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Introduction

In this work, we deal with the study of a free boundary problem governed

by a non-homogeneous equation. We begin this thesis reviewing the paper

by Daniela De Silva “Free boundary regularity for a problem with right hand

side”, see [11].

In particular, we study the free boundary problem governed by an elliptic

equation in non-divergence form defined on a bounded connected, possibly

regular, subset Ω in Rn.

For the sake of simplicity, here we state the problem in the easier way by

considering simply the Laplace operator, namely:∆u = f in Ω+(u) := {x ∈ Ω : u(x) > 0}o ,

|∇u| = 1 on F (u) := ∂Ω+(u) ∩ Ω.
(1)

A function u is a solution of the problem (1) if u satisfies the equation ∆u = f

when u is strictly positive and in addition the condition |∇u| = 1 is fulfilled

in a proper unknown subset of Ω, called the free boundary of the problem.

In particular, F (u) = ∂Ω+(u) ∩ Ω denotes the free boundary of the solution

u and we point out that the set F (u) is an unknown of the problem. Indeed,

we want to discover more information about the properties of the set F (u).

For instance, is F (u) a graph? Is F (u) regular? Which type of regularity

does F (u) satisfy?

Figure 1 describes a possible geometrical situation associated to free bound-

ary problems.

i



ii Introduction

Figure 1: Example of free boundary problem (1).

An important contribution in the comprehension of the problem in the

homogeneous case has been obtained by L. Caffarelli in a series of papers,

[4], [5], [6], see also [8] for a complete bibliography. Further results about the

non-homogeneous problem are collected in [11], [12] and [13].

Before studying the regularity of F (u), it is necessary to spend some words

about the correct setting of our problem. In our case, at first we need to

introduce the definition of viscosity solution, otherwise some difficulties about

the correct notion of solution may arise. For instance, it is known that the

regularity up to the boundary of the solution of a Dirichlet problem, in a given

set, depends on the regularity of the boundary itself. Consequently, a free

boundary problem cannot be reduced to a Dirichlet problem, otherwise the

condition |∇u| = 1 on F (u) could be meaningless in the classical sense (see

Lemma A.4 in Appendix A). For example, in case F (u) was not smooth,
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which is the right meaning of the condition |∇u| = 1 on the set F (u)?

Caffarelli faced the problem in a geometric sense, by applying many ideas

coming from the viscosity theory thanks to the flexibility of these notions.

The problem (1) is a particular case of the following family of problems

discussed in [11]:
∑
i,j

aij(x)uij = f in Ω+(u) := {x ∈ Ω : u(x) > 0} ,

|∇u| = g on F (u) := ∂Ω+(u) ∩ Ω.

(2)

Here Ω is as usual a bounded connected set in Rn and uij denotes the second

derivative of u with respect to xi, xj. We also assume the following hypothe-

ses: the coefficients aij ∈ C0,β(Ω), f ∈ C(Ω)∩L∞(Ω) and g ∈ C0,β(Ω), g ≥ 0.

Moreover, the matrix (aij(x))1≤i,j≤n is positive definite, that is there exists

λ > 0 such that ∀ξ ∈ Rn \ {0} , ∀x ∈ Ω, A(x)ξ · ξ ≥ λ |ξ|2 . Thus, in case

(aij(x))1≤i,j≤n = (δij)1≤i,j≤n and g ≡ 1, we obtain (1).

We deal with viscosity solutions of problem (2), see Chapter 1 for this defini-

tion and the Appendix B for basic definitions about viscosity solution theory.

The main theorem in [11] is the following one:

Theorem 0.1 (Flatness implies C1,α). Let u be a viscosity solution to (2)

in B1. Assume that 0 ∈ F (u), g(0) = 1 and aij(0) = δij. There exists a

universal constant ε̄ > 0 such that, if the graph of u is ε̄-flat in B1, i.e.

(xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1,

and

[aij]C0,β(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄,

then F (u) is C1,α in B1/2.

The key idea described in [11] concerns the fact that a flat set to any

scale has to be C1,α-smooth.

The strategy used in [11] for proving Theorem 0.1 can be summarized as

follows:
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(i) assuming that

‖f‖L∞(Ω) ≤ ε2, ‖g − 1‖L∞(Ω) ≤ ε2, ‖aij − δij‖L∞(Ω) ≤ ε,

with 0 < ε < 1, then a Harnack type inequality is satisfied by solutions

of problem (2).

Roughly saying, with the Harnack inequality we achieve that if the

graph of u oscillates εr away from x+
n in Br, then it oscillates (1− c)εr

in Br/20. This property reproduces the effects of the classical Harnack

inequality, even if in a different context, on the solutions of problem

(2). In this framework, we remark that the Harnack type inequality is

rather different from the classical one, see Theorem 2.1, in comparison

with the classical Harnack inequality, see Theorem C.7 in Appendix C;

(ii) from previous Harnack type inequality, follows that the graphs of the

solutions of problem (2) enjoy an “improvement of flatness” property.

In other words, if the graph of a solution oscillates ε away from a

hyperplane in B1, then in Br0 it oscillates εr0/2 away from, possibly,

a different hyperplane. This fact is introduced in the “improvement of

flatness” lemma, see Lemma 3.1;

Figure 2: Improvement of flatness
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(iii) in conclusion, Theorem 0.1 follows from the “improvement of flatness”

lemma via an iterative argument, see Theorem 4.2 and its proof in

Chapter 4.

We point out that Theorem 0.1 also follows from the regularity properties of

solutions to the following classical Neumann problem for the Laplace operator

in a half plane: ∆ũ = 0 in Bρ ∩ {xn > 0} ,
∂ũ
∂xn

= 0 on Bρ ∩ {xn = 0} ,
(3)

where ∂ũ
∂xn

denotes ∂ũ
∂ν
, and ν is the inward pointing unit normal vector respect

to Bρ ∩ {xn = 0} . In this case, ν = en.

In order to clarify this claim, we argue in this way, see for instance [8].

Let u be a solution of (1). We ask for every small ε > 0 that uε = u + εϕ

has to be still a solution of (1) for a proper choice of a function ϕ. As a

consequence, since ∆uε = f , we have

f = ∆uε = ∆(u+ εϕ) = ∆u+ ε∆ϕ = f + ε∆ϕ,

thus

ε∆ϕ = 0

and, recalling that ε > 0,

∆ϕ = 0.

Moreover, |∇uε| = 1 implies

|∇uε| = 1↔ |∇uε|2 = 1↔ |∇u|2 + 2ε∇u · ∇ϕ+ ε2 |∇ϕ|2 = 1.

Therefore, seeing as how |∇u|2 = 1 , we have, inasmuch ε > 0,

ε(2∇u · ∇ϕ+ ε |∇ϕ|2) = 0↔ 2∇u · ∇ϕ+ ε |∇ϕ|2 = 0

and for ε→ 0, we obtain

2∇u · ∇ϕ = 0,

that is

∇u · ∇ϕ = 0.
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Now, on F (u), |∇u| = 1 and hence ∇u 6= 0. Then, the inward pointing unit

normal vector is ν = ∇u
|∇u| , thus from ∇u · ∇ϕ = 0, we also get, inasmuch as

|∇u| > 0,

|∇u| ∇u
|∇u|

· ∇ϕ = 0↔ ν · ∇ϕ = 0↔ ∂ϕ

∂ν
= 0,

namely ∂ϕ
∂ν

= 0 on F (u), whenever F (u) is sufficiently smooth.

Summarizing, ϕ satisfies: ∆ϕ = 0 in Ω+(u)

∂ϕ
∂ν

= 0 on F (u).

As a consequence, recalling that uε is a solution, we can expect that ϕ = uε−u
ε

is indeed a solution to the transmission problem (3). In our case, let be given

a solution u of our free boundary problem. We subtract to u the special so-

lution (x · ν)+ and we divide by ε > 0 in a neighborhood of 0. Here, we have

assumed that 0 belongs to F (u) and ν is a constant vector. We expect that
uε−u
ε

is a solution to (3) when ε goes to 0. As a byproduct, the function u, in

some way, inherits the regularity properties of the solutions of the Neumann

problem.

We would like to spend few words about the importance of problem (1). In

literature there is a typical model problem arising in classical

fluid-dynamics.

We roughly describe this physical situation (see [13]) representing a one-phase

problem: a traveling two-dimensional gravity wave of an incompressible, in-

viscid, heavy fluid moves with constant speed over a horizontal surface. Since

the fluid is incompressible, the flow can be described by a stream function u

which solves the following free boundary problem (in 2D):

∆u = −γ(u) in Ω := {(x, y) ∈ R2 : 0 < u(x, y) < B} ,

0 ≤ u ≤ B in Ω

u = B on y = 0,

|∇u|2 + 2gy = Q on S := {u = 0} .
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Figure 3: Geometrical representation of the physical example in R2.

Here Q is a constant, B, g are positive constants, γ : [0, B]→ R is called

vorticity function and S is the free boundary of the problem, whenever a

function u satisfying the above system exists. Given that u− ≡ 0, we have a

one-phase free boundary problem.

In this thesis, we adapt the proof of Theorem 0.1 to slightly more general

operators having an additional term depending on the gradient of the solu-

tion. In this way, we study the free boundary regularity for a solution to the

following problem:
∑
i,j

aij(x)uij +
∑
i

bi(x) · ui = f in Ω+(u) := {x ∈ Ω : u(x) > 0} ,

|∇u| = g on F (u) := ∂Ω+(u) ∩ Ω,

with bi ∈ C(Ω)∩L∞(Ω) and assuming the conditions listed in (2) on Ω, f, g

and aij. Furthermore, ui denotes the derivative of u with respect to xi.

In the long run, we also would like to extend our investigation to two-phase

problems starting from the results described in: [12], [14], [17],[18], [19], in
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order to prove further regularity results, for instance higher regularity of the

free boundary for fully non-linear operators, see [15] and [16].

Moreover, we also would like to improve this research, by attacking the non-

homogeneous one-phase parabolic problem. Indeed, concerning evolutive

problems, there exist few regularity results, see for instance [2] and [3] in

the homogeneous framework.

In perspective, further new interesting problems that we would like to con-

sider are associated with degenerate operators like the Kohn-Laplace one in

the Heisenberg group.

Specifically, this thesis is organized as follows. In Chapter 1, we introduce

notation, definitions and results, which we will use throughout the paper,

and we prove a regularity result for viscosity solutions to a Neumann prob-

lem which we will use in the proof of Theorem 4.2.

Next, in Chapter 2, we prove our Harnack inequality. In Chapter 3, we prove

the main “improvement of flatness” lemma, see Lemma 3.1, from which The-

orem 4.2 will follow by an iterative argument. In Chapter 4, we exhibit the

proofs of Theorems 4.2 and 4.1. From Chapter 1 to Chapter 4, we strictly

follow the organization of the paper [11]. In particular, we review the proofs

showing all the details. In Chapter 6, we analyze the same problem in the

case of operators with additional term depending on the gradient. For expo-

sure convenience, we conclude the work with an Appendix. This conclusive

part is subdivided in some sections collected by homogeneity arguments. In-

deed, we list some more or less well-known results in literature by showing

in many cases a detailed proof. The main goal of this Appendix, hopefully,

is helping the reader in the comprehension of all the steps of this thesis.
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Chapter 1

Prerequisites

We introduce, in this chapter, some tools which will be used throughout

the work. We also present an auxiliary result, Lemma 1.8, which will be

useful in the proof of our main Theorem 4.2.

Let us start with notation.

Bρ(x0) ⊂ Rn denotes the open ball of radius ρ centered at x0 and we write

Bρ = Bρ(0).

For any continuous function u : Ω ⊂ Rn → R we denote

Ω+(u) := {x ∈ Ω : u(x) > 0} , F (u) := ∂Ω+(u) ∩ Ω.

We refer to the set F (u) as the free boundary of u, while Ω+(u) is its positive

phase (or side).

We remark that, since u is continuous, then obviously u = 0 on F (u).

Indeed, the continuity of u implies that the set Ω+(u) is open, thus if x0 ∈
Ω+(u), we can find a ball Br(x), such that Br(x) ⊂ Ω+(u), and hence Br(x)∩
Ω+(u)c = ∅.
Analogously, the continuity of u also entails that the set {x ∈ Ω : u(x) < 0}
is open, therefore, if x ∈ {x ∈ Ω : u(x) < 0} , we can find a ball Br(x) such

that Br(x) ⊂ {x ∈ Ω : u(x) < 0} , in other words Br(x) ∩ Ω+(u) = ∅.
Now, if x ∈ F (u), in particular x ∈ ∂Ω+(u), thus we have Br(x)∩Ω+(u) 6= ∅
and Br(x) ∩ Ω+(u)c 6= ∅ ∀Br(x), so for what we have said above, x /∈ Ω+(u)

and x /∈ {x ∈ Ω : u(x) < 0} , that is necessary u(x) = 0.

1



2 1. Prerequisites

In this thesis, we deal with the one-phase free boundary problem
∑
i,j

aij(x)uij +
∑
i

bi(x)ui = f in Ω+(u),

|∇u| = g on F (u).

(1.1)

Here Ω is a bounded domain in Rn (a domain is a connected open subset),

aij ∈ C0,β(Ω), bi ∈ C(Ω) ∩ L∞(Ω), f ∈ C(Ω) ∩ L∞(Ω), g ∈ C0,β(Ω), g ≥ 0,

the matrix (aij(x)) is positive definite. Formally, ui denotes the derivative of

u with respect to xi, while uij the second derivative of u with respect to xi,

xj.

Specifically, we begin our analysis from the particular case given by bi = 0

for every i = 1, . . . , n, i.e. with the one-phase free boundary problem
∑
i,j

aij(x)uij = f in Ω+(u),

|∇u| = g on F (u),

(1.2)

which has been studied by Daniela de Silva in [11].

We state the definition of viscosity solution to (1.2) and for this purpose,

we need some basic notions.

Definition 1.1. Given u, ϕ ∈ C(Ω), we say that ϕ touches u from below

(resp. above) at x0 ∈ Ω if u(x0) = ϕ(x0) and

u(x) ≥ ϕ(x) (resp. u(x) ≤ ϕ(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0} , we say that ϕ touches u strictly from

below (resp. above).

Definition 1.2. Let u be a nonnegative continuos function in Ω. We say

that u is a viscosity solution to (1.2) in Ω if the following conditions are

satisfied:

(i)
∑
i,j

aij(x)uij = f in Ω+(u) in the viscosity sense, i.e. if ϕ ∈ C2(Ω+(u))

touches u from below (resp. above) at x0 ∈ Ω+(u) then∑
i,j

aij(x0)ϕij(x0) ≤ f(x0)

(
resp.

∑
i,j

aij(x0)ϕij(x0) ≥ f(x0)

)
.
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(ii) If ϕ ∈ C2(Ω) and ϕ+ touches u from below (resp. above) at x0 ∈ F (u)

and |∇ϕ| (x0) 6= 0 then

|∇ϕ| (x0) ≤ g(x0) (resp. |∇ϕ| (x0) ≥ g(x0)).

At this point, we provide the notion of comparison subsolution / super-

solution, which is useful to be able to employ comparison techniques.

Definition 1.3. Let v ∈ C2(Ω). We say that v is a strict (comparison)

subsolution (resp. supersolution) to (1.2) in Ω if the following conditions are

satisfied:

(i)
∑
i,j

aij(x)vij > f(x)

(
resp.

∑
i,j

aij(x)vij < f(x)

)
in Ω+(v).

(ii) If x0 ∈ F (v), then

|∇v| (x0) > g(x0) (resp. 0 < |∇v| (x0) < g(x0)).

Remark 1.4. We point out that, if v is a strict subsolution / supersolution

to (1.2), from (ii) in Definition 1.3, |∇v| > 0 on F (v), which gives ∇v 6= 0

on F (v). Therefore, recalling that v ∈ C2(Ω), v = 0 on F (v) and ∇v 6= 0 on

F (v), we can apply the implicit function theorem and we obtain that F (v)

is a C2 hypersurface.

The following lemma is an immediate consequence of the definitions above.

Lemma 1.5. Let u, v be respectively a solution and a strict subsolution to

(1.2) in Ω. If u ≥ v+ in Ω then u > v+ in Ω+(v) ∪ F (v).

Proof . Assume for contradiction that ∃ x0 ∈ Ω+(v) ∪ F (v) such that

u(x0) = v+(x0).

We have two different cases.

(i) If x0 ∈ Ω+(v), i.e. v(x0) > 0, v+(x0) = v(x0).

Therefore, since u ≥ v+ in Ω ⊇ Ω+(v), ∀x ∈ Ω+(v)

u(x) ≥ v+(x) = v(x) > 0,
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that is x ∈ Ω+(u) and thus Ω+(v) ⊆ Ω+(u).

In particular, given that x0 ∈ Ω+(v), x0 ∈ Ω+(u).

Using that u(x0) = v+(x0) = v(x0), namely u(x0) = v(x0), together

with the fact that u ≥ v+ ≥ v in Ω, in other words u ≥ v in Ω, since

Ω is open, we can find an open neighborhood O of x0 where u ≥ v

in O and u(x0) = v(x0), so we obtain that v touches u from below at

x0 ∈ Ω+(u).

In addition, v ∈ C2(Ω+(u)) because v is a strict subsolution to (1.2)

and thus v ∈ C2(Ω), therefore, given that u is a solution to (1.2), we

get ∑
i,j

aij(x0)vij(x0) ≤ f(x0). (1.3)

On the other hand, since v is a strict subsolution to (1.2), we have∑
i,j

aij(x)vij(x) > f(x) in Ω+(v)

and hence, since x0 ∈ Ω+(v),∑
i,j

aij(x0)vij(x0) > f(x0),

which entails from (1.3)

f(x0) <
∑
i,j

aij(x0)vij(x0) ≤ f(x0),

namely f(x0) < f(x0), which is a contradiction.

(ii) If x0 ∈ F (v), v(x0) = 0 = v+(x0) = u(x0), that is u(x0) = 0 and

v(x0) = u(x0). Furthermore, ∀Br(x0), Br(x0)∩Ω+(v) 6= ∅ and Br(x0)∩
Ω+(v)c 6= ∅.
Since Ω+(v) ⊆ Ω+(u) from case (i),

Br(x0) ∩ Ω+(u) ⊇ Br(x0) ∩ Ω+(v) 6= ∅

and thus Br(x0) ∩ Ω+(u) 6= ∅, ∀Br(x0).

This fact, together with u(x0) = 0 and so Br(x0)∩Ω+(u)c 6= ∅ ∀Br(x0),
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implies that x0 ∈ F (u).

Now, inasmuch v is a strict subsolution to (1.2) and x0 ∈ F (v), we have

|∇v| (x0) > g(x0), (1.4)

in other words, seeing as how g(x0) ≥ 0,

|∇v| (x0) > 0,

and hence

|∇v| (x0) 6= 0. (1.5)

Moreover, v ∈ C2(Ω) since v is a strict subsolution to (1.2), and v+

touches u from below at x0 ∈ F (u), given that v+(x0) = u(x0), v+ ≤ u

in Ω, with Ω open and as a consequence, we can find an open neigh-

borhood O of x0 where u ≥ v+.

These two conditions, together with (1.5) and the fact that u is a so-

lution to (1.2), give us

|∇v| (x0) ≤ g(x0)

that is, from (1.4),

g(x0) < |∇v| (x0) ≤ g(x0),

i.e. g(x0) < g(x0), which is a contradiction.

Hence, @ x0 ∈ Ω+(v) ∪ F (v) such that u(x0) = v+(x0), hence, because

u ≥ v+ in Ω ⊇ Ω+(v) ∪ F (v), namely u ≥ v+ in Ω+(v) ∪ F (v), u > v+ in

Ω+(v) ∪ F (v).

Our main Theorem 4.2 will follow from the regularity properties of solu-

tions to the classical Neumann problem for the Laplace operator. Precisely,

we consider the following boundary value problem:∆ũ = 0 in Bρ ∩ {xn > 0} ,

ũn = 0 on Bρ ∩ {xn = 0} .
(1.6)
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Here ũn is the normal derivative of ũ, which corresponds to ∂ũ
∂xn

, since the

unit normal vector to the surface Bρ ∩ {xn = 0} is en.

We use the notion of viscosity solution to (1.6). For completeness (and for

helping the reader), we recall standard notions and we prove regularity of

viscosity solutions, see also Appendix B.

Definition 1.6. Let ũ be a continuos function on Bρ ∩ {xn ≥ 0}. We say

that ũ is a viscosity solution to (1.6) if given a quadratic polynomial P (x)

touching ũ from below (resp. above) at x̄ ∈ Bρ ∩ {xn ≥ 0} ,

(i) if x̄ ∈ Bρ ∩ {xn > 0} then ∆P ≤ 0 (resp. ∆P ≥ 0), i.e. ũ is harmonic

in the viscosity sense;

(ii) if x̄ ∈ Bρ ∩ {xn = 0} then Pn(x̄) ≤ 0 (resp. Pn(x̄) ≥ 0).

Remark 1.7. Notice that in the definition above we can choose polynomials

P that touch ũ strictly from below/above.

Indeed, suppose that Definition 1.6 holds for polynomials that touch ũ strictly

from below/above. Let then P be a polynomial touching ũ from below at

x̄ ∈ Bρ ∩ {xn ≥ 0}, i.e

P (x̄) = ũ(x̄)

and

P (x) ≤ ũ(x) in a neighborhood O of x̄.

Let now

Pη(x) = P (x)− η |x− x̄|2 .

Notice that, with η > 0, we have

Pη(x) = P (x)− η |x− x̄|2 < P (x) ≤ ũ(x) in O \ {x̄} ,

in other words

Pη(x) < P (x) in O \ {x̄} , (1.7)

and

Pη(x̄) = P (x̄)− η |x̄− x̄|2 = P (x̄) = ũ(x̄),



7

namely

P (η)(x̄) = ũ(x̄). (1.8)

Consequently, from (1.7) and (1.8), we achieve that Pη touches ũ strictly

from below at x̄ ∈ Bρ ∩ {xn ≥ 0}.
Suppose now that x̄ ∈ Bρ ∩ {xn > 0}.
Since Pη touches ũ strictly from below at x̄, from (i) of Definition 1.6, we

have

∆Pη =
n∑
i=1

∂2

∂x2
i

(
P (x)− η |x− x̄|2

)
=

n∑
i=1

∂2

∂x2
i

(
P (x)− η

n∑
j=1

(xj − x̄j)2

)

=
n∑
i=1

∂

∂xi

(
∂P

∂xi
− 2η(xi − x̄i)

)
=

n∑
i=1

(
∂2P

∂x2
i

− 2η

)
=

n∑
i=1

∂2P

∂x2
i

−
n∑
i=1

2η = ∆P − 2nη ≤ 0,

that is

∆Pη = ∆P − 2nη ≤ 0. (1.9)

Now, if we let η go to 0 in (1.9), we obtain

lim
η→0

∆Pη = ∆P ≤ 0,

and thus P satisfies (i).

Assume, instead, that x̄ ∈ Bρ ∩ {xn = 0}.
Always since Pη touches ũ strictly from below at x̄, from (ii) of Definition

1.6, we have

∂Pη
∂xn

(x̄) =
∂

∂xn

(
P (x)− η |x− x̄|2

)
(x̄) =

∂

∂xn

(
P (x)− η

n∑
j=1

(xj − x̄j)2

)
(x̄)

=

(
∂P

∂xn
(x)− 2η(xn − x̄n)

)
(x̄) =

∂P

∂xn
(x̄) ≤ 0,

in other words
∂P

∂xn
(x̄) ≤ 0 (1.10)

and hence P satisfies (ii).

At the same time, if P touches ũ from above at x̄ ∈ Bρ ∩ {xn ≥ 0}, we use
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the same argument, with slightly differences. Specifically, we have opposite

inequalities in (1.9) and (1.10) and we take η < 0 in Pη so that Pη touches ũ

strictly from above at x̄.

Also, it suffices to verify that (ii) holds for polynomials P̃ with ∆P̃ > 0.

Indeed, let P touching ũ from below at x̄ and thus we have

ũ(x̄) = P (x̄)

and

P (x) ≤ ũ(x) in a neighborhood O of x̄.

Then

P̃ = P − η(xn − x̄n) + C(η)(xn − x̄n)2

touches ũ from below at x̄ for a sufficiently small constant η > 0 and a large

constant C > 0 depending on η.

Precisely, P̃ satisfies

P̃ (x̄) = P (x̄)− η(x̄n − x̄n) + C(η)(x̄n − x̄n)2 = P (x̄) = ũ(x̄),

i.e.

P̃ (x̄) = ũ(x̄), (1.11)

and

P̃ (x) ≤ P (x) ≤ ũ(x) in O,

in other words

P̃ (x) ≤ ũ(x) in O, (1.12)

with η > 0 and C(η) > 0 chosen so that P̃ verifies (1.12).

Notice that

O ⊂ Bρ ∩ {xn ≥ 0} ,

so since x̄ ∈ Bρ ∩ {xn = 0}

xn − x̄n ≥ 0 in O.
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Also,

∆P̃ =
n∑
i=1

∂2

∂x2
i

(
P (x)− η(xn − x̄n) + C(η)(xn − x̄n)2

)

=
n−1∑
i=1

∂

∂xi

(
∂P

∂xi

)
+

∂

∂xn

(
∂P

∂xn
− η + 2C(η)(xn − x̄n)

)
= ∆P + 2C(η) > 0,

namely

∆P̃ > 0, (1.13)

choosing C(η) > −∆P
2
, C(η) > 0 and such that η and C(η) satisfy (1.12).

Furthermore,

P̃n(x̄) =
∂

∂xn

(
P (x)− η(xn − x̄n) + C(η)(xn − x̄n)2

)
(x̄)

= (Pn(x)− η + 2C(η)(xn − x̄n))(x̄) = Pn(x̄)− η,

which gives

P̃n(x̄) = Pn(x̄)− η. (1.14)

Now, from (1.11) and (1.12), we achieve that P̃ touches ũ from below at

x̄ ∈ Bρ ∩ {xn = 0} .
Therefore, if (ii) holds for strictly subharmonic polynomials, inasmuch ∆P̃ >

0 from (1.13), we get from (1.14)

P̃n(x̄) = Pn(x̄)− η ≤ 0

that is Pn(x̄) ≤ η, which by letting η go to 0 implies Pn(x̄) ≤ 0 and thus P

satisfies (ii).

Analogously, if P touches ũ from above at x̄, we have

P (x̄) = ũ(x̄)

and

P (x) ≥ ũ(x) in a neighborhood O of x̄.
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Then

P̃ = P − η(xn − x̄n) + C(η)(xn − x̄n)2

touches ũ from above at x̄ with a constant η > 0 sufficiently small and a

large constant C > 0 depending on η such that P̃ (x) ≥ P (x) ≥ ũ(x) in O.

Exactly with the analogous computations used to get (1.13) and (1.14), we

obtain

∆P̃ > 0

and

P̃n(x̄) = Pn(x̄)− η.

Now, if (ii) holds for strictly subharmonic polynomials, we get

P̃n(x̄) = Pn(x̄)− η ≥ 0

that is Pn(x̄) ≥ η > 0, which by letting η go to 0 implies Pn(x̄) ≥ 0 and thus

P satisfies (ii).

We show now that viscosity solutions to (1.6) are smooth up to boundary,

using a classical argument consisting on an extension by reflection of the

function.

Lemma 1.8. Let ũ be a viscosity solution to (1.6). Then ũ is a classical

solution to (1.6). In particular, ũ ∈ C∞(Bρ ∩ {xn ≥ 0}).

Proof . Let

u∗(x) =

ũ(x) if x ∈ Bρ ∩ {xn ≥ 0}

ũ(x′,−xn) if x ∈ Bρ ∩ {xn < 0}

where x′ = (x1, . . . , xn−1).

We claim that u∗ is harmonic (in the viscosity sense), and hence smooth,

in Bρ.

Precisely, let P be a polynomial touching u∗ at x̄ ∈ Bρ strictly from below (for

what we have remarked before, in Definition 1.6 we can choose only polyno-

mials that touch possible viscosity solutions strictly from below/above). We

need to show that ∆P ≤ 0. Clearly, we only need to consider the case when
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x̄ ∈ {xn = 0} .
Indeed, if x̄n 6= 0, we can use the fact that ũ is a viscosity solution in

Bρ ∩ {xn ≥ 0}.
In particular, we have two different cases.

(i) If x̄n > 0, x̄ ∈ Bρ ∩ {xn ≥ 0} and we have

u∗(x̄) = ũ(x̄).

So, since

u∗(x) = ũ(x) if x ∈ Bρ ∩ {xn ≥ 0}

and P touches u∗ strictly from below at x̄, P touches ũ strictly from

below at x̄, provide that making the neighborhood smaller to remain

in Bρ ∩ {xn ≥ 0} , if necessary.

Hence, because ũ is a viscosity solution to (1.6) and x̄ ∈ Bρ∩{xn > 0} ,
we get ∆P ≤ 0.

(ii) If x̄n < 0, x̄ ∈ Bρ ∩ {xn < 0} and we have

u∗(x̄) = ũ(x̄′,−x̄n).

Also,

u∗(x) = ũ(x′,−xn) if x ∈ Bρ ∩ {xn < 0}

and if we define

P̃ (x) = P (x′,−xn),

P̃ touches ũ strictly from below at (x̄′,−x̄n), since P touches u∗ strictly

from below at x̄, provide that making the neighborhood smaller to

remain in Bρ ∩ {xn < 0} , if necessary.

Sure enough,

P̃ (x̄′,−x̄n) = P (x̄) = u∗(x̄) = ũ(x̄′,−x̄n)
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and

P̃ (x′,−xn) = P (x)

≤ u∗(x) = ũ(x′,−xn) in a neighborhood O ⊂ Bρ ∩ {xn < 0} .

Now, ũ is a viscosity solution to (1.6) and (x̄′,−x̄n) ∈ Bρ ∩ {xn > 0} ,
since ‖x̄‖ = ‖(x̄′,−x̄n)‖ < ρ, so we get ∆P̃ ≤ 0.

Moreover, inasmuch P is a quadratic polynomial, ∆P is a constant so

∆P̃ =
n∑
i=1

∂2

∂x2
i

(
P (x′,−xn)

)

=
n−1∑
i=1

∂

∂xi

(
∂P

∂xi
(x′,−xn)

)
− ∂

∂xn

(
∂P

∂xn
(x′,−xn)

)

=
n−1∑
i=1

(
∂2P

∂x2
i

)
(x′,−xn) +

(
∂2P

∂x2
n

)
(x′,−xn)

= ∆P,

in other words

∆P̃ = ∆P (1.15)

and thus ∆P ≤ 0 because ∆P̃ ≤ 0.

Hence, remain to consider only the case when x̄ ∈ {xn = 0} .
Consider the polynomial

S(x) =
P (x) + P (x′,−xn)

2
.

Then, from (1.15),

∆S =
1

2

(
∆P + ∆(P (x′,−xn))

)
=

1

2
(2∆P ) = ∆P

and

Sn(x′, 0) =
1

2

(
∂

∂xn

(
P (x) + P (x′,−xn)

))
(x′, 0)

=
1

2

(
Pn(x) + (−1)(Pn)(x′,−xn)

)
(x′, 0)

=
1

2

(
Pn(x′, 0)− Pn(x′, 0)

)
= 0.
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All in all, we have

∆S = ∆P, Sn(x′, 0) = 0. (1.16)

Also, S still touches u∗ strictly from below at x̄.

Indeed, we know that P touches u∗ at x̄ ∈ Bρ strictly from below, thus

u∗(x̄) = P (x̄)

and

P (x) < u∗(x) in O \ {x̄}

where O is a neighborhood of x̄, O ⊂ Bρ.

Remark that, since x̄ ∈ {xn = 0} ,

x̄ = (x̄′, 0).

Hence,

S(x̄) = S(x̄′, 0) =

(
P (x) + P (x′,−xn)

2

)
(x̄′, 0)

=
1

2

(
P (x̄′, 0) + P (x̄′, 0)

)
=

1

2
(2P (x̄′, 0)) = P (x̄′, 0) = P (x̄) = u∗(x̄).

Furthermore,

S(x) =
P (x) + P (x′,−xn)

2
<
u∗(x) + u∗(x′,−xn)

2
∀x ∈ O′ \ {x̄} ,

where O′ ⊆ O is a neighborhood of x̄ symmetric respect to Bρ ∩ {xn = 0}, if

O is not.

Thus, if we show that

u∗(x) + u∗(x′,−xn)

2
= u∗(x)

we get that S touches u∗ strictly from below at x̄.

Now, if x ∈ Bρ ∩ {xn > 0}, (x′,−xn) ∈ Bρ ∩ {xn < 0} and

u∗(x) + u∗(x′,−xn)

2
=
ũ(x) + ũ(x′,−(−xn))

2
=

1

2
(2ũ(x)) = ũ(x) = u∗(x)
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and analogously if x ∈ Bρ ∩ {xn = 0}, since x = (x′, 0) = (x′,−0) and

u∗(x) = u∗(x′, 0) = ũ(x′, 0).

Instead, if x ∈ Bρ ∩ {xn < 0}, (x′,−xn) ∈ Bρ ∩ {xn > 0} and

u∗(x) + u∗(x′,−xn)

2
=
ũ(x′,−xn) + ũ(x′,−xn)

2

=
1

2
(2ũ(x′,−xn)) = ũ(x′,−xn) = u∗(x).

Hence

u∗(x) =
u∗(x) + u∗(x′,−xn)

2
∀x ∈ Bρ

and S touches u∗ strictly from below at x̄.

Now, consider the family of polynomials

Sε = S + εxn, ε > 0.

For ε small Sε will touch u∗ from below at some point xε, since S touches u∗

strictly from below at x̄.

Indeed, since O ⊆ Bρ and u∗ ∈ C(Bρ), S ∈ C(Bρ), it suffices to take

ε ≤
min
x∈O

(u∗(x)− S(x))

sup
x∈O

xn

where O is the neighborhood of x̄ where S < u∗, and we obtain

S(x) + εxn ≤ S(x) + ε sup
x∈O

xn

≤ S(x) +

min
x∈O

(u∗(x)− S(x))

sup
x∈O

xn
sup
x∈O

xn

= S(x) + min
x∈O

(u∗(x)− S(x))

≤ S(x) + u∗(x)− S(x) = u∗(x) in O.

Therefore, because O is open, we can find a neighborhood O′ of xε where

Sε ≤ u∗ and Sε(xε) = u∗(xε).

Now, if xε belongs to {xn = 0}, u∗(xε) = ũ(xε) and thus Sε touches ũ from
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below at xε, in a neighborhood given by the intersection of O′ with Bρ ∩
{xn ≥ 0}.
Hence, since xε ∈ {xn = 0} and ũ is a viscosity solution to (1.6), ũn(x′ε, 0) = 0

in the viscosity sense, so we obtain

(Sε)n(x′ε, 0) =
∂

∂xn

(
S + εxn

)
(x′ε, 0)

= (Sn + ε)(x′ε, 0) = Sn(x′ε, 0) + ε ≤ 0

which implies Sn(x′ε, 0) ≤ −ε < 0, contradicting (1.16).

Thus xε ∈ Bρ \ {xn = 0}.
Now, since Sε touches u∗ from below at xε, repeating the argument used to

analyze the cases when x̄ ∈ {xn 6= 0}, we get from (1.16)

∆Sε = ∆S + ∆(εxn) = ∆S = ∆P ≤ 0,

i.e.

∆P ≤ 0.

Analogously, if P touches u∗ at x̄ ∈ Bρ strictly from above, we obtain

∆P ≥ 0.

In conclusion, u∗ is harmonic in the viscosity sense in Bρ.

Now, we want to show that u∗ is harmonic in Bρ in the classical sense.

Remark. Notice that there is an other definition of harmonic function in the

viscosity sense.

Definition 1.9. Let Ω ⊆ Rn be an open connex set. Let u ∈ C(Ω). We

say that u is harmonic in the viscosity sense if the following conditions are

satisfied:

(i) For every ϕ ∈ C2(Ω) and for every x0 ∈ Ω, if u − ϕ realizes a local

maximum at x0, then ∆ϕ(x0) ≥ 0.

(ii) For every ϕ ∈ C2(Ω) and for every x0 ∈ Ω, if u − ϕ realizes a local

minimum at x0, then ∆ϕ(x0) ≤ 0.
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Recall that u− ϕ realizes a local maximum \ minimum at x0 if there exists

a neighborhood of x0 where u− ϕ has a maximum \ minimum at x0.

We need to show that the definitions are equivalent. For exposure conve-

nience, we repeat the definition with polynomials.

Definition 1.10. Let Ω ⊆ Rn be an open connex set. Let u ∈ C(Ω). We

say that u is harmonic in the viscosity sense if the following conditions are

satisfied:

(i) If P is a quadratic polynomial touching u from below at x0 ∈ Ω,

∆P ≤ 0.

(ii) If P is a quadratic polynomial touching u from above at x0 ∈ Ω,

∆P ≥ 0.

Now, suppose that Definition 1.9 holds. If P is a quadratic polynomial

touching u from below at x0 ∈ Ω, P ∈ C2(Ω) and u − P realizes a local

minimum at x0, so we get ∆P (x0) = ∆P ≤ 0. Analogously, if P is a

quadratic polynomial touching u from above at x0 ∈ Ω, P ∈ C2(Ω) and

u − P realizes a local maximum at x0, so we obtain ∆P (x0) = ∆P ≥ 0.

