1: Complete system diagram. The selected grasp planner generates a grasp
given a robotic hand and an object as an input. The generated grasp is then calculated
by the simulation environment GraspIt and all the features are extracted from it and the
human expert label the grasp looking at the visualization. The features are then stored
to be used to train and testing the Bayesian network framework.
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Actions :

This subset describe the static, object-centered, kinematic grasp features like: eigen

grasp pre configuration, pre configuration, position, orientation, distance, unified

position and post configuration.

Constraints :

This is a subset of features strictly dependent from Object and Action features.

These features includes: part zernike, part shape class vector, part eccentricity, is

box decomposed, free volume, grasp on one box, grasped box volume, quality of

stability and quality of volume.

The result of a simulation consists in a set of data that is then visualized by the

simulator and a human tutor label the grasp hypotheses with the corresponding grasp

task T.

4.2 Experiments on grasp planner data

4.2.1 Real data overview

The grasp planner provides 24 features determined by continuous data from 1 up to

121 dimensions. So the process to learn the structure of those data is made of five steps:

1. Dimensionality reduction

2. Discretization

3. Structure learning

4. Parameter learning

5. Test of evidences
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Figure 4.2: Activity diagram for the complete experiment procedure on data of the
selected grasp planner.
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4.2.2 Dimensionality Reduction

In order to reduce the dimensions of nodes like zern, pzern and fcon we used the Mat-

lab Toolbox for Dimensionality Reduction [32]. That toolbox includes different methods

to reduce the dimensionality, after some tests we decide to use the PCA approach that

reduced zern, pzern and fcon nodes with a covariance of 85-90 from original data.

4.2.3 Discretization

The reduced data has 1 to 6 dimensions, for this reason we decided to use different

discretization methods depending on the number of dimensions we want to discretize

and the distribution of data in the space. We saw from our experiments (Table 3.2)

that equal boudaries approach has a higher precision than GMM but paying a high price

in terms of complexity and memory usage, problems that can make the learning not

feasible. For this reason, we decide to discretize nodes with dimensions less or equal

than 3 with both approaches, after a manual analysis of the distribution of the data,

keeping the complexity at an affordable level and discretize nodes with more dimensions

only with GMM.

4.2.4 Structure learning

After all the data are refined with dimensionality reduction and discretization, we

split each dataset in two different sets: one bigger set (3000) used for structure and

parameter learning and the other (150) used to infer the task on the network built from

the learning. At the beginning we start studying a possible structure of the network given

the nodes of the network built by the human expert[29]: Task, free volume, stability of

the grasp, size, convexity, unified position, eigen grasp pre configuration and direction.

The learning used the procedure shown in Fig.4.2.4:
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Figure 4.3: Activity diagram for real data structure learning

From the first learning run we gain the interesting result that the Eigengrasp pre-

configuration(Egpc node) is not significant for the network. So we decide to not consider

this data any further in the learning. From this starting point we study through the

learning all the possible relations between task feature and objects, constraints and ac-

tions. We learn all the relations between task and the different subsets of data separately

and the results are reported in Table 4.1, 4.2 and 4.3. The number in each cell(i,j) cor-

responds to the average we get an edge from node i to node j out of all the learning

runs. For example considering in Table 4.1 node Upos we can notice that the learning

procedure returns as output an edge to node Dist 83 percent of runs.

Node Task Pos Dir Dist Upos Fcon
Task 0 68 0 0 50 67
Pos 32 0 0 0 17 0
Dir 0 0 0 0 33 0
Dist 0 0 0 0 0 17
Upos 50 83 67 0 0 0
Fcon 33 0 0 83 0 0

Table 4.1: Task and Actions structure learning.
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Node Task Size Conv Zern Shcv Shcl Ecce Obcl
Task 0 0 16 4 0 0 0 0
Size 100 0 59 64 0 0 88 93

Conv 84 34 0 35 58 0 88 76
Zern 4 36 65 0 75 0 0 88
Shcv 0 25 43 25 0 100 0 0
Shcl 0 13 0 0 0 0 88 0
Ecce 0 13 13 13 13 13 0 0
Obcl 0 8 24 13 75 75 0 0

Table 4.2: Task and Objects structure learning.

