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Introduction

In this work, we deal with the study of a free boundary problem governed
by a non-homogeneous equation. We begin this thesis reviewing the paper
by Daniela De Silva “Free boundary regularity for a problem with right hand
side”, see [11].

In particular, we study the free boundary problem governed by an elliptic
equation in non-divergence form defined on a bounded connected, possibly
regular, subset 2 in R".

For the sake of simplicity, here we state the problem in the easier way by

considering simply the Laplace operator, namely:

Au=f inQF(u):={ze€Q:ulx)>0}°,
[Vu|=1 on F(u) := 02" (u) NAQ.

(1)

A function u is a solution of the problem (1) if u satisfies the equation Au = f
when w is strictly positive and in addition the condition |Vu| = 1 is fulfilled
in a proper unknown subset of €2, called the free boundary of the problem.
In particular, F'(u) = 0927 (u) N2 denotes the free boundary of the solution
uw and we point out that the set F'(u) is an unknown of the problem. Indeed,
we want to discover more information about the properties of the set F'(u).
For instance, is F'(u) a graph? Is F(u) regular? Which type of regularity
does F'(u) satisfy?

Figure 1 describes a possible geometrical situation associated to free bound-

ary problems.
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|[Vu| =1
on F(u)

Au=f

Figure 1: Example of free boundary problem (1).

An important contribution in the comprehension of the problem in the
homogeneous case has been obtained by L. Caffarelli in a series of papers,
[4], [5], [6], see also [8] for a complete bibliography. Further results about the
non-homogeneous problem are collected in [11], [12] and [13].

Before studying the regularity of F'(u), it is necessary to spend some words
about the correct setting of our problem. In our case, at first we need to
introduce the definition of viscosity solution, otherwise some difficulties about
the correct notion of solution may arise. For instance, it is known that the
regularity up to the boundary of the solution of a Dirichlet problem, in a given
set, depends on the regularity of the boundary itself. Consequently, a free
boundary problem cannot be reduced to a Dirichlet problem, otherwise the
condition |Vu| =1 on F(u) could be meaningless in the classical sense (see

Lemma A.4 in Appendix A). For example, in case F'(u) was not smooth,
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which is the right meaning of the condition |Vu| = 1 on the set F(u)?
Caffarelli faced the problem in a geometric sense, by applying many ideas
coming from the viscosity theory thanks to the flexibility of these notions.

The problem (1) is a particular case of the following family of problems

discussed in [11]:

> ai(@)u; = [ in QF(u) == {z € Q:u(z) > 0}, )
|Vu| =g on F(u) :=0Q%(u) NQ.

Here €) is as usual a bounded connected set in R and u;; denotes the second
derivative of u with respect to z;, ;. We also assume the following hypothe-
ses: the coefficients a;; € C%P(Q), f € C(Q)NL®(Q) and g € C*P(Q), g > 0.
Moreover, the matrix (a;;(x))1<; j<n is positive definite, that is there exists
A > 0 such that V& € R™\ {0}, Vo € Q, A(z)¢-€ > M|¢|°. Thus, in case
(@ij(%))1<ij<n = (0ij)1<ij<n and g = 1, we obtain (1).

We deal with viscosity solutions of problem (2), see Chapter 1 for this defini-
tion and the Appendix B for basic definitions about viscosity solution theory.

The main theorem in [11] is the following one:

Theorem 0.1 (Flatness implies C'*). Let u be a viscosity solution to (2)
in By. Assume that 0 € F(u), g(0) = 1 and a;;(0) = d;;. There exists a

universal constant £ > 0 such that, if the graph of u is £-flat in By, i.e.
(x, — &)t <u(z) < (z,+&)", x€ B,

and

[a’ij]COvﬁ(Bﬂ S £, ||f||L°°(Bl) S g, [9]0075(31) S g,

then F(u) is C* in By s.

The key idea described in [11] concerns the fact that a flat set to any
scale has to be C'h*-smooth.
The strategy used in [11] for proving Theorem 0.1 can be summarized as

follows:
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(i)

assuming that

Iy S €% 9= Ulpm@ £ €% llaig = dill pooo) < &

with 0 < € < 1, then a Harnack type inequality is satisfied by solutions
of problem (2).

Roughly saying, with the Harnack inequality we achieve that if the
graph of u oscillates er away from z;7 in B,, then it oscillates (1 — ¢)er
in B, /5. This property reproduces the effects of the classical Harnack
inequality, even if in a different context, on the solutions of problem
(2). In this framework, we remark that the Harnack type inequality is
rather different from the classical one, see Theorem 2.1, in comparison

with the classical Harnack inequality, see Theorem C.7 in Appendix C;

from previous Harnack type inequality, follows that the graphs of the
solutions of problem (2) enjoy an “improvement of flatness” property.
In other words, if the graph of a solution oscillates ¢ away from a
hyperplane in By, then in B,, it oscillates erq/2 away from, possibly,
a different hyperplane. This fact is introduced in the “improvement of

flatness” lemma, see Lemma 3.1;

length = 2¢
F(u)

length = erg

Figure 2: Improvement of flatness
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(iii) in conclusion, Theorem 0.1 follows from the “improvement of flatness”
lemma via an iterative argument, see Theorem 4.2 and its proof in
Chapter 4.

We point out that Theorem 0.1 also follows from the regularity properties of
solutions to the following classical Neumann problem for the Laplace operator
in a half plane:

Au=0 in B,N{x, >0},

(3)

8‘977:;:0 on B, N{x, =0},

where 38771 denotes %, and v is the inward pointing unit normal vector respect
to B, N {x, = 0}. In this case, v = e,.

In order to clarify this claim, we argue in this way, see for instance [8].

Let u be a solution of (1). We ask for every small € > 0 that u. = u + ey
has to be still a solution of (1) for a proper choice of a function . As a

consequence, since Au, = f, we have
f=Au.=Au+ep) =Au+eclAp = f+eAp,

thus
eAp =0

and, recalling that € > 0,
Ap = 0.

Moreover, |Vu.| = 1 implies
V| =1 |Vu|* =1 & |Vul|* + 2eVu - Vo + % V| = 1.
Therefore, seeing as how |Vu|2 =1, we have, inasmuch ¢ > 0,
c(2Vu- Vo +¢|Ve’) =0 ¢ 2Vu - Vo + ¢ |Ve> =0

and for ¢ — 0, we obtain
2Vu -V =0,

that is
Vu-Ve =0.
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Now, on F(u), |[Vu| = 1 and hence Vu # 0. Then, the inward pointing unit

normal vector is v = \g_uul’ thus from Vu - V¢ = 0, we also get, inasmuch as
|Vu| >0,
Vu Op
Viu| = Vp=0rv-Vpop=0 — =0
Vil 7 V¥ vovy ov

namely g—f =0 on F(u), whenever F'(u) is sufficiently smooth.

Summarizing, ¢ satisfies:

Ap =0 in Q" (u)

%‘5:0 on F(u).

Ue —U

As a consequence, recalling that wu,. is a solution, we can expect that ¢ =
is indeed a solution to the transmission problem (3). In our case, let be given
a solution u of our free boundary problem. We subtract to u the special so-
lution (x - v)* and we divide by € > 0 in a neighborhood of 0. Here, we have
assumed that 0 belongs to F'(u) and v is a constant vector. We expect that
“==% is a solution to (3) when e goes to 0. As a byproduct, the function u, in
some way, inherits the regularity properties of the solutions of the Neumann
problem.

We would like to spend few words about the importance of problem (1). In
literature there is a typical model problem arising in classical
fluid-dynamics.

We roughly describe this physical situation (see [13]) representing a one-phase
problem: a traveling two-dimensional gravity wave of an incompressible, in-
viscid, heavy fluid moves with constant speed over a horizontal surface. Since
the fluid is incompressible, the flow can be described by a stream function u

which solves the following free boundary problem (in 2D):

Au = —vy(u) in Q:={(z,y) e R?: 0 < u(z,y) < B},
0<u<B in O

u=Db ony =0,

\|Vu|2+2gy:Q on S :={u=0}.
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v u=20
on S
[Vul” + 29y = Q
on S
S, the free boundary
: :
i . e
a ' |
' y=0 i
u=0B _
ony =20 Au = —(u)

Figure 3: Geometrical representation of the physical example in R2.

Here () is a constant, B, g are positive constants, v : [0, B] — R is called
vorticity function and S is the free boundary of the problem, whenever a
function u satisfying the above system exists. Given that u~ = 0, we have a
one-phase free boundary problem.

In this thesis, we adapt the proof of Theorem 0.1 to slightly more general
operators having an additional term depending on the gradient of the solu-
tion. In this way, we study the free boundary regularity for a solution to the

following problem:
Yaii(x)uy + > bi(x) -u; = f in QF(u) == {z € Q:ulx) >0},
i i
IVu| =g on F(u) := 00t (u) N,

with b; € C'(2) N L*>°(Q2) and assuming the conditions listed in (2) on 2, f, ¢
and a;;. Furthermore, u; denotes the derivative of u with respect to ;.

In the long run, we also would like to extend our investigation to two-phase
problems starting from the results described in: [12], [14], [17],[18], [19], in
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order to prove further regularity results, for instance higher regularity of the
free boundary for fully non-linear operators, see [15] and [16].

Moreover, we also would like to improve this research, by attacking the non-
homogeneous one-phase parabolic problem. Indeed, concerning evolutive
problems, there exist few regularity results, see for instance [2] and [3] in
the homogeneous framework.

In perspective, further new interesting problems that we would like to con-
sider are associated with degenerate operators like the Kohn-Laplace one in
the Heisenberg group.

Specifically, this thesis is organized as follows. In Chapter 1, we introduce
notation, definitions and results, which we will use throughout the paper,
and we prove a regularity result for viscosity solutions to a Neumann prob-
lem which we will use in the proof of Theorem 4.2.

Next, in Chapter 2, we prove our Harnack inequality. In Chapter 3, we prove
the main “improvement of flatness” lemma, see Lemma 3.1, from which The-
orem 4.2 will follow by an iterative argument. In Chapter 4, we exhibit the
proofs of Theorems 4.2 and 4.1. From Chapter 1 to Chapter 4, we strictly
follow the organization of the paper [11]. In particular, we review the proofs
showing all the details. In Chapter 6, we analyze the same problem in the
case of operators with additional term depending on the gradient. For expo-
sure convenience, we conclude the work with an Appendix. This conclusive
part is subdivided in some sections collected by homogeneity arguments. In-
deed, we list some more or less well-known results in literature by showing
in many cases a detailed proof. The main goal of this Appendix, hopefully,

is helping the reader in the comprehension of all the steps of this thesis.
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Chapter 1
Prerequisites

We introduce, in this chapter, some tools which will be used throughout
the work. We also present an auxiliary result, Lemma 1.8, which will be
useful in the proof of our main Theorem 4.2.

Let us start with notation.
B,(x9) C R™ denotes the open ball of radius p centered at z, and we write
B, = B,(0).

For any continuous function u :  C R™ — R we denote
Q" (u) :={x e Q:u(z) >0}, F(u):=092"(u)NQ.

We refer to the set F'(u) as the free boundary of u, while Q7 (u) is its positive
phase (or side).

We remark that, since u is continuous, then obviously u = 0 on F'(u).
Indeed, the continuity of u implies that the set Q7 (u) is open, thus if zo €
QF(u), we can find a ball B,(z), such that B,.(z) C Q" (u), and hence B,(x)N
QF (u)e = 0.

Analogously, the continuity of u also entails that the set {z € Q : u(z) < 0}
is open, therefore, if z € {z € Q: u(z) < 0}, we can find a ball B,(x) such
that B.(z) C {z € Q: u(x) < 0}, in other words B,(z) N Q*(u) = 0.

Now, if z € F(u), in particular z € Q" (u), thus we have B,.(x) N Q" (u) # 0
and B,.(x) N QT (u)¢ # 0 VB,(z), so for what we have said above, x ¢ QT (u)
and x ¢ {x € Q:u(x) <0}, that is necessary u(z) = 0.

1
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In this thesis, we deal with the one-phase free boundary problem
> aij(x)ug; + 3 bi(x)u; = [ in QF(u),
inj i

\Vu| =g on F(u).

(1.1)

Here Q is a bounded domain in R™ (a domain is a connected open subset),
aij € C%P(Q), b; € C(Q) N L>(Q), f € C(Q)NLXQ), g€ C¥(Q),g>0,
the matrix (a;;(z)) is positive definite. Formally, u; denotes the derivative of
u with respect to x;, while u;; the second derivative of u with respect to ;,
xj.

Specifically, we begin our analysis from the particular case given by b; = 0

for every ¢+ = 1,...,n, i.e. with the one-phase free boundary problem
Zaij(:c)uij = f n Q+(’LL),
i\ (1.2)
[Vu| =g on F(u),

which has been studied by Daniela de Silva in [11].
We state the definition of viscosity solution to (1.2) and for this purpose,

we need some basic notions.

Definition 1.1. Given u,¢ € C(Q2), we say that ¢ touches u from below
(resp. above) at xy € Q if u(xy) = p(zo) and

u(x) > () (resp. u(x) < ¢(z)) in a neighborhood O of x.

If this inequality is strict in O \ {zo}, we say that ¢ touches u strictly from

below (resp. above).

Definition 1.2. Let u be a nonnegative continuos function in 2. We say
that u is a wviscosity solution to (1.2) in € if the following conditions are
satisfied:

(1) Y aij(@)u;; = f in Q1 (u) in the viscosity sense, i.e. if p € C*(QF(u))
i?j
touches u from below (resp. above) at xyp € QT (u) then

> aii(wo)pii(wo) < fxo) (fesp- > aij(wo)pij (o) > f(-’Bo)> :

i,7 i,



(i) If p € C*(Q) and ¢ touches u from below (resp. above) at 2y € F(u)
and |Vo| (z¢) # 0 then

Vel (z0) < g(o)  (resp. [Vpf (o) = g(0))-

At this point, we provide the notion of comparison subsolution / super-

solution, which is useful to be able to employ comparison techniques.

Definition 1.3. Let v € C%*(Q)). We say that v is a strict (comparison)
subsolution (resp. supersolution) to (1.2) in Q if the following conditions are

satisfied:

(i) iz;al-j(x)vij > f(x) (resp. iz;aij(x)vij < f(a:)) in QF(v).

(i) If zp € F(v), then

|Vl (z9) > g(zo) (resp. 0 < |Vul|(zg) < g(z0)).

Remark 1.4. We point out that, if v is a strict subsolution / supersolution
o (1.2), from (ii) in Definition 1.3, |[Vv| > 0 on F(v), which gives Vv # 0
on F(v). Therefore, recalling that v € C%*(Q), v =0 on F(v) and Vv # 0 on
F(v), we can apply the implicit function theorem and we obtain that F'(v)

is a C? hypersurface.

The following lemma is an immediate consequence of the definitions above.
Lemma 1.5. Let u,v be respectively a solution and a strict subsolution to
(1.2) in Q. If u>v" in Q then u > vt in Q1 (v) U F(v).

Proof. Assume for contradiction that 3 xy € QT (v) U F(v) such that
u(xg) = v+ (o).
We have two different cases.
(i) If zp € QT (v), i.e. v(xg) > 0, vT(zg) = v(xp).
Therefore, since v > v™ in Q D QF(v), Vo € QT (v)



1. Prerequisites

that is © € Q" (u) and thus Q" (v) C QT (u).

In particular, given that xy € Q(v), o € Q7 (u).

Using that u(xg) = v (xg) = v(xg), namely u(xg) = v(xg), together
with the fact that v > v™ > v in €, in other words u > v in €2, since
() is open, we can find an open neighborhood O of xy where u > v
in O and u(xy) = v(zg), so we obtain that v touches u from below at
xo € QF (u).

In addition, v € C?(2%(u)) because v is a strict subsolution to (1.2)
and thus v € C*(Q), therefore, given that u is a solution to (1.2), we
get

> aij(wo)vij(x0) < f (o). (1.3)
4]
On the other hand, since v is a strict subsolution to (1.2), we have

Zaij(x)vij(x) > f(x) in QT (v)

¥

and hence, since xy € Q1 (v),
>~ aij(wo)vij(wo) > f(wo),
i,J

which entails from (1.3)

f(x0) < Zaij(fo)vij(%) < f(zo),

namely f(x¢) < f(xo), which is a contradiction.

If 2y € F(v), v(zg) = 0 = v (xg) = u(zp), that is u(zg) = 0 and
v(zg) = u(zo). Furthermore, VB, (z0), B.(2o) Q" (v) # 0 and B,(z0)N
QO (u)° £0.

Since Q*(v) C QT (u) from case (i),

By(30) N0 (u) 2 By(wg) N QF(v) £ 0

and thus B,.(x¢) N QT (u) # 0, VB, (o).
This fact, together with u(zg) = 0 and so B,.(zo) NQT (u)¢ # 0 VB,.(xy),



implies that zo € F'(u).

Now, inasmuch v is a strict subsolution to (1.2) and z¢ € F'(v), we have

V| (20) > g(x0), (1.4)

in other words, seeing as how g(xy) > 0,
|VU’ (Io) > 0,

and hence

Vol (o) # 0. (1.5)

Moreover, v € C?(Q) since v is a strict subsolution to (1.2), and v*
touches u from below at xg € F(u), given that v (zg) = u(xg), v <w
in €, with €2 open and as a consequence, we can find an open neigh-
borhood O of zy where u > v™*.

These two conditions, together with (1.5) and the fact that u is a so-

lution to (1.2), give us
Vol (z0) < g(o)
that is, from (1.4),
9(@o) < [Vv[(z0) < g(wo),

i.e. g(zo) < g(xg), which is a contradiction.

Hence, ## 79 € Q% (v) U F(v) such that u(zg) = v*(z9), hence, because
u>v"in QD QF(v) U F(v), namely u > v* in Q% (v) U F(v), u > vT in
Qf(v) U F(v). O

Our main Theorem 4.2 will follow from the regularity properties of solu-

tions to the classical Neumann problem for the Laplace operator. Precisely,

we consider the following boundary value problem:

Au=0 in B,N{z, > 0},
N1 } (16)
i, =0 on B,N{x,=0}.
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Here u,, is the normal derivative of @, which corresponds to aax_i? since the
unit normal vector to the surface B, N {z,, = 0} is e,.

We use the notion of viscosity solution to (1.6). For completeness (and for
helping the reader), we recall standard notions and we prove regularity of

viscosity solutions, see also Appendix B.

Definition 1.6. Let @ be a continuos function on B, N {x, > 0}. We say
that @ is a wiscosity solution to (1.6) if given a quadratic polynomial P(x)

touching @ from below (resp. above) at z € B, N {x, > 0},

(i) if z € B, N {x, > 0} then AP <0 (resp. AP >0), i.e. @ is harmonic

in the viscosity sense;

(ii) if z € B, N {x, = 0} then P,(z) <0 (resp. P,(z) > 0).

Remark 1.7. Notice that in the definition above we can choose polynomials
P that touch u strictly from below/above.

Indeed, suppose that Definition 1.6 holds for polynomials that touch u strictly
from below/above. Let then P be a polynomial touching @ from below at
z e B,Nn{x, >0}, ie

and
P(z) < a(z) in a neighborhood O of .

Let now
P,(x) =P(x) —nl|z — :Z’|2.

Notice that, with n > 0, we have
Py(x) = P(x) = |z — 2" < P(z) < @(z) in O\ {a},

in other words

P,(z) < P(z) inO\ {7}, (1.7)

and



namely

Pn)(z) = a(x). (1.8)
Consequently, from (1.7) and (1.8), we achieve that P, touches @ strictly
from below at z € B, N {z, > 0}.
Suppose now that z € B, N {z, > 0}.
Since P, touches @ strictly from below at z, from (i) of Definition 1.6, we

have
APn:iaa—;(P(x)—m:c—f]Z):iaa—;( Z —x])
= g (e 20) =2 (5 )

n 2P
= op Z2n_AP—2n77<0

that is
AP, = AP —2nn <0. (1.9)

Now, if we let 17 go to 0 in (1.9), we obtain
lim AP, = AP <0,
n—0

and thus P satisfies (i).
Assume, instead, that z € B, N {z, = 0}.
Always since P, touches @ strictly from below at Z, from (ii) of Definition

1.6, we have

j=1
oP oP
= _— — 2 — 7 T) = T <
<axn (z) n(Tn xn)) (Z) oz, (z) <0,
in other words op
7) < 1.1
o () <0 (1.10)

and hence P satisfies (ii).

At the same time, if P touches @ from above at z € B, N {z,, > 0}, we use
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the same argument, with slightly differences. Specifically, we have opposite
inequalities in (1.9) and (1.10) and we take n < 0 in P, so that P, touches @
strictly from above at Z.

Also, it suffices to verify that (ii) holds for polynomials P with AP > 0.

Indeed, let P touching u from below at  and thus we have
u(z) = P()
and
P(z) < a(z) in a neighborhood O of z.

Then

P =P —n(z, —Tn) + Cn) (2 — Tp)°

touches @ from below at z for a sufficiently small constant 7 > 0 and a large
constant C' > 0 depending on 7.

Precisely, P satisfies
P(z) = P(z) = (T, — Tp) + C(n)(Tn — 7,)* = P(T) = u(7),
P(z) = a(z), (1.11)

and

in other words

P(z) <a(z) in O, (1.12)

with 77 > 0 and C(5) > 0 chosen so that P verifies (1.12).
Notice that

O c B,N{x, >0},

so since = € B, N {z,, = 0}

Tp—Tp >0 1in O.



Also,

n 2

ap=y 2 (Pm e — B0) + O — >)

n—1
d (0P o (0P )
- ZZ Ox; (a$z> * oz, (8% =+ 2000 (@ — In))

namely

AP >0, (1.13)

choosing C(n) > —&F, C(n) > 0 and such that 5 and C(n) satisfy (1.12).

Furthermore,

Bui) = - (P(x) s — Ta) + ) (2 — >) (@)

= (Pu(2) =0 +2C(0) (w0 — 2))(7) = PalT) — 1,

which gives

Po(T) = Po(T) — 1. (1.14)
Now, from (1.11) and (1.12), we achieve that P touches @ from below at
z e B,Nn{x, =0}.
Therefore, if (ii) holds for strictly subharmonic polynomials, inasmuch AP >
0 from (1.13), we get from (1.14)

P,(z)=P,(z)—n <0

that is P,(Z) <, which by letting  go to 0 implies P,(Z) < 0 and thus P
satisfies (ii).

Analogously, if P touches u from above at Z, we have
P(z) = u(T)

and

P(xz) > a(z) in a neighborhood O of .
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Then

P=P- n(xn — Zn) + C(n)(zn — jn)Q
touches u from above at & with a constant n > 0 sufficiently small and a
large constant C' > 0 depending on 7 such that P(z) > P(x) > @(z) in O.
Exactly with the analogous computations used to get (1.13) and (1.14), we

obtain
AP >0
and
pn(j) = P,(Z) —n.
Now, if (ii) holds for strictly subharmonic polynomials, we get
Po(z) = Pu(z) =0 >0
that is P, (z) > n > 0, which by letting 1 go to 0 implies P,(Z) > 0 and thus
P satisfies (ii).

We show now that viscosity solutions to (1.6) are smooth up to boundary,
using a classical argument consisting on an extension by reflection of the

function.

Lemma 1.8. Let @ be a wiscosity solution to (1.6). Then @ is a classical
solution to (1.6). In particular, w € C*(B, N {x, > 0}).

Proof. Let

I~g1

(x) if € B, N {x, > 0}
u'(z) =
w2, —x,) ifxe B,N{x, <0}
where 2’ = (zq,...,2,_1).
We claim that «* is harmonic (in the viscosity sense), and hence smooth,
in B,,.
Precisely, let P be a polynomial touching u* at € B, strictly from below (for
what we have remarked before, in Definition 1.6 we can choose only polyno-

mials that touch possible viscosity solutions strictly from below/above). We

need to show that AP < 0. Clearly, we only need to consider the case when
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z € {x, =0}.
Indeed, if Z, # 0, we can use the fact that @ is a viscosity solution in
B, N {x, > 0}.

In particular, we have two different cases.

(i)

If z, >0,z € B,N{x, > 0} and we have
u*(z) = u(z).

So, since

u*(xz) =u(x) ifze B,N{x, >0}

and P touches u* strictly from below at Z, P touches u strictly from
below at z, provide that making the neighborhood smaller to remain
in B, N {z, > 0}, if necessary.

Hence, because 1 is a viscosity solution to (1.6) and z € B,N{z,, > 0},
we get AP < 0.

If z, <0,z € B,N{x, <0} and we have
u*(Z) = u(T', —7,).

Also,

/

u*(x) = u(2',—x,) ifxre B,N{z, <0}

and if we define

p(x) = P(xl7 _xn)a
P touches @ strictly from below at (Z', —%,), since P touches u* strictly
from below at z, provide that making the neighborhood smaller to
remain in B, N {x, < 0}, if necessary.

Sure enough,
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and

P(z',—x,) = P(x)
in a neighborhood O C B, N {x, < 0}.

<u*(x) =a(x',—x,)
Now, @ is a viscosity solution to (1.6) and (', —z,) € B, N {z, > 0},
since || Z|| = ||(Z, —=Z,)|| < p, so we get AP < 0.
Moreover, inasmuch P is a quadratic polynomial, AP is a constant so

AP = i 88; (P(m’, —xn)>

(2

i=1

n—1
o (0P o (0P,
(Gt =o0) = 5 (e’ =)

- —1 81’1 aZC@
n—1
P\ 9P\
— ; (ax?)(az,—azn) + (ax%>(x,—xn)
= AP,

in other words
(1.15)

AP = AP

and thus AP < 0 because AP < 0.

Hence, remain to consider only the case when z € {x,, = 0} .

Consider the polynomial
P(x) + P(z', —xy)

Then, from (1.15),
AS =

and

Q

(P + P =) )@'0)

(0) + (—1)(P) (@, —m) (!, 0)

~
H\
=
I

Y

Q
8
3

S~ N7 N7 N
=

N~ N = N~



All in all, we have
AS = AP, S,(2,0)=0. (1.16)

Also, S still touches u* strictly from below at z.

Indeed, we know that P touches u* at ¥ € B, strictly from below, thus
u'(z) = P()
and
P(z) <u*(z) inO\ {z}

where O is a neighborhood of z, O C B,.
Remark that, since z € {z,, = 0},

z = (7,0).
Hence,
S(7) = S(F,0) = (P (z) + Pz(“"" _‘”")) (#.0)
_ % <P(£’, 0) + P(¥, 0))
_ %(213(3:«', 0)) = P(#,0) = P(z) = u*(2).
Furthermore,
S(z) = P(z) + PQ(JJ’, —Ty) _ u*(z) + u;‘(x’, —Zy) Ve e O\ {7},

where O’ C O is a neighborhood of Z symmetric respect to B, N {x, = 0}, if
O is not.
Thus, if we show that

u*(z) + u* (2, —xy)
2

= u’(x)
we get that S touches u* strictly from below at Z.
Now, if z € B, N {z, > 0}, (¢/, —z,) € B,N{z, <0} and

u*(z) +ut (2!, —x,)  a(r) + a2, —(—z,) 1, . PN
5 = 5 = 5(2u(2)) = a(z) = u*(z)
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and analogously if x € B, N {z, =0}, since z = (2/,0) = (2/,—0) and
u*(z) = u*(2’,0) = a(a’,0).
Instead, if € B, N {z, <0}, (', —x,) € B,N{z, > 0} and

w'(x) +ut(@, —p) _ale!, —w,) +a(@’, —x,)

2 2

= %(2@(1”, —z,)) = w(@', —x,) = u*(z).

Hence . .y
u*(z) = () + u2(x , ~%n) Vz € B,

and S touches u* strictly from below at z.

Now, consider the family of polynomials
S.=S+ex,, >0

For € small S, will touch u* from below at some point ., since S touches u*

strictly from below at z.
Indeed, since O C B, and u* € C(B,), S € C(B,), it suffices to take
min(u*(z) — 5(x))

8<ar:EO

sSup T
z€0

where O is the neighborhood of T where S < u*, and we obtain

S(x) +ex, < S(x)+esupz,

z€0
min(u* () — S(x))
< S(z) + =2 sup o,
Sup T, 2O
€O
— S(z) + min(u* () — 5(x))
z€0

< S(z) +u(z) — S(z) =u"(z) in O.

Therefore, because O is open, we can find a neighborhood O’ of x. where
Se <wu* and S.(x.) = u*(x.).

Now, if z. belongs to {x, = 0}, u*(z.) = u(x.) and thus S. touches @ from
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below at x., in a neighborhood given by the intersection of O" with B, N
{z, > 0}.
Hence, since 2. € {x,, = 0} and 4 is a viscosity solution to (1.6), u,(x.,0) =0

in the viscosity sense, so we obtain

(Sl 0) = - (84 20, ) 02,0

= (S, +¢e)(zL,0) = S, (2L,0) +£ <0

which implies S, (2Z,0) < —e < 0, contradicting (1.16).
Thus z. € B, \ {z, = 0}.
Now, since S, touches u* from below at x., repeating the argument used to

analyze the cases when = € {z,, # 0}, we get from (1.16)
AS. = AS+ A(ex,) = AS=AP <0,

1.e.

AP <0.

Analogously, if P touches v* at € B, strictly from above, we obtain
AP > 0.
In conclusion, u* is harmonic in the viscosity sense in B,.

Now, we want to show that «* is harmonic in B, in the classical sense.
g p

Remark. Notice that there is an other definition of harmonic function in the

viscosity sense.

Definition 1.9. Let Q@ C R™ be an open connex set. Let u € C(£2). We
say that w is harmonic in the viscosity sense if the following conditions are

satisfied:

(i) For every ¢ € C?*(Q) and for every zy € Q, if u — ¢ realizes a local

maximum at x, then Ap(zy) > 0.

(ii) For every ¢ € C?*(Q) and for every zy € Q, if u — ¢ realizes a local

minimum at xo, then Ap(xy) < 0.
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Recall that u — ¢ realizes a local maximum \ minimum at z, if there exists

a neighborhood of 2y where u — ¢ has a maximum \ minimum at x.

We need to show that the definitions are equivalent. For exposure conve-

nience, we repeat the definition with polynomials.

Definition 1.10. Let Q2 C R™ be an open connex set. Let u € C(2). We
say that u is harmonic in the viscosity sense if the following conditions are
satisfied:

(i) If P is a quadratic polynomial touching u from below at xy € €2,
AP <0.

(ii) If P is a quadratic polynomial touching u from above at zy € €2,

AP > 0.

Now, suppose that Definition 1.9 holds. If P is a quadratic polynomial
touching u from below at zy € Q, P € C*(Q) and u — P realizes a local
minimum at zp, so we get AP(xg) = AP < 0. Analogously, if P is a
quadratic polynomial touching u from above at zy € 2, P € C*(Q) and
u — P realizes a local maximum at xy, so we obtain AP(zy) = AP > 0.
Hence, Definition 1.9 implies Definition 1.10.

Conversely, suppose that Definition 1.10 holds and we take ¢ € C?(Q) that

u — @ realizes a local maximum at xq € €, that is
u—@ < (u—p)(rg) in a neighborhood O of x. (1.17)

Since ¢ € C?*(2), we can write the Taylor expansion of ¢, that is

pla) = plao) + Vi(zo) - (2 — 0) + 5 Dpl0)(z — 20) - (z — 0)

+ o(|z — :130|2).
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Therefore, from (1.17) we achieve

u(w) < () + uleo) — o)
= (o) + Viplao) - (x — 70) + 5 D*p(ao)(w — w0) - (z — 70)
+o(|z = zo[*) + u(zo) — (o)
= u(wo) + Viplwn) - (& — 10) + 5 D (o) (& — ) - (2 — 70)
+ o]z — mo|*) = Py (2) + ojz — 20)*) in O,
in other words

u(x) < Py () + 0|z — 20)*) in O, (1.18)

where
Pro() = ulo) + Viplao) - (2 = 0) + 5 Do) (& — o) - (& — )

is a quadratic polynomial.
Also, if we fix € > 0,

o[z = xol*) < el — xo|*,
thus from (1.18)
w(x) < Pyy(z) + ez — x> Yz eO. (1.19)
Now, we define
P.(z) = Py () 4+ €|z — z0|*. (1.20)

Notice that P. is still a quadratic polynomial, since F,, is a quadratic poly-
nomial.

We can rewrite P. as
1
P.(z) = u(xo) + V(xo) - (x — x0) + §(D2go(xo) +2el)(x — xp) - (x — xp).

In particular, we have
P.(x9) = u(xp)
and, in view of (1.19) and (1.20),
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that is P. touches u from above at zg € ().

Hence, from Definition 1.10, we obtain

AP, = Za 2( u(zo) + V(o) - (2 — x0)
(D*p(xg) + 2¢1) (2 — x) - (2 — xo))

= Z %(u@o)) + Z %( ‘ gz (o) (@; — xoj)>

N | —

(
(

=3 (5t 4 52 o (25w - )
(2

ox;
iQ (x0)(zn — 0o,) —|—i 0 2e(x; — xo,)
0xp0x; " — 0x; ‘ !

:_Zz (2o +22 _Za 2 (20) +2521
=1
:Ago(xo)+25n20,

namely

AP. = Ap(xg) + 2en > 0,

and letting € go to 0,

lim AP. = hm (Ap(zg) + 2en) = Ap(zg) > 0,

e—0
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that is Ap(xg) > 0.

Analogously, repeating the same argument, if ¢ € C*(Q2) and u — ¢ realizes
a local minimum at zy € 2, Ap(zq) < 0.

To sum it up, Definition 1.10 implies Definition 1.9 and thus Definition 1.9

and Definition 1.10 are equivalent.

Now, u* satisfies Definition 1.10 in B, thus u* also satisfies

Definition 1.9.

We want to show that if u* satisfies Definition 1.10, «* is harmonic in the
classical sense.

Notice that, since @ € C(B, N {z, > 0}), u* € C(B,).

First of all, we prove that for every ball B, CC B,,

maxu* = maxu® and minu* = minu®.
B, OB, B, 0B,

Fix B, CC B, and assume for contradiction that maxu* # maxu*.

. OB,
In particular, because 0B, C B,, it means that maxu* > max u*, i.e. there
B, By

exists xg € B, such that u*(z¢) = maxu* and u*(zg) > M = max u*.
B .

Let us define now the auxiliary function
w(z) =u* — (M — |z —z0)), >0,

in such a way that w(z) < w(xy) on 0B,.
To obtain such a function, it is sufficient to remark that Vo € 0B,, given

that | — xo| < |z| + |zo|, |z| =7, |x0| <7 and u*(x) < M,

*

u (r

w(z) M +ela — ol

(z) —
< (@) = M+ e(|z| + |wo|)*
< u*(z) — M +g(2r)?

() -

u

xz

x) — M + der? < 4er?

and require that 4er? < w(xg) = u*(zy) — M in order to get w(z) < w(x)
on 0B,.
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u*(zo)—M
4r2

Thus for every € < there exists x. € B, such that

max w = w(x.), (1.21)
By

seeing as how w|gp, < w(x) and zy € B,, so maxw is reached in an internal

B,
point of B,.

In this case the function ¢, = M — ¢ |z — 20| is C*(B,) and z. € B,.
At this point, in view of (1.21), Va € B, we have

w(2) = pe(2) = w(z) < w(z:) = u'(2:) — p:(ze),

that is z. is a maximum for u* — ¢, in B,.

Also,
Age(z.) = (27(M ~elo-anf ) )

0
0
_ (inl aa—;(M) +i8i;(_€i($h —$0h)2>)<x6)

i= g

_ i 83_;( e — xoi)2) (2.) = <§ aii ( — 2(a; — m))) (x.)

in other words

Ap.(x.) = —2ne < 0. (1.22)

Now, since u* is harmonic in the viscosity sense, p. € C?*(B,) and u* — .

realizes a local maximum at x.,
Ap.(z:) > 0,

which contradicts (1.22).
Thus, for every ball B, CC B,,

maxu* = maxu®
B, B,
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and analogously, repeating the same argument,

minu* = minu*.
B, 0B,

Let us prove now that u* € C?(B,).
The strategy is the following: let us fix B, CC B, and taking h solution of
the Dirichlet problem

Ah=0 1in B,

h=wu* on 0B,.
We want to show that h = u* for every x € B,.
We know that, since h is solution of the Dirichlet problem, u* — h € C(B,).
For every ¢ € C*(B,) such that

(u" = h) = < (u” = h) (o) — ¥ (x0),

with zo € B,, we get Ay(xg) > 0 because

u' = (h+¢) = (u" —h) = ¢ < (u” = h)(20) — Y(20) = " (x0) — (h +©)(x0),

that is h + ¢ € C?*(B,) (h is solution of the Dirichlet problem) is such that
u* — (h + 1) realizes a local maximum at z.
Therefore, inasmuch »* is harmonic in the viscosity sense and A is solution

of the Dirichlet problem in B,,

As a consequence, u* — h satisfies Definition 1.9 and, as a byproduct, for

what we have seen before, u* — h satisfies the maximum principle, namely

Iglé{l(u —h):r%n(u —h), Igg:((u —h)zm}gx(u —h).

In particular, we have Vx € B,

0 = min(u" —h) = min(u* —h) < u* —h < max(v* —h) = max(u*—h) =0
0B, B, B, 0B

Hence, u* — h = 0 in B,, i.e. v* = h in B, and since h is solution of the
Dirichlet problem in B,, u* € C*(B,).



22 1. Prerequisites

Now, since B, is a compact, we can cover B, with a finite number of balls

B,, where u* is equal to the solution of the Dirichlet problem in B, and

u* € C*(B,), thus u* is harmonic in the classical sense in B, and u* € C*(B,).

In particular u* € C*(B,), hence @ € C*(B, N {x, > 0}) and is harmonic

in the classical sense in B, N {z, > 0}, in other words,

At =0 in B,N{x, >0} in the classical sense.

(1.23)

Remain to show that @ satisfies @, = 2~ = 0 on B,N{x, = 0} in the classical

sense.
First of all, notice that 2 exists on B, N {z,, = 0}, because
ue C(B,N{x, > 0}).

Analogously, g% exists on B, N {x, = 0}, given that u* € C*(B,).

In addition, if z € B, N {z, = 0},

ou (%) = lim u* (T + te,) — u*(T) — i Y (T +te,) —u (i‘)

&rn t—0+ t t—0~ t

Now, if z € B,N{z, =0}, z = (z/,0) and

u*(T + te,) — u*(Z) u (7', t) — u*(7',0)

lim = lim
t—0+ t t—0+ t
S ) — a(E N
= lim U(x ’ ) u(x ’0) = au (fly 0)7
t—0+ t axn

seeing as how ¢t > 0, hence u*(Z',t) = (7', t), while

o u (T +te,) —u*(x) lim u*(z',t) — u*(7',0)

t—0— t t—0— t
~ = / ~ .
) @ 0) ) — a0
t—0~ t t—0- —t
S(ml ) ~ =1 (A
—  lim a(z', —t) — a(x',0) et a(z',h) —u(z',0)
t—0— —t h—0+ h
ou ,_,
= (%0
ox, (#,0)

since ¢t < 0, hence u*(¥',t) = u(z’, —t).
Therefore, from (1.24), (1.25) and (1.26), we achieve
ou ot

—/ Y
Fee@.0) = == (&,0)

(1.24)

(1.25)

(1.26)
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and thus 94
u
0)=0.
oz, (,0)

For the arbitrariness of 2 € B, N {z,, = 0}, we get

ou : .