Hence, Definition 1.9 implies Definition 1.10.

Conversely, suppose that Definition 1.10 holds and we take ϕ ∈ C2(Ω) that

u− ϕ realizes a local maximum at x0 ∈ Ω, that is

u− ϕ ≤ (u− ϕ)(x0) in a neighborhood O of x0. (1.17)

Since ϕ ∈ C2(Ω), we can write the Taylor expansion of ϕ, that is

ϕ(x) = ϕ(x0) +∇ϕ(x0) · (x− x0) +
1

2
D2ϕ(x0)(x− x0) · (x− x0)

+ o(|x− x0|2).
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Therefore, from (1.17) we achieve

u(x) ≤ ϕ(x) + u(x0)− ϕ(x0)

= ϕ(x0) +∇ϕ(x0) · (x− x0) +
1

2
D2ϕ(x0)(x− x0) · (x− x0)

+ o(|x− x0|2) + u(x0)− ϕ(x0)

= u(x0) +∇ϕ(x0) · (x− x0) +
1

2
D2ϕ(x0)(x− x0) · (x− x0)

+ o(|x− x0|2) = Px0(x) + o(|x− x0|2) in O,

in other words

u(x) ≤ Px0(x) + o(|x− x0|2) in O, (1.18)

where

Px0(x) := u(x0) +∇ϕ(x0) · (x− x0) +
1

2
D2ϕ(x0)(x− x0) · (x− x0)

is a quadratic polynomial.

Also, if we fix ε > 0,

o(|x− x0|2) ≤ ε |x− x0|2 ,

thus from (1.18)

u(x) ≤ Px0(x) + ε |x− x0|2 ∀x ∈ O. (1.19)

Now, we define

Pε(x) := Px0(x) + ε |x− x0|2 . (1.20)

Notice that Pε is still a quadratic polynomial, since Px0 is a quadratic poly-

nomial.

We can rewrite Pε as

Pε(x) = u(x0) +∇ϕ(x0) · (x− x0) +
1

2
(D2ϕ(x0) + 2εI)(x− x0) · (x− x0).

In particular, we have

Pε(x0) = u(x0)

and, in view of (1.19) and (1.20),

Pε(x) ≥ u(x) in O,



18 1. Prerequisites

that is Pε touches u from above at x0 ∈ Ω.

Hence, from Definition 1.10, we obtain

∆Pε =
n∑
i=1

∂2

∂x2
i

(
u(x0) +∇ϕ(x0) · (x− x0)

+
1

2
(D2ϕ(x0) + 2εI)(x− x0) · (x− x0)

)
=

n∑
i=1

∂2

∂x2
i

(u(x0)) +
n∑
i=1

∂2

∂x2
i

( n∑
j=1

∂ϕ

∂xj
(x0)(xj − x0j)

)

+
1

2

n∑
i=1

∂2

∂x2
i

( n∑
h,j=1

∂2ϕ

∂xh∂xj
(x0)(xh − x0h)(xj − x0j)

)

+
n∑
i=1

∂2

∂x2
i

( n∑
j=1

ε(xj − x0j)
2

)

=
n∑
i=1

∂2

∂x2
i

(
∂ϕ

∂xi
(x0)(xi − x0i)

)
+

1

2

n∑
i=1

∂2

∂x2
i

(
∂2ϕ

∂x2
i

(x0)(xi − x0i)
2

)
+

n∑
i=1

∂2

∂x2
i

( n∑
h=1
h6=i

2
∂2ϕ

∂xh∂xi
(x0)(xh − x0h)(xi − x0i)

)

+
n∑
i=1

∂2

∂x2
i

(
ε(xi − x0i)

2

)
=

n∑
i=1

∂

∂xi

(
∂ϕ

∂xi
(x0)

)
+

1

2

n∑
i=1

∂

∂xi

(
2
∂2ϕ

∂x2
i

(x0)(xi − x0i)

)
+

n∑
i=1

∂

∂xi

( n∑
h=1
h6=i

2
∂2ϕ

∂xh∂xi
(x0)(xh − x0h)

)
+

n∑
i=1

∂

∂xi

(
2ε(xi − x0i)

)

=
1

2

n∑
i=1

2
∂2ϕ

∂x2
i

(x0) +
n∑
i=1

2ε =
n∑
i=1

∂2ϕ

∂x2
i

(x0) + 2ε
n∑
i=1

1

= ∆ϕ(x0) + 2εn ≥ 0,

namely

∆Pε = ∆ϕ(x0) + 2εn ≥ 0,

and letting ε go to 0,

lim
ε→0

∆Pε = lim
ε→0

(∆ϕ(x0) + 2εn) = ∆ϕ(x0) ≥ 0,
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that is ∆ϕ(x0) ≥ 0.

Analogously, repeating the same argument, if ϕ ∈ C2(Ω) and u− ϕ realizes

a local minimum at x0 ∈ Ω, ∆ϕ(x0) ≤ 0.

To sum it up, Definition 1.10 implies Definition 1.9 and thus Definition 1.9

and Definition 1.10 are equivalent.

Now, u∗ satisfies Definition 1.10 in Bρ, thus u∗ also satisfies

Definition 1.9.

We want to show that if u∗ satisfies Definition 1.10, u∗ is harmonic in the

classical sense.

Notice that, since ũ ∈ C(Bρ ∩ {xn ≥ 0}), u∗ ∈ C(Bρ).

First of all, we prove that for every ball Br ⊂⊂ Bρ,

max
Br

u∗ = max
∂Br

u∗ and min
Br

u∗ = min
∂Br

u∗.

Fix Br ⊂⊂ Bρ and assume for contradiction that max
Br

u∗ 6= max
∂Br

u∗.

In particular, because ∂Br ⊂ Br, it means that max
Br

u∗ > max
∂Br

u∗, i.e. there

exists x0 ∈ Br such that u∗(x0) = max
Br

u∗ and u∗(x0) > M = max
∂Br

u∗.

Let us define now the auxiliary function

w(x) = u∗ − (M − ε |x− x0|2), ε > 0,

in such a way that w(x) < w(x0) on ∂Br.

To obtain such a function, it is sufficient to remark that ∀x ∈ ∂Br, given

that |x− x0| ≤ |x|+ |x0| , |x| = r, |x0| < r and u∗(x) ≤M ,

w(x) = u∗(x)−M + ε |x− x0|2

≤ u∗(x)−M + ε(|x|+ |x0|)2

< u∗(x)−M + ε(2r)2

= u∗(x)−M + 4εr2 ≤ 4εr2

and require that 4εr2 < w(x0) = u∗(x0) −M in order to get w(x) < w(x0)

on ∂Br.
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Thus for every ε < u∗(x0)−M
4r2 there exists xε ∈ Br such that

max
Br

w = w(xε), (1.21)

seeing as how w|∂Br < w(x0) and x0 ∈ Br, so max
Br

w is reached in an internal

point of Br.

In this case the function ϕε = M − ε |x− x0|2 is C2(Bρ) and xε ∈ Br.

At this point, in view of (1.21), ∀x ∈ Br we have

u∗(x)− ϕε(x) = w(x) ≤ w(xε) = u∗(xε)− ϕε(xε),

that is xε is a maximum for u∗ − ϕε in Br.

Also,

∆ϕε(xε) =

( n∑
i=1

∂2

∂x2
i

(
M − ε |x− x0|2

))
(xε)

=

( n∑
i=1

∂2

∂x2
i

(
M

)
+

n∑
i=1

∂2

∂x2
i

(
− ε

n∑
h=1

(xh − x0h)2

))
(xε)

=
n∑
i=1

∂2

∂x2
i

(
− ε(xi − x0i)

2

)
(xε) =

( n∑
i=1

∂

∂xi

(
− 2ε(xi − x0i)

))
(xε)

=

( n∑
i=1

−2ε

)
(xε) = −2nε < 0,

in other words

∆ϕε(xε) = −2nε < 0. (1.22)

Now, since u∗ is harmonic in the viscosity sense, ϕε ∈ C2(Bρ) and u∗ − ϕε
realizes a local maximum at xε,

∆ϕε(xε) ≥ 0,

which contradicts (1.22).

Thus, for every ball Br ⊂⊂ Bρ,

max
Br

u∗ = max
∂Br

u∗
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and analogously, repeating the same argument,

min
Br

u∗ = min
∂Br

u∗.

Let us prove now that u∗ ∈ C2(Bρ).

The strategy is the following: let us fix Br ⊂⊂ Bρ and taking h solution of

the Dirichlet problem ∆h = 0 in Br

h = u∗ on ∂Br.

We want to show that h = u∗ for every x ∈ Br.

We know that, since h is solution of the Dirichlet problem, u∗ − h ∈ C(Br).

For every ψ ∈ C2(Bρ) such that

(u∗ − h)− ψ ≤ (u∗ − h)(x0)− ψ(x0),

with x0 ∈ Br, we get ∆ψ(x0) ≥ 0 because

u∗ − (h+ ψ) = (u∗ − h)− ψ ≤ (u∗ − h)(x0)− ψ(x0) = u∗(x0)− (h+ ψ)(x0),

that is h + ψ ∈ C2(Br) (h is solution of the Dirichlet problem) is such that

u∗ − (h+ ψ) realizes a local maximum at x0.

Therefore, inasmuch u∗ is harmonic in the viscosity sense and h is solution

of the Dirichlet problem in Br,

∆(h+ ψ)(x0) = ∆h(x0) + ∆ψ(x0) = ∆ψ(x0) ≥ 0.

As a consequence, u∗ − h satisfies Definition 1.9 and, as a byproduct, for

what we have seen before, u∗ − h satisfies the maximum principle, namely

min
∂Br

(u∗ − h) = min
Br

(u∗ − h), max
∂Br

(u∗ − h) = max
Br

(u∗ − h).

In particular, we have ∀x ∈ Br

0 = min
∂Br

(u∗−h) = min
Br

(u∗−h) ≤ u∗−h ≤ max
Br

(u∗−h) = max
∂Br

(u∗−h) = 0

Hence, u∗ − h = 0 in Br, i.e. u∗ = h in Br and since h is solution of the

Dirichlet problem in Br, u
∗ ∈ C2(Br).
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Now, since Bρ is a compact, we can cover Bρ with a finite number of balls

Br, where u∗ is equal to the solution of the Dirichlet problem in Br and

u∗ ∈ C2(Br), thus u∗ is harmonic in the classical sense in Bρ and u∗ ∈ C2(Bρ).

In particular u∗ ∈ C∞(Bρ), hence ũ ∈ C∞(Bρ ∩ {xn ≥ 0}) and is harmonic

in the classical sense in Bρ ∩ {xn > 0} , in other words,

∆ũ = 0 in Bρ ∩ {xn > 0} in the classical sense. (1.23)

Remain to show that ũ satisfies ũn = ∂ũ
∂xn

= 0 on Bρ∩{xn = 0} in the classical

sense.

First of all, notice that ∂ũ
∂xn

exists on Bρ ∩ {xn = 0} , because

ũ ∈ C∞(Bρ ∩ {xn ≥ 0}).
Analogously, ∂u∗

∂xn
exists on Bρ ∩ {xn = 0} , given that u∗ ∈ C∞(Bρ).

In addition, if x̄ ∈ Bρ ∩ {xn = 0} ,

∂u∗

∂xn
(x̄) = lim

t→0+

u∗(x̄+ ten)− u∗(x̄)

t
= lim

t→0−

u∗(x̄+ ten)− u∗(x̄)

t
. (1.24)

Now, if x̄ ∈ Bρ ∩ {xn = 0} , x̄ = (x̄′, 0) and

lim
t→0+

u∗(x̄+ ten)− u∗(x̄)

t
= lim

t→0+

u∗(x̄′, t)− u∗(x̄′, 0)

t

= lim
t→0+

ũ(x̄′, t)− ũ(x̄′, 0)

t
=

∂ũ

∂xn
(x̄′, 0), (1.25)

seeing as how t > 0, hence u∗(x̄′, t) = ũ(x̄′, t), while

lim
t→0−

u∗(x̄+ ten)− u∗(x̄)

t
= lim

t→0−

u∗(x̄′, t)− u∗(x̄′, 0)

t

= lim
t→0−

ũ(x̄′,−t)− ũ(x̄′, 0)

t
= lim

t→0−
− ũ(x̄′,−t)− ũ(x̄′, 0)

−t

= − lim
t→0−

ũ(x̄′,−t)− ũ(x̄′, 0)

−t
h=−t
= − lim

h→0+

ũ(x̄′, h)− ũ(x̄′, 0)

h

= − ∂ũ

∂xn
(x̄′, 0) (1.26)

since t < 0, hence u∗(x̄′, t) = ũ(x̄′,−t).
Therefore, from (1.24), (1.25) and (1.26), we achieve

∂ũ

∂xn
(x̄′, 0) = −∂ũ

xn
(x̄′, 0)
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and thus
∂ũ

∂xn
(x̄′, 0) = 0.

For the arbitrariness of x̄ ∈ Bρ ∩ {xn = 0} , we get

∂ũ

∂xn
= 0 on Bρ ∩ {xn = 0} in the classical sense. (1.27)

In conclusion, from (B.13) and (B.15) we obtain that ũ is a classical solution

of ∆ũ = 0 in Bρ ∩ {xn > 0}

ũn = ∂ũ
xn

= 0 on Bρ ∩ {xn = 0} .





Chapter 2

A Harnack inequality for a

one-phase free boundary

problem

In this chapter, we will show that a Harnack type inequality is satisfied

by a solution u to our problem
∑
i,j

aij(x)uij = f in Ω+(u),

|∇u| = g on F (u),

(2.1)

under the assumption (0 < ε < 1)

‖f‖L∞(Ω) ≤ ε2, ‖g − 1‖L∞(Ω) ≤ ε2, ‖aij − δij‖L∞(Ω) ≤ ε. (2.2)

This theorem, although it is called “Harnack inequality”, is rather different

from the classical Harnack inequality.

Indeed, it roughly says that if the graph of u oscillates εr away from x+
n in

Br, then it oscillates (1− c)εr in Br/20, with 0 < c < 1.

As regards the proof of this Harnack inequality, it relies on Lemma 2.3,

which will be introduced and proved after the statement of the theorem.

As a matter of fact, before Lemma 2.3, a remark concerning the Harnack

inequality will lead to a corollary, which will be a key tool in the proof of

Theorem 4.2.

25
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Notation. A positive constant depending only on the dimension n is called

a universal constant. We often use c, ci to denote small universal constants,

and C, Ci to denote large universal constants.

Theorem 2.1 (Harnack inequality). There exists a universal constant ε̄

such that if u solves (2.1)-(2.2), and for some point x0 ∈ Ω+(u) ∪ F (u),

(xn + a0)+ ≤ u(x) ≤ (xn + b0)+ in Br(x0) ⊂ Ω (2.3)

with

b0 − a0 ≤ εr, ε ≤ ε̄,

then

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in Br/20(x0)

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)εr,

and 0 < c < 1 universal.

Before showing the proof of Theorem 2.1, we observe that if Theorem 2.1

holds, it follows an important corollary which we will use in the proof of our

main result.

Corollary 2.2. Let u be a solution to (2.1)-(2.2) satisfying (2.3) for r = 1.

Then in B1(x0),

ũε(x) =
u(x)− xn

ε

has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e.

for all x ∈ (Ω+(u) ∪ F (u)) ∩B1(x0) with |x− x0| ≥ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C |x− x0|γ .

Proof . Let us begin the proof claiming that if u is a solution to (2.1)-(2.2)

satisfying (2.3) with r = 1, then we can apply the Harnack inequality repeat-

edly to obtain

(xn + am)+ ≤ u(x) ≤ (xn + bm)+ in B20−m(x0) (2.4)
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with

bm − am ≤ (1− c)mε

for all m’s such that

(1− c)m−120m−1ε ≤ ε̄.

This result follows by an induction on m’s such that

(1− c)m−120m−1ε ≤ ε̄.

Precisely, for m = 1, applying the Harnack inequality con r = 1, we get

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B20−1(x0)

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)ε

and

(1− c)0200ε = ε ≤ ε̄.

Suppose now that the result holds for m and we show that it holds for m+1.

From the hypothesis of induction, we have

(xn + am)+ ≤ u(x) ≤ (xn + bm)+ in B20−m(x0)

with

bm − am ≤ (1− c)mε

and

(1− c)m−120m−1ε ≤ ε̄.

To apply the Harnack inequality, we must have

bm − am ≤ δ 20−m

with

δ ≤ ε̄.

Specifically, we know from the hypothesis of induction that

bm − am ≤ (1− c)mε = (1− c)mε20m20−m = (1− c)m20mε20−m,
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hence, if

(1− c)m20mε ≤ ε̄,

we can apply the Harnack inequality and we obtain

(xn + am+1)+ ≤ u(x) ≤ (xn + bm+1)+ in B20−(m+1)(x0)

with

bm+1 − am+1 ≤ (1− c)(1− c)m20mε20−m = (1− c)m+1ε.

Notice that when we apply the Harnack inequality repeatedly, given that u

solves (2.1)-(2.2) with ε, u solves (2.1)-(2.2) even with (1− c)m−120m−1ε, so

we can apply the Harnack inequality repeatedly.

This result implies that for all such m’s, the oscillation of the function

ũε(x) =
u(x)− xn

ε

in (Ω+(u)∪F (u))∩Br(x0) = (Ω+(u)∩Br(x0))∪ (F (u)∩Br(x0)), r = 20−m,

is less than (1− c)m = 20−γm = rγ.

Indeed, ∀x ∈ Ω+(u) ∩Br(x0), we have

0 < u(x) ≤ (xn + bm)+,

thus, since (xn + bm)+ > 0,

(xn + bm)+ = xn + bm

and from (2.4)

xn + am ≤ (xn + am)+ ≤ u(x) ≤ (xn + bm)+ = xn + bm in Ω+(u) ∩Br(x0),

in other words

xn + am ≤ u(x) ≤ xn + bm in Ω+(u) ∩Br(x0). (2.5)

Furthermore, in view of (2.5), we have

am ≤ u(x)− xn ≤ bm ≤ am + (1− c)mε in Ω+(u) ∩Br(x0),
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that is

am ≤ u(x)− xn ≤ am + (1− c)mε in Ω+(u) ∩Br(x0),

which entails

osc
Ω+(u)∩Br(x0)

(u− xn) = sup
Ω+(u)∩Br(x0)

(u− xn) − inf
Ω+(u)∩Br(x0)

(u− xn)

≤ am + (1− c)mε− am = (1− c)mε,

i.e.

osc
Ω+(u)∩Br(x0)

(u− xn) ≤ (1− c)mε. (2.6)

Consequently, from (2.6), we achieve

osc
Ω+(u)∩Br(x0)

ũε = osc
Ω+(u)∩Br(x0)

(
u− xn
ε

)
=

1

ε
osc

Ω+(u)∩Br(x0)
(u− xn)

≤ (1− c)mε
ε

= (1− c)m,

which gives

osc
Ω+(u)∩Br(x0)

ũε ≤ (1− c)m. (2.7)

On F (u) ∩Br(x0), instead, we have from (2.4)

(xn + am)+ ≤ u(x) = 0 ∀x ∈ F (u) ∩Br(x0)

and thus, since 0 ≤ (xn + am)+,

(xn + am)+ = 0 on F (u) ∩Br(x0),

which also gives

xn + am ≤ 0 on F (u) ∩Br(x0)

and

xn ≤ −am on F (u) ∩Br(x0). (2.8)

Now, from (2.4), if (xn + bm)+ = 0, that is xn + bm ≤ 0 and xn ≤ −bm, we

have u = 0, inasmuch as u is a solution to (2.1) and as a consequence u ≥ 0.

Also, if we take a point x̄ ∈ Br(x0)∩{xn < −bm}, since Br(x0)∩{xn < −bm}
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is open, we can find a ball Br̄(x̄) ⊂ Br(x0) ∩ {xn < −bm}, where u = 0 and

thus Bx̄(r̄) ∩ Ω+(u) = ∅, in other words x̄ /∈ F (u).

Therefore, F (u) ∩ (Br(x0) ∩ {xn < −bm}) = ∅, namely

xn ≥ −bm in F (u) ∩Br(x0). (2.9)

To sum it up, if x ∈ F (u) ∩Br(x0), we have, in view of (2.8) and (2.9),

xn ≤ −am and xn ≥ −bm,

hence

am ≤ −xn and − xn ≤ bm,

which implies

am ≤ −xn ≤ bm ≤ am + (1− c)mε,

that is

am ≤ −xn ≤ am + (1− c)mε on F (u) ∩Br(x0). (2.10)

Notice that, because u = 0 on F (u) ∩Br(x0),

u(x)− xn = −xn on F (u) ∩Br(x0),

thus, in view of (2.10)

am ≤ u(x)− xn ≤ am + (1− c)mε,

which implies, repeating the same calculations done to get (2.6) with F (u)∩
Br(x0) in place of Ω+(u) ∩Br(x0),

osc
F (u)∩Br(x0)

(u− xn) ≤ (1− c)mε. (2.11)

As a consequence, repeating the same computations done to obtain (2.7)

with F (u) ∩Br(x0) in place of Ω+(u) ∩Br(x0), we have

osc
F (u)∩Br(x0)

ũε ≤ (1− c)m. (2.12)

Hence, inasmuch

(Ω+(u) ∪ F (u)) ∩Br(x0) = (Ω+(u) ∩Br(x0) ∪ (F (u) ∩Br(x0)),
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from (2.7) and (2.12) we achieve that for all m’s such that

(1− c)m−120m−1ε ≤ ε̄,

we have

osc
(Ω+(u)∪F (u))∩B20−m (x0)

ũε ≤ (1− c)m = 20−mγ.

Moreover, if x ∈ (Ω+(u) ∪ F (u)) ∩ B20−m(x0), seeing as how x0 ∈ (Ω+(u) ∪
F (u)) ∩B20−m(x0) by the hypothesis of the Harnack inequality,

ũε(x)− ũε(x0) ≤ osc
(Ω+(u)∪F (u))∩B20−m (x0)

ũε ≤ 20−mγ,

ũε(x0)− ũε(x) ≤ osc
(Ω+(u)∪F (u))∩B20−m (x0)

ũε ≤ 20−mγ,

and these two conditions imply

max(ũε(x)− ũε(x0), ũε(x0)− ũε(x)) = |ũε(x)− ũε(x0)| ≤ 20−mγ,

i.e.

|ũε(x)− ũε(x0)| ≤ 20−mγ. (2.13)

In particular, we can choose c such that (1− c)20 > 1, so there exists m that

satisfies

(1− c)m20mε > ε̄,

hence

(1− c)m ε
ε̄
> 20−m

and raising both the terms of the inequality to γ, with 0 < γ < 1, recalling

that both the terms are positive or equal to 0,

(1− c)mγ
(
ε

ε̄

)γ
> 20−mγ. (2.14)

Now, if x ∈ (Ω+(u) ∪ F (u)) ∩ B1(x0), with |x− x0| ≥ ε/ε̄, there exists m

such that

|ũε(x)− ũε(x0)| ≤ 20−mγ
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from (2.13).

Furthermore, from (2.14), we have

|ũε(x)− ũε(x0)| ≤ 20−mγ = 20−mγ
20−mγ

20−mγ
≤ 20−mγ

20−mγ
(1− c)mγ

(
ε

ε

)γ
,

in other words

|ũε(x)− ũε(x0)| ≤ 20−mγ

20−mγ
(1− c)mγ

(
ε

ε

)γ
. (2.15)

As a consequence, because |x− x0| ≥ ε/ε̄, from (2.15) we get

|ũε(x)− ũε(x0)| ≤ 20−mγ

20−mγ
(1− c)mγ |x− x0|γ = C |x− x0|γ ,

namely

|ũε(x)− ũε(x0)| ≤ C |x− x0|γ

∀x ∈ (Ω+(u) ∪ F (u)) ∩B1(x0), |x− x0| ≥ ε/ε̄.

Thus, ũε has a Hölder modulus of continuity at x0, outside the ball of radius

ε/ε̄.

The proof of the Harnack inequality relies on the following lemma.

Lemma 2.3. There exists a universal constant ε̄ > 0 such that if u is a

solution to (2.1)-(2.2) in B1 with 0 < ε ≤ ε̄ and u satisfies

p(x)+ ≤ u(x) ≤ (p(x) + ε)+, x ∈ B1, p(x) = xn + σ, |σ| < 1/10, (2.16)

then if at x̄ = 1
5
en

u(x̄) ≥
(
p(x̄) +

ε

2

)+

, (2.17)

then

u ≥ (p+ cε)+ in B1/2 (2.18)

for some 0 < c < 1. Analogously, if

u(x̄) ≤
(
p(x̄) +

ε

2

)+

,

then

u ≤ (p+ (1− c)ε)+ in B1/2.
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Proof . We prove the first statement.

From (2.16), since p+ ≥ p,

u ≥ p in B1. (2.19)

Let

w = c(|x− x̄|−γ − (3/4)−γ) (2.20)

be defined in the closure of the annulus

A := B3/4(x̄) \ B1/20(x̄).

The constant c is such that w satisfies the boundary conditionsw = 0 on ∂B3/4(x̄),

w = 1 on ∂B1/20(x̄).

In particular, we have

w = c((3/4)−γ − (3/4)−γ) = 0 in ∂B3/4(x̄),

and

w = c((1/20)−γ − (3/4)−γ) = 1 in ∂B1/20(x̄),

thus

c =
1

(1/20)−γ − (3/4)−γ

and

w =
1

(1/20)−γ − (3/4)−γ
(|x− x̄|−γ − (3/4)−γ).

Also, because ‖aij − δij‖L∞(B1) ≤ ε, as long as ε is small enough, the matrix

(aij) is uniformly elliptic, (see Lemma A.5 in Appendix A for the proof of

this result) and we can choose the constant γ universal so that∑
i,j

aij(x)wij ≥ δ > 0 in A

with δ universal.

Notice that w ∈ C∞(A), so all the second derivatives of w exist and are
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continuous in A.

Let us show that we can choose γ as we have said above.

Precisely, keeping c in the expression of w for the sake of simplicity, we have

∂w

∂xi
=

∂

∂xi

(
c(|x− x̄|−γ − (3/4)−γ)

)
= −γc |x− x̄|−γ−1 ∂

∂xi

(
|x− x̄|

)
= −γc |x− x̄|−γ−1 xi − x̄i

|x− x̄|
= −γc |x− x̄|−γ−2 (xi − x̄i),

in other words
∂w

∂xi
= −γc |x− x̄|−γ−2 (xi − x̄i), (2.21)

and from (2.21)

∂2w

∂xj∂xi
=

∂

∂xj

(
− γc |x− x̄|−γ−2 (xi − x̄i)

)
= −γc ∂

∂xj

(
|x− x̄|−γ−2

)
(xi − x̄i)− γc |x− x̄|−γ−2 ∂

∂xj

(
xi − x̄i

)
= cγ(γ + 2) |x− x̄|−γ−3 (xj − x̄j)

|x− x̄|
(xi − x̄i)− cγδij |x− x̄|−γ−2

= cγ(γ + 2) |x− x̄|−γ−4 (xi − x̄i)(xj − x̄j)− cγ |x− x̄|−γ−2 δij,

which gives

∂2w

∂xj∂xi
= cγ(γ+2) |x− x̄|−γ−4 (xi− x̄i)(xj− x̄j)−cγ |x− x̄|−γ−2 δij. (2.22)

Hence, from (2.21) and (2.22), we obtain, inasmuch (aij) is uniformly elliptic,∑
i,j

aij(x)wij = cγ(γ + 2) |x− x̄|−γ−4
∑
i,j

aij(x)(xi − x̄i)(xj − x̄j)

− cγ |x− x̄|−γ−2
∑
i,j

aijδij

≥ λcγ(γ + 2) |x− x̄|−γ−4 |x− x̄|2 − cγ |x− x̄|−γ−2
∑
i

aii

= cγ

(
λ(γ + 2)− Tr(A)

)
|x− x̄|−γ−2

≥ cγ (λ(γ + 2)− nΛ) |x− x̄|−γ−2 ,
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i.e. ∑
i,j

aij(x)wij ≥ cγ (λ(γ + 2)− nΛ) |x− x̄|−γ−2 . (2.23)

Moreover, in A we have |x− x̄| ≤ 3/4, thus, since γ > 0,

|x− x̄|−γ−2 ≥ (3/4)−γ−2 in A. (2.24)

Therefore, if we take

λ(γ + 2) > nΛ,

that is

γ + 2 > n
Λ

λ
,

and

γ > n
Λ

λ
− 2,

we get in view of (2.23) and (2.24)

∑
i,j

aij(x)wij ≥ cγ

(
λ(γ + 2)− nΛ

)(
3

4

)−γ−2

= δ > 0 in A,

in other words ∑
i,j

aij(x)wij ≥ δ (2.25)

with δ universal, as desired.

Extend now w to be equal to 1 on B1/20(x̄).

Notice that because |σ| < 1/10, using (2.19), we obtain

B1/10(x̄) ⊂ B+
1 (u). (2.26)

In particular, first of all we prove that B1/10(x̄) ⊂ B1.

Remark that x̄ = 1
5
en, thus |x̄| = 1

5
.

Now, if x ∈ B1/10(x̄) we have

|x| = |x− x̄+ x̄| ≤ |x− x̄|+ |x̄| < 1

10
+

1

5
=

3

10
< 1,

that is |x| < 1, and hence

B1/10(x̄) ⊂ B1. (2.27)
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As consequence, we obtain from (2.19) and (2.27)

u ≥ p in B1/10(x̄). (2.28)

Also, if x ∈ B1/10(x̄) we have

|x− x̄| =

√
x2

1 + x2
2 + . . .+ x2

n−1 +

(
xn −

1

5

)2

<
1

10
,

thus ∣∣∣∣xn − 1

5

∣∣∣∣ ≤
√
x2

1 + x2
2 + . . .+ x2

n−1 +

(
xn −

1

5

)2

<
1

10
,

i.e. ∣∣∣∣xn − 1

5

∣∣∣∣ < 1

10
,

which implies

− 1

10
< xn −

1

5
<

1

10

and

xn >
1

5
− 1

10
=

1

10
. (2.29)

Now, inasmuch |σ| < 1
10

, σ > − 1
10

, so, from (2.29), we get

p(x) = xn + σ > xn −
1

10
>

1

10
− 1

10
= 0 in B1/10(x̄),

namely

p(x) > 0 in B1/10(x̄),

which entails from (2.28) and (2.27)

u > 0 in B1/10(x̄) ⊂ B1,

that is

B1/10(x̄) ⊂ B+
1 (u).

In addition to this fact, we have

B1/2 ⊂⊂ B3/4(x̄) ⊂⊂ B1,
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in other words,

B1/2 ⊂ B3/4(x̄) and B3/4(x̄) ⊂ B1,

inasmuch B1/2 and B3/4(x̄) are compacts.

Indeed, if x ∈ B1/2,

|x− x̄| ≤ |x|+ |x̄| ≤ 1

2
+

1

5
=

7

10
<

3

4
,

namely

|x− x̄| < 3

4
,

which gives

B1/2 ⊂ B3/4(x̄). (2.30)

At the same time, if x ∈ B3/4(x̄),

|x| = |x− x̄+ x̄| ≤ |x− x̄|+ |x̄| ≤ 3

4
+

1

5
=

19

20
< 1,

i.e.

|x| < 1,

which entails

B3/4(x̄) ⊂ B1. (2.31)

As a consequence, from (2.30) and (2.31), we achieve

B1/2 ⊂ B3/4(x̄) and B3/4(x̄) ⊂ B1. (2.32)

Notice that u− p solves, in the viscosity sense, a uniformly elliptic equation

in B1/10(x̄) with right-hand side f .

Precisely, let us take ϕ ∈ C2(B1/10(x̄)) touching u − p from below at x0 ∈
B1/10(x̄).

Therefore we have

ϕ(x0) = (u− p)(x0) = u(x0)− p(x0),

which gives

(ϕ+ p)(x0) = ϕ(x0) + p(x0) = u(x0), (2.33)
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and

ϕ(x) ≤ (u− p)(x) = u(x)− p(x) in a neighborhood O of x0,

which implies

(ϕ+ p)(x) = ϕ(x) + p(x) ≤ u(x) in O. (2.34)

Hence, in view of (2.33) and (2.34), we obtain that (ϕ + p) touches u from

below at x0, with ϕ + p ∈ C2(B1/10(x̄)), since p = xn + σ ∈ C∞(B1) and

B1/10(x̄) ⊂ B1 from (2.27).

To use the fact that u is a viscosity solution in B1, we have to show that

x0 ∈ B+
1 (u), but x0 ∈ B1/10(x̄), thus from (2.26), x0 ∈ B+

1 (u).

Therefore, since u is a viscosity solution to (2.1) in B1 and (ϕ + p) ∈
C2(B1/10(x̄)) touches u from below at x0 ∈ B+

1 (u), we get, from the defi-

nition of viscosity solution,∑
i,j

aij(x0)(ϕ+ p)ij(x0) =
∑
i,j

aij(x0)(ϕ+ xn + σ)ij(x0)

=
∑
i,j

aij(x0)ϕij(x0) +
∑
i,j

aij(x0)(xn + σ)ij(x0)

=
∑
i,j

aij(x0)ϕij(x0) ≤ f(x0)

hence ∑
i,j

aij(x0)ϕij(x0) ≤ f(x0). (2.35)

We repeat the same argument if ϕ ∈ C2(B1/10) touches u − p from above

at x0 ∈ B1/10(x̄), but with opposite inequalities, and we achieve from (2.35)

that u− p solves, in the viscosity sense, the uniformly elliptic equation∑
i,j

aij(x)(u− p)ij = f in B1/10(x̄). (2.36)

In addition from (2.28) and (2.27), we have u − p ≥ 0 in B1/10(x̄). Conse-

quently, in view of this fact, together with (2.36), we can apply the Harnack

inequality to obtain

sup
B1/20(x̄)

(u− p) ≤ C1

(
inf

B1/20(x̄)
(u− p) + C2 ‖f‖L∞

)
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thus, inasmuch u(x̄)− p(x̄) ≤ sup
B1/20(x̄)

(u− p) and inf
B1/20(x̄)

(u− p) ≤ u(x)− p(x)

∀x ∈ B1/20(x̄),

u(x̄)− p(x̄) ≤ C1(u(x)− p(x) + C2 ‖f‖L∞) in B1/20(x̄),

that is, calling 1
C1

= c and C = C2

u(x)− p(x) ≥ c(u(x̄)− p(x̄))− C ‖f‖L∞ in B1/20(x̄). (2.37)

Now, from (2.17), we get,

u(x̄) ≥ (p(x̄) + ε/2)+ ≥ p(x̄) + ε/2,

i.e.

u(x̄)− p(x̄) ≥ ε/2.

In view of this fact, together with the first inequality in (2.2), namely ‖f‖L∞ ≤
ε2, we achieve from (2.37)

u− p ≥ c
ε

2
− Cε2 = ε

( c
2
− Cε

)
≥ c0ε in B1/20(x̄),

in other words

u− p ≥ c0ε in B1/20(x̄), (2.38)

as long as ε is small enough to satisfy c
2
− Cε > 0, i.e. ε < c

2C
. Now set

v(x) = p(x) + c0ε(w(x)− 1), x ∈ B3/4(x̄), (2.39)

and for t ≥ 0,

vt(x) = v(x) + t, x ∈ B3/4(x̄). (2.40)

Remark that, from (2.39) and (2.40) we have∑
i,j

aij(x)(vt)ij =
∑
i,j

aij(x)(v(x) + t)ij

=
∑
i,j

aij(x)(p(x) + c0ε(w(x)− 1) + t)ij

=
∑
i,j

aij(x)(xn + σ + c0ε(w(x)− 1) + t)ij

=
∑
i,j

aij(x)c0εwij = c0ε
∑
i,j

aij(x)wij,
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i.e. ∑
i,j

aij(x)(vt)ij = c0ε
∑
i,j

aij(x)wij. (2.41)

Thus, in view of (2.25), inasmuch c0ε > 0, we obtain from (2.41)∑
i,j

aij(x)(vt)ij ≥ c0δε > ε2 in A,

that is ∑
i,j

aij(x)(vt)ij > ε2 in A, (2.42)

if we take ε such that 0 < ε < c0δ.

Now, according to the definition of vt in (2.40) we have

v0(x) = v(x) = p(x) + c0ε(w(x)− 1) ≤ p(x) ≤ u(x), x ∈ B3/4(x̄),

in other words

v0(x) ≤ u(x), x ∈ B3/4(x̄),

since B3/4(x̄) ⊂ B1 from (2.32), therefore p(x) ≤ u(x) in B3/4(x̄) from (2.19),

and w ≤ 1 in B3/4(x̄).

Concerning the last condition, indeed, for definition of w, we have

w = 1 in B1/20(x̄) and w = 0 in ∂B3/4(x̄). (2.43)

Moreover, in B3/4(x̄) \ B1/20(x̄), since γ > 0,

w =
1

(1/20)−γ − (3/4)−γ
(|x− x̄|−γ − (3/4)−γ) ≤ (1/20)−γ − (3/4)−γ

(1/20)−γ − (3/4)−γ
= 1,

i.e.

w ≤ 1 in B3/4(x̄) \ B1/20(x̄),

which implies, together with (2.43), w ≤ 1 in B3/4(x̄).