Node Task Pzern Pshcv Pshcl Pecce Isbx Fvol G1bx Gbvl Qeps Qvol
Task 0 18 19 16 19 0 91 30 87 77 85
Pzern 82 0 85 76 90 0 0 90 87 85 0
Pshcv 81 15 0 30 48 0 91 81 91 0 0
Pshcl 0 24 27 0 26 91 0 0 0 0 0
Pecce 81 10 52 31 0 0 0 90 86 76 0
Isbx 0 0 44 9 42 0 0 0 0 0 0
Fvol 9 9 9 0 9 0 0 9 0 0 0
G1bx 70 10 10 7 8 0 91 0 86 0 0
Gbvl 18 13 9 8 14 0 0 14 0 0 0
Qeps 0 15 10 0 24 0 0 0 0 0 87
Qvol 0 0 16 0 0 0 0 0 0 13 0

Table 4.3: Task and Constraints structure learning.

4.2.5 Parameter Learning and Testing

Analyzing the results we got from the structure learning we consider to add nodes

and modify the structure of the starting Bayesian network, learn the parameters of the

new built network and test its quality. To test it we decided to pick randomly from our

data 50 samples for every task and know the probability:

P (T |O,A,C).
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After checking the most influencing nodes we achieve a network (see Fig.4.4) that, given

the evidences as input has the following confusion matrix:

Task T1 T2 T3
T1 0.9060 0.0541 0.0399
T2 0.1332 0.8668 0
T3 0.1469 0 0.8531

Table 4.4: Confusion matrix for the task inference test. T1 is hand-over, T2 pouring
and T3 tool-use.

Figure 4.4: Resulting Bayesian network after structure learning and inference tests.

4.3 Grasp Planners Comparison

Several research groups work in the field of robot manipulation developing their own

grasp planners. The approach implemented in a grasp planner can be very different from

the selected one we use in our network but it is interesting to analyze other methods to
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compare them and see if other possible features can be considered in order to increase the

inference performance of the network learned out of the real data from the grasp planner

we analyzed. In order to possibly do that we must first find some term of comparison

between grasp planners and even if the approaches and features could be very different

we think that every grasp planner we can consider for future comparison at least should

have data related to the quality of stability, in our learned network is qeps node (Fig.

4.4). This feature is very important in grasping as it describes how much the grasped

object is stable in the robotic hand. A low value indicates that the object could slip out

of the hand. Thus we think that using the quality of stability to develop a data mapping

between grasp planners, we can possibly find out important influencing features that

could be integrated in the respective planner networks.

4.4 Summary of Real Data Analysis

We used our learning approach to develop a network with the features generated by

the grasp planner detecting the most relevant ones, discarding the useless and comparing

the quality of the network with the one developed by the human expert. Our quality

measure is the probability that the network can detect the right task given objects,

actions and constraints data as evidences. As we said in the previous chapter we have

to face many problems if we want to learn the structure of a network with more than 20

nodes, so we learned the structure of the features of the network developed by the human

expert [29] as starting point and subsequently added more features to the network testing

the quality of it. Our actual network is build by 13 nodes and has a quality measure of 90

percent to detect hand-over task, 87 percent for pouring and 86 percent for tool-use. In

the future we think to refine our network considering DAGs equivalence and BIC score

as quality measures.
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Chapter 5

Discussion

5.1 Limitation

Even if our approach allow to reduce some weaknesses of the majority or structure

learning algorithm, it has the strong limitation in the need of an analysis of results by

a human expert. Moreover as a consequence of human choices the resulting network

could present weaknesses. For this reason there are many points we are taking into

consideration as future development to refine our approach.

5.2 Future Work

Our approach consist in two main steps: discretization and learning. Both steps have

different possible settings but there are some that are not yet developed and should be

added.

5.2.1 Discretization Future Work

Up to now our approach allow the user to discretize data using three different meth-

ods:

GMM : a statistical method for clustering using Gaussian function.

Equal-width binning : divides variables space into discrete states of the same width.

39
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Manual boundaries : the boundaries are defined manually by an expert after the

analysis of data distribution.