P 0 on B,N{z, =0} in the classical sense. (1.27)

Ln

In conclusion, from (B.13) and (B.15) we obtain that @ is a classical solution
of
Au =0 in B, N {x, > 0}

i, =22=0 on B,N{x,=0}.

Tn






Chapter 2

A Harnack inequality for a
one-phase free boundary

problem

In this chapter, we will show that a Harnack type inequality is satisfied

by a solution u to our problem

> ai(@)u; = [ in QF(u),

(2.1)
Vul =g on F'(u),
under the assumption (0 <& < 1)
1@ <% llg = Uiy < &%l = diglliee) < e (2:2)

This theorem, although it is called “Harnack inequality”, is rather different
from the classical Harnack inequality.

Indeed, it roughly says that if the graph of u oscillates er away from z;" in
B, then it oscillates (1 — c)er in B, /9, with 0 < ¢ < 1.

As regards the proof of this Harnack inequality, it relies on Lemma 2.3,
which will be introduced and proved after the statement of the theorem.
As a matter of fact, before Lemma 2.3, a remark concerning the Harnack
inequality will lead to a corollary, which will be a key tool in the proof of
Theorem 4.2.

25
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2. A Harnack inequality for a one-phase free boundary problem

Notation. A positive constant depending only on the dimension n is called
a universal constant. We often use ¢, ¢; to denote small universal constants,

and C, C; to denote large universal constants.

Theorem 2.1 (Harnack inequality). There exists a universal constant &
such that if u solves (2.1)-(2.2), and for some point xo € Q1 (u) U F(u),

(rn +ao)t <wu(z) < (2, +by)" in B.(z9) CQ (2.3)
with
bo —ag <er, e<Eg,
then
(zn +a1)* <u(z) < (z,+b1)"  in Byjao(zo)
with

ap < a; <by <by, b—ay <(1—cer,
and 0 < ¢ < 1 universal.

Before showing the proof of Theorem 2.1, we observe that if Theorem 2.1
holds, it follows an important corollary which we will use in the proof of our

main result.

Corollary 2.2. Let u be a solution to (2.1)-(2.2) satisfying (2.3) for r = 1.
Then in By(xo),
u(zx) — z,

U.(z) = .

has a Hélder modulus of continuity at xo, outside the ball of radius €/, i.e.
for all x € (T (u) U F(u)) N By(x) with |x — xo| > ¢/,

|t (2) — Ue(x0)| < Clo— z0|” .

Proof. Let us begin the proof claiming that if u is a solution to (2.1)-(2.2)
satisfying (2.3) with » = 1, then we can apply the Harnack inequality repeat-
edly to obtain

(T + am) <u(x) < (xn + b))t in Byg-m () (2.4)
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with
by, — am < (1 —¢)™e

for all m’s such that
(1—c)" 120" te <

This result follows by an induction on m’s such that

(1—c)™120m 1

IN

E.
Precisely, for m = 1, applying the Harnack inequality con r = 1, we get
(rp +a1)" <wu(r) < (z,+0)" in Byy-1(xo)

with
ap < ap <by <by, by —a; <(1—-c)e

and
(1—¢)20%% =¢ <&

Suppose now that the result holds for m and we show that it holds for m +1.

From the hypothesis of induction, we have
(Tp + am)t < u(z) < (2, +by)"  in Byg-m(10)

with
by — a < (1 —¢)™e

and

To apply the Harnack inequality, we must have
by, — Ay, < 0207

with
0 <Eé.

Specifically, we know from the hypothesis of induction that

by — ap < (1 —¢)"e=(1—¢)"e20m207™ = (1 — ¢)"20™=20™™,
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hence, if
(1 —c)™20™e < ¢,

we can apply the Harnack inequality and we obtain
(‘/L‘n + 6L'm—i—l)—"_ S U(ZL’) S (xn + bm+1)+ in BQO*(erl) (':UO)

with
b1 — Ami1 < (1 —¢)(1 —¢)™20™me20™™ = (1 — )" e.

Notice that when we apply the Harnack inequality repeatedly, given that u
solves (2.1)-(2.2) with e, u solves (2.1)-(2.2) even with (1 — ¢)™7120m ¢, so
we can apply the Harnack inequality repeatedly.

This result implies that for all such m’s, the oscillation of the function

i) = M=

in (QF(u) UF(u))NB.(xg) = (2 (u) N By(x9)) U(F(u) N By(x9)), =207,
is less than (1 —¢)™ =2077" = 7.

Indeed, Va € Q1 (u) N B,.(x9), we have

0 <u(z) < (zn+bn)t,
thus, since (z,, + b,,)* > 0,

(Tp +bm)" =2 + by,
and from (2.4)
T+ U < (T + @) < u(z) < (T + b)) =20 + by in QT (u) N B,(0),
in other words

Ty + am < u(r) <z + by in QT (u) N By (z0). (2.5)

Furthermore, in view of (2.5), we have

am < u(r) — 20 < by < am + (1 =) in QF(u) N B,.(x0),
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that is

am < u(x) — 2, < ap + (1 =) in Q1 (u) N B,(z0),

which entails
0sC U—Ty) = sup U— Ty) — inf U — T,
Q+<u>mBr<xo>( ) Q+(u)m3,<xo)( ) m(umBT(xo)( )

<am+ (1 —0c)"e—a, = (1-c)",

1.e.

0sC u—x,) < (1—-c)"e. 2.6
S (wo)( )< (-0 (2.6)

Consequently, from (2.6), we achieve

_ (u — xn) 1
osc U, = osc =— os¢c (u—mx,)
Q+ ()N By (o) O+ (WNBr(w0) \ € £ QW Br (x0)
(1 —c)"e
<Y E (1™
U= oo
which gives
osc  u. < (1—c)™ (2.7)

QF (u)NBr(zo)

On F(u) N B,(xg), instead, we have from (2.4)
(Tp + am)" <u(x) =0 Vz e F(u)N B.(x)
and thus, since 0 < (z, + a,,) 7,
(2 + am)™ =0 on F(u)N B,(x),
which also gives

Ty + Ay <0 on F(u) N B.(zo)

and
T < —ay, on F(u)N B(xg). (2.8)

Now, from (2.4), if (z, + b,,)" = 0, that is x,, + b,, < 0 and x,, < —b,,, we
have u = 0, inasmuch as u is a solution to (2.1) and as a consequence u > 0.

Also, if we take a point & € B, (o) N {z, < —by}, since B, (x¢) N{z,, < —bn}
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is open, we can find a ball Bx(z) C B,(x¢) N {x, < —by}, where u = 0 and
thus Bz(7) N Q" (u) = 0, in other words T ¢ F(u).
Therefore, F(u) N (B, (z0) N {z, < —=by}) = 0, namely

Ty > —by in F(u) N B,(x). (2.9)
To sum it up, if z € F(u) N B,.(zo), we have, in view of (2.8) and (2.9),
T, < —a, and x, > —b,,

hence

which implies

Am S —Tn S bm S m + (1 _c)mga

that is
A < —Tp < @y + (1 —¢)™e on F(u) N B.(z9). (2.10)

Notice that, because u = 0 on F(u) N B,.(x),
uw(z) —x, = —x, on F(u)N B(xg),
thus, in view of (2.10)
A < () —2p < Ay + (1 — ¢)Me,

which implies, repeating the same calculations done to get (2.6) with F'(u)N
B,(xg) in place of QT (u) N B,(x),

osc U—Ty) < (1 —2c)"e. 2.11
Lo (u—a) <(1-0) (211)

As a consequence, repeating the same computations done to obtain (2.7)

with F(u) N B,.(x0) in place of Q% (u) N B,(zg), we have

osc 1w, < (1—-¢)™. 2.12
F()NBr(zo) = ( ) (2.12)

Hence, inasmuch

(@ (u) U F(w)) N By(wo) = (2" (w) N By () U (F(u) N Br(x0)),



from (2.7) and (2.12) we achieve that for all m’s such that
(1—c)m 120" e < g,

we have

0sc . < (1—¢)"=20""7,
(QF (w)UF (u))NByg—m (o)

Moreover, if z € (2% (u) U F(u)) N Byg-m(z0), seeing as how zy € (2 (u) U
F(u)) N Byy-m(xg) by the hypothesis of the Harnack inequality,

i.(2) — @ < . < 207
() UE(IO)_(Qﬂu)UF(z%S)%Bmfm(wo)ue_ ’

Ue(zo) — we(x) < osc . <2077,

(QF (w)UF (u))NByg—m (o)

and these two conditions imply
max (e () — e (xg), Us(20) — Ue(2)) = |tUe(x) — U (o) < 207™7,

1.e.

. (z) — @i (z0)| < 207™7. (2.13)

In particular, we can choose ¢ such that (1 —¢)20 > 1, so there exists m that

satisfies
(1 —1¢)"20™e > &,
hence
_e _
1—¢c)"=>20T™
(1=

and raising both the terms of the inequality to v, with 0 < v < 1, recalling

that both the terms are positive or equal to 0,

g

(1—c)™ (i)7 > 207, (2.14)

Now, if x € (Q7(u) U F(u)) N By(xg), with | — x| > £/&, there exists m
such that

|t () — e ()] <2077
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from (2.13).

Furthermore, from (2.14), we have

200™  200™ — ()"
~ g -my _ 9n—my AT
|t () — e (x0)] < 20 =20 0= < 20_@/(1 c) <_) ,

in other words

iute) — el < - (2) 215)

As a consequence, because |x — x| > ¢/&, from (2.15) we get

207™
20-™

e () — e(0)| < (1= o)™ |z = zo|" = C'lw — o[,

namely

e () — Ge(20)| < C'lx — o]

Vo e (QF(u) U F(u)) N By(xg), |z — 0| > €/E.
Thus, 4. has a Holder modulus of continuity at g, outside the ball of radius
e/E. O

The proof of the Harnack inequality relies on the following lemma.

Lemma 2.3. There exists a universal constant € > 0 such that if u is a

solution to (2.1)-(2.2) in By with 0 < € < & and u satisfies

px)" <wu(z) < (p(x) +¢e)t, x€ By, p(x)=x,+o0, |o| <1/10, (2.16)

)i (2.17)

u> (p+ce)t in By (2.18)

then if at * = %en

DO | ™

ule) = (pla) +

then

for some 0 < ¢ < 1. Analogously, if

u(r) < (p(i‘) + §)+,

then
u<(p+(1—c)e)" in Byjp.
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Proof. We prove the first statement.
From (2.16), since p™ > p,
u>p in Bj. (2.19)

Let
w=c(le -z = (3/4)77) (2.20)

be defined in the closure of the annulus
A= By3s(Z) \ Biy20(2).
The constant ¢ is such that w satisfies the boundary conditions

w=0 on dBs(7),

w=1 on 831/20(@
In particular, we have

w=c((3/4)77 = (3/4)77) =0 in 0Bs(7),

and
w=c((1/20)7" = (3/4)"") =1 in OBi2(Z),
thus
. 1
(1/20)~7 = (3/4)™
and

1 A7 -
e G O]

w =

Also, because [|a;; — dijl| oo,y < €, as long as € is small enough, the matrix
(a;j) is uniformly elliptic, (see Lemma A.5 in Appendix A for the proof of

this result) and we can choose the constant v universal so that
Zaij(x)wij 2 6>0 inA
4,J

with J universal.

Notice that w € C*°(A), so all the second derivatives of w exist and are
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continuous in A.
Let us show that we can choose v as we have said above.

Precisely, keeping ¢ in the expression of w for the sake of simplicity, we have

ow 0 . S\ D ]
T = o (elle =l = @) = gele a7 (e -
= —qclz — f|_7_1 —TZ : Z = —vcl|x — f|_7_2 (x; — Ty),
in other words
S;U = el — 2|77 (@ — &), (2.21)

and from (2.21)

(92111 8 _—y—2 _

— e (o= a7 w2 - vele -l 7 L (- )

—yg(rj — x5 oy
=1+ -2 B gz ey

— ey + D) la = |77 (@i = 3wy — 7)) — eyl — 370y,

which gives

0w oo
&cj&zzi -

Y+2) | — 2|7 (= F) (2 — Fy) — ey |l — E| T 0y (2.22)
Hence, from (2.21) and (2.22), we obtain, inasmuch (a;;) is uniformly elliptic,

Y ay(@wy = ev(y +2) lr = 2|77y ai(w)(ws — 3 (2 — ;)

i,j 0,3
—cylz—z|7? Z ai;0i
> Aey(y+2) |z :;I_7_4 o =2 —eyle— 2777 ai
=cy ()\('y +2) — T?"(A)) lz—z| 77

> oy (\(y+2) = n) o — 272,
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i.e.
D ay(@)wy > ey (My +2) = nA) o — 27777 (2.23)
2%

Moreover, in A we have |z — z| < 3/4, thus, since v > 0,

lz—Z|777? > (3/4)77"% in A (2.24)
Therefore, if we take
Ay +2) > nA,
that is
+2> A
n_
’y )\7
and
> A 2
n— —
’y A )

we get in view of (2.23) and (2.24)

ZCLij(ZE)U)ij > ¢y (/\(7 +2) — nA) (2) =0>0 in A,

%]
in other words

4,J

with 0 universal, as desired.
Extend now w to be equal to 1 on By 90(Z).

Notice that because |o| < 1/10, using (2.19), we obtain

In particular, first of all we prove that By10(Z) C B.
Remark that z = fe,, thus |z| = 1.
Now, if x € By/10(Z) we have
lz| = |z -2+ 7| < |z —Z| + |7 <i+1:—<1,
10 5 10
that is |z| < 1, and hence
Bi/10(Z) C By. (2.27)
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As consequence, we obtain from (2.19) and (2.27)

Also, if x € By10(Z) we have

1\* 1
_ | = 2 2 2 _ .
|z — Z| \/x1+x2+...+:1:n_1—|—(:1:n 5) <1

thus
xn——’ < \/x%+x§—|—...+x21+ (xn—l)Z < L
" 5) 10’
ie.
o] <
) 10’
which implies
1
10 5 10
and . . .
W0 I (2.29)
Now, inasmuch |o| < %07 o> —lio, so, from (2.29), we get
p(l‘):l’n—l—0>$n—i > i—i:O in By /10(7)
10 10 10 ’

namely

p(l‘) >0 1in Bl/lO(t'Z‘);

which entails from (2.28) and (2.27)
u>0 in Bl/lg(ff) C By,

that is
Bi10(Z) C By (u).

In addition to this fact, we have

Bijs CC Byu(Z) CC By,



in other words,
El/g C Bg/4(f) and §3/4(f) C Bl,

inasmuch B, /2 and Bs /4(T) are compacts.

Indeed, if x € El/g,

=gl < Jel +lel < 5+ 5 =10 < 5
-z <|z|+ |7 <-4+ - =—< -
- -2 5 10 4
namely
o -1l <3
r—I < -
47
which gives
Bijs C By (). (2.30)
At the same time, if © € By(Z),
ol =fo—z+al <o —al+le] <S4z =35 <1
gl=lz—z+z[<lo-F+]El< 7+ -=5<],
le.
|z <1,
which entails
Bs4(Z) C By. (2.31)
As a consequence, from (2.30) and (2.31), we achieve
El/g C Bg/4(f) and §3/4(Q_3> C Bl- (232)

Notice that u — p solves, in the viscosity sense, a uniformly elliptic equation
in By /10(Z) with right-hand side f.
Precisely, let us take ¢ € C?(By/19(Z)) touching u — p from below at z €

Bl/lO (i‘) .
Therefore we have

o(z0) = (u —p)(w0) = u(z0) — P(T0),

which gives

(# +p)(x0) = ¢(0) + p(0) = ulo), (2.33)
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and
o(r) < (u—p)(x) =u(r) —p(r) in a neighborhood O of zy,
which implies

(e +p)(2) = ¢(x) +p(r) <u(z) inO. (2.34)

Hence, in view of (2.33) and (2.34), we obtain that (¢ + p) touches u from
below at zg, with ¢ +p € C*(Bi/10(Z)), since p = x, + 0 € C*(By) and
Bij10(7) C By from (2.27).

To use the fact that u is a viscosity solution in B;, we have to show that
zo € B (u), but zg € By10(Z), thus from (2.26), zo € By (u).

Therefore, since u is a viscosity solution to (2.1) in B; and (¢ + p) €
C?(Bi/10(z)) touches u from below at zo € B (u), we get, from the defi-

nition of viscosity solution,

> aii(x0)(p +p)iglwo) = Y ayy(0) (9 + 2 + 0)5(0)

ij =
- Z aij (o) @ij (To) + Z aij (7o) (2n + 0)ij(x0)
- Z aij (o) @i (20) < f(2o)
2%
hence

> aig(@wo)piy (o) < f(xo). (2.35)
2%
We repeat the same argument if ¢ € C?(Bj/19) touches u — p from above
at xo € B1/10(Z), but with opposite inequalities, and we achieve from (2.35)
that u — p solves, in the viscosity sense, the uniformly elliptic equation
Z CLZ'j<I> (U — p)zg = f iIl Bl/lO(i‘)- (236)
(2%
In addition from (2.28) and (2.27), we have u — p > 0 in By19(Z). Conse-
quently, in view of this fact, together with (2.36), we can apply the Harnack
inequality to obtain

_sup (u—p) < Cl<inf_ (u—p)+Cy ||fHL<>o)

By /20(Z) B /20(T)
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thus, inasmuch w(zZ) — p(Z) < sup (u—p)and inf (u—p) <u(x)—p(x)
EI/QO(E) BI/QO(‘%)

Yz € El/gg(.’f),
u(@) = p(z) < Ci(u(w) = p(z) + Co[|fll ;=) in Biyao(2),
that is, calling C% =cand C =,
u(@) = p(z) = c(u(@) = p(7)) = C || fll = in Bijao(Z)- (2.37)
Now, from (2.17), we get,
u(@) = (p(7) +£/2)" = p(@) + /2,
u(z) — p(x) > ¢/2.

In view of this fact, together with the first inequality in (2.2), namely || f|| ;o <

2, we achieve from (2.37)

3 —
U—pZC§—C€2:€<g—C€) > CoE in Bl/go(f’),

in other words

u—p 2 Co€ in El/go(ff), (238)
as long as ¢ is small enough to satisty § — Ce > 0, i.e. € < 35. Now set
(@) = pla) + coe(w(z) = 1), = € Byu(T), (2.39)

and for ¢t > 0,
v(x) = v(x) +t, = € Byu(2). (2.40)
Remark that, from (2.39) and (2.40) we have

D i) vy = D as(@)(w(w) + )
= Y i (@)(ple) + ucwlz) ~ 1)+ ),
- Z i () (Tn + 0 + coe(w(z) — 1) + 1)y

= Z aij(x)coswy; = coe Z aij(2)wij,
i,j 4,3
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1.e.

Z a;j(z)(vr)i; = coe Z aij(x)w;. (2.41)

Thus, in view of (2.25), inasmuch cye > 0, we obtain from (2.41)
Z aij(2)(vy)i; > code > * in A,
4,J

that is
> ai(x)(v)y > €* in A, (2.42)

2¥]
if we take ¢ such that 0 < e < ¢g0.

Now, according to the definition of v; in (2.40) we have
vo(z) = v(z) = p(z) + coe(w(z) — 1) < p(x) < u(z), = € Byu(z),
in other words
vo(z) <wu(x), =xz€ §3/4(f),

since By 4(Z) C By from (2.32), therefore p(z) < u(z) in Byy() from (2.19),
and w < 1 in Bs(Z).

Concerning the last condition, indeed, for definition of w, we have
w=1 in By(Z) and w=0 indBs,(T). (2.43)

Moreover, in Bs4(Z) \ Bi/20(Z), since v > 0,

B I gy < (/207 — (34
=y gy e T BT S g gy

=1,

i.e.
w S 1 in Bg/4(.ﬁf) \§1/20(f)7

which implies, together with (2.43), w <1 in §3/4(:Z').
Let now ¢ be the largest ¢ > 0 such that

v(r) <u(x) in Bau(Z).

Notice that ¢ exists, since for ¢ = 0, vo(z) < u(z) in Bs(Z).

We want to show that ¢ > cye. Indeed, if this condition is satisfied, we achieve
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the desired result.

Precisely, suppose ¢ > coe. Then, using the definition (2.39) of v(z) we get

w(z) > ve(z) =v(z) +t = p(x) + coe(w(x) — 1) + ¢

= p(z) + cosw(z) — coe + € > p(x) + cocw(x) in Byu(7),

in other words

u(x) > p(z) + cosw(z) in Byu(Z). (2.44)

Now, we state that on Fl/z C Bs4(7) one has w(zx) > ¢, for some universal
constant cs.

Sure enough, for definition, w € C(Bs/(Z)) and w > 0 in Byy(Z), thus,
inasmuch as §1/2 C Bsu(7) from (2.32), w € C(El/g) and w > 0 on §1/2.

Therefore, for Weierstrass extreme values theorem, since B o is a compact

w>minw =c, >0 on El/g,
B2

that is w > ¢, on By, for some universal constant c;.

Consequently, we obtain from (2.44)
u(z) > p(x) + coew(z) > coecy = p(x) + ce  on El/g,

which gives

u(x) > p(z) +ce on By. (2.45)

In particular, we notice that we have found ¢ as ¢ = ¢gca, where 0 < ¢ < 1,
recalling that w < 1 in Bj4(Z) and thus also in By C Bs(Z) C Bsa()
from (2.32). In addition, we have taken ¢y = § — Ce in (2.38), which satisfies
O<co<1,if§—C’5<1,WhichgiveSC’e€>g—land5>i—l which

2Cc — O

is trivially verified if 55 — % < 0. Otherwise, we have already chosen ¢ so
c : c 1 c

that ¢ < 55, therefore, inasmuch as 55 — 5 < 55, we choose ¢ such that

c 1 c

3 O <e< DTk

To sum it up, we have 0 < ¢ < 1.

Also, we know that v > 0 in By D B, /2, since u is a viscosity solution to



42

2. A Harnack inequality for a one-phase free boundary problem

(2.1) in Bi.
Hence, from (2.45), we get

u(w) = max(p(x) + c2,0) = (p(x) + c)*  on Bija,
in other words
u(z) > (p(x) + ce)™  on By,

with 0 < ¢ < 1, as desired.

Suppose now ¢ < coe. Then at some & € Bs,4(Z) we have
vi(T) = u(Z).

Indeed, if for contradiction Z does not exist, we have u(z) — vi(x) > 0 Vx €
B3/4(Z), seeing as how vi(z) < u(z) in By(Z).

Moreover, because u € C(Bj) with By D Bs(Z) from (2.32), p € C®(By),
thus p € C(Bs(Z)), and w € C(Byu(z)), u — v; € C(Bsu(Z)), so for
Weierstrass extreme values theorem, given that B /4(T) is a compact, we can
define

t. ;== min (u— vg), (2.46)
Bg/4(Z)

which satisfies t* > 0, recalling that u(z) — vi(z) > 0 Va € Bs4(Z).
Now, for the definition of ¢, in (2.46), we have

t. <wu(z) —vi(x) in §3/4(f>a

which gives

vi(x) 4+t = vie, (¥) < u(z)  in By(z),

namely

vy, < wu(x) in §3/4(f).

Therefore, inasmuch ¢, > 0, we have found ¢ + t, > t that realizes

Ve, (¥) < u(r)  in Bau(T),



contradicting the definition of ¢.
As a consequence, T exists.
We show that such a touching point can only occur on B, /20(Z).

Indeed, since w = 0 on 0B5/4(Z), from the definition (2.40) of v; we get
vi(z) = p(z) + coe(w(x) — 1) +t = p(x) — coe +t  on 0Bs4(Z),
le.
vi(z) = p(x) — coe +t  on 0Bs4(T). (2.47)

Using that ¢ < cye together with the fact that u > p in B; and thus also on
0Bs3/4(Z), because 0B3,4(Z) C By from (2.32), we then obtain from (2.47)

vi(z) = p(x) — coe +t < p(x) < w(x) on IBsu(T),
namely
vp<u on 0Bs(7)

and hence & cannot belong to 0Bs5,4(Z).
We now show that & cannot belong to the annulus A.

First of all, in view of (2.42), we have for each ¢ > 0 and thus also for ¢,
Zaij(m)(vt-)ij > 62 in A
2%

and moreover

Ve = 1900+ Bl = V] > Jon
o (v + st - 1))

(,)zn (;cn + o+ cos(w(z) — 1)) ‘

= |1 + coew,| in A,

1.e.

|Vug| > |1 4 cpew,,|  in A. (2.48)
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At this point, we claim that
wp(z) > 1 on {vp <0}NA,

for a universal constant c;.
Precisely, since w is radially symmetric, keeping ¢ in the expression of w for

the sake of simplicity,

8 | f—
un(o) = - (el =1 = 3/97))
= —cvy ’JJ — x"V—l Tn — xn’
|z — 7|
which gives
1 Ty — Ty
wn(x) = —cy e — 2|77 T (2.49)
and furthermore,
Vuw(z) = ( —eylr— T ey e In)
|z — 7| |x — z|
=1 T — T
=—cylz—z|" et
namely )
eyl T T
Vu(@) = —ey|e 277 P (2.50)

As a consequence, from (2.50), we achieve, because ¢,y > 0,

r— T

=y ’l’ - j’_y_l )

V@) = eyle a7 0

which entails from (2.49) with z € A, recalling that w is defined in B /4(T) D
A,
wy(z) = |Vw(x)| v, - e,, x € A, (2.51)

where v, is the unit direction of 7 — .
Also, from the formula for w in (2.20), we get |[Vw| > ¢ on A for a constant
c.

Indeed, since |z —z| < 3/4in A and v > 0

yle -z y(3/4)~

(1/20)~7 — (3/4)~7 = (1/20)=7 — (3/4)— =c on A,

[V (z)| =
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namely

|IVw(z)] > ¢ on A. (2.52)

In addition, v, - e, is bounded below in the region {v; < 0} N A.

Precisely, we declare that for € small enough,
{vi<0}NAC{p <coe}={x, <—0+coe} C{z, <3/20}.
Indeed, on {v; < 0} N A, we have
v <0 p(z) 4+ coe(w(z) = 1)+t <0< p(z) < ce(l —w(x)) — ¢,

as a consequence, seeing as how ¢ > 0, thus —¢ < 0 and 0 < w(z) < 1in A,

so 1 —w(z) <1, we obtain
p(z) < coe on {v; <0}NA,

namely

{vp<0}NAC{p<coe}. (2.53)
Now, recalling that p(z) = x, + o
{p <coe} ={xn+0 <cpe} ={x, < —0+coe},
which gives
{p < coe} ={z, < —0+cpe}. (2.54)
Furthermore, given that |o| < 1/10, so ¢ > —1/10 and —o < 1/10, for e

1/20
co

small enough such that coe < 1/20, i.e. € <
{z, < -0+ cpe} C {x, <1/10+1/20} = {x, < 3/20},

in other words

{z, < —0+ e} C {x, < 3/20},

which implies from (2.53) and (2.54)

{0r <0YNAC {x, < 3/20} . (2.55)
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To show that v, e, is bounded below in the region {v; < 0}N A, we remember

that z = %en, in other words z, = %, hence, in view of (2.55) and because

|z —z| < 3/41in A,

 Tn=Tn 3= Tu
e P R T

1
L1

M—F - on {ur<0}n4,
4

1.e.

1
Vg * €y > o0 {v; <0} N A. (2.56)

Hence, from (2.51), for (2.52) and (2.56), we achieve
1
wy(z) > Ee=a >0 on {vp<0}NA,

namely

wy(z) > ¢ >0 on {vy <0} NA. (2.57)

Consequently, in view of (2.57), we deduce from (2.48) that

|Vug| > |1 4 coewy| = 14 coew,

> 1+ coec; =1+ e on {v; <0}NA,

that is
|Vug| > 14+ cee on {v; <0} NA, (2.58)

given that, if w,(x) > ¢; > 0 on {v; <0} N A, coew, > 0 on {vp <0} N A
and thus |1 + coew,| = 1 + coew,, on {v; <0} N A.
In particular, for € small enough such that cee > €2, ie. € < ¢, we get from
(2.58)

|V () > 1+¢e? > g(x) forze An{v; <0},

in other words

|Vug| > g(x) for z € An{v; <0}, (2.59)

inasmuch in view of the second inequality in (2.2) ||lg — 1| Loo(By) = 2, thus
lg(z) — 1| < €2, Vo € By D A, which gives |g(z) — 1| < &2 Vo € A and
g(z)—1 < 2 Va € A, which also entails g(z) < 1+&? Vo € Aand g(z) < 1+¢?
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Vo € An{v; <0}, given that AN {v; <0} C A.

In addition, from (2.59) we also obtain
V| (x) > g(x) for z € AN F(vg) (2.60)

seeing as how F(v)) NA C{vr=0}NAC {v; <0} NA.
At this point, we have

Zaij(ac)(vt‘)ij >e? > f(r) in AD At (vp),

D aij(@)(vr)yy > flx) in A¥(vp), (2.61)
and from (2.60) |
|Vvg| > g(x) for x € AN F(vy). (2.62)

Furthermore, v; € C?(A), given that p € C*(By), with B; D A and w €
C>(A).
Therefore, from (2.61) and (2.62), together with the fact that v; € C?(A),
we get that vr is a strict subsolution to (2.1) in A.
Moreover, for the definition of vz, we have vy < uw in Bj /4(Z) D A, which gives
v; < w in A. In addition, v > 0 in By D §3/4(5:) DA, sou>0in A, thus
u > max (vg,0) = v in A, in other words u > v in A.
To sum it up, we have that vz is a strict subsolution to (2.1) in A, u solves
(2.1) in A and u > v in A.
Hence, according to Lemma 1.5, u > v > vz in A% (v;) U (AN F(vg)), that is
u > vgin AT (vg) U (AN F(vg)) and so

T ¢ AT (vp) U (AN F(vy)). (2.63)
Consequently, if Z € A, it means that £ € A\ (A" (vs) U (AN F(v5))), which
entails v7(Z) < 0 and inasmuch v > 0 in By D A, the only possibility is that
ve(#) = u(@) = 0, with 7 ¢ F(uv;).
Let us show that also this situation is not possible.

Indeed, for definition,

vi(x) = p(z) + coe(w(x) — 1)+t = 2, + 0+ coe(w(z) — 1) +1, x € Byu(),
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thus if we fix a value of z,,, Z,, and we consider = = (2, Z,,), we have
ve(2', Tp) = Tp + 0 + coe(w(2', T,) — 1) + ¢,

and, from the formula of w in (2.20), vi(2', Z,,) can vanish in A for only one
value of |z'|, which we call p.

In addition, w is strictly decreasing and continuous in A, hence also vi(2', Z,,),
which thus change its sign in a neighborhood of points (z/, Z,,) with |z/| = p.
As a consequence, for these points, VB, (2', Z,,), B, (2',Z,)N{v; > 0} # 0 and
B.(2',Z,) N {v; < 0} # 0, also only from vg(z', Z,,) = 0.

Therefore, (2/,z,) € F(vf).

From the arbitrariness of Z,, we hence achieve that v; only vanishes in A

in points which also belong to F(vg), consequently it cannot occur u(z) =
vi(Z) = 0 with € A and T ¢ F(vz). Thus

T g AN\ (AT (05) U (AN F(v)). (2.64)

Now, putting together (2.63) and (2.64), we get that & cannot belong to A.
As a consequence, & € Bj/y(Z) \ (AU 0Bs4(Z)) = Bi2(Z) and, given

that w =1 in B, /20(Z) and we have supposed ¢ < coe,
w(Z) = vi(2) = p(Z) + coe(w(Z) — 1) +t = p(T) + ¢ < p(T) + coe,

which implies

u(z) — p(&) < coe,
contradicting (2.38), seeing as how & € By jo0(Z). O
We are now ready to give the proof of the Harnack inequality.
Proof of Theorem 2.1. Assume without loss of generality
=0, r=1.
According to (2.3),

p()" <u(x) < (p(x) +e)" in By
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with p(z) = x, + ao.
Sure enough, from the statement of Theorem 2.1, we have with zo = 0 and

r=1

(rp +a0)” <wu(z) < (z,+b)" in By, (2.65)
together with
bo — Qg S g
and
bo <ag+e.
Hence,

Tp+by<z,+ayg+e in By,
which implies
(xp, +bo)" < (xp, +ao+e)t in By,

and according to (2.65)
(n +a0)” <u(r) < (v, +ag+e)" in By,

namely
p(x)" <wu(z) < (p(x) +e)t in By, (2.66)

with p(z) = x,, + ao.
Now, if |ag| < 1/10, since u solves (2.1)-(2.2) in Q D B; and u satisfies

p(x)t <u(x) < (p(z)+¢e)t, z € By, p(x) =z, + ag, |ag| < 1/10,

then we can apply Lemma 2.3, and we achieve the desired result.

1

Indeed, for Lemma 2.3, if in 7 = 3

eTH

u(z) = (p(x) +¢/2)",

then
u> (p+ce)t in By (2.67)

for

0 < ¢ < 1 universal. (2.68)
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Therefore, given that By, C By, we have from (2.66) and (2.67)
(p(z) 4+ ce)™ <wu(z) < (p(x) +¢)* in Bijz D By,
but according to (2.3), it is also satisfied
(p(z) + ce)™ = (xn + ao + ce)” <wu(x) < (z,+bo)" in By,

with by —ap —ce < e —ce = (1 —c)e.
Thus, if there exists by, with ag + ce < by < by, such that

u(x) < (xy +b1)"  in By,
we can take a1 = ag + ce, with a; > ag, thereby we get
(zn +a1)" <u(x) < (@, +b1)" in By
with
ag < ap < by < by,

and

by —ay=by—ag—ce <by—ay—ce <e—ce=(1-c),

with 0 < ¢ < 1 universal from (2.68), as desired.

Otherwise, we can take by = by and a; = ag + ce and we obtain
(zn +a1)" <u(x) < (@, +b1)" in By

with
agp < a; < by < by

and
by —ay =by—ag—ce <e—ce=(1—-c),

1

with 0 < ¢ < 1 universal from (2.68), as desired. Instead, if in T = ;

u(z) < (p(x) +¢/2)7,

then
u<(p+(1—c)e)" in By
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for

0 < ¢ < 1 universal. (2.69)

Therefore, from (2.66)
p(x)" <wu(z) < (p(z) + (1 —c)e)* in Byja D Bijo,
but according to (2.3), we also have
p(x)" <wu(z) < (z,+by)t in Bi 2.
Now, we have two different situations.

(i) When by < ag + (1 — ¢)e, if there exists ag < by < by < ag + (1 — ¢)e
such that
(zn + a0)” < wu(z) < (2, +01)"  in Byja,

and furthermore, if there exists a;, with ag < a; < b; such that
(p +a1)" <wu(z) < (z,+b)" in B 90,
we get the desired result with
ap < a; < by < by

and

bl—(ll Sbl—CLO§a0+(1—6)€—(10:(1—C)6.
Otherwise if such a; does not exist, we can take a; = ag and we achieve
(zn +a1)" <u(z) < (z,+b1)"  in By,

with
ap < a3 < by < by

and

by —a; < by —ag<by—ag<ap+ (1—cle—ay=(1-rc,
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with 0 < ¢ < 1 universal from (2.69), as desired.

If instead there does not exist b; as before, we can take b; = by <
ao+ (1 —c)e and, exactly how when b, exists, we can also take a;, with
ag < a1 < by, such that

(2n +a1)” <wu(z) < (2, +01)"  in Byja,

with
ap < a; < by < by

and
bl—al §bl—ao§b0—a0§a0—|—(1—0)5—a0: (1-0)5,
with 0 < ¢ < 1 universal from (2.69), as desired.

When by > ag + (1 — ¢)e, for every by, with ag + (1 — ¢)e < by < by, we
have

w(x) < (xn, +ao+ (1 —c)e)™ < (2, +b)" < (2, +by)t in Bi 90,

thus, if there exists ai, with by — (1 —¢)e < a3 < ag+ (1 —c)e < by,
such that
(2n +a1)” <u(z) < (2, +01)"  in By,

we get the desired result with
a; >by—(1—ce >ag+ (1 —c)e—(1—ce = ay,

SO
ap < a;p < by < by

and
bl—alSbl—b1+(1—6)8:(1—0)€.

Otherwise, if such a; does not exist, we can take by = ag+ (1 —c)e < by,

a1 = ag and we obtain

(zn +a1)” <u(z) < (2, +01)"  in By,
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with
ap <ap < by < by

and

by —a; <by—ag<ag+ (1 —ce—ag=(1-rc,
with 0 < ¢ < 1 universal from (2.69), as desired.

Now, suppose instead that |ag| > 1/10.
If ag < —1/10, then (for e small) 0 belongs to the zero phase of (p(z) +¢)™.
Indeed, p(0) + & = agp + ¢, hence if 0 < € < —ag, with e small, we have

p(0)+e=ayg+e<ay—ay=0,

that is
(p(z) +€)7(0) =0

and furthermore, we can find a ball B,, with r < min(—ag —¢,1) (notice

that —ag — e > 0 for the choice of ¢), such that if z € B,,
px)+e=x,+a+te<r4+a+e<-—-a—c+a+e=0,

given that z,, < |z,| <|z| <r, ie. z, <r, and r < min(—ag — €, 1).
Therefore, p(z) + & < 0 in B,, so (p(x) +&)* = 0 in B,, which implies that
0 belongs to the zero phase of (p(z) + ¢).

Also, we have from (2.66)

0<plx)" <u(z)<(p(x)+¢e)"=0 in B, C By,

namely v =0 in B,.

Hence, if u =0 in B,, seeing as how 0 € B,., u(0) =0, i.e. 0 ¢ Q" (u).

In addition, if u = 0 in B,, B, NQT(u) = 0, thereby 0 ¢ 0QT (u) D QT (u) N
Q= F(u), that is 0 ¢ F(u).

Considering these two facts together, we achieve that 0 ¢ Qt(u) U F(u),
which contradicts the hypothesis 0 € QF(u) U F(u).

If instead ag > 1/10, then Byj19 C B (u).



54

2. A Harnack inequality for a one-phase free boundary problem

Precisely, Bi10 C Bi and moreover if x € By, |2,] < |Jzf] < 1/10, ie.
|z,| < 1/10 and x,, > —1/10, hence

p(x) =xn+ao > —1/10+ a9 > —1/10+1/10 =0 in By,

that is p(x) > 0 in B9, which entails p(z)™ = p(z) in B0 and as a
consequence p(z)* > 0 in By .
Therefore, in view of (2.66)

0 < p(z)" <wu(x) in Bipo,
thus v > 0 in By/9 C By, namely

We now distinguish two cases, if u(0) — p(0) > ¢/2 or if u(0) — p(0) < /2.

Let us analyze the two cases separately.

(i) First, we suppose u(0) — p(0) > /2.

Now, from (2.66), since p < p*, we have u —p > 0 in By D By, i.e.
u—p > 0in Byj,. Furthermore, u solves, in the viscosity sense, a
uniformly elliptic equation in Q% (u), thus also in By, recalling that
Q D By by hypothesis and B; (u) D B, hence Q" (u) D Bf (u) D
By /10

Consequently, repeating the same argument used in the proof of Lemma
2.3 to achieve (2.36), u — p solves, in the viscosity sense, a uniformly
elliptic equation in B/ with right hand side f.