Let now t̄ be the largest t ≥ 0 such that

vt(x) ≤ u(x) in B3/4(x̄).

Notice that t̄ exists, since for t = 0, v0(x) ≤ u(x) in B3/4(x̄).

We want to show that t̄ ≥ c0ε. Indeed, if this condition is satisfied, we achieve
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the desired result.

Precisely, suppose t̄ ≥ c0ε. Then, using the definition (2.39) of v(x) we get

u(x) ≥ vt̄(x) = v(x) + t̄ = p(x) + c0ε(w(x)− 1) + t̄

= p(x) + c0εw(x)− c0ε+ t̄ ≥ p(x) + c0εw(x) in B3/4(x̄),

in other words

u(x) ≥ p(x) + c0εw(x) in B3/4(x̄). (2.44)

Now, we state that on B1/2 ⊂ B3/4(x̄) one has w(x) ≥ c2 for some universal

constant c2.

Sure enough, for definition, w ∈ C(B3/4(x̄)) and w > 0 in B3/4(x̄), thus,

inasmuch as B1/2 ⊂ B3/4(x̄) from (2.32), w ∈ C(B1/2) and w > 0 on B1/2.

Therefore, for Weierstrass extreme values theorem, since B1/2 is a compact

w ≥ min
B1/2

w = c2 > 0 on B1/2,

that is w ≥ c2 on B1/2 for some universal constant c2.

Consequently, we obtain from (2.44)

u(x) ≥ p(x) + c0εw(x) ≥ c0εc2 = p(x) + cε on B1/2,

which gives

u(x) ≥ p(x) + cε on B1/2. (2.45)

In particular, we notice that we have found c as c = c0c2, where 0 < c2 ≤ 1,

recalling that w ≤ 1 in B3/4(x̄) and thus also in B1/2 ⊂ B3/4(x̄) ⊂ B3/4(x̄)

from (2.32). In addition, we have taken c0 = c
2
−Cε in (2.38), which satisfies

0 < c0 < 1, if c
2
− Cε < 1, which gives Cε > c

2
− 1 and ε > c

2C
− 1

C
, which

is trivially verified if c
2C
− 1

C
< 0. Otherwise, we have already chosen ε so

that ε < c
2C
, therefore, inasmuch as c

2C
− 1

C
< c

2C
, we choose ε such that

c
2C
− 1

C
< ε < c

2C
.

To sum it up, we have 0 < c < 1.

Also, we know that u ≥ 0 in B1 ⊃ B1/2, since u is a viscosity solution to
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(2.1) in B1.

Hence, from (2.45), we get

u(x) ≥ max(p(x) + cε, 0) = (p(x) + cε)+ on B1/2,

in other words

u(x) ≥ (p(x) + cε)+ on B1/2,

with 0 < c < 1, as desired.

Suppose now t̄ < c0ε. Then at some x̃ ∈ B3/4(x̄) we have

vt̄(x̃) = u(x̃).

Indeed, if for contradiction x̃ does not exist, we have u(x)− vt̄(x) > 0 ∀x ∈
B3/4(x̄), seeing as how vt̄(x) ≤ u(x) in B3/4(x̄).

Moreover, because u ∈ C(B1) with B1 ⊃ B3/4(x̄) from (2.32), p ∈ C∞(B1),

thus p ∈ C(B3/4(x̄)), and w ∈ C(B3/4(x̄)), u − vt̄ ∈ C(B3/4(x̄)), so for

Weierstrass extreme values theorem, given that B3/4(x̄) is a compact, we can

define

t∗ := min
B3/4(x̄)

(u− vt̄), (2.46)

which satisfies t∗ > 0, recalling that u(x)− vt̄(x) > 0 ∀x ∈ B3/4(x̄).

Now, for the definition of t∗ in (2.46), we have

t∗ ≤ u(x)− vt̄(x) in B3/4(x̄),

which gives

vt̄(x) + t∗ = vt̄+t∗(x) ≤ u(x) in B3/4(x̄),

namely

vt̄+t∗ ≤ u(x) in B3/4(x̄).

Therefore, inasmuch t∗ > 0, we have found t̄+ t∗ > t̄ that realizes

vt̄+t∗(x) ≤ u(x) in B3/4(x̄),
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contradicting the definition of t̄.

As a consequence, x̃ exists.

We show that such a touching point can only occur on B1/20(x̄).

Indeed, since w ≡ 0 on ∂B3/4(x̄), from the definition (2.40) of vt we get

vt̄(x) = p(x) + c0ε(w(x)− 1) + t̄ = p(x)− c0ε+ t̄ on ∂B3/4(x̄),

i.e.

vt̄(x) = p(x)− c0ε+ t̄ on ∂B3/4(x̄). (2.47)

Using that t̄ < c0ε together with the fact that u ≥ p in B1 and thus also on

∂B3/4(x̄), because ∂B3/4(x̄) ⊂ B1 from (2.32), we then obtain from (2.47)

vt̄(x) = p(x)− c0ε+ t̄ < p(x) ≤ u(x) on ∂B3/4(x̄),

namely

vt̄ < u on ∂B3/4(x̄)

and hence x̃ cannot belong to ∂B3/4(x̄).

We now show that x̃ cannot belong to the annulus A.

First of all, in view of (2.42), we have for each t ≥ 0 and thus also for t̄,∑
i,j

aij(x)(vt̄)ij > ε2 in A

and moreover

|∇vt̄| = |∇(v + t̄)| = |∇v| ≥ |vn|

=

∣∣∣∣ ∂∂xn
(
p(x) + c0ε(w(x)− 1)

)∣∣∣∣
=

∣∣∣∣ ∂∂xn
(
xn + σ + c0ε(w(x)− 1)

)∣∣∣∣
= |1 + c0εwn| in A,

i.e.

|∇vt̄| ≥ |1 + c0εwn| in A. (2.48)
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At this point, we claim that

wn(x) ≥ c1 on {vt̄ ≤ 0} ∩ A,

for a universal constant c1.

Precisely, since w is radially symmetric, keeping c in the expression of w for

the sake of simplicity,

wn(x) =
∂

∂xn

(
c(|x− x̄|−γ − (3/4)−γ)

)
= −cγ |x− x̄|−γ−1 xn − x̄n

|x− x̄|
,

which gives

wn(x) = −cγ |x− x̄|−γ−1 xn − x̄n
|x− x̄|

, (2.49)

and furthermore,

∇w(x) =

(
− cγ |x− x̄|−γ−1 x1 − x̄1

|x− x̄|
, . . . ,−cγ |x− x̄|−γ−1 xn − x̄n

|x− x̄|

)
= −cγ |x− x̄|−γ−1 x− x̄

|x− x̄|
,

namely

∇w(x) = −cγ |x− x̄|−γ−1 x− x̄
|x− x̄|

. (2.50)

As a consequence, from (2.50), we achieve, because c, γ > 0,

|∇w(x)| = cγ |x− x̄|−γ−1

∣∣∣∣ x− x̄|x− x̄|

∣∣∣∣ = cγ |x− x̄|−γ−1 ,

which entails from (2.49) with x ∈ A, recalling that w is defined in B3/4(x̄) ⊃
A,

wn(x) = |∇w(x)| νx · en, x ∈ A, (2.51)

where νx is the unit direction of x̄− x.
Also, from the formula for w in (2.20), we get |∇w| > c on A for a constant

c.

Indeed, since |x− x̄| < 3/4 in A and γ > 0

|∇w(x)| = γ |x− x̄|−γ−1

(1/20)−γ − (3/4)−γ
>

γ(3/4)−γ−1

(1/20)−γ − (3/4)−γ
= c on A,
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namely

|∇w(x)| > c on A. (2.52)

In addition, νx · en is bounded below in the region {vt̄ ≤ 0} ∩ A.

Precisely, we declare that for ε small enough,

{vt̄ ≤ 0} ∩ A ⊂ {p ≤ c0ε} = {xn ≤ −σ + c0ε} ⊂ {xn < 3/20} .

Indeed, on {vt̄ ≤ 0} ∩ A, we have

vt̄ ≤ 0⇔ p(x) + c0ε(w(x)− 1) + t̄ ≤ 0⇔ p(x) ≤ c0ε(1− w(x))− t̄,

as a consequence, seeing as how t̄ ≥ 0, thus −t̄ ≤ 0 and 0 ≤ w(x) ≤ 1 in A,

so 1− w(x) ≤ 1, we obtain

p(x) ≤ c0ε on {vt̄ ≤ 0} ∩ A,

namely

{vt̄ ≤ 0} ∩ A ⊂ {p ≤ c0ε} . (2.53)

Now, recalling that p(x) = xn + σ

{p ≤ c0ε} = {xn + σ ≤ c0ε} = {xn ≤ −σ + c0ε} ,

which gives

{p ≤ c0ε} = {xn ≤ −σ + c0ε} . (2.54)

Furthermore, given that |σ| < 1/10, so σ > −1/10 and −σ < 1/10, for ε

small enough such that c0ε < 1/20, i.e. ε < 1/20
c0

,

{xn ≤ −σ + c0ε} ⊂ {xn < 1/10 + 1/20} = {xn < 3/20} ,

in other words

{xn ≤ −σ + c0ε} ⊂ {xn < 3/20} ,

which implies from (2.53) and (2.54)

{vt̄ ≤ 0} ∩ A ⊂ {xn < 3/20} . (2.55)
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To show that νx ·en is bounded below in the region {vt̄ ≤ 0}∩A, we remember

that x̄ = 1
5
en, in other words x̄n = 1

5
, hence, in view of (2.55) and because

|x− x̄| < 3/4 in A,

νx · en =
x̄n − xn
|x̄− x|

=
1
5
− xn
|x̄− x|

>
1
5
− 3

20
3
4

=
1
20
3
4

=
1

15
on {vt̄ ≤ 0} ∩ A,

i.e.

νx · en ≥
1

15
on {vt̄ ≤ 0} ∩ A. (2.56)

Hence, from (2.51), for (2.52) and (2.56), we achieve

wn(x) ≥ 1

15
c = c1 > 0 on {vt̄ ≤ 0} ∩ A,

namely

wn(x) ≥ c1 > 0 on {vt̄ ≤ 0} ∩ A. (2.57)

Consequently, in view of (2.57), we deduce from (2.48) that

|∇vt̄| ≥ |1 + c0εwn| = 1 + c0εwn

≥ 1 + c0εc1 = 1 + c2ε on {vt̄ ≤ 0} ∩ A,

that is

|∇vt̄| ≥ 1 + c2ε on {vt̄ ≤ 0} ∩ A, (2.58)

given that, if wn(x) ≥ c1 > 0 on {vt̄ ≤ 0} ∩ A, c0εwn > 0 on {vt̄ ≤ 0} ∩ A
and thus |1 + c0εwn| = 1 + c0εwn on {vt̄ ≤ 0} ∩ A.
In particular, for ε small enough such that c2ε > ε2, i.e. ε < c2, we get from

(2.58)

|∇vt̄| (x) > 1 + ε2 ≥ g(x) for x ∈ A ∩ {vt̄ ≤ 0} ,

in other words

|∇vt̄| > g(x) for x ∈ A ∩ {vt̄ ≤ 0} , (2.59)

inasmuch in view of the second inequality in (2.2) ‖g − 1‖L∞(B1) ≤ ε2, thus

|g(x)− 1| ≤ ε2, ∀x ∈ B1 ⊃ A, which gives |g(x)− 1| ≤ ε2 ∀x ∈ A and

g(x)−1 ≤ ε2 ∀x ∈ A, which also entails g(x) ≤ 1+ε2 ∀x ∈ Aand g(x) ≤ 1+ε2
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∀x ∈ A ∩ {vt̄ ≤ 0} , given that A ∩ {vt̄ ≤ 0} ⊂ A.

In addition, from (2.59) we also obtain

|∇vt̄| (x) > g(x) for x ∈ A ∩ F (vt̄) (2.60)

seeing as how F (vt̄) ∩ A ⊂ {vt̄ = 0} ∩ A ⊂ {vt̄ ≤ 0} ∩ A.
At this point, we have∑

i,j

aij(x)(vt̄)ij > ε2 ≥ f(x) in A ⊃ A+(vt̄),

i.e. ∑
i,j

aij(x)(vt̄)ij > f(x) in A+(vt̄), (2.61)

and from (2.60)

|∇vt̄| > g(x) for x ∈ A ∩ F (vt̄). (2.62)

Furthermore, vt̄ ∈ C2(A), given that p ∈ C∞(B1), with B1 ⊃ A and w ∈
C∞(A).

Therefore, from (2.61) and (2.62), together with the fact that vt̄ ∈ C2(A),

we get that vt̄ is a strict subsolution to (2.1) in A.

Moreover, for the definition of vt̄, we have vt̄ ≤ u in B3/4(x̄) ⊃ A, which gives

vt̄ ≤ u in A. In addition, u ≥ 0 in B1 ⊃ B3/4(x̄) ⊃ A, so u ≥ 0 in A, thus

u ≥ max (vt̄, 0) = v+
t̄ in A, in other words u ≥ v+

t̄ in A.

To sum it up, we have that vt̄ is a strict subsolution to (2.1) in A, u solves

(2.1) in A and u ≥ v+
t̄ in A.

Hence, according to Lemma 1.5, u > v+
t̄ ≥ vt̄ in A+(vt̄)∪ (A∩F (vt̄)), that is

u > vt̄ in A+(vt̄) ∪ (A ∩ F (vt̄)) and so

x̃ /∈ A+(vt̄) ∪ (A ∩ F (vt̄)). (2.63)

Consequently, if x̃ ∈ A, it means that x̃ ∈ A \ (A+(vt̄) ∪ (A ∩ F (vt̄))), which

entails vt̄(x̃) ≤ 0 and inasmuch u ≥ 0 in B1 ⊃ A, the only possibility is that

vt̄(x̃) = u(x̃) = 0, with x̃ /∈ F (vt̄).

Let us show that also this situation is not possible.

Indeed, for definition,

vt̄(x) = p(x) + c0ε(w(x)− 1) + t̄ = xn + σ+ c0ε(w(x)− 1) + t̄, x ∈ B3/4(x̄),
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thus if we fix a value of xn, x̄n, and we consider x = (x′, x̄n), we have

vt̄(x
′, x̄n) = x̄n + σ + c0ε(w(x′, x̄n)− 1) + t̄,

and, from the formula of w in (2.20), vt̄(x
′, x̄n) can vanish in A for only one

value of |x′| , which we call ρ.

In addition, w is strictly decreasing and continuous in A, hence also vt̄(x
′, x̄n),

which thus change its sign in a neighborhood of points (x′, x̄n) with |x′| = ρ.

As a consequence, for these points, ∀Br(x
′, x̄n), Br(x

′, x̄n)∩{vt̄ > 0} 6= ∅ and

Br(x
′, x̄n) ∩ {vt̄ ≤ 0} 6= ∅, also only from vt̄(x

′, x̄n) = 0.

Therefore, (x′, x̄n) ∈ F (vt̄).

From the arbitrariness of x̄n, we hence achieve that vt̄ only vanishes in A

in points which also belong to F (vt̄), consequently it cannot occur u(x̃) =

vt̄(x̃) = 0 with x̃ ∈ A and x̃ /∈ F (vt̄). Thus

x̃ /∈ A \ (A+(vt̄) ∪ (A ∩ F (vt̄))). (2.64)

Now, putting together (2.63) and (2.64), we get that x̃ cannot belong to A.

As a consequence, x̃ ∈ B3/4(x̄) \ (A ∪ ∂B3/4(x̄)) = B1/20(x̄) and, given

that w ≡ 1 in B1/20(x̄) and we have supposed t̄ < c0ε,

u(x̃) = vt̄(x̃) = p(x̃) + c0ε(w(x̃)− 1) + t̄ = p(x̃) + t̄ < p(x̃) + c0ε,

which implies

u(x̃)− p(x̃) < c0ε,

contradicting (2.38), seeing as how x̃ ∈ B1/20(x̄).

We are now ready to give the proof of the Harnack inequality.

Proof of Theorem 2.1. Assume without loss of generality

x0 = 0, r = 1.

According to (2.3),

p(x)+ ≤ u(x) ≤ (p(x) + ε)+ in B1
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with p(x) = xn + a0.

Sure enough, from the statement of Theorem 2.1, we have with x0 = 0 and

r = 1

(xn + a0)+ ≤ u(x) ≤ (xn + b0)+ in B1, (2.65)

together with

b0 − a0 ≤ ε

and

b0 ≤ a0 + ε.

Hence,

xn + b0 ≤ xn + a0 + ε in B1,

which implies

(xn + b0)+ ≤ (xn + a0 + ε)+ in B1,

and according to (2.65)

(xn + a0)+ ≤ u(x) ≤ (xn + a0 + ε)+ in B1,

namely

p(x)+ ≤ u(x) ≤ (p(x) + ε)+ in B1, (2.66)

with p(x) = xn + a0.

Now, if |a0| < 1/10, since u solves (2.1)-(2.2) in Ω ⊃ B1 and u satisfies

p(x)+ ≤ u(x) ≤ (p(x) + ε)+, x ∈ B1, p(x) = xn + a0, |a0| < 1/10,

then we can apply Lemma 2.3, and we achieve the desired result.

Indeed, for Lemma 2.3, if in x̄ = 1
5
en,

u(x̄) ≥ (p(x̄) + ε/2)+,

then

u ≥ (p+ cε)+ in B1/2 (2.67)

for

0 < c < 1 universal. (2.68)
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Therefore, given that B1/2 ⊂ B1, we have from (2.66) and (2.67)

(p(x) + cε)+ ≤ u(x) ≤ (p(x) + ε)+ in B1/2 ⊃ B1/20,

but according to (2.3), it is also satisfied

(p(x) + cε)+ = (xn + a0 + cε)+ ≤ u(x) ≤ (xn + b0)+ in B1/20,

with b0 − a0 − cε ≤ ε− cε = (1− c)ε.
Thus, if there exists b1, with a0 + cε < b1 < b0, such that

u(x) ≤ (xn + b1)+ in B1/20,

we can take a1 = a0 + cε, with a1 > a0, thereby we get

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20

with

a0 ≤ a1 ≤ b1 ≤ b0,

and

b1 − a1 = b1 − a0 − cε ≤ b0 − a0 − cε ≤ ε− cε = (1− c)ε,

with 0 < c < 1 universal from (2.68), as desired.

Otherwise, we can take b1 = b0 and a1 = a0 + cε and we obtain

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20

with

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 = b0 − a0 − cε ≤ ε− cε = (1− c)ε,

with 0 < c < 1 universal from (2.68), as desired. Instead, if in x̄ = 1
5
en,

u(x̄) ≤ (p(x̄) + ε/2)+,

then

u ≤ (p+ (1− c)ε)+ in B1/2
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for

0 < c < 1 universal. (2.69)

Therefore, from (2.66)

p(x)+ ≤ u(x) ≤ (p(x) + (1− c)ε)+ in B1/2 ⊃ B1/20,

but according to (2.3), we also have

p(x)+ ≤ u(x) ≤ (xn + b0)+ in B1/20.

Now, we have two different situations.

(i) When b0 ≤ a0 + (1 − c)ε, if there exists a0 ≤ b1 < b0 ≤ a0 + (1 − c)ε
such that

(xn + a0)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,

and furthermore, if there exists a1, with a0 < a1 ≤ b1 such that

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,

we get the desired result with

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 ≤ b1 − a0 ≤ a0 + (1− c)ε− a0 = (1− c)ε.

Otherwise if such a1 does not exist, we can take a1 = a0 and we achieve

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,

with

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 ≤ b1 − a0 ≤ b0 − a0 ≤ a0 + (1− c)ε− a0 = (1− c)ε,
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with 0 < c < 1 universal from (2.69), as desired.

If instead there does not exist b1 as before, we can take b1 = b0 ≤
a0 + (1− c)ε and, exactly how when b1 exists, we can also take a1, with

a0 ≤ a1 ≤ b0, such that

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,

with

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 ≤ b1 − a0 ≤ b0 − a0 ≤ a0 + (1− c)ε− a0 = (1− c)ε,

with 0 < c < 1 universal from (2.69), as desired.

(ii) When b0 > a0 + (1− c)ε, for every b1, with a0 + (1− c)ε ≤ b1 ≤ b0, we

have

u(x) ≤ (xn + a0 + (1− c)ε)+ ≤ (xn + b1)+ ≤ (xn + b0)+ in B1/20,

thus, if there exists a1, with b1 − (1 − c)ε ≤ a1 ≤ a0 + (1 − c)ε ≤ b1 ,

such that

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,

we get the desired result with

a1 ≥ b1 − (1− c)ε ≥ a0 + (1− c)ε− (1− c)ε = a0,

so

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 ≤ b1 − b1 + (1− c)ε = (1− c)ε.

Otherwise, if such a1 does not exist, we can take b1 = a0 +(1−c)ε < b0,

a1 = a0 and we obtain

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in B1/20,
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with

a0 ≤ a1 ≤ b1 ≤ b0

and

b1 − a1 ≤ b1 − a0 ≤ a0 + (1− c)ε− a0 = (1− c)ε,

with 0 < c < 1 universal from (2.69), as desired.

Now, suppose instead that |a0| ≥ 1/10.

If a0 ≤ −1/10, then (for ε small) 0 belongs to the zero phase of (p(x) + ε)+.

Indeed, p(0) + ε = a0 + ε, hence if 0 < ε < −a0, with ε small, we have

p(0) + ε = a0 + ε < a0 − a0 = 0,

that is

(p(x) + ε)+(0) = 0

and furthermore, we can find a ball Br, with r < min (−a0 − ε, 1) (notice

that −a0 − ε > 0 for the choice of ε), such that if x ∈ Br,

p(x) + ε = xn + a0 + ε < r + a0 + ε < −a0 − ε+ a0 + ε = 0,

given that xn ≤ |xn| ≤ |x| < r, i.e. xn < r, and r < min (−a0 − ε, 1).

Therefore, p(x) + ε < 0 in Br, so (p(x) + ε)+ = 0 in Br, which implies that

0 belongs to the zero phase of (p(x) + ε)+.

Also, we have from (2.66)

0 ≤ p(x)+ ≤ u(x) ≤ (p(x) + ε)+ = 0 in Br ⊂ B1,

namely u ≡ 0 in Br.

Hence, if u ≡ 0 in Br, seeing as how 0 ∈ Br, u(0) = 0, i.e. 0 /∈ Ω+(u).

In addition, if u ≡ 0 in Br, Br ∩Ω+(u) = ∅, thereby 0 /∈ ∂Ω+(u) ⊃ ∂Ω+(u)∩
Ω = F (u), that is 0 /∈ F (u).

Considering these two facts together, we achieve that 0 /∈ Ω+(u) ∪ F (u),

which contradicts the hypothesis 0 ∈ Ω+(u) ∪ F (u).

If instead a0 ≥ 1/10, then B1/10 ⊂ B+
1 (u).
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Precisely, B1/10 ⊂ B1 and moreover if x ∈ B1/10, |xn| ≤ ‖x‖ < 1/10, i.e.

|xn| < 1/10 and xn > −1/10, hence

p(x) = xn + a0 > −1/10 + a0 ≥ −1/10 + 1/10 = 0 in B1/10,

that is p(x) > 0 in B1/10, which entails p(x)+ = p(x) in B1/10 and as a

consequence p(x)+ > 0 in B1/10.

Therefore, in view of (2.66)

0 < p(x)+ ≤ u(x) in B1/10,

thus u > 0 in B1/10 ⊂ B1, namely

B1/10 ⊂ B+
1 (u). (2.70)

We now distinguish two cases, if u(0) − p(0) ≥ ε/2 or if u(0) − p(0) < ε/2.

Let us analyze the two cases separately.

(i) First, we suppose u(0)− p(0) ≥ ε/2.

Now, from (2.66), since p ≤ p+, we have u − p ≥ 0 in B1 ⊃ B1/10, i.e.

u − p ≥ 0 in B1/10,. Furthermore, u solves, in the viscosity sense, a

uniformly elliptic equation in Ω+(u), thus also in B1/10, recalling that

Ω ⊃ B1 by hypothesis and B+
1 (u) ⊃ B1/10, hence Ω+(u) ⊃ B+

1 (u) ⊃
B1/10.

Consequently, repeating the same argument used in the proof of Lemma

2.3 to achieve (2.36), u − p solves, in the viscosity sense, a uniformly

elliptic equation in B1/10 with right hand side f .

Therefore, in view of this fact, together with u−p ≥ 0 in B1/10, we can

apply the classical Harnack inequality to obtain

sup
B1/20

(u− p) ≤ C1

(
inf
B1/20

(u− p) + C2 ‖f‖L∞
)
. (2.71)

In particular, from (2.71), repeating the same calculations done in the

proof of Lemma 2.3 to get (2.37), we achieve

u(x)− p(x) ≥ c(u(0)− p(0))− C ‖f‖L∞ in B1/20,
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which implies,

u(x)− p(x) ≥ c
ε

2
− Cε2 in B1/20, (2.72)

inasmuch u(0) − p(0) ≥ ε
2
, and in view of the first inequality in (2.2),

in other words ‖f‖L∞ ≤ ε2, which also gives −‖f‖L∞ ≥ −ε2.

In addition, we can rewrite (2.72) as

u(x)− p(x) ≥ ε
( c

2
− Cε

)
= c0ε in B1/20,

i.e.

u(x)− p(x) ≥ c0ε in B1/20, (2.73)

where we want to choose c0 so that 0 < c0 < 1, and it is possible if we

choose ε such that

0 <
c

2
− Cε < 1↔ c

2
− 1 < Cε <

c

2
↔ c

2C
− 1

C
< ε <

c

2C
,

namely, seeing as how ε > 0,

max

(
0,

c

2C
− 1

C

)
=

(
c

2C
− 1

C

)+

< ε <
c

2C

and hence (
c

2C
− 1

C

)+

< ε <
c

2C
. (2.74)

Now, from ((ii)), we have, calling c = c0,

u(x) ≥ p(x) + cε in B1/20,

with 0 < c < 1, which entails, recalling that u is a viscosity solution

to (2.1) in Ω, and therefore u ≥ 0 in Ω ⊃ B1 ⊃ B1/20, in other words

u ≥ 0 in B1/20,

u(x) ≥ max(p(x) + cε, 0) = (p(x) + cε)+ in B1/20,

i.e.

u(x) ≥ (p(x) + cε)+ in B1/20
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and in particular

u(x) ≥ (p(x) + cε)+ in B1/20,

with 0 < c < 1 universal.

The precise conclusion of Theorem 2.1 follows from the same argument

used in case of |a0| < 1/10, after we have applied Lemma 2.3 with the

hypothesis u(x̄) ≥ (p(x̄) + ε/2)+ satisfied.

(ii) Suppose instead that u(0) − p(0) < ε/2. In particular, inasmuch as

B1/10 ⊂ B+
1 (u) from (2.70), we have from (2.66)

0 < u(x) ≤ (p(x) + ε)+ in B1/10, (2.75)

which gives (p(x) + ε)+ > 0 in B1/10, and thus (p(x) + ε)+ = p(x) + ε.

As a consequence, from (2.75), we also obtain

0 < u(x) ≤ p(x) + ε in B1/10

and

p(x) + ε− u(x) ≥ 0 in B1/10. (2.76)

Furthermore, we claim that p + ε − u solves, in the viscosity sense, a

uniformly elliptic equation in B1/10.

Indeed, if ϕ ∈ C2(B1/10) touches p + ε − u from below at x0 ∈ B1/10,

we have

ϕ(x0) = (p+ ε− u)(x0) = p(x0) + ε− u(x0) (2.77)

and

ϕ(x) ≤ (p+ ε− u)(x) = p(x) + ε− u(x) in a neighborhood O of x0.

(2.78)

In particular, (2.77) and (2.78) read

u(x0) = p(x0) + ε− ϕ(x0) (2.79)

and

u(x) ≤ p(x) + ε− ϕ(x) in a neighborhood O of x0. (2.80)
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Therefore, from (2.79) and (2.80), we get that p+ ε−ϕ touches u from

above at x0 ∈ B1/10, since (p+ ε− ϕ)(x) = p(x) + ε− ϕ(x).

In addition, given that p(x) = xn + a0 ∈ C∞(B1), with B1 ⊃ B1/10,

(p+ ε− ϕ) ∈ C2(B1/10).

To sum it up, we have (p+ ε− ϕ) ∈ C2(B1/10) touching u from above

at x0 ∈ B1/10, with in particular x0 ∈ B+
1 (u) ⊂ Ω+(u), recalling that

B1/10 ⊂ B+
1 (u) from (2.70) and B1 ⊂ Ω.

Consequently, because u is a viscosity solution to (2.1) in Ω, we achieve∑
i,j

aij(x0)(p+ ε− ϕ)ij(x0) =
∑
i,j

aij(x0)(xn + a0 + ε− ϕ)ij(x0)

=
∑
i,j

aij(x0)(−ϕ)ij(x0)

=
∑
i,j

aij(x0)(−ϕij(x0))

= −
∑
i,j

aij(x0)ϕij(x0) ≥ f(x0),

in other words

−
∑
i,j

aij(x0)ϕij(x0) ≥ f(x0),

and ∑
i,j

aij(x0)ϕij(x0) ≤ −f(x0). (2.81)

Repeating the same argument if ϕ ∈ C2(B1/10) touches p+ ε− u from

above at x0 ∈ B1/10, but with opposite inequalities, we obtain that

p+ ε− u solves, in the viscosity sense, the uniformly elliptic equation∑
i,j

aij(x)(p+ ε− u)ij = −f in B1/10.

In view of this fact, together with (2.76), we can apply the Harnack

inequality to get

sup
B1/20

(p+ ε− u) ≤ C1

(
inf
B1/20

(p+ ε− u) + C2 ‖−f‖L∞
)
,
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and repeating the same computations done in the proof of Lemma 2.3

to achieve (2.37), but with p+ ε− u in place of u− p, we obtain

p(x) + ε− u(x) ≥ c(p(0) + ε− u(0))− C ‖−f‖L∞ in B1/20. (2.82)

At this point, we know that u(0) − p(0) < ε
2
, which also gives p(0) −

u(0) > − ε
2
, hence

p(0) + ε− u(0) = p(0)− u(0) + ε > −ε
2

+ ε =
ε

2
,

namely

p(0) + ε− u(0) >
ε

2
,

which entails, from (2.82),

p(x) + ε− u(x) ≥ c
ε

2
− Cε2 in B1/20, (2.83)

inasmuch from the first inequality in (2.2), ‖−f‖L∞ = ‖f‖L∞ ≤ ε2, i.e.

‖−f‖L∞ ≤ ε2 and −‖−f‖L∞ ≥ −ε2.

Now, repeating the same argument used in case of u(0) − p(0) ≥ ε
2

to

achieve (), we obtain from (2.83)

p(x) + ε− u(x) ≥ c0ε in B1/20, (2.84)

with c0 = c
2
− Cε and ε as in (2.74), in order to have 0 < c0 < 1.

In particular, calling c = c0, we can rewrite (2.84) as

p(x) + ε− u(x) ≥ cε in B1/20,

with 0 < c < 1, which implies

p(x) + ε− cε ≥ u(x) in B1/20,

with 0 < c < 1, in other words

p(x) + (1− c)ε ≥ u(x) in B1/20,

with 0 < c < 1 and in particular

p(x) + (1− c)ε ≥ u(x) in B1/20. (2.85)
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Moreover, from (2.70) u > 0 in B1/10 ⊃ B1/20 and thus also u > 0

in B1/20, which gives from (2.85) p + (1 − c)ε > 0 in B1/20, that is

(p+ (1− c)ε)+ = p+ (1− c)ε in B1/20.

Therefore, in view of (2.85), we get

(p(x) + (1− c)ε)+ ≥ u(x) in B1/20,

with 0 < c < 1 universal.

At this point, the precise conclusion of Theorem 2.1 follows repeating

the same argument used in case of |a0| < 1/10 after we have applied

Lemma 2.3 with the hypothesis u(x̄) ≤ (p(x̄) + ε/2)+ satisfied.





Chapter 3

Free boundary improvement of

flatness

In this chapter, we prove the main “improvement of flatness” lemma, see

Lemma 3.1. This is the key tool for proving Theorem 4.2, which will follow

from Lemma 3.1 via an iterative argument. Roughly saying, the meaning

of this lemma may be described as follows. If the graph of a solution u to

(2.1)-(2.2) in B1 oscillates ε away from a hyperplane in B1, then in Br0 it

still remains in a εr0/2 -neighborhood of a, possibly different, hyperplane.
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Figure 3.1: Improvement of flatness

We now state and prove the “improvement of flatness ” lemma.

Lemma 3.1 (Improvement of flatness). Let u be a solution to (2.1)-(2.2)

in B1 satisfying

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ for x ∈ B1, (3.1)

and with 0 ∈ F (u). If 0 < r ≤ r0 for r0 a universal constant and 0 < ε ≤ ε0

for some ε0 depending on r, then

(x · ν − rε/2)+ ≤ u(x) ≤ (x · ν + rε/2)+ for x ∈ Br, (3.2)

with |ν| = 1 and |ν − en| ≤ Cε for a universal constant C.

Proof . We divide the proof into three steps. We use the following notation:

Ωρ(u) := (B+
1 (u) ∪ F (u)) ∩Bρ.

Step 1: Compactness. Fix r ≤ r0 with r0 universal (the precise r0 will

be given in Step 3). Assume for contradiction that we can find a sequence
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εk → 0 and a sequence uk of solutions to (2.1) in B1 with coefficients akij,

right hand side fk and free boundary conditions gk satisfying (2.2), such that

uk satisfies (3.1), i.e.

(xn − εk)+ ≤ uk(x) ≤ (xn + εk)
+ for x ∈ B1, 0 ∈ F (uk), (3.3)

but it does not satisfy the conclusion (3.2) of the lemma.

Precisely, we are denying for contradiction the statement of Lemma 3.1, that

is we suppose that fixed r0 universal and 0 < r ≤ r0, ∀ε0 ∃ ε̄ such that

0 < ε̄ ≤ ε0 and there exists a solution ū to (2.1)-(2.2) in B1 such that ū

satisfies (3.1) with ε̄ but not the conclusion (3.2).

Therefore, letting ε0 go to 0, we can find a sequence εk → 0 such that for

every k, εk satisfies the same conditions of ε̄. Furthermore, calling uk the

corresponding solution to (2.1)-(2.2) in B1 that satifies (3.1) with εk but not

(3.2), we can find the sequence uk described before.

Set

ũk(x) =
uk(x)− xn

εk
, x ∈ Ω1(uk). (3.4)

Notice that, since F (uk) = ∂B+
1 (uk) ∩B1,

Ω1(uk) = (B+
1 (uk) ∪ F (uk)) ∩B1

= (B+
1 (uk) ∩B1) ∪ (F (uk) ∩B1) = B+

1 (uk) ∪ F (uk),

in other words

Ω1(uk) = B+
1 (uk) ∪ F (uk). (3.5)

Then (3.3) gives

−1 ≤ ũk(x) ≤ 1 for x ∈ Ω1(uk). (3.6)

Indeed, according to (3.3), we have

xn − εk ≤ (xn − εk)+ ≤ uk(x) ≤ (xn + εk)
+ in B1 ⊃ Ω1(uk),

thus

uk(x) ≥ xn − εk in Ω1(uk),
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which also gives

uk(x)− xn ≥ −εk in Ω1(uk)

and dividing by εk > 0, from (3.4),

uk(x)− xn
εk

= ũk(x) ≥ −1 in Ω1(uk),

i.e.

ũk(x) ≥ −1 in Ω1(uk). (3.7)

Now, we have to show that ũk ≤ 1 in Ω1(uk), but given that from (3.5),

Ω1(uk) = B+
1 (uk) ∪ F (uk), we can consider at first the case of B+

1 (uk) and

then that of F (uk).

According to (3.3)

0 < uk(x) ≤ (xn + εk)
+ in B+

1 (uk),

hence (xn + εk)
+ > 0 in B+

1 (uk), i.e. (xn + εk)
+ = xn + εk > 0 in B+

1 (uk) and

uk(x) ≤ xn + εk in B+
1 (uk),

which gives

uk(x)− xn ≤ εk in B+
1 (uk),

and dividing by εk > 0 from (3.4)

uk(x)− xn
εk

= ũk(x) ≤ 1 in B+
1 (uk),

namely

ũk(x) ≤ 1 in B+
1 (uk). (3.8)

On F (uk), instead, we know that uk ≡ 0. Also, from (3.3) where (xn+εk)
+ =

0 in B1, we have

0 ≤ (xn − εk)+ ≤ uk(x) ≤ (xn + εk)
+ = 0,

in other words 0 ≤ uk(x) ≤ 0 and thus uk(x) = 0, where (xn + εk)
+ = 0,

x ∈ B1.
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Now, (xn + εk)
+ = 0 if xn + εk ≤ 0, that is xn ≤ −εk.

As a consequence,

uk(x) = 0 with xn ≤ −εk, x ∈ B1. (3.9)

Moreover, if we take x̄ ∈ {x ∈ B1, xn < −εk}, since {x ∈ B1, xn < −εk} =

B1 ∩ {xn < −εk} is an open set, we can find a ball Br(x̄) such that Br(x̄) ⊂
{x ∈ B1, xn < −εk} , and hence from (3.9) uk ≡ 0 in Br(x̄), i.e. Br(x̄) ∩
B+

1 (uk) = ∅.
Thus, given that F (uk) = ∂B+

1 (uk) ∩ B1, x̄ /∈ F (uk), which implies that

xn ≥ −εk on F (uk), so −xn ≤ εk on F (uk).