Another approach we want to test is the equal-frequency binning where, given k bound-

aries, the continuous data are distributed equally among all the intervals. According to

Lawrence D. Fu [11] this approach work well with real data. However the weak point of

all this methods is the number of boundaries (equal-width, equal-binning) or components

(GMM) that usually is arbitrary. It should be interesting to find a method to determine

the ‘right number of clusters’ given a dataset [2], [20].

5.2.2 Structure Learning Future Work

Our method calculate a matrix of possible edges (Sec. 3.3.1) to design the network for

our data using a greedy search learning algorithm, as we consider it the most reliable after

all the tests done on well-known networks. However this approach has some weaknesses

as it needs the human to analyze the results of the matrix to build the DAG for the

network. Moreover the matrix just give a statistical hint regarding the existence of edges

calculated only on the output DAG of the learning algorithm run multiple times with

an exhaustive initialization. It should be very interesting to refine this approach adding

weights to influence the results of the learning algorithm. A possible idea should be

to use the score calculated by a scoring function on the computed DAGs to give more

importance to edges of those DAGs that have a better score. Finally the edge matrix

should be refined developing a method to check DAG equivalence determined by Bayes’

rule, like for instance:

P (A,B,C) = P (A)P (B|A)P (C|B) = P (A|B)P (B)P (C|B) = P (A|B)P (B|C)P (C).

Another possible upgrade for our approach is to integrate more learning algorithms in

the possible edge matrix computation and leave the choice to the expert. Three possible

algorithms that are considered to be integrated are K2, PC and Markov Chain Monte

Carlo [23]. Moreover we are considering to extend our ‘Dag Decomposition’ approach

(Sec. 3.3.2) to compute an exhaustive search for the best structure over all possible

DAGs for every subset generated out of the original set of nodes as long as the size of
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the subsets is up to 7 or 8 nodes to have decent performances. Finally once estimated

the best structure learning algorithm for our approach we are considering to enhance it

as it could work with soft discretized weight and not only with hard ones.

5.2.3 Grasp Planner Integration

As said in Sec. 4.3 we think that stability feature can be useful to map data produced

by different grasp planners. However there can be more possible features in common

between planners so it can be very interesting to study other grasp planners in order to

find common elements to use for mapping and integration of networks.
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Appendix A

Code Overview

In this appendix we present an overview of some of the classes used in our work. The

main class is multivariate discretization and it is used to store all the data and results.

All of the other developed functions and classes work on a multivariate discretization

object. Last section (A.4) of this appendix presents a brief tutorial to explain the learning

process.

A.1 Multivariate Discretization Class

The core class used for discretization and learning is multivariate discretization (see

Fig.A.1). It provides methods to discretize both hard and soft, learn the parameter and

the structure of a bayesian network and check the inference. It doesn’t provide only

dimensionality reduction.

43
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Figure A.1: Multivariate Discretization Class Diagram

c l a s s d e f mu l t i v a r i a t e d i s c r e t i z a t i o n

% mu l t i v a r i a t e d i s c r e t i z a t i o n i s used to d i s c r e t i z e d mu l t i v a r i a t e

% cont inuous data and b u i l d d i s c r e t e bnet .

%

% mu l t i v a r i a t e d i s c r e t i z a t i o n Proper t i e s :

% boundingPoints − po in t s used to c a l c u l a t e d i s c r e t e s t a t e s

% so f tWeigh t s − d i s c r e t e data generated from cont inuous ones

% d i s c r e t e b n e t − d i s c r e t e bayes ian network generated from boundar ies

%

% mu l t i v a r i a t e d i s c r e t i z a t i o n Methods :
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% edges2bounds − turns mul t id imens iona l i n t o pa i r s o f po in t s used as

% boundar ies

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

% edges = s e t o f nDimensional po in t s o f the form c e l l <nDimension ,1>

% generated by d i s c r e t i z eDa t a func t i on

% OUTPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

%

% generateWeights − compute d i s c r e t i z e data from cont inuous data f o r

% the g iven node

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

% b n e t s o f t = d i s c r e t e bnet

% Sigmas = spread ing func t i on de v i a t i on

% bounds = boundar ies o f d i s c r e t e node s t a t e s

% node = the node to d i s c r e t i z e

% X = cont inuous data to be d i s c r e t i z e d

%

% setNodeWeights − s e t d i s c r e t e node we i gh t s from the input data

% given

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

% samples = d i s c r e t e data

% node = t a r g e t node f o r d i s c r e t e samples

% type = type o f d i s c r e t i z a t i o n

%

% OUTPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

%

% softCPT − c a l c u l a t e CPT fo r the g iven d i s c r e t e bnet and ev idences