Therefore, in view of this fact, together with u—p > 0in By/19, we can

apply the classical Harnack inequality to obtain

sup(u—p) <G int (w=p) + Callfl ). 27)

B /20 1/20

In particular, from (2.71), repeating the same calculations done in the

proof of Lemma 2.3 to get (2.37), we achieve

u(@) = p(x) = c(u(0) = p(0)) = C[[fll  in Bijo,
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which implies,
U(I) - p(x) > Cg — 052 in El/go, (272)

inasmuch «(0) — p(0) and in view of the first inequality in (2.2),

> €
= 9
in other words [ f||;~ < €%, which also gives — || || . > —¢*.

In addition, we can rewrite (2.72) as
u(z) —plx) > ¢ (g — Cé?) = coe  in By,
le.
u(z) — p(x) = ¢ in §1/20, (2.73)

where we want to choose ¢y so that 0 < ¢y < 1, and it is possible if we

choose ¢ such that

c c c c 1 c
Z 1 ~ 1 -z = _
0<2 Ce < <—>2 <Ce<2<—>20 C’<6<20’

namely, seeing as how ¢ > 0,
0 c 1 c 1\* oo c
max — ——=)=l=-= < —
20 C 2 C 2C

c 1\ 7" c

Now, from ((ii)), we have, calling ¢ = ¢,

and hence

u(z) > p(x) +ce in EUQO,

with 0 < ¢ < 1, which entails, recalling that u is a viscosity solution
to (2.1) in Q, and therefore v > 0in Q@ D B; D El/go, in other words
u >0 in By s,

u(x) > max(p(z) + c£,0) = (p(x) + ce)t  in By,

1.e.

u(x) > (p(x) +ce)t  in By e
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and in particular

u(z) > (p(x) +ce)™ in Bj /20,

with 0 < ¢ < 1 universal.

The precise conclusion of Theorem 2.1 follows from the same argument
used in case of |ag| < 1/10, after we have applied Lemma 2.3 with the
hypothesis w(Z) > (p(Z) + £/2)" satisfied.

Suppose instead that u(0) — p(0) < £/2. In particular, inasmuch as
Bi/10 C B (u) from (2.70), we have from (2.66)

0 <u(z) < (p(z) +e)" in By, (2.75)

which gives (p(x) +¢€)* > 0 in By 10, and thus (p(z) + €)™ = p(x) + €.

As a consequence, from (2.75), we also obtain
0<wu(x) <plx)+e in By
and
p(z) +e—u(zr) >0 in Byjp. (2.76)

Furthermore, we claim that p 4+ € — u solves, in the viscosity sense, a
uniformly elliptic equation in By /0.
Indeed, if ¢ € C*(Byj10) touches p + ¢ — u from below at zy € By 1o,

we have
p(x0) = (p+ & — u)(x0) = p(x0) + € — u(o) (2.77)

and

o(x) < (p+e—u)(r) =p(x) +e—u(r) in a neighborhood O of zy.
(2.78)
In particular, (2.77) and (2.78) read

u(ro) = p(xo) + € — (o) (2.79)
and

u(z) < p(x) +¢e—(x) in aneighborhood O of . (2.80)



57

Therefore, from (2.79) and (2.80), we get that p+ e — ¢ touches u from
above at zy € By, since (p+¢ — ¢)(z) = p(x) + € — ¢(x).

In addition, given that p(x) = x, + ag € C®(By), with By D By,
(p+e—¢) € C*(Bij).

To sum it up, we have (p + ¢ — ¢) € C?(By,10) touching u from above
at Ty € Byj10, with in particular 2y € B (u) C Q" (u), recalling that
Bi/10 C By (u) from (2.70) and B; C Q.

Consequently, because u is a viscosity solution to (2.1) in €2, we achieve
D aii(wo)(p+€ = )ij(wo) =D aij(wo) (wn + ap + € — )i (wo)

— Z a;j(x0)(—p)ij(zo)
— Z aij(z0)(—wij(x0))
= — Zaij(xo)g@'j(xo) > f(zo),

in other words

- Z aij(wo)pij(x0) > f(w0),

and

Z aij(0)ij(wo) < —f(wo). (2.81)

Repeating the same argument if ¢ € C*(Bj10) touches p + ¢ — u from
above at zy € Bj/i9, but with opposite inequalities, we obtain that

p + & — u solves, in the viscosity sense, the uniformly elliptic equation
Zaij(:v)(p +e—u)yy=—f in Byjo.
2y
In view of this fact, together with (2.76), we can apply the Harnack
inequality to get

sup (p+e — ) < ol(inf (b+e—u) +czu—fum),

B /20 Bi/20
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and repeating the same computations done in the proof of Lemma 2.3

to achieve (2.37), but with p + & — u in place of u — p, we obtain
p(x) + e —u(x) > c(p(0) + £ —u(0)) = C||—fllj in Bijao. (2.82)

At this point, we know that «(0) — p(0) < £

5, which also gives p(0) —

u(0) > —5, hence

p(0) + & — u(0) = p(0) — u(0) + & > —§+5: g
namely
p(0) +=—u(0) > =,
which entails, from (2.82),
p(x) + e —u(z) > c% — Ce® in By g, (2.83)

inasmuch from the first inequality in (2.2), ||[—f|l;« = || f]l .« < €% ie.
Il < 22 and = [|~fll . > —<2

Now, repeating the same argument used in case of u(0) — p(0) > § to
achieve (), we obtain from (2.83)
p(z) +e—u(x) > coe  in Bya, (2.84)

with ¢g = § — Cc and € as in (2.74), in order to have 0 < ¢y < 1.

In particular, calling ¢ = ¢y, we can rewrite (2.84) as
p(z)+e—wu(zr)>ce in §1/2o,
with 0 < ¢ < 1, which implies
p(r) +e—ce >u(x) in El/go,
with 0 < ¢ < 1, in other words
p(z) + (1 —¢)e > u(x) in By,
with 0 < ¢ < 1 and in particular

p(x)+ (1 —c)e > u(x) in Bim. (2.85)
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Moreover, from (2.70) w > 0 in By/10 O Bijp and thus also u > 0
in By /g0, which gives from (2.85) p + (1 — ¢)e > 0 in Byq, that is
(p+ (1 —c)e)" =p+ (1 —c)ein Byap.

Therefore, in view of (2.85), we get
(p(z) + (L —c)e)™ > u(x) in By,

with 0 < ¢ < 1 universal.

At this point, the precise conclusion of Theorem 2.1 follows repeating
the same argument used in case of |ag| < 1/10 after we have applied
Lemma 2.3 with the hypothesis w(Z) < (p(Z) + £/2)" satisfied.






Chapter 3

Free boundary improvement of

flatness

In this chapter, we prove the main “improvement of flatness” lemma, see
Lemma 3.1. This is the key tool for proving Theorem 4.2, which will follow
from Lemma 3.1 via an iterative argument. Roughly saying, the meaning
of this lemma may be described as follows. If the graph of a solution u to
(2.1)-(2.2) in By oscillates ¢ away from a hyperplane in By, then in B,, it

still remains in a ery/2 -neighborhood of a, possibly different, hyperplane.

61
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€n
v
x,—e=0
70
xv—e—=0
r-v—¢ )
0B,

length = 2¢

length = erg

Figure 3.1: Improvement of flatness

We now state and prove the “improvement of flatness ” lemma.

Lemma 3.1 (Improvement of flatness). Let u be a solution to (2.1)-(2.2)
i By satisfying

(7, — &) <w(x) < (w,+e)" forxe By, (3.1)

and with 0 € F(u). If 0 < r <1y for ro a universal constant and 0 < € < gq

for some ¢y depending on r, then
(x-v—re/2)" <wu(z)<(z-v+re/2)t forz € B, (3.2)
with |v]| =1 and |v — e,| < Ce for a universal constant C.
Proof. We divide the proof into three steps. We use the following notation:
Q,(u) == (B (v) U F(u)) N B,

Step 1: Compactness. Fix r < 1y with rg universal (the precise rg will

be given in Step 3). Assume for contradiction that we can find a sequence



63

k
YR
right hand side fj and free boundary conditions g satisfying (2.2), such that

e — 0 and a sequence wuy, of solutions to (2.1) in B; with coefficients a

uy, satisfies (3.1), i.e.
(2, —er)™ <up(z) < (m, +ep)T forx e By, 0€ F(u), (3.3)

but it does not satisfy the conclusion (3.2) of the lemma.
Precisely, we are denying for contradiction the statement of Lemma 3.1, that
is we suppose that fixed ry universal and 0 < r < rg, Veo 3 € such that
0 < & < go and there exists a solution @ to (2.1)-(2.2) in B; such that «
satisfies (3.1) with £ but not the conclusion (3.2).
Therefore, letting 9 go to 0, we can find a sequence ¢, — 0 such that for
every k, € satisfies the same conditions of £. Furthermore, calling u; the
corresponding solution to (2.1)-(2.2) in B; that satifies (3.1) with &5 but not
(3.2), we can find the sequence u;, described before.
Set
dp(x) = B T8 e ) (u). (3.4)

Notice that, since F(uy) = 0B (us,) N By,

O (ux) = (Bf (ug) U F(ug)) N By

= (Bf (ux) N By) U (F(ug) N By) = By (ug) U F(uy,),

in other words

Then (3.3) gives
—1 < dg(x) <1 for xz € Q(uy). (3.6)

Indeed, according to (3.3), we have
Ty —ep < (zn —er)" <up(x) < (z, +er)™  in By D O (ug),

thus

up(x) >z — e in Q(uy),
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which also gives

ug(x) — xy > —eg in Qy(uyg)
and dividing by e, > 0, from (3.4),

up(x) — x,

= Ug(z) > —1 in Q(uy),
€k

tr(z) > =1 in Q(uyg). (3.7)

Now, we have to show that @, < 1 in Q;(uy), but given that from (3.5),

Q1 (ur) = By (ux) U F(uy), we can consider at first the case of B; (uz) and
then that of F'(uy).
According to (3.3)

0 <up(z) < (zn+ex)™ in By (up),
hence (z, + )t > 0 in By (ug), i.e. (z,+¢er)" = 2, +& > 0 in By (uy) and
up(z) <z +ep  in B (uy),
which gives
up(x) — z, < e in By (uyg),
and dividing by € > 0 from (3.4)

ug(x) —

=ap(zr) <1 in By (w),
Ek

namely

ap(z) <1 in B (ug). (3.8)
On F'(ug), instead, we know that u, = 0. Also, from (3.3) where (z,,+¢;)" =
0 in By, we have

0< (2, —ex)t <up(z) < (2, +)" =0,

in other words 0 < ug(z) < 0 and thus ug(x) = 0, where (x,, + &) = 0,
x € Bl-
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Now, (2, + &,)T = 0 if z,, + &1 < 0, that is x,, < —¢.

As a consequence,
up(x) =0 with z, < —ei, = € By. (3.9)

Moreover, if we take 7 € {x € By, x,, < —&x}, since {z € By, x, < —¢;} =
By N{x, < —¢&;} is an open set, we can find a ball B,.(Z) such that B,.(z) C
{z € By,z,, < —¢;}, and hence from (3.9) ux, = 0 in B,(z), i.e. B.(Z) N
By (ux) = 0.

Thus, given that F(u) = 0B{ (ux) N By, ¥ ¢ F(uy), which implies that
Ty > —ep on F(ug), so —x, <& on F(uy).

Consequently, in view of this fact, together with u;, = 0 on F(uy), we achieve
from (3.4)

€k Ek Ek
ie.
r(z) <1 on F(uyg). (3.10)

Therefore, from (3.8) and (3.10), we get in view of (3.5)

which together with (3.7) give us (3.6).

From Corollary 2.2, it follows that the function u; satisfies
|t (z) — i (y)] < C'le—y|’ (3.11)
for C' universal and
|z —y| > er/e, w, y € Qug).

From (3.3) it follows that F'(uy) converges to By N{z, = 0} in the Hausdorff
distance, see Definition A.2.
To show this fact, first of all we notice that F'(uy) C {z € By, —er < x, < &1}
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for every k.

Precisely, as shown before to obtain (3.10), we have
Tn, > —€p  on F(ug) C By. (3.12)

In addition, from (3.3), where (z,—&x)" > 0in By, ux > 0, and (x,—&)*" > 0
if x,, — e > 0, i.e. x, > ;. Hence, up > 0 in By N {x, > €}, that is since
up =0 on F(ug), x, < e, on F(uy).

As a consequence, in view of this fact, together with (3.12), we get

F(uk) C Bin {—?Sk <z, < 5k}- (313)

k—00

Now, we want to show that dy(F(ug), By N {z, =0}) "= 0, where dy
denotes the Hausdorff distance.

In particular, if z € F(uy), from (3.13), we have z € By and —¢;, < z,, < ¢,
namely |z,| < e. Thus, if we write x = (2/,2,), we can take y such that
y = (2/,0). Notice that y € By N {z, = 0}. Indeed,

9l = 1=, 0)] < |2 < 1,

namely |g| < 1, and hence y = (2/,0) € By N {z, =0} .

Moreover, inasmuch |z,| < €, we have

|I — g| = \/(1'1 — ZL‘1)2 + (ZEQ — 132)2 + ...+ (ZL‘n_l — xn_1)2 + (ZEn — 0)2

- ‘xn| S Ek,
in other words,
|I‘ - ?j‘ S €k,

which implies

inf |z —y|=d, BiN{z, =0}) <[z - g <z,
yEBlﬁ{IL‘nZO}

1.e.

d(x, By N{x, =0}) <&, z€ F(ug). (3.14)
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At this point, seeing as how (3.14) holds Vz € F(uy), €, is an upper bound
of the set {d(z, By N {z,, =0}), © € F(uy)} and hence
sup d(z, By N{z, =0}) =e(F(ug), By N{z, =0}) < ¢,
x € F(uy)

namely
e(F(ux), By N {z, =0}) < g. (3.15)

In parallel, if y € By N {x, =0}, y = (¢,0). Also, since up = 0 in By N
{r, < —er},up>01in ByN{x, > e} and up, € C(By), 37 = (v, Z,) € By
such that VB, (Z), B.(Z)N({ux > 0}N{z’ = y'}) # 0 and B,.(z)N({ux, =0} N
{2 =4y'}) #0,s0 % € Fug) and thus from (3.13), |7,| < &.

Furthermore, in view of |z,| < &, we also have

17—yl =V — )2+ W2 —v2)2+ o+ (Yoot — Yn1)? + (Tn — 0)2

= ’En’ S €k,

which gives
|‘f - y| S €k,
and hence

inf o —y|=d(F(u),y) <17 —y| < e,
T € F(uy)

ie.

d(F(ug),y) <ep, yE€ DBy. (3.16)
Now, since (3.16) holds Vy € By N{x, = 0}, & is an upper bound of the set
{d(F(u),y), y € BiN{x, =0}} and therefore

sup d(F(ug),y) =e(ByN{x, =0}, F(ug)) < &g,

y € By ﬁ{xn:O}
in other words

e(ByN{x, =0}, F(ug)) < e. (3.17)
Therefore, from (3.15) and (3.17) we obtain

0 < max (e(F(ug), Bi N {z, = 0}),e(B1 N {zn = 0}, F(uy)))
= dy(F(ug), By N {2, = 0}) < &,



68

3. Free boundary improvement of flatness

B dy(F(ug), By 0 {x, = 0}) < &4 (3.18)

and letting k go to oo, since ¢ — 0, we achieve from (3.18)

k—00

dH(F(uk), BN {l’n = O}) — 0,

that is F'(uy) converges to By N {x, = 0} in the Hausdorff distance.

This fact and (3.11) together with Ascoli-Arzela give that as ¢ — 0 the
graphs of the @ over € /5(uy) converge (up to a subsequence) in the Haus-
dorff distance to the graph of a Holder continuous function @ over By, N
{z, > 0}.

Step 2: Limiting Solution. We now show that u solves

U, =0 on By,N{x, =0},

in the sense of Definition 1.10.

Let P(z) be a quadratic polynomial touching @ at z € By N {x, > 0}
strictly from below (for what we have seen in Chapter 1, it suffices to show
that Definition 1.10 is satisfied by polynomials touching strictly from be-
low /above). We need to show that

(i) if z € Byjp N {x, > 0} then AP < 0;
(ii) if € By N {x, = 0} then P,(z) < 0.
Since u, — u in the sense specified above, there exist points x; € Ql/g(uk),
r — T, and constants ¢, — 0 such that
P(%k) +cp = ﬂk(lﬂk) (320)
and
iy > P+ ¢, in a neighborhood of xy. (3.21)
In particular, from the definition (3.4) of @y, we have in (3.20)

e — ().
P(zg) + e, = Ug(zg) = - ,
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namely

en(Plak) + ar) = up(zr) — (Tk)n
and

ek(P(xg) + cx) + (zx)n = ur (). (3.22)
At the same time, in (3.21) we have, always from the definition (3.4) of @y,

U — Tn

U = > P+ ¢, in a neighborhood of x,

€k

thus, given that ¢, > 0
up — Ty, > (P + ¢x) in a neighborhood of xy,
and
U > Tp +ek(P +¢x) in a neighborhood of z. (3.23)

Hence, (3.22) and (3.23) read

and

ug(r) > Q(x) in a neighborhood of x (3.25)

where

We now distinguish two cases.

(i) If z € Byjp N {x, > 0} then z;, € B;L/Q(uk) (for k large). In addition,
from (3.24) and (3.25), @ touches wy from below at zy, with @ €
C?(By)3), inasmuch P € C*°(Byj,) and z, € C®(Bj2), and hence in
particular @ € Cz(Bl%(uk)).

To sum it up, for k large, we have Q) € 02(3;2(%)) touching uy from
below at z;, € BT/Q(uk).

As a consequence, since uy is a solution to (2.1) in By, and thus also
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k
159
condition gy satisfying (2.2) with e, we get

in By, with coefficients a;;, right hand side f; and free boundary

Z af (2e) Qi) = > ali(w) (e (P(x) + cx) + 2)ij ()

2%}

= Z afj (wr)erPij(xr) = €y Z CLZ‘ (k) Pij ()

2%} 2%}

< fulzy) < &7,

in other words

€k Z afy(xx) Py (zy) < e, (3.26)

i7j
seeing as how || fil| joo(,) < €% and x € BYy(ug) C Bijp C By, namely

xx € Bi, 50 fi(wr) < [fulzn)| < | fell poomyy < €80 e fulan) < e

In particular, from (3.26) we achieve, given that & > 0

2

g
> af (k) Pry(ax) < 5—: = €k,
i

1.e.

> afi(x) Piy(ae) < e (3.27)

(%]

In addition, from the last inequality in (2.2), that is Hafj - 5inL°°(Bl)

< ¢ we have, because x € B; as said before,
o) = 8] = 185~ )| < o — Gl < 2

which gives

and

—ep, < 0ij — afj(xk) < gp. (3.28)



Thus, in view of (3.27) and (3.28), we achieve
AP =Tr(D’P) = Tr((D*P)I) = Y ((D*P)I)s
= Z Pijoji = Z Bijoy; = Z%‘Pm’
= Z i — )+ af () Py
— Z ij — ag;(zx)) Py + Za/,lfj(xk)Pij
< Zsk +Z_5k i + €k

P”>0 P”<0
- ( S P Pt 1)gk _ (e, (3.20)

because P(x) is a quadratic polynomial and therefore P;; is a constant
for every i, j, which also entails P;;(xy) = P;;.

Consequently, from (3.29), we obtain
AP < Cey (3.30)

and because ¢, — 0 as k — oo and C' is a constant, we conclude that
AP <0.

If z € ByjyN{x, =0}, as observed in the Remark 1.7, we can assume
that AP > 0. We claim that for k large enough, z;, € F'(uy). Otherwise,
we can find a subsequence k,, — oo of k — 0o, such that z, € By (ug,),
recalling that @y, € 4/2(uy, ), but not on F(ug).

Therefore, as in case (i)

AP < Cep, (3.31)

and letting k, — oo in (3.31), inasmuch as ¢, — 0 and ¢y, is a sub-
sequence of ¢, €, — 0 and we have that AP < 0, contradicting the

fact that P is strictly subharmonic. Thus z; € F(uy) for k large.
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Now notice that

_(0Q 0Q oQ
vQ_(@m’@xg"”’ﬁxn>

0 0
(a_;m(ek(P—i_Ck) —f-l'n),a—'x?(ﬁk(P—i—Ck) —f-l'n),,

...,%(5k(P+ck)+xn))

oP oP oP
= — =y, cs=— + 1| =, VP n
<5k Dy’ €k By’ €k . + ) €k +e

in other words

|VQ| = skVP + e,. (332)

Consequently, for k large, |VQ| > 0.

Precisely, from (3.32), we achieve

IVQ| = |exVP + e,] > |en| — |ex VP

€x>0

1—¢e,|VP|>1—¢psup|VP|,

By
which gives

VQ| > 1— epsup [V P, (3.33)
By 2
where sup |[VP| < C, because |VP| < C in By, since P(z) is a
B2
quadratic polynomial and B/, is a bounded set.

Hence, if sup [VP| =0, that is [VP| =0 in By, [VQ| > 1> 0 Vk.
By 2
Otherwise (sup |VP| > 0), seeing as how g — 0, for the definition of
By /2

limit, 3 k& € N such that

1 _
ep| < ————=—=, VkeN k>k
S Sap VP
i.e. since g, > 0 and thus |ex| = &;
1 _
< ——— VEkeN k>F
supp, , |V P]

This fact, together with (3.33), implies that |VQ| > 0 for k large.

Now, we have that @ touches wuy from below at zj € F(uy) for k large.
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Therefore, given that u; > 0 in By, recalling that w; is a viscosity
solution to (2.1) in By, QT touches uy, from below at xy.
Indeed, from (3.24), if ug(xr) = 0, Q(zx) = 0 = max(Q(xy),0) =
Q (xx), namely QT (z1) = ug(xy); if instead uy(xy) > 0, Q(xy) > 0,
hence Q(z) = max(Q(zx),0) = Q7 () and Q™ (k) = wp(z).
Consequently,

up(xr) = QT (). (3.34)

In addition, inasmuch as uj > 0, we obtain from (3.25)
up(r) > max(0,Q(z)) = QT (z) in a neighborhood of ,
in other words
up(x) > Q7 (z) in a neighborhood of xy. (3.35)

Considering (3.34) and (3.35) together, we get that QT touches wy, from
below at xj.

Moreover, Q € C?(B;) because P € C*°(B;) and x,, € C®(By).

To sum it up, we have Q € C?(Bj) such that Q% touches u; from
below at zj, with, for k large, xy € F(uy) and |VQ| > 0, which gives
IVQl (zx) > 0.

Thus, for these k’s, seeing as how uy is a solution to (2.1) in By with
coefficients afj,

isfying (2.2) with &, we get

right hand side f; and free boundary condition g sat-

IVQ (x4) < gilwr) < 1+,

namely

IVQ| (z) < 1+¢b, (3.36)

since [|gx — 1| poo () < ez and x, € F(ug) C By, ie. xp € By, so
gi(zr) — 1 < ge(@k) — 1] < |lgk — Ul poo(p,) < 7, which implies gx(xy)
—1<¢e? and gi(zg) < 1+ 2.
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Also, (3.32) and (3.36) give, because |VQ| (zx) > 0 and 1 +¢3 > 0

IVQI* (x1) = [exV P + en|” (22)
= (exVP(z1) + €,) - (ex VP(zx) + €,)
=iV P(xy) - VP(x1) + e, - en + 26, VP(x1) - €,
= &2 |VP)? (z1) + 1 + 26, P ()
<(1+e)?=1+¢}+ 2
<1462 422 =143¢2 (3.37)

given that 0 < ¢, < 1 Vk € N for the choice of ;. Therefore from
(3.37), we achieve

e2|VP) (z1) + 1 + 26, Py (1) < 14 3¢2,
in other words
e2 |V P (1) — 32 + 2e,Py(ax) <0
and thus dividing by €, > 0
i VP (x1) — 3ex + 2P, (x1,) < 0. (3.38)

Passing to the limit in (3.38) as k — oo, we obtain 2P, (z) < 0 and
hence P,(Z) < 0, seeing as how ¢, — 0 and P,(x) — P, (), recalling
that z, — & and P € C*(By).

Let P(x) be instead a quadratic polynomial touching @ at z € By 2N {x, > 0}

strictly from above. This time, we need to show that
(i) if z € Byjp N {x, > 0} then AP > 0;
(ii) if z € By N {x, = 0} then P,(z) > 0.

Always since 1, — @ in the sense specified above, there exist points x; €

O1/2(ug), v — 7, and constants ¢, — 0 such that



and

iy < P+ ¢, in a neighborhood of xy. (3.40)

As we have shown before, from the definition of y, (3.39) and (3.40) read

uk(xk) = Q(l’k) (3.41)

and

uk(x) < Q(x) in a neighborhood of xy (3.42)

where

We distinguish two cases again.

(i) If z € Bijp N {x, >0} then z;, € Bf/z(uk) (for k large). Moreover,
from (3.41) and (3.42), @ touches w; from above at x € By, (up),
with @ € C?(By)s), inasmuch as P € C*(By3) and z, € C®(By)s),
and hence in particular @ € C*(B),(ux)).

To sum it up, for k large, we have @ € C*(B],(ux)) touching uy from
above at zy € B, (up).

Consequently, because uy is a solution to (2.1) in By, and thus also

k
5

in By, with coefficients a;;, right hand side f; and free boundary
condition gy satisfying (2.2) with &5, we get, thanks to the previous

calculation,
> afi(ae) Qi) = e Y abi(wr) Py > fulak) > —€; (3.43)
i i

given that || fill o (p,) < €i and zx € By, (ux) C By, namely @y, € By,
thereby |fu(zr)| < [[fellpoe(my < g2 and thus |fi(z)| < &f, which
implies fi.(zy) > —&3.

In particular, from (3.43) we achieve, seeing as how & > 0

Zafj(:vk)]%j > —&g. (3.44)
i,J
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Therefore, in view of (3.44), (3.28) and recalling the case of P(z) touch-
ing @ from below at T € By/; N {x, > 0} to get (3.29),

2] i

> Z —ep by + Z exlij — eg
— —

o Pi%o
- (— Z Pz'j + Z B]‘ — 1> Ek = C&k, (345)
po pyto

because P(x) is a quadratic polynomial. As a consequence, P;; is a
constant for every i, j, which entails P;;(xy) = P;;.
Thus, from (3.45), we obtain

AP > Cg, (3.46)

and since ¢, — 0 as k — oo and C' is a constant, we conclude that
AP > 0.

(ii) If z € By N {z, = 0}, arguing as in Remark 1.7, we can assume that
AP < 0. We claim that for k large enough, x, € F(uy). Otherwise,
as we have said before, we can find a subsequence k,, — oo such that
r, € B (ug,).

Therefore, as in case (i)

AP > Csy,, (3.47)

and letting k, — 00, €, — 0 and we have that AP > 0, contradicting
the fact that P is strictly superharmonic. Thus x € F'(uy) for k large.

As shown before,

VQ = skVP + e, (348)

and for k large |VQ| > 0.
Now, we have that @ touches uy from above at zy € F(uy) for k large.

Therefore, seeing as how u; > 0 in By, recalling that wuy is a viscosity
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solution to (2.1) in By, QT touches uy, from above at xy.

Indeed, from (3.41), repeating the considerations done above, we get
ug(zy) = Q" (). (3.49)
Furthermore, since uy > 0, from (3.42) we achieve
0 < wug(x) < Q(z) in a neighborhood of zy

that is Q(z) > 0 in this neighborhood and hence Q(x) = max(0, Q(z)) =
Q% (z), which implies

up(r) < Q7 (x) in a neighborhood of xy. (3.50)

Considering (3.49) and (3.50) together, we obtain that Q* touches w
from above at xy.

and repeating the same argument used in case of P(x) touching @ from
below at € By N {z, =0}, we have Q € C*(B;) and for k large
zy € F(ug), with |[VQ)| (xr) > 0. Consequently, for these k’s, recalling
that uy is a solution to (2.1) in By with coefficients aj;, right hand side
fr and free boundary condition g satisfying (2.2) with e, we get

IVQ| (x1) > gr(ax) > 1 — €} (3.51)

given that |lgx — 1l (g, < €F and zy, € F(ug) C By, namely xy, € By,
50 |gk (k) = 1| < [lgr — 1l oo,y < €%, in other words |gy.(zx) — 1] < &,
which implies gi(z) — 1 > —e7 and gp(zx) > 1 — &2,

In addition, (3.48) and (3.51) give, because of |[VQ| (zx) > 0 and 1 —

e2 > 0, inasmuch as 0 < g, < 1 and thanks to the previous computation

IVQP? (zx) = €2 |[VP? (z4) + 1 + 26, Py ()
et>0
>(1—ed)?=1+¢ef—2e8 > 1—2e7,
that is
€2 |VP)? (z1) + 1 + 26, Py (25) > 1 — 262
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and

Hence, dividing by ¢, > 0 the last inequality found,
er VP (1) + 2P, (25) + 26, > 0 (3.52)

and passing to the limit as & — oo we obtain 2P, (z) > 0, i.e. P,(z) >
0, seeing as how ¢ — 0 and P,(xy) — P,(Z), since xy — Z and
P e C™(By).

Step 3: Improvement of flatness. From the previous step, @ solves (3.19)
and from (3.6),

Sure enough, fixed z € By;N{x, > 0}, because @, — @ in the sense specified
in Step 1, we can find a sequence of points xy € € 2(us) such that @ (xy) —
a(z).

Moreover, given that B/, C B; and for the definition of Q,(us), Q1 /2(ur) C

Q(ug), xp € Q1 (ug) and from (3.6),

Passing to the limit as & — oo in (3.53), since uy(xr) — @(Z), we achieve,

for the properties of the sequence limit,
-1 <a(z) <1,
and for the arbitrariness of Z € By, N {x, > 0},
—1<@<1 inByyn{z, >0}
Now, from Lemma 1.8 we find that, for the given r,
|i(x) — a(0) — Va(0) - x| < Cor* in B, N {x, >0},

for a universal constant Cj.

Precisely, since @ solves (3.19), from Lemma 1.8 & € C*°(By2 N {z, > 0}),
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so for the formula of Taylor expansion around 0 up to second degree, we get

locally for the given r
a(r) = a(0) + Va(0) - x + %D%}(O)x cz+0(|z]*) in B,N{x, >0},
which gives
() — 1(0) — Vii(0) -z %D%(O)x~x+0(|x|2) in B, N {z, > 0}. (3.54)

Now, we have

O(|z*)| < C|2f? (3.55)

with C' a universal constant, and for the Cauchy-Schwarz inequality
|D?*u(0)x - 2| < |D*w(0)z| |z| < ||D*@(0)|| || |2| = ||D*@(0)|| |=*, Yz #0,
in other words

|D*u(0)x - z| < ||D*@(0)|| |z*, Va #0. (3.56)
Therefore, in view of (3.55) and (3.56), we obtain from (3.54)

la(z) — a(0) — Va(0) - z| = ’%D%(O)x -z + O(|z[?)

IN

Lo 2
‘iD @(0)z - x| + |O(|=]")|

IN

S D% laf? + T faf
— <% |.D*a(0)]] +U) 2> = Cp |z
<Cyr* in B,N{x, >0}, x#0
namely
i(x) — a(0) — Va(0) - 2| < Cor* in B, N{x, >0}, x#0, (3.57)

for the triangular inequality of |-| applied to |%D2'&(O)x cx 4+ O(|:E]2)| and
recalling that |z| <rin B, N {x, > 0}.
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Notice that if z = 0, |ia(z) — @(0) — Va(0) - z| (0) = 0 < Cyr?. As a conse-

quence, from this consideration and (3.57), we achieve
|i(x) — u(0) — Va(0) - x| < Cor* in B, N {x, >0}, (3.58)

for a universal constant Cj.

At this point, we can rewrite (3.58) as
i(z) — @(0) — Va(0) - 2’ — 1,(0)z,| < Cor* in B, N{x, >0}. (3.59)

In particular, because 0 € F(@), and thus @(0) = 0, and also @,(0) = 0,
recalling that @ solves (3.19) and 0 € By, N{z, = 0}, we obtain from (3.59)

i(z) — Va(0) - 2’| < Cor* in B, N {z, >0},
which implies
—Cor? < @(x) — Va(0) -2/ < Cor* in B, N {x, >0},
and

v —Cor? <ix) <2 -0+ Cor* in B,N{z, >0}, (3.60)

where 2’/ - 7 = - 2’ for the symmetry of the scalar product and 7; = @;(0),
i=1,...,n—1, with |#] < C, C a universal constant.
Therefore, for k large enough from (3.60) we get, inasmuch 4, — @ in the

sense specified in Step 1,

2 — Cr? <dgx) <2 o4+ Cir? o in Q(ug). (3.61)

From the definition (3.4) of @ the inequality in (3.61) reads

ug(x) — xy,
€k

v —Cir? < <2 v+ Cir? in Q. (up),
in other words, seeing as how ¢, > 0,

epd - U — e Crr® < up(x) — 1, < g2’ - v+, Crr* in Q. (ug)
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and
epd U+ ay — O <y < gpa’ U+ 1, + 6,01t in Q(ug). (3.62)

Let us set now

. (€kl7, 1)
Verlpl +1
Notice that
1
lv| = 2 +1=1,
20 +1
that is
lv| =1 (3.63)
and
Y 1
v —e,| = i —1

~12
1 1+4/e2|p|"+1
- skﬁ,(l-—\/si|ﬁfkl) -

219 41 1+/e2p)* +1
1 11— -1
_ e, g, 7]
219 41 1+/e2p)* +1
1 . e |7 [?

= —— || e, —

219 41 1+y/e2 |7 +1

. £2 |p|?
S ERV, — k| | )
L+4/e2|9)* +1

in other words

2 1~12
v —en] < (Ekﬁ, — 2l (3.64)

1+/e2p)* +1
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1

— <1
VAT =

In addition, we have

inasmuch

~12 2 |~
_ e |v _ e2 v
R L | 1
L+y/e2|p]” +1 L+y/e2|p]”+1
4
£ |7

+ 2
(1 +a/e2 o] + 1)

< Je I+ e ol = 2P (14 219P) = eall /1 + <2 of,

namely

12

£; 7]
1+y/e2p)* +1

2

because ¢, > 0 and (1 +y/ 2|9 + 1) > 1, which gives
4
£ 171

2
(1 +1/e2 |9 + 1)

Now, we know that the sequence ¢ is convergent and hence it is bounded,

e, — <er|P|\/1+ 2|0, (3.65)

<)t

ie. forevery k, 0 < g < C with C a universal constant.
This fact, together with |7| < C, with C' a universal constant, implies in view
of (3.64) and (3.65)

|V — €n| < é&k V1 —I—62C~Q = Cey,

1.e.

v —e,| < Cep for every k. (3.66)

As a consequence, from (3.63) and (3.66) v satisfies the hypotheses of Lemma
3.1.
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At this point, we can rewrite (3.62) as

29> +1 210 +1 ) Vel +1
o] X R S — R G K G 1T e S— A VN 7
+1 210 +1

+ Y, + 8k017”2 in Qr(uk),
2 17> +1

which gives for the definition of v,

2
20+ 1z v —e,01r% <y

<2 |pfP + 1z v+ eCir? in Qu(ug). (3.67)
Moreover, we remark that 1 < /&2 [5|* +1 < 1+ 2 [9]* /2.

Indeed, as regards the first inequality, it suffices to observe that &2 |7]> > 0
and thus for the monoticity of v/, 1 = v1 < y/e2 |#]* + 1.

As regards the second inequality, instead,

<€i|’7|2 ; 5%”7|4 2 1~12 2 1~12
1+T :1+ 1 +€k|V| Z€k|l/| +1,

given that & |7|* /4 > 0 and raising both the terms of the inequality to 1/2,

recalling that both the terms are positive or equal to 0, we achieve

12
ex 17|

5 2 Vel L,

Consequently, from (3.67) we have

1+

as desired.

T-v— e} |17|2 g —Cr*ep <upy<z-vtes |ﬂ|2 g + Cir%ey, in Q(ug).

To show this fact, we distinguish two cases.

If x-v >0, since /&7 ]5]2 + 1 > 1 for what we have said before, z - v <
Ve PP + 1 - v, s, seeing as how —&? |7|°r/2 < 0, we get from (3.67)

r
r-v—cl |17\2 5 Cirle, < y\/e? |ﬁ|2 +lz-v—,01r% <up in Q(ug)
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and hence

T-v— e} ]D|2 g — Cire < uy in Qe (ug). (3.68)

In addition, always if = - v > 0, \/e2 |7 + 12 -v < (1 + |9 /2)x - v,
seeing as how /&2 |7]° +1 < 1 + €2 |#|* /2 for what we have shown above,
and z-v < |z-v| <|z||v] <7rin Q.(ug), ie. x-v <r recalling that [v| =1
and |x| < rin Q,(ux) C B,. As a consequence, inasmuch as 2 || r/2 > 0,
we get from (3.67)

up < \/ez|ﬁ|2—|—1x-y—|—01r2£k

2 1~12
€
< (14_%) z- v+ Cyrieg
2 1~12
€

17 z - v+ Ciriey

=x-V+

<z-v4ek|p] g + Cir¥er in Q. (uy),
in other words,
up <x-v el |17\2 g + Cirer in Q. (ug), (3.69)
which, together with (3.68), implies
z-v—el ) g — Oy <up < z-v4ek | g +CO1r?er in Q.(uy). (3.70)

If instead x - v < 0,

Vellof +1z-v> 1+ o] /2)x v,

because \/e2 [7]> +1 < 1+ €2 |9 /2, and for what we have shown before,

|z -v| < rin Q.(ux) and thus z - v > —r in Q,(ug). Consequently, since
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21> > 0, we get from (3.67)

up >/ 2 0)* + 1z - v — Cyriey,

2 1~12
> <1+€k‘2y| ) z-v—Cirie,

=x-V—+

,
>z-v—el|p] 5 Cir’ep in Q. (ug)

z-v—ell|p) g — C1r%ep < g in Q. (uy). (3.71)

In addition, always if z - v < 0, y/e7 |D|2 +1z-v < z - v, seeing as how
\/€2|7)* 4+ 1 > 1, thereby, given that 2 |7 7/2 > 0, we achieve from (3.67)

up <A 2P+ 1z v+ Ol <a-v+ell|f g + Crr?e in Q. (ug),

namely
up <z -v et g O in O (u), (3.72)

which, together with (3.71), gives

z-v—el ) g — Oy <up < z-v4el | g +Cir%e, in Qu(ug). (3.73)
Therefore, considering (3.70) and (3.73) together, we obtain

z-v—el ) g — Oy <up < z-v4el | g +Cir%e, in Qu(ug), (3.74)

regardless of the sign of = - v and hence Vz € Q,(uy).

In particular, if rq is such that Ciry < 1/4, that is rq < ﬁ and moreover k
1

is large enough so that g, < TP e achieve from (3.74)

r ro.
x-y—skégukgamu—i—ekﬁ in Q,(ug).

Precisely, if o < ﬁ, given that 0 < r < rp, 0 < r < ﬁ. Furthermore,

inasmuch as e, — 0, for the definition of limit, we can find k € N such that

lex| < VkeN, k> k

2|7
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and thus for these k’s e, < |ex| < ﬁ, lLe. g, < ﬁ
. 1 1
To sum it up, 0 < r < To and for £ large, g, < P

Hence, for these k’s

9 12T .9 1 r T
erlv|"=<eplv — = €L
o 5 < lof 5 ag =ag
in other words
€2|~|2r<€r
I/ — —
RIZE 9 =5ky
and
507“2<EC’7"——5i
£C1 _k1401—k4a

which gives
r
e, Cyr? < 8’“1'

(3.75)

(3.76)

As a consequence, in view of (3.75) and (3.76), which also imply —&? |7 /2 >

—er/4 and —e,C17? > —epr /4, we get from (3.74)

r

r r ro.
x~u—€k1—5k1Suk§x~v+€k—+€k— in Q,(ug),

4 4
which gives

r ro.
x-y—ekﬁgukgx-u%—ekﬁ in Q. (ug).