Consequently, in view of this fact, together with uk ≡ 0 on F (uk), we achieve

from (3.4)

uk(x)− xn
εk

= ũk(x) = −xn
εk
≤ εk
εk

= 1 on F (uk),

i.e.

ũk(x) ≤ 1 on F (uk). (3.10)

Therefore, from (3.8) and (3.10), we get in view of (3.5)

ũk(x) ≤ 1 in B+
1 (uk) ∪ F (uk) = Ω1(uk),

which together with (3.7) give us (3.6).

From Corollary 2.2, it follows that the function ũk satisfies

|ũk(x)− ũk(y)| ≤ C |x− y|γ (3.11)

for C universal and

|x− y| ≥ εk/ε̄, x, y ∈ Ω1/2(uk).

From (3.3) it follows that F (uk) converges to B1∩{xn = 0} in the Hausdorff

distance, see Definition A.2.

To show this fact, first of all we notice that F (uk) ⊂ {x ∈ B1, −εk ≤ xn ≤ εk}
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for every k.

Precisely, as shown before to obtain (3.10), we have

xn ≥ −εk on F (uk) ⊂ B1. (3.12)

In addition, from (3.3), where (xn−εk)+ > 0 in B1, uk > 0, and (xn−εk)+ > 0

if xn − εk > 0, i.e. xn > εk. Hence, uk > 0 in B1 ∩ {xn > εk} , that is since

uk ≡ 0 on F (uk), xn ≤ εk on F (uk).

As a consequence, in view of this fact, together with (3.12), we get

F (uk) ⊂ B1 ∩ {−εk ≤ xn ≤ εk} . (3.13)

Now, we want to show that dH(F (uk), B1 ∩ {xn = 0}) k→∞→ 0, where dH

denotes the Hausdorff distance.

In particular, if x ∈ F (uk), from (3.13), we have x ∈ B1 and −εk ≤ xn ≤ εk,

namely |xn| ≤ εk. Thus, if we write x = (x′, xn), we can take ȳ such that

ȳ = (x′, 0). Notice that ȳ ∈ B1 ∩ {xn = 0} . Indeed,

|ȳ| = |(x′, 0)| ≤ |x| < 1,

namely |ȳ| < 1, and hence ȳ = (x′, 0) ∈ B1 ∩ {xn = 0} .
Moreover, inasmuch |xn| ≤ εk, we have

|x− ȳ| =
√

(x1 − x1)2 + (x2 − x2)2 + . . .+ (xn−1 − xn−1)2 + (xn − 0)2

= |xn| ≤ εk,

in other words,

|x− ȳ| ≤ εk,

which implies

inf
y ∈B1∩{xn=0}

|x− y| = d(x,B1 ∩ {xn = 0}) ≤ |x− ȳ| ≤ εk,

i.e.

d(x,B1 ∩ {xn = 0}) ≤ εk, x ∈ F (uk). (3.14)
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At this point, seeing as how (3.14) holds ∀x ∈ F (uk), εk is an upper bound

of the set {d(x,B1 ∩ {xn = 0}), x ∈ F (uk)} and hence

sup
x∈F (uk)

d(x,B1 ∩ {xn = 0}) = e(F (uk), B1 ∩ {xn = 0}) ≤ εk,

namely

e(F (uk), B1 ∩ {xn = 0}) ≤ εk. (3.15)

In parallel, if y ∈ B1 ∩ {xn = 0} , y = (y′, 0). Also, since uk ≡ 0 in B1 ∩
{xn < −εk} , uk > 0 in B1 ∩ {xn > εk} and uk ∈ C(B1), ∃ x̄ = (y′, x̄n) ∈ B1

such that ∀Br(x̄), Br(x̄)∩({uk > 0}∩{x′ = y′}) 6= ∅ and Br(x̄)∩({uk ≡ 0}∩
{x′ = y′}) 6= ∅, so x̄ ∈ F (uk) and thus from (3.13), |x̄n| ≤ εk.

Furthermore, in view of |xn| ≤ εk, we also have

|x̄− y| =
√

(y1 − y1)2 + (y2 − y2)2 + . . .+ (yn−1 − yn−1)2 + (x̄n − 0)2

= |x̄n| ≤ εk,

which gives

|x̄− y| ≤ εk,

and hence

inf
x∈F (uk)

|x− y| = d(F (uk), y) ≤ |x̄− y| ≤ εk,

i.e.

d(F (uk), y) ≤ εk, y ∈ B1. (3.16)

Now, since (3.16) holds ∀y ∈ B1 ∩ {xn = 0} , εk is an upper bound of the set

{d(F (uk), y), y ∈ B1 ∩ {xn = 0}} and therefore

sup
y ∈B1∩{xn=0}

d(F (uk), y) = e(B1 ∩ {xn = 0} , F (uk)) ≤ εk,

in other words

e(B1 ∩ {xn = 0} , F (uk)) ≤ εk. (3.17)

Therefore, from (3.15) and (3.17) we obtain

0 ≤ max (e(F (uk), B1 ∩ {xn = 0}), e(B1 ∩ {xn = 0} , F (uk)))

= dH(F (uk), B1 ∩ {xn = 0}) ≤ εk,
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i.e.

dH(F (uk), B1 ∩ {xn = 0}) ≤ εk (3.18)

and letting k go to ∞, since εk → 0, we achieve from (3.18)

dH(F (uk), B1 ∩ {xn = 0}) k→∞→ 0,

that is F (uk) converges to B1 ∩ {xn = 0} in the Hausdorff distance.

This fact and (3.11) together with Ascoli-Arzelà give that as εk → 0 the

graphs of the ũk over Ω1/2(uk) converge (up to a subsequence) in the Haus-

dorff distance to the graph of a Hölder continuous function ũ over B1/2 ∩
{xn ≥ 0} .
Step 2: Limiting Solution. We now show that ũ solves∆ũ = 0 in B1/2 ∩ {xn > 0} ,

ũn = 0 on B1/2 ∩ {xn = 0} ,
(3.19)

in the sense of Definition 1.10.

Let P (x) be a quadratic polynomial touching ũ at x̄ ∈ B1/2 ∩ {xn ≥ 0}
strictly from below (for what we have seen in Chapter 1, it suffices to show

that Definition 1.10 is satisfied by polynomials touching strictly from be-

low/above). We need to show that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P ≤ 0;

(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≤ 0.

Since ũk → ũ in the sense specified above, there exist points xk ∈ Ω1/2(uk),

xk → x̄, and constants ck → 0 such that

P (xk) + ck = ũk(xk) (3.20)

and

ũk ≥ P + ck in a neighborhood of xk. (3.21)

In particular, from the definition (3.4) of ũk, we have in (3.20)

P (xk) + ck = ũk(xk) =
uk(xk)− (xk)n

εk
,
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namely

εk(P (xk) + ck) = uk(xk)− (xk)n

and

εk(P (xk) + ck) + (xk)n = uk(xk). (3.22)

At the same time, in (3.21) we have, always from the definition (3.4) of ũk,

ũk =
uk − xn
εk

≥ P + ck in a neighborhood of xk,

thus, given that εk > 0

uk − xn ≥ εk(P + ck) in a neighborhood of xk

and

uk ≥ xn + εk(P + ck) in a neighborhood of xk. (3.23)

Hence, (3.22) and (3.23) read

uk(xk) = Q(xk) (3.24)

and

uk(x) ≥ Q(x) in a neighborhood of xk (3.25)

where

Q(x) = εk(P (x) + ck) + xn.

We now distinguish two cases.

(i) If x̄ ∈ B1/2 ∩ {xn > 0} then xk ∈ B+
1/2(uk) (for k large). In addition,

from (3.24) and (3.25), Q touches uk from below at xk, with Q ∈
C2(B1/2), inasmuch P ∈ C∞(B1/2) and xn ∈ C∞(B1/2), and hence in

particular Q ∈ C2(B+
1/2(uk)).

To sum it up, for k large, we have Q ∈ C2(B+
1/2(uk)) touching uk from

below at xk ∈ B+
1/2(uk).

As a consequence, since uk is a solution to (2.1) in B1, and thus also
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in B1/2, with coefficients akij, right hand side fk and free boundary

condition gk satisfying (2.2) with εk, we get

∑
i,j

akij(xk)Qij(xk) =
∑
i,j

akij(xk)(εk(P (x) + ck) + xn)ij(xk)

=
∑
i,j

akij(xk)εkPij(xk) = εk
∑
i,j

akij(xk)Pij(xk)

≤ fk(xk) ≤ ε2
k,

in other words

εk
∑
i,j

akij(xk)Pij(xk) ≤ ε2
k, (3.26)

seeing as how ‖fk‖L∞(B1) ≤ ε2
k and xk ∈ B+

1/2(uk) ⊂ B1/2 ⊂ B1, namely

xk ∈ B1, so fk(xk) ≤ |fk(xk)| ≤ ‖fk‖L∞(B1) ≤ ε2
k, i.e. fk(xk) ≤ ε2

k.

In particular, from (3.26) we achieve, given that εk > 0

∑
i,j

akij(xk)Pij(xk) ≤
ε2
k

εk
= εk,

i.e. ∑
i,j

akij(xk)Pij(xk) ≤ εk. (3.27)

In addition, from the last inequality in (2.2), that is
∥∥akij − δij∥∥L∞(B1)

≤ εk we have, because xk ∈ B1 as said before,

∣∣akij(xk)− δij∣∣ =
∣∣δij − akij(xk)∣∣ ≤ ∥∥akij − δij∥∥L∞(B1)

≤ εk,

which gives ∣∣δij − akij(xk)∣∣ ≤ εk

and

−εk ≤ δij − akij(xk) ≤ εk. (3.28)



71

Thus, in view of (3.27) and (3.28), we achieve

∆P = Tr(D2P ) = Tr((D2P )I) =
∑
i

((D2P )I)ii

=
∑
i,j

Pijδji =
∑
i,j

Pijδij =
∑
i,j

δijPij

=
∑
i,j

(δij − akij(xk) + akij(xk))Pij

=
∑
i,j

(δij − akij(xk))Pij +
∑
i,j

akij(xk)Pij

≤
∑
i,j

Pij≥0

εkPij +
∑
i,j

Pij<0

−εkPij + εk

=

( ∑
i,j

Pij≥0

Pij −
∑
i,j

Pij<0

Pij + 1

)
εk = Cεk, (3.29)

because P (x) is a quadratic polynomial and therefore Pij is a constant

for every i, j, which also entails Pij(xk) = Pij.

Consequently, from (3.29), we obtain

∆P ≤ Cεk (3.30)

and because εk → 0 as k → ∞ and C is a constant, we conclude that

∆P ≤ 0.

(ii) If x̄ ∈ B1/2 ∩ {xn = 0} , as observed in the Remark 1.7, we can assume

that ∆P > 0. We claim that for k large enough, xk ∈ F (uk). Otherwise,

we can find a subsequence kn →∞ of k →∞, such that xkn ∈ B+
1 (ukn),

recalling that xkn ∈ Ω1/2(ukn), but not on F (uk).

Therefore, as in case (i)

∆P ≤ Cεkn (3.31)

and letting kn → ∞ in (3.31), inasmuch as εk → 0 and εkn is a sub-

sequence of εk, εkn → 0 and we have that ∆P ≤ 0, contradicting the

fact that P is strictly subharmonic. Thus xk ∈ F (uk) for k large.
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Now notice that

∇Q =

(
∂Q

∂x1

,
∂Q

∂x2

, . . . ,
∂Q

∂xn

)
=

(
∂

∂x1

(
εk(P + ck) + xn

)
,
∂

∂x2

(
εk(P + ck) + xn

)
, . . . ,

. . . ,
∂

∂xn

(
εk(P + ck) + xn

))
=

(
εk
∂P

∂x1

, εk
∂P

∂x2

, . . . , εk
∂P

∂xn
+ 1

)
= εk∇P + en,

in other words

|∇Q| = εk∇P + en. (3.32)

Consequently, for k large, |∇Q| > 0.

Precisely, from (3.32), we achieve

|∇Q| = |εk∇P + en| ≥ |en| − |εk∇P |
εk>0
= 1− εk |∇P | ≥ 1− εk sup

B1/2

|∇P | ,

which gives

|∇Q| ≥ 1− εk sup
B1/2

|∇P | , (3.33)

where sup
B1/2

|∇P | ≤ C, because |∇P | ≤ C in B1/2, since P (x) is a

quadratic polynomial and B1/2 is a bounded set.

Hence, if sup
B1/2

|∇P | = 0, that is |∇P | = 0 in B1/2, |∇Q| ≥ 1 > 0 ∀k.

Otherwise (sup
B1/2

|∇P | > 0), seeing as how εk → 0, for the definition of

limit, ∃ k̄ ∈ N such that

|εk| <
1

supB1/2
|∇P |

, ∀k ∈ N, k ≥ k̄

i.e. since εk > 0 and thus |εk| = εk

εk <
1

supB1/2
|∇P |

, ∀k ∈ N, k ≥ k̄.

This fact, together with (3.33), implies that |∇Q| > 0 for k large.

Now, we have that Q touches uk from below at xk ∈ F (uk) for k large.
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Therefore, given that uk ≥ 0 in B1, recalling that uk is a viscosity

solution to (2.1) in B1, Q
+ touches uk from below at xk.

Indeed, from (3.24), if uk(xk) = 0, Q(xk) = 0 = max(Q(xk), 0) =

Q+(xk), namely Q+(xk) = uk(xk); if instead uk(xk) > 0, Q(xk) > 0,

hence Q(xk) = max(Q(xk), 0) = Q+(xk) and Q+(xk) = uk(xk).

Consequently,

uk(xk) = Q+(xk). (3.34)

In addition, inasmuch as uk ≥ 0, we obtain from (3.25)

uk(x) ≥ max(0, Q(x)) = Q+(x) in a neighborhood of xk,

in other words

uk(x) ≥ Q+(x) in a neighborhood of xk. (3.35)

Considering (3.34) and (3.35) together, we get that Q+ touches uk from

below at xk.

Moreover, Q ∈ C2(B1) because P ∈ C∞(B1) and xn ∈ C∞(B1).

To sum it up, we have Q ∈ C2(B1) such that Q+ touches uk from

below at xk, with, for k large, xk ∈ F (uk) and |∇Q| > 0, which gives

|∇Q| (xk) > 0.

Thus, for these k’s, seeing as how uk is a solution to (2.1) in B1 with

coefficients akij, right hand side fk and free boundary condition gk sat-

isfying (2.2) with εk, we get

|∇Q| (xk) ≤ gk(xk) ≤ 1 + ε2
k,

namely

|∇Q| (xk) ≤ 1 + εk2, (3.36)

since ‖gk − 1‖L∞(B1) ≤ ε2
k and xk ∈ F (uk) ⊂ B1, i.e. xk ∈ B1, so

gk(xk) − 1 ≤ |gk(xk)− 1| ≤ ‖gk − 1‖L∞(B1) ≤ ε2
k, which implies gk(xk)

− 1 ≤ ε2
k and gk(xk) ≤ 1 + ε2

k.



74 3. Free boundary improvement of flatness

Also, (3.32) and (3.36) give, because |∇Q| (xk) ≥ 0 and 1 + ε2
k ≥ 0

|∇Q|2 (xk) = |εk∇P + en|2 (xk)

= (εk∇P (xk) + en) · (εk∇P (xk) + en)

= ε2
k∇P (xk) · ∇P (xk) + en · en + 2εk∇P (xk) · en

= ε2
k |∇P |

2 (xk) + 1 + 2εkPn(xk)

≤ (1 + ε2
k)

2 = 1 + ε4
k + 2ε2

k

≤ 1 + ε2
k + 2ε2

k = 1 + 3ε2
k (3.37)

given that 0 < εk < 1 ∀k ∈ N for the choice of εk. Therefore from

(3.37), we achieve

ε2
k |∇P |

2 (xk) + 1 + 2εkPn(xk) ≤ 1 + 3ε2
k,

in other words

ε2
k |∇P |

2 (xk)− 3ε2
k + 2εkPn(xk) ≤ 0

and thus dividing by εk > 0

εk |∇P |2 (xk)− 3εk + 2Pn(xk) ≤ 0. (3.38)

Passing to the limit in (3.38) as k → ∞, we obtain 2Pn(x̄) ≤ 0 and

hence Pn(x̄) ≤ 0, seeing as how εk → 0 and Pn(xk)→ Pn(x̄), recalling

that xk → x̄ and P ∈ C∞(B1).

Let P (x) be instead a quadratic polynomial touching ũ at x̄ ∈ B1/2∩{xn ≥ 0}
strictly from above. This time, we need to show that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P ≥ 0;

(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≥ 0.

Always since ũk → ũ in the sense specified above, there exist points xk ∈
Ω1/2(uk), xk → x̄, and constants ck → 0 such that

P (xk) + ck = ũk(xk) (3.39)
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and

ũk ≤ P + ck in a neighborhood of xk. (3.40)

As we have shown before, from the definition of ũk, (3.39) and (3.40) read

uk(xk) = Q(xk) (3.41)

and

uk(x) ≤ Q(x) in a neighborhood of xk (3.42)

where

Q(x) = εk(P (x) + ck) + xn.

We distinguish two cases again.

(i) If x̄ ∈ B1/2 ∩ {xn > 0} then xk ∈ B+
1/2(uk) (for k large). Moreover,

from (3.41) and (3.42), Q touches uk from above at xk ∈ B+
1/2(uk),

with Q ∈ C2(B1/2), inasmuch as P ∈ C∞(B1/2) and xn ∈ C∞(B1/2),

and hence in particular Q ∈ C2(B+
1/2(uk)).

To sum it up, for k large, we have Q ∈ C2(B+
1/2(uk)) touching uk from

above at xk ∈ B+
1/2(uk).

Consequently, because uk is a solution to (2.1) in B1, and thus also

in B1/2, with coefficients akij, right hand side fk and free boundary

condition gk satisfying (2.2) with εk, we get, thanks to the previous

calculation,∑
i,j

akij(xk)Qij(xk) = εk
∑
i,j

akij(xk)Pij ≥ fk(xk) ≥ −ε2
k (3.43)

given that ‖fk‖L∞(B1) ≤ ε2
k and xk ∈ B+

1/2(uk) ⊂ B1, namely xk ∈ B1,

thereby |fk(xk)| ≤ ‖fk‖L∞(B1) ≤ ε2
k and thus |fk(xk)| ≤ ε2

k, which

implies fk(xk) ≥ −ε2
k.

In particular, from (3.43) we achieve, seeing as how εk > 0∑
i,j

akij(xk)Pij ≥ −εk. (3.44)
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Therefore, in view of (3.44), (3.28) and recalling the case of P (x) touch-

ing ũ from below at x̄ ∈ B1/2 ∩ {xn > 0} to get (3.29),

∆P =
∑
i,j

(δij − akij(xk))Pij +
∑
i,j

akij(xk)Pij

≥
∑
i,j

Pij≥0

−εkPij +
∑
i,j

Pij<0

εkPij − εk

=

(
−
∑
i,j

Pij≥0

Pij +
∑
i,j

Pij<0

Pij − 1

)
εk = Cεk, (3.45)

because P (x) is a quadratic polynomial. As a consequence, Pij is a

constant for every i, j, which entails Pij(xk) = Pij.

Thus, from (3.45), we obtain

∆P ≥ Cεk (3.46)

and since εk → 0 as k → ∞ and C is a constant, we conclude that

∆P ≥ 0.

(ii) If x̄ ∈ B1/2 ∩ {xn = 0} , arguing as in Remark 1.7, we can assume that

∆P < 0. We claim that for k large enough, xk ∈ F (uk). Otherwise,

as we have said before, we can find a subsequence kn → ∞ such that

xkn ∈ B+
1 (ukn).

Therefore, as in case (i)

∆P ≥ Cεkn (3.47)

and letting kn →∞, εkn → 0 and we have that ∆P ≥ 0, contradicting

the fact that P is strictly superharmonic. Thus xk ∈ F (uk) for k large.

As shown before,

∇Q = εk∇P + en (3.48)

and for k large |∇Q| > 0.

Now, we have that Q touches uk from above at xk ∈ F (uk) for k large.

Therefore, seeing as how uk ≥ 0 in B1, recalling that uk is a viscosity
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solution to (2.1) in B1, Q
+ touches uk from above at xk.

Indeed, from (3.41), repeating the considerations done above, we get

uk(xk) = Q+(xk). (3.49)

Furthermore, since uk ≥ 0, from (3.42) we achieve

0 ≤ uk(x) ≤ Q(x) in a neighborhood of xk

that isQ(x) ≥ 0 in this neighborhood and henceQ(x) = max(0, Q(x)) =

Q+(x), which implies

uk(x) ≤ Q+(x) in a neighborhood of xk. (3.50)

Considering (3.49) and (3.50) together, we obtain that Q+ touches uk

from above at xk.

and repeating the same argument used in case of P (x) touching ũ from

below at x̄ ∈ B1/2 ∩ {xn = 0} , we have Q ∈ C2(B1) and for k large

xk ∈ F (uk), with |∇Q| (xk) > 0. Consequently, for these k’s, recalling

that uk is a solution to (2.1) in B1 with coefficients akij, right hand side

fk and free boundary condition gk satisfying (2.2) with εk, we get

|∇Q| (xk) ≥ gk(xk) ≥ 1− ε2
k (3.51)

given that ‖gk − 1‖L∞(B1) ≤ ε2
k and xk ∈ F (uk) ⊂ B1, namely xk ∈ B1,

so |gk(xk)− 1| ≤ ‖gk − 1‖L∞(B1) ≤ ε2
k, in other words |gk(xk)− 1| ≤ ε2

k,

which implies gk(xk)− 1 ≥ −ε2
k and gk(xk) ≥ 1− ε2

k.

In addition, (3.48) and (3.51) give, because of |∇Q| (xk) ≥ 0 and 1 −
ε2
k ≥ 0, inasmuch as 0 < εk < 1 and thanks to the previous computation

|∇Q|2 (xk) = ε2
k |∇P |

2 (xk) + 1 + 2εkPn(xk)

≥ (1− ε2
k)

2 = 1 + ε4
k − 2ε2

k

ε4k≥0

≥ 1− 2ε2
k,

that is

ε2
k |∇P |

2 (xk) + 1 + 2εkPn(xk) ≥ 1− 2ε2
k
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and

ε2
k |∇P |

2 (xk) + 2εkPn(xk) + 2ε2
k ≥ 0.

Hence, dividing by εk > 0 the last inequality found,

εk |∇P |2 (xk) + 2Pn(xk) + 2εk ≥ 0 (3.52)

and passing to the limit as k →∞ we obtain 2Pn(x̄) ≥ 0, i.e. Pn(x̄) ≥
0, seeing as how εk → 0 and Pn(xk) → Pn(x̄), since xk → x̄ and

P ∈ C∞(B1).

Step 3: Improvement of flatness. From the previous step, ũ solves (3.19)

and from (3.6),

−1 ≤ ũ ≤ 1 in B1/2 ∩ {xn ≥ 0} .

Sure enough, fixed x̄ ∈ B1/2∩{xn ≥ 0} , because ũk → ũ in the sense specified

in Step 1, we can find a sequence of points xk ∈ Ω1/2(uk) such that ũk(xk)→
ũ(x̄).

Moreover, given that B1/2 ⊂ B1 and for the definition of Ωρ(uk), Ω1/2(uk) ⊂
Ω1(uk), xk ∈ Ω1(uk) and from (3.6),

−1 ≤ ũk(xk) ≤ 1. (3.53)

Passing to the limit as k → ∞ in (3.53), since ũk(xk) → ũ(x̄), we achieve,

for the properties of the sequence limit,

−1 ≤ ũ(x̄) ≤ 1,

and for the arbitrariness of x̄ ∈ B1/2 ∩ {xn ≥ 0} ,

−1 ≤ ũ ≤ 1 in B1/2 ∩ {xn ≥ 0} .

Now, from Lemma 1.8 we find that, for the given r,

|ũ(x)− ũ(0)−∇ũ(0) · x| ≤ C0r
2 in Br ∩ {xn ≥ 0} ,

for a universal constant C0.

Precisely, since ũ solves (3.19), from Lemma 1.8 ũ ∈ C∞(B1/2 ∩ {xn ≥ 0}),
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so for the formula of Taylor expansion around 0 up to second degree, we get

locally for the given r

ũ(x) = ũ(0) +∇ũ(0) · x+
1

2
D2ũ(0)x · x+O(|x|2) in Br ∩ {xn ≥ 0} ,

which gives

ũ(x)− ũ(0)−∇ũ(0) ·x =
1

2
D2ũ(0)x ·x+O(|x|2) in Br ∩{xn ≥ 0} . (3.54)

Now, we have ∣∣O(|x|2)
∣∣ ≤ C |x|2 (3.55)

with C a universal constant, and for the Cauchy-Schwarz inequality∣∣D2ũ(0)x · x
∣∣ ≤ ∣∣D2ũ(0)x

∣∣ |x| ≤ ∥∥D2ũ(0)
∥∥ |x| |x| = ∥∥D2ũ(0)

∥∥ |x|2 , ∀x 6= 0,

in other words ∣∣D2ũ(0)x · x
∣∣ ≤ ∥∥D2ũ(0)

∥∥ |x|2 , ∀x 6= 0. (3.56)

Therefore, in view of (3.55) and (3.56), we obtain from (3.54)

|ũ(x)− ũ(0)−∇ũ(0) · x| =
∣∣∣∣12D2ũ(0)x · x+O(|x|2)

∣∣∣∣
≤
∣∣∣∣12D2ũ(0)x · x

∣∣∣∣+
∣∣O(|x|2)

∣∣
≤ 1

2

∥∥D2ũ(0)
∥∥ |x|2 + C |x|2

=

(
1

2

∥∥D2ũ(0)
∥∥+ C

)
|x|2 = C0 |x|2

≤ C0r
2 in Br ∩ {xn ≥ 0} , x 6= 0

namely

|ũ(x)− ũ(0)−∇ũ(0) · x| ≤ C0r
2 in Br ∩ {xn ≥ 0} , x 6= 0, (3.57)

for the triangular inequality of |·| applied to
∣∣1

2
D2ũ(0)x · x+O(|x|2)

∣∣ and

recalling that |x| ≤ r in Br ∩ {xn ≥ 0} .
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Notice that if x = 0, |ũ(x)− ũ(0)−∇ũ(0) · x| (0) = 0 ≤ C0r
2. As a conse-

quence, from this consideration and (3.57), we achieve

|ũ(x)− ũ(0)−∇ũ(0) · x| ≤ C0r
2 in Br ∩ {xn ≥ 0} , (3.58)

for a universal constant C0.

At this point, we can rewrite (3.58) as

|ũ(x)− ũ(0)−∇ũ(0)′ · x′ − ũn(0)xn| ≤ C0r
2 in Br ∩ {xn ≥ 0} . (3.59)

In particular, because 0 ∈ F (ũ), and thus ũ(0) = 0, and also ũn(0) = 0,

recalling that ũ solves (3.19) and 0 ∈ B1/2∩{xn = 0} , we obtain from (3.59)

|ũ(x)−∇ũ(0)′ · x′| ≤ C0r
2 in Br ∩ {xn ≥ 0} ,

which implies

−C0r
2 ≤ ũ(x)−∇ũ(0)′ · x′ ≤ C0r

2 in Br ∩ {xn ≥ 0} ,

and

x′ · ν̃ − C0r
2 ≤ ũ(x) ≤ x′ · ν̃ + C0r

2 in Br ∩ {xn ≥ 0} , (3.60)

where x′ · ν̃ = ν̃ · x′ for the symmetry of the scalar product and ν̃i = ũi(0),

i = 1, . . . , n− 1, with |ν̃| ≤ C̃, C̃ a universal constant.

Therefore, for k large enough from (3.60) we get, inasmuch ũk → ũ in the

sense specified in Step 1,

x′ · ν̃ − C1r
2 ≤ ũk(x) ≤ x′ · ν̃ + C1r

2 in Ωr(uk). (3.61)

From the definition (3.4) of ũk the inequality in (3.61) reads

x′ · ν̃ − C1r
2 ≤ uk(x)− xn

εk
≤ x′ · ν̃ + C1r

2 in Ωr(uk),

in other words, seeing as how εk > 0,

εkx
′ · ν̃ − εkC1r

2 ≤ uk(x)− xn ≤ εkx
′ · ν + εkC1r

2 in Ωr(uk)
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and

εkx
′ · ν̃ + xn − εkC1r

2 ≤ uk ≤ εkx
′ · ν̃ + xn + εkC1r

2 in Ωr(uk). (3.62)

Let us set now

ν =
(εkν̃, 1)√
ε2
k |ν̃|

2 + 1
.

Notice that

|ν| = 1√
ε2
k |ν̃|

2 + 1

√
ε2
k |ν̃|

2 + 1 = 1,

that is

|ν| = 1 (3.63)

and

|ν − en| =

∣∣∣∣∣∣
 εkν̃√

ε2
k |ν̃|

2 + 1
,

1√
ε2
k |ν̃|

2 + 1
− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 εkν̃√

ε2
k |ν̃|

2 + 1
,
1−

√
ε2
k |ν̃|

2 + 1√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
=

1√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
εkν̃,(1−

√
ε2
k |ν̃|

2 + 1

) 1 +
√
ε2
k |ν̃|

2 + 1

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
=

1√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
εkν̃, 1− ε2

k |ν̃|
2 − 1

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
=

1√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
εkν̃,− ε2

k |ν̃|
2

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
εkν̃,− ε2

k |ν̃|
2

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣ ,
in other words

|ν − en| ≤

∣∣∣∣∣∣
εkν̃,− ε2

k |ν̃|
2

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣ , (3.64)
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inasmuch 1√
ε2k|ν̃|

2+1
≤ 1.

In addition, we have

∣∣∣∣∣∣
εkν̃,− ε2

k |ν̃|
2

1 +
√
ε2
k |ν̃|

2 + 1

∣∣∣∣∣∣ =

√√√√√ε2
kν̃

2
1 + . . .+ ε2

kν̃
2
n−1 +

− ε2
k |ν̃|

2

1 +
√
ε2
k |ν̃|

2 + 1

2

=

√√√√√√ε2
k(ν̃

2
1 + . . .+ ν̃2

n−1) +
ε4
k |ν̃|

4(
1 +

√
ε2
k |ν̃|

2 + 1

)2

≤
√
ε2
k |ν̃|

2 + ε4
k |ν̃|

4 =

√
ε2
k |ν̃|

2 (1 + ε2
k |ν̃|

2) = εk |ν̃|
√

1 + ε2
k |ν̃|

2,

namely ∣∣∣∣∣∣
εkν̃,− ε2

k |ν̃|
2

1 +
√
ε2
k |ν̃|

2 + 1

 ≤ εk |ν̃|
√

1 + ε2
k |ν̃|

2, (3.65)

because εk > 0 and

(
1 +

√
ε2
k |ν̃|

2 + 1

)2

≥ 1, which gives

ε4
k |ν̃|

4(
1 +

√
ε2
k |ν̃|

2 + 1

)2 ≤ ε4 |ν̃|4 .

Now, we know that the sequence εk is convergent and hence it is bounded,

i.e. for every k, 0 < εk ≤ C with C a universal constant.

This fact, together with |ν̃| ≤ C̃, with C̃ a universal constant, implies in view

of (3.64) and (3.65)

|ν − en| ≤ C̃εk

√
1 + C

2
C̃2 = Cεk,

i.e.

|ν − en| ≤ Cεk for every k. (3.66)

As a consequence, from (3.63) and (3.66) ν satisfies the hypotheses of Lemma

3.1.
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At this point, we can rewrite (3.62) as√
ε2
k |ν̃|

2 + 1√
ε2
k |ν̃|

2 + 1
εkx

′ · ν̃ +

√
ε2
k |ν̃|

2 + 1√
ε2
k |ν̃|

2 + 1
xn − εkC1r

2 ≤ uk ≤

√
ε2
k |ν̃|

2 + 1√
ε2
k |ν̃|

2 + 1
εkx

′ · ν̃

+

√
ε2
k |ν̃|

2 + 1√
ε2
k |ν̃|

2 + 1
xn + εkC1r

2 in Ωr(uk),

which gives for the definition of ν,√
ε2
k |ν̃|

2 + 1x · ν − εkC1r
2 ≤ uk

≤
√
ε2
k |ν̃|

2 + 1x · ν + εkC1r
2 in Ωr(uk). (3.67)

Moreover, we remark that 1 ≤
√
ε2
k |ν̃|

2 + 1 ≤ 1 + ε2
k |ν̃|

2 /2.

Indeed, as regards the first inequality, it suffices to observe that ε2
k |ν̃|

2 ≥ 0

and thus for the monoticity of
√
·, 1 =

√
1 ≤

√
ε2
k |ν̃|

2 + 1.

As regards the second inequality, instead,(
1 +

ε2
k |ν̃|

2

2

)2

= 1 +
ε4
k |ν̃|

4

4
+ ε2

k |ν̃|
2 ≥ ε2

k |ν̃|
2 + 1,

given that ε4
k |ν̃|

4 /4 ≥ 0 and raising both the terms of the inequality to 1/2,

recalling that both the terms are positive or equal to 0, we achieve

1 +
ε2
k |ν̃|

2

2
≥
√
ε2
k |ν̃|

2 + 1,

as desired.

Consequently, from (3.67) we have

x · ν − ε2
k |ν̃|

2 r

2
− C1r

2εk ≤ uk ≤ x · ν + ε2
k |ν̃|

2 r

2
+ C1r

2εk in Ωr(uk).

To show this fact, we distinguish two cases.

If x · ν ≥ 0, since
√
ε2
k |ν̃|

2 + 1 ≥ 1 for what we have said before, x · ν ≤√
ε2
k |ν̃|

2 + 1x · ν, so, seeing as how −ε2
k |ν̃|

2 r/2 ≤ 0, we get from (3.67)

x · ν − ε2
k |ν̃|

2 r

2
− C1r

2εk ≤
√
ε2
k |ν̃|

2 + 1x · ν − εkC1r
2 ≤ uk in Ωr(uk)
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and hence

x · ν − ε2
k |ν̃|

2 r

2
− C1r

2εk ≤ uk in Ωr(uk). (3.68)

In addition, always if x · ν ≥ 0,
√
ε2
k |ν̃|

2 + 1x · ν ≤ (1 + ε2
k |ν̃|

2 /2)x · ν,

seeing as how
√
ε2
k |ν̃|

2 + 1 ≤ 1 + ε2
k |ν̃|

2 /2 for what we have shown above,

and x · ν ≤ |x · ν| ≤ |x| |ν| ≤ r in Ωr(uk), i.e. x · ν ≤ r, recalling that |ν| = 1

and |x| ≤ r in Ωr(uk) ⊂ Br. As a consequence, inasmuch as ε2
k |ν̃| r/2 ≥ 0,

we get from (3.67)

uk ≤
√
ε2
k |ν̃|

2 + 1x · ν + C1r
2εk

≤

(
1 +

ε2
k |ν̃|

2

2

)
x · ν + C1r

2εk

= x · ν +
ε2
k |ν̃|

2

2
x · ν + C1r

2εk

≤ x · ν + ε2
k |ν̃|

2 r

2
+ C1r

2εk in Ωr(uk),

in other words,

uk ≤ x · ν + ε2
k |ν̃|

2 r

2
+ C1r

2εk in Ωr(uk), (3.69)

which, together with (3.68), implies

x · ν− ε2
k |ν̃|

2 r

2
−C1r

2εk ≤ uk ≤ x · ν+ ε2
k |ν̃|

2 r

2
+C1r

2εk in Ωr(uk). (3.70)

If instead x · ν < 0,

√
ε2
k |ν̃|

2 + 1x · ν ≥ (1 + ε2
k |ν̃|

2 /2)x · ν,

because
√
ε2
k |ν̃|

2 + 1 ≤ 1 + ε2
k |ν̃|

2 /2, and for what we have shown before,

|x · ν| ≤ r in Ωr(uk) and thus x · ν ≥ −r in Ωr(uk). Consequently, since
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ε2
k |ν̃|

2 ≥ 0, we get from (3.67)

uk ≥
√
ε2
k |ν̃|

2 + 1x · ν − C1r
2εk

≥

(
1 +

ε2
k |ν̃|

2

2

)
x · ν − C1r

2εk

= x · ν +
ε2
k |ν̃|

2

2
x · ν − C1r

2εk

≥ x · ν − ε2
k |ν̃|

2 r

2
− C1r

2εk in Ωr(uk)

i.e.

x · ν − ε2
k |ν̃|

2 r

2
− C1r

2εk ≤ uk in Ωr(uk). (3.71)

In addition, always if x · ν < 0,
√
ε2
k |ν̃|

2 + 1x · ν ≤ x · ν, seeing as how√
ε2
k |ν̃|

2 + 1 ≥ 1, thereby, given that ε2
k |ν̃|

2 r/2 ≥ 0, we achieve from (3.67)

uk ≤
√
ε2
k |ν̃|

2 + 1x · ν + C1r
2εk ≤ x · ν + ε2

k |ν̃|
2 r

2
+ C1r

2εk in Ωr(uk),

namely

uk ≤ x · ν + ε2
k |ν̃|

2 r

2
+ C1r

2εk in Ωr(uk), (3.72)

which, together with (3.71), gives

x · ν− ε2
k |ν̃|

2 r

2
−C1r

2εk ≤ uk ≤ x · ν+ ε2
k |ν̃|

2 r

2
+C1r

2εk in Ωr(uk). (3.73)

Therefore, considering (3.70) and (3.73) together, we obtain

x · ν− ε2
k |ν̃|

2 r

2
−C1r

2εk ≤ uk ≤ x · ν+ ε2
k |ν̃|

2 r

2
+C1r

2εk in Ωr(uk), (3.74)

regardless of the sign of x · ν and hence ∀x ∈ Ωr(uk).