% s to r ed in ob j

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

% bnet = d i s c r e t e bnet

% OUTPUT
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% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

%

% di s c r e t eBne t − c r ea t e a d i s c r e t e bnet from a cont inuous one , f o r

% every node i f i t i s d i s c r e t e the s i z e w i l l not be changed from the

% input bnet o the rw i s e the s i z e w i l l be s e t g e t t i n g the s i z e from the

% corresponding boundingPoints s e t

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

% bnet mixed = mixed bnet

% OUTPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

%

% getDataFromWeights − genera te hard ev idences from weights ,

% every we igh t i s s t o r ed l i k e an array o f i v a l u e s where i s i s the

% number o f maximum s t a t e s f o r the g iven node .

% i . e . we igh t = [0 , 0 , 0 , 1 , 0 ] −> 4 = hard ev idence

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

% OUTPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

%

% crea teEv idences − s t o r e e q u a l l y t a s k d i s t r i b u t e d ev idences to t e s t

% in f e r ence

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

% nEvidences = number o f ev idences

% OUTPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

%

% check In f e rence − c a l c u l a t e the in f e r ence and confus ion matrix

%

% INPUT

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

% node = node index we wat to t e s t the in f e r ence

% OUTPUT
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% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

%

% c r e a t e s p e c i f i c b n e t − core method to c r ea t e a d i s c r e t e network and

% learn the parameters

%

% INPUT:

% ob j = mu l t i v a r i a t e d i s c r e t i z a t i o n ob j

% nodes = i d i c e s f o r the nodes to inc l ude in the network

% dag = d i r e c t a c y c l i c graph f o r the network

A.2 Node Discretization

md obj = d i s c r e t i z e n od e da t a (md obj , f i l ename ,

node name , node , type , bounds )

% d i s c r e t i z e cont inuous data f o r the g iven node

% Function De t a i l s

% INPUT:

% md obj = t a r g e t mu l t i v a r i a t e d i s c r e t i z a t i o n

% ob j e c t to s t o r e d i s c r e t i z e d data

% f i l ename = cont inuous data f i l e

% node name = id name fo r the t a r g e t d i s c r e t i z e d node

% node = index f o r the t a r g e t d i s c r e t i z e d node

% type = d i s c r e t i z a t i o n method : 1 = equa l boundaries ,

% 2 = GMM, 3 = s t o r e data wi thout any d i s c r e t i z a t i o n

% OUTPUT:

% md obj = mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

A.3 Structure Learning

r e s u l t = s t r u c t u r e l e a r n i n g ( bounds , t r i a l s , f i l ename )

%% s t r u c t u r e l e a rn ing f o r d i s c r e t i z e d data

% INPUT

% bounds = array made wi th the i n d i c e s o f the nodes
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Figure A.2: Mutivariate Discretization Activity Diagram



A.4 Example 49

% we want to l earn the s t r u c t u r e

% t r i a l s = number o f t imes wa want to run the a l gor i thm

% f i l ename = name of the mu l t i v a r i a t e d i s c r e t i z a t i o n

% ob j e c t f i l e

% OUTPUT

% t o t a l = matrix wi th the p r o b a b i l i t y o f l i n k s between nodes

% a l lDags = a l l computed dags from the l e a rn ing proces s

% er ro r s = times the a l gor i thm throw an error

A.4 Example

% Here i t i s a t u t o r i a l to use mu l t i v a r i a t e d i s c r e t i z a t i o n and l ea rn ing

% package , s t e p s 1 and 2 are shown only in the comment as t u t o r i a l because

% we are going to use the mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t s t o r ed f o r

% l ea rn ing in ” d i s c r e t e md ob j . mat

%% 1) −−−−−−−−−−−− Var iab l e De f i n i t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

% md obj = mu l t i v a r i a t e d i s c r e t i z a t i o n ;

%% 2) −−−−−−−−−−−− Di s c r e t i z a t i o n procedure −−−−−−−−−−−−−−−−−−−−−−−−−−−− %