Remark that we have assumed 7 # 0 to write g < ﬁ

(3.77)

If instead 7 = 0 then v = ¢e,. Thus, from previous computation, it follows

that

Ty — e, C1r? < up < 1y + 6,C1r* in Q. (uy).
Moreover, recalling that er/2 > 0,
r
x-u—ez5—01r26k <xz-v—C0Cirie, < uy

S X, + 017’28k

r
<ux,+ €z§ + 017’2€k in Qr(uk),

1.e.

r r .
T-U— 5%5 —Cir?ep <up <z-v+ 5%5 + Cir%ep, in Q- (ug).

(3.78)
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Therefore, repeating the above arguments, if Cirg < 1/4 and k is large

enough so that g, < 1/2; we achieve from (3.78)
rov—epr/2 <u <z -v+er/2 in Q(ug).

Hence, we get (3.77) one more time. Now, (3.77), together with (3.3), entails

that
r\+ r\ + .
(x-u—5k§> <u < (J}-V-|—6k§> in B,. (3.79)
The wuy satisfy the conclusion of Lemma 3.1, obtaining a contradiction, inas-
much we have supposed that the u; did not satisfy the conclusion (3.2) of
Lemma 3.1.

Let us show that (3.79) holds.
From (3.77), since - v + ,7/2 < max(0,z - v + er/2) = (x - v + &1 /2) 7T,
we achieve

r\+
up < <$ v+ 5k§> in Q,(ug). (3.80)

In addition, since ux, > 0 in B; D B, D Q,(ug), namely u; > 0 in Q,(uy),

recalling that uy is a viscosity solution to (2.1) in By, we have from (3.77)
T r\*t .
max <0,x-y—5k§> = (x-l/—sk§> < in Q- (ug),

in other words

Jr
(x V- 5;%) <wug in Q- (ug). (3.81)

Recall now that for the definition of Q,(uz), Q.(ur) D B (ux) N B, and
Bi (u,) N B, = B (uy), hence, seeing as how u; > 0 in By D B,, for what we
have noticed above, i.e. ux > 0in B,, ux, = 0 in B, \ Q,(uy). Consequently,

given that (x - v+ g,r/2)" > 0 in B,, we have
r\+
w s (vovtas) i B\ Q).
which, together with (3.80), implies

r\+
up < (g: : u+ek§> in B,. (3.82)
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At this point, from (3.3), we achieve
r\+
(x V- €k§> <wug in By \ Q- (uyg),
which gives from (3.81)

r\+
(m ‘U — €k§> <wu in B,. (3.83)

To sum it up, in view of (3.82) and (3.83) we obtain that (3.79) holds. [



Chapter 4
Proofs of the main theorems

We prove our main results, in other words Theorem 0.1 and the following
4.1.

Theorem 4.1 (Lipschitz implies C'). Let u be a viscosity solution to
(2.1). Assume 0 € F(u) and g(0) > 0. If F(u) is a Lipschitz graph in a
neighborhood of 0, then F(u) is C** in a (smaller) neighborhood of 0.

We begin from Theorem 0.1 and for the reader convenience, we recall

below its statement given in the introduction.

Theorem 4.2 (Flatness implies C"®). Let u be a wviscosity solution to
(2.1) in By. Assume that 0 € F(u), g(0) =1 and a;;(0) = d;;. There exists a

universal constant € > 0 such that, if the graph of u is £-flat in By, i.e.
(p,—8)" <w(z) < (z,+&)", z€ By, (4.1)

and
aijlcossy <& N fllpwpy & [9lcoss) <& (4.2)

then F(u) is C* in Bys.

Remark. As observed in [11], the assumptions on the coefficients a;;(z) in

Theorem (4.2) can be weakened to a Cordes-Nirenberg type condition
lai; = 0ijll poo i,y < 0(n2).

89
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Proof of Theorem 4.2. Let u be a viscosity solution to (1.2) in By with 0 €
F(u), g(0) =1 and a;;(0) = ¢;;. Consider the sequence of rescalings

ue) = 420 e g,

Pk

with p, = 7%, k =0,1,..., for a fixed 7 such that

<<, <,

1
4 Y
with 7y the universal constant of Lemma 3.1.

Notice that if #° < 1/4, raising both the terms of the inequality to 1/3, with
0 < B <1, since both the terms are positive, we get

1\ /A
(1
< ()

and given that 1/8 > 0, (1/4)/% < 1, thus 7 < 1.

As a consequence, p, = 7, k = 0,1..., is such that py = 1 and p, < 1
Vk € N and hence uy, is well-defined VEk.

Indeed, if x € By, since 0 < pr < 1, we have

|or] = pr x| < pe <1

that is
prT € By (4.3)

and so uy is well-defined, in view of its definition.

Now, we state that each uy solves (2.1) in By with coefficients af;(z) :=
a;;(prx), right hand side fi(z) = prpf(prx), and free boundary condition
k(@) = g(pr).

Specifically, we need to show that

(i) if ¢ € C?(By (ug)) touches uy from below (above) at xy € B; (uz) then

Zafj(ﬂﬁo)@ij(mo) < fr(zo) (resp. Zafj(xo)%j(ﬂfo) > fk($0)> )

i,7 i,
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(ii) if ¢ € C?*(By) and ¢ touches u; from below (above) at o € F(uy)
and |Vo| (z9) # 0 then

Vel (z0) < gr(wo) (resp. [Vl (z0) > gr(wo)).

For this purpose, let us take ¢ € C?(Bi (uz)) that touches uy, from below at

ro € B (uz) and we have
(o) = uk(o) (4.4)

and

o(x) <wug(x) in a neighborhood O of xy. (4.5)
In particular, for the definition of uy, we can rewrite (4.4) as

P(@0) = ur(@0) = %’

therefore
pre(xo) = (pr)(x0) = u(prro)

and in addition

() (P = o) (16)

Analogously, from (4.5) we have

o) <ugp(z) = M in O,

Pk
which implies, inasmuch p; > 0,
pep() = (prp)(z) < u(prz) in O

and also
T

) (%) < ulpra) n . (47)

Notice that if x € O, with O neighborhood of g, prx € p.O = O', with O’
neighborhood of pyzg. For instance, if we take O as B,(x) and = € O,

|z — xo| <,
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thus, given that p, > 0,

|k — pro| = pr |2 — 20| < P11,

i.e. prr € B, (prxo) = prBr(xo), which is a neighborhood of pjyx.
Consequently, from this remark, together with (4.6) and (4.7), we obtain that
(Pr) (p—k> touches u from below at pgx.

To use the fact that u is a viscosity solution to (2.1) in Bj, we need to
verify that prro € Bi (u) and (pry) (p—k> € C*(Bf (u)), or however in a
neighborhood of ppxy.

As regards the first condition, we know that zy € B; (u) and hence, for the

definition of u;, we have
and so, seeing as how pyzy € By, as we have shown before, ppxo € B (u).

As regards the second condition, instead, (pry) (p—k) € C*(0'), recalling that
if x € O, we can write x = ppy, with y € O, for what we have said above,

and
T

(prp) (E) = (prep) (%) = (prp)(y) = prp(y),

namely
x

) (£) = st (43)

Moreover, provided that making O smaller, inasmuch as Bj (u) is open
and zg € By (ug), we can take O C Bj (uy), thus, since p € C*(B; (uy)),
© € C?(0) and from (4.8) (prp) <p—k) e C*(0).

To sum it up, we have (prp) <p—k> € C*(0') that touches u from below at
pro € B (u).

Therefore, given that u is a viscosity solution to (2.1) in By, we get

Sastocry) ((09) (7)) () < stz 49

v

(01 (), = (), =2 e (),
() e ()

Now,
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which implies

(0 (), =50 ()
((pw) (E))J (o) = és@u (E) (prio)

1 PET0 1
= —ij = —ij (7o),

Pk Pk Pk

(0000 () ) ow) = L

As a consequence, we achieve from (4.9) and (4.10)

and thus

in other words

1
Z aij(PkJUo)E%j (z0) < f(pro),
2%}
which implies, because pp > 0

Z ai;(pro)ij(20) < prf(prao)
(2%}
and for the definitions of afj and f,
Zafj(%)%j(ﬂfo) < fu(zo),
i,

that is

Z afj(x)(uk)” = fi in B (uz) in the viscosity sense,
4,

(4.10)

(4.11)

repeating an analogous reasoning with opposite inequalities, if o € C?*(B; (uz,))

touches wuy, from above at zg € By (uy).

To show instead that |Vug| = gp on F(uy), let us consider ¢ € C*(B;) such

that ¢ touches uy, from below at xog € F(ux) and |Vl (zg) # 0. Seeing as

how ™ touches uy from below at z¢ € F(uy), we have

<P+(~’Uo) = uy (7o)

(4.12)
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and
©" <wug(x) in a neighborhood of z. (4.13)

From the definition of wy, (4.12) reads

U\PxTo
o* (o) = LLETO)
Pk

hence, given that p, > 0,

pk90+($0) = (ﬂk¢)+(fﬂ0) = u(pro)

and also

(prp)™ (%) = u(pro). (4.14)

Likewise, we have from (4.13)

which gives, always since py > 0,

pre’ (x) = (prp) " (x) < ulprz) in O

and moreover
z

(%wﬁ<%?)SUWM)iHO- (4.15)
For what we have noticed before, ppx € O’, where O’ is a neighborhood of
prxo and thus from (4.14) and (4.15), we obtain that (prp)™ (p—k> touches u
from below at pxo.
To use the fact that u is a solution to (2.1) in By, this time, we need to prove

that przo € F(u), (prp) <p—k) € C?(By), or however in a neighborhood of
PrTo, and ‘V <(pk90) (;))‘ (prr0) # 0.

With respect to the first condition, we know that zo € F(uy), i.e. ug(zg) =0
and VB,(xg), B.(xo) N By (u) # 0 and B,(zo) N By (ug)® # 0. From the

definition of wuy, we get _“(f;k%)

B, (prwo) N By (u)e # 0.
Furthermore, if VB, (), B.(xo) N B (ug,) # 0, it means that there exist at

= 0, namely u(przo) = 0 and so, VB, (prxo),
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least a point = € B,(x¢), such that z € By and ug(Z) > 0, thus for the
definition of uy, u(prZ) > 0, because py > 0.
In addition, for what we have shown above, since z € B,(z9) N By, prZ €
B, (prro) N By and hence, inasmuch u(pz) > 0, prZ € By, (pro) N B (u).
In summary, we have that VB, (przo), Bpur(pexo) N By (u) # 0.
To show that prxy € F(u), remain to verify that VB,.(prxo), B.(przo) N
Bi (u) # 0, but if we fix a ball B;(ppo), we can consider B - (a0) and for what
we have said before, Bpka(pk%) N By (u) # 0, that is B (pkxo) N By (u) #
0 and therefore VB, (prro), B, (przo) N By (u) # 0, which, together with
u(prro) = 0 and B, (pro) N BY (u)¢ # 0, VB, (pxxo), gives ppro € F(u).
With reference to the second condition, repeating the same reasoning done
above, recalling that Bj is open and x¢ € F(u) C By, (prp) ( ) e C*0)).

Concerning the third condition, instead,

v (1 (5)) =7 (< (7))
e (an (¢ (5) 3 (0 (2) -5 (£ ()
(ég—;’i () o ) = ()
()
ST )
v (000 (2) )| s = (9 () o) = 91 ) 20,
(i ()
o 5o

1.e.

(x0), (4.16)

and
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To sum it up, we have (pp) (p—k) € C*(0') such that (pre)™ <p—k> touches u
from below at przo € F(u) and ‘V ((pkgp) <p—k)> ‘ (prxo) # 0. Consequently,

inasmuch as u is a solution to (2.1) in By,

‘V <(pk90) (ﬁ)) ‘ (przo) < g(pro)

which gives from (4.16)
Vel (z0) < g(pro)

and for the definition of g,

Vol (z0) < gr(wo),

that is

|Vug| = gr  on F(uy) in the viscosity sense, (4.17)

repeating an analogous reasoning with opposite inequalities, if ¢ € C?(B;)
is such that ¢* touches wuy from above at xy € F(ux) and |V| (x) # 0.

Therefore, considering together (4.11) and (4.17), we obtain that each wuy

solves (2.1) in By with coefficients af;, right hand side fj, and free boundary
condition gy.

Now, for the chosen 7, by taking & = £y(7)? the assumption (2.2) holds for
£ =¢gp =275 (7).

Indeed, in By, given that from (4.3), pxx € By, if x € By and || f|| joc(p,) < €

in view of the second inequality in (4.2), we have

[fe(@)| = lonf (pr)l = pic | f (or2)] < pill fll ooy < i€ =74, (4.18)

seeing as how p > 0 and p;, = 7*. In addition, from the condition 7 < 1/4,
since 7 < 1, as we have shown before and 0 < 3 < 1, we get 7 < 7 < 1/4,
namely 7 < 1/4 = 272 and thus 7™ < (1/4)F = 272 for k = 0,1,... As a

consequence, from (4.18), we achieve for the definition of &

[fu(@)| < &7 < eo(F)"277" =€,
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i.e. |fr(x)| <&}, with z € By, so &2 is an upper bound of the set
{|fx(x)|, = € B;} and hence

1 fill poe () = sup [fu(@)] < e,
r€By

which gives || fill o (p,) < €7, as desired.

Concerning the free boundary condition gy, instead, always since from (4.3),
prx € By, if x € By, given that g(0) = 1, in view of the third inequality in
(4.2), [g]co.s(p,) < &, and the definition of [g]cos(p,) (see Definition A.1), we

have in B;

gk(2) — 1| = |g(prx) — 9(0)] < [gleosmy lowal” < Epf = &7, (4.19)

because |x| < 1, with z € B; and thus |z|° < 1, recalling that 0 < 8 < 1
and always since p, > 0 and p = 7*. Furthermore, we know that 7° < 1/4,
hence, inasmuch as 7 > 0 and 1/4 > 0, 75 < (1/4)* =272 for k = 0,1, ...

Therefore, from (4.19), we obtain for the definition of &
lgr(x) = 1] < &7 < eo(7)?27% = &,

in other words, |gr(z) — 1| < €%, with 2 € By, thereby &7 is an upper bound
of the set {|gx(z) — 1|, x € B} and hence

gk = Ul oo (my) = sup lgr(e) — 1] <&,
reB;
which gives |lgx — 1]l o (p,) < €7, as desired.

k

Finally, as regards the coefficients q;;, always since from (4.3), prx € By

if z € By, given that a;;(0) = 0,5, in view of the first inequality in (4.2),

]
[aijlcos(p,) < & and the definition of [a;;]cos(p,) (see Definition A.1), we

have in B;

|ali () — 635 = lai;(px) — a;;(0)] < [ag]cos(ny) \oea|” < epy, = e (4.20)

seeing as how \x|ﬁ < 1 for what we have said before and always since py > 0

and p, = 7. Consequently, inasmuch as 7 < 272 for k = 0, 1,. .., as shown

above, we get from (4.20), for the definition of &

|ai€]($) — dle S é:?jkﬁ S 60(’17)2272]C = 6% S Ek, (421)
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because 0 < g < 1, recalling that 0 < €y(7) < 1. Therefore, from (4.21), we
achieve ‘afj(a:) — 51‘]“ < ek, with « € By, thus € is an upper bound of the set
{|ak(z) = 6;;|, = € B} and hence

||afg - 5inL°°(Bl) = jgg |CLZ(ZE) - 5zg| < &k,

which gives ||a§j — 0ij £k, as desired.

| o,y <
Lee(B1) —
To sum it up, we have shown that the assumption (2.2) holds for g, for every

k
YR

right hand side f; and free boundary condition g, which satisfy (2.2) with

k=0,1,... and thus each wy is a solution to (2.1) in B; with coefficients a

k-

Now, the hypothesis (4.1) guarantees that for k& = 0 also the flatness as-
sumption (3.1) in Lemma 3.1 is satisfied by ug. Precisely, with k& = 0, we
have py = 7° = 1, which gives, for the definition of ux, 1y = u. As a conse-

quence, from (4.1),
(2, — &) <wplx) < (x, +8)7, x€ B (4.22)

and given that 0 < g¢(7) < 1, £ = &0(7)? < £o(7), hence the flatness assump-
tion (3.1) in Lemma 3.1 is satisfied by ug. In addition, since & < gy(7) and

writing g¢ for €o(7), x, + € < z,, + €9, with z € By, which implies
(1, +&)" = max (0,2, +&) < max (0, z,+e¢) = (v, +c0)", x € By. (4.23)

Analogously, because —& > —gq, if € < ¢y, x,, — & > x, — ¢ with = € By,

which implies
(2, —&)" = max (0,2, —¢) > max (0,z,—¢¢) = (z,—e0)", =€ By. (4.24)

Therefore, from (4.22), (4.23) and (4.24), we achieve
(1, —e0)T <wglx) < (2, +&0)7, x€ By. (4.25)

In addition, we can write z,, = = - e,, and setting vy = e,, we get from (4.25)

(- vy —e0)" <wup(x) < (z-vp+e0)” z€By. (4.26)
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Consequently, we state that it follows by an induction on k£ and Lemma 3.1
that each wuy, with k£ > 1, satisfies

(x v — 5k)+ <ug(x) < (z-vp+ ak)+ T € By,

with || = 1 and v, — vg—1| < Ceg—y for a universal constant C.

Let us analyze the case of k = 1.

For what we have shown above, we have that wug is a solution to (2.1)-(2.2)
in By satisfying (4.25), with 0 € F'(ug), recalling that 0 € F(u) and ug = u.
Hence, because we have chosen 7 such that 7 < ry, where 7y is the universal

constant of Lemma 3.1, we can apply Lemma 3.1 with 7 and gy = &¢(7) to

obtain
N\ T N\ T
(3: CU — €0§> < wp(z) < (a: ‘v + €0§> , T € By, (4.27)
with |v1| = 1 and |1y —e,| = |11 — | < Ceg, 1e. |11 — 1] < Cey, for a

universal constant C.

Notice that for k = 1, p; = 7, thus we can rewrite (4.27)

p1 +< < p1\ Tt
x-yl—eog <wup(z) < x-ul%—eo? , T €DB,. (4.28)

Furthermore, if x € B,,, we can write x = pyy, with y € B;. Indeed, fixed

T

p1
p—ll 7| < £ =1, inasmuch as p; > 0, i.e. |yl < 1, thus § € By and moreover

T € B,,, we can take § as § = pil, seeing as how p; = 7 # 0, with |g| =

Z = p1y for the definition of y. Conversely, if ¥ € By, T = p1y is such that
|Z| = |p1y| = p1 |y| < p1, given that p; > 0, that is |Z| < p; and Z € B,,. As

a consequence, from (4.28), we get, since (p1y) - v1 = p1(y - 1),

pi\* p1\*
(Pl(y V) — 50;) < wup(pmy) < (Pl(y “vp) + 505) ., yebB

and dividing by p; > 0

1 + u 1 +
— (,01(?/'V1)—50&> < o(P1y) < — (P1(?/'V1)+€o&) , Yy € DBy.
P P1 P1 2
(4.29)
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Also, for what we have said before, ug = wu, hence for the definition of uq,

W = u(y) and from (4.29) we achieve
1 + 1 p1\ T
— (Pl(y Vi) — 50—> <u(y) < — (Pl(y vi) + 50—) , ye B
P1 P1 2

1 + €0\ T
p_ <p1<y'V1)+60&) = (y~1/1+—0) 5
1

therefore from (4.30),
(y-vl—%o>+ <u(y) < (y-vl+%o>+, y € By,
that is recalling y = z and given that for the definition of 1, 3 = £0271 =g
(z-v—e)" <u(x) < (z-vn+e)t, z€bB, (4.31)

with || = 1 and |y — 1| < Cey, for a universal constant C, namely the
thesis holds for k = 1.

Suppose now that the thesis holds for k£ and show that holds for k + 1.

We have from the hypothesis of induction that

(x-vp—ep)” Suplz) < (z-vp+ep)’, z€B (4.32)

with |vg| = 1 and |y, — vg_1| < Ceg_y.

To apply Lemma 3.1 with v, in place of e, and thus z - 14 in place of z,,
we need to show that 0 € F'(ug). In particular, we know from the hypothesis
of Theorem 4.2 that 0 € F(u), in other words VB,, B, N Bf (u) # 0 and
B, N By (u)¢ # 0, and u(0) = 0. Notice that for the definition of uy, ux(0) =
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% = % = 0, namely u;(0) = 0, hence 0 € B (uz)¢ and VB,, B, N
B (ug)¢ # 0. Now, we want to prove that VB,, B, N By (u;) # 0. As a
consequence, let us fix B,,. For what we have said above, recalling that
0 € F(u), if we consider B,, ., By.r, N B (u) # 0, that is there exist points x
such that « € B,,,, N By (u). Furthermore, we can assume that there exists
T € B, N By (u) such that |Z| < pi. Indeed, if ro < 1, since T € B, |T| <
prro < pr, that is |Z] < pg, while if ro > 1, seeing as how also B,, N B (u) # 0,
because 0 € F(u), we can take z € B,, N B (u) and given that py < pxro,
inasmuch as 7y > 1, B,, C B,,,, and thus B, N B (u) C B,,,, N B (u), i.e.

T € By, N Bf (u), as we have supposed. In addition, since z € B we

PKTO
can write T = pgy, with ¥ € B, , repeating the same reasoning done to show
that if x € B,, we can write x = ry, with y € By. Nevertheless, seeing as how
|Z| < pr, |pey| = |Z| < pr, hence |pry| < pr and given that pr > 0, px |7| < pr,
which implies |y| < 22 =1, that is [y| <1 and § € B;. On the other hand,
T € By (u), therefore u(z) > 0 and recalling that Z = p¥, u(pry) > 0, which
gives, inasmuch as p > 0, % = ug(y) > 0, namely ug(y) > 0. To sum it
up, we have shown that § € By and ug(y) > 0, in other words § € By (uy,).
Moreover, §j € B,,, thus § € B,, N By (u) and B,, N Bf (ux) # 0. For the
arbitrariness of B,,, we achieve that B,NB; (ux) # 0 VB, and hence, putting
together this fact and B, N By (ux)¢ # 0 VB,, we obtain that 0 € F(uy), as
desired.

Now, because uy is a solution to (2.1)-(2.2) in B; satisfying (4.32), with
0 € F(ug), we can apply Lemma 3.1 with radius 7, for what we have said in
the case of k = 1, and with g, = &(7)27F < go(F), i.e. ex < o(7), and we
get

7yt Pyt

(w S Upgl — 5k§) < ug(x) < (m S Upg1 + €k§> , I € Bs, (4.33)

with |vg1] =1 and |1 — vi| < Cey for a universal constant C.
In addition, if x € By, © = 7y with y € By, thus we can rewrite (4.33)
T

+ 7 +
<(77?/) Vg1 — 5k§> < u(ry) < ((fy) Vg1 + €k§> , Yy € By, (434)
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and dividing by 7 > 0, namely 7 # 0,

Ly, ™t ou(ty) 1 T\ T
7 ((Ty) V41 — €k§) < = < = ((Ty) Vg1 + €k§> y € By,
which implies, given that (7y) - vgr1 = 7(y - Vks1),
1 AN u(ry) 1 7\t
- (f(y Vky1) — 5k‘> < k(, y) < - (fy('VkH) + Ek;—) y € By
T 2 T T 2

and, since © > 0, analogously to the case of k£ =1 with py,

T e ™\t wur(F 7 e\t
<%(y-1/k+1) ——k—> < (ry) < (%(y~l/k+1)+?k§) Yy € By,

72 7
that is
e\t ug(r e\t
<y Vg1 — —k) < k(_ y) < <y “Vgy1 + —k) (TS Bl. (435)
2 T 2
Now, for the definition of uy
ue(ry) _ ulprry) 1 ulpiry)
r Pe T PrT
in other words,
T PiT

k

and because py = 7%, pp7 = 7*7 = #**1 = p, ., thus in view of (4.36) and for

the definition of wuy

ur(ry) _ ulprray)

= U s
7 Ohit k+1(Y)
which gives from (4.35)
e\t e\t
(y Vg1 — §k> < uga(y) < (y Vg1t gk) y € By. (4.37)

Furthermore, we have g, = 27%¢((7), therefore

%k = ;27" = 27 (7)27" = 27727 1gg(7) = 27 ey (7) = e,

namely

3 = Ek+1,
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which implies from (4.37)

(Y- V1 — k1) <we(y) < (Y- e +ern)” y € Bi.
Consequently, setting y = x, we have obtained

(- vhp1 — k1) S upi(z) < (T e tern)” T EB

together with |vg41] = 1 and |vg41 — k| < Cey for a universal constant C.

Summarizing, we have shown by induction on k£ > 1 that
(x - v — ak)+ <ug(x) < (z-vp + &)z € B,

with || = 1 and |vg — vg_1| < Ceg_ for a universal constant C.

Let us show now that there exists a vector v such that v, — v as k — oco.
For this purpose, it suffices to verify that the condition v — v;_1] < Cep_q
implies that the sequence v} is a Cauchy sequence and thus convergent.

In particular, we have to prove that V8 > 0, there exists k € N such that
lve —vp| <8 Vk,heEN, kh>k.

To this end, notice that we can assume without loss of generality that k > h

and we can write

’l/k — Vh| = |Vk — Vg 1+ V1 — Vo + ...+ Vpy1 — l/h|

= |(vp — 1) + (Veo1 — vh2) + o+ (Wnr — )|,
which gives for the triangular inequality of ||,
vk — vn] < vk — Vet | + (Vo1 — vi—o| + |- -]+ |[Vhgr — v

and hence, using the condition |y — vp_1| < Ceg_1, Vk, we obtain
k-1
|Vk — I/h’ < C€k_1 + CEk_Q + ...+ CEh =C <Z€j> s

namely

Vi — I/h| S C (Z Ej) . (438)
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Moreover, we remark that for the definition of ¢,
& = 802_j = 602_(j—h+h) = 802—h2_(j_h) = €h2_(j_h) j = h, ce k — 1,

that is
gj =270 j=h k-1,

therefore from (4.38) we get

k—1 k-1
e —vp| < C (Z 5h2(jh)> = Cegy, <Z 2<jh)> )

j=h j=h

ie.

k—1

|Vk — I/hl S C€h <Z 2_(j—h)> y

j=h
and calling [ = j — h, which varies from 0 to k — 1 — h, if j varies from h to
k—1,

k—1—h

|Vk - l/h| S C€h < Z 2_l> . (439)
1=0

In addition, because 27! > 0,

k—1—h [e9) 1 1
—1 -1
> =) 2 i1t 17%
1=0 1=0 2 2
in other words
k—1—h
27 <2,
1=0
which implies from (4.39)
|I/k - I/h’ S chh- (440)

At this point, if we fix § > 0 and we want |y, — vp,| < § with k, h > k, we
can observe that e, = 027" < £027* , recalling that h > k, as a consequence

from (4.40), we achieve

v, — vp| < 2Ceg027F, (4.41)
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hence if we set
20027 < 6, (4.42)

we have from (4.41)
|Vk—Vh|<5, Vk,h € N, k,hz%,

given that h > k and k > h for what we have supposed, and thus v}, is a
Cauchy sequence.

If we want to establish k with more precision, we have from (4.42)

J

27k <
20807

which gives, since 2 > 1 5
—k <logy ——
082 2C €0

and

k> —log, 50z,
s

hence we can take k as, for instance, k = [— log, 3o |-
Consequently, seeing as how v, is a Cauchy sequence, there exists v such that
v, — v as k — oo.
Now, we want to show that u € C*(F(u) N By 2).
Precisely, we claim that
u(z) —u(0) —x - v|
|z

—0 || =0, ze (Bf(u)UF(u),

and therefore v = Vu(0).
To prove this fact, first of all we notice that u(0) = 0, recalling that 0 € F(u),
thus

lu(z) —u(0) —z-v| = |u(z) —z-v|.

Also, if || — 0, x # 0, and we can suppose that |x| < 7 = p;, namely
r € DB,.
So, assume that = € B,, N (B (v) U F(u)), = # 0.

In particular, inasmuch as  # 0 and x € B,,, there exists an integer k with

P1
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k > 0, such that pry1 < |z| < pi, i.e. @ € B,,, given that p, = 7% — 0 as
k — oo, since 7 < 1, as we have already shown. As a consequence, because
u(z)

k

x € B, , x = pry, y € By, thus for the definition of w, o= ur(y) and from

(v —ep)t <wuplx) < (x-vp+ep)t, z€ By,

calling x = y, we have

(y-ve —ex)t <wunly) < (y-ve+ex)t, ye B,

which implies, inasmuch y = - and % = ug(y),

() n-e) =525 (() wee) oo

and multiplying by py > 0, seeing as how (p%) WVRES pik(x V),

1 * 1 *
Pk (—(m V) — sk> <u(z) < py (—(m ‘) + 5k) r € B,
Pk Pk

which implies, as we have said above, because py > 0

Pk " Pk i

(—(l“ V) — Pk€k) <u(z) < (—(ff )+ Pk€k) r € By,

Pk Pk

that is
(2 vk — pre)” <u(@) < (z-v,+prer)” € B,,. (4.43)

In addition, € By (u) U F(u), therefore x € By (u) or x € F(u). Let us
analyze the two cases separately.

If x € By (u), u(z) > 0, hence from (4.43) we obtain (x - vy + prer)™ > 0, i.e.
(- vk + prex)t = x - v + prex and given that - vy, — preg < (- vk — prex) ™,

we achieve from (4.43)
TV — Pk Su(a:) < TV + prex ZEGBpkﬁBiwu),
which gives

—per < ulx) —z - vy < pre x € B, N B (u),
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namely
lu(z) — x-v| < prex € B, N B (u). (4.44)

If instead = € F'(u), repeating the reasoning done in the proof of Lemma 3.1,
we have from (4.43)

—per < - v < prer T € By, N F(u),

1.e.

|z v < prex € By, N F(u),

which implies, recalling that u(z) = 0 with z € B,, N F(u), and |z - 1| =
|_I ’ Vk| )
lu(x) — - v < prer, € By, N F(u). (4.45)

Consequently, putting together (4.44) and (4.45), seeing as how B, N(B; (u)U
F(u)) = (B,, N Bf (u)) U (B, UF(u)), we get

lu(z) — x| < prex x € By, N (B (u) U F(u)). (4.46)

In addition, since |x| > py41 for what we have said above, and for the defini-

tion of px, pr+1 = TPk, we obtain from (4.46), because 7 # 0
T € €
u(z) =2 vl < ~prei = p,m?’“ < |z 7’f x € B, N (B (u)UF(u)),
in other words

u(z) — - 1| < i—’“ 2| € B, N(Bfu)UF(@)). (4.47)

Let us consider now |u(z) — x - v| with 2 € B,, N(B{ (u) U F(u)) and we can

write

lu(z) —z-vl=|ulx)—z - +x-vp—x- V|

=l(u(z) —x-v) + (x - vp —x-V)|,
for k chosen before, which gives, for the triangular inequality of ||,

lu(z) —z-v| <|u(x) —z - v+ v v —x v



108 4. Proofs of the main theorems

and from (4.47)
u(z) —z - v] < %’f 2|+ |z vy —x-v| € B, N(Bf(u)UF(). (4.48)
Furthermore,
lz vy —x-v| =l (1y — V)|,
and for the Cauchy-Schwarz inequality
|z v —z-v| <|z| |y — v,

where, for the considerations done above, inasmuch as v = lim v, with

k—o0
keN,
lv — v| < 2C¢y,
therefore
|z v —x - v| < 2Ce; 2],

and from (4.48), we achieve
€k
lu(z) —x - v| < = |z| + 2C¢y ||
T
1 ~
~ (3 +20) eulel = Carlel 2 € B0 (B{ () U F(w),

that is, given that x #£ 0,

W < Ce, x € B, N(Bf(u)UF(u)). (4.49)
x

At this point, if we let |z| go to 0, it is possible to choose the integer k
such that k& — oo, recalling that p, — 0 as & — oo, and with this choice,

er = 2 %9 — 0, thus from (4.49), since lu@)-zv| > 0, we obtain that

||

W%o, x| =0, = € B (u) UF(u),
X

u(e) —z-v=oz]), =€ (Bf(u)UF(u))

and seeing as how u(z) — z - v = u(z) — u(0) — z - v,

w() = u(0) =z - v =0(|z|),
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which means that Vu(0) = v, with 0 € F(u), and we recall v = v(0), in order
to distinguish this v from v’s which we get if we repeat the same argument
Vg € F(u).

As a consequence, we achieve that Vg € F(u), Vu(zg) = v(zo).

So, we can consider the function v(z) with € F(u), which represents Vu(z),
with x € F(u) and we want to show that |v(x) — v(y)| < C'|z — y|*, with z,
y € F(u) N By s, which gives u € C*(F(u) N Byj2).

To prove this fact, we notice, first of all, that if z, y € By, |2 —y| < ||
+lyl <1/2+41/2 = 1, namely |z — y| < 1, hence, given that py = 7™ = 1,
there exists an integer k, with k& > 0, such that pry1 < |z —y| < pr. In

correspondence with this k, we consider |vg(x) — v(y)| and we can write

(@) = vi(y)| = [ve(x) = en + en —w(y)] = [((x) = en) + (en — 1Y)l

which gives for the triangular inequality of ||,

(@) = vi(W)] < [vn(z) = enl + len — (Y],

and inasmuch as |v(Z) — e,| < 2Cey, with e, = 27, independently from

z € F(u), we have
lve(x) — v (y)| < 2Cek, + 2Ce, = 4Ck¢y,

lvg(x) — vi(y)| < 4C¢,. (4.50)

In particular, because g, = 27%¢;, we can rewrite (4.50) as
lvi(z) — v (y)| < 4Ce;, = 402 %ey = 40 (7872 " Yrey = 4C(7*) ey,
that is
lve(z) — vi(y)| < 4C(7F) e, (4.51)

where a = log; 27! = log; 3, and seeing as how 7 < (1/4) for what we have
shown before, raising both the terms of the inequality to 1/2, recalling that
both are positive, 7'/2 < 1/2, which gives, since 0 < 7 < 1, 1/2 > logfé = q,
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in other words @ < 1/2. Also, because 7 < 1, a = logf% > log;1 = 0,
therefore we have 0 < a < 1/2.

In addition, from (4.51), we obtain

(Fr+1)e

TO[

vk () — vly)| < 4C(FF)%e = 4C €0

k+1

and thus, given that pry1 < |z — yl|, prr1 = 7' and o > 0, we achieve

4C o o
ve(@) =)l < |z —y[Teo = Clo —yl",
calling C' = i—gso, namely
lve(z) —ve(y)| < Cle—y|®  z,y € F(u) N Byys. (4.52)

Now, passing to the limit in (4.52) as & — oo we achieve, recalling that
vi(x) = v(z), vk(y) — v(y), and hence vg(x) — vk (y) — v(z) — v(y), which

also gives |vy,(z) — vk (y)| = |v(z) — v(y)],
w(z) —vy)| < Cle—y|*, x,y € F(u)N By,

as desired.

Consequently, we have shown that u € CH*(F(u) N Byjs).

Furthermore, we have Vu(zo) = v(x¢) Yoo € F(u) N Byja, with |v(zg)] =1
and thus v(zg) # 0, which gives Vu(zg) # 0. Therefore, given that u = 0
on F'(u) N By, and supposing that, provided that changing the order of the
variables, 6.%(1;0) # 0, with zy € F(u) N Byj2, we can apply the implicit
function theorem and Vo € F(u) N By /2 there exists an open neighborhood
of zp, Vy, an open neighborhood of xg,, V, , and a unique function ¢y, :

Var — Vi, such that @, (() = xo, and
(F(u) N Bl/2) N (‘/;:6 X onn> - {(Ilv xn)? Tn = gpm()(x’)}?

with @, € CY*(Vy).

0
In particular, provided that enlarging V,, x V,, , if necessary, the set

{Vay X Vi, @9 € F(u) N Byja} cover F(u) N Byp, which is a compact, since
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it is a closed set and bounded, seeing as how subset of B /2. As a consequence,

m
we can find a finite number m of V,; x V,, such that (J (Ve x Vi, )i D
i=1

F(u) N By D F(u) N Byjs, and thus '!1(%6 X Vao.) D F(u) N Bys. Hence,
putting together the corresponding functions ¢,,, which coincide in the in-
tersection of Vi, X Vi, ~for the uniqueness of ¢,,, we can find a function

¢ : (F(u)N Bys)" — R such that

F(u) 0 Bijp ={(@',2,), 2= ()},

with ¢ € CY*((F(u) N Byy2)'), that is F(u) N Byjp € CY*, in other words
F(U) S Cl,a in Bl/?’ O

Before starting the proof of Theorem 4.1, we remark that in Theorem
4.1, the size of the neighborhood where F(u) is C** depends on the radius
p of the ball B, where F'(u) is Lipschitz, on the Lipschitz norm of F'(u), on

[aij]cons,)s 19l cos(p,) > and [|f]l (s, -

Proof of Theorem 4.1. Let u be a viscosity solution to (2.1) in  with 0 €
F(u) and g(0) > 0. Without loss of generality, assume 2 = B; and ¢(0) = 1.
Indeed, concerning the assumption g(0) = 1, if g(0) # 1, because ¢g(0) > 0

and thus g(0) # 0, we can divide g by ¢(0) to get g := ﬁ and if we set

0)
i := iy, we claim that @ is a viscosity solution to (2.1) in © with coefficients
a;j, free boundary condition g and right hand side f= TJB)'

Precisely, if ¢ € C?(Bj ()) touches @ from below at zy € By (@), we have

p(xo) = t(xo) (4.53)
and
o(x) < a(r) in a neighborhood O of z. (4.54)
In particular, for the definition of @, (4.53) reads

u(zo)
9(0)

p(x0) =

9(0)p(x0) = u(0), (4.55)
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and analogously (4.54) reads
9(0)p(z) <wu(z) in a neighborhood O of x. (4.56)

Consequently, from (4.55) and (4.56), seeing as how g(0)¢(x) = (g(0)¢)(x),
we obtain that g(0)¢ touches u from below at xy. Notice that, inasmuch as
a(x) = %, a(x) > 0 if and only if u(z) > 0, hence By (@) = Bi (u), which
implies that 2o € B (u) and g(0)¢ € C?(Bf (u)). Therefore, we have that
g(0) € C?(Bi (u)) touches u from below at zy € B (u) and hence, recalling

that w is a viscosity solution to (2.1) in By, we achieve

> ai(20)(9(0)0)5(x0) = Y ayj(20)g(0)pi; (o)

i, ] i, ]
= 9(0) ) _ aij(z0)ij (o) < f(x0),
i
namely

9(0) Zaij(ﬂfo)@ij(iﬁo) < f(wo),

which gives, because g(0) > 0,

> ai(@o)piy(o) <

/[:7j

that is for the definition of f ,

Z ai; (o) i (o) < £ (o).