In particular, if r0 is such that C1r0 ≤ 1/4, that is r0 ≤ 1
4C1

and moreover k

is large enough so that εk ≤ 1
2|ν̃|2 , we achieve from (3.74)

x · ν − εk
r

2
≤ uk ≤ x · ν + εk

r

2
in Ωr(uk).

Precisely, if r0 ≤ 1
4C1

, given that 0 < r ≤ r0, 0 < r ≤ 1
4C1

. Furthermore,

inasmuch as εk → 0, for the definition of limit, we can find k̄ ∈ N such that

|εk| ≤
1

2 |ν̃|2
∀k ∈ N, k ≥ k̄
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and thus for these k’s εk ≤ |εk| ≤ 1
2|ν̃|2 , i.e. εk ≤ 1

2|ν̃|2.

To sum it up, 0 < r ≤ 1
4C1

and for k large, εk ≤ 1
2|ν̃|2 .

Hence, for these k’s

ε2
k |ν̃|

2 r

2
≤ εk |ν̃|2

1

2 |ν̃|2
r

2
= εk

r

4
,

in other words

ε2
k |ν̃|

2 r

2
≤ εk

r

4
(3.75)

and

εkC1r
2 ≤ εkC1r

1

4C1

= εk
r

4
,

which gives

εkC1r
2 ≤ εk

r

4
. (3.76)

As a consequence, in view of (3.75) and (3.76), which also imply−ε2
k |ν̃|

2 r/2 ≥
−εkr/4 and −εkC1r

2 ≥ −εkr/4, we get from (3.74)

x · ν − εk
r

4
− εk

r

4
≤ uk ≤ x · ν + εk

r

4
+ εk

r

4
in Ωr(uk),

which gives

x · ν − εk
r

2
≤ uk ≤ x · ν + εk

r

2
in Ωr(uk). (3.77)

Remark that we have assumed ν̃ 6= 0 to write εk ≤ 1
2|ν̃|2 .

If instead ν̃ = 0 then ν = en. Thus, from previous computation, it follows

that

xn − εkC1r
2 ≤ uk ≤ xn + εkC1r

2 in Ωr(uk).

Moreover, recalling that ε2
kr/2 ≥ 0,

x · ν − ε2
k

r

2
− C1r

2εk ≤ x · ν − C1r
2εk ≤ uk

≤ xn + C1r
2εk

≤ xn + ε2
k

r

2
+ C1r

2εk in Ωr(uk),

i.e.

x · ν − ε2
k

r

2
− C1r

2εk ≤ uk ≤ x · ν + ε2
k

r

2
+ C1r

2εk in Ωr(uk). (3.78)
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Therefore, repeating the above arguments, if C1r0 ≤ 1/4 and k is large

enough so that εk ≤ 1/2, we achieve from (3.78)

x · ν − εkr/2 ≤ uk ≤ x · ν + εkr/2 in Ωr(uk).

Hence, we get (3.77) one more time. Now, (3.77), together with (3.3), entails

that (
x · ν − εk

r

2

)+

≤ uk ≤
(
x · ν + εk

r

2

)+

in Br. (3.79)

The uk satisfy the conclusion of Lemma 3.1, obtaining a contradiction, inas-

much we have supposed that the uk did not satisfy the conclusion (3.2) of

Lemma 3.1.

Let us show that (3.79) holds.

From (3.77), since x · ν + εkr/2 ≤ max(0, x · ν + εkr/2) = (x · ν + εkr/2)+,

we achieve

uk ≤
(
x · ν + εk

r

2

)+

in Ωr(uk). (3.80)

In addition, since uk ≥ 0 in B1 ⊃ Br ⊃ Ωr(uk), namely uk ≥ 0 in Ωr(uk),

recalling that uk is a viscosity solution to (2.1) in B1, we have from (3.77)

max
(

0, x · ν − εk
r

2

)
=
(
x · ν − εk

r

2

)+

≤ uk in Ωr(uk),

in other words (
x · ν − εk

r

2

)+

≤ uk in Ωr(uk). (3.81)

Recall now that for the definition of Ωr(uk), Ωr(uk) ⊃ B+
1 (uk) ∩ Br and

B+
1 (uk)∩Br = B+

r (uk), hence, seeing as how uk ≥ 0 in B1 ⊃ Br, for what we

have noticed above, i.e. uk ≥ 0 in Br, uk = 0 in Br \ Ωr(uk). Consequently,

given that (x · ν + εkr/2)+ ≥ 0 in Br, we have

uk ≤
(
x · ν + εk

r

2

)+

in Br \ Ωr(uk),

which, together with (3.80), implies

uk ≤
(
x · ν + εk

r

2

)+

in Br. (3.82)
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At this point, from (3.3), we achieve(
x · ν − εk

r

2

)+

≤ uk in Br \ Ωr(uk),

which gives from (3.81)(
x · ν − εk

r

2

)+

≤ uk in Br. (3.83)

To sum it up, in view of (3.82) and (3.83) we obtain that (3.79) holds.



Chapter 4

Proofs of the main theorems

We prove our main results, in other words Theorem 0.1 and the following

4.1.

Theorem 4.1 (Lipschitz implies C1,α). Let u be a viscosity solution to

(2.1). Assume 0 ∈ F (u) and g(0) > 0. If F (u) is a Lipschitz graph in a

neighborhood of 0, then F (u) is C1,α in a (smaller) neighborhood of 0.

We begin from Theorem 0.1 and for the reader convenience, we recall

below its statement given in the introduction.

Theorem 4.2 (Flatness implies C1,α). Let u be a viscosity solution to

(2.1) in B1. Assume that 0 ∈ F (u), g(0) = 1 and aij(0) = δij. There exists a

universal constant ε̄ > 0 such that, if the graph of u is ε̄-flat in B1, i.e.

(xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1, (4.1)

and

[aij]C0,β(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄, (4.2)

then F (u) is C1,α in B1/2.

Remark. As observed in [11], the assumptions on the coefficients aij(x) in

Theorem (4.2) can be weakened to a Cordes-Nirenberg type condition

‖aij − δij‖L∞(B1) ≤ δ(n).

89
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Proof of Theorem 4.2. Let u be a viscosity solution to (1.2) in B1 with 0 ∈
F (u), g(0) = 1 and aij(0) = δij. Consider the sequence of rescalings

uk(x) :=
u(ρkx)

ρk
, x ∈ B1,

with ρk = r̄k, k = 0, 1, . . . , for a fixed r̄ such that

r̄β ≤ 1

4
, r̄ ≤ r0,

with r0 the universal constant of Lemma 3.1.

Notice that if r̄β ≤ 1/4, raising both the terms of the inequality to 1/β, with

0 < β ≤ 1, since both the terms are positive, we get

r̄ ≤
(

1

4

)1/β

and given that 1/β > 0, (1/4)1/β < 1, thus r̄ < 1.

As a consequence, ρk = r̄k, k = 0, 1 . . . , is such that ρ0 = 1 and ρk < 1

∀k ∈ N and hence uk is well-defined ∀k.
Indeed, if x ∈ B1, since 0 < ρk ≤ 1, we have

|ρkx| = ρk |x| < ρk ≤ 1

that is

ρkx ∈ B1 (4.3)

and so uk is well-defined, in view of its definition.

Now, we state that each uk solves (2.1) in B1 with coefficients akij(x) :=

aij(ρkx), right hand side fk(x) := ρkf(ρkx), and free boundary condition

gk(x) := g(ρkx).

Specifically, we need to show that

(i) if ϕ ∈ C2(B+
1 (uk)) touches uk from below (above) at x0 ∈ B+

1 (uk) then

∑
i,j

akij(x0)ϕij(x0) ≤ fk(x0)

(
resp.

∑
i,j

akij(x0)ϕij(x0) ≥ fk(x0)

)
;
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(ii) if ϕ ∈ C2(B1) and ϕ+ touches uk from below (above) at x0 ∈ F (uk)

and |∇ϕ| (x0) 6= 0 then

|∇ϕ| (x0) ≤ gk(x0) (resp. |∇ϕ| (x0) ≥ gk(x0)).

For this purpose, let us take ϕ ∈ C2(B+
1 (uk)) that touches uk from below at

x0 ∈ B+
1 (uk) and we have

ϕ(x0) = uk(x0) (4.4)

and

ϕ(x) ≤ uk(x) in a neighborhood O of x0. (4.5)

In particular, for the definition of uk, we can rewrite (4.4) as

ϕ(x0) = uk(x0) =
u(ρkx0)

ρk
,

therefore

ρkϕ(x0) = (ρkϕ)(x0) = u(ρkx0)

and in addition

(ρkϕ)

(
ρkx0

ρk

)
= u(ρkx0). (4.6)

Analogously, from (4.5) we have

ϕ(x) ≤ uk(x) =
u(ρkx)

ρk
in O,

which implies, inasmuch ρk > 0,

ρkϕ(x) = (ρkϕ)(x) ≤ u(ρkx) in O

and also

(ρkϕ)

(
ρkx

ρk

)
≤ u(ρkx) in O. (4.7)

Notice that if x ∈ O, with O neighborhood of x0, ρkx ∈ ρkO = O′, with O′

neighborhood of ρkx0. For instance, if we take O as Br(x0) and x ∈ O,

|x− x0| < r,
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thus, given that ρk > 0,

|ρkx− ρkx0| = ρk |x− x0| < ρkr,

i.e. ρkx ∈ Bρkr(ρkx0) = ρkBr(x0), which is a neighborhood of ρkx0.

Consequently, from this remark, together with (4.6) and (4.7), we obtain that

(ρkϕ)
(
·
ρk

)
touches u from below at ρkx0.

To use the fact that u is a viscosity solution to (2.1) in B1, we need to

verify that ρkx0 ∈ B+
1 (u) and (ρkϕ)

(
·
ρk

)
∈ C2(B+

1 (u)), or however in a

neighborhood of ρkx0.

As regards the first condition, we know that x0 ∈ B+
1 (uk) and hence, for the

definition of uk, we have u(ρkx0)
ρk

> 0, namely u(ρkx0) > 0, because ρk > 0

and so, seeing as how ρkx0 ∈ B1, as we have shown before, ρkx0 ∈ B+
1 (u).

As regards the second condition, instead, (ρkϕ)
(
·
ρk

)
∈ C2(O′), recalling that

if x ∈ O′, we can write x = ρky, with y ∈ O, for what we have said above,

and

(ρkϕ)

(
x

ρk

)
= (ρkϕ)

(
ρky

ρk

)
= (ρkϕ)(y) = ρkϕ(y),

namely

(ρkϕ)

(
x

ρk

)
= ρkϕ(y). (4.8)

Moreover, provided that making O smaller, inasmuch as B+
1 (uk) is open

and x0 ∈ B+
1 (uk), we can take O ⊂ B+

1 (uk), thus, since ϕ ∈ C2(B+
1 (uk)),

ϕ ∈ C2(O) and from (4.8) (ρkϕ)
(
·
ρk

)
∈ C2(O′).

To sum it up, we have (ρkϕ)
(
·
ρk

)
∈ C2(O′) that touches u from below at

ρkx0 ∈ B+
1 (u).

Therefore, given that u is a viscosity solution to (2.1) in B1, we get∑
i,j

aij(ρkx0)

(
(ρkϕ)

(
·
ρk

))
ij

(ρkx0) ≤ f(ρkx0). (4.9)

Now, (
(ρkϕ)

(
·
ρk

))
ij

= ρk

(
ϕ

(
·
ρk

))
ij

= ρk

(
1

ρk
ϕj

(
·
ρk

))
i

=
ρk
ρk

(
ϕj

(
·
ρk

))
i

=
1

ρk
ϕij

(
·
ρk

)
,
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which implies (
(ρkϕ)

(
·
ρk

))
ij

=
1

ρk
ϕij

(
·
ρk

)
and thus (

(ρkϕ)

(
·
ρk

))
ij

(ρkx0) =
1

ρk
ϕij

(
·
ρk

)
(ρkx0)

=
1

ρk
ϕij

(
ρkx0

ρk

)
=

1

ρk
ϕij (x0) ,

in other words (
(ρkϕ)

(
·
ρk

))
(ρkx0) =

1

ρk
ϕij(x0). (4.10)

As a consequence, we achieve from (4.9) and (4.10)∑
i,j

aij(ρkx0)
1

ρk
ϕij(x0) ≤ f(ρkx0),

which implies, because ρk > 0∑
i,j

aij(ρkx0)ϕij(x0) ≤ ρkf(ρkx0)

and for the definitions of akij and fk,∑
i,j

akij(x0)ϕij(x0) ≤ fk(x0),

that is ∑
i,j

akij(x)(uk)ij = fk in B+
1 (uk) in the viscosity sense, (4.11)

repeating an analogous reasoning with opposite inequalities, if ϕ ∈ C2(B+
1 (uk))

touches uk from above at x0 ∈ B+
1 (uk).

To show instead that |∇uk| = gk on F (uk), let us consider ϕ ∈ C2(B1) such

that ϕ+ touches uk from below at x0 ∈ F (uk) and |∇ϕ| (x0) 6= 0. Seeing as

how ϕ+ touches uk from below at x0 ∈ F (uk), we have

ϕ+(x0) = uk(x0) (4.12)
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and

ϕ+ ≤ uk(x) in a neighborhood of x0. (4.13)

From the definition of uk, (4.12) reads

ϕ+(x0) =
u(ρkx0)

ρk
,

hence, given that ρk > 0,

ρkϕ
+(x0) = (ρkϕ)+(x0) = u(ρkx0)

and also

(ρkϕ)+

(
ρkx0

ρk

)
= u(ρkx0). (4.14)

Likewise, we have from (4.13)

ϕ+(x) ≤ u(ρkx)

ρk
in O,

which gives, always since ρk > 0,

ρkϕ
+(x) = (ρkϕ)+(x) ≤ u(ρkx) in O

and moreover

(ρkϕ)+

(
ρkx

ρk

)
≤ u(ρkx) in O. (4.15)

For what we have noticed before, ρkx ∈ O′, where O′ is a neighborhood of

ρkx0 and thus from (4.14) and (4.15), we obtain that (ρkϕ)+
(
·
ρk

)
touches u

from below at ρkx0.

To use the fact that u is a solution to (2.1) in B1, this time, we need to prove

that ρkx0 ∈ F (u), (ρkϕ)
(
·
ρk

)
∈ C2(B1), or however in a neighborhood of

ρkx0, and
∣∣∣∇((ρkϕ)

(
·
ρk

))∣∣∣ (ρkx0) 6= 0.

With respect to the first condition, we know that x0 ∈ F (uk), i.e. uk(x0) = 0

and ∀Br(x0), Br(x0) ∩ B+
1 (uk) 6= ∅ and Br(x0) ∩ B+

1 (uk)
c 6= ∅. From the

definition of uk, we get u(ρkx0)
ρk

= 0, namely u(ρkx0) = 0 and so, ∀Br(ρkx0),

Br(ρkx0) ∩B+
1 (u)c 6= ∅.

Furthermore, if ∀Br(x0), Br(x0) ∩ B+
1 (uk) 6= ∅, it means that there exist at
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least a point x̄ ∈ Br(x0), such that x̄ ∈ B1 and uk(x̄) > 0, thus for the

definition of uk, u(ρkx̄) > 0, because ρk > 0.

In addition, for what we have shown above, since x̄ ∈ Br(x0) ∩ B1, ρkx̄ ∈
Bρkr(ρkx0)∩B1 and hence, inasmuch u(ρkx̄) > 0, ρkx̄ ∈ Bρkr(ρkx0)∩B+

1 (u).

In summary, we have that ∀Bρkr(ρkx0), Bρkr(ρkx0) ∩B+
1 (u) 6= ∅.

To show that ρkx0 ∈ F (u), remain to verify that ∀Br(ρkx0), Br(ρkx0) ∩
B+

1 (u) 6= ∅, but if we fix a ball Br̄(ρkx0), we can consider B r̄
ρk

(x0) and for what

we have said before, Bρk
r̄
ρk

(ρkx0) ∩ B+
1 (u) 6= ∅, that is Br̄(ρkx0) ∩ B+

1 (u) 6=
∅ and therefore ∀Br(ρkx0), Br(ρkx0) ∩ B+

1 (u) 6= ∅, which, together with

u(ρkx0) = 0 and Br(ρkx0) ∩B+
1 (u)c 6= ∅, ∀Br(ρkx0), gives ρkx0 ∈ F (u).

With reference to the second condition, repeating the same reasoning done

above, recalling that B1 is open and x0 ∈ F (u) ⊂ B1, (ρkϕ)
(
·
ρk

)
∈ C2(O′).

Concerning the third condition, instead,

∇
(

(ρkϕ)

(
·
ρk

))
= ρk∇

(
ϕ

(
·
ρk

))
= ρk

(
∂

∂x1

(
ϕ

(
·
ρk

))
,
∂

∂x2

(
ϕ

(
·
ρk

))
, . . . ,

∂

∂xn

(
ϕ

(
·
ρk

)))
= ρk

(
1

ρk

∂ϕ

∂x1

(
·
ρk

)
,

1

ρk

∂ϕ

∂x2

(
·
ρk

)
, . . . ,

1

ρk

∂ϕ

∂xn

(
·
ρk

))
=
ρk
ρk
∇ϕ

(
·
ρk

)
= ∇ϕ

(
·
ρk

)
,

which gives

∇
(

(ρkϕ)

(
·
ρk

))
= ∇ϕ

(
·
ρk

)
,

and thus∣∣∣∣∇((ρkϕ)

(
·
ρk

))∣∣∣∣ (ρkx0) =

∣∣∣∣∇ϕ( ·ρk
)∣∣∣∣ (ρkx0) = |∇ϕ| (x0) 6= 0,

i.e. ∣∣∣∣∇((ρkϕ)

(
·
ρk

))
(ρkx0) = ∇ϕ

∣∣∣∣ (x0), (4.16)

and ∣∣∣∣∇((ρkϕ)

(
·
ρk

))∣∣∣∣ (ρkx0) 6= 0.
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To sum it up, we have (ρkϕ)
(
·
ρk

)
∈ C2(O′) such that (ρkϕ)+

(
·
ρk

)
touches u

from below at ρkx0 ∈ F (u) and
∣∣∣∇((ρkϕ)

(
·
ρk

))∣∣∣ (ρkx0) 6= 0. Consequently,

inasmuch as u is a solution to (2.1) in B1,∣∣∣∣∇((ρkϕ)

(
·
ρk

))∣∣∣∣ (ρkx0) ≤ g(ρkx0)

which gives from (4.16)

|∇ϕ| (x0) ≤ g(ρkx0)

and for the definition of gk,

|∇ϕ| (x0) ≤ gk(x0),

that is

|∇uk| = gk on F (uk) in the viscosity sense, (4.17)

repeating an analogous reasoning with opposite inequalities, if ϕ ∈ C2(B1)

is such that ϕ+ touches uk from above at x0 ∈ F (uk) and |∇ϕ| (x0) 6= 0.

Therefore, considering together (4.11) and (4.17), we obtain that each uk

solves (2.1) in B1 with coefficients akij, right hand side fk and free boundary

condition gk.

Now, for the chosen r̄, by taking ε̄ = ε0(r̄)2 the assumption (2.2) holds for

ε = εk := 2−kε0(r̄).

Indeed, in B1, given that from (4.3), ρkx ∈ B1, if x ∈ B1 and ‖f‖L∞(B1) ≤ ε̄

in view of the second inequality in (4.2), we have

|fk(x)| = |ρkf(ρkx)| = ρk |f(ρkx)| ≤ ρk ‖f‖L∞(B1) ≤ ρkε̄ = r̄kε̄, (4.18)

seeing as how ρk > 0 and ρk = r̄k. In addition, from the condition r̄β ≤ 1/4,

since r̄ < 1, as we have shown before and 0 < β ≤ 1, we get r̄ ≤ r̄β ≤ 1/4,

namely r̄ ≤ 1/4 = 2−2 and thus r̄k ≤ (1/4)k = 2−2k for k = 0, 1, . . . As a

consequence, from (4.18), we achieve for the definition of ε̄

|fk(x)| ≤ ε̄r̄k ≤ ε0(r̄)22−2k = ε2
k,
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i.e. |fk(x)| ≤ ε2
k, with x ∈ B1, so ε2

k is an upper bound of the set

{|fk(x)| , x ∈ B1} and hence

‖fk‖L∞(B1) = sup
x∈B1

|fk(x)| ≤ ε2
k,

which gives ‖fk‖L∞(B1) ≤ ε2
k, as desired.

Concerning the free boundary condition gk, instead, always since from (4.3),

ρkx ∈ B1, if x ∈ B1, given that g(0) = 1, in view of the third inequality in

(4.2), [g]C0,β(B1) ≤ ε̄, and the definition of [g]C0,β(B1) (see Definition A.1), we

have in B1

|gk(x)− 1| = |g(ρkx)− g(0)| ≤ [g]C0,β(B1) |ρkx|β ≤ ε̄ρβk = ε̄r̄kβ, (4.19)

because |x| < 1, with x ∈ B1 and thus |x|β < 1, recalling that 0 < β ≤ 1

and always since ρk > 0 and ρk = r̄k. Furthermore, we know that r̄β ≤ 1/4,

hence, inasmuch as r̄β ≥ 0 and 1/4 ≥ 0, r̄kβ ≤ (1/4)k = 2−2k, for k = 0, 1, . . .

Therefore, from (4.19), we obtain for the definition of ε̄

|gk(x)− 1| ≤ ε̄r̄kβ ≤ ε0(r̄)22−2k = ε2
k,

in other words, |gk(x)− 1| ≤ ε2
k, with x ∈ B1, thereby ε2

k is an upper bound

of the set {|gk(x)− 1| , x ∈ B1} and hence

‖gk − 1‖L∞(B1) = sup
x∈B1

|gk(x)− 1| ≤ ε2
k,

which gives ‖gk − 1‖L∞(B1) ≤ ε2
k, as desired.

Finally, as regards the coefficients akij, always since from (4.3), ρkx ∈ B1

if x ∈ B1, given that aij(0) = δij, in view of the first inequality in (4.2),

[aij]C0,β(B1) ≤ ε̄ and the definition of [aij]C0,β(B1) (see Definition A.1), we

have in B1∣∣akij(x)− δij
∣∣ = |aij(ρkx)− aij(0)| ≤ [aij]C0,β(B1) |ρkx|β ≤ ε̄ρβk = ε̄r̄kβ (4.20)

seeing as how |x|β < 1 for what we have said before and always since ρk > 0

and ρk = r̄k. Consequently, inasmuch as r̄kβ ≤ 2−2k for k = 0, 1, . . . , as shown

above, we get from (4.20), for the definition of ε̄∣∣akij(x)− δij
∣∣ ≤ ε̄r̄kβ ≤ ε0(r̄)22−2k = ε2

k ≤ εk, (4.21)
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because 0 < εk < 1, recalling that 0 < ε0(r̄) < 1. Therefore, from (4.21), we

achieve
∣∣akij(x)− δij

∣∣ ≤ εk, with x ∈ B1, thus εk is an upper bound of the set{∣∣akij(x)− δij
∣∣ , x ∈ B1

}
and hence∥∥akij − δij∥∥L∞(B1)

= sup
x∈B1

∣∣akij(x)− δij
∣∣ ≤ εk,

which gives
∥∥akij − δij∥∥L∞(B1)

≤ εk, as desired.

To sum it up, we have shown that the assumption (2.2) holds for εk, for every

k = 0, 1, . . . and thus each uk is a solution to (2.1) in B1 with coefficients akij,

right hand side fk and free boundary condition gk, which satisfy (2.2) with

εk.

Now, the hypothesis (4.1) guarantees that for k = 0 also the flatness as-

sumption (3.1) in Lemma 3.1 is satisfied by u0. Precisely, with k = 0, we

have ρ0 = r̄0 = 1, which gives, for the definition of uk, u0 = u. As a conse-

quence, from (4.1),

(xn − ε̄)+ ≤ u0(x) ≤ (xn + ε̄)+, x ∈ B1 (4.22)

and given that 0 < ε0(r̄) < 1, ε̄ = ε0(r̄)2 ≤ ε0(r̄), hence the flatness assump-

tion (3.1) in Lemma 3.1 is satisfied by u0. In addition, since ε̄ ≤ ε0(r̄) and

writing ε0 for ε0(r̄), xn + ε̄ ≤ xn + ε0, with x ∈ B1, which implies

(xn+ ε̄)+ = max(0, xn+ ε̄) ≤ max(0, xn+ε0) = (xn+ε0)+, x ∈ B1. (4.23)

Analogously, because −ε̄ ≥ −ε0, if ε̄ ≤ ε0, xn − ε̄ ≥ xn − ε0 with x ∈ B1,

which implies

(xn− ε̄)+ = max(0, xn− ε̄) ≥ max(0, xn−ε0) = (xn−ε0)+, x ∈ B1. (4.24)

Therefore, from (4.22), (4.23) and (4.24), we achieve

(xn − ε0)+ ≤ u0(x) ≤ (xn + ε0)+, x ∈ B1. (4.25)

In addition, we can write xn = x · en and setting ν0 = en, we get from (4.25)

(x · ν0 − ε0)+ ≤ u0(x) ≤ (x · ν0 + ε0)+ x ∈ B1. (4.26)
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Consequently, we state that it follows by an induction on k and Lemma 3.1

that each uk, with k ≥ 1, satisfies

(x · νk − εk)+ ≤ uk(x) ≤ (x · νk + εk)
+ x ∈ B1,

with |νk| = 1 and |νk − νk−1| ≤ Cεk−1 for a universal constant C.

Let us analyze the case of k = 1.

For what we have shown above, we have that u0 is a solution to (2.1)-(2.2)

in B1 satisfying (4.25), with 0 ∈ F (u0), recalling that 0 ∈ F (u) and u0 = u.

Hence, because we have chosen r̄ such that r̄ ≤ r0, where r0 is the universal

constant of Lemma 3.1, we can apply Lemma 3.1 with r̄ and ε0 = ε0(r̄) to

obtain (
x · ν1 − ε0

r̄

2

)+

≤ u0(x) ≤
(
x · ν1 + ε0

r̄

2

)+

, x ∈ Br̄, (4.27)

with |ν1| = 1 and |ν1 − en| = |ν1 − ν0| ≤ Cε0, i.e. |ν1 − ν0| ≤ Cε0, for a

universal constant C.

Notice that for k = 1, ρ1 = r̄, thus we can rewrite (4.27)(
x · ν1 − ε0

ρ1

2

)+

≤ u0(x) ≤
(
x · ν1 + ε0

ρ1

2

)+

, x ∈ Bρ1 . (4.28)

Furthermore, if x ∈ Bρ1 , we can write x = ρ1y, with y ∈ B1. Indeed, fixed

x̄ ∈ Bρ1 , we can take ȳ as ȳ = x̄
ρ1
, seeing as how ρ1 = r̄ 6= 0, with |ȳ| =

∣∣∣ x̄ρ1

∣∣∣ =
1
ρ1
|x̄| < ρ1

ρ1
= 1, inasmuch as ρ1 > 0, i.e. |ȳ| < 1, thus ȳ ∈ B1 and moreover

x̄ = ρ1ȳ for the definition of ȳ. Conversely, if ȳ ∈ B1, x̄ = ρ1ȳ is such that

|x̄| = |ρ1ȳ| = ρ1 |ȳ| < ρ1, given that ρ1 > 0, that is |x̄| < ρ1 and x̄ ∈ Bρ1 . As

a consequence, from (4.28), we get, since (ρ1y) · ν1 = ρ1(y · ν1),(
ρ1(y · ν1)− ε0

ρ1

2

)+

≤ u0(ρ1y) ≤
(
ρ1(y · ν1) + ε0

ρ1

2

)+

, y ∈ B1

and dividing by ρ1 > 0

1

ρ1

(
ρ1(y · ν1)− ε0

ρ1

2

)+

≤ u0(ρ1y)

ρ1

≤ 1

ρ1

(
ρ1(y · ν1) + ε0

ρ1

2

)+

, y ∈ B1.

(4.29)
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Also, for what we have said before, u0 = u, hence for the definition of u1,
u0(ρ1y)
ρ1

= u1(y) and from (4.29) we achieve

1

ρ1

(
ρ1(y · ν1)− ε0

ρ1

2

)+

≤ u1(y) ≤ 1

ρ1

(
ρ1(y · ν1) + ε0

ρ1

2

)+

, y ∈ B1.

(4.30)

In addition, because ρ1 > 0,

1

ρ1

(
ρ1(y · ν1)− ε0

ρ1

2

)+

=

(
1

ρ1

(
ρ1(y · ν1)− ε0

ρ1

2

))+

=

(
ρ1

ρ1

(y · ν1)− ε0

ρ1

ρ1

2

)+

=
(
y · ν1 −

ε0

2

)+

and analogously,

1

ρ1

(
ρ1(y · ν1) + ε0

ρ1

2

)+

=
(
y · ν1 +

ε0

2

)+

,

therefore from (4.30),(
y · ν1 −

ε0

2

)+

≤ u1(y) ≤
(
y · ν1 +

ε0

2

)+

, y ∈ B1,

that is recalling y = x and given that for the definition of ε1,
ε0
2

= ε02−1 = ε1

(x · ν1 − ε1)+ ≤ u1(x) ≤ (x · ν1 + ε1)+ , x ∈ B1, (4.31)

with |ν1| = 1 and |ν1 − ν0| ≤ Cε0, for a universal constant C, namely the

thesis holds for k = 1.

Suppose now that the thesis holds for k and show that holds for k + 1.

We have from the hypothesis of induction that

(x · νk − εk)+ ≤ uk(x) ≤ (x · νk + εk)
+ , x ∈ B1 (4.32)

with |νk| = 1 and |νk − νk−1| ≤ Cεk−1.

To apply Lemma 3.1 with νk in place of en and thus x · νk in place of xn,

we need to show that 0 ∈ F (uk). In particular, we know from the hypothesis

of Theorem 4.2 that 0 ∈ F (u), in other words ∀Br, Br ∩ B+
1 (u) 6= ∅ and

Br ∩B+
1 (u)c 6= ∅, and u(0) = 0. Notice that for the definition of uk, uk(0) =
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u(ρk0)
ρk

= u(0)
ρk

= 0, namely uk(0) = 0, hence 0 ∈ B+
1 (uk)

c and ∀Br, Br ∩
B+

1 (uk)
c 6= ∅. Now, we want to prove that ∀Br, Br ∩ B+

1 (uk) 6= ∅. As a

consequence, let us fix Br0 . For what we have said above, recalling that

0 ∈ F (u), if we consider Bρkr0 , Bρkr0 ∩B+
1 (u) 6= ∅, that is there exist points x

such that x ∈ Bρkr0 ∩ B+
1 (u). Furthermore, we can assume that there exists

x̄ ∈ Bρkr0∩B+
1 (u) such that |x̄| < ρk. Indeed, if r0 ≤ 1, since x̄ ∈ Bρkr0 , |x̄| <

ρkr0 ≤ ρk, that is |x̄| < ρk, while if r0 > 1, seeing as how also Bρk∩B+
1 (u) 6= ∅,

because 0 ∈ F (u), we can take x̄ ∈ Bρk ∩ B+
1 (u) and given that ρk < ρkr0,

inasmuch as r0 > 1, Bρk ⊂ Bρkr0 and thus Bρk ∩B+
1 (u) ⊂ Bρkr0 ∩B+

1 (u), i.e.

x̄ ∈ Bρkr0 ∩ B+
1 (u), as we have supposed. In addition, since x̄ ∈ Bρkr0 , we

can write x̄ = ρkȳ, with ȳ ∈ Br0 , repeating the same reasoning done to show

that if x ∈ Br, we can write x = ry, with y ∈ B1. Nevertheless, seeing as how

|x̄| < ρk, |ρkȳ| = |x̄| < ρk, hence |ρkȳ| < ρk and given that ρk > 0, ρk |ȳ| < ρk,

which implies |ȳ| < ρk
ρk

= 1, that is |ȳ| < 1 and ȳ ∈ B1. On the other hand,

x̄ ∈ B+
1 (u), therefore u(x̄) > 0 and recalling that x̄ = ρkȳ, u(ρkȳ) > 0, which

gives, inasmuch as ρk > 0, u(ρkȳ)
ρk

= uk(ȳ) > 0, namely uk(ȳ) > 0. To sum it

up, we have shown that ȳ ∈ B1 and uk(ȳ) > 0, in other words ȳ ∈ B+
1 (uk).

Moreover, ȳ ∈ Br0 , thus ȳ ∈ Br0 ∩ B+
1 (uk) and Br0 ∩ B+

1 (uk) 6= ∅. For the

arbitrariness of Br0 , we achieve that Br∩B+
1 (uk) 6= ∅ ∀Br and hence, putting

together this fact and Br ∩ B+
1 (uk)

c 6= ∅ ∀Br, we obtain that 0 ∈ F (uk), as

desired.

Now, because uk is a solution to (2.1)-(2.2) in B1 satisfying (4.32), with

0 ∈ F (uk), we can apply Lemma 3.1 with radius r̄, for what we have said in

the case of k = 1, and with εk = ε0(r̄)2−k ≤ ε0(r̄), i.e. εk ≤ ε0(r̄), and we

get (
x · νk+1 − εk

r̄

2

)+

≤ uk(x) ≤
(
x · νk+1 + εk

r̄

2

)+

, x ∈ Br̄, (4.33)

with |νk+1| = 1 and |νk+1 − νk| ≤ Cεk for a universal constant C.

In addition, if x ∈ Br̄, x = r̄y with y ∈ B1, thus we can rewrite (4.33)

(
(r̄y) · νk+1 − εk

r̄

2

)+

≤ uk(r̄y) ≤
(

(r̄y) · νk+1 + εk
r̄

2

)+

, y ∈ B1, (4.34)
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and dividing by r̄ > 0, namely r̄ 6= 0,

1

r̄

(
(r̄y) · νk+1 − εk

r̄

2

)+

≤ uk(r̄y)

r̄
≤ 1

r̄

(
(r̄y) · νk+1 + εk

r̄

2

)+

y ∈ B1,

which implies, given that (r̄y) · νk+1 = r̄(y · νk+1),

1

r̄

(
r̄(y · νk+1)− εk

r̄

2

)+

≤ uk(r̄y)

r̄
≤ 1

r̄

(
r̄y(·νk+1) + εk

r̄

2

)+

y ∈ B1

and, since r̄ > 0, analogously to the case of k = 1 with ρ1,( r̄
r̄

(y · νk+1)− εk
r̄

r̄

2

)+

≤ uk(r̄y)

r̄
≤
( r̄
r̄

(y · νk+1) +
εk
r̄

r̄

2

)+

y ∈ B1,

that is(
y · νk+1 −

εk
2

)+

≤ uk(r̄y)

r̄
≤
(
y · νk+1 +

εk
2

)+

y ∈ B1. (4.35)

Now, for the definition of uk

uk(r̄y)

r̄
=
u(ρkr̄y)

ρk

1

r̄
=
u(ρkr̄y)

ρkr̄
,

in other words,
uk(r̄y)

r̄
=
u(ρkr̄y)

ρkr̄
, (4.36)

and because ρk = r̄k, ρkr̄ = r̄kr̄ = r̄k+1 = ρk+1, thus in view of (4.36) and for

the definition of uk

uk(r̄y)

r̄
=
u(ρk+1y)

ρk+1

= uk+1(y),

which gives from (4.35)(
y · νk+1 −

εk
2

)+

≤ uk+1(y) ≤
(
y · νk+1 +

εk
2

)+

y ∈ B1. (4.37)

Furthermore, we have εk = 2−kε0(r̄), therefore

εk
2

= εk2
−1 = 2−kε0(r̄)2−1 = 2−k2−1ε0(r̄) = 2−(k+1)ε0(r̄) = εk+1,

namely
εk
2

= εk+1,
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which implies from (4.37)

(y · νk+1 − εk+1)+ ≤ uk+1(y) ≤ (y · νk+1 + εk+1)+ y ∈ B1.

Consequently, setting y = x, we have obtained

(x · νk+1 − εk+1)+ ≤ uk+1(x) ≤ (x · νk+1 + εk+1)+ x ∈ B1

together with |νk+1| = 1 and |νk+1 − νk| ≤ Cεk for a universal constant C.

Summarizing, we have shown by induction on k ≥ 1 that

(x · νk − εk)+ ≤ uk(x) ≤ (x · νk + εk)
+ x ∈ B1,

with |νk| = 1 and |νk − νk−1| ≤ Cεk−1 for a universal constant C.

Let us show now that there exists a vector ν such that νk → ν as k →∞.
For this purpose, it suffices to verify that the condition |νk − νk−1| ≤ Cεk−1

implies that the sequence νk is a Cauchy sequence and thus convergent.