% In t h i s s t ep cont inuous data are d i s c r e t i z e and s to r ed in a

% mu l t i v a r i a t e d i s c r e t i z a t i o n o b j e c t

% load cont inuous data f o r shunk hand

% temp = load ( ’ datashunk ’ ) ;

% t o t a l d a t a = temp . t o t a l d a t a ;

% c l e a r temp ;

% D i s c r e t i z a t i o n example f o r Zern data

% index o f the md obj node where we want to s t o r e data

% node index = 4;

% 1 = Equal Boundaries , 2 = GMM, 3 = Direc t s t o r e wi thou t d i s c r e t i z a t i o n

% d i s c r e t i z a t i o n t y p e = 2;
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% number o f p o s s i b l e components , f o r equa l boundar ies approach t h i s

% v a r i a b l e i s a s imple va lue e . g . 3 w i l l g enera te 3 boundar ies f o r

% every dimension o f the cont inuous node

% components = [1 2 3 ] ;

% md obj = d i s c r e t i z e n o d e d a t a (md obj , ’ datashunk ’ , ’ zern ’ , node idex , . . .

% d i s c r e t i z a t i o n t y p e , components ) ;

%% 3) −−−−−−−−−−−−− St ruc tu re Learning −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

% In t h i s s t ep we use s t o r ed in format ion in ” input . mat” f i l e , i t con ta ins

% informat ion f o r the b e s t network l earned t i l l now

% bne t i npu t s t o r e 3 s t r u c t u r e s

% boundar ies = node i nd i c e s used in the network

% names = name of nodes

% dag = the r e s u l t i n g dag to make the d i s c r e t e network a f t e r s t r u c t u r e

% l ea rn ing

% temp = load ( ’ input ’ ) ;

% bne t i npu t = temp . bne t i npu t ;

% c l e a r temp ;

% Assuming we don ’ t know the dag o f our network we want to have an idea on

% the p o s s i b l e l i n k s between nodes us ing s t r u c t u r e l e a r n i n g func t i on

% node ind i c e s = bne t i npu t . boundar ies ;

% nTr ia l s = 1;

% mu l t i v a r i a t e d i s c r e t i z a t i o n f i l e = ’ d i s c r e t e md ob j ’ ;

% r e s u l t = s t r u c t u r e l e a r n i n g ( node ind ices , nTria ls , . . .

% mu l t i v a r i a t e d i s c r e t i z a t i o n f i l e

) ;

% Looking at r e s u l t i n g ma t r i x we cou ld have an idea o f the p o s s i b l e l i n k s

% between nodes and b u i l d a dag f o r parameter l e a rn ing

%% 4) −−−−−−−−−−−−− Parameter Learning −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

% In t h i s s t ep we are going to use the dag we b u i l t and s t o r ed in

% ” input . mat” , t h i s dag was b u i l t a f t e r s tudy ing mu l t i p l e s t r u c t u r e

% l ea rn ing r e s u l t s and in f e r ence t e s t s

% f i r s t o f a l l we s p l i t the s e t o f ev idences in t o two su b s e t s one used by

% parameter l e a rn ing proces s and the o ther used f o r t e s t i n g
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temp = load ( ’ d i s c r e t e md ob j ’ ) ;

md obj = temp . md obj ;

%c l e a r temp ;

% crea t e 50 ev idences f o r very t a s k

md obj2 = md obj . c r ea teEv idence s (50) ;

% crea t e d i s c r e t e bnet and l earn the parameters g iven nodes and dag

dag = bnet input . dag ;

md obj2 = md obj2 . c r e a t e s p e c i f i c b n e t ( node ind i c e s , dag ) ;

% t e s t P(T |O,A,C) , co r r e c t percentage o f r e s u l t s are p r in t ed as output

% and the confus ion matrix i s s t o r ed in the

% md obj . l e a rn ing . con fus ion matr i x parameter

md obj2 = md obj2 . check In f e r ence (1 ) ;

fpr intf ( ’−−−−−−− Confusion matrix −−−−−−−−−−−−−−−−−−−−−−−\n ’ ) ;

md obj2 . l e a rn i ng . con fus i on matr ix
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