Z'7;7'
As a consequence, repeating the same argument if ¢ € C?(B; (1)) touches @

from above at 2o € B (@), but with opposite inequalities, we obtain that

Z ai;(x)t; = f in Bf (@) in the viscosity sense. (4.57)
Y]

In parallel, if ¢ € C?(By) is such that p™ touches @ from below at zq € F(u),

with |V| (z9) # 0, repeating the considerations done above, we get

9(0)¢™ (wo) = u(zo)
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and

g(0)p(z)T <wu(zr) in a neighborhood of xy,

which imply, inasmuch as g(0) > 0, that ¢g(0)p™ = (g(0)¢)™ touches u from
below at xzg.

Now, zo € F (@), thus VB, (), B.(xo) N B (@) # 0 and B, (xo) N By ()¢ # 0,
hence, because By (4) = Bj (u) for what we have said before, B,(zy) N

B (u) # 0 and B,(zo) N B (u)¢ # 0, VB,.(z0), i.e. 7o € F(u).

In addition, since g(0) > 0 and |Vl (x) # 0, |V (g(0)¢)| (z0) = ¢(0) |Vp| (z0) #
0, namely [V(g(0)¢)| (o) # 0.

To sum it up, we have g(0)p € C*(B;) such that (g(0)p)™ touches u from
below at xy € F(u) and |V (g(0)¢)| (z¢) # 0, therefore, since u is a viscosity
solution to (2.1) in By,

[V(9(0)¢)] (z0) = g(0) [Veo| (o) < g(0),

which gives
9(@o)

Vol (a0) <

= (o),
that is
Vel (20) < g(xo).
Consequently, repeating the same reasoning in the case of ¢ € C?(B;) such

that ¢ touches u from above at zg € F(a), with |[Vy| (z9) # 0, but with

opposite inequalities, we achieve
|Vi| =g on F(u) in the viscosity sense. (4.58)

Putting together (4.57) and (4.58), we obtain that @ is a viscosity solution
to (2.1) in By with coefficients a;;, right hand side f and free boundary con-
dition g.

Also, for simplicity we take a;;(0) = 9;;.

At this point, consider the blow-up sequence

u(0x)
op

ug = ug, () =
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with d, — 0 as k — oo.

In particular, repeating the same argument used in the proof of Theorem
4.2, each uy, solves (2.1) with coefficients af;(x) := a;;(dx), right hand side
fr(z) == dpf(Orx), and free boundary condition gx(z) := g(dxx). Further-
more, for k large, the assumption (4.2) is satisfied for the universal constant

€ of Theorem 4.2. In fact, in By, we have, given that d, > 0,

| fi(@)| = [0kf (0k)| = 0k [ f (k)] (4.59)

and, seeing as how 0, — 0 as k — oo, there exists k € N such that 0| < 1
with &k > k, k € N, namely, because §;, > 0, 6, < 1 for k large. Thus, for
these ks, |0rx| = O |z| < |z| < 1, with x € By, which gives from (4.59)

|fe(@)| < 0k ([ fll poe () < 6,

in other words

()| < & (4.60)

always since d; — 0 as k — oo, and hence there exists k¥ € N such that
0 <

7T é( N with k > k, that is for k large enough. As a consequence,
Lo°(By

from (4.60), we get

sup |fx(z)| = ||fk||L<x>(Bl) <é,
r € B

1.e.
||fk’||Loo(Bl) <e (4.61)

because ¢ is an upper bound of the set {|fx(z)|, z € By}.
Moreover, always in By, seeing as how gx(0) = ¢g(0) = 1 and in view of the
definition of [g]co.s, (see Definition A.1)

lg91(2) = 1 = lgi() = gk(0)] < |2 [gilooscsy < [g)cosqmy,  (4.62)

inasmuch as |z|” < 1, given that 2 € B and 3 > 0.
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Notice now that [gi]co.s(p,) = 55[9]00’5(3%)' Indeed,

gilovsey = sup EEZHWI_ o 1900) — 9(0w)

B B
yEB - YEB -
sveB |-y syeB vy
_ 0 a0 — 9@l s La(0kr) — g(Oky)]
0y, wyeB: |z — y cryeB O |z —yl
Ty TH#Y
orz) — g(o orz) — g(6
_ 5% sup |9(0rx) — g( z;y)l _ 5% sup |9(0k) — g( Zy)|7
x,y € By ‘5k(l’ — y)| z,y € B1 ‘(Skl' — 5]€y‘
TH#Y TFY

namely

[gk]CO,ﬁ(B ) = 55 Sup ’g((skdi) — g((sky)’

x,y € By |5kI — 5ky|ﬁ
xFy

Y

and since 0z, 0y vary in By, if x, y vary in By,

[9]cos(py =0, sup l9(orw) — g(Ory)|

6kx,6ky€ng |5kx — (5ky|ﬁ
SpT#0LY

= 55 [g]COvB(B(;k)»

that is
[9lcos () = 8, 19)cos By,

Therefore, from (4.62), we obtain

|9(2) = 1] < [ghlcos () = O, 9)con s, < Oplglcos (),

in other words

|gk($) - 1’ < [gk]COﬁ(Bl) < 55[9]00,/3(31), (4-63)

inasmuch as for k large d, < 1, for what we have said before, and thus
ng C Bl, which implies [g]co,ﬁ(Bék) < [g]co,ﬁ(Bl)-
In addition, since d, — 0 as k — oo, with 0 < § < 1, 55 — 0 as k — oo,

hence there exists k € N such that 55 < W, with k& > k, k € N, i.e. for
Cc%P(B1)

k large & < ——=—— as a consequence from (4.63), we achieve for k large
k [g]COvB(Bl)

lgx(z) — 1| < [grlcosp) <&
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which gives at the same time

[9klcosmy) < € (4.64)

and

sup |gr(v) — 1| = [|gr — 1||L°°(B1) <Z¢,
T € B

namely
gk = U ooy <&, (4.65)

given that € is an upper bound of the set {|gx(z) — 1|, = € B;}.
k
i)

, and because aj;(0) = a;;(0) = d;;, we have

As regards the inequalities which concern coefficients a

in Bl, GZ(ZE) — (51‘]‘

we consider always

|ak (x) — 5ij} = |afj(x) — afj(()ﬂ ,

ij
which entails for the definition of [af;]cos(s,), (see Definition A.1)

|ak(2) — 6| < |21° [af)cos(myy < [ali]oos(m) (4.66)

recalling that |z|” < 1 in view of what we have said above.

Repeating the considerations done above, we also get from (4.66),

|afj(:c) - 5ij‘ < [afj]coﬁ(Bl) < 55[(1@]00,6(31) < g,
which gives
[GZ]COﬁ(Bl) <é (4.67)

and
< ¢, (4.68)

|
”aij 0ij L>(By)

, TE Bl} .

To sum it up, for k large from (4.61), (4.64) and (4.67), fx, gr and afj satisfy
the assumption (4.2) in B; with &, while from (4.61), (4.65) and (4.68), f,
gr and af; satisfy (2.2) in By with .

seeing as how ¢ is an upper bound of the set {}afj(x) — 0y

Therefore, using nondegeneracy and uniform Lipschitz continuity of the wuy’s
(see Lemma 5.1), standard arguments (see for instance [1]) imply that (up

to extracting a subsequence):
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(i) up — uo,
(ii) 0{ur > 0} — 9 {up > 0} locally in the Hausdorff distance,

for a globally defined function ug : R — R.
Let us show that (i) is verified.

Precisely, we have, for what we have said above, that each wy solves (2.1)

k
150

g and in addition for k large fi, g and afj satisfy (2.2) in B; with &. We

in By with coefficients a;, right hand side f; and free boundary condition

want to show that F(uy) is a Lipschitz graph in a neighborhood of 0 and
F(ug) N By # 0.

In particular, as we have shown in the proof of Theorem 4.2, we have 0 €
F(uy) Vk, thus F(ug) N By # 0 Vk. In addition, we know that F(u) is a
Lipschitz graph in a neighborhood O of 0, that is

F(u)NO = {(a', ()},

with ¢ a Lipschitz function in (F'(u) N O)". Always for what we have shown
in the proof of the Theorem 4.2, zo € F(u) if and only if §* € F(uy), as
a consequence F'(uy) = iF(u) and we can define 1, (y') = %’Zy,), which
satisfies

w(2)-" (%) _ vt

O o 0
x/ _¢($/)
Yy, (a) = o
_ ‘W) ()
k

2 Y/
o (5) o (Bl 550 - 5
which gives with 2/, ¥ € (F(u) N O)’, recalling that ¢ is a Lipschitz function
in (F(u) NO)" with Lipschitz constant that we call Cy,

x/ y/
Vg <£) — Py (5—]{:)’ < Cy

hence 1), is a Lipschitz function in i(F(u) NO).

Now, if ¢/ € i(F(u)ﬂO)’, y = (’;—; with 2’ € (F(u)NO)’, therefore 2’ € F(u)’

in other words

I

/ /

£ Y

0k Ok

9
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and 2’ € O, thereby v € iF(u)’ = F(w) and y' € 5 L0 = V' where

V= iO is a neighborhood of % =0, thus ¥ € (F(ux) N V)". Consequently,
1y, is a Lipschitz function in (F'(u;) N'V) and we can write

%(F(u) NO) = (Flux) NV) = { (5—195’, wg?) } ={(v, n(y)},

which implies that F'(uy) is a Lipschitz graph in a neighborhood of 0.

To sum it up, we have, for k large, that uy is a solution to (2.1)-(2.2) with
er < &, F(ug) N By # 0 and F(ug) is a Lipschitz graph in a neighborhood
of 0, so we can apply Lemma 5.1 and hence for these k’s u; is Lipschitz, in
other words

|ur(z) —ur(y)| < Crle —yl,  Va,y. (4.69)

In particular fix one of these k’s and we call it k. As a consequence, from
(4.69) we have
lug(z) — up(y)| < Cile —yl, Va,y. (4.70)

At this point, notice that for every k with k& > k we have from the definition

w(Gr)  wOR$ET) 1 /8N & (O
ug(r) = o 5E§—’f = 5 Uk 5 zé—ku;; 6—kx ;

g

of uy,

ie.
or J
ug(x) = 5—Zu,; (5—:x) . (4.71)

Therefore, in view of (4.70) and (4.71), we obtain

_ 5k Ok 0 (O
o) = )l = s (o) - s ()
% (O ) 5k 5/<; o 5k Ok
- Z AT T 6k, 6k S
1) 1)
i '*"| ol = Cile .

T AN
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namely
lug(x) —up(y)| < Cilx —y| Vx,y VEk, k> k. (4.72)

Consequently, in view of (4.72), for k large wuy, is uniformly Lipschitz continu-
ous and hence equicontinuous. Indeed, in By, if we fix € > 0, calling C' = C},
in (4.72), we can take n > 0, n = & such that if 2, y € By, |[v —y[ < n we
get from (4.72)

£

ur(z) —u(y)l < Clz —y| < C5

= g’
namely there exists n > 0 such that

Jur () — un(y)| <e,

if x, y € By, |x —y| < n and for k large, i.e. uy is equicontinuous.

Now, from Lemma 5.1 which we have applied for these k’s, we also obtain
cod(2) < up(z) < Cod(z), for all z € By (ug), (4.73)

with d(z) = dist(z, F(ug)), and ¢y, Cy universal constants independent from
k.
In particular, seeing as how 0 € F'(uy) Vk,

d(z) = inf |z—y|<|]z—-0]=]z] <1,
Yy € F(uk)

because z € B (uy), which entails |2| < 1, that is d(z) < 1, which gives from
(4.73)
up(2) < Cy 2 € By (up). (4.74)

Moreover, given that u, > 0in By, ux = 0in By \ B (uz) and thus, inasmuch
as Cy > 0, up(z) < Cy with 2 € By \ By (ug), as a consequence we achieve
from (4.74)

uk(z) < Cy, =z € By,

i.e. since uy > 0 and hence |uy| = ug,

|uk| S CU in Bl.
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Therefore, we have shown that the sequence uy is uniformly bounded in B,
and because uy is also equicontinuous in B; with k large, we can apply the
Ascoli-Arzela theorem (see Theorem A.3) and we get that there exists a
subsequence which we still call u; such that uy converges uniformly to ug in
K with K a compact subset of Bj.

In addition, we notice that u; is well-defined also in B £, recalling that if

k
T E B% 0rx € By, where u is well-defined and hence for the definition of wuy,

uy, 18 Wkell—deﬁned in Bi' As a consequence, seeing as how 6 — 0, i — 00,
so for every compact K, given that there exists a ball By, with B D K, we
can find k£ € N, such that é > 7, for k € N, k > k, thereby we can repeat
the same reasoning done before to obtain that uy converges uniformly to wug
in K. Thanks to this fact, we can consider uy as a globally defined function.
Now, using a similar argument to that used in Lemma 3.1 to show that u
solves (3.19), we get that the blow-up limit g is a global solution to the free
boundary problem

Aug=0 in {ug >0},
0 {uo > 0) .
|[Vugl| =1 on F(ug).

and since F'(u) is a Lipschitz graph in a neighborhood of 0, we also see from
()-(ii) that F'(ug) is Lipschitz continuous. Thus, it follows from [4] that ug
is a so-called one-plane solution, i.e. (up to rotations) ug = ;.

Combining the facts above, one concludes that for all k large enough, wuy is

é-flat say in Bj, in other words
(z, — &) <wul(z) < (z, +8)", =€ B.

Precisely, since ug = z;7 and ux — uo uniformly, we have for k large enough,
for instance k > k¢,
lue(z) —af| <& xe€ B, (4.76)

which gives
—e<wu(r) —at, z€B
and
) —& <wu(xr), =€ B. (4.77)
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Therefore, from (4.77), seeing as how z,, < z;}, we achieve

x, — & <ug(zr), x € By,

which implies, given that u; > 0 in By,

max(x, —&,0) = (v, — &)t <w(z) =z € By,
i.e. for k large enough
(x, —&)" <wup(z), =€ B. (4.78)
Furthermore, from (4.76), we also have

up(x) —at <& x€ By,

and

up(z) <z} +& x€ By,

which entails, where z,, > 0 in By, in other words in By N {x, > 0},
up(x) <z, +& x€ B N{x, >0}, (4.79)

recalling that if x, > 0, x} = x,,.
In addition, if z, > 0, x, + & > & > 0, which gives z,, + £ > 0 and hence

Tn, + &= (z, + &), as a consequence from (4.79), we get
up(z) < (v, +8)*, xe B N{x, >0},
which also gives from (4.78)
(r, — &)t <wup(z) < (z, +&)" =z € B N{z, >0},

and using the fact that 0 {uy >0} — 9{uy > 0} locally in the Hausdorff
distance,

(r, —&)" <wup(z) < (z, +&)" z € By.
Consequently, wuy satisfies the assumptions of Theorem 4.2, and our conclu-

sion follows. O






Chapter 5

Nondegeneracy property of the

solutions

In this chapter, we state and prove the nondegeneracy of a solution u to
(2.1)-(2.2). This property has been used in the proof of Theorem 4.1.

Lemma 5.1. Let u be a solution to (2.1)-(2.2) with ¢ < & a universal con-
stant. If F(u) N By # 0, F(u) is a Lipschitz graph in Bs, then u is Lipschitz

and nondegenerate in By (u), i.e.
cod(2) < u(z) < Cod(z)  for all z € By (u),
with d(z) = dist(z, F'(u)) and cy, Cy universal constants.

Proof. Assume without loss of generality that 0 € Bf (u) and set d := d(0).

Counsider the rescaled function

u(z) = , T € DBy. (5.1)

Repeating the reasoning done in Theorem 4.2, we obtain that @ satisfies (2.1)
in By with coefficients ;;(z) := a;;(dz), right hand side f(z) := d f(dz) and
free boundary condition g(x) = g(dz).

Now, we notice that d < 1. Indeed, given that F(u) N By # (), there exists a

point € F(u) N By and which satisfies thus |z] < 1. As a consequence, we

123
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have, seeing as how z € F(u) if z € F(u) N By,
d =dist(0, F(u)) = inf |z] <|z| <1,
z€F(u)
le.
d<1.

In particular, since d < 1, the assumption (2.2) holds.
Precisely, fixed x € By, we have, because d > 0, recalling that d is a distance,
and d <1,

F(@)| = ldf(de)| = d|f(de)| < [ F(do)] <[]

namely
[F@)] < 17 (5.2
Furthermore, inasmuch || f]|,. < €?, recalling that u is a solution to (2.1)-
(2.2), we get from (5.2),
)| <22 (5.3)

As a consequence, from (5.3), we achieve that 2 is an upper bound of the

set { f(x) , x€ Bl}, and thus
f = sup |f(z)] < g2,
[ = 23 17 <
which gives
f < e 5.4
’L“(Bl) - ( )

As regards the second inequality in (2.2), instead, we fix x € By, and we have

19(z) =1 = lg(dx) = 1] < [lg — 1l e ,

in other words,
19(z) = 1] < [lg = Ll oo - (5.5)
Moreover, inasmuch as u is a solution to (2.1)-(2.2), ||g — 1|, < €2, hence

from (5.5) we obtain
9(x) — 1] <€,
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which entails that €% is an upper bound of the set {|g(z) — 1|, z € By},

and therefore, we get
19(2) = 1 e (p,) < e, (5.6)
Concerning the third inequality in 2.2, we fix € B; and we have
|ij(x) = 63| = lay;(dx) — 055 < llai — dijll poe

that is

|@ij () = 053] < [lai; — ijl| o - (5.7)
In addition, w is a solution to (2.1)-(2.2) and thus ||a;; — ;| ; < €, as a
consequence from (5.7) we achieve

|aij(x) — 05| <,

which implies that ¢ is an upper bound of the set {|a;;(x) — d;;|, x € B},
and hence we obtain

1@ij = 0ijll oo () < € (5.8)
Considering together (5.4), (5.6) and (5.8), we get that the assumption (2.2)
holds for f, § and Qjj.
At this point, we wish to show that

co <y < Cp.

For this purpose, assume for contradiction that @(0) > Cy, with Cy to be

made precise later.

Now, let
G(z) =C(lz| 7= 1) (5.9)

be defined on the closure of the annulus B, \ B /2-
In particular, in view of the uniform ellipticity of the coefficients (see Lemma
A5 in Appendix A), repeating the same computation described for proving

Lemma 2.3, we can choose «y large universal so that (for ¢ small)

Z di]’Gi]’ > 82 on B \El/g. (510)
(23]
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In addition we can choose C' so that
G=1 on 831/2.

Indeed, since |z| = 1/2 on 0By, if we take

1

we achieve

1

=

((1/2)77"=1)=1 z € 0By,

ie. G=1on0B,.

Notice now that @ > 0 in B;. Indeed, if x € By, inasmuch d > 0, |dz| =
d|z| < d, which gives dx € By, where u > 0, and as a consequence @ > 0
in B;. To show that v > 0 in By, we recall that d = dist(0, F'(u)) and thus
By N F(u) = 0, otherwise there would exist & € By N F(u), which satisfies
|z| < d, z € F(u), therefore we would have d = welrﬁgfu) |z| < |Z| < d, that is
d < d, which is a contradiction. Moreover, seeing as how u is continuous in
By, it can not exist £ € By such that u(z) = 0 and Z ¢ F'(u), otherwise, given
that «(0) > 0, there would exist 2*, for instance in the line which connects
0 and z, so that * € F'(u) N By and as before, we reach a contradiction. To
sum it up, we have shown that v > 0 in By and hence u > 0 in B;.
Consequently, inasmuch « > 0 in B; and solves, in the viscosity sense, a

uniformly elliptic equation in By with right hand side f , we can apply the

fHLoo(Bl))’

Harnack inequality to obtain

sup u < C’l(inf u+ Cy
B B2

B2

which implies,

u(0) < upﬂ§C1<infﬂ+Cg

<s
§1/2 Bl/2

fHLOO(Bl) )

<a(svclil,,,) @z
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namely
a(0) < ¢y (a+02 HfHLOO(BI)) on By . (5.12)

At this point, from (5.12) we get

1 5 —
aU(O) S U+ HfHLoo (B) on Bl/?)
which also gives
1 _ _
50 =, fHLw by S on B (5.13)
In particular, because HfH < €2, and thus — Hf” > —£2, we
Loo Bl) Lee Bl
achieve from (5.13)
1 _
5 @(0) — Cye* on B s. (5.14)

In addition, using the contradiction hypothesis, i.e. @(0) > Cy > 0, which
means that @(0) is large enough, we can choose € > 0 such that ¢ < u(0),

therefore from (5.14) we obtain

2 (o)~ Coei(0) = (Cil - 025) i(0) on By, (5.15)

and taking e small enough so that & — Cye > 0, in other words & < 01 G

calling ¢ = 0_1 — Che, we get from (5.15)

@ > ct(0) on By, (5.16)

with € < min(a(0), Clc ).
)i=c

Let us call now v(z %(0)G(z) and we claim that @ — v satisfies

dij(il—v)ij SO in Bl\B1/2
i’j
in the viscosity sense, i.e. &—v is a viscosity supersolution of ) a;;(i—v);; =

Y]
0in By \El/g, see Definition B.4 in Appendix B.
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Precisely, if ¢ € C?(By \ Bijs) touches @ — v from below at zg € By \ B s,

we have
p(z0) = (4 — v)(zo) = u(zo) — v(x0) (5.17)

and
o(x) < (a(x) —v(z)) = a(r) —v(z) in a neighborhood O of xy. (5.18)
As a consequence, (5.17) and (5.18) read

(o) + v(wo) = (¢ + v)(0) = u(xo) (5.19)

and
o(x) +v(z) = (p+v)(x) <a(r) in aneighborhood O of z5.  (5.20)

In particular, let us remark that G € C*(B; \ By2), thus also G € C?(B;
\ Bi/2), which implies v € C?(By \ By2), because v = ci(0)G, with ci(0)
constant.

This fact, together with (5.19) and (5.20), gives that (p+v) € C*(B; \ By2)
touches @ from below at x.

Furthermore, we have @(zy) > 0, inasmuch, as observed above, @ > 0 in B,
and hence in B, \El/g.

Therefore, since @ is a solution to (2.1) in B; and thus also in B; \ B, /2 and
(¢ +v) € C*(Bi \ Byjs) touches @ from below at g € (By\ Bi2)" (), we
get

> (o) (@ +v)ij(zo) = Y dii(w0) (0 + cii(0)G) 5 (o)

= Z aij (o) (pij (o) + ctt(0)Gij(x0))
= Z aij(0)pij(wo) + Z aj(0)ct(0)Gij(xo)

= Za” zo)pij(zo) + ct(0 ZGU 20)Gij(z9) < f(xo)

2%



129

in other words
Za” xo) i (xo) + (0 ZGU 29)Gij(x0) < f(:z:g),
i\j
which entails
> i (o) i (o) < flao) — cii(0) Y digj (o) Gij (o) (5.21)
i,j 4,J

Now, in view of (5.10), given that zy € (B; \ Bij2), we achieve from (5.22)

taking 2 = ca(0)e?,

Zamo)goij(xo) < flxo) — &% < f(wo) — f(w) = 0, (5.22)

seeing as how from the first inequality in (2.2) we have H f H B < 2, which
L>(B1

also gives ‘f(x)‘ < &2, Vx € B;. Thus, inasmuch zy, € (B, \El/g) C By,

namely zy € By, we have )f’ (79) < &% and hence f(a:o) < e

To sum it up, from (5.22), we have obtained
D i (wo)pij (o) <0,

which implies that @ — v is a viscosity supersolution to » a;;(¢ —v);; = 0 in
2%}

B\ By)s.

Consequently, we can apply the maximum principle and we get

inf (0—v)= inf u—v) = inf U—0). 5.23
. \E/z( ) o, \Em( ) 8B1U831/2< ) (5.23)

In addition, we have G =1 on 0B, hence from (5.16), we achieve
@ > cu(0)G  on 0By s. (5.24)

At the same time, we have G = 0 on 0B, therefore, because 4 > 0 on 0B,

we achieve

u > cu(0)G on 0B (5.25)



130 5. Nondegeneracy property of the solutions

Thus, from (5.24) and (5.25) we obtain for definition of v, @ > v on 9B; U
0B, )2, that is 4 —v > 0 on 0B, U0B /. As a consequence, 0 is a lower bound
of the set

{a(z) —v(z), z€IBUIBs},

which entails

i u—uv) > 0. .
aBltname(u v) >0 (5.26)

Therefore, from (5.23) and (5.26), we also get, since t—v(z) > inf (a—0v)
B1\ By

VQZ S Bl \§1/27
0 <a(z) —v(z) Va € Bi\ By,

which gives, together with @(z) — v(z) > 0 Vo € 0B U 0By,
a(x) > v(z) on By \ Bys. (5.27)

At this point, we notice that d > 0, recalling that Bj (u) is an open set,
inasmuch as v € C(2) and B; is an open set, and thus we can find a ball
By such that By C By (u), that is w > 0 in By. This fact, specifically, entails
B: N F(u) = 0, because u =0 on F(u), and hence d = xelgf(‘u) |z| > 7 >0, in
other words, d > 0.

In particular, if we call 7* = sup{r | B, C Bf (u)}, we have r* < 1,
inasmuch F(u) N By # 0, and we claim that there exists z € 9B, so
that z € F(u). Indeed, if for contradiction such z does not exist, we have
B,- C B (u) or there exists 2o € F(u), with |zo| < r*. With respect to
this second possibility, however, we would have that |zo| would be an upper
bound of the set {B, | B, C Bf(u)}, and as a consequence, for definition
of sup, we would have r* < |zo| < r*, namely 7* < r*, which is a contra-
diction. Therefore, we have B,~ C Bj (u), but, given that B; (u) is an open
set, dist(B,-,dB; (u)) > 0, thus if we call ¢ := dist(B,~, 0B (u)), and we
take r* + g, BT*+g C Bi (u), which implies, for definition of sup, r* + g <r*,
which is a contradiction, recalling that g > 0.

To sum it up, we have proved that there exists z € 0B,«, with z € F(u).

We show now that z is the point where d is achieved, that is d = |z| . Precisely,
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if for contradiction d # |z|, seeing as how z € F(u), we have d < |z|. Fur-

thermore, |z| = r*, inasmuch z € dB,-, hence d < r*. Consequently, =< > 0

2
r*—d
2

> 0, since d = 12{ : |z| , there exists £ € F(u) such
rel(u

that d < |z| < d+ ¢, which entails that r* < d + ¢, but for the choice of e,

and if we set € =

die—qy 1

<d4+r —d=r",

i.e. d+ e < r* which contradicts r* < d + €.
Thus, z is the point where d is achieved and |z| = d.
:) u(dz)

) — ~Td

Moreover, z € F(u), hence u(z) = 0 and for definition of @, a( y
% = 0. As a consequence VB, (3) B, (2) N (By \ Bij2)t(2)° # 0, and

seeing as how u > 0 in By, for what we have said above, also B, (g) N
(B1\ Bij2)* (@) # 0 VB, (%), recalling that 2 € 9By, and hence B, (%) N
By # 0 VB, (%) . Therefore, 2 € 9(By \ Byj2)™ (@) N (B \ Biya).
Nevertheless, given that @ (%) = 0, we also have that B, (3) N B ()" # 0,
VB, (3) , and if B, (g) N (B \ Bijs)*(u), VB, (é) , since Bj '\ Bijy C By,
B, (%) ﬂﬁf(ﬂ) N0, VB, (%) as well.

To sum it up, 3 € aEf(a) N B.

Now, from (5.27), inasmuch as @ (2) = 0 and v > 0, recalling that a(0) > 0
and G > 0, for definition, in B, \ B, /2, we obtain v(%) = 0, which implies
from (5.27), that v touches @ at 3 € 8??(12) N By, with v € C2(By \ By)a).

Consequently, because @ is a solution to (2.1)-(2.2) in B; with free boundary

condition §, and repeating the same argument, also in B;, we get, inasmuch
€ 8??(&) N By, which is the free boundary in By,

1 (3) £3(3) -5 (52) -2

that is
ol (3) < g(2). (5.28)

In particular, seeing as how C, ¢, 4(0),v > 0, we can rewrite the first term in
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(5.28) as
2\ 2V en v _ ¢
Vol (2) = [V(ca(o)C (2l = 1) (5)
_et0) = vc e 2| (2
= |ea(0) =2l 77 (3)
_ ) (2) = e 2|
(ca(0)Cy o7 (5) = cio)c | 5]
ie.
z z|71
2\ < i ad
ol (2) < ca)ey |5]
which gives, because |fl‘ =1,
z ~
Vol (3) = cu(0)CH. (5.29)
Consequently, from (5.28) and (5.29), we achieve
ci(0)Cy < g(2) <1+ < 2,
namely
ctu(0)Cvy < 2, (5.30)

given that ||g — 1]] < &2, thus g(z) —1 < &2, and g(z) < 1+¢?, and inasmuch
as €2 < 1.

Now, from (5.30) we obtain

2

o2
i) < -

(5.31)

but we have supposed for contradiction @(0) > Cy, thus if we take Cy > %,

we get from (5.31),

which is a contradiction.

To sum it up, we have shown that

(0) < Co, (5.32)
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To prove the lower bound, instead, let

G(z) = n(1 = G(x)) = n(1 = C(|z| 7 = 1)), (5.33)
with 7 (depending on «) such that

‘Vé) <1-—¢> ondByp. (5.34)
Specifically, we have, seeing as how C,~,n > 0
VG| = V(1 - C (] = 1))
—y—1 X —~v—1
=nC7v|z| ’m’ =nCylz| 7,
in other words,
‘V@( = nCry x|,

which entails, since |z| = % on 0B s,

—y—1

~ 1
’VG‘ = nCv (5) on 0By ;. (5.35)

Therefore, if we impose that ‘V@‘ < 1—¢? on 0By 2, we obtain from (5.35)

1\t
nCy (5) <1-¢&%

which gives
_ 1—¢&?
Cv(3) "

and hence we choose 1 > 0 so that this condition on 7 is satisfied.

n

Now, assume without loss of generality that F'(u) is a Lipschitz graph in the
x, direction, otherwise we can apply a rotation to the coordinates to achieve
this fact. In addition, we suppose that the Lipschitz constant is equal to 1.
At this point, we translate the graph of G by —te,, with t € R, t > 0 i.e. if

we denote with

le={(x,G@), =eBi\Bip},
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the graph of G, we can write the translation as

Le —te, = {(x —4e,,G(x)), z€ DB\ Bl/g}

= {(I1,...,$n—t;é(x))7 X GEl\Bl/z}

where x = (21, ...,x,).
In particular, we can take ¢ large enough so that @ = 0 in B;(—te,).
Furthermore, we remark that from (5.9) and (5.11),

06 = ey (el = 1) S A== =1 on B\ B

namely
OSGS]. ODEI\Bl/Q.

As a consequence, we have from (5.33) that 0 < G < n and thus I'z — te,
is above the graph of @, since & = 0 in By(—te,), for ¢ large enough. We
slide then the graph of G in the e, direction till we touch the graph of @,
in a point which we call 2. Moreover, we call ¢ the value of ¢ for which this
contact is verified.

At this point, we define

Gi(z) = Gz + tey), (5.36)

and we notice that G; is defined on By(—te,) \ By ja(—tey,), given that G is
defined on B, \ B, /2. Indeed, from definition of Gy, since G is defined on

B\ B, /2, We must impose

1 ~ -
5 <z tien| = o= (ten)| <1,

that is Gy is defined on By (—te,) \ Bijo(—te,).

In addition, we claim that ég is a strict supersolution to our free boundary
problem on By (—te,) \ Bia(—tey).

Precisely, from (5.10), we get

— Z&Z]GU < —52 on B \§1/27
2%}
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which gives,

Z dijé{” Z a;;(G(x + ten)) ij Z azj (z +te,)
i
= Z&z’j (n(1 = G))y(x + ten) = ai;(—nGiy)(z + tey)
i?j

2%}
= —nz &UG”(.%' + gen) < —7752 on Bl<—t~€n) \El/g(—fen),
2%}

in other words,

Z a;;G;. < —* on Bi(—te,) \ Bija(—te,), (5.37)
calling —ne? = —¢2.
Moreover, seeing as how H f H < %, we have ‘ f ‘ (x) < &% Va which entails
~ Loo
f(x) > —&? V.
Therefore, from (5.37), we obtain

> ai;Gy, < [ on Bi(—te,) \ Bija(—tey). (5.38)
2%
On the other hand, we also have ||g — 1||;. < &2, which implies, repeating
the reasoning done above, g(z) — 1 > —¢&?, Vz, namely g(z) > 1 — &2, Vz.
Consequently, inasmuch z + te,, € 9B 2 itz € 0B, /2(—fen), we achieve from
(5.34)

(Ga + fen))( — ‘vé@; +ien)

<1-¢*<§ on 831/2(—£€n)>

1.e.

(—ten). (5.39)

To sum it up, from (5.38) and (5.39) we have that G is a strict supersolution
to our free boundary problem on Bi(—te,) \ Bija(—te,).
Now, we remark that if we define G; as we have done for ég, we have G; = 0

on 0B /2(—fen) Vt. As a consequence, from the choice of ¢, the touching point
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Z can occur only on F(@) or where 4 is positive.
Suppose, hence, that # € F(@). We notice that, because @(2) = 0, Gz(%) =
0, thus Z € 0By ja(—te,) necessary. Then, from (5.35) and in view of the

calculation for achieving (5.39), we obtain

1

’VGE =nCvy (—) on By s,

= ‘Vé(m + te,)

2

which entails ‘Vé‘g # 0 on OBy »(—te,) and in particular ‘Vé‘ (2) # 0.
At this point, for the choice of £, we can find a neighborhood O C B, (—te,)

\ By /2(—fen) of Z such that é,g touches @ from above at 2 and furthermore,
inasmuch as G7 > 0, Gi = G, that is we also have that G} touches @ from
above at Z.

Therefore, summarizing, we have ézr touching @ from above at zZ € F(a),
with ’Vég‘ (2) # 0 and G; € C®(B(—te,) \ By jo(—tey), and hence G; €
C?(Bi(—te,) \ Bija(—tey,). So, seeing as how @ is a solution to (2.1)-(2.2),
we get

(2) > g(2),

which gives from (5.39), since Z € 9By jo(—te,),

’vég

3(3) < |VG| () < 3(2),

in other words g(2) < g(2), which is a contradiction.

Consequently, 2 € {z, 4(z) >0} and also G;(2) > 0, which implies that
z € By(—te,) \ Bij2(—te,). In particular, we claim that Z € 9B(—te,),
where ég = 1), for definition of G, i.e. Z occur on the 7 level set.

Precisely, for what we have said before, we have that G touches @ from above
at z € {z, a(r) >0}, with G; € C*(B,(~te,) \ Bija(—te,)), as observed

above, and thus, given that @ is a solution to (2.1)-(2.2), we achieve
> a(9)G,(2) > F2),
i,J

which entails from (5.39), if Z € By(—te,) \ B1j2(—tey,),
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namely f(Z) < f(Z), which is a contradiction.

Therefore, we have obtained that Z € dB;(—te,) and hence Z occurs on the
n level set.

Furthermore, if we denote d := dist(Z, F(@)), d < 1.

Indeed, because ég is above @, and G = 0 on 831/2(—5%), we have u = 0
on 0By s(—te,). As a consequence, inasmuch @ is continuous and @(z) > 0,

with Z € OBy (—te,), there exists a point Z € F (1) so that

dist(Z, 2) = |& — 2| < dist(Z, 0By 2(—te,)) = = < 1

)

N | —

in other words

which implies, seeing as how Z € F(u),

d= inf |z—2 <|z—2 <1,
zeF(a)
that is d < 1.

Now, from the first part, o is Lipschitz continuous, namely
a(x) —uly)] < Lz —yl, (5.40)

calling L its Lipschitz constant.
In particular, the Lipschitz continuity of @ implies that also u is Lipschitz

continuous.
Indeed, from (5.40) we have

d d

|a(x) —aly)| = =~ [u(dz) —u(dy)| < Lz —y|

u(dz)  u(dy) ‘ 1
L Ju(de) —u(dy)| < L]z — ]
d f— b

which implies

u(d) — u(dy)| < dL|r —y| = Ll|d(x —y)| = L|dz — dy],
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in other words

|u(dx) — u(dy)| < L|dz —dy|,

which gives the Lipschitz continuity of u. Consequently, if we take x € F(u),
@(z) = 0, hence from (5.40) we get

a(2)| = |a(?) — a(z)| < L]z - xf,
in other words, inasmuch as @ > 0 and thus |u(2)| = @(2),

u(z) < L|z -],

and i(2)
u(z

—— < |z—1x. 5.41

<zl (5.41)

In particular, from the arbitrariness of x € F(u), we achieve that @ is a

lower bound of the set {|Z — x|, = € F(a)}, therefore

which implies

- <q
. S
and
a(z) < Ld. (5.42)

In addition, we know that @(Z) = 7, as a consequence, from (5.42) we also
have

n < Ld,
which gives

L'p<d<1,

that is, d is comparable to 1.
At this point, we notice that F(a) is Lipschitz.
Precisely, since F'(u) is Lipschitz and we have supposed that F'(u) is a Lips-

chitz graph in the x,, direction with Lipschitz constant equal to 1, we have

F(u) = {(=",¢(2))}, (5.43)
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with

() =) <12 =y, (@ 0), (0,40 (y) € Flu). (5.44)

Now, if zy € F(u), we have u(zg) = 0, and VB, (x¢), B.(zo){z, u(z) > 0} #
L ~ ~ [z u(d=2 u(x
(). Therefore, for definition of u, @ (70) = (dd) ==
and thus in particular B, (£) N {z, a(z) > 0}°.
Moreover, if we fix By (%0) and we consider Byr(20), Bar(zo)N{z, u(x) >0} #

(), namely there exist a point zy € Bgr(xo) N {z, u(x) > 0}, which satisfies

u(z9) > 0 and it can be written zy = dz, with Z € B; (%’), see proof of

Theorem 4.2. Hence, for definition of w, u(z) = “(gg) > 0, in other words

@(z) > 0 and, given that z € By (%), z € B () n{z, a(x) > 0}, in other
words B (2) N{z, a(z) >0} #0.

As a consequence, for the arbitrariness of B (%), we obtain B, (%0) N
{z, a(z) >0} # 0, VB, (%). To sum it up, we have @ (%) = 0 and
B, (&) N {z, a(z) >0} # 0 and B, (2) n{z, a(z) >0} # 0, VB, (%),

which implies % € F(a).

Consequently, for the arbitrariness of zy € F(u) and repeating the same
argument used to show that dz € F(u) if we have T € F(u), we get from
(5.43)

F@) = 3P0 = 5 (o)) = {5,970}

T
d’d

namely

F(i) = {% w(? } . (5.45)

At this point, if we define

_ dx’
da) = 4,
we achieve ,
5(2) -2l v
d d d ’
that is

) - a0
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Therefore, from (5.46) and (5.47), we obtain

F(a) = {%’,@Z (%/)} (5.47)

with, in view of (5.44) and (5.46)

) s-

1
= —[0() — ()
1 P y/
<_ /_ / — = _ <
in other words ) , / /
~(x ~(y T Y
N ZlI<|= =< 4
() o (3)] =i 549

As a consequence, from (5.47) and (5.48), we get that F'(@) is Lipschitz.
Now, because F'(u) is Lipschitz, we can connect 0 and Z with a chain of
intersecting balls included in the positive side of @ with radii comparable to
1.