In particular, we have to prove that ∀δ > 0, there exists k̄ ∈ N such that

|νk − νh| < δ ∀k, h ∈ N, k, h ≥ k̄.

To this end, notice that we can assume without loss of generality that k > h

and we can write

|νk − νh| = |νk − νk−1 + νk−1 − νk−2 + . . .+ νh+1 − νh|

= |(νk − νk−1) + (νk−1 − νk−2) + . . .+ (νh+1 − νh)| ,

which gives for the triangular inequality of |·| ,

|νk − νh| ≤ |νk − νk−1|+ |νk−1 − νk−2|+ |. . .|+ |νh+1 − νh|

and hence, using the condition |νk − νk−1| ≤ Cεk−1, ∀k, we obtain

|νk − νh| ≤ Cεk−1 + Cεk−2 + . . .+ Cεh = C

(
k−1∑
j=h

εj

)
,

namely

|νk − νh| ≤ C

(
k−1∑
j=h

εj

)
. (4.38)
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Moreover, we remark that for the definition of εk,

εj = ε02−j = ε02−(j−h+h) = ε02−h2−(j−h) = εh2
−(j−h) j = h, . . . , k − 1,

that is

εj = εh2
−(j−h) j = h, . . . , k − 1,

therefore from (4.38) we get

|νk − νh| ≤ C

(
k−1∑
j=h

εh2
−(j−h)

)
= Cεh

(
k−1∑
j=h

2−(j−h)

)
,

i.e.

|νk − νh| ≤ Cεh

(
k−1∑
j=h

2−(j−h)

)
,

and calling l = j − h, which varies from 0 to k − 1− h, if j varies from h to

k − 1,

|νk − νh| ≤ Cεh

(
k−1−h∑
l=0

2−l

)
. (4.39)

In addition, because 2−l ≥ 0,

k−1−h∑
l=0

2−l ≤
∞∑
l=0

2−l =
1

1− 1
2

=
1
1
2

= 2,

in other words
k−1−h∑
l=0

2−l ≤ 2,

which implies from (4.39)

|νk − νh| ≤ 2Cεh. (4.40)

At this point, if we fix δ > 0 and we want |νk − νh| < δ with k, h ≥ k̄, we

can observe that εh = ε02−h ≤ ε02−k̄, recalling that h ≥ k̄, as a consequence

from (4.40), we achieve

|νk − νh| ≤ 2Cε02−k̄, (4.41)
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hence if we set

2Cε02−k̄ < δ, (4.42)

we have from (4.41)

|νk − νh| < δ, ∀k, h ∈ N, k, h ≥ k̄,

given that h ≥ k̄ and k > h for what we have supposed, and thus νk is a

Cauchy sequence.

If we want to establish k̄ with more precision, we have from (4.42)

2−k̄ <
δ

2Cε0

,

which gives, since 2 > 1

−k̄ < log2

δ

2Cε0

and

k̄ > − log2

δ

2Cε0

,

hence we can take k̄ as, for instance, k̄ = d− log2
δ

2Cε0
e.

Consequently, seeing as how νk is a Cauchy sequence, there exists ν such that

νk → ν as k →∞.
Now, we want to show that u ∈ C1,α(F (u) ∩B1/2).

Precisely, we claim that

|u(x)− u(0)− x · ν|
|x|

→ 0 |x| → 0, x ∈ (B+
1 (u) ∪ F (u)),

and therefore ν = ∇u(0).

To prove this fact, first of all we notice that u(0) = 0, recalling that 0 ∈ F (u),

thus

|u(x)− u(0)− x · ν| = |u(x)− x · ν| .

Also, if |x| → 0, x 6= 0, and we can suppose that |x| ≤ r̄ = ρ1, namely

x ∈ Bρ1 .

So, assume that x ∈ Bρ1 ∩ (B+
1 (u) ∪ F (u)), x 6= 0.

In particular, inasmuch as x 6= 0 and x ∈ Bρ1 , there exists an integer k with



106 4. Proofs of the main theorems

k ≥ 0, such that ρk+1 ≤ |x| ≤ ρk, i.e. x ∈ Bρk , given that ρk = r̄k → 0 as

k → ∞, since r̄ < 1, as we have already shown. As a consequence, because

x ∈ Bρk , x = ρky, y ∈ B1, thus for the definition of uk,
u(x)
ρk

= uk(y) and from

(x · νk − εk)+ ≤ uk(x) ≤ (x · νk + εk)
+, x ∈ B1,

calling x = y, we have

(y · νk − εk)+ ≤ uk(y) ≤ (y · νk + εk)
+, y ∈ B1,

which implies, inasmuch y = x
ρk

and u(x)
ρk

= uk(y),((
x

ρk

)
· νk − εk

)+

≤ u(x)

ρk
≤
((

x

ρk

)
· νk + εk

)+

x ∈ Bρk ,

and multiplying by ρk > 0, seeing as how
(
x
ρk

)
· νk = 1

ρk
(x · νk),

ρk

(
1

ρk
(x · νk)− εk

)+

≤ u(x) ≤ ρk

(
1

ρk
(x · νk) + εk

)+

x ∈ Bρk ,

which implies, as we have said above, because ρk > 0(
ρk
ρk

(x · νk)− ρkεk
)+

≤ u(x) ≤
(
ρk
ρk

(x · νk) + ρkεk

)+

x ∈ Bρk ,

that is

(x · νk − ρkεk)+ ≤ u(x) ≤ (x · νk + ρkεk)
+ x ∈ Bρk . (4.43)

In addition, x ∈ B+
1 (u) ∪ F (u), therefore x ∈ B+

1 (u) or x ∈ F (u). Let us

analyze the two cases separately.

If x ∈ B+
1 (u), u(x) > 0, hence from (4.43) we obtain (x · νk + ρkεk)

+ > 0, i.e.

(x · νk + ρkεk)
+ = x · νk + ρkεk and given that x · νk− ρkεk ≤ (x · νk− ρkεk)+,

we achieve from (4.43)

x · νk − ρkεk ≤ u(x) ≤ x · νk + ρkεk x ∈ Bρk ∩B+
1 (u),

which gives

−ρkεk ≤ u(x)− x · νk ≤ ρkεk x ∈ Bρk ∩B+
1 (u),
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namely

|u(x)− x · νk| ≤ ρkεk x ∈ Bρk ∩B+
1 (u). (4.44)

If instead x ∈ F (u), repeating the reasoning done in the proof of Lemma 3.1,

we have from (4.43)

−ρkεk ≤ x · νk ≤ ρkεk x ∈ Bρk ∩ F (u),

i.e.

|x · νk| ≤ ρkεk x ∈ Bρk ∩ F (u),

which implies, recalling that u(x) = 0 with x ∈ Bρk ∩ F (u), and |x · νk| =

|−x · νk| ,
|u(x)− x · νk| ≤ ρkεk x ∈ Bρk ∩ F (u). (4.45)

Consequently, putting together (4.44) and (4.45), seeing as howBρk∩(B+
1 (u)∪

F (u)) = (Bρk ∩B+
1 (u)) ∪ (Bρk ∪ F (u)), we get

|u(x)− x · νk| ≤ ρkεk x ∈ Bρk ∩ (B+
1 (u) ∪ F (u)). (4.46)

In addition, since |x| ≥ ρk+1 for what we have said above, and for the defini-

tion of ρk, ρk+1 = r̄ρk, we obtain from (4.46), because r̄ 6= 0

|u(x)− x · νk| ≤
r̄

r̄
ρkεk = ρk+1

εk
r̄
≤ |x| εk

r̄
x ∈ Bρk ∩ (B+

1 (u) ∪ F (u)),

in other words

|u(x)− x · νk| ≤
εk
r̄
|x| x ∈ Bρk ∩ (B+

1 (u) ∪ F (u)). (4.47)

Let us consider now |u(x)− x · ν| with x ∈ Bρk ∩ (B+
1 (u)∪F (u)) and we can

write

|u(x)− x · ν| = |u(x)− x · νk + x · νk − x · ν|

= |(u(x)− x · νk) + (x · νk − x · ν)| ,

for k chosen before, which gives, for the triangular inequality of |·| ,

|u(x)− x · ν| ≤ |u(x)− x · νk|+ |x · νk − x · ν|
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and from (4.47)

|u(x)− x · ν| ≤ εk
r̄
|x|+ |x · νk − x · ν| x ∈ Bρk ∩ (B+

1 (u) ∪ F (u)). (4.48)

Furthermore,

|x · νk − x · ν| = |x · (νk − ν)| ,

and for the Cauchy-Schwarz inequality

|x · νk − x · ν| ≤ |x| |νk − ν| ,

where, for the considerations done above, inasmuch as ν = lim
k→∞

νk, with

k ∈ N,
|νk − ν| ≤ 2Cεk,

therefore

|x · νk − x · ν| ≤ 2Cεk |x| ,

and from (4.48), we achieve

|u(x)− x · ν| ≤ εk
r̄
|x|+ 2Cεk |x|

=

(
1

r̄
+ 2C

)
εk |x| = C̃εk |x| x ∈ Bρk ∩ (B+

1 (u) ∪ F (u)),

that is, given that x 6= 0,

|u(x)− x · ν|
|x|

≤ C̃εk x ∈ Bρk ∩ (B+
1 (u) ∪ F (u)). (4.49)

At this point, if we let |x| go to 0, it is possible to choose the integer k

such that k → ∞, recalling that ρk → 0 as k → ∞, and with this choice,

εk = 2−kε0 → 0, thus from (4.49), since |u(x)−x·ν|
|x| ≥ 0, we obtain that

|u(x)− x · ν|
|x|

→ 0, |x| → 0, x ∈ B+
1 (u) ∪ F (u),

i.e.

u(x)− x · ν = o(|x|), x ∈ (B+
1 (u) ∪ F (u))

and seeing as how u(x)− x · ν = u(x)− u(0)− x · ν,

u(x)− u(0)− x · ν = 0(|x|),
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which means that ∇u(0) = ν, with 0 ∈ F (u), and we recall ν = ν(0), in order

to distinguish this ν from ν’s which we get if we repeat the same argument

∀x0 ∈ F (u).

As a consequence, we achieve that ∀x0 ∈ F (u), ∇u(x0) = ν(x0).

So, we can consider the function ν(x) with x ∈ F (u), which represents∇u(x),

with x ∈ F (u) and we want to show that |ν(x)− ν(y)| ≤ C |x− y|α , with x,

y ∈ F (u) ∩B1/2, which gives u ∈ C1,α(F (u) ∩B1/2).

To prove this fact, we notice, first of all, that if x, y ∈ B1/2, |x− y| ≤ |x|
+ |y| ≤ 1/2 + 1/2 = 1, namely |x− y| ≤ 1, hence, given that ρ0 = r̄0 = 1,

there exists an integer k, with k ≥ 0, such that ρk+1 ≤ |x− y| ≤ ρk. In

correspondence with this k, we consider |νk(x)− νk(y)| and we can write

|νk(x)− νk(y)| = |νk(x)− en + en − νk(y)| = |(νk(x)− en) + (en − νk(y))| ,

which gives for the triangular inequality of |·| ,

|νk(x)− νk(y)| ≤ |νk(x)− en|+ |en − νk(y)| ,

and inasmuch as |νk(x̄)− en| ≤ 2Cεk, with εk = 2−kε0, independently from

x̄ ∈ F (u), we have

|νk(x)− νk(y)| ≤ 2Cεk + 2Cεk = 4Cεk,

i.e.

|νk(x)− νk(y)| ≤ 4Cεk. (4.50)

In particular, because εk = 2−kε0, we can rewrite (4.50) as

|νk(x)− νk(y)| ≤ 4Cεk = 4C2−kε0 = 4C(r̄logr̄ 2−1

)kε0 = 4C(r̄α)kε0,

that is

|νk(x)− νk(y)| ≤ 4C(r̄k)αε0, (4.51)

where α = logr̄ 2−1 = logr̄
1
2
, and seeing as how r̄ ≤ (1/4) for what we have

shown before, raising both the terms of the inequality to 1/2, recalling that

both are positive, r̄1/2 ≤ 1/2, which gives, since 0 < r̄ < 1, 1/2 ≥ logr̄
1
2

= α,
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in other words α ≤ 1/2. Also, because r̄ < 1, α = logr̄
1
2
> logr̄ 1 = 0,

therefore we have 0 < α ≤ 1/2.

In addition, from (4.51), we obtain

|νk(x)− νk(y)| ≤ 4C(r̄k)αε0 = 4C
(r̄k+1)α

r̄α
ε0

and thus, given that ρk+1 ≤ |x− y|, ρk+1 = r̄k+1 and α > 0, we achieve

|νk(x)− νk(y)| ≤ 4C

r̄α
|x− y|α ε0 = C |x− y|α ,

calling C = 4C
r̄α
ε0, namely

|νk(x)− νk(y)| ≤ C |x− y|α x, y ∈ F (u) ∩B1/2. (4.52)

Now, passing to the limit in (4.52) as k → ∞ we achieve, recalling that

νk(x) → ν(x), νk(y) → ν(y), and hence νk(x)− νk(y) → ν(x)− ν(y), which

also gives |νk(x)− νk(y)| → |ν(x)− ν(y)|,

|ν(x)− ν(y)| ≤ C |x− y|α , x, y ∈ F (u) ∩B1/2,

as desired.

Consequently, we have shown that u ∈ C1,α(F (u) ∩B1/2).

Furthermore, we have ∇u(x0) = ν(x0) ∀x0 ∈ F (u) ∩ B1/2, with |ν(x0)| = 1

and thus ν(x0) 6= 0, which gives ∇u(x0) 6= 0. Therefore, given that u = 0

on F (u) ∩B1/2 and supposing that, provided that changing the order of the

variables, ∂u
∂xn

(x0) 6= 0, with x0 ∈ F (u) ∩ B1/2, we can apply the implicit

function theorem and ∀x0 ∈ F (u) ∩ B1/2 there exists an open neighborhood

of x′0, Vx′0 , an open neighborhood of x0n , Vx0n
, and a unique function ϕx0 :

Vx′0 → Vx0n
such that ϕx0(x′0) = x0n and

(F (u) ∩B1/2) ∩ (Vx′0 × Vx0n
) = {(x′, xn), xn = ϕx0(x′)} ,

with ϕx0 ∈ C1,α(Vx′0).

In particular, provided that enlarging Vx′0 × Vx0n
, if necessary, the set{

Vx′0 × Vx0n
, x0 ∈ F (u) ∩B1/2

}
cover F (u) ∩B1/2, which is a compact, since
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it is a closed set and bounded, seeing as how subset of B1/2. As a consequence,

we can find a finite number m of Vx′0 × Vx0n
such that

m⋃
i=1

(Vx′0 × Vx0n
)i ⊃

F (u) ∩B1/2 ⊃ F (u) ∩ B1/2, and thus
m⋃
i=1

(Vx′0 × Vx0n
) ⊃ F (u) ∩ B1/2. Hence,

putting together the corresponding functions ϕx0 , which coincide in the in-

tersection of Vx′0 × Vx0n
for the uniqueness of ϕx0 , we can find a function

ϕ : (F (u) ∩B1/2)′ → R such that

F (u) ∩B1/2 = {(x′, xn), xn = ϕ(x′)} ,

with ϕ ∈ C1,α((F (u) ∩ B1/2)′), that is F (u) ∩ B1/2 ∈ C1,α, in other words

F (u) ∈ C1,α in B1/2.

Before starting the proof of Theorem 4.1, we remark that in Theorem

4.1, the size of the neighborhood where F (u) is C1,α depends on the radius

ρ of the ball Bρ where F (u) is Lipschitz, on the Lipschitz norm of F (u), on

[aij]C0,β(Bρ), ‖g‖C0,β(Bρ) , and ‖f‖L∞(Bρ) .

Proof of Theorem 4.1. Let u be a viscosity solution to (2.1) in Ω with 0 ∈
F (u) and g(0) > 0. Without loss of generality, assume Ω = B1 and g(0) = 1.

Indeed, concerning the assumption g(0) = 1, if g(0) 6= 1, because g(0) > 0

and thus g(0) 6= 0, we can divide g by g(0) to get g̃ := g
g(0)

, and if we set

ũ := u
g(0)

, we claim that ũ is a viscosity solution to (2.1) in Ω with coefficients

aij, free boundary condition g̃ and right hand side f̃ := f
g(0)

.

Precisely, if ϕ ∈ C2(B+
1 (ũ)) touches ũ from below at x0 ∈ B+

1 (ũ), we have

ϕ(x0) = ũ(x0) (4.53)

and

ϕ(x) ≤ ũ(x) in a neighborhood O of x0. (4.54)

In particular, for the definition of ũ, (4.53) reads

ϕ(x0) =
u(x0)

g(0)
,

i.e.

g(0)ϕ(x0) = u(x0), (4.55)
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and analogously (4.54) reads

g(0)ϕ(x) ≤ u(x) in a neighborhood O of x0. (4.56)

Consequently, from (4.55) and (4.56), seeing as how g(0)ϕ(x) = (g(0)ϕ)(x),

we obtain that g(0)ϕ touches u from below at x0. Notice that, inasmuch as

ũ(x) = u(x)
g(0)

, ũ(x) > 0 if and only if u(x) > 0, hence B+
1 (ũ) = B+

1 (u), which

implies that x0 ∈ B+
1 (u) and g(0)ϕ ∈ C2(B+

1 (u)). Therefore, we have that

g(0)ϕ ∈ C2(B+
1 (u)) touches u from below at x0 ∈ B+

1 (u) and hence, recalling

that u is a viscosity solution to (2.1) in B1, we achieve∑
i,j

aij(x0)(g(0)ϕ)ij(x0) =
∑
i,j

aij(x0)g(0)ϕij(x0)

= g(0)
∑
i,j

aij(x0)ϕij(x0) ≤ f(x0),

namely

g(0)
∑
i,j

aij(x0)ϕij(x0) ≤ f(x0),

which gives, because g(0) > 0,∑
i,j

aij(x0)ϕij(x0) ≤ f(x0)

g(0)
,

that is for the definition of f̃ ,∑
i,j

aij(x0)ϕij(x0) ≤ f̃(x0).

As a consequence, repeating the same argument if ϕ ∈ C2(B+
1 (ũ)) touches ũ

from above at x0 ∈ B+
1 (ũ), but with opposite inequalities, we obtain that∑

i,j

aij(x)ũij = f̃ in B+
1 (ũ) in the viscosity sense. (4.57)

In parallel, if ϕ ∈ C2(B1) is such that ϕ+ touches ũ from below at x0 ∈ F (ũ),

with |∇ϕ| (x0) 6= 0, repeating the considerations done above, we get

g(0)ϕ+(x0) = u(x0)
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and

g(0)ϕ(x)+ ≤ u(x) in a neighborhood of x0,

which imply, inasmuch as g(0) > 0, that g(0)ϕ+ = (g(0)ϕ)+ touches u from

below at x0.

Now, x0 ∈ F (ũ), thus ∀Br(x0), Br(x0)∩B+
1 (ũ) 6= ∅ and Br(x0)∩B+

1 (ũ)c 6= ∅,
hence, because B+

1 (ũ) = B+
1 (u) for what we have said before, Br(x0) ∩

B+
1 (u) 6= ∅ and Br(x0) ∩B+

1 (u)c 6= ∅, ∀Br(x0), i.e. x0 ∈ F (u).

In addition, since g(0) > 0 and |∇ϕ| (x0) 6= 0, |∇(g(0)ϕ)| (x0) = g(0) |∇ϕ| (x0) 6=
0, namely |∇(g(0)ϕ)| (x0) 6= 0.

To sum it up, we have g(0)ϕ ∈ C2(B1) such that (g(0)ϕ)+ touches u from

below at x0 ∈ F (u) and |∇(g(0)ϕ)| (x0) 6= 0, therefore, since u is a viscosity

solution to (2.1) in B1,

|∇(g(0)ϕ)| (x0) = g(0) |∇ϕ| (x0) ≤ g(x0),

which gives

|∇ϕ| (x0) ≤ g(x0)

g(0)
= g̃(x0),

that is

|∇ϕ| (x0) ≤ g̃(x0).

Consequently, repeating the same reasoning in the case of ϕ ∈ C2(B1) such

that ϕ+ touches ũ from above at x0 ∈ F (ũ), with |∇ϕ| (x0) 6= 0, but with

opposite inequalities, we achieve

|∇ũ| = g̃ on F (ũ) in the viscosity sense. (4.58)

Putting together (4.57) and (4.58), we obtain that ũ is a viscosity solution

to (2.1) in B1 with coefficients aij, right hand side f̃ and free boundary con-

dition g̃.

Also, for simplicity we take aij(0) = δij.

At this point, consider the blow-up sequence

uk := uδk(x) =
u(δkx)

δk
,
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with δk → 0 as k →∞.
In particular, repeating the same argument used in the proof of Theorem

4.2, each uk solves (2.1) with coefficients akij(x) := aij(δkx), right hand side

fk(x) := δkf(δkx), and free boundary condition gk(x) := g(δkx). Further-

more, for k large, the assumption (4.2) is satisfied for the universal constant

ε̄ of Theorem 4.2. In fact, in B1, we have, given that δk > 0,

|fk(x)| = |δkf(δkx)| = δk |f(δkx)| , (4.59)

and, seeing as how δk → 0 as k → ∞, there exists k̄ ∈ N such that |δk| < 1

with k ≥ k̄, k ∈ N, namely, because δk > 0, δk < 1 for k large. Thus, for

these k’s, |δkx| = δk |x| < |x| < 1, with x ∈ B1, which gives from (4.59)

|fk(x)| ≤ δk ‖f‖L∞(B1) ≤ ε̄,

in other words

|fk(x)| ≤ ε̄, (4.60)

always since δk → 0 as k → ∞, and hence there exists k̄ ∈ N such that

δk ≤ ε̄
‖f‖L∞(B1)

, with k ≥ k̄, that is for k large enough. As a consequence,

from (4.60), we get

sup
x∈B1

|fk(x)| = ‖fk‖L∞(B1) ≤ ε̄,

i.e.

‖fk‖L∞(B1) ≤ ε̄ (4.61)

because ε̄ is an upper bound of the set {|fk(x)| , x ∈ B1} .
Moreover, always in B1, seeing as how gk(0) = g(0) = 1 and in view of the

definition of [g]C0,β , (see Definition A.1)

|gk(x)− 1| = |gk(x)− gk(0)| ≤ |x|β [gk]C0,β(B1) ≤ [gk]C0,β(B1), (4.62)

inasmuch as |x|β ≤ 1, given that x ∈ B1 and β > 0.
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Notice now that [gk]C0,β(B1) = δβk [g]C0,β(Bδk ). Indeed,

[gk]C0,β(B1) = sup
x,y ∈B1
x 6=y

|gk(x)− gk(y)|
|x− y|β

= sup
x,y ∈B1
x 6=y

|g(δkx)− g(δky)|
|x− y|β

=
δβk
δβk

sup
x,y∈B1
x 6=y

|g(δkx)− g(δky)|
|x− y|β

= δβk sup
x,y ∈B1
x 6=y

|g(δkx)− g(δky)|
δβk |x− y|

β

= δβk sup
x,y ∈B1
x 6=y

|g(δkx)− g(δky)|
|δk(x− y)|β

= δβk sup
x,y ∈B1
x 6=y

|g(δkx)− g(δky)|
|δkx− δky|β

,

namely

[gk]C0,β(B1) = δβk sup
x,y ∈B1
x 6=y

|g(δkx)− g(δky)|
|δkx− δky|β

,

and since δkx, δky vary in Bδk if x, y vary in B1,

[gk]C0,β(B1) = δβk sup
δkx,δky ∈Bδk
δkx 6=δky

|g(δkx)− g(δky)|
|δkx− δky|β

= δβk [g]C0,β(Bδk ),

that is

[gk]C0,β(B1) = δβk [g]C0,β(Bδk ).

Therefore, from (4.62), we obtain

|gk(x)− 1| ≤ [gk]C0,β(B1) = δβk [g]C0,β(Bδk ) ≤ δβk [g]C0,β(B1),

in other words

|gk(x)− 1| ≤ [gk]C0,β(B1) ≤ δβk [g]C0,β(B1), (4.63)

inasmuch as for k large δk < 1, for what we have said before, and thus

Bδk ⊂ B1, which implies [g]C0,β(Bδk ) ≤ [g]C0,β(B1).

In addition, since δk → 0 as k → ∞, with 0 < β ≤ 1, δβk → 0 as k → ∞,
hence there exists k̄ ∈ N such that δβk ≤ ε̄

[g]
C0,β(B1)

, with k ≥ k̄, k ∈ N, i.e. for

k large δβk ≤ ε̄
[g]
C0,β(B1)

, as a consequence from (4.63), we achieve for k large

|gk(x)− 1| ≤ [gk]C0,β(B1) ≤ ε̄
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which gives at the same time

[gk]C0,β(B1) ≤ ε̄ (4.64)

and

sup
x∈B1

|gk(x)− 1| = ‖gk − 1‖L∞(B1) ≤ ε̄,

namely

‖gk − 1‖L∞(B1) ≤ ε̄, (4.65)

given that ε̄ is an upper bound of the set {|gk(x)− 1| , x ∈ B1} .
As regards the inequalities which concern coefficients akij, we consider always

in B1,
∣∣akij(x)− δij

∣∣ , and because akij(0) = aij(0) = δij, we have∣∣akij(x)− δij
∣∣ =

∣∣akij(x)− akij(0)
∣∣ ,

which entails for the definition of [akij]C0,β(B1), (see Definition A.1)∣∣akij(x)− δij
∣∣ ≤ |x|β [akij]C0,β(B1) ≤ [akij]C0,β(B1) (4.66)

recalling that |x|β ≤ 1 in view of what we have said above.

Repeating the considerations done above, we also get from (4.66),∣∣akij(x)− δij
∣∣ ≤ [akij]C0,β(B1) ≤ δβk [aij]C0,β(B1) ≤ ε̄,

which gives

[akij]C0,β(B1) ≤ ε̄ (4.67)

and ∥∥akij − δij∥∥L∞(B1)
≤ ε̄, (4.68)

seeing as how ε̄ is an upper bound of the set
{∣∣akij(x)− δij

∣∣ , x ∈ B1

}
.

To sum it up, for k large from (4.61), (4.64) and (4.67), fk, gk and akij satisfy

the assumption (4.2) in B1 with ε̄, while from (4.61), (4.65) and (4.68), fk,

gk and akij satisfy (2.2) in B1 with ε̄.

Therefore, using nondegeneracy and uniform Lipschitz continuity of the uk’s

(see Lemma 5.1), standard arguments (see for instance [1]) imply that (up

to extracting a subsequence):
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(i) uk → u0,

(ii) ∂ {uk > 0} → ∂ {u0 > 0} locally in the Hausdorff distance,

for a globally defined function u0 : Rn → R.
Let us show that (i) is verified.

Precisely, we have, for what we have said above, that each uk solves (2.1)

in B1 with coefficients akij, right hand side fk and free boundary condition

gk and in addition for k large fk, gk and akij satisfy (2.2) in B1 with ε̄. We

want to show that F (uk) is a Lipschitz graph in a neighborhood of 0 and

F (uk) ∩B1 6= ∅.
In particular, as we have shown in the proof of Theorem 4.2, we have 0 ∈
F (uk) ∀k, thus F (uk) ∩ B1 6= ∅ ∀k. In addition, we know that F (u) is a

Lipschitz graph in a neighborhood O of 0, that is

F (u) ∩O = {(x′, ψ(x′))} ,

with ψ a Lipschitz function in (F (u) ∩ O)′. Always for what we have shown

in the proof of the Theorem 4.2, x0 ∈ F (u) if and only if x0

δk
∈ F (uk), as

a consequence F (uk) = 1
δk
F (u) and we can define ψk(y

′) := ψ(δky
′)

δk
, which

satisfies

ψk

(
x′

δk

)
=
ψ
(
δk

x′

δk

)
δk

=
ψ(x′)

δk
,

in other words

ψk

(
x′

δk

)
=
ψ(x′)

δk
,

and ∣∣∣∣ψk (x′δk
)
− ψk

(
y′

δk

)∣∣∣∣ =

∣∣∣∣ψ(x′)

δk
− ψ(y′)

δk

∣∣∣∣ ,
which gives with x′, y′ ∈ (F (u)∩O)′, recalling that ψ is a Lipschitz function

in (F (u) ∩O)′ with Lipschitz constant that we call Cψ,∣∣∣∣ψk (x′δk
)
− ψk

(
y′

δk

)∣∣∣∣ ≤ Cψ

∣∣∣∣x′δk − y′

δk

∣∣∣∣ ,
hence ψk is a Lipschitz function in 1

δk
(F (u) ∩O)′.

Now, if y′ ∈ 1
δk

(F (u)∩O)′, y′ = x′

δk
with x′ ∈ (F (u)∩O)′, therefore x′ ∈ F (u)′
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and x′ ∈ O′, thereby y′ ∈ 1
δk
F (u)′ = F (uk)

′ and y′ ∈ 1
δk
O′ = V ′ where

V = 1
δk
O is a neighborhood of 0

δk
= 0, thus y′ ∈ (F (uk) ∩ V )′. Consequently,

ψk is a Lipschitz function in (F (uk) ∩ V )′ and we can write

1

δk
(F (u) ∩O)′ = (F (uk) ∩ V )′ =

{(
1

δk
x′,

ψ( x
′

δk
)

δk

)}
= {(y′, ψk(y′))} ,

which implies that F (uk) is a Lipschitz graph in a neighborhood of 0.

To sum it up, we have, for k large, that uk is a solution to (2.1)-(2.2) with

εk ≤ ε̄, F (uk) ∩ B1 6= ∅ and F (uk) is a Lipschitz graph in a neighborhood

of 0, so we can apply Lemma 5.1 and hence for these k’s uk is Lipschitz, in

other words

|uk(x)− uk(y)| ≤ Ck |x− y| , ∀x, y. (4.69)

In particular fix one of these k’s and we call it k̄. As a consequence, from

(4.69) we have

|uk̄(x)− uk̄(y)| ≤ Ck̄ |x− y| , ∀x, y. (4.70)

At this point, notice that for every k with k ≥ k̄ we have from the definition

of uk

uk(x) =
u(δkx)

δk
=
u(δk̄

δk
δk̄
x)

δk̄
δk
δk̄

=
1
δk
δk̄

uk̄

(
δk
δk̄

)
=
δk̄
δk
uk̄

(
δk
δk̄
x

)
,

i.e.

uk(x) =
δk̄
δk
uk̄

(
δk
δk̄
x

)
. (4.71)

Therefore, in view of (4.70) and (4.71), we obtain

|uk(x)− uk(y)| =
∣∣∣∣δk̄δkuk̄

(
δk
δk̄
x

)
− δk̄
δk
uk̄

(
δk
δk̄
y

)∣∣∣∣
=

∣∣∣∣δk̄δk
∣∣∣∣ ∣∣∣∣uk̄ (δkδk̄x

)
− uk̄

(
δk
δk̄
y

)∣∣∣∣ ≤ ∣∣∣∣δk̄δk
∣∣∣∣Ck̄ ∣∣∣∣δkδk̄x− δk

δk̄
y

∣∣∣∣
=

∣∣∣∣δk̄δk
∣∣∣∣Ck̄ ∣∣∣∣δkδk̄ (x− y)

∣∣∣∣ =

∣∣∣∣δk̄δk
∣∣∣∣Ck̄ ∣∣∣∣δkδk̄

∣∣∣∣ |x− y|
=
|δk̄|
|δk|

Ck̄
|δk|
|δk̄|
|x− y| = Ck̄ |x− y| ,
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namely

|uk(x)− uk(y)| ≤ Ck̄ |x− y| ∀x, y ∀k, k ≥ k̄. (4.72)

Consequently, in view of (4.72), for k large uk is uniformly Lipschitz continu-

ous and hence equicontinuous. Indeed, in B1, if we fix ε > 0, calling C = Ck̄

in (4.72), we can take η > 0, η = ε
C

such that if x, y ∈ B1, |x− y| < η we

get from (4.72)

|uk(x)− uk(y)| ≤ C |x− y| < C
ε

C
= ε,

namely there exists η > 0 such that

|uk(x)− uk(y)| < ε,

if x, y ∈ B1, |x− y| < η and for k large, i.e. uk is equicontinuous.

Now, from Lemma 5.1 which we have applied for these k’s, we also obtain

c0d(z) ≤ uk(z) ≤ C0d(z), for all z ∈ B+
1 (uk), (4.73)

with d(z) = dist(z, F (uk)), and c0, C0 universal constants independent from

k.

In particular, seeing as how 0 ∈ F (uk) ∀k,

d(z) = inf
y ∈F (uk)

|z − y| ≤ |z − 0| = |z| < 1,

because z ∈ B+
1 (uk), which entails |z| < 1, that is d(z) < 1, which gives from

(4.73)

uk(z) ≤ C0 z ∈ B+
1 (uk). (4.74)

Moreover, given that uk ≥ 0 in B1, uk = 0 in B1 \ B+
1 (uk) and thus, inasmuch

as C0 ≥ 0, uk(z) ≤ C0 with z ∈ B1 \ B+
1 (uk), as a consequence we achieve

from (4.74)

uk(z) ≤ C0, z ∈ B1,

i.e. since uk ≥ 0 and hence |uk| = uk,

|uk| ≤ C0 in B1.
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Therefore, we have shown that the sequence uk is uniformly bounded in B1

and because uk is also equicontinuous in B1 with k large, we can apply the

Ascoli-Arzelà theorem (see Theorem A.3) and we get that there exists a

subsequence which we still call uk such that uk converges uniformly to u0 in

K with K a compact subset of B1.

In addition, we notice that uk is well-defined also in B 1
δk

, recalling that if

x ∈ B 1
δk

δkx ∈ B1, where u is well-defined and hence for the definition of uk,

uk is well-defined in B 1
δk

. As a consequence, seeing as how δk → 0, 1
δk
→∞,

so for every compact K, given that there exists a ball Br̄, with Br̄ ⊃ K, we

can find k̄ ∈ N, such that 1
δk
> r̄, for k ∈ N, k ≥ k̄, thereby we can repeat

the same reasoning done before to obtain that uk converges uniformly to u0

in K. Thanks to this fact, we can consider u0 as a globally defined function.

Now, using a similar argument to that used in Lemma 3.1 to show that ũ

solves (3.19), we get that the blow-up limit u0 is a global solution to the free

boundary problem ∆u0 = 0 in {u0 > 0} ,

|∇u0| = 1 on F (u0).
(4.75)

and since F (u) is a Lipschitz graph in a neighborhood of 0, we also see from

(i)-(ii) that F (u0) is Lipschitz continuous. Thus, it follows from [4] that u0

is a so-called one-plane solution, i.e. (up to rotations) u0 = x+
n .

Combining the facts above, one concludes that for all k large enough, uk is

ε̄-flat say in B1, in other words

(xn − ε̄)+ ≤ uk(x) ≤ (xn + ε̄)+, x ∈ B1.

Precisely, since u0 = x+
n and uk → u0 uniformly, we have for k large enough,

for instance k ≥ kε̄, ∣∣uk(x)− x+
n

∣∣ ≤ ε̄, x ∈ B1, (4.76)

which gives

−ε̄ ≤ uk(x)− x+
n , x ∈ B1

and

x+
n − ε̄ ≤ uk(x), x ∈ B1. (4.77)
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Therefore, from (4.77), seeing as how xn ≤ x+
n , we achieve

xn − ε̄ ≤ uk(x), x ∈ B1,

which implies, given that uk ≥ 0 in B1,

max(xn − ε̄, 0) = (xn − ε̄)+ ≤ uk(x) x ∈ B1,

i.e. for k large enough

(xn − ε̄)+ ≤ uk(x), x ∈ B1. (4.78)

Furthermore, from (4.76), we also have

uk(x)− x+
n ≤ ε̄, x ∈ B1,

and

uk(x) ≤ x+
n + ε̄, x ∈ B1,

which entails, where xn ≥ 0 in B1, in other words in B1 ∩ {xn ≥ 0} ,

uk(x) ≤ xn + ε̄, x ∈ B1 ∩ {xn ≥ 0} , (4.79)

recalling that if xn ≥ 0, x+
n = xn.

In addition, if xn ≥ 0, xn + ε̄ ≥ ε̄ > 0, which gives xn + ε̄ > 0 and hence

xn + ε̄ = (xn + ε̄)+, as a consequence from (4.79), we get

uk(x) ≤ (xn + ε̄)+, x ∈ B1 ∩ {xn ≥ 0} ,

which also gives from (4.78)

(xn − ε̄)+ ≤ uk(x) ≤ (xn + ε̄)+ x ∈ B1 ∩ {xn ≥ 0} ,

and using the fact that ∂ {uk > 0} → ∂ {u0 > 0} locally in the Hausdorff

distance,

(xn − ε̄)+ ≤ uk(x) ≤ (xn + ε̄)+ x ∈ B1.

Consequently, uk satisfies the assumptions of Theorem 4.2, and our conclu-

sion follows.





Chapter 5

Nondegeneracy property of the

solutions

In this chapter, we state and prove the nondegeneracy of a solution u to

(2.1)-(2.2). This property has been used in the proof of Theorem 4.1.

Lemma 5.1. Let u be a solution to (2.1)-(2.2) with ε ≤ ε̃ a universal con-

stant. If F (u)∩B1 6= ∅, F (u) is a Lipschitz graph in B2, then u is Lipschitz

and nondegenerate in B+
1 (u), i.e.

c0d(z) ≤ u(z) ≤ C0d(z) for all z ∈ B+
1 (u),

with d(z) = dist(z, F (u)) and c0, C0 universal constants.