Specifically, let us call this chain

{(B,.(z;), i=0,...,N},

with z; in the positive side of @, r; comparable to 1 and which satisfies
0 € B (zo) and Z € B,,(xy). Furthermore, the number N of these balls
is bounded by a universal constant. In particular, we want to apply the
Harnack inequality repeatedly to compare @(0) with @(Z), thus we suppose
that also Bs,,(z;) is in the positive side of .

At this point, we are ready to apply the Harnack inequality in each ball.
Let us begin from the first ball and repeating the reasoning done to achieve
(5.16), we get

ﬂ(O) Z Cﬂjb(i’l) Z 01C2€L<i'2) Z C1Co . .. CN+1I~L(2) = Cﬂ(g), (549)

with ; € B,,_,(z;—1) N B,,(z;) and where we take € small enough, with

|7

< g, such that we can obtain a result analogous to (5.16) in each ball.
LOO
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Let us remark, moreover, that we can find this € since the number of balls is

bounded by a universal constant.

In particular, from (5.49) we have
w(0) > cu(z) = ¢,

1.e.

which entails from (5.32)

and from definition of u, see (5.1),
cod(0) < u(0) < Cod(0),

inasmuch d = d(0) = dist(0, F'(u)).

(5.50)

Now, if in place of 0, we have x¢ € B (u), xo # 0, we can repeat exactly the

same argument with
_ o u(wo + d(wo)7)
U({E) - d(xo) )

where d(xg) = dist(z, F'(u)), and we achieve

Cod(ﬁo) S U(ZL‘Q) S C()d(l’()),

which gives, together with (5.50)

cod(z) < u(z) < Cod(z), for all z € B (u),

as desired.






Chapter 6

The one-phase problem for

equations with first order term

We return now to the more general problem (1.1) introduced in Chapter
1.

For exposure convenience, we rewrite here the problem, that is:

> aij(x)ui; + 32 bi(x) up = f in Q7 (u)

|Vu| =g on F(u)

(6.1)

with b; € C(©2) N L*>*(Q2) and the same conditions listed in Chapter 1 for €,
f, g and a;;. Moreover, u; denotes the first derivative of u respect to x; and

u;; the second derivative of u with respect to z; and z;.

6.1 Definition and properties of viscosity so-

lutions

The definition of viscosity solution to (6.1) can be easily deduced. How-
ever, for the reader convenience, we introduce in this framework the explicit
statements. See also Appendix B for a basic introduction to viscosity solu-

tions.

143
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Definition 6.1. Let v be a nonnegative continuous function in 2. We say
that u is a wviscosity solution to (6.1) in € if the following conditions are
satisfied:
(1) 2 ai(z)uyy; + 2obi(x)u; = f in Q7 (u) in the viscosity sense, ie. if
] i
© € C?(Q7(u)) touches u from below (resp. above) at g € Q7 (u) then
> aan)gian) + 3 bloobeian) < fan) - (resp. 3 agos(an
i\j i i\j

+ 3 blz)eia) > f(l“o))

(i) If p € C*(Q2) and T touches u from below (resp. above) at zy € F(u)
and |Vl (xg) # 0 then

Vol (o) < g(wo)  (resp. [Veo| (z0) > g(20)) .

We present, at this point, the notion of comparison subsolution / super-
solution, which will be used in the same way as we have used it in case of
problem (1.2).

Definition 6.2. Let v € C?*(Q). We say that v is a strict (comparison)
subsolution (resp. supersolution) to (6.1) in €2 if the following conditions are

satisfied:

(i) %:aij(x)vij + ;bl(a:)vl > f(x) (resp. %:aij(x)vij + ;bl(a:)vl < f(x))
in QF(v). ’

(i) If o € F(v), then

|Vl (z9) > g(z0) (resp. 0 < |Vul|(zg) < g(z0)).

Remark. Repeating the same argument used in the Remark 1.4, if v is a strict

subsolution / supersolution to (6.1) then F(v) is a C? hypersurface.

It is possible to give the same lemma valid in case of system (1.2).
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Lemma 6.3. Let u, v be respectively a solution and a strict subsolution to
(6.1) in Q. If u > vt in Q then u > v in QT (v) U F(v).

Proof. Suppose for contradiction that there exists zo € Q7 (v) U F(v) such
that u(xg) = vT(xo).

In particular, we distinguish two different cases.

(i) If 2o € QT (v), we have, repeating the same reasoning done in the proof
of Lemma 1.5 in the case (i), that v touches u from below at zq € Q7 (u),
with ¢ € C?(Q7(u)), consequently, inasmuch u is a solution to (6.1) in

Q

Y

Z a;;(zo)vij(zo) + Z bi(wo)v(wo) < f(20). (6.2)

On the other hand, since v is a strict subsolution to (6.1) in €, we

achieve

D ai(@vg + Y bi@)v; > f(x) in QF(v),
irj i
hence, given that 2o € Q1 (v),
> as(wo)vig(wo) + Y bilo)vi(wo) > f(x0),
4] i
which implies from (6.2)

f(xo) < Zaij(%)vij(%) + Z bi(zo)vi(wo) < f(20),

i.e. f(zo) < f(zo), which is a contradiction.

(i) If 29 € F(v) we can repeate the whole reasoning done in the proof of

Lemma 1.5 in the case (ii) and we reach a contradiction.

Therefore, § 7o € Q*(v) U F(v) such that u(xg) = v*(z¢), in other words,
seeing as how u > v™ in Q D (QT(v) U F(v)), i.e. u > vt in QT (v) U F(v),
u>vT in QF(v) U F(v). O



146 6. The one-phase problem for equations with first order term

6.2 Harnack inequality

Arguing in parallel with the case of problem (1.2), we show that, provided
giving a further condition on the coefficient b, a solution to (6.1) satisfies the
same Harnack type inequality expressed by Theorem 2.1. In particular, for
exposure convenience, we recall here the same assumption done in (2.2), in

other words

||f||Loc(Q) <&, g- 1||Lo<>(Q) <é lai; — 5z'j||Loo(Q) <, (6.3)

with 0 < e < 1.

Theorem 6.4 (Harnack inequality). There exists a universal constant £
such that if u solves (6.1)-(6.3) under the assumption

[P (6.4)

Suppose also that for some point o € Q7 (u) U F(u)

(0 + a0)” <u(@) < (v, +b0)"  in By(wg) CQ (6.5)
with
bp —ag <er, e<E§g,
then
(zn +a1)* <u(z) < (z,+b1)"  in Byjao(z)
with

ap < a; <by <by, by—ay <(1—cer,
and 0 < ¢ < 1 universal.

For completeness, because it will be used in the proof of “improvement
of flatness ” lemma, we state now the same corollary, introduced in Chapter
2 after Theorem 2.1.

Corollary 6.5. Let u be a solution to (6.1)-(6.3)-(6.4) satisfying (6.5) for

r = 1. Then in By(xy),

Ue(x) = .
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has a Hélder modulus of continuity at xo, outside the ball of radius €/, i.e.
for all z € (" (u) U F(u)) N By(xg) with |x — xo| < €/E,

[t () — t(x0)| < C'lx — z0|”.
Proof. The proof is the same provided in Chapter 2 for Corollary 2.2. O]

As in Chapter 2, Harnack inequality is a consequence of the following

lemma.

Lemma 6.6. There exists a universal constant € > 0 such that if u is a
solution to (6.1)-(6.3)-(6.4) in By with 0 < e < & and u satisfies

p(x)" <wu(z) < (p(x) +e)t, z€ By, plx)=x,+0, |o|<1/10, (6.6)

then if at ¥ = %en,
w(@) > (p(z) +¢/2)", (6.7)

then
u>(p+ce)t in By (6.8)

for some 0 < ¢ < 1. Analogously, if
u(@) < (p(z) +¢)7,

then
u<(p+(1—c)e)™ in Byp.

Proof. We argue as in the proof of Lemma 2.3, explaining only the main
differences and referring to the proof of Lemma 2.3 for all details.

As in the proof of Lemma 2.3, we prove the first statement.

First of all, from (6.6), we obtain

uw>p in Bj. (6.9)

Let
w(z) =c(lz =277 = (3/4)77),
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be defined on the closure of the annulus
A= By/s(Z) \ Biy20(2).
The constant c is chosen so that w satisfies the boundary conditions
w=0 on dBs(7),
w=1 on dBy(T).

Repeating the calculation done in the proof of Lemma 2.3, we achieve
1

(1/2)77 = (3/4)~7

Now, the condition ||a;; — 5UHL°°(B1) < ¢ implies that the matrix (a;;) is

CcC =

uniformly elliptic, as long as ¢ is small enough, see Lemma A.5 in Appendix
A.
Consequently, we can choose the constant v universal so that
Z a;i(x)w;; + Z bi(x)w; > 6 >0 in A,
i,j i
with ¢ universal. Precisely, from (2.21) and (2.22) in the proof of Lemma

2.3, we have, keeping ¢ in the expression of w,

g;u = —ycle — 2777 (0 — 3) (6.10)
and
0*w I . . o
5o, — VT2 |z =2 (@ = @) (e~ 35) —eyle — 2777 6. (6.11)
jOT;

Therefore, since (a;;) is uniformly elliptic, from (6.10) and (6.11), repeating

the same arguments described in (2.23), we obtain

> iz w,J+Zb w; > ey (MY +2) —nA) |z — 2|72

1’7]

+ 3 bi@)(—eyle = |7 (i - 31)

=ey(AN(v+2) —nA) |z — 2|7
—cylz =z b(x) - (z — 7)
— ey (A +2) — nh — b{a) - (2 — 7)) | — 72
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which implies,

Zaij( T)wy +Zb i > ey (MY +2) —nA — |b(@)| |z — Z|) |z — 2|72

(6.12)
given that for the Cauchy-Schwarz inequality |b(z) - (z — Z)| < |b(2)| |z — Z],
thus b(z) - (z — z) < |b(2)||z — Z| and —b(z) - (x — &) > — |b(x)| |z — Z|.
At this point, we know from (6.4) that

1]l e 5,y = m@x byl e, < €% (6.13)

which entails [|b;[[ ;00 5,y < g2, Vi = 1,...,n, and thus |b;| (z) < &%, Vi =
1,...,n and for all x € B;.
As a consequence, inasmuch |b;(x)| and £ are positive or equal to 0, |b;(z)|* <

el ie. bi(x)? < et and hence

2)| = Vb (2)2 + ..+ b(2)? < Vel + .+ et = Vel = Vne?,

namely
b(z)| < V/ne’. (6.14)
Now, from (6.12) and (6.14), which also gives — |b(z)| > —+/ne?, we achieve

Zaij( ww—l—Zb v)w; > ¢y (A +2) —nA — V/ne’ |z — 7|) |z — 772,

which implies,

3\ /3\ 77
D ay(@wy + Y bi(w)w; > ey (A(v +2) —nA - ﬁsﬁ) (1> in A,
4,7 i
(6.15)
since in A |z — Z| > 3/4, which gives — |z — z| > —3/4 and |z — j|_7_2 >
(3/4)7772, recalling that v > 0.

In particular, if we take
3
Ay +2) —nA - \/582Z >0,

in other words
3e?

A
2 = a
v+ >n)\+\/ﬁ4)\,
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and

A 3e?
- = 9
v > \/ﬁ4A ,
we get from (6.15)

;am’(x)wij + Zi:bi(l’)wi > Cy ()\(7 +2) — A — \/5522> <z>—v—2

=§>0 in A,

namely

Z ai;()wi; + Z bi(z)w; > 6 in A, (6.16)
(2% i

with § universal, as desired.

Extend now w to be equal to 1 on By /2(7).

Repeating the considerations done in the proof of Lemma 2.3, we obtain from
(6.9), inasmuch |o| < 1/10,

Bi/10(Z) C B (u). (6.17)
Moreover, in the same way of the proof of Lemma 2.3, we achieve
Bijs CC Bsu(Z) CC By,
which can be rewrite
El/g C Byju(z) and §3/4(i) C Bj. (6.18)

Notice at this point that u—p solves, in the viscosity sense, a uniformly elliptic
equation in By /19(Z) as in the proof of Lemma 2.3, but with a different right
hand side.

Indeed, if we take ¢ € C?(Bj/19(Z)) touching u — p from below at zy €

Bl/lO (.f‘), we have

¢(z0) = (u—p)(w0) = u(wo) — p(x0) (6.19)
and

o(x) < (u—p)(x) =u(z) —p(x) in a neighborhood O of zo.  (6.20)
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In particular, (6.19) and (6.20) read

(20) + (o) = u(xo) (6.21)

and
o(x) + p(z) <wu(x) in a neighborhood O of xy. (6.22)

In addition, since Bj,10(Z) is open and xg € By/10(7), we can suppose O C
Bi/10(Z), and we have (¢ 4 p) € C*(0), recalling that ¢ € C?(By,10(Z)) and
p € C®(By), with By D Byj10(Z) D O from (6.17), because B (u) C B.
Therefore, from this fact, together with (6.21) and (6.22), we get that (¢ +p)
touches u from below at xy € By /10, seeing as how (¢ + p)(z) = p(x) + p(x).
In particular, from (6.17), we have zo € B (u).

As a consequence, we have that (o + p) touches u from below at zy € By (u),

hence, since u is a viscosity solution to (6.1) in By, we obtain

Z aij(x0) (¢ + p)ij(x0) + Z bi(zo) (¢ +p)i(20)
= Z a;j(x0)(p + xn + 0)ij(z0) + Z bi(20)(p + T + 0)i(70)
- Z aij(wo)ij(wo) + Z aij(20)(Tn + 0)ij(20)

+ D bilwo)pio) + 3 bilo) (wn + 0)i(wo)
- Z a’ij(x())@ij(xo) + Z bi(xo)(pi(l’o) + bn(xo) < f(,ro)7

i\j i
which gives
D aii(@o)pii(wo) + Y bilwo)pi(wo) + bu(wo) < f (o),
¥ i
which also entails
D aii(@o)pii(wo) + Y bilwo)pi(xo) < f(wo) — balwo): (6.23)
ij i
Repeating the same argument if ¢ € C?(Bjj9) touches u from above at

To € Bi/10(Z), but with opposite inequalities, we achieve from (6.23) that
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u — p solves, in the viscosity sense, the uniformly elliptic equation
Z ai;(z)(uw—p)ij + Z bi(x)(u—p)i = f—b, in By1o(@).
ij i

Furthermore, we have u —p > 0 in By/10(Z), given that « —p > 0 in B; from
(6.9) and By/10(Z) C B for what we have said before. As a consequence,
because u — p > 0 in By10(Z) and u — p solves (6.23) in the viscosity sense,

we can apply the Harnack inequality to obtain

swp (u—p) < ol(mf (w=p)+Callf — bnnm),

B 20() By 20(%)
which implies, in view of the same steps done in the proof of Lemma 2.3,
u(x) = p(a) > c(w(®) = p(7)) = C|f = ballpw  in Bijpo(7).  (6.24)
Now, we have for definition of ||b||,;  , see (6.13),

[f(2) = bu(2)] < |f (@) + [bn(@)] <[ fll oo + 1bnll oo < 1l oo + (161 poc

in other words
|f(x) = bu(@)] < (| fllpee + 110l oo

which gives
sup | f(x) = ba(@)] = [[f = ball oo < [1f1lzoe + 1]l poc

namely

1f = ball oo < [1f e + 1Bl - (6.25)
In addition, we know, from (6.3)-(6.4), that |f|;« < &? and [|b||;. < €2,
thus from (6.25) we achieve

1f = bl oo < 2¢%,

and hence

= IIf = bullpe = —2¢%,
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which entails from (6.24)

u(x) — p(z) > c(u(@) — p(z)) — 2C*  in By jo0(Z). (6.26)

In particular, repeating the same computations done in the proof of Lemma
2.3, we get from (6.7)

u(r) —p(z) =

Y

Do M

which implies, in view of (6.26),
19 2 C . =Y —
u(x) — p(z) > ¢y~ 2Ce” = ¢ (5 — 205) = coe in By )e0(7),

that is

u—p > Co€ in El/go(i‘), (627)

provided that taking e small enough so that § — 2Ce > 0, in other words
e <16

At this point, analogously to the proof of Lemma 2.3, we set
v(z) = p(z) + coe(w(x) — 1), = € Byu(2), (6.28)

and for ¢t > 0,

). (6.29)

&I

v(x) =v(z) +t, =€ Baul
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Notice that, from (6.28) and (6.29), we obtain

Z% (0 +Zb i= D a(@)(e() + )y + Y bi(@)(v(x) +1)
_ Zaw ) + coe(w(z) — 1) it)ij

+Zb ) + cos(w(z) — 1) +1);

_ Z a5 (2) (2 + 0 + coe(w(x) — 1) + ),

+ Z bi(2) (20 + 0 + coe(w(x) — 1) + 1),

= Z a;;(z)coew;; + Z bi(z)coew; + by (x) (1 + cocwy,)
— T
= coe Z a;j(x)w;; + coe Z bi(x)w; + by () + coeby(z)wy,
ij i
:Cgézazj( ww—i—coanb Jw; + by(x)

= Co€ <Z aij(ac)wij + Z bz(x)wz> + bn(ZE),

(2]

therefore, in view of (6.16), inasmuch as cpe > 0,
Z CLZ‘J'( 'Ut ij + Zb = C0€(5 + b ( ) in A. (630)
2%}

Moreover, for what we have shown above, we have |b,|(z) < €2, Vx € By,
which gives b,(z) > —&? Vo € Bj and thus also Vo € A, recalling that
A C Bj. Consequently, from (6.30), we get

Zaii( vtz]+2b )i > coed — g2 >e? in A,

namely

Zaia’(i’?)(vt)ij + Z bi(z)(v,); > €% in A, (6.31)
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if we take € such that

0
0065—52>€2HCO5€—2€2>0H5(CO5—26)>O<—>O<€<%,

in other words if € satisfies 0 < € < %ﬁ.

Now, from the definition of v; in (6.29) we have
vo() = v(z) = p(x) + coe(w(w) — 1) < p(a) S ulz), = € Bya(7),
le
vo(x) < u(x), x € Byu(),

recalling that Bj4(Z) C By from (6.18) and hence from (6.9), p(z) < u(x),
with = € By/4(Z), and w < 1 in By4(Z), from the proof of Lemma 2.3.
Let then ¢ be the largest ¢ > 0 such that

v(z) <wulz) in Byu().

Remark that ¢ exists, given that for t = 0 we have vy(z) < u(z).
We want to show that ¢ > cge. Indeed, if this condition is satisfied, exactly

how in the proof of Lemma 2.3, we obtain
u(z) > (p(x) + ce)t  on By,

with 0 < ¢ < 1 universal, as desired.
The continuance of the proof is the same of the proof of Lemma 2.3, observing
that (6.31) is satisfied for every ¢ > 0 and hence also for . O

As in case of problem (1.2), we can provide, at this point, the proof of

Harnack inequality.

Proof of Theorem 6.4. As in the proof of Theorem 2.1, we assume without
loss of generality

zo=0, r=1

According to (6.5) and repeating the same argument used in the proof of

Theorem 2.1, we achieve

p(x)t <wu(z) < (p(x)+¢e)" in B (6.32)
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with p(x) = x,, + ao.

The proofs of the cases in which |ag| < 1/10 and ap < —1/10 are analogous
to those given in the proof of Theorem 2.1.

Consequently, remain to show the result if ag > 1/10.

Repeating the same argument used in the proof of Theorem 2.1, we achieve
that B9 C By (u) and as in that proof, we distinguish two cases, if u(0) —
p(0) > /2 or u(0) — p(0) < /2.

(i) First, we suppose u(0) — p(0) > /2.

At this point, from (6.32) we get, recalling that p < p*, u > p in
By D B (u) D Bij10, which entails v > p in By and u —p > 0 in
By 10

In addition, u solves, in the viscosity sense, a uniformly elliptic equation
in QF(u) D Bj(u), seeing as how Q D B; from the hypothesis of
Theorem 6.4, and hence we can repeat the same argument used in the
proof of Lemma 6.6 to obtain that u — p solves, in the viscosity sense,

the uniformly elliptic equation
i\j i

In view of this fact, together with u —p > 0 in By/19, we can apply the

Harnack inequality to achieve

sup (4 — p) < € (mf (w=p)+Callf — bnnm),

By /20 1/20
which implies, repeating the same calculations done in the proof of

Lemma 6.6,

u(x) — p(z) > coe  in B g, (6.33)

with ¢g = § — 2C¢ and € such that 0 < ¢y < 1, in other words

c c c c 1 c
0<—-—-2C 1 ——1<2C — _—— —
<2 e < HQ < €<2<—>4C 2C<€<40,

i.e.
c 1 1

E—%<E<%,
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which also gives, because € > (

OC 1 B c 1+<<c
max\®ae Tac) T \ac T ac ENTek

namely

In particular we get from (6.33), calling ¢ = ¢y and given that By /50 C
§1/207
u(r) —p(r) > ce in Bi /20,

which also entails
u(x) > p(x) + ce  in By g, (6.34)

with 0 < ¢ < 1 universal.

Now, we know that v > 0 in D By D By, that is u > 0 in Bj 9,
since u is a viscosity solution to (6.1) in €. As a consequence, from
(6.34) we obtain

u(z) > max(p(z) + ce,0) = (p(x) + c£)™  in By g,

in other words

u(z) > (p(x) +ce)*  in Byja,

with 0 < ¢ < 1 universal.

The precise conclusion of Theorem 6.4 follows from case (i) in the proof
of Theorem 2.1 when ag > 1/10.

Suppose now that u(0)—p(0) < £/2. Repeating the same argument used

in case (ii) in the proof of Theorem 2.1 when ay > 1/10, we achieve
p(z)+e—u(x) >0 in Byjp. (6.35)

At this point, we state that p + ¢ — u solves, in the viscosity sense, a

uniformly elliptic equation in By /0.
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Precisely, if ¢ € 02(31/10) touches p + ¢ — u from below at x¢ € By /10,

we have
p(x0) = (p+ e — u)(xo) = p(z0) + € — u(zo) (6.36)

and

o(x) < (p+e—u)(z)=p(x)+e—u(x) in a neighborhood O of x.

(6.37)
In particular, (6.36) and (6.37) read
u(xo) = p(xo) + € — @(z0) (6.38)
and
u(z) < p(x) +e—p(x) in a neighborhood O of z. (6.39)

Therefore, from (6.38) and (6.39), we get that p+ e — ¢ touches u from
above at xy € By /19, inasmuch (p+¢ — ¢)(x) = p(z) + € — p(x).
Furthermore, since B 19 is open and x¢ € By /19, we can take O C B9
and we have (p+¢— ) € C*(O) inasmuch as p(z) = x,, +ag € C*(By)
and By D Byj10 D 0.

To sum it up, we have (p + e — ¢) € C?*(O) touching u from above
at xg € By, with in particular zp € Q*(u), given that By C
B (u) € Q% (u), inasmuch as By C © from the hypothesis of Theorem

6.4. Consequently, seeing as how u is a solution to (6.1) in 2, we obtain
Z aij(zo)(p + € — )ij(z0) + Z bi(o)(p + € — ¢)i(z0)

irj i

=Y (@) (wn + a0+ & — ) + Y bilwo)(wn + ag + £ — ©)ilo)

= Z a5j(20) (=) (x0) + D bil0)(=)i(w0) + ba(w0) (@0 — ¢)n(20)

i;in
=D ay(0)(=pis(w0)) + Y bil0) (= @i(0)) + bu(o) — ba(0)pn (o)
g z;ﬁn

== Z aij(20)pij (o) — Z bi(z0)@i(0) + bn(z0) > f(20),
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namely

- Z% o) i (7o) Zb 20)wi(To) + bu(wo) > f(20),
which implies

_ZGU x0) @i (o) Zb z0)pi(z0) > f(20) — bu(o)

and

> aii(wo)pi(wo +Zb 0)pi(w0) < bn(wo) — f(zo).  (6.40)
i\
Repeating the same argument if ¢ € C*(Bj,19) touches p + & — u from
above at xg € Bj/19, but with opposite inequalities, we achieve that

p + € — u solves, in the viscosity sense, the uniformly elliptic equation
D ai(pte—wy+ Y bi(x)(p+e—u)i=by—f in B

In view of this fact, together with (6.35), we can apply the Harnack
inequality to get

sup(p 4 ¢ — ) gC(inf <p+s—u>+02||bn—f||m),

B /20 B120

which entails, repeating the same calculations used for instance in the

proof of Lemma 2.3 to obtain (2.37),
p(x)+e—u(x) > c(p(0)+e—u(0)) = Cllby — fll;= in Bijso. (6.41)

Now, ||b, — fll;« = ||f — bnl/ ;= , hence, repeating the same computa-
tions used in the proof of Lemma 6.6, we have ||b, — f|| ;- < 22, which

also gives — ||b, — f| .~ > —2¢%. As a consequence, we get from (6.41)
p(z) + & —u(x) > c(p(0) + & — u(0)) — 2C=*  in By a. (6.42)

Moreover, we have supposed u(0) —p(0) < €/2, which also gives p(0) —
u(0) > —¢/2, thus

p(0)+€—u(0):p(0)—u(0)+5>—§+6:g,
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i.e.

)

p(0) +¢& —u(0) >

DO | ™

which implies from (6.42)
p(x) +e—u(r) > c% —2Ce* in By g. (6.43)

At this point, repeating the same argument used in (i), we achieve from
(6.43)
p(x) + e —u(x) > coe  in By,

with 0 < ¢p < 1 universal, namely calling ¢ = ¢
p(z) +e—u(x) > ce in By,
which also gives
p(z) +e—ce = p(x) + (1 = c)e > u(z) in By,
in other words, since B/ C B, /205
p(x) + (1 —c)e > u(x) in Bym. (6.44)

In addition, for what we have said above, u > 01in By /19 D B9, that is
u > 0 in By 5. Consequently, from (6.44) we get that p+(1—c)e > 0in
Bi 20, which entails (p+ (1 —c)e)* = p+ (1 —c)e in By 9 and therefore
from (6.44)

(p(z) + (L —c)e)™ > u(x) in Bymo.

Now, the precise conclusion of Theorem 6.4 follows from case (ii) in the
proof of Theorem 2.1 when ag > 1/10.

6.3 Improvement of flatness

We introduce here the “improvement of flatness” property also for the

graph of a solution to (6.1)-(6.3)-(6.4).
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Lemma 6.7 (Improvement of flatness). Let u be a solution to (6.1)-
(6.3)-(6.4) in By satisfying

(2, — )t <wu(z) < (x,+¢e)" forxe By, (6.45)

and with 0 € F(u). If 0 <r < 1q for ro a universal constant and 0 < € < g

for some ey depending on r, then
(x-v—re/2)T <ulx)<(x-v+re/2)T forxe B, (6.46)
with |v| =1 and |v — e,| < Ce for a universal constant C.

Proof. We proceed as in the proof of Lemma 3.1, explaining only the main
differences and referring to the proof of Lemma 3.1 for all the details.
As in the proof of Lemma 3.1, we divide the proof into three steps and we

introduce the following notation:
Q,(u) := (B (u) U F(u)) N B,.

Step 1: Compactness. Fix r < ry with ry universal (the precise ry is given
in Step 3 of the proof of Lemma 3.1). Assume for contradiction that there
exist a sequence €, — 0 and a sequence uy, of solutions to (6.1) in By with
coefficients afj and b¥, right hand side f;, and free boundary condition gy
satisfying (6.3)-(6.4), such that wuy satisfies (6.45), namely

(T, —ep)t <up(z) < (2, +e)t forz € By, 0€ Flug), (6.47)

but it does not satisfy the conclusion (6.46) of the lemma.
The explanation of how we can take these sequences is the same provided in
the proof of Lemma 3.1.

As in the proof of Lemma 3.1, we set

o >:uk(x)—xn

u(x ;o x € Qp(ug),
€k

where, for what we have noticed in the proof of Lemma 3.1, Q(u;) =
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Repeating the same computations used in the proof of Lemma 3.1, we obtain
from (6.47) that
-1 < ﬁk(a:) < 1 forze Q1<uk)

and from Corollary 6.5 we achieve that the function u, satisfies
() — r(y)] < Clz—y|’ (6.48)
for C' universal and
|z —y| > en/E, w,y € Qolu).

Repeating the same argument used in the proof of Lemma 3.1, we get that
F(uy) converges to ByN{x, = 0} in the Hausdorff distance and using this fact
and (6.48) together with Ascoli-Arzela, we obtain that as €, — 0 the graphs
of the iy, over 4 /2(uy,) converge (up to subsequence) in the Hausdorff distance
to the graph of a of a Holder continuous function @ over By, N {x,, > 0}.

Step 2: Limiting solution. We prove, at this point, that, as in case of the

proof of Lemma 3.1, @ solves
Au =0 inBl/gﬂ{xn>0},
U, =0 on By, N{r, =0},

in the sense of Definition 1.6.
As observed in the Remark following 1.6, we can verify that Definition 1.6 is

satisfied only by polynomials touching strictly from below/above.

Let thus P(x) be a quadratic polynomial touching @ at Z € By N
{z, > 0} strictly from below. Specifically, we need to show that

(i) if z € Bija N {x, > 0} then AP(z) < 0;
(ii) if z € By N {x, = 0} then P,(z) < 0.

Now, given that @, — @ in the sense specified above, we can find points

oy, € Qy/2(ur), xx — Z, and constants ¢ — 0 so that
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and

iy > P+ ¢ in a neighborhood of zy. (6.50)

In particular, from the definition of u; and repeating the same calculations
done in the proof of Lemma 3.1, (6.49) and (6.50) read

and

uk(x) > Q(z) in a neighborhood of xy, (6.52)

where
Q(z) = er(P(z) + cx) + .

As in the proof of Lemma 3.1, we now distinguish two cases.

(i) If £ € By N {x, >0} then, as in the proof of Lemma 3.1, we get
that x, € Bf/Q(uk) for k large. In addition, from (6.51) and (6.52)
we have that @ touches uy from below at zj, where Q@ € C*(By)s),
inasmuch P € C*(By2) and x, € C*°(B)2), hence in particular @ €
(B} (ur)).

To sum it up, for k large, we have Q € C*(B 1/2( uy)) touching uy from
below at x; € Bl/Q(uk).

Therefore, inasmuch as uy, is a solution to (6.1) in By, and thus also in
B 2, with coefficients afj and b¥, right hand side f; and free boundary
condition gy satisfying (6.3)-(6.4) with e, we obtain

Z ks (2)Quj () + Zb 1) Qi)
— Zam x)(ex(P(x) + k) + n)ij(zx)
+be xk 5k LU) +Ck> +«In)l

=" (zn)er Py (i) + Z b (2)enPi(xy) + 05 (1) (e Pa() + 1)

%]

i#n
= akz% k) Pij (g +€kZbk wx) Pi(ag) + Oy (z1) < fio(an),
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ie.
Ek Za” xk) Py (zr) + € Zbk k) Piw) + b (ar) < frlzn),
which implies

Ek Z ag; (1) Py (ax) < frlzn) — e Z b; (1) Py(2x) — by (). (6.53)

Now, from the first inequality in (6.3), namely || fullp(p,) < e2, we

achieve, seeing as how z;, € Bfm(uk) C By, that is x;, € By,

filzr) < |fulzi)] < et

in other words fi(x;,) < €%, which gives from (6.53)
€k2 Z_] J}k ij l’k < ‘Ek — 6kZbk l‘k Ik — bk(l‘k) (654)

In addition, we know from (6.4) that [|bx[| e g,y < €}, ie.

1l o5, = max |0

.....

(P

which entails ku < &2, and thus, given that z), € B; for what

(P,
we have said above,

RCORS MG Ui PR
i.e.
—bh (1) < &}, (6.55)
which gives from (6.54)
ex Y abi(wy) Pylay) < 267 — ey b () Pil). (6.56)

As regards — Y b¥(xy,) Pi(z), we can rewrite it as —b*(zy) - VP(zp

)
and from the Cauchy-Schwarz inequality, we get —b*(xy,) - VP(x,) <
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In particular, we have
|VP| S O, in Bl/g, (657)

given that P(z) is a quadratic polynomial and By, is a bounded set,

as a consequence

—b"(x) - VP (1) < C [b"(a)| .- (6.58)

Furthermore, for what we have shown before, |[bf(zy)| < €3, Vi =

1,...,n, in other words b¥(x;) < €2, therefore

6 ()| = V5 ()2 + 5(an)? + ..+ b (0)? < \fmeh = Vineh,

namely
6" (z1)| < V/ney, (6.59)

which implies from (6.58) and (6.56), since €5 > 0,

€k Z al;(x) Py () < 22 + exCv/nep = e3(2 + Cv/neg),
i,
ie.
k 2
ex Y abi(wr) Py(ay) < 622+ Cv/ney),
(%]

and dividing by ¢, > 0,

Z a?j(l'k)Pij(xk) < ep(1+ evney). (6.60)

At this point, from the last inequality in (6.3), that is Hafj — i HLOO(Bl)

< e, we achieve, because x;, € By for what we have said before,

|ty (k) — 03| = [0 — e (wi)| < [|as = | o ) < 2

which gives
—ep < 045 — afj(:r;k) < . (6.61)
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Therefore, in view of this fact and (6.60), repeating the same calcula-

tions done in the proof of Lemma 3.1 to get (3.29), we obtain

AP = (6, — ali(x)) Py + Z ali(z) Py

i?j
<Z5k +Z —ep P +€k2+0\/_€k)
PZ;>0 PZ]<0
- ( SRR 2OV
P50 %0

= (Cy + Cv/nep)ex,

namely

AP < (Cl + C\/ﬁék)&“ (662)

since P(z) is a quadratic polynomial and thus P;; is a constant Vi, j
which also entails P;; = P,;(zy).

Consequently, passing to the limit in (6.62) as k — oo, we achieve that
AP <0, as desired, inasmuch e — 0 and (C; + Cy/nek) — C1, which

1s a constant.

(ii) If instead z € Byjp N {z, = 0}, we argue exactly in the same way of

the proof of Lemma 3.1 and we get P,(Z) < 0 as desired.

As in the proof of Lemma 3.1, we also consider the case of a quadratic
polynomial P(z) touching @ at T € By N {x, > 0} strictly from above.

In particular, we need to prove that
(i) if z € Byja N {x, > 0} then AP > 0;
(ii) if z € Byjo N {w, = 0} then P,(z) > 0.

Always since @, — u in the sense specified above, there exist points x; €

04 /2(ux) and constants ¢, — 0 such that
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and

tr < P+ ¢, in a neighborhood of xy. (6.64)

Repeating the same argument used in the proof of Lemma 3.1, from the
definition of 4y, (6.63) and (6.64) read

and

uk(x) < Q(z) in a neighborhood of xy, (6.66)

where
Q(z) = er(P(z) + cx) + .

We distinguish two cases again.

(i) If z € Byjo N {x, > 0} then, repeating the argument used in the proof
of Lemma 3.1, we achieve that x, € Bj /Q(Uk) for k large. Moreover,
from (6.65) and (6.66) we have that @) touches uy from above at zy,
where Q € C*(By2), inasmuch P € C*(B; ;) and x,, € C*°(By ) and
hence in particular, @ € C*(B,(ux)).

To sum it up, for k large, we have Q € C*(B 1/2( uy)) touching uy from
above at z, € Bl/Q(uk).

Therefore, inasmuch wuy is a solution to (6.1) in Bj, and thus also in
B /2, with coefficients afj and b¥, right hand side f; and free boundary
condition gy satisfying (6.3)-(6.4) with &5, we get

Z ali(x) Qi (i) + Zb 2y)Qi(Tk)
= Zaw zy) ek (P(x) + cx) + 235 ()
+ Z bf (k) (ep(P(x) + k) + x)i(zk)

= " (zn)er Py (i) + Z b (21)enPi(xr) + bn () (€6 Pa(z) + 1)

%]

i#n
acZa” i) Pij (24 +5kzbk k) Pi(ay) + 05 (x1) > fi(an),
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in other words
ekZ a;;(zg) Pij(zy +€kzb o) Poy) + b (2x) > fio(a),
which implies

en Y ay (@) Py(ae) > fulwn) —ex Y 0f (i) Pilag) — b (z1). (6.67)

Now, from the first inequality of (6.3), i.e. || fxll o (p,) < 2 we obtain
|fe(z)| < ef, with z € By, hence, since 2 € Bf,(u) C By, namely
rr € By, we have |fi(z)| < €2, which also gives fi(zx) > 7. As a

consequence, from (6.67) we get
€kz z] £L‘k ij C(Zk —€k —6k2b l’k b ( ) (668)

In addition, repeating the same argument by which we have obtained
(6.55) with bF(xz) in place of —bF(x,), we also have bf () < €7, and
thus —bf (z;,) > —&2, which entails from (6.68)

en »abi(wy) > =227 — e,y b (wx) Pily). (6.69)
i, i

Concerning — Y b¥(xx) Pi(zy), as in case of z € By, N {xz, > 0} for P
touching @ from below at Z, we can rewrite it as —b*(x) - VP(x;,) and
this time, for the Cauchy-Schwarz inequality, we get —b*(z)-VP(z) >

— [b*(ax)| [V P(x)], which gives from (6.57) and (6.59)
—b"(zy,) - VP(z1) > —Cy/ne;.
Consequently, in view of this fact, from (6.69) we have, because ¢, > 0,

£k Z afj(a:k)Pij (z) > =27 — e,.C/nes,
(]
and dividing by ¢, > 0,

Z afj(xk)ﬂj(xk) > —2¢; — ,Cv/nep = (=2 — Cv/nep ey,

i?j
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that is

Zaw z)Pij(xr) > (=2 — Cv/neg)eg. (6.70)

Therefore, from (6.61) and (6.70), we obtain, repeating the same com-

putations done in the proof of Lemma 3.1 to get (3.45),

AP = Z(&] — + Zaw xk i
> Z _6kRj + Z 5kPZJ + —2 - C\/ﬁgk)gk

P20 Piy%0
= <— E ij‘i‘ E Pij—Q—C\/ﬁ&f)eSk
Pi;>0 Pi;<0

= (Cl - C\/ﬁfk)&m

in other words

AP Z (Cl — C\/ﬁ&?k)é‘k, (671)

inasmuch P(z) is a quadratic polynomial and hence P;; is a constant
Vi, j, which also implies P,;(zy) = P;;. As a consequence, passing to the
limit in (6.71) as k — oo, we get AP > 0, as desired, because g, — 0
and (C; — Cy/neg) — C1, which is a constant.

(ii) If z € Byjp N {x, = 0}, we argue exactly in the same way of the proof
of Lemma 3.1 and we have P, (z) > 0 as desired.

Step 3: Improvement of flatness. In this step, we argue exactly in the same

way of the final step of Lemma 3.1. O]

6.4 Theorems

We introduce here the results for the problem (6.1), corresponding to
Theorem 4.2 and 4.1.
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Theorem 6.8 (Flatness implies C'*). Let u be a wviscosity solution to
(6.1) in By. Assume that 0 € F(u), go = 1 and a;;(0) = 6;;. There exists a

universal constant € > 0 such that, if the graph of u is E-flat in By, i.e.
(7, — &) <w(x) < (z,+&)", € B, (6.72)
and

[aijlcosmy S & N fllpwmy S & blpe(s,) <& [9lcosmy <& (6.73)
then F(u) is C* in By .

Remark. The Remark following the statement of Theorem 4.2 holds also for
Theorem 6.8.

Proof. We proceed in the same way of the proof of Theorem 4.2, explaining
only the main differences and referring to the proof of Theorem 4.2 for all
the details.

Let u be a viscosity solution to (6.1) in By with 0 € F(u), g(0) = 1 and

a;;(0) = d;;. Consider the sequence of rescalings

uk(x) = u(pkx)a VS Bla

Pk

with p, =7, k=0,1,..., for a fixed 7 such that
1
<o, T<
< T,

with 7 the universal constant of Lemma 6.7.

Repeating the same argument used in the proof of Theorem 4.2, we remark
that uy is well-defined.

In parallel to the proof of Theorem 4.2, we claim that each u; solves a prob-
lem of the type satisfied by u.

In particular, we state that each wy solves (6.1) in By with coefficients

af;(x) = ag(per) and bf(x) == prbi(prx), right hand side fi(z) := ppf(pr)

and free boundary condition gx(z) := g(prx).

Specifically, we need to prove that
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(i) if ¢ € C?(By (ug)) touches uy from below (above) at xy € B (uy) then
> af(wo)eij(xo) + > b (o) ei(wo) < fi(o) (YGSP- > af(z0)pij (o)
i, i i,

3 b oglao) > fk<:co>);

(i) if ¢ € C*(By) and ¢ touches uy from below (above) at zg € F(uy)
and |Vl (x¢) # 0 then

Vol (o) < gr(wo) (resp. [Vl (20) 2 gi(20)).

Let us start showing that (i) is verified. For this purpose, we take ¢ €

C?(Bi (u,)) touching uy from below at xy € B; (uy), and we have

o(xg) = ug(xy) (6.74)

and
o(x) <wuk(xz) in a neighborhood O of x. (6.75)

In particular, repeating the same argument used in the proof of Theorem 4.2,
(6.74) and (6.75) read

(Prep) (%) = u(pro) (6.76)

and

(Prp) (i’j—;) < u(ppz) inO. (6.77)
At this point, calling O" = p, O, we have, from the proof of Theorem 4.2, that
O’ is a neighborhood of pyx and repeating the same argument used in the
proof of Theorem 4.2, we obtain from (6.76) and (6.77) that (pxry) (p—k> €
C?(0') touches wuy, from below at ppre € By (u).
Consequently, since u is a viscosity solution to (6.1) in By, we get

Z aij(pro) ((/W) (E) > } (przo) + Z bi(pro) ((kaD) (p—k> ) (pro)

)

< f(pxo). (6.78)
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Now, from (4.10), we have

(0 (p—)) () = ). (6.79)

iJ

In addition,

(00 (), = (e () = e () =2 ()
in other words
(0 (), =2 ()
(<pk¢> (p—)) (pr) = ¢ (”p—) — gi(z0),

((pw) (E)) (pro) = i(xo)- (6.80)

1

which implies

namely

Therefore, in view of (6.78), together with (6.79) and (6.80), we obtain

> (Pkﬁo)i%‘j(wo) + Z bi(przo)pi(zo) < f(prto),

(2]

which also gives, inasmuch p; > 0,

> ai(przo)pis(wo) + o Y bilpro)pilo) < pif (pravo),
¥ i
le.

> aij(przo)eis(wo) + Y prbilprao)pi(wo) < pif (pro),

and for the definitions of afj, bF and fy,

> af(wo)pii(ro) + D> b (wo)ei(xo) < fi(wo)-
0,J i
Repeating an analogous argument, but with opposite inequalities, if ¢ €

C?(Bj (uy)) touches uy, from above at 2o € By (uy), we get

Z7J

Z afj () (ur)ij + Z bP(x)(ur); = fr  in By (ug) in the viscosity sense.

(6.81)
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As regards the condition |Vug| = gx on F(ug) in the viscosity sense, we can

repeat exactly the argument used in the proof of Theorem 4.2 and we obtain
|Vug| = g on F(uy) in the viscosity sense. (6.82)

At this point, putting together (6.81) and (6.82), we have that each uy is a
solution to (6.1) in By with coefficients afj and b, right hand side f), and
free boundary condition gy.

Moreover, repeating the same argument used in the proof of Theorem 4.2,
k

ij>
in By, with e, = 2%y (7). In particular, as in the proof of Theorem 4.2, we

have & = gy(7)>.
We now show that also b* verifies (6.4) in By with &.

Indeed, if we fix x € By, and we consider b¥(x) with i € {1,...,n}, we have,

we can show that for the chosen 7, a};, fir and g, satisfy the assumption (6.3)

since pr > 0
b (2)] = |pwbi(pr)| = pi [bs(pr)]
that is
|5 ()| = pi [bi(pwr)] (6.83)

In particular, since from (4.3), prx € By, if © € By, we obtain from (6.83)

Furthermore, we know from the definition of [|b[ g, that

HbiHLOO(Bl) < Zgllaxn HbiHLOO(Bl) = HbHLOO(Bl)7

in other words
16ill oo 51y < 10l oo,
which gives from (6.84)

In addition, we have from (6.73) that |[b]| g,y < &, as a consequence, we
get from (6.85)
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which entails, because p, = 7™ and & = &¢(T)?,

bf(z)| < 7reo(7)?. (6.86)

At this point, repeating the same argument used in the proof of Theorem 4.2
to obtain [ fil poe(p,) < 2, we have 7 < 1/4 = 272 and hence 7% < 272 for
E=0,1,...

Therefore, from (6.86) we get, inasmuch g, = 27%&,(7),
|bF (2)| < 27 e0(7)? = e,

ie.
|0F (2)| < €. (6.87)
Consequently, for the arbitrariness of z € By, we have that €7 is an upper

bound of the set { |[b¥(z)|, =« € B}, and thus

1980 ) = S0 (B} < <

namely
||beLoo(Bl) <e, i€{i,...,n}. (6.88)
In addition, for the definition of kuH Loo(By) (6.88) implies
ku”LOO(Bl) - zfllaxn ||b?HL°°(Bl) < ek
that is
kuHLOO(Bl) <&

as desired. To sum it up, each uy solves (6.1) in By, with coefficients afj and
b¥, right hand side f; and free boundary condition gy, satisfying (6.3)-(6.4)
with e.

This fact allows us to apply Lemma 6.7 with u; and the continuance of the

proof is the same of that of Theorem 4.2. O

Theorem 6.9 (Lipschitz implies C'%). Let u be a viscosity solution to
(6.1). Assume that 0 € F(u) and g(0) > 0. If F(u) is a Lipschitz graph in a
neighborhood of 0, then F(u) is CY* in a (smaller) neighborhood of 0.
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Remark. As in Theorem 4.1, the size of the neighborhood where F(u) is
C depends on the radius p of the ball B, where F'(u) is Lipschitz, on the

Lipschitz norm of F'(u), on {ailcoss,), [19]lcoss,)  [1fll Lo s,y and [0l Lo (s, -

Proof. The proof follows the scheme of the proof of Theorem 4.1 and there
are only small differences with the proof of Theorem 4.1, which we will ex-
plain, while for all the details see the proof of Theorem 4.1.

Let u be a viscosity solution to (6.1) in  with 0 € F'(u) and g(0) > 0. As
in the proof of Theorem 4.1, we can assume without loss of generality that
Q= B and ¢(0) = 1.

Indeed, concerning ¢g(0) = 1, arguing as in the proof of Theorem 4.1, if
g(0) # 1, since g(0) > 0 and hence ¢g(0) # 0, we can divide g by ¢(0) to get
g:= %, and if we set t— -, we state that @ is a viscosity solution to (6.1)
in © with coefficients a;; and b;, free boundary condition g and right hand
side f := %0).

Precisely, if ¢ € C?(Bi (@)) touches @ from below at zo € B (@), we have

o(xo) = u(xo) (6.89)

and

o(x) < u(x) in a neighborhood O of x. (6.90)

In particular, from the definition of u, repeating the same calculations done
in the proof of Theorem 4.1, (6.89) and (6.90) read

9(0)p(z0) = u(x0) (6.91)

and

g(0)p(x) < wu(z) in a neighborhood O of . (6.92)

Consequently, repeating the same argument used in the proof of Theorem
4.1, we get from (6.91) and (6.92) that g(0)p € C*(B; (u)) touches u from
below at ¢ € B (u).
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Therefore, inasmuch u is a viscosity solution to (6.1) in By, we have

Zaij .770 z] .770 +Zb .fL'o ( )
— Z ai;i(20)g(0)pij(zo) + Z bi(20)g(0)pi(z0)

(0) > asj(wo)pij (o) + g(0 Zb zo)pi(zo) < f(2o),

iJ
namely
9(0) Z aij(zo)pij(xo) + g(0 Z bi(xo)pi(wo) < (o),
(]

which entails, since g(0) > 0,

> aij(wo)pij(wo) + Z bi(zo)pi(xo) <

2%

in other words, for the definition of f ,
Zaza 0y %J To) + Zb To)pi(ro) < f(x(J)-
ij

As a consequence, repeating the same argument if ¢ € C?(B; ()) touches @

from above at 2y € B (@), but with opposite inequalities, we obtain

Z a;;(z)t; + Z bi(z)i; = f in B (@) in the viscosity sense.  (6.93)

As regards the condition |Va| = g on F(@), we can repeat exactly the same

argument used in the proof of Theorem 4.1 and we get
|Va| =g on F(a) in the viscosity sense. (6.94)

Hence, putting together (6.93) and (6.94), we have that @ is a viscosity
solution to (6.1) in By with coeflicients a;; and b;, right hand side f and free
boundary condition g.

Moreover, for simplicity we take a;;(0) = d;;.
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Now, as in the proof of Theorem 4.1, we consider the blow-up sequence

u(dgx)
ok

uy = ug, () =

with 0, — 0 as k — oo.

In particular, repeating the same argument used in the proof of Theorem 6.8,

each w, solves (6.1) with coefficients af; := a;;(0pz) and bf(z) = 0pb;(0rz),
right hand side fx(z) := dxf(dxz) and free boundary condition gi(x) :=

Furthermore, repeating the same argument used in the proof of Theorem 4.1,
we also have that, for k£ large, fr, gr and afj satisfy (4.2) in By with & and
(6.3) in B; with .

At this point, we prove that b* satisfies (6.4) in B; with &, which is the same
condition in (6.73).

Specifically, we fix x € B; and we consider b¥(x), with i € {1,...,n}.

From the definition of b*, we have, because &, > 0,
|0 ()| = 10bi(34)| = 0, [b:(0)]

1.e.

]bf”(a:)‘ = 05, |bi (0x)| - (6.95)

In particular, since §, — 0 as k — oo and J, > 0, we have that there exists
k € N such that
<1, VkeNk>k,

in other words for k large d; < 1.
Thus, for these k’s, if x € By, inasmuch ¢ > 0,

|0kz| = O || < |2| < 1,

that is 0px € B;. Therefore, consider k large enough so that d; < 1, which

also gives dpz € By if x € By and as a consequence from (6.95) we obtain

105 ()] < 0 1Bl o 5, (6.96)
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Now, always because 6, — 0 as k — oo, there also exists k& € N such that

o< —— keNk>Fk
163 ll Lo (5,
i.e. for k large 0 < | £

bill ooy
Consequently, if we take k large so that this condition is satisfied, we have

from (6.96)

}bf(l’ﬂ < Ok [[bill oo 5yy < 163l oo ) = &

1B:l oo 3,
namely

bF ()| < & (6.97)

Hence, from the arbitrariness of € By, we get from (6.97) that £ is an upper
bound of the set {|bf(a:) , € B}, and thus

188l ey = S0 b @) < &
ie.
[y F— (6.98)
As a consequence, from the definition of ||b*||, .. (3, We obtain
0 ey = e (1B ey < &
which gives
[0 ey < =

Therefore, by, satisfies (6.4) with & for &k large so that

3

Zgllaxn ||bi||L°°(B1)

0 < min [ 1,

To sum it up, we have for k large that fx, g, afj and b¥ satisfy (6.73) in B,
with & and in parallel fy, gi, af; and b} satisfy (6.3)-(6.4) in B; with &.
The remaining part of the proof is the same of the proof of Theorem 4.1,

remarking these two facts.



6.5 Nondegeneracy property 179

(i) Also a solution to (6.1)-(6.3)-(6.4) is Lipschitz continuous and satisfy
a nondegeneracy property like that expressed by Lemma 5.1.

(ii) The blow-up limit u, is always a global solution to the free boundary
problem

Aug=0 in {uy > 0}
\Vug| =1 on F(uy).

6.5 Nondegeneracy property

In this section, we provide the nondegeneracy property also for a solution
to (6.1)-(6.3)-(6.4).

Lemma 6.10. Let u be a solution to (6.1)-(6.3)-(6.4) with € < £ a universal
constant. If F(u) N By # 0 and F(u) is a Lipschitz graph in Bs, then u is

Lipschitz and nondgenerate in By (u), i.e.
cod(2) < u(z) < Cod(z)  for all z € By (u),
with d(z) = dist(z, F'(u)) and cy, Cy universal constants.

Proof. The proof follows exactly the scheme of the proof of Lemma 5.1 and
we explain only the main differences, referring to the proof of Lemma 5.1 for
all the details.

As in the proof of Lemma 5.1, assume without loss of generality that 0 €
B (u) and set d := d(0).

Consider always the rescaled function

u(x) = , x € By.

Repeating the same argument used in the proof of Theorem 6.8, we get that
@ satisfies (6.1) in By with coefficients d;;(x) := ay(dz) and b;(z) = db;(dz),
right hand side f(z) := df(dz) and free boundary condition §(z) := g(dx).
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In addition, repeating the same computations done in the proof of Lemma
5.1, we achieve d < 1 and the assumption (6.3) holds in B, for d;;, f and .
At this point, we claim that b satisfies (6.4) in Bj.

Precisely, if we fix € By, and we consider l;Z(:c), we have, because 0 < d < 1,

bi(x)| = Idbi(d)| = d [bi(de)| < [b(d)| < il

namely

bi(@)| < il (6.99)

Moreover, we know from hypothesis that b satisfies (6.4), as a consequence
we have
16l e < 1Dl o < €7,

in other words

||bl||L°° < 527

which implies from (6.99)

l;i(x)’ <& (6.100)

Therefore, for the arbitrariness of z € By, we obtain from (6.100) that 2 is

an upper bound of the set { bi(x)|, z€ Bl} , and thus
~i = su Bix’§52,
HL‘X’(Bl) :pegl ( )
ie.
HbH <& (6.101)
Le(B1)

Consequently, from the definition of HBH By’ we get
L (B,

2
bi <e”,

= max H ~
L (Bl)

o]
L (By) i=1,..., n

I
and hence b satisfies (6.4) in By.

At this point, as in the proof of Lemma 5.1, we wish to show that

that is
< g2

Le°(B1)

Co < ﬁ(()) < Co.
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Specifically, we assume for contradiction that @(0) > Cp, with Cy to be made
precise later.

As in the proof of Lemma 5.1, let
Gxz) =C(lz"" = 1)

be defined on the closure of the annulus B; \ B /2-
In particular, in view of the uniform ellipticity of the coefficients a;;(see
Lemma A.5 in Appendix A), repeating the same calculations done in the

proof of Lemma 6.6, we can choose 7 large universal so that (for € small)
N ayGy + > G > on B\ Byp. (6.102)
4J i

Furthermore, we can choose the constant C' so that
G=1 on 831/27

and from the proof of Lemma 5.1, we achieve

o —
(1/2)=7 =1

In addition, repeating the same argument used in the proof of Lemma 5.1,
we get © > 0 in B.

Consequently, in view of this fact and inasmuch @ solves, in the viscosity
sense, a uniformly elliptic equation in B; with right hand side f, we can
apply the the Harnack inequality to obtain

supﬁSCl(infﬂ+6’2“f“ ),

B L (By)

Bia B2

which gives, repeating the same computations done in the proof of Lemma
5.1,
@ > ct(0) on Bys. (6.103)

At this point, as in the proof of Lemma 5.1, we define v(x) := cu(0)G(x) and

we state that @ — v satisfies

S (@ —v)y + Y bi(a—v); <0 in B\ By
2] i
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in the viscosity sense, that is @ — v is a viscosity supersolution of > @;;(u —
¥

v)i; + > bi(a—v); =0in B \EUQ, see Definition B.4 in Appendix B.

Precisely, if ¢ € C*(B, \El/g) touches 4 — v from below at zg € (B \El/Q),

we have

o(xo) = (0 — v)(xg) = U(xg) — v(z0) (6.104)

and

t(z) —v(z) in a neighborhood O of zy.  (6.105)

5
&
IA
=
|
2
&
I

In particular, (6.104) and (6.105) read

(o) (6.106)

I
=g}

p(0) + v(w0) = (¢ + v)(20)

and

o(x) +v(z) = (p+v)(z) <a(zr) in aneighborhood O of zy.  (6.107)

Consequently, from (6.106) and (6.107), repeating the same argument used
in the proof of Lemma 5.1, we achieve that (¢ + v) € C?(By \ By2) touches
@ from below at zo € (By \ Bij2)™ ().
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Hence, since @ is a solution to (6.1) in B; and also in By \ By 2, we get

Zaw xo) (¢ + v)ij(xo +Zb z0) (¢ + v)i(z0)

i,

= Zaij (20)(¢ + ct(0)G);5(zo) + sz‘ 7o) (¢ + ct(0)G)i(wo)

0,J

= Z aij(zo)(¢ij(z0) + cu(0)Gij(wo)) + Z bi(x0) (0i(0) + cii(0)Gy (o))
= Z (0)pij(xo +Zaw (o)t (0)Gyj(xo)
+Zb x0)wi(xo +Zb xg)cu(0 xo)
_ZGU Zo) i (o +Zb x0)@i(xo)
+Zaw xo)ct(0)Gy5 (o +sz (20)G
irj i
=Y (w0 iy (o) + Z bi(0)i(o)
(Y]
+ cu(0) Zdw(xo) ii(xo) + cu(0 Zb zo)G
—Za,] Zo) i (o +Zb z0)@i(xo)

+ c(0) <Z aij (o) Gij(wo) + Z Bz‘(ﬂvo)Gz‘(Io)> < f(@o)
in other WOl"d7S
> (o) pij(wo) + Z bi(0)i(o)

which entails |

Zaw To)wij(zo) + Zb xo)pi(ro) < f(:z:o)

(2%

i(0) <Z ai;cii(0)Gij (o) Zb 20)G ) (6.108)
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In addition, in view of (6.102), inasmuch zo € (B; \ Bi/2), we obtain from
(6.108) taking e* = cu(0)e?,

Z aij(z0)wij (o) + Z bi(wo)pi(z0) < flzo) — 2. (6.109)

Now, from the first inequality in (6.3), i.e. HfH : < €2, we also have

L‘X’(Bl
)f(x)‘ < €2, Vx € B; and thus, because zy € (Bi\ Bijs) C B, that is

Zo c Bl,

f(mo)‘ < €2, which also gives f(zo) < €.
Therefore, in view of this fact, we achieve from (6.109)
D aii(xo)pi(xo) + Y bi(wo)pi(o) <0,
ij i
which implies that @ — v is a viscosity supersolution to ) (@ — v);; +
4,J
Zbl(ﬂ - U)i =0in Bl \El/g.
At this point, the remainder of the proof is the same of the proof of Lemma

5.1, with the only difference that @g is a strict supersolution to (6.1), in place

to (2.1), but with the same computations to see it. O



Appendix A

Some definitions and auxiliary

theorems

We introduce here general tools used in the work.

Definition A.1. Let © be an open subset of R” and BC(2) be the
bounded continuous functions on €. For u € BC(2) and 0 < 8 <1 let

ullcg) = sup |u(z)|
z€Q

e u(@) — u(y)]
wzxr) —uly
U| o, = sup ———
[ ]COB(Q) oD |:E—y’6
TFY

If [u] cos(a) < 09, then v is Holder continuos with holder exponent 3. The

collection of S-Holder continuos function in €2 will be denoted by
C¥P(Q) = {u e BC() : [u]posy < oo}
and for u € C%%(Q) let

[ullco.say = lullogq) + [Ulcosqy -

Definition A.2. Let (X,d) a metric space and A, B C X two non-empty
subsets. We define their Hausdorff distance dy (A, B) by

dy(A, B) := max{e(A, B),e(B,A)},
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where
e(A, B) := sup d(z, B)
z€A
and

d(xz,B) := inf d(z,y).

yeB

Theorem A.3 (Ascoli-Arzela Theorem). Let K C R™ be a compact set.
Let (fn)nen be a sequence of functions in C(K,R) such that

(i) (fu)nen is uniformly bounded, that is 3 M > 0 such that

|fu(@)| <M Vxe K, Vfy;

(1) (fo)nen is equicontinuos, i.e Ye > 0, 3 § > 0 such that Vz,y € K,
d(z, k) < ¢
|fn(w) - fn(y)‘ <€ vfn

Then there exists a subsequence (fn, )ren that converges uniformly.
We provide here two general results.

Lemma A.4. Let I'(0y,e2) = {7: a(7,e2) < 0o} be the open cone of axis
es and aperture 0y in R? where e; = (0,1), 0 < 6y and (T, es) is the angle

between the vectors T and es, and let u be a solution to

Au=f in I'(6y,e2)
u=>0 on OI'(6y, e2).

Then u s not necessary Lipschitz.

Proof. First of all, let us do a change of variables and we write

x = pcos(f)

y = psin(0),
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with p, 6 the polar coordinates in R2.
In particular, after this change of variables, if u is a solution to (A.1), we

obtain

{Au(pcos(@),psin(@)) = f(pcos(d), psin(0)) in I'(Gy,es) (A.2)

u(pcos(f), psin(f)) =0 on OI'(0y, e2).

Let us set then v(p,0) = u(pcos(f), psin(f)) and let us see what it means
that u(pcos(0), psin(f)) satifies (A.2).
Let us start with calculating

20— 2 (ulpeost6). psin(8)

= G ocos(0).psin(0)) 5 (pcos(0)) + 5 (peost0). psin() 5 (psin©))

— %(/) cos(6), psin(9)) cos(6) + g—Z(p cos(0), psin(0)) sin(6),

which gives

g—;(p, 0) = %(p cos(), psin(6)) COS(@)Jrg—Z(p cos(), psin(6)) sin(6). (A.3)
Analogously,
% = %(u(p cos(f), psin()))

= T (pcos(h). psin(6)) o (pcos(h)) + Z_Z(p o), p50(0)) g p5n(0)

- %(P cos(0), PSin(9))(—p sin(6)) + %<p cos(6), psin(@))pcos(@),

dy
namely
%(p’ 0) = —% (pcos(8), psin()) psin(6)
+ g—Z(p cos(6), psin(d)) p cos(6). (A.4)

At this point, we also calculate the second derivative of v(p, @) respect to p

and the second derivative of v(p, 8) respect to 6, in order to find an expression



188 A. Some definitions and auxiliary theorems

for Au(pcos(d), psin(0)).
Specifically, from (A.3), we have

2u(p,0) 9 <8U(p, 9))

o2 dp\ 9p

- a% (%(p cos(6), psin()) cos(6) + g—Z(pcos(e), psin(6)) sin(e))

_ (% (pcos(B), psin(6)) cos(6) + a‘fg‘m (pcos(B), psin(6)) sm<9)) cos(6)

+ g—z (pcos(0), psin(9)) 8% (cos(6))

i <8i2gy (p cos(8). psin(6)) cos(®) + g%‘(p cos(0), psin(6)) Sin<9>> sin(0)

+ g_: (pcos(f), psin()) g (sin(9))

- % (pcos(8), psin(8)) cos®(0) + 55; (pcos(8), psin(8)) sin(8) cos(9)

i 3(125y (pcos(6), psin(0)) cos(0) sin(6) + gi;i (pcos(6). psin(9)) sin®(9).
gipg(p, 0) = %(p cos(), psin(0)) cos?()

o (peos(8) psin(8) sin(e) cos(8) + - pcos(8), psin(8)) cos(8)sin(®)

+ g—yl; (pcos(6), psin(6)) sin*(6). (A.5)
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Analogously, from (A.4), we achieve

Pv(p,0) 9 (Ov(p,0)
202 0f ol
ou

— % (—%(P cos(8), psin(f)) psin(6) + 8_y<p cos(f), psin(@))pcos(@))

( (pcos ,psin())(—psin(9)) — a@@u (pcos(9), psin())(p cos(@)))
X psin(f) — %(p cos(6), psin()) (‘f@ (psin(6))

+ ( Ou (pcos(f), psin(0)) (—psin(d)) + @(p COS(G),pSiﬂ(Q))pCOS(G))

0xdy Oy?
< peos(8) + 5 (peon(0) psin(0) g (pcos)
= S (peos(0) psin(0) 7 i0(9) — 2 (peos(8). psin@) 7 cos(8) in(0)
— 2 peos(t), psin(6)) p cos(0)
= T pcos(8). psin(0)) 7 sin(0) con(8) + 5% (pcos(8). psin(8)) 7 o0
- S peos(8), psin(9))psin )

in other words,

0%v 0%*u

521 0) = 55 (pcos(6), psin(0)) p* sin’ (9)

_ (;ng (P cos(f), p Sin(Q)),o2 cos(f) sin(f) — % (p cos(), psin(@))p cos(6)

_ aigy (pcos(9), psin(0)) p sin(6) cos() + g—yz (pcos(f), psin(8)) p* cos*(6)
_ @(p cos(6), psin(0)) psin(6). (A.6)

dy
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In particular, from (A.5) and (A.6), we get

pQgi;(p, 0) + %(/}, 0) = % (pcos(9), psin(8)) p? cos?(0)

* aizgx (pcos(8), psin(6)) p* sin(6) cos(6) + ggy (pcos(9), psin(6)) p* cos(4)
x sin(0) + %(p cos(f), psin(0)) p* sin® () + %(p cos(0), psin(6)) p* sin?(6)
- afg; (pcos(B), psin(8)) p* cos(6) sin(¢) — % (pcos(6), psin(6)) p cos(0)

- f;gy (pcos(6), psin(0))p* sin(0) cos(6) + g%; (pcos(8), psin(9)) p? cos?(6)
_ Z—Z (pcos(8), psin(f)) psin(f) = % (pcos(8), psin(8)) p?(cos®(0) + sin?(6))
+ %(ﬂ cos(), psin(0)) p*(sin®(0) + cos®(0)) — %(p cos(0), psin(6)) p cos(0)
B Z—Z(p cos(6), psin(6))psin(0) = (%@ cos(0), psin(0)) + gi;;@ cos(6),

psin(@))) —p (% (pcos(8), psin(6)) cos(6) + g—Z(p cos(6), psin(6)) sin(&)) :

and thus, in view of (A.3) and inasmuch

O cos(8), psin(8)) + L (pcos(6). psin(6)) = Au(peos(6), psin(6)
97 pcos(0), psin o5 pcos(f), psin = Au(pcos(d), psin ,
we obtain

0% 0%v ov

,028—[)2(% 0) + G—Q(pa 0) = p*Au(pcos(9), psin(d)) — pa_,o(p’ 0),

which implies
0% 2y v
2 : 2
priu(peos(0). psin(0)) = 755 (0.0) + 555 (0.0) + 5 (. 0),
and dividing by p?, which is strictly positive in T'(6p, e2), given that T'(6y, es)

is an open,
0% 1 0% 10v

Au(pcos(), psin(f)) = a—pQ(/), 0) + X (p.0) + ;a—p(p, 0). (A7)
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Consequently, if u solves Au = f in I'(fy, e3), in polar coordinates we have
from (A.7)

0%v 1 0%v 10w

6_p2(p’ 9)+?@(P7 9)476—,0(07 0) = f(pcos(9),sin(f)) inI'(6o,ez). (A.8)

Let us consider now the particular case when f = 0 in ['(fy, ey) and we
achieve in view of (A.8)

0% 1 0% 10v ,
8—[)2(% 0) + E%(P, 0) + ;a_p(p7 ) =0 in (6, e2). (A.9)

This equation lead us to look for the function v(p,#) in the form v(p,0) =
©(p)(f) and we obtain from (A.9)

and dividing by ¢(p)¥(6), which we suppose different from 0 for every (p, 6),
we get

¢"(p) , 19"0O) 1, -
o) R of (p)p(p) =0,

which entails

1Ly"(0) (90”(9) 41 90’(/))) __pe"(p) +¢'(p)

P2 P(9) v(p) " polp) po(p)
and multiplying by p?
o) _ E pe"(p) +¢'(p) _ iy pe"(p)+¥'(p) _ g ¢"(p) ) ¢'(p)
U(0) pe(p) w(p) v(p) w(p)’
namely

U9 _ _ ¢"(p) pw’(p)
¥(0) ©(p) ©(p)

(A.10)

Notice, at this point, that in (A.10) we have a function %, which depends
only on 6, equal to a function —p? %&S) - p% which depends only on p,

for every p and for every 6, and this fact implies that the only possibility is
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that both the functions are constant and seeing as how they are equal, the

constant is the same, in other words there exists a constant k such that

V'(9)
o =" (A.11)
. "(p) '(p)
") ) _
o) et (A12)

We treatise the two equations separately.

As regards the first equation, we can rewrite (A.11) as

W(6) = k(). (A.13)

Let us recall now that v(p, 0) = u(pcos(@), psin(f)), where u(p cos(6), psin(d))
satisfies (A.2). As a consequence, v(p, ) fulfills v(p,8) = 0 on OI'(6y, e2).
Specifically, the values of # which correspond to 9I'(6y, es) are g — 0y and

T + 6, therefore we want to solve the following problem:

2
W"(0) = ky(6) in T(6, e2)
w(% - 90) =0 on 81—‘(90, 62) <A14)
w(g Qo) =0 on 8F(90, 62),

where ¢"(0) = ki (0) is fulfilled in I'(y,ez), recalling that this equation
derives from (A.9).
We distinguish three cases depending on k.

(i) If £ > 0, the general integral of (A.13) is
w(ﬁ) = 016\/%9 + 0267\/%0,

and if we impose the conditions in (A.14), we obtain the system

W

— o) = CreVR(E0) 4 CpeVE(E ) =
Y(g+0

0
+00) = CyeVR(5+0) 4 CpeVE(5+0) — .

SIE T
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Consequently, if we call A the matrix

e eﬂ(%_eo) 6—\/@(%—«90)
T e\/E(%JrOo) 7

)
A <02> —0, (A.15)

which admits a solution different from the trivial one only if det A = 0,

we have to solve

in other words if

eVR(5=00) =VE(5+00) _ o=VE(5-00) VE(5+00) _ ) (A.16)

In particular, we can rewrite the left term in (A.16) as

VE(500) ,~VE(5+600) _ ,~VE(5—00) VE(5+00) _ VEF—Vkbo ,~VEF—Vkbo

e
. e*\/Eng\/EHoe\/E%Jr\/E@O

— €

_ 672\@90 _ 62\/E00’

thus from (A.16), we achieve

6_2\/E90 _ 62\/E90 — 0’

which implies
e~ 2Vkto _ ezx/Eeo’

that is
1 - 62\/E90
62\/2‘60 o ’
and
etVhbo — 1, (A.17)

At this point, the only possibility that (A.17) will have a solution is that
k = 0, but we are in case of k > 0, hence (A.17) give a contradiction.
As a consequence, the only solution of (A.15) is the trivial one, namely
Cy = 0 and Cy = 0, which gives ¥(0) = 0 V0, that contradicts the
hypothesis we have done, i.e. ¥(0) # 0V 6.
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(i)

(iii)

Suppose now that k£ = 0. In this case, the general integral of (A.13) is
P(0) = C1 + Cy,

and imposing the conditions in (A.14), we get

m m
¢(§—6’0)=C1+02(§—90>:O1+C2§_C290:O (A.18)
2/1(%—1—90):01-}-02(%4—90):O1+02g+0200:07 |

where, subtracting the two equations, we obtain

20290 = 0,

and thus, because 0y # 0, Cy, = 0, which gives, from the equations in
(A.18), also C} = 0 and hence we achieve that (0) = 0 V6, contradict-
ing again the hypothesis 1(6) # 0 V6.

Suppose finally that £ < 0 and the general integral in this case is

W(0) = Cy cos(\/[k|0) + Cysin(v/]k]6). (A.19)

Imposing the conditions in (A.14), we get this time

In particular, using the addition and subtraction formulas for cosine

and sine, we can rewrite the first equation in (A.20) as
s (VI - 0)) o (v (5 -0)
— Ccos (VI ~ VIkIo) + Casin (VIRIS = V/1ki60)
e (cos (\/Wg) cos(v/]k[fo) + sin (\/Wg) sm(\/@a@))
+Cy <sin (mg) cos(v/[k]6) — cos (mg) sm(\/mgo)>
— () cos (\/mg) cos(v/]k]fy) + Ci sin (mg) sin(/[k]6o)
+ Cysin (\/Wg) cos(v/[k]8) — Cs cos (\/mg) sin(\/[k]60),
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and analogously, we can rewrite the second equation in (A.20) as

C} cos (\/ﬁ( +00>) + Cysin (M( +00>>

= C} cos (Wﬁ + \/Weg) + Cysin (\/W§ + \/Weo)
e (cos (\/Wg) cos(\/[k]6) — sin (\/mg) sin(\/w;o))
+Cy <sin (\/Wg) cos(/[k]8) + cos (\/mg) sin(m90)>
= O} cos (\/?f) cos(+/[k]8y) — C sin <\/y/<_|g> sin(/[k]60)
+ Cysin (\/y? ) cos(v/[k]6o) + Cy cos (\/Wg) sin(y/[k]60)-

Consequently, from (A.20), we obtain

Cycos (/THT5 ) cos(/TRT60) + Csin (/[FT3 ) siny/TFTéo)
+Cysin (/M]3 ) cos(y/[kl6o) — Ca cos (/TKTF ) sin(y/Tkléo) =
C cos (/TH]5 ) cos(y/[kl6o) — Cusin (/[F[5 ) sin(+/[kl6o)

| +Casin (V/TkT3 ) cos(y/[Rlfo) + Cz cos (/[RT ) sin(y/[Fl6o) = 0

(A.21)

and if we call A the matrix

cos < g) cos( \/Wﬁo sin ( %) co.
+ sin (\/_g) sin( \/WHO — COoS (\/_g) sin( \/WHO

cos (\/_g> \/WQO sin (\/_g) \/Wﬁo
— sin <\/_5> sin(+/|%]60) + cos <\/—§) sin(+/[k[60),

Cl .
A <C2> =0, (A.22)

which admits a solution different from the trivial one only if det A = 0,

we achieve from (A.21)
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in other words if

(cos (Mg) cos(1/]k|6o) + sin (Mg) sin(\/m%)) (sin <\/]k_|g)
x cos(~/|k[6y) + cos (M%) sin(\/m%)) - (sin <\/mg>

x cos(v/|k[6y) — cos (Mg) sin(\/meo)) <cos (\/mg) cos(v/]k|0o)
— sin (Mg) sin(\/meo)) = 0.

(A.23)

Developing the left term in (A.23), we have

cos (Mg) sin (Mg) cos?(1/|k]6) + cos? (Mg) cos(v/|k[60)

x sin(y/|k|0) + sin’ (Mg) sin(v/|k|6o) cos(v/]k|0o) + sin <\/mg)
X CoS (Mg) sin?(+/|k|0o) — sin (Mg) cos (\/]/f_%) cos?(v/|k|0o)
+ cos? (\/mg) sin(v/|k|6o) cos(v/|k|0o) + sin? (Mg) cos(v/|k[60)

x sin(y/|k|60) — cos <\/]k_|g> sin (\/Wg) sin?(1/[k[6o) = 0,
which gives

2 cos® <\/Wg> cos(/|k]60) sin(+/]k|00) + 2 sin? <\/mg> sin(~/[k[6p)
x cos(v/|k|6) = 0,
that is

2 (sin2 ( |k‘|g) + cos® (Mg)) sin(+/|k[60) cos(+/]k|6o)
= 2sin(~/]k[60) cos(v/]k[6o) = sin(2Vkby) = 0,

and thus to sum it up, we have det A = 0 if sin(2/|k|6y) = 0.
Now, sin(2+/|k|0o) = 0 if and only if

2v/|k|6p = mm  with m € NUO, (A.24)
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where we take m € N U0 and not in Z, recalling that for hypothesis
0 < 6y and hence 24/|k|fy is positive or equal to 0.
Also, from (A.24), we have

\M:gg with m € NUO, (A.25)
0
which entails,
2,2
k=22 with m e NUO, (A.26)
462

raising to 2 both the terms of the inequality in (A.24), which is possible
recalling that they are both positive or equal to 0 for what we have said
above.

In addition, we recall that in this case k < 0, therefore |k| = —k, and

as a consequence we get in view of (A.26)

2.2
—k= I with m € NUO,
which gives
22
k=-"""__ withmeNUo,
465

where in particular, given that k& # 0, we have to suppose m # 0.
Consequently, (A.22) admits a solution different from the trivial one if

and only if
m2m?

k= —
162

with m € N.

At this point, we want to look for C; and C5 for these k’s.
Specifically, seeing as how det A = 0, it suffices to consider only an

equation in (A.21) and we choose the first one, where we substitute
V/|k| found in (A.25) and we achieve

mm T mm . (mmm\ . [mm
(' cos (2—00§> cos (2—0000) + (' sin (2—005) sin <2—0000>

. (mmT mm mrm\ . [mm
+ (5 sin (2—905) cos (2—9090) — (5 cos (2—905) sin (2—9000> =0,
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namely
C cos (%g) oS (%) + C} sin (7;1_07;%) sin (%)
t Casin (52 cos (%57) = Cucos (52 Y sin (*57) =0
(A.27)

In particular, we know that sin (%) = 0 and cos (%) = +1if m is

even, while cos (M) = 0 and sin (m ) = 41 if m is odd, therefore we

2 2
distinguish two cases in (A.27).

(a) If m is even, inasmuch as sin (%) = 0, from (A.27) we obtain

C' cos <T2n_07(:g> COS (g) + (5 sin (;n_gzg) cos (%) =0,

and inasmuch cos (%) = 41, we have
mm T mm T
C —— Cosin| ——=] =0
1008(2902)+ QSID(2902) ,

mm T

02 = —cotan (2—90§> Ol,

which gives

and substituting into (A.19), we get

mm mrw\ . [(mn
Y(0) = Cy (cos (2—009> — cotan (2—905) sin (2—906)) ,

with 6 € (%—00,%—}-00)

(b) If m is odd, instead, cos ("2F) = 0, thus from (A.27) we achieve

(' sin (ZL—;;%) sin (%) — (U5 cos (%g) sin <%> =0,

which implies, given that sin (%) = =1,

. mm mm T
Cl S1n (2—005) — 02 COS (2—005) - 0,
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in other words

mm T
02 = tan <2—90§> 017

and substituting into (A.19), we obtain

mm mm T . mm
¢<9) = Cl <COS (2—009> + tan (2—005) S <2—900)) s
with 6 € (5 — 60,5 + 6o) -

To sum it up, we have found that the solution of (A.14) is

p C <cos (%9) — cotan (;%’;g) sin (;”T’;@)) , m € N,m even,

¥(0) =
C, (cos (3;7”9) + tan (%Wg) sin (;”TWQ)) m € N,m odd,
(A.28)
with 6 € [Z — 60,2 + 6] -
Considering now (A.12), and we can rewrite this equation as
—p*"(p) — p¢'(p) = kp(p),
ie.
P*¢" (p) + p'(p) + E(p) = 0, (A.29)
which is an Euler type differential equation.
Set hence p = ¢’ and we define p(p) = p(e') := w(t), which satisfies
/ 1/t d t 1oty t
w(t) = ) () = ¢!,
that is
w'(t) = ¢'(e)e, (A.30)
and
d
w"(t) — E(gol(et)et) — 90//<€t)€t€t 4 (p/<€t)et — (p”(et)€2t 4 ap'(et)et,
namely
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In addition, since p = €', from (A.31), we also get

w'(t) = ¢"(p)p* + ¢ (p)p,

which implies from (A.29)

i.e.

w'(t) = —kw(t). (A.32)

Now, for what we have achieved before establishing ¢ (6), we can accept only

k < 0 and in particular we have found that

m2m?