Proof . Assume without loss of generality that 0 ∈ B+
1 (u) and set d := d(0).

Consider the rescaled function

ũ(x) =
u(dx)

d
, x ∈ B1. (5.1)

Repeating the reasoning done in Theorem 4.2, we obtain that ũ satisfies (2.1)

in B1 with coefficients ãij(x) := aij(dx), right hand side f̃(x) := df(dx) and

free boundary condition g̃(x) = g(dx).

Now, we notice that d ≤ 1. Indeed, given that F (u) ∩ B1 6= ∅, there exists a

point x̄ ∈ F (u) ∩ B1 and which satisfies thus |x̄| ≤ 1. As a consequence, we

123
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have, seeing as how x̄ ∈ F (u) if x̄ ∈ F (u) ∩B1,

d = dist(0, F (u)) = inf
x∈F (u)

|x| ≤ |x̄| ≤ 1,

i.e.

d ≤ 1.

In particular, since d ≤ 1, the assumption (2.2) holds.

Precisely, fixed x ∈ B1, we have, because d ≥ 0, recalling that d is a distance,

and d ≤ 1, ∣∣∣f̃(x)
∣∣∣ = |df(dx)| = d |f(dx)| ≤ |f(dx)| ≤ ‖f‖L∞ ,

namely ∣∣∣f̃(x)
∣∣∣ ≤ ‖f‖L∞ . (5.2)

Furthermore, inasmuch ‖f‖L∞ ≤ ε2, recalling that u is a solution to (2.1)-

(2.2), we get from (5.2), ∣∣∣f̃(x)
∣∣∣ ≤ ε2. (5.3)

As a consequence, from (5.3), we achieve that ε2 is an upper bound of the

set
{∣∣∣f̃(x)

∣∣∣ , x ∈ B1

}
, and thus∥∥∥f̃∥∥∥

L∞(B1)
= sup

x∈B1

∣∣∣f̃(x)
∣∣∣ ≤ ε2,

which gives ∥∥∥f̃∥∥∥
L∞(B1)

≤ ε2. (5.4)

As regards the second inequality in (2.2), instead, we fix x ∈ B1, and we have

|g̃(x)− 1| = |g(dx)− 1| ≤ ‖g − 1‖L∞ ,

in other words,

|g̃(x)− 1| ≤ ‖g − 1‖L∞ . (5.5)

Moreover, inasmuch as u is a solution to (2.1)-(2.2), ‖g − 1‖L∞ ≤ ε2, hence

from (5.5) we obtain

|g̃(x)− 1| ≤ ε2,
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which entails that ε2 is an upper bound of the set {|g̃(x)− 1| , x ∈ B1} ,
and therefore, we get

‖g̃(x)− 1‖L∞(B1) ≤ ε2. (5.6)

Concerning the third inequality in 2.2, we fix x ∈ B1 and we have

|ãij(x)− δij| = |aij(dx)− δij| ≤ ‖aij − δij‖L∞ ,

that is

|ãij(x)− δij| ≤ ‖aij − δij‖L∞ . (5.7)

In addition, u is a solution to (2.1)-(2.2) and thus ‖aij − δij‖L∞ ≤ ε, as a

consequence from (5.7) we achieve

|ãij(x)− δij| ≤ ε,

which implies that ε is an upper bound of the set {|ãij(x)− δij| , x ∈ B1} ,
and hence we obtain

‖ãij − δij‖L∞(B1) ≤ ε. (5.8)

Considering together (5.4), (5.6) and (5.8), we get that the assumption (2.2)

holds for f̃ , g̃ and ãij.

At this point, we wish to show that

c0 ≤ ũ0 ≤ C0.

For this purpose, assume for contradiction that ũ(0) > C0, with C0 to be

made precise later.

Now, let

G(x) = C(|x|−γ − 1) (5.9)

be defined on the closure of the annulus B1 \ B1/2.

In particular, in view of the uniform ellipticity of the coefficients (see Lemma

A.5 in Appendix A), repeating the same computation described for proving

Lemma 2.3, we can choose γ large universal so that (for ε small)∑
i,,j

ãijGij > ε2 on B1 \ B1/2. (5.10)
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In addition we can choose C so that

G = 1 on ∂B1/2.

Indeed, since |x| = 1/2 on ∂B1/2, if we take

C =
1

(1/2)−γ − 1
, (5.11)

we achieve

G(x) =
1

(1/2)−γ − 1
((1/2)−γ − 1) = 1 x ∈ ∂B1/2,

i.e. G = 1 on ∂B1/2.

Notice now that ũ > 0 in B1. Indeed, if x ∈ B1, inasmuch d ≥ 0, |dx| =

d |x| < d, which gives dx ∈ Bd, where u > 0, and as a consequence ũ > 0

in B1. To show that u > 0 in Bd, we recall that d = dist(0, F (u)) and thus

Bd ∩ F (u) = ∅, otherwise there would exist x̄ ∈ Bd ∩ F (u), which satisfies

|x̄| < d, x̄ ∈ F (u), therefore we would have d = inf
x∈F (u)

|x| ≤ |x̄| < d, that is

d < d, which is a contradiction. Moreover, seeing as how u is continuous in

Bd, it can not exist x̄ ∈ Bd such that u(x̄) = 0 and x̄ /∈ F (u), otherwise, given

that u(0) > 0, there would exist x∗, for instance in the line which connects

0 and x̄, so that x∗ ∈ F (u) ∩Bd and as before, we reach a contradiction. To

sum it up, we have shown that u > 0 in Bd and hence ũ > 0 in B1.

Consequently, inasmuch ũ > 0 in B1 and solves, in the viscosity sense, a

uniformly elliptic equation in B1 with right hand side f̃ , we can apply the

Harnack inequality to obtain

sup
B1/2

ũ ≤ C1

(
inf
B1/2

ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

)
,

which implies,

ũ(0) ≤ sup
B1/2

ũ ≤ C1

(
inf
B1/2

ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

)
≤ C1

(
ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

)
on B1/2
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namely

ũ(0) ≤ C1

(
ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

)
on B1/2. (5.12)

At this point, from (5.12) we get

1

C1

ũ(0) ≤ ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

on B1/2,

which also gives

1

C1

ũ(0)− C2

∥∥∥f̃∥∥∥
L∞(B1)

≤ ũ on B1/2. (5.13)

In particular, because
∥∥∥f̃∥∥∥

L∞(B1)
≤ ε2, and thus −

∥∥∥f̃∥∥∥
L∞(B1)

≥ −ε2, we

achieve from (5.13)

ũ ≥ 1

C1

ũ(0)− C2ε
2 on B1/2. (5.14)

In addition, using the contradiction hypothesis, i.e. ũ(0) > C0 > 0, which

means that ũ(0) is large enough, we can choose ε > 0 such that ε < ũ(0),

therefore from (5.14) we obtain

ũ ≥ 1

C1

ũ(0)− C2εũ(0) =

(
1

C1

− C2ε

)
ũ(0) on B1/2, (5.15)

and taking ε small enough so that 1
C1
− C2ε > 0, in other words ε < 1

C1C2
,

calling c = 1
C1
− C2ε, we get from (5.15)

ũ ≥ cũ(0) on B1/2, (5.16)

with ε < min(ũ(0), 1
C1C2

).

Let us call now v(x) := cũ(0)G(x) and we claim that ũ− v satisfies∑
i,j

ãij(ũ− v)ij ≤ 0 in B1 \ B1/2

in the viscosity sense, i.e. ũ−v is a viscosity supersolution of
∑
i,j

ãij(ũ−v)ij =

0 in B1 \ B1/2, see Definition B.4 in Appendix B.
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Precisely, if ϕ ∈ C2(B1 \ B1/2) touches ũ − v from below at x0 ∈ B1 \ B1/2,

we have

ϕ(x0) = (ũ− v)(x0) = ũ(x0)− v(x0) (5.17)

and

ϕ(x) ≤ (ũ(x)− v(x)) = ũ(x)− v(x) in a neighborhood O of x0. (5.18)

As a consequence, (5.17) and (5.18) read

ϕ(x0) + v(x0) = (ϕ+ v)(x0) = ũ(x0) (5.19)

and

ϕ(x) + v(x) = (ϕ+ v)(x) ≤ ũ(x) in a neighborhood O of x0. (5.20)

In particular, let us remark that G ∈ C∞(B1 \ B1/2), thus also G ∈ C2(B1

\ B1/2), which implies v ∈ C2(B1 \ B1/2), because v = cũ(0)G, with cũ(0)

constant.

This fact, together with (5.19) and (5.20), gives that (ϕ+v) ∈ C2(B1 \ B1/2)

touches ũ from below at x0.

Furthermore, we have ũ(x0) > 0, inasmuch, as observed above, ũ > 0 in B1

and hence in B1 \ B1/2.

Therefore, since ũ is a solution to (2.1) in B1 and thus also in B1 \ B1/2 and

(ϕ + v) ∈ C2(B1 \ B1/2) touches ũ from below at x0 ∈ (B1 \ B1/2)+(ũ), we

get ∑
i,j

ãij(x0)(ϕ+ v)ij(x0) =
∑
i,j

ãij(x0)(ϕ+ cũ(0)G)ij(x0)

=
∑
i,j

ãij(x0)(ϕij(x0) + cũ(0)Gij(x0))

=
∑
i,j

ãij(x0)ϕij(x0) +
∑
i,j

ãij(x0)cũ(0)Gij(x0)

=
∑
i,j

ãij(x0)ϕij(x0) + cũ(0)
∑
i,j

ãij(x0)Gij(x0) ≤ f̃(x0)
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in other words∑
i,j

ãij(x0)ϕij(x0) + cũ(0)
∑
i,j

ãij(x0)Gij(x0) ≤ f̃(x0),

which entails∑
i,j

ãij(x0)ϕij(x0) ≤ f̃(x0)− cũ(0)
∑
i,j

ãij(x0)Gij(x0). (5.21)

Now, in view of (5.10), given that x0 ∈ (B1 \ B1/2), we achieve from (5.22)

taking ε2 = cũ(0)ε2,∑
i,j

ãij(x0)ϕij(x0) ≤ f̃(x0)− ε2 ≤ f̃(x0)− f̃(x0) = 0, (5.22)

seeing as how from the first inequality in (2.2) we have
∥∥∥f̃∥∥∥

L∞(B1)
≤ ε2, which

also gives
∣∣∣f̃(x)

∣∣∣ ≤ ε2, ∀x ∈ B1. Thus, inasmuch x0 ∈ (B1 \ B1/2) ⊂ B1,

namely x0 ∈ B1, we have
∣∣∣f̃ ∣∣∣ (x0) ≤ ε2 and hence f̃(x0) ≤ ε2.

To sum it up, from (5.22), we have obtained∑
i,j

ãij(x0)ϕij(x0) ≤ 0,

which implies that ũ− v is a viscosity supersolution to
∑
i,j

ãij(ũ− v)ij = 0 in

B1 \ B1/2.

Consequently, we can apply the maximum principle and we get

inf
B1 \ B1/2

(ũ− v) = inf
∂(B1 \ B1/2)

(ũ− v) = inf
∂B1∪∂B1/2

(ũ− v). (5.23)

In addition, we have G = 1 on ∂B1/2, hence from (5.16), we achieve

ũ ≥ cũ(0)G on ∂B1/2. (5.24)

At the same time, we have G = 0 on ∂B1, therefore, because ũ ≥ 0 on ∂B1

we achieve

ũ ≥ cũ(0)G on ∂B1 (5.25)
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Thus, from (5.24) and (5.25) we obtain for definition of v, ũ ≥ v on ∂B1 ∪
∂B1/2, that is ũ−v ≥ 0 on ∂B1∪∂B1/2. As a consequence, 0 is a lower bound

of the set {
ũ(x)− v(x), x ∈ ∂B1 ∪ ∂B1/2

}
,

which entails

inf
∂B1∪∂B1/2

(ũ− v) ≥ 0. (5.26)

Therefore, from (5.23) and (5.26), we also get, since ũ−v(x) ≥ inf
B1 \ B1/2

(ũ−v)

∀x ∈ B1 \ B1/2,

0 ≤ ũ(x)− v(x) ∀x ∈ B1 \ B1/2,

which gives, together with ũ(x)− v(x) ≥ 0 ∀x ∈ ∂B1 ∪ ∂B1/2,

ũ(x) ≥ v(x) on B1 \ B1/2. (5.27)

At this point, we notice that d > 0, recalling that B+
1 (u) is an open set,

inasmuch as u ∈ C(Ω) and B1 is an open set, and thus we can find a ball

Br̄ such that Br̄ ⊂ B+
1 (u), that is u > 0 in Br̄. This fact, specifically, entails

Br̄ ∩ F (u) = ∅, because u = 0 on F (u), and hence d = inf
x∈F (u)

|x| ≥ r̄ > 0, in

other words, d > 0.

In particular, if we call r∗ = sup
{
r | Br ⊂ B+

1 (u)
}
, we have r∗ < 1,

inasmuch F (u) ∩ B1 6= ∅, and we claim that there exists z ∈ ∂Br∗ so

that z ∈ F (u). Indeed, if for contradiction such z does not exist, we have

Br∗ ⊂ B+
1 (u) or there exists x0 ∈ F (u), with |x0| < r∗. With respect to

this second possibility, however, we would have that |x0| would be an upper

bound of the set
{
Br | Br ⊂ B+

1 (u)
}
, and as a consequence, for definition

of sup, we would have r∗ ≤ |x0| < r∗, namely r∗ < r∗, which is a contra-

diction. Therefore, we have Br∗ ⊂ B+
1 (u), but, given that B+

1 (u) is an open

set, dist(Br∗ , ∂B
+
1 (u)) > 0, thus if we call δ := dist(Br∗ , ∂B

+
1 (u)), and we

take r∗+ δ
2
, Br∗+ δ

2
⊂ B+

1 (u), which implies, for definition of sup, r∗+ δ
2
≤ r∗,

which is a contradiction, recalling that δ
2
> 0.

To sum it up, we have proved that there exists z ∈ ∂Br∗ , with z ∈ F (u).

We show now that z is the point where d is achieved, that is d = |z| . Precisely,
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if for contradiction d 6= |z| , seeing as how z ∈ F (u), we have d < |z| . Fur-

thermore, |z| = r∗, inasmuch z ∈ ∂Br∗ , hence d < r∗. Consequently, r∗−d
2

> 0

and if we set ε = r∗−d
2

> 0, since d = inf
x∈F (u)

|x| , there exists x̄ ∈ F (u) such

that d ≤ |x̄| ≤ d+ ε, which entails that r∗ ≤ d+ ε, but for the choice of ε,

d+ ε = d+
r∗ − d

2
< d+ r∗ − d = r∗,

i.e. d+ ε < r∗, which contradicts r∗ ≤ d+ ε.

Thus, z is the point where d is achieved and |z| = d.

Moreover, z ∈ F (u), hence u(z) = 0 and for definition of ũ, ũ( z
d
) =

u(d z
d

)

d
=

u(z)
d

= 0. As a consequence ∀Br

(
z
d

)
Br

(
z
d

)
∩ (B1 \ B1/2)+(ũ)c 6= ∅, and

seeing as how ũ > 0 in B1, for what we have said above, also Br

(
z
d

)
∩

(B1 \ B1/2)+(ũ) 6= ∅ ∀Br

(
z
d

)
, recalling that z

d
∈ ∂B1, and hence Br

(
z
d

)
∩

B1 6= ∅ ∀Br

(
z
d

)
. Therefore, z

d
∈ ∂(B1 \ B1/2)+(ũ) ∩ (B1 \ B1/2).

Nevertheless, given that ũ
(
z
d

)
= 0, we also have that Br

(
z
d

)
∩ B+

1 (ũ)c 6= ∅,
∀Br

(
z
d

)
, and if Br

(
z
d

)
∩ (B1 \ B1/2)+(ũ), ∀Br

(
z
d

)
, since B1 \ B1/2 ⊂ B1,

Br

(
z
d

)
∩B+

1 (ũ) ∩ ∅, ∀Br

(
z
d

)
as well.

To sum it up, z
d
∈ ∂B+

1 (ũ) ∩B1.

Now, from (5.27), inasmuch as ũ
(
z
d

)
= 0 and v ≥ 0, recalling that ũ(0) > 0

and G ≥ 0, for definition, in B1 \ B1/2, we obtain v( z
d
) = 0, which implies

from (5.27), that v touches ũ at z
d
∈ ∂B+

1 (ũ) ∩B1, with v ∈ C2(B1 \ B1/2).

Consequently, because ũ is a solution to (2.1)-(2.2) in B1 with free boundary

condition g̃, and repeating the same argument, also in B1, we get, inasmuch
z
d
∈ ∂B+

1 (ũ) ∩B1, which is the free boundary in B1,

|∇v|
(v
d

)
≤ g̃

(z
d

)
= g

(
d
z

d

)
= g(z),

that is

|v|
(z
d

)
≤ g(z). (5.28)

In particular, seeing as how C, c, ũ(0), γ > 0, we can rewrite the first term in



132 5. Nondegeneracy property of the solutions

(5.28) as

|∇v|
(z
d

)
=
∣∣∇(cũ(0)C(|x|−γ − 1))

∣∣ (v
d

)
=

∣∣∣∣cũ(0)− γC |x|−γ−1 x

|x|

∣∣∣∣ (vd)
= (cũ(0)Cγ |x|−γ−1)

(z
d

)
= cũ(0)Cγ

∣∣∣z
d

∣∣∣−γ−1

,

i.e.

|∇v|
(z
d

)
≤ cũ(0)Cγ

∣∣∣z
d

∣∣∣−γ−1

,

which gives, because
∣∣ z
d

∣∣ = 1,

|∇v|
(z
d

)
= cũ(0)Cγ. (5.29)

Consequently, from (5.28) and (5.29), we achieve

cũ(0)Cγ ≤ g(z) ≤ 1 + ε2 ≤ 2,

namely

cũ(0)Cγ ≤ 2, (5.30)

given that ‖g − 1‖ ≤ ε2, thus g(z)−1 ≤ ε2, and g(z) ≤ 1 + ε2, and inasmuch

as ε2 ≤ 1.

Now, from (5.30) we obtain

ũ(0) ≤ 2

cCγ
, (5.31)

but we have supposed for contradiction ũ(0) > C0, thus if we take C0 >
2

cCγ
,

we get from (5.31),
2

cCγ
<

2

cCγ
,

which is a contradiction.

To sum it up, we have shown that

ũ(0) ≤ C0, (5.32)
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with C0 >
2

cCγ
.

To prove the lower bound, instead, let

G̃(x) = η(1−G(x)) = η(1− C(|x|−γ − 1)), (5.33)

with η (depending on γ) such that∣∣∣∇G̃∣∣∣ < 1− ε2 on ∂B1/2. (5.34)

Specifically, we have, seeing as how C, γ, η > 0∣∣∣∇G̃∣∣∣ =
∣∣∇(η(1− C(|x|−γ − 1)))

∣∣
= ηCγ |x|−γ−1

∣∣∣∣ x|x|
∣∣∣∣ = ηCγ |x|−γ−1 ,

in other words, ∣∣∣∇G̃∣∣∣ = ηCγ |x|−γ−1 ,

which entails, since |x| = 1
2

on ∂B1/2,∣∣∣∇G̃∣∣∣ = ηCγ

(
1

2

)−γ−1

on ∂B1/2. (5.35)

Therefore, if we impose that
∣∣∣∇G̃∣∣∣ < 1− ε2 on ∂B1/2, we obtain from (5.35)

ηCγ

(
1

2

)−γ−1

< 1− ε2,

which gives

η <
1− ε2

Cγ
(

1
2

)−γ−1 ,

and hence we choose η > 0 so that this condition on η is satisfied.

Now, assume without loss of generality that F (u) is a Lipschitz graph in the

xn direction, otherwise we can apply a rotation to the coordinates to achieve

this fact. In addition, we suppose that the Lipschitz constant is equal to 1.

At this point, we translate the graph of G̃ by −ten, with t ∈ R, t > 0 i.e. if

we denote with

ΓG̃ :=
{

(x, G̃(x)), x ∈ B1 \ B1/2

}
,
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the graph of G̃, we can write the translation as

ΓG̃ − ten =
{

(x− 4en, G̃(x)), x ∈ B1 \ B1/2

}
=
{

(x1, . . . , xn − t, G̃(x)), x ∈ B1 \ B1/2

}
where x = (x1, . . . , xn).

In particular, we can take t large enough so that ũ ≡ 0 in B1(−ten).

Furthermore, we remark that from (5.9) and (5.11),

0 ≤ G =
1

(1/2)−γ − 1
(|x|−γ − 1) ≤ (1/2)−γ − 1

(1/2)−γ − 1
= 1, on B1 \ B1/2,

namely

0 ≤ G ≤ 1 on B1 \ B1/2.

As a consequence, we have from (5.33) that 0 ≤ G̃ ≤ η and thus ΓG̃ − ten
is above the graph of ũ, since ũ ≡ 0 in B1(−ten), for t large enough. We

slide then the graph of G̃ in the en direction till we touch the graph of ũ,

in a point which we call z̃. Moreover, we call t̃ the value of t for which this

contact is verified.

At this point, we define

G̃t̃(x) = G̃(x+ t̃en), (5.36)

and we notice that G̃t̃ is defined on B1(−t̃en) \ B1/2(−t̃en), given that G̃ is

defined on B1 \ B1/2. Indeed, from definition of G̃t̃, since G̃ is defined on

B1 \ B1/2, we must impose

1

2
≤
∣∣x+ t̃en

∣∣ =
∣∣x− (−t̃en)

∣∣ ≤ 1,

that is G̃t̃ is defined on B1(−t̃en) \ B1/2(−t̃en).

In addition, we claim that G̃t̃ is a strict supersolution to our free boundary

problem on B1(−t̃en) \ B1/2(−t̃en).

Precisely, from (5.10), we get

−
∑
i,j

ãijGij < −ε2 on B1 \ B1/2,
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which gives,∑
i,j

ãijG̃t̃ij =
∑
i,j

ãij(G̃(x+ t̃en))ij =
∑
i,j

ãijG̃ij(x+ t̃en)

=
∑
i,j

ãij(η(1−G))ij(x+ t̃en) =
∑
i,j

ãij(−ηGij)(x+ t̃en)

= −η
∑
i,j

ãijGij(x+ t̃en) < −ηε2 on B1(−t̃en) \ B1/2(−t̃en),

in other words,∑
i,j

ãijG̃t̃ij < −ε
2 on B1(−t̃en) \ B1/2(−t̃en), (5.37)

calling −ηε2 = −ε2.

Moreover, seeing as how
∥∥∥f̃∥∥∥

L∞
≤ ε2, we have

∣∣∣f̃ ∣∣∣ (x) ≤ ε2 ∀x which entails

f̃(x) ≥ −ε2 ∀x.
Therefore, from (5.37), we obtain∑

i,j

ãijG̃ ˜tij < f̃ on B1(−t̃en) \ B1/2(−t̃en). (5.38)

On the other hand, we also have ‖g̃ − 1‖L∞ ≤ ε2, which implies, repeating

the reasoning done above, g̃(x) − 1 ≥ −ε2, ∀x, namely g̃(x) ≥ 1 − ε2, ∀x.
Consequently, inasmuch x+ t̃en ∈ ∂B1/2 if x ∈ ∂B1/2(−t̃en), we achieve from

(5.34) ∣∣∣∇G̃t̃

∣∣∣ =
∣∣∣∇(G̃(x+ t̃en))

∣∣∣ =
∣∣∣∇G̃(x+ t̃en)

∣∣∣
< 1− ε2 ≤ g̃ on ∂B1/2(−t̃en),

i.e. ∣∣∣∇G̃t̃

∣∣∣ < g̃ on ∂B1/2(−t̃en). (5.39)

To sum it up, from (5.38) and (5.39) we have that G̃t̃ is a strict supersolution

to our free boundary problem on B1(−t̃en) \ B1/2(−t̃en).

Now, we remark that if we define G̃t as we have done for G̃t̃, we have G̃t ≡ 0

on ∂B1/2(−t̃en) ∀t. As a consequence, from the choice of t̃, the touching point
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z̃ can occur only on F (ũ) or where ũ is positive.

Suppose, hence, that z̃ ∈ F (ũ). We notice that, because ũ(z̃) = 0, G̃t̃(z̃) =

0, thus z̃ ∈ ∂B1/2(−t̃en) necessary. Then, from (5.35) and in view of the

calculation for achieving (5.39), we obtain∣∣∣∇G̃t̃

∣∣∣ =
∣∣∣∇G̃(x+ t̃en)

∣∣∣ = ηCγ

(
1

2

)−γ−1

on ∂B1/2,

which entails
∣∣∣∇G̃t̃

∣∣∣ 6= 0 on ∂B1/2(−t̃en) and in particular
∣∣∣∇G̃∣∣∣ (z̃) 6= 0.

At this point, for the choice of t̃, we can find a neighborhood O ⊂ B1(−t̃en)

\ B1/2(−t̃en) of z̃ such that G̃t̃ touches ũ from above at z̃ and furthermore,

inasmuch as G̃t̃ ≥ 0, G̃+
t̃

= G̃t̃, that is we also have that G̃+
t̃

touches ũ from

above at z̃.

Therefore, summarizing, we have G̃+
t̃

touching ũ from above at z̃ ∈ F (ũ),

with
∣∣∣∇G̃t̃

∣∣∣ (z̃) 6= 0 and G̃t̃ ∈ C∞(B1(−t̃en) \ B1/2(−t̃en), and hence G̃t̃ ∈
C2(B1(−t̃en) \ B1/2(−t̃en). So, seeing as how ũ is a solution to (2.1)-(2.2),

we get ∣∣∣∇G̃t̃

∣∣∣ (z̃) ≥ g̃(z̃),

which gives from (5.39), since z̃ ∈ ∂B1/2(−t̃en),

g̃(z̃) ≤
∣∣∣∇G̃∣∣∣ (z̃) < g̃(z̃),

in other words g̃(z̃) < g̃(z̃), which is a contradiction.

Consequently, z̃ ∈ {x, ũ(x) > 0} and also G̃t̃(z̃) > 0, which implies that

z̃ ∈ B1(−t̃en) \ B1/2(−t̃en). In particular, we claim that z̃ ∈ ∂B1(−t̃en),

where G̃t̃ ≡ η, for definition of G̃, i.e. z̃ occur on the η level set.

Precisely, for what we have said before, we have that G̃t̃ touches ũ from above

at z̃ ∈ {x, ũ(x) > 0} , with G̃t̃ ∈ C2(B1(−t̃en) \ B1/2(−t̃en)), as observed

above, and thus, given that ũ is a solution to (2.1)-(2.2), we achieve∑
i,j

ãij(z̃)G̃t̃ij(z̃) ≥ f̃(z̃),

which entails from (5.39), if z̃ ∈ B1(−t̃en) \ B1/2(−t̃en),

f̃(z̃) ≤
∑
i,j

ãij(z̃)G̃t̃(z̃) < f̃(z̃),
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namely f̃(z̃) < f̃(z̃), which is a contradiction.

Therefore, we have obtained that z̃ ∈ ∂B1(−t̃en) and hence z̃ occurs on the

η level set.

Furthermore, if we denote d̃ := dist(z̃, F (ũ)), d̃ ≤ 1.

Indeed, because G̃t̃ is above ũ, and G̃ ≡ 0 on ∂B1/2(−t̃en), we have ũ ≡ 0

on ∂B1/2(−t̃en). As a consequence, inasmuch ũ is continuous and ũ(z̃) > 0,

with z̃ ∈ ∂B1(−t̃en), there exists a point x̃ ∈ F (ũ) so that

dist(x̃, z̃) = |x̃− z̃| ≤ dist(z̃, ∂B1/2(−t̃en)) =
1

2
≤ 1,

in other words

|x̃− z̃| ≤ 1,

which implies, seeing as how x̃ ∈ F (ũ),

d̃ = inf
x∈F (ũ)

|x− z̃| ≤ |x̃− z̃| ≤ 1,

that is d̃ ≤ 1.

Now, from the first part, ũ is Lipschitz continuous, namely

|ũ(x)− ũ(y)| ≤ L |x− y| , (5.40)

calling L its Lipschitz constant.

In particular, the Lipschitz continuity of ũ implies that also u is Lipschitz

continuous.

Indeed, from (5.40) we have

|ũ(x)− ũ(y)| =
∣∣∣∣u(dx)

d
− u(dy)

d

∣∣∣∣ =
1

d
|u(dx)− u(dy)| ≤ L |x− y|

i.e.
1

d
|u(dx)− u(dy)| ≤ L |x− y| ,

which implies

|u(dx)− u(dy)| ≤ dL |x− y| = L |d(x− y)| = L |dx− dy| ,
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in other words

|u(dx)− u(dy)| ≤ L |dx− dy| ,

which gives the Lipschitz continuity of u. Consequently, if we take x ∈ F (ũ),

ũ(x) = 0, hence from (5.40) we get

|ũ(z̃)| = |ũ(z̃)− ũ(x)| ≤ L |z̃ − x| ,

in other words, inasmuch as ũ ≥ 0 and thus |ũ(z̃)| = ũ(z̃),

ũ(z̃) ≤ L |z̃ − x| ,

and
ũ(z̃)

L
≤ |z̃ − x| . (5.41)

In particular, from the arbitrariness of x ∈ F (ũ), we achieve that ũ(z̃)
L

is a

lower bound of the set {|z̃ − x| , x ∈ F (ũ)} , therefore

ũ(z̃)

L
≤ inf

x∈F (ũ)
|z̃ − x| = d̃,

which implies
ũ(z̃)

L
≤ d̃

and

ũ(z̃) ≤ Ld̃. (5.42)

In addition, we know that ũ(z̃) = η, as a consequence, from (5.42) we also

have

η ≤ Ld̃,

which gives

L−1η ≤ d̃ ≤ 1,

that is, d̃ is comparable to 1.

At this point, we notice that F (ũ) is Lipschitz.

Precisely, since F (u) is Lipschitz and we have supposed that F (u) is a Lips-

chitz graph in the xn direction with Lipschitz constant equal to 1, we have

F (u) = {(x′, ψ(x′))} , (5.43)
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with

|ψ(x′)− ψ(y′)| ≤ |x′ − y′| , (x′, ψ(x′)), (y′, ψ(y′)) ∈ F (u). (5.44)

Now, if x0 ∈ F (u), we have u(x0) = 0, and ∀Br(x0), Br(x0)∩{x, u(x) > 0} 6=
∅. Therefore, for definition of ũ, ũ

(
x0

d

)
=

u(dx0
d )
d

= u(x0)
d

= 0, i.e. ũ
(
x
d

)
= 0

and thus in particular Br

(
x
d

)
∩ {x, ũ(x) > 0}c .

Moreover, if we fixBr̄

(
x0

d

)
and we considerBdr̄(x0), Bdr̄(x0)∩{x, u(x) > 0} 6=

∅, namely there exist a point z0 ∈ Bdr̄(x0) ∩ {x, u(x) > 0} , which satisfies

u(z0) > 0 and it can be written z0 = dz̄, with z̄ ∈ Br̄

(
x0

d

)
, see proof of

Theorem 4.2. Hence, for definition of ũ, ũ(z̄) = u(dz̄)
d

> 0, in other words

ũ(z̄) > 0 and, given that z̄ ∈ Br̄

(
x0

d

)
, z̄ ∈ Br̄

(
x0

d

)
∩ {x, ũ(x) > 0} , in other

words Br̄

(
x
d

)
∩ {x, ũ(x) > 0} 6= ∅.

As a consequence, for the arbitrariness of Br̄

(
x0

d

)
, we obtain Br

(
x0

d

)
∩

{x, ũ(x) > 0} 6= ∅, ∀Br

(
x0

d

)
. To sum it up, we have ũ

(
x0

d

)
= 0 and

Br

(
x0

d

)
∩ {x, ũ(x) > 0} 6= ∅ and Br

(
x0

d

)
∩ {x, ũ(x) > 0}c 6= ∅, ∀Br

(
x0

d

)
,

which implies x0

d
∈ F (ũ).

Consequently, for the arbitrariness of x0 ∈ F (u) and repeating the same

argument used to show that dx̄ ∈ F (u) if we have x̄ ∈ F (ũ), we get from

(5.43)

F (ũ) =
1

d
F (u) =

1

d
{(x′, ψ(x′))} =

{
x′

d
,
ψ(x′)

d

}
,

namely

F (ũ) =

{
x′

d
,
ψ(x′)

d

}
. (5.45)

At this point, if we define

ψ̃(x′) :=
ψ(dx′)

d
,

we achieve

ψ̃

(
x′

d

)
=
ψ
(
dx
′

d

)
d

=
ψ(x′)

d
,

that is

ψ̃

(
x′

d

)
=
ψ(x′)

d
. (5.46)
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Therefore, from (5.46) and (5.47), we obtain

F (ũ) =

{
x′

d
, ψ̃

(
x′

d

)}
(5.47)

with, in view of (5.44) and (5.46)∣∣∣∣ψ̃(x′d
)
− ψ̃

(
y′

d

)∣∣∣∣ =

∣∣∣∣ψ(x′)

d
− ψ(y′)

d

∣∣∣∣
=

1

d
|ψ(x′)− ψ(y′)|

≤ 1

d
|x′ − y′| =

∣∣∣∣x′d − y′

d

∣∣∣∣ ,
in other words ∣∣∣∣ψ̃(x′d

)
− ψ̃

(
y′

d

)∣∣∣∣ ≤ ∣∣∣∣x′d − y′

d

∣∣∣∣ . (5.48)

As a consequence, from (5.47) and (5.48), we get that F (ũ) is Lipschitz.

Now, because F (ũ) is Lipschitz, we can connect 0 and z̃ with a chain of

intersecting balls included in the positive side of ũ with radii comparable to

1.

Specifically, let us call this chain

{Bri(xi), i = 0, . . . , N} ,

with xi in the positive side of ũ, ri comparable to 1 and which satisfies

0 ∈ Br0(x0) and z̃ ∈ BrN (xN). Furthermore, the number N of these balls

is bounded by a universal constant. In particular, we want to apply the

Harnack inequality repeatedly to compare ũ(0) with ũ(z̃), thus we suppose

that also B2ri(xi) is in the positive side of ũ.

At this point, we are ready to apply the Harnack inequality in each ball.

Let us begin from the first ball and repeating the reasoning done to achieve

(5.16), we get

ũ(0) ≥ c1ũ(x̃1) ≥ c1c2ũ(x̃2) ≥ c1c2 . . . cN+1ũ(z̃) = cũ(z̃), (5.49)

with x̃i ∈ Bri−1
(xi−1) ∩ Bri(xi) and where we take ε small enough, with∥∥∥f̃∥∥∥

L∞
≤ ε, such that we can obtain a result analogous to (5.16) in each ball.
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Let us remark, moreover, that we can find this ε since the number of balls is

bounded by a universal constant.

In particular, from (5.49) we have

ũ(0) ≥ cũ(z̃) = c0,

i.e.

ũ(0) ≥ c0,

which entails from (5.32)

c0 ≤ ũ(0) ≤ C0,

and from definition of ũ, see (5.1),

c0d(0) ≤ u(0) ≤ C0d(0), (5.50)

inasmuch d = d(0) = dist(0, F (u)).

Now, if in place of 0, we have x0 ∈ B+
1 (u), x0 6= 0, we can repeat exactly the

same argument with

ũ(x) =
u(x0 + d(x0)x)

d(x0)
,

where d(x0) = dist(x0, F (u)), and we achieve

c0d(x0) ≤ u(x0) ≤ C0d(x0),

which gives, together with (5.50)

c0d(z) ≤ u(z) ≤ C0d(z), for all z ∈ B+
1 (u),

as desired.





Chapter 6

The one-phase problem for

equations with first order term

We return now to the more general problem (1.1) introduced in Chapter

1.

For exposure convenience, we rewrite here the problem, that is:
∑
i,j

aij(x)uij +
∑
i

bi(x) · ui = f in Ω+(u)

|∇u| = g on F (u)

(6.1)

with bi ∈ C(Ω) ∩ L∞(Ω) and the same conditions listed in Chapter 1 for Ω,

f, g and aij. Moreover, ui denotes the first derivative of u respect to xi and

uij the second derivative of u with respect to xi and xj.

6.1 Definition and properties of viscosity so-

lutions

The definition of viscosity solution to (6.1) can be easily deduced. How-

ever, for the reader convenience, we introduce in this framework the explicit

statements. See also Appendix B for a basic introduction to viscosity solu-

tions.

143
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Definition 6.1. Let u be a nonnegative continuous function in Ω. We say

that u is a viscosity solution to (6.1) in Ω if the following conditions are

satisfied:

(i)
∑
i,j

aij(x)uij +
∑
i

bi(x)ui = f in Ω+(u) in the viscosity sense, i.e. if

ϕ ∈ C2(Ω+(u)) touches u from below (resp. above) at x0 ∈ Ω+(u) then∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) ≤ f(x0)

(
resp.

∑
i,j

aijϕij(x0)

+
∑
i

bi(x0)ϕi(x0) ≥ f(x0)

)
.