= ——
162

as a consequence from (A.32), we have

m2nr?

w'(t) = ()

and the general integral of this equation is
w(t) = Cie sin ! + Che %‘t.
Moreover, using the fact that p = e, and w(t) = p(p), we can rewrite the

general integral as

pl(p) = Crpis + Cop™ 5. (A.33)

At this point, let us recall that v(p,0) = 0 on OI'(fy, e2) and this condition
implies, as regards the radius p in polar coordinates, that v(0,8) = 0, which
give also ¢(0) = 0 for how we have written v(p, 6).

Consequently, if we impose the condition ¢(0) = 0 in (A.33), seeing as how
< 0, we have to set Cy = 0, therefore we get from (A.33)

mn
26,

p(p) =Cip il (A.34)
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Now, putting together (A.28) and (A.34), where we call Cy, the constant C}
n (A.28) and C, the constant C) in (A.34), we obtain, because v(p,0) =

©(p)¥(0),

( mm

Cy,p*0 (Y, (cos (%9) — cotan (%%) sin (%9))
with m € N, m even
Cy,p*0Cy, (COS (%9) + tan (%%) sin (%9))

\With m € N, m odd,

with 6 € [5 — 60,5 + 6p] and where we have written 55| = 2 recalling
tha %, > 0 for what we have said above.
At this point, notice that, always since 2~ > 0, we have
mm mm
—<1<—>200>m7r<—>00>—
26, 2
Let us consider then the particular case with m = 1, and the condition
0o > “5F becomes 6y > 7. Let us take thus 0y = 47, and
mr w ow 1 2
200 200 %TF % 37
i.e.
mm 2
20, 3

This fact, together with m = 1, give us from (A.35)

o=, (n(3) ()3

namely calling C' = C,C} » and inasmuch tan( g) = (%) \/_ that is

tan (3) = V3,

v(p,8) = Cp3 (cos @9) +/3sin <§9>) . (A.36)

Suppose now that v(p, 8) found is Lipschitz, therefore v(p, @) satisfies

[v(p1,01) —v(p2,02)] < L|(p1,01) — (p2,02)|,  V(p1,01), (p2.02) € ['(0o, e2)
U 8F(90,62).
(A.37)
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In particular, if we take #; = 0y =0, po = 0 and p; = ¢, with ¢ > 0, we have
(t,0) and (0,0) € T'(fo, e2) U AT (b, e2), recalling that §y = 37 and hence, we
achieve from (A.37)

in other words, because t > 0, and thus |¢t| = ¢,
lv(t,0) —v(0,0)] < Lt. (A.38)

Let us analyze |v(t,0) — v(0,0)| and we remark that for (A.36), v(0,0) = 0
and

o(t,0) = Ct3,

as a consequence, always since t > 0,

[0(t.0) = v(0,0)| = || = |C| %,
which entails from (A.38)
IC|t5 < Lt, Vit >0,
and
2 L
t <t Vt>0, (A.39)

Cl
where we can divide by |C|, inasmuch as v(p, ) # 0 in I'(y, e2) and hence
C #0.
At this point, dividing by ¢ > 0 in (A.39), we get

1.e.

vt > 0, (A.40)

and letting t go to 0, 5 — oo, therefore, seeing as how |—é| is a positive

constant, we can find £ > 0 such that 3 > \_él’ which gives from (A.40)

L <t s< L
C] — el

Wl



203

that is
L L

c1 = 1cr
which is a contradiction, and the contradiction derives from the fact that we
have supposed v(p, #) Lipschitz.
As a result, v(p,0) is not Lipschitz.
Now, v(p, ) = u(pcos(f), psin(f)), and with 0; = b, = 0, p, = 0, p; = t, with
t >0, (p1cos(by), p1sin(6y)) = (¢,0) and (p2 cos(6z), p2sin(6z)) = (0,0), thus
repeating the reasoning done to show that v(p, 0) is not Lipschitz, we obtain
that u(pcos(f), psin(f)) is not Lipschitz and returning to the coordinates
(z,y) u(z,y) is not Lipschitz.

To sum it up, we have proved that if u is a solution to

Au=f in I'(6p,e2)
u=0  on Jdl'(0y,ez),

then wu is not necessary Lipschitz, as desired. O

Lemma A.5. Let A:Q — S"™, where S™ is the real symmetric n X n matrix
space and §) is an open set in R". Assume that a;; € C%P(Q), Vi, j=1,...,n
and also that A(x) is positive definite Vx € €, in other words A(z)& - & > 0
Ve € R™\ {0}. There exists a universal constant € > 0 such that, if Vi,
J=1...nlay = 65l oo (o) = ilelg la;j(z) — 0;5] < e, with0 < e < ¢, then A
is uniformly elliptic, that is there exist 0 < A < A such that

MNEP < A(x)E-€ <A, VaeQVeEeR™

Proof. Let us fix x € 2 and we write

A(@)¢ - €= Z(A(x)f)zfz = Z (Z aij(-fl?)fj) &= Z aij(2)6:&;,
namely
A@)e €= ay(2)&E;. (A.41)
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Let us start thus from Z a;;(2)€€; and we have

i,7=1
Z a;j(v)&i&; = Z(aw( ) = 05 + 6i;) &
2,7=1 1,7=1
=D (ay(@) =068 + Y 0,68
i,5=1 i,j=1
= > (ay(e) = )68 + &, (A.42)
i,j=1 i=1
inasmuch ¢;; = 1 if ¢ = j and ¢;; = 0 otherwise. Therefore, given that

S €2 = [¢)*, we achieve from (A.42)
i=1

Zam r)6& = Z(aij(l‘) —045)&&5 + |§’2~ (A.43)

i,

Now, we have by hypothesis ||a;; — 5ij||Loo(Q) < g, for every i,j = 1,...,n,
hence for the point z €  fixed, |a;;(x) — ;| < |la;; — 5ij||Loo(Q) < g, in
other words |a;j(x) — 0;;| < ¢, for every 4,5 = 1,...,n, which gives —¢ <
a;;j(z) —0;; <eforeveryi,j=1,...,n
Consequently, if §&; > 0, (ai;(z) — 0i5)&&; < €&&; and (ai(w) — 6i5) i

—e&;&;, whereas if §,&; < 0, (a;;(z) — 6;5)&E > €€&5 and (ag;(x) — 0i5) €€,
—e&i&;.

Thus, using these facts, we get

IN IV

n

D (a(0) = 0)&& < Y GG+ D —eGg =2 Y &G -2 Y &

i,7=1 i ¥ ¥ ¥
&i&; >0 &i&;<0 §z£J>0 §ig;<0

that is

n

Z(aij( )_ ij Slgj S € Z 5@6] € Z 515]7 <A44)
e 66,20 €€<0

and

n

D (ale) =0y)6& > D —e€ii+ D ey = —= Z Géi+e Z &é;,

t,j=1 (2] 1,]
Ei&jZO gifj<0 §Z£J>0 €l§j<0
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1.e.
n

2 (@) = 0y) &8s = —< Z &t +e Z G- (A)
e 6650 6670

As a consequence, from (A.43) and (A.44), we obtain

Zam D) <e Y &&—e Y &&+IEF, (A.46)

i,j=1 i i
&i&; >0 §i€;<0

while, from (A.43) and (A.45), we achieve

n

D a(@)6g = —e Y &gte Y &G Il (A.47)

i,j=1 i,] 0]
€Z§j>0 fz§3 <0

Now, for Cauchy inequality applied to &;,&;, with i, j € {1,...,n}, we have

§i&j < 2(52 +&), (A.48)
and multiplying by —1 this inequality;,
1

=& > —5(5}2 + 532) (A.49)

Furthermore, seeing as how Cauchy inequality holds for every couple of real

numbers, we can apply it also to —¢&; and ;, and we get, since (—&;)* =

7 7

66 < (& +€), (A.50)
which entails also, multiplying by —1 this inequality,
1
§ij > —5(@2 + 532) (A.51)

Thus, from (A.46), in view of (A.48) and (A.50), we obtain

n

Z az]( 515] <e Z gzgj € Z ngj + |€|

b fsz>0 £i65<0
<sZ (& +¢) +sZ —&& + 1€
§£f>o £:6)<0
<5Z (€ +¢€2) Z§(£3+£?)+I£|2,

1,7 1,7
£:&;>0 £:&;<0
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namely

n

1
Sayeg e Y SE@ ) +e X L@+ 1l (A5)
e &-szo £,67<0

1
In addition, given that ¢ > 0, —(5-2 + 52) > 0, we can increase the two sums

in the right term in (A.52) with Z (€ + €7), recalling that the couples
%,,j=1
of indexes i, j are couples of indexes in {i,...,n}, and hence the number of

these couples is smaller than the number of all the couples of indexes ¢, 7 in
{1,...,n}. Therefore, from (A.52) we achieve

Z% )& < e £+£ +sZ (& +&) + e’

,5=1 INES 1 i,j= 1
2l S (@)1= Y (@) i
i,j=1 4,5=1
(Z +Z§>+|§\2=6255+6255+|5|2
% i,5=1 i,5=1 i,5=1

ejn1<uf ) +s§j (Zf ) +[¢f?

S aee <3 ($o¢) o3 (Se) ekt am

1,7=1

that is

Now, we have Z €2 = [¢|* and Z &= €]*, as a consequence, inasmuch |¢|?

is a constant w1th respect to ¢ and to j, we get from (A.53)

S e @@sffz(&)ﬂz(z&s)w
1,j=1 i i=1 \j=1
=€Z|£\2+€ZI§|2+|§|2
j=1 i=1

=en ]6\2 +en \5]2 + \5!2
= (ne +ne + 1) [¢]* = (2ne + 1) [¢]* = A ¢



207

setting A = 2ne + 1, which implies

n

> ag(x)6ig < AJE (A.54)

i,j=1

Notice that A chosen as above satisfies A > 0, inasmuch as £ > 0.
In parallel, in view of (A.49) and (A.51), (A.47) gives

> ay(@)&g > —¢ Z G +e Z &+ 1€

na=t g2§]>o §Z§]<0
> Y thre Y (@ +E) +lef
6&0 66k
2<% - SE@+) re 3 (@) +Iel,
€620 6o

1.e.

(&+&)+ 1€ (A55)

l\DI»—t

Z% D& > € 5+§ +e ) -

7‘7
flfg >0 fi§j<0
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and repeating the considerations done to find (A.54), we obtain from (A.55)

n

Yt 2 Y 3@ +E) +e Y (@ +E) +ef

i,7=1 ¥ 2,7
£i&; 20 £i€;<0
"1 "1
ey 5@+ +e Y 5@ +8) +lef
i,j=1 i,j=1
1 n n
=2 S (@) +IEP == > (E+E) + kP
i,5=1 i,5=1
:—e(zg3+z¢> T T
i,j=1 ij=1 i,j=1 i,j=1

=) (Zf?) —e) <Z£§> + 1)
J=1 \i=1 i=1 \j=1

=—c) &P —e> P+ ¢
j=1 i=1

= —en |¢F —enlé)? + ¢ = (1 — 2ne) |¢° = A ¢,

setting A = 1 — 2ne, which entails

n

Z ai;(2)&& > M€ (A.56)

ij=1

Notice that A, established as above, satisfies A > 0 if and only if 1 —2ne > 0,

that is ¢ < % and hence we can choice the universal constant & as, for
1

instance, &€ = ﬁ. So, if we take 0 <& < &, A > 0, recalling that ¢ < -
namely ¢ < % In addition, we have also A > 0 and A = 1+2ne > 1 —2ne =
A, therefore from (A.54), (A.56) and (A.41), we obtain

<1
n

MNP <A@)E-E<AKE?, VreQ, VEeR”,

with 0 < A < A, i.e. A is uniformly elliptic, as desired. ]



Appendix B

Viscosity solutions: a basic

introduction

We recall the basic definition of viscosity solution for elliptic partial dif-
ferential equations. An exhaustive source for this subject it can be found
in the following classical papers: [9] and [10]. We refer to them for further
details.

Definition B.1. Let €2 be an open set in R". We define:
(i) usc(Q) :={¢:Q = R | ¢ is upper semicontinuous in 2 and ¢ is upper

bounded}, where ¢ is upper semicontinuous in 2 if

lim ( sup u(y)) <wu(z), Ve
"0 NyeBe(@) \ {2}

(i) 1s¢(Q) == {¢: 2 = R | ¢ is lower semicontinuous in  and ¢ is lower

bounded}, where ¢ is lower semicontinuous in €2 if

lim inf u > u(x), Vrell
r—0 (yEBT(:v)\{z} (y)) o ( )

We now introduce the operators, for which we will provide the definition

of viscosity solution.

209
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Definition B.2. Let F : S” x R" x R x {2 — R be a continuous function,
where S” is the real symmetric n X n matrix space and €2 is an open set in

R™ and suppose that F satisfies:

(i) decreasing monotonicity in s, that is Vr, s € R, VM € §", Vp € R",
Ve €, if s <7, then F(M,p,r,z) < F(M,p,s,);

(ii) elliptic degeneracy (monotonicity in M), i.e. VM, N € S", Vp € R,
Vr e R, Ve € Q,if M < N, then F(M,p,r,x) < F(N,p,r,x). Recall
that M < N if N — M > 0, in other words (N — M)&-€ > 0 VE € R™.

Definition B.3 (Viscosity subsolution). Let F' be as in Definition B.2
and u € usc(€). We say that u is a viscosity subsolution of F(D?*u(z), Vu(z),
u(z),z) =01in Q, if Vo € Q, Vi € C?(Q), if u — ¢ realizes a local maximum
at xo, then

F(D*p(x0), Vip(o), u(xo), x0) > 0.

Recall that u—¢ realizes a local maximum at x if there exists a neighborhood

of zy where u — ¢ has a maximum at z.

Definition B.4 (Viscosity supersolution). Let F' be as in Definition B.2
and let u € 1sc(2). We say that u is a wviscosity supersolution of F(D?*u(z),
Vu(z),u(z),z) = 0in Q, if Vo € Q, Vo € C?*(Q), if u — ¢ realizes a local

minimum at xg, then
F(D290('r0)7 VSO(Z'O)a U(.'Eo), ,’L'()) S 0.

Recall that u—¢ realizes a local minimum at z if there exists a neighborhood

of zy where u — ¢ has a minimum at z;.

Definition B.5 (Viscosity solution). Let u € C'(Q2) and let F' be as in Defi-
nition B.2. We say that u is a viscosity solution of F(D?*u(z), Vu(z),u(x),z) =
0 in €, if w is both a viscosity subsolution and a viscosity supersolution of
F(D*u(z), Vu(x),u(z),z) = 0 in Q.
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We provide now other definitions of viscosity subsolution and supersolu-
tion for this kind of equations and we prove the equivalence of these defini-

tions and those given before.

Definition B.6 (Definition of superjet of second order of u in Q).
Let (p, X) € R" x S™ such that

uly) Sul@)+p-(y—2)+ 5X(y ) (s —2) +olly — o)

In this case, we say that (p, X) belongs to the superjet of second order of u

in 2, which is denoted as Jffru(x) at point x.

Definition B.7 (Definition of subjet of second order of v in Q).

We define the subjet of second order of u in €2 as
Fute) = {0.X) € B X8 | uly) 2 u(e)+p- (- )
1
+ 5 X—2)- =) +olly—af) |

Definition B.8 (Viscosity subsolution using superjet Jfﬁu(z)) Let
u € usc(Q) and F as in Definition B.2. If Va € Q, ¥(p, X) € J5Tu(x), it is
satisfied

F(X,p,u(x),x) >0,

then we call u viscosity subsolution of F(D*u(x), Vu(x),u(z),z) =0 in Q.

Definition B.9 (Viscosity supersolution using subjet ng_u(x)) Let
u € 15¢(Q) and F as in Definition B.2. If Vo € Q, V(p, X) € J& u(z), it is
satisfied

F(X,p,u(x),x) <0,

then we define u viscosity supersolution of F(D*u(z), Vu(z),u(x),z) =0 in
Q.

Theorem B.10.
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(i) Let u € usc() and F as in Definition B.2. Then, u is a viscosity
subsolution of F(D*u(x), Vu(z),u(z),z) = 0 in Q if and only if u is
a wviscosity subsolution of F(D*u(z), Vu(z),u(x),z) = 0 in Q in the

sense of the superjet Jo u(x)

(11) Letu € lsc(2). Then, u is a viscosity supersolution of F(D*u(x), Vu(z),
w(z),x) = 01 Qif and only if u is a viscosity supersolution of F(D*u(x),
Vu(z),u(x),z) = 0 in Q in the sense of the subjet J5 u(z).

Proof. Suppose that u is a viscosity subsolution of F'(D?u(z), Vu(z),u(x),z) =
0 in €2 in the sense of the superjet J?f“u(x). Assume also that u— ¢ realizes a
local maximum at zy € Q with ¢ € C?(Q). Then, there exists a neighborhood
O of xg such that

u(z) — () < ulzg) — w(rg) in O,
which implies
u(x) < u(zg) — @(xo) + @(z) in O. (B.1)

In addition, we can write ¢ with the Taylor expansion around zy in O and

we obtain from (B.1)

(z0) — w(x0) + @(70) + Vip(z0) - (¥ — 20)

D¢(x0) (2 — x9) - ( — 20) + 0|z — x0|*)
=u(zg) + V(o) - (x — x¢) + %ngo(xo)(x —x9) - (z — x0)
+o|x — x0[>) inO,

namely

u(z) < u(x0)+Vg0(x0)-(x—xo)+%D2g0(:co)(x—xo)-(x—xo)—l—o(\x — w0\2) in O.

Consequently, for the definition of J5 (o) and inasmuch as D?p(xg) is a

symmetric matrix, recalling that u € C?(€2), we have that (V(zg), D*¢(z0))
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belongs to J& T u(z), and thus, since u is a viscosity subsolution of F(D?u(z),

Vu(z), u(z),z) = 0 in Q in the sense of J5 u(x) and zy € Q, we get

F(D¢(x0), Vep(zo), u(z0), T9) > 0

For the arbitrariness of zop € Q and ¢ € C?*(Q) such that u — ¢ realizes
a local maximum at xy, we achieve that u is a viscosity subsolution of
F(D*u(zx), Vu(x),u(z),z) = 0 in Q. Conversely, suppose that u is a vis-
cosity subsolution of F(D*u(z), Vu(z),u(z),z) = 0 in Q. Let us fix 2y € Q
and we take (p, X) € JZ u(zo). Then, we have

1
u(zr) < u(x0)+p-(x—x0)+§X($—xo)-(x—x0)+o(|x — zol%), with z € Q.
(B.2)
Now, for definition of o(|z — $0\2), Ve > 0, there exists 0, > 0 such that

lo(|z — 370\2)‘ <elr—xo)®, VoeQn Bs.(x),

as a consequence, from (B.2), recalling that o(|z — zo|*) < o]z — )
obtain that Ve > 0, there exists J. > 0 such that

, We

1
u(z) < u(x0)+p-(:13—:1:0)+§X(a:—x0)-(x—m0)+6 |z — x0|*, Vz € QNBs. ().

(B.3)
Therefore, if we call
p2(x) == u(wo) + - (z — 0) + 5 X (& — w0)w — w0) + <l — o,
we get from (B.3)
u(@) — @e(r) <0, x € QN Bs (). (B.4)

Moreover,
@e(wo) = u(xo),

which entails from (B.4)

u(x0> - %(370) =0 Z u(x) - 905($), ren B5s (l‘o),
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that is u — . realizes a local maximum at zy € (2.
Furthermore, notice that ¢. € C?(Q), hence, given that u is a viscosity

subsolution of F(D?*u(z), Vu(z),u(x),z) = 0 in 2, we achieve

F(D*¢.(20), Vipe (o), u(wo), 19) > 0. (B.5)

Let us calculate, at this point, V. (zg) and D%p.(z).

In particular, we have

gj‘j (z) = 82:1- (u(xo) +p- (v —w0) + %X(ﬂf —x0) - (v —x0) + €7 — xOF)

1 n
8951( u(o +sz T +§ijZ:1Xij($i_in)(xj_$oj)
FeX - )

1 1 «

J=1
J#i

which entails evaluating this equality in xg,

Dpe
aii (ﬁo) = Di;
in other words,
Ve (xo) = p. (B.6)

From the calculus to find (B.6), we have obtained

0% (1) =

Ga:i pz+Xu Ti— Xo;, +Z +25( —I'Ui), Vizl,...,n,

J#Z
(B.7)
seeing as how the matrix X is symmetric and thus X;;, + X;; = 2X;;, for

every j.
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Consequently, from (B.7), we get

0%p. )
(9%8@ (fCO) = a (pz + Xm X, — + Z Xhz moh + 28(.%'1 — $01)> (3}0)

h#z
= (Xudiyj + X;i(1 = 6i5) + 2¢635) (o)
= Xuéz] + X]z(]- — (51]) + 2852']‘,

which gives

0.
2,0z, (w0) = Xiibij + Xji(1 — 045) + 2€04, (B.8)
where
1 ifi=j
5y = /
0 ifij.
Therefore, from (B.8), we achieve
D*p () = X + 2¢1. (B.9)

As a consequence, substituting (B.6) and (B.9) in (B.5), we achieve
F(X + 2¢l,p,u(xg), z0) > 0,
and inasmuch F' is continuous for hypotheses, letting £ go to 0, we obtain
F(X,p,u(xg), ) >0,

hence for arbitrariness of zo € Q and (X,p) € Jo u(xo), we get that u is a
viscosity solution of F(D?u(z), Vu(z),u(x),z) = 0 in  in the sense of the
superjet Jo u(z).

Suppose now, instead, that u is a viscosity supersolution of F(D?u(z), Vu(z),
u(x), ) = 0 in Q in the sense of the subjet J& u(z). Let us fix thus zo € 0
and ¢ € C?(Q) such that u — ¢ realizes a local minimum at xo, then there
exists a neighborhood O of zy, where u(x) — ¢(x) > u(zg) — ¢(xp), in O,
and using the Taylor expansion of ¢ around zy, we obtain with the same

steps done in case of u viscosity subsolution, but with opposite inequalities,

u(z) > U(SB0)+VQO($0)'($—$0)+%D290($0)({B—xo)'($—$0)+0(|l’ - :)30|2) in O,
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therefore for the definition of JZ wu(z) and since D2p(z) is a symmet-
ric matrix, recalling that ¢ € C?*(Q), we have that (Ve(zo), D*¢(xq) be-
longs to Jé’_u(:co) and hence, given that u is a viscosity supersolution of
F(D?u(z), Vu(z),u(x),z) = 0 in Q in the sense of the subjet J& u(x) and

o € §2, we achieve

F(D2¢(x0), V(o), u(wo), 20) <0

For the arbitrariness of xyp € Q and ¢ € C*() such that u — ¢ real-
izes a local minimum at xy, we get that u is a viscosity supersolution of
F(D?*u(z), Vu(x),u(x),z) = 0 in Q.

Conversely, suppose that u is a viscosity supersolution of F(D?u(x), Vu(z),

u(x),z) = 01in Q. Let us fix zg € Q and (p, X) € J& u(xo), then we have

u(w) > ulae) +p+ (x—m0) + X (x —20) - (2~ 20) ol — o), D

and repeating the considerations done in case of u viscosity subsolution, we
obtain, seeing as how if |o(|z — z0])?| < €|z — xo|*, o(|z — 20|* > —¢ |2 — 20|

and thus —o(|z — zo|* < €|z — z0|?,
u(z) —pe(x) >0, VYaeQn Bs.(x), (B.10)
where

we(z) == u(xg) + p - (x — ) + %X(m —xo)(x — ) —€|T — x0|2 )

Furthermore,
(o) = u(w),

therefore from (B.10), we achieve
u(r) = pe(x) < uzo) — pe(ro) =0, Vo € QN By (29),

i.e. u — . realizes a local minimum at zy € (2.
In addition, we remark that ¢. € C%(€), hence, inasmuch w is a viscosity

supersolution of F(D?u(z), Vu(z),u(x),z) =0 in 2, we get

F(D?¢.(x0), Ve (o), (o), mo) < 0,
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and repeating the calculus done in case of u viscosity subsolution, with —e
in place of ¢,
F(X —2el,p,u(xg),z9) <0 (B.11)

Now, letting € go to 0 in (B.11), we obtain
F(‘Tap7u(l‘0)7‘r0) < 07

which implies, for the arbitrariness of 2o € Q and (p, X) € J& u(xo), that
u is a viscosity supersolution of F(D?u(x), Vu(z),u(z),r) = 0 in Q in the
sense of the subjet J& u(z). O

We show, at this point, the equivalence of classical solution of F' = 0
and viscosity solution of F' = 0 under certain conditions, where F' is as in
Definition B.3.

Lemma B.11. Let F be as in Definition B.2 and let v € C*(). u is a
classical solution of F(D?*u(z), Vu(z),u(x),z) = 0 in Q, if and only if u is
a viscosity solution of F(D*u(z), Vu(z),u(z),z) =0 in .

Proof . Suppose that u is a classical solution of F(D%u(z), Vu(x),u(z),z) =
0 in Q, then F(D?*u(x),Vu(z),u(z),r) = 0 Yz € Q. To prove that u is
also a viscosity solution of F(D?u(zx), Vu(z),u(z),z) = 0 in 2, we need to
show that wu is both a viscosity subsolution and a viscosity supersolution of
F(D?*u(x), Vu(x),u(x),z) = 0 in Q. For this purpose, let now zy €  and
¢ € C%*(Q), such that u — ¢ realizes a local maximum at zy. Then, given

that z( is a local maximum for u — ¢, we have:
(i) D*(u— @)(x0) < 0;
(i) V(u—¢)(xzo) = 0.

In addition, we know that, in view of the linearity of the partial derivative,
D*(u — ¢)(z0) = D*u(xg) — D*p(x), as a consequence from (i), we achieve
D?u(zy) < D*p(z0). Analogously, V(u — ¢)(x¢) = Vu(zg) — Vip(x), hence
from (ii), we get Vu(xg) = V(zo). To sum it up, we have D?u(zy) <
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D?p(x0) and Vu(zg) = V(xg). Now, seeing as how D?u(xq) and D?p(xg)
€ S™ for Schwarz’s theorem, recalling that v € C%(Q2) and ¢ € C?*(Q), we

can use the elliptic degeneracy of F, and
F(D*u(x0), Vp(xo), u(wo), w0) < F(D*p(x0), Vp(xo), ulwo), z0).  (B.12)

Furthermore, since xy € {2 and u is a classical solution of

F(D?u(z), Vu(z),u(z),z) = 0 in Q,
F(D*u(xo), Vu(wo), u(xo), z0) = 0, (B.13)
thus inasmuch Vi (z0) = Vau(zo), we have from (B.12) and (B.13)
0 = F(D*u(wo), Vu(wo), u(wo), 70) < F(D*p(wo), Vip(wo), u(z0), o),

namely
F(D*p(0), Vip(o), u(x0), 7o) = 0

Consequently, for the arbitrariness of 7y €  and ¢ € C*(2), such that u—¢
realizes a local maximum at zg, and inasmuch as if u € C?(Q2), u € usc(Q),
we obtain that u is a viscosity subsolution of F(D%u(z), Vu(x),u(z),z) =0
in €.

Consider now always zy € 2, and we take ¢ € C%(Q2) such that u —  realizes
a local minimum at zy. In this case, given that z( is a local minimum for

u — , we have:
(i) D*(u— ) (x0) = 0;
(i) V(u—)(ro) = 0.

Repeating the reasoning done for the case when u — ¢ realizes a local max-
imum at g, we achieve that D?u(zy) > D%*p(z¢) and Vu(zg) = V(zo).
Therefore, using the elliptic degeneracy of I’ and the considerations done to
show that w is a viscosity subsolution of F(D*u(z), Vu(x),u(z),z) = 0in €,

we get

F(D?*u(xg), Vo(xo), u(x0), 20) > F(D*p(w0), Veo(0), u(o), 20).  (B.14)
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Moreover, also in this case, ¢ € {2 and u is a classical solution of
F(D?*u(z), Vu(x),u(x),z) = 0 in Q, hence

F(D?*u(x), Vu(zo), u(z0), 20) = 0, (B.15)

and as a consequence, seeing as how Vu(zy) = Vy(zy), from (B.14) and
(B.15) we obtain

0 = F(D*u(xg), Vu(zg), u(zo), 20) > F(D*p(x0), Vo(x0), u(20), 70),

1.e.

F(D*p(x0), Vip(z0), u(o), 29) < 0.

Consequently, for the arbitrariness of xy € Q and ¢ € C?(2), such that u— ¢
realizes a local minimum at zy, and inasmuch if u € C%*(Q), u € Isc(Q), we
achieve that u is a viscosity supersolution of F(D?u(z), Vu(x),u(z),z) = 0
in 2.

To sum it up, we have proved that u is both a viscosity subsolution and
a viscosity supersolution of F(D?u(x), Vu(z),u(z),r) = 0 in €, so, be-
cause u € C(Q), if u € C*(Q), we get that u is a viscosity solution of
F(D*u(zx), Vu(x),u(z),z) = 0 in Q.

Conversely, suppose that u is a viscosity solution of F(D?u(x), Vu(z), u(z),
xz) = 0 in Q and we want to prove that w is also a classical solution of
F(D*u(z), Vu(x),u(z),z) = 0 in Q.

For this purpose, let us fix zy € €, and inasmuch as u € C*(2), we can write
the Taylor expansion of u around xy in a neighborhood O of zy, O C €2, and
we obtain

u(x) = u(xg) + Vu(zg) - (x — o) + %DQU(ZL‘O)(ZE —x0) - (. — x0)

+o(|z — zo|*), z€O. (B.16)

In particular, for the definition of J&u(zy) and given that D2?u(z) is a
symmetric matrix, recalling that u € C%(Q2), we achieve from (B.16) that
(Vu(zo), D*u(x0)) € Jo (o).
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Therefore, recalling that u is a viscosity solution of F(D?u(z), Vu(x),u(z),
x) = 0 in €, and thus also a viscosity subsolution, we get, from the equiva-

lence of two definitions of viscosity subsolution shown in Theorem B.10,
F(D*u(zg), Vu(zo), u(xg), o) > 0. (B.17)

On the other hand, from (B.16), we also obtain, for the definition of J3 ~u(z)
and always since D?u(x) is a symmetric matrix, that (Vu(xg), D*u(zy)) €
JZ u(xo).

Consequently, because u is a viscosity solution of F'(D*u(x), Vu(z),u(z),x) =
0 in €2, and hence in particular a viscosity supersolution, we achieve, from the

equivalence of two definitions of viscosity supersolution shown in Theorem
B.10,

F(D*u(z0), Vu(zo), u(wo), 20) <0 (B.18)

Putting together (B.17) and (B.18), we have
0 S F<D2u<l’0>, VU(ZL'()), U(.To), :U()) S 07

which entails
F(D2u(x0), Vulzo), u(zo), 20) = 0,

and, from the arbitrariness of xy € €2, we conclude that u is a classical
solution of F(D?*u(x), Vu(z),u(z),z) =0 in §, as desired. O



Appendix C

The Harnack inequality for

elliptic operators

We recall here the classical Harnack inequality for uniformly elliptic op-
erators in non-divergence form. We also cite two other theorems, from which
the classical Harnack inequality follows as a corollary. For proofs and further
details, see [20].

First of all, we introduce the operators for which we state the classical Har-
nack inequality.

Specifically, we deal with operators in the general form:

n

Lu = Z a;j(x)u; + Z bi(x)u; + c(x)u, (C.1)

i,j=1

with coefficients a;;, b;, ¢, where 4, j = 1,...,n defined on an open connected
set €2 in R".

In particular, we assume that (a;;(z)); ; is a symmetric matrix Vo € Q, and if
we call A the matrix-valued function such that A(z) = (a;;(z)); j, we suppose

in our case that A is uniformly elliptic, i.e. there exist 0 < A < A such that

AEP < A(@)E-€ < A€, Vo€ Q,VEeR™
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In addition, we also suppose that b; and ¢ are bounded in €2, and accordingly,

By I,
X)X T

At this point, we also need to introduce the notion of solution, for which the

we fix a constant v such that

classical Harnack inequality is satisfied.

Definition C.1 (Weak derivative). Let 2 be an open connected set in
R", u € L},.(Q) and « any multi-index. Then a locally integrable function v

is called the o weak derivative of u if it satisfies

/ v dz = (—1)l / uD%p dz, for all ¢ € CN(Q).
0 0

We write v = D%u and we notice that D“u is uniquely determined up to sets

of measure zero.

Remark. Let us recall that we say « is a multi-index if
a=(ap,a,...,q),
where o; € NUO, Vi =1,...,n, and we denote |«| with
lal = a1 +as+ ...+ ay.

Moreover, with D%y we refer to

«

1 o o
= Ew . wgp.
Definition C.2 (Weakly differentiable). Let u € L}, .(Q), with Q as in
Definition C.1. We say that u is weakly differentiable if all its weak derivatives
of first order exist and k times weakly differentiable if all its weak derivatives

exist for orders up to and including k.

Definition C.3 (Sobolev spaces).
Let Q be as in Definition C.1. Let us denote by W#(Q) the linear space of k
times weakly differentiable functions in 2.

In addition, for p > 1 and k£ non-negative integer, we define

WHhP(Q) := {u e W¥Q); D*w e LP(Q) Va, with |a| < k}.
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Definition C.4 (Strong solution).

Let be given an equation of the form
Lu=f in(Q, (C.2)

where € is as in Definition C.1, L is an operator of the type introduced in
(C.1) and f is a function on €.
We say that u € W?2(Q) is a strong solution of (C.2) if u satisfies C.2 almost

everywhere in ).

Remark. Notice that also when we will write the inequality Lu > f and
Lu < f in the following theorems, they will be considered satisfied almost

everywhere.

Theorem C.5. Let Q as in Definition C.1 and u € W*™(Q). Suppose also
that Lu > f in Q, where f € L™(2) and L is an operator of the type intro-
duced in (C.1). Then for any ball B = Bag(y) C Q and p > 0, we have

1/p

1 R
sup u < C —/(U+)p + < 1 fllzn ;
Bl |B| J )\ L"(B)

with C = C (n A VR2,p) :

"N
Theorem C.6. Let Q as in Definition C.1 and u € W?™(Q). Suppose that
u satisfies Lu < f in Q, where f € L"(2) and L is an operator of the

type introduced in (C.1). Suppose also that u is non-negative in a ball B =
Bor(y) C Q. Then

1/p

1 R
_ u? <(C| inf v+ — n ,
Baly) / (BR@ 3 I <B>)

Br(y)

where p and C' are positive constants depending only on n, % and VR?.

Consequently, from (C.5) and (C.6), we can obtain the classical Harnack

inequality.
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Theorem C.7 (Classical Harnack inequality).
Let © as in Definition C.1 and u € W2 (). Suppose that u satisfies Lu = f
in Q, where f € L"(Q2) and L is an operator of the type introduced in (C.1).
Suppose also that u > 0 in . Then for any ball By, (y) C €2, we have

sup u < C’l( inf u+ Cs ||f||Ln(Q)>7

Br(y) Br(y)

where C and Cy are positive constants depending only on n, % and vR?.

Harnack inequality also holds for fully nonlinear operators, see [7].
For the sake of simplicity, we restrict ourselves to the particular case of

uniformly elliptic operators. Specifically, we consider operators of the type:
F:S"xQ—R, (C.3)

where () is a bounded open connected set in R™ and S™ is the space of real
n X n symmetric matrices. In addition, we assume that F' is a uniformly

elliptic operator, that is,

Definition C.8. F' is uniformly elliptic if there are two positive constants
A < A (called ellipticity constants) such that VM € S™ and Vz € Q

AN < (M + N,z) — F(M,2) < A|IN|| VN >0,

where we write NV > 0 whenever N is a non-negative definite symmetric ma-
trix. |[M]| denotes the (L?, L?)-norm of M (i.e., || M| = sup |Mz|); therefore

|z|=1
| V|| is equal to the maximum eigenvalue of N whenever N > 0.
At this point, we need to introduce Pucci’s extremal operators to state

the Harnack inequality.

Definition C.9 (Pucci’s extremal operators.).
Let 0 < A < A. For M € S", we define
ME(MAN) =M (M) =X) e +A) e
e; >0 e; <0

ME(MN ) = MF(M) =AY e+ A3 e

e; >0 e; <0
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where e; = e;(M) are the eigenvalues of M.

Remark. In particular, let now A be a symmetric matrix whose eigenvalues
belong to [A, A], namely A |§|2 <AE-E<A ]§\2 for any £ € R™. We will write
in this case that A € A, .

Define a linear functional L4 on S™ by

i,j=1 i,j=1
Since M € S", we have M = ODO" where D;; = €;0;; (e; are the eigenvalues
of M) and O is an orthogonal matrix, and it proves that

M (M, \A) = inf LM

A€AN A

MT(M, X\, A) = sup LaM.

AGA)HA

We now define the class of functions for which the Harnack inequality

holds.

Definition C.10. Let f be a continuous function in €2, with € as in Defini-
tion C.3, and let A < A be two positive constants. We denote by S(A, A, f)
the space of continuous functions w in € such that M*(D?u, \,A) > f(z)
in the viscosity sense in ), in other words if 79 € 2, p € C?(Q) and u — ¢

realizes a local maximum at zg then
M (D?*p(x0), A, A) > (o).

Definition C.11. Let f be a continuous function in €2, with € as in Defini-
tion C.3, and let A < A be two positive constants. We denote by S(\, A, f)
the space of continuous functions v in Q such that M~ (D?u, \,A) < f(x) in
the viscosity sense in 2, that is if zg € Q, ¢ € C*(Q) and u — ¢ realizes a

local minimum at xq then

M (D*p(x0), A, A) < f (o).
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We also define, in the same hypotheses of Definition C.10,
SO, ) =S A ) NS A, ),

and

S*()‘aA7f) = ﬁ()‘aAa - |f|) ﬂg()\,A, |f‘)

In particular, we will call the functions in S(\, A, f), S(A, A, f) S(A A, f)
subsolutions, supersolutions and solutions, respectively.
We now state a theorem which is the Harnack inequality for viscosity solu-

tions.

Theorem C.12. Let u € S*(\, A, f) in @y, where

11 11 1 1\"
Q, = (—5,5) X ... X <—§,§> - (_575)

and f is continuous and bounded in Q1. Suppose also that uw > 0 in Q1. Then

supu < C'( inf u+ || f]|;» ,
1/12 < 21/2 H HL (Q1) )
where C' 1s a universal constant.

Remark. We notice that for the definition of S, we have S(A\, A, f) C S(A, A,
—|f]), given that f > — | f|, and analogously, for the definition of S, S(\, A, f)
C S(\, A, |f]), inasmuch f < |f|. Consequently,

S, f) = SN HNSILA, ) CSOVA, = [FDNSAL AL L) = ST (A A, f),

ie. S(\ A, f) C S*(\ A, F) and hence the functions u € S(A, A, f), namely

the viscosity solutions, satisfy Theorem C.12.
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