(ii) If ϕ ∈ C2(Ω) and ϕ+ touches u from below (resp. above) at x0 ∈ F (u)

and |∇ϕ| (x0) 6= 0 then

|∇ϕ| (x0) ≤ g(x0) (resp. |∇ϕ| (x0) ≥ g(x0)) .

We present, at this point, the notion of comparison subsolution / super-

solution, which will be used in the same way as we have used it in case of

problem (1.2).

Definition 6.2. Let v ∈ C2(Ω). We say that v is a strict (comparison)

subsolution (resp. supersolution) to (6.1) in Ω if the following conditions are

satisfied:

(i)
∑
i,j

aij(x)vij +
∑
i

bi(x)vi > f(x) (resp.
∑
i,j

aij(x)vij +
∑
i

bi(x)vi < f(x))

in Ω+(v).

(ii) If x0 ∈ F (v), then

|∇v| (x0) > g(x0) (resp. 0 < |∇v| (x0) < g(x0)).

Remark. Repeating the same argument used in the Remark 1.4, if v is a strict

subsolution / supersolution to (6.1) then F (v) is a C2 hypersurface.

It is possible to give the same lemma valid in case of system (1.2).
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Lemma 6.3. Let u, v be respectively a solution and a strict subsolution to

(6.1) in Ω. If u ≥ v+ in Ω then u > v+ in Ω+(v) ∪ F (v).

Proof . Suppose for contradiction that there exists x0 ∈ Ω+(v) ∪ F (v) such

that u(x0) = v+(x0).

In particular, we distinguish two different cases.

(i) If x0 ∈ Ω+(v), we have, repeating the same reasoning done in the proof

of Lemma 1.5 in the case (i), that v touches u from below at x0 ∈ Ω+(u),

with ϕ ∈ C2(Ω+(u)), consequently, inasmuch u is a solution to (6.1) in

Ω, ∑
i,j

aij(x0)vij(x0) +
∑
i

bi(x0)v(x0) ≤ f(x0). (6.2)

On the other hand, since v is a strict subsolution to (6.1) in Ω, we

achieve ∑
i,j

aij(x)vij +
∑
i

bi(x)vi > f(x) in Ω+(v),

hence, given that x0 ∈ Ω+(v),∑
i,j

aij(x0)vij(x0) +
∑
i

bi(x0)vi(x0) > f(x0),

which implies from (6.2)

f(x0) <
∑
i,j

aij(x0)vij(x0) +
∑
i

bi(x0)vi(x0) ≤ f(x0),

i.e. f(x0) < f(x0), which is a contradiction.

(ii) If x0 ∈ F (v) we can repeate the whole reasoning done in the proof of

Lemma 1.5 in the case (ii) and we reach a contradiction.

Therefore, @ x0 ∈ Ω+(v) ∪ F (v) such that u(x0) = v+(x0), in other words,

seeing as how u ≥ v+ in Ω ⊃ (Ω+(v) ∪ F (v)), i.e. u ≥ v+ in Ω+(v) ∪ F (v),

u > v+ in Ω+(v) ∪ F (v).
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6.2 Harnack inequality

Arguing in parallel with the case of problem (1.2), we show that, provided

giving a further condition on the coefficient b, a solution to (6.1) satisfies the

same Harnack type inequality expressed by Theorem 2.1. In particular, for

exposure convenience, we recall here the same assumption done in (2.2), in

other words

‖f‖L∞(Ω) ≤ ε2, ‖g − 1‖L∞(Ω) ≤ ε2, ‖aij − δij‖L∞(Ω) ≤ ε, (6.3)

with 0 < ε < 1.

Theorem 6.4 (Harnack inequality). There exists a universal constant ε̄

such that if u solves (6.1)-(6.3) under the assumption

‖b‖L∞(Ω) ≤ ε2. (6.4)

Suppose also that for some point x0 ∈ Ω+(u) ∪ F (u)

(xn + a0)+ ≤ u(x) ≤ (xn + b0)+ in Br(x0) ⊂ Ω (6.5)

with

b0 − a0 ≤ εr, ε ≤ ε̄,

then

(xn + a1)+ ≤ u(x) ≤ (xn + b1)+ in Br/20(x0)

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)εr,

and 0 < c < 1 universal.

For completeness, because it will be used in the proof of “improvement

of flatness ” lemma, we state now the same corollary, introduced in Chapter

2 after Theorem 2.1.

Corollary 6.5. Let u be a solution to (6.1)-(6.3)-(6.4) satisfying (6.5) for

r = 1. Then in B1(x0),

ũε(x) =
u(x)− xn

ε
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has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e.

for all x ∈ (Ω+(u) ∪ F (u)) ∩B1(x0) with |x− x0| ≤ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C |x− x0|γ .

Proof . The proof is the same provided in Chapter 2 for Corollary 2.2.

As in Chapter 2, Harnack inequality is a consequence of the following

lemma.

Lemma 6.6. There exists a universal constant ε̄ > 0 such that if u is a

solution to (6.1)-(6.3)-(6.4) in B1 with 0 < ε ≤ ε̄ and u satisfies

p(x)+ ≤ u(x) ≤ (p(x) + ε)+, x ∈ B1, p(x) = xn + σ, |σ| < 1/10, (6.6)

then if at x̄ = 1
5
en,

u(x̄) ≥ (p(x̄) + ε/2)+, (6.7)

then

u ≥ (p+ cε)+ in B1/2 (6.8)

for some 0 < c < 1. Analogously, if

u(x̄) ≤ (p(x̄) + ε)+,

then

u ≤ (p+ (1− c)ε)+ in B1/2.

Proof . We argue as in the proof of Lemma 2.3, explaining only the main

differences and referring to the proof of Lemma 2.3 for all details.

As in the proof of Lemma 2.3, we prove the first statement.

First of all, from (6.6), we obtain

u ≥ p in B1. (6.9)

Let

w(x) = c(|x− x̄|−γ − (3/4)−γ),
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be defined on the closure of the annulus

A := B3/4(x̄) \ B1/20(x̄).

The constant c is chosen so that w satisfies the boundary conditionsw = 0 on ∂B3/4(x̄),

w = 1 on ∂B1/20(x̄).

Repeating the calculation done in the proof of Lemma 2.3, we achieve

c =
1

(1/2)−γ − (3/4)−γ
.

Now, the condition ‖aij − δij‖L∞(B1) ≤ ε implies that the matrix (aij) is

uniformly elliptic, as long as ε is small enough, see Lemma A.5 in Appendix

A.

Consequently, we can choose the constant γ universal so that∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ δ > 0 in A,

with δ universal. Precisely, from (2.21) and (2.22) in the proof of Lemma

2.3, we have, keeping c in the expression of w,

∂w

∂xi
= −γc |x− x̄|−γ−2 (xi − x̄i) (6.10)

and

∂2w

∂xj∂xi
= cγ(γ+2) |x− x̄|−γ−4 (xi− x̄i)(xj− x̄j)−cγ |x− x̄|−γ−2 δij. (6.11)

Therefore, since (aij) is uniformly elliptic, from (6.10) and (6.11), repeating

the same arguments described in (2.23), we obtain∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ cγ (λ(γ + 2)− nΛ) |x− x̄|−γ−2

+
∑
i

bi(x)(−cγ |x− x̄|−γ−2 (xi − x̄i))

= cγ (λ(γ + 2)− nΛ) |x− x̄|−γ−2

− cγ |x− x̄|−γ−2 b(x) · (x− x̄)

= cγ (λ(γ + 2)− nΛ− b(x) · (x− x̄)) |x− x̄|−γ−2
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which implies,∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ cγ (λ(γ + 2)− nΛ− |b(x)| |x− x̄|) |x− x̄|−γ−2

(6.12)

given that for the Cauchy-Schwarz inequality |b(x) · (x− x̄)| ≤ |b(x)| |x− x̄| ,
thus b(x) · (x− x̄) ≤ |b(x)| |x− x̄| and −b(x) · (x− x̄) ≥ − |b(x)| |x− x̄| .
At this point, we know from (6.4) that

‖b‖L∞(B1) = max
i=1,...,n

‖bi‖L∞(B1) ≤ ε2, (6.13)

which entails ‖bi‖L∞(B1) ≤ ε2, ∀i = 1, . . . , n, and thus |bi| (x) ≤ ε2, ∀i =

1, . . . , n and for all x ∈ B1.

As a consequence, inasmuch |bi(x)| and ε2 are positive or equal to 0, |bi(x)|2 ≤
ε4, i.e. bi(x)2 ≤ ε4 and hence

|b(x)| =
√
b1(x)2 + . . .+ bn(x)2 ≤

√
ε4 + . . .+ ε4 =

√
nε4 =

√
nε2,

namely

|b(x)| ≤
√
nε2. (6.14)

Now, from (6.12) and (6.14), which also gives − |b(x)| ≥ −
√
nε2, we achieve∑

i,j

aij(x)wij +
∑
i

bi(x)wi ≥ cγ
(
λ(γ + 2)− nΛ−

√
nε2 |x− x̄|

)
|x− x̄|−γ−2 ,

which implies,∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ cγ

(
λ(γ + 2)− nΛ−

√
nε2 3

4

)(
3

4

)−γ−2

in A,

(6.15)

since in A |x− x̄| ≥ 3/4, which gives − |x− x̄| ≥ −3/4 and |x− x̄|−γ−2 ≥
(3/4)−γ−2, recalling that γ > 0.

In particular, if we take

λ(γ + 2)− nΛ−
√
nε2 3

4
> 0,

in other words

γ + 2 > n
Λ

λ
+
√
n

3ε2

4λ
,



150 6. The one-phase problem for equations with first order term

and

γ > n
Λ

λ
+
√
n

3ε2

4λ
− 2,

we get from (6.15)∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ Cγ

(
λ(γ + 2)− nΛ−

√
nε2 3

4

)(
3

4

)−γ−2

= δ > 0 in A,

namely ∑
i,j

aij(x)wij +
∑
i

bi(x)wi ≥ δ in A, (6.16)

with δ universal, as desired.

Extend now w to be equal to 1 on B1/20(x̄).

Repeating the considerations done in the proof of Lemma 2.3, we obtain from

(6.9), inasmuch |σ| < 1/10,

B1/10(x̄) ⊂ B+
1 (u). (6.17)

Moreover, in the same way of the proof of Lemma 2.3, we achieve

B1/2 ⊂⊂ B3/4(x̄) ⊂⊂ B1,

which can be rewrite

B1/2 ⊂ B3/4(x̄) and B3/4(x̄) ⊂ B1. (6.18)

Notice at this point that u−p solves, in the viscosity sense, a uniformly elliptic

equation in B1/10(x̄) as in the proof of Lemma 2.3, but with a different right

hand side.

Indeed, if we take ϕ ∈ C2(B1/10(x̄)) touching u − p from below at x0 ∈
B1/10(x̄), we have

ϕ(x0) = (u− p)(x0) = u(x0)− p(x0) (6.19)

and

ϕ(x) ≤ (u− p)(x) = u(x)− p(x) in a neighborhood O of x0. (6.20)
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In particular, (6.19) and (6.20) read

ϕ(x0) + p(x0) = u(x0) (6.21)

and

ϕ(x) + p(x) ≤ u(x) in a neighborhood O of x0. (6.22)

In addition, since B1/10(x̄) is open and x0 ∈ B1/10(x̄), we can suppose O ⊂
B1/10(x̄), and we have (ϕ+ p) ∈ C2(O), recalling that ϕ ∈ C2(B1/10(x̄)) and

p ∈ C∞(B1), with B1 ⊃ B1/10(x̄) ⊃ O from (6.17), because B+
1 (u) ⊂ B1.

Therefore, from this fact, together with (6.21) and (6.22), we get that (ϕ+p)

touches u from below at x0 ∈ B1/10, seeing as how (ϕ+ p)(x) = ϕ(x) + p(x).

In particular, from (6.17), we have x0 ∈ B+
1 (u).

As a consequence, we have that (ϕ+p) touches u from below at x0 ∈ B+
1 (u),

hence, since u is a viscosity solution to (6.1) in B1, we obtain∑
i,j

aij(x0)(ϕ+ p)ij(x0) +
∑
i

bi(x0)(ϕ+ p)i(x0)

=
∑
i,j

aij(x0)(ϕ+ xn + σ)ij(x0) +
∑
i

bi(x0)(ϕ+ xn + σ)i(x0)

=
∑
i,j

aij(x0)ϕij(x0) +
∑
i,j

aij(x0)(xn + σ)ij(x0)

+
∑
i

bi(x0)ϕi(x0) +
∑
i

bi(x0)(xn + σ)i(x0)

=
∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) + bn(x0) ≤ f(x0),

which gives∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) + bn(x0) ≤ f(x0),

which also entails∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) ≤ f(x0)− bn(x0). (6.23)

Repeating the same argument if ϕ ∈ C2(B1/10) touches u from above at

x0 ∈ B1/10(x̄), but with opposite inequalities, we achieve from (6.23) that
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u− p solves, in the viscosity sense, the uniformly elliptic equation∑
i,j

aij(x)(u− p)ij +
∑
i

bi(x)(u− p)i = f − bn in B1/10(x̄).

Furthermore, we have u− p ≥ 0 in B1/10(x̄), given that u− p ≥ 0 in B1 from

(6.9) and B1/10(x̄) ⊂ B1 for what we have said before. As a consequence,

because u− p ≥ 0 in B1/10(x̄) and u− p solves (6.23) in the viscosity sense,

we can apply the Harnack inequality to obtain

sup
B1/20(x̄)

(u− p) ≤ C1

(
inf

B1/20(x̄)
(u− p) + C2 ‖f − bn‖L∞

)
,

which implies, in view of the same steps done in the proof of Lemma 2.3,

u(x)− p(x) ≥ c(u(x̄)− p(x̄))− C ‖f − bn‖L∞ in B1/20(x̄). (6.24)

Now, we have for definition of ‖b‖L∞ , see (6.13),

|f(x)− bn(x)| ≤ |f(x)|+ |bn(x)| ≤ ‖f‖L∞ + ‖bn‖L∞ ≤ ‖f‖L∞ + ‖b‖L∞ ,

in other words

|f(x)− bn(x)| ≤ ‖f‖L∞ + ‖b‖L∞ ,

which gives

sup
x
|f(x)− bn(x)| = ‖f − bn‖L∞ ≤ ‖f‖L∞ + ‖b‖L∞ ,

namely

‖f − bn‖L∞ ≤ ‖f‖L∞ + ‖b‖L∞ . (6.25)

In addition, we know, from (6.3)-(6.4), that |f‖L∞ ≤ ε2 and ‖b‖L∞ ≤ ε2,

thus from (6.25) we achieve

‖f − bn‖L∞ ≤ 2ε2,

and hence

−‖f − bn‖L∞ ≥ −2ε2,
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which entails from (6.24)

u(x)− p(x) ≥ c(u(x̄)− p(x̄))− 2Cε2 in B1/20(x̄). (6.26)

In particular, repeating the same computations done in the proof of Lemma

2.3, we get from (6.7)

u(x̄)− p(x̄) ≥ ε

2
,

which implies, in view of (6.26),

u(x)− p(x) ≥ c
ε

2
− 2Cε2 = ε

( c
2
− 2Cε

)
= c0ε in B1/20(x̄),

that is

u− p ≥ c0ε in B1/20(x̄), (6.27)

provided that taking ε small enough so that c
2
− 2Cε > 0, in other words

ε < c
4C
.

At this point, analogously to the proof of Lemma 2.3, we set

v(x) = p(x) + c0ε(w(x)− 1), x ∈ B3/4(x̄), (6.28)

and for t ≥ 0,

vt(x) = v(x) + t, x ∈ B3/4(x̄). (6.29)
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Notice that, from (6.28) and (6.29), we obtain∑
i,j

aij(x)(vt)ij +
∑
i

bi(x)(vt)i =
∑
i,j

aij(x)(v(x) + t)ij +
∑
i

bi(x)(v(x) + t)i

=
∑
i,j

aij(x)(p(x) + c0ε(w(x)− 1) + t)ij

+
∑
i

bi(x)(p(x) + c0ε(w(x)− 1) + t)i

=
∑
i,j

aij(x)(xn + σ + c0ε(w(x)− 1) + t)ij

+
∑
i

bi(x)(xn + σ + c0ε(w(x)− 1) + t)i

=
∑
i,j

aij(x)c0εwij +
∑
i

i 6=n

bi(x)c0εwi + bn(x)(1 + c0εwn)

= c0ε
∑
i,j

aij(x)wij + c0ε
∑
i

i 6=n

bi(x)wi + bn(x) + c0εbn(x)wn

= c0ε
∑
i,j

aij(x)wij + c0ε
∑
i

bi(x)wi + bn(x)

= c0ε

(∑
i,j

aij(x)wij +
∑
i

bi(x)wi

)
+ bn(x),

therefore, in view of (6.16), inasmuch as c0ε > 0,∑
i,j

aij(x)(vt)ij +
∑
i

bi(x)(vt)i = c0εδ + bn(x) in A. (6.30)

Moreover, for what we have shown above, we have |bn| (x) ≤ ε2, ∀x ∈ B1,

which gives bn(x) ≥ −ε2, ∀x ∈ B1 and thus also ∀x ∈ A, recalling that

A ⊂ B1. Consequently, from (6.30), we get∑
i,j

aij(x)(vt)ij +
∑
i

bi(x)(vt)i ≥ c0εδ − ε2 > ε2 in A,

namely ∑
i,j

aij(x)(vt)ij +
∑
i

bi(x)(vt)i > ε2 in A, (6.31)
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if we take ε such that

c0εδ − ε2 > ε2 ↔ c0δε− 2ε2 > 0↔ ε(c0δ − 2ε) > 0↔ 0 < ε <
c0δ

2
,

in other words if ε satisfies 0 < ε < c0δ
2
.

Now, from the definition of vt̄ in (6.29) we have

v0(x) = v(x) = p(x) + c0ε(w(x)− 1) ≤ p(x) ≤ u(x), x ∈ B3/4(x̄),

i.e

v0(x) ≤ u(x), x ∈ B3/4(x̄),

recalling that B3/4(x̄) ⊂ B1 from (6.18) and hence from (6.9), p(x) ≤ u(x),

with x ∈ B3/4(x̄), and w ≤ 1 in B3/4(x̄), from the proof of Lemma 2.3.

Let then t̄ be the largest t ≥ 0 such that

vt(x) ≤ u(x) in B3/4(x̄).

Remark that t̄ exists, given that for t = 0 we have v0(x) ≤ u(x).

We want to show that t̄ ≥ c0ε. Indeed, if this condition is satisfied, exactly

how in the proof of Lemma 2.3, we obtain

u(x) ≥ (p(x) + cε)+ on B1/2,

with 0 < c < 1 universal, as desired.

The continuance of the proof is the same of the proof of Lemma 2.3, observing

that (6.31) is satisfied for every t ≥ 0 and hence also for t̄.

As in case of problem (1.2), we can provide, at this point, the proof of

Harnack inequality.

Proof of Theorem 6.4. As in the proof of Theorem 2.1, we assume without

loss of generality

x0 = 0, r = 1.

According to (6.5) and repeating the same argument used in the proof of

Theorem 2.1, we achieve

p(x)+ ≤ u(x) ≤ (p(x) + ε)+ in B1 (6.32)
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with p(x) = xn + a0.

The proofs of the cases in which |a0| < 1/10 and a0 ≤ −1/10 are analogous

to those given in the proof of Theorem 2.1.

Consequently, remain to show the result if a0 ≥ 1/10.

Repeating the same argument used in the proof of Theorem 2.1, we achieve

that B1/10 ⊂ B+
1 (u) and as in that proof, we distinguish two cases, if u(0)−

p(0) ≥ ε/2 or u(0)− p(0) < ε/2.

(i) First, we suppose u(0)− p(0) ≥ ε/2.

At this point, from (6.32) we get, recalling that p ≤ p+, u ≥ p in

B1 ⊃ B+
1 (u) ⊃ B1/10, which entails u ≥ p in B1/10 and u − p ≥ 0 in

B1/10.

In addition, u solves, in the viscosity sense, a uniformly elliptic equation

in Ω+(u) ⊃ B+
1 (u), seeing as how Ω ⊃ B1 from the hypothesis of

Theorem 6.4, and hence we can repeat the same argument used in the

proof of Lemma 6.6 to obtain that u− p solves, in the viscosity sense,

the uniformly elliptic equation∑
i,j

aij(x)(u− p)ij +
∑
i

bi(x)(u− p)i = f − bn in B1/10.

In view of this fact, together with u− p ≥ 0 in B1/10, we can apply the

Harnack inequality to achieve

sup
B1/20

(u− p) ≤ C1

(
inf
B1/20

(u− p) + C2 ‖f − bn‖L∞
)
,

which implies, repeating the same calculations done in the proof of

Lemma 6.6,

u(x)− p(x) ≥ c0ε in B1/20, (6.33)

with c0 = c
2
− 2Cε and ε such that 0 < c0 < 1, in other words

0 <
c

2
− 2Cε < 1↔ c

2
− 1 < 2Cε <

c

2
↔ c

4C
− 1

2C
< ε <

c

4C
,

i.e.
c

4C
− 1

2C
< ε <

1

2C
,
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which also gives, because ε > 0

max

(
0,

c

4C
− 1

2C

)
=

(
c

4C
− 1

2C

)+

< ε <
c

4C
,

namely (
c

4C
− 1

2C

)+

< ε <
c

4C
.

In particular we get from (6.33), calling c = c0 and given that B1/20 ⊂
B1/20,

u(x)− p(x) ≥ cε in B1/20,

which also entails

u(x) ≥ p(x) + cε in B1/20, (6.34)

with 0 < c < 1 universal.

Now, we know that u ≥ 0 in Ω ⊃ B1 ⊃ B1/20, that is u ≥ 0 in B1/20,

since u is a viscosity solution to (6.1) in Ω. As a consequence, from

(6.34) we obtain

u(x) ≥ max(p(x) + cε, 0) = (p(x) + cε)+ in B1/20,

in other words

u(x) ≥ (p(x) + cε)+ in B1/20,

with 0 < c < 1 universal.

The precise conclusion of Theorem 6.4 follows from case (i) in the proof

of Theorem 2.1 when a0 ≥ 1/10.

(ii) Suppose now that u(0)−p(0) < ε/2. Repeating the same argument used

in case (ii) in the proof of Theorem 2.1 when a0 ≥ 1/10, we achieve

p(x) + ε− u(x) ≥ 0 in B1/10. (6.35)

At this point, we state that p + ε − u solves, in the viscosity sense, a

uniformly elliptic equation in B1/10.
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Precisely, if ϕ ∈ C2(B1/10) touches p+ ε− u from below at x0 ∈ B1/10,

we have

ϕ(x0) = (p+ ε− u)(x0) = p(x0) + ε− u(x0) (6.36)

and

ϕ(x) ≤ (p+ ε− u)(x) = p(x) + ε− u(x) in a neighborhood O of x0.

(6.37)

In particular, (6.36) and (6.37) read

u(x0) = p(x0) + ε− ϕ(x0) (6.38)

and

u(x) ≤ p(x) + ε− ϕ(x) in a neighborhood O of x0. (6.39)

Therefore, from (6.38) and (6.39), we get that p+ ε−ϕ touches u from

above at x0 ∈ B1/10, inasmuch (p+ ε− ϕ)(x) = p(x) + ε− ϕ(x).

Furthermore, since B1/10 is open and x0 ∈ B1/10, we can take O ⊂ B1/10

and we have (p+ε−ϕ) ∈ C2(O) inasmuch as p(x) = xn+a0 ∈ C∞(B1)

and B1 ⊃ B1/10 ⊃ O.

To sum it up, we have (p + ε − ϕ) ∈ C2(O) touching u from above

at x0 ∈ B1/10, with in particular x0 ∈ Ω+(u), given that B1/10 ⊂
B+

1 (u) ⊂ Ω+(u), inasmuch as B1 ⊂ Ω from the hypothesis of Theorem

6.4. Consequently, seeing as how u is a solution to (6.1) in Ω, we obtain∑
i,j

aij(x0)(p+ ε− ϕ)ij(x0) +
∑
i

bi(x0)(p+ ε− ϕ)i(x0)

=
∑
i,j

aij(x0)(xn + a0 + ε− ϕ) +
∑
i

bi(x0)(xn + a0 + ε− ϕ)i(x0)

=
∑
i,j

aij(x0)(−ϕ)ij(x0) +
∑
i

i 6=n

bi(x0)(−ϕ)i(x0) + bn(x0)(xn − ϕ)n(x0)

=
∑
i,j

aij(x0)(−ϕij(x0)) +
∑
i

i 6=n

bi(x0)(−ϕi(x0)) + bn(x0)− bn(x0)ϕn(x0)

= −
∑
i,j

aij(x0)ϕij(x0)−
∑
i

bi(x0)ϕi(x0) + bn(x0) ≥ f(x0),
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namely

−
∑
i,j

aij(x0)ϕij(x0)−
∑
i

bi(x0)ϕi(x0) + bn(x0) ≥ f(x0),

which implies

−
∑
i,j

aij(x0)ϕij(x0)−
∑
i

bi(x0)ϕi(x0) ≥ f(x0)− bn(x0)

and ∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) ≤ bn(x0)− f(x0). (6.40)

Repeating the same argument if ϕ ∈ C2(B1/10) touches p+ ε− u from

above at x0 ∈ B1/10, but with opposite inequalities, we achieve that

p+ ε− u solves, in the viscosity sense, the uniformly elliptic equation∑
i,j

aij(p+ ε− u)ij +
∑
i

bi(x)(p+ ε− u)i = bn − f in B1/10.

In view of this fact, together with (6.35), we can apply the Harnack

inequality to get

sup
B1/20

(p+ ε− u) ≤ C

(
inf
B1/20

(p+ ε− u) + C2 ‖bn − f‖L∞
)
,

which entails, repeating the same calculations used for instance in the

proof of Lemma 2.3 to obtain (2.37),

p(x) + ε−u(x) ≥ c(p(0) + ε−u(0))−C ‖bn − f‖L∞ in B1/20. (6.41)

Now, ‖bn − f‖L∞ = ‖f − bn‖L∞ , hence, repeating the same computa-

tions used in the proof of Lemma 6.6, we have ‖bn − f‖L∞ ≤ 2ε2, which

also gives −‖bn − f‖L∞ ≥ −2ε2. As a consequence, we get from (6.41)

p(x) + ε− u(x) ≥ c(p(0) + ε− u(0))− 2Cε2 in B1/20. (6.42)

Moreover, we have supposed u(0)− p(0) < ε/2, which also gives p(0)−
u(0) > −ε/2, thus

p(0) + ε− u(0) = p(0)− u(0) + ε > −ε
2

+ ε =
ε

2
,
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i.e.

p(0) + ε− u(0) >
ε

2
,

which implies from (6.42)

p(x) + ε− u(x) ≥ c
ε

2
− 2Cε2 in B1/20. (6.43)

At this point, repeating the same argument used in (i), we achieve from

(6.43)

p(x) + ε− u(x) ≥ c0ε in B1/20,

with 0 < c0 < 1 universal, namely calling c = c0

p(x) + ε− u(x) ≥ cε in B1/20,

which also gives

p(x) + ε− cε = p(x) + (1− c)ε ≥ u(x) in B1/20,

in other words, since B1/20 ⊂ B1/20,

p(x) + (1− c)ε ≥ u(x) in B1/20. (6.44)

In addition, for what we have said above, u > 0 in B1/10 ⊃ B1/20, that is

u > 0 in B1/20. Consequently, from (6.44) we get that p+(1−c)ε > 0 in

B1/20, which entails (p+(1− c)ε)+ = p+(1− c)ε in B1/20 and therefore

from (6.44)

(p(x) + (1− c)ε)+ ≥ u(x) in B1/20.

Now, the precise conclusion of Theorem 6.4 follows from case (ii) in the

proof of Theorem 2.1 when a0 ≥ 1/10.

6.3 Improvement of flatness

We introduce here the “improvement of flatness” property also for the

graph of a solution to (6.1)-(6.3)-(6.4).
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Lemma 6.7 (Improvement of flatness). Let u be a solution to (6.1)-

(6.3)-(6.4) in B1 satisfying

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ for x ∈ B1, (6.45)

and with 0 ∈ F (u). If 0 < r ≤ r0 for r0 a universal constant and 0 < ε ≤ ε0

for some ε0 depending on r, then

(x · ν − rε/2)+ ≤ u(x) ≤ (x · ν + rε/2)+ for x ∈ Br, (6.46)

with |ν| = 1 and |ν − en| ≤ Cε for a universal constant C.

Proof . We proceed as in the proof of Lemma 3.1, explaining only the main

differences and referring to the proof of Lemma 3.1 for all the details.

As in the proof of Lemma 3.1, we divide the proof into three steps and we

introduce the following notation:

Ωρ(u) := (B+
1 (u) ∪ F (u)) ∩Bρ.

Step 1: Compactness. Fix r ≤ r0 with r0 universal (the precise r0 is given

in Step 3 of the proof of Lemma 3.1). Assume for contradiction that there

exist a sequence εk → 0 and a sequence uk of solutions to (6.1) in B1 with

coefficients akij and bki , right hand side fk and free boundary condition gk

satisfying (6.3)-(6.4), such that uk satisfies (6.45), namely

(xn − εk)+ ≤ uk(x) ≤ (xn + εk)
+ for x ∈ B1, 0 ∈ F (uk), (6.47)

but it does not satisfy the conclusion (6.46) of the lemma.

The explanation of how we can take these sequences is the same provided in

the proof of Lemma 3.1.

As in the proof of Lemma 3.1, we set

ũk(x) =
uk(x)− xn

εk
, x ∈ Ω1(uk),

where, for what we have noticed in the proof of Lemma 3.1, Ω1(uk) =

B+
1 (uk) ∪ F (uk).



162 6. The one-phase problem for equations with first order term

Repeating the same computations used in the proof of Lemma 3.1, we obtain

from (6.47) that

−1 ≤ ũk(x) ≤ 1 for x ∈ Ω1(uk).

and from Corollary 6.5 we achieve that the function ũk satisfies

|ũk(x)− ũk(y)| ≤ C |x− y|γ (6.48)

for C universal and

|x− y| ≥ εk/ε̄, x, y ∈ Ω1/2(uk).

Repeating the same argument used in the proof of Lemma 3.1, we get that

F (uk) converges to B1∩{xn = 0} in the Hausdorff distance and using this fact

and (6.48) together with Ascoli-Arzelà, we obtain that as εk → 0 the graphs

of the ũk over Ω1/2(uk) converge (up to subsequence) in the Hausdorff distance

to the graph of a of a Hölder continuous function ũ over B1/2 ∩ {xn ≥ 0} .
Step 2: Limiting solution. We prove, at this point, that, as in case of the

proof of Lemma 3.1, ũ solves∆ũ = 0 in B1/2 ∩ {xn > 0} ,

ũn = 0 on B1/2 ∩ {xn = 0} ,

in the sense of Definition 1.6.

As observed in the Remark following 1.6, we can verify that Definition 1.6 is

satisfied only by polynomials touching strictly from below/above.

Let thus P (x) be a quadratic polynomial touching ũ at x̄ ∈ B1/2 ∩
{xn ≥ 0} strictly from below. Specifically, we need to show that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P (x̄) ≤ 0;

(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≤ 0.

Now, given that ũk → ũ in the sense specified above, we can find points

xk ∈ Ω1/2(uk), xk → x̄, and constants ck → 0 so that

P (xk) + ck = ũk(xk) (6.49)
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and

ũk ≥ P + ck in a neighborhood of xk. (6.50)

In particular, from the definition of ũk and repeating the same calculations

done in the proof of Lemma 3.1, (6.49) and (6.50) read

uk(xk) = Q(xk) (6.51)

and

uk(x) ≥ Q(x) in a neighborhood of xk (6.52)

where

Q(x) = εk(P (x) + ck) + xn.

As in the proof of Lemma 3.1, we now distinguish two cases.

(i) If x̄ ∈ B1/2 ∩ {xn > 0} then, as in the proof of Lemma 3.1, we get

that xk ∈ B+
1/2(uk) for k large. In addition, from (6.51) and (6.52)

we have that Q touches uk from below at xk, where Q ∈ C2(B1/2),

inasmuch P ∈ C∞(B1/2) and xn ∈ C∞(B1/2), hence in particular Q ∈
C2(B+

1/2(uk)).

To sum it up, for k large, we have Q ∈ C2(B+
1/2(uk)) touching uk from

below at xk ∈ B+
1/2(uk).

Therefore, inasmuch as uk is a solution to (6.1) in B1, and thus also in

B1/2, with coefficients akij and bki , right hand side fk and free boundary

condition gk satisfying (6.3)-(6.4) with εk, we obtain∑
i,j

akij(xk)Qij(xk) +
∑
i

bki (xk)Qi(xk)

=
∑
i,j

akij(xk)(εk(P (x) + ck) + xn)ij(xk)

+
∑
i

bki (xk)(εk(P (x) + ck) + xn)i

=
∑
i,j

akij(xk)εkPij(xk) +
∑
i

i 6=n

bki (xk)εkPi(xk) + bkn(xk)(εkPn(xk) + 1)

= εk
∑
i,j

akij(xk)Pij(xk) + εk
∑
i

bki (xk)Pi(xk) + bkn(xk) ≤ fk(xk),
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i.e.

εk
∑
i,j

akij(xk)Pij(xk) + εk
∑
i

bki (xk)Pi(xk) + bkn(xk) ≤ fk(xk),

which implies

εk
∑
i,j

akij(xk)Pij(xk) ≤ fk(xk)− εk
∑
i

bki (xk)Pi(xk)− bkn(xk). (6.53)

Now, from the first inequality in (6.3), namely ‖fk‖L∞(B1) ≤ ε2
k, we

achieve, seeing as how xk ∈ B+
1/2(uk) ⊂ B1, that is xk ∈ B1,

fk(xk) ≤ |fk(xk)| ≤ ε2
k,

in other words fk(xk) ≤ ε2
k, which gives from (6.53)

εk
∑
i,j

akij(xk)Pij(xk) ≤ ε2
k − εk

∑
i

bki (xk)Pi(xk)− bkn(xk). (6.54)

In addition, we know from (6.4) that ‖bk‖L∞(B1) ≤ ε2
k, i.e.

‖bk‖L∞(B1) = max
i=1,...,n

∥∥bki ∥∥L∞(B1)
≤ ε2

k,

which entails
∥∥bkn∥∥L∞(B1)

≤ ε2
k, and thus, given that xk ∈ B1 for what

we have said above,

−bkn(xk) ≤
∣∣bkn(xk)

∣∣ ≤ ∥∥bkn∥∥L∞(B1)
≤ ε2

k,

i.e.

−bkn(xk) ≤ ε2
k, (6.55)

which gives from (6.54)

εk
∑
i,j

akij(xk)Pij(xk) ≤ 2ε2
k − εk

∑
i

bki (xk)Pi(xk). (6.56)

As regards −
∑
i

bki (xk)Pi(xk), we can rewrite it as −bk(xk) · ∇P (xk),

and from the Cauchy-Schwarz inequality, we get −bk(xk) · ∇P (xk) ≤
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∣∣bk(xk)∣∣ |∇P (xk)| .
In particular, we have

|∇P | ≤ C, in B1/2, (6.57)

given that P (x) is a quadratic polynomial and B1/2 is a bounded set,

as a consequence

−bk(xk) · ∇P (xk) ≤ C
∣∣bk(xk)∣∣ . (6.58)

Furthermore, for what we have shown before,
∥∥bki (xk)∣∣ ≤ ε2

k, ∀i =

1, . . . , n, in other words bk(xk) ≤ ε2
k, therefore∣∣bk(xk)∣∣ =

√
bk1(xk)2 + bk2(xk)2 + . . .+ bkn(xk)2 ≤

√
nε4

k =
√
nε2

k,

namely ∣∣bk(xk)∣∣ ≤ √nε2
k, (6.59)

which implies from (6.58) and (6.56), since εk > 0,

εk
∑
i,j

akij(xk)Pij(xk) ≤ 2ε2
k + εkC

√
nε2

k = ε2
k(2 + C

√
nεk),

i.e.

εk
∑
i,j

akij(xk)Pij(xk) ≤ ε2
k(2 + C

√
nεk),

and dividing by εk > 0,∑
i,j

akij(xk)Pij(xk) ≤ εk(1 + c
√
nεk). (6.60)

At this point, from the last inequality in (6.3), that is
∥∥akij − δij∥∥L∞(B1)

≤ εk, we achieve, because xk ∈ B1 for what we have said before,∣∣akij(xk)− δij∣∣ =
∣∣δij − akij(xk)∣∣ ≤ ∥∥akij − δij∥∥L∞(B1)

≤ εk,

which gives

−εk ≤ δij − akij(xk) ≤ εk. (6.61)
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Therefore, in view of this fact and (6.60), repeating the same calcula-

tions done in the proof of Lemma 3.1 to get (3.29), we obtain

∆P =
∑
i,j

(δij − akij(xk))Pij +
∑
i,j

akij(xk)Pij

≤
∑
i,j

Pij≥0

εkPij +
∑
i,j

Pij<0

−εkPij + εk(2 + C
√
nεk)

=

( ∑
ij

Pij≥0

Pij −
∑
i,j

Pij<0

Pij + 2 + C
√
nεk

)
εk

= (C1 + C
√
nεk)εk,

namely

∆P ≤ (C1 + C
√
nεk)εk, (6.62)

since P (x) is a quadratic polynomial and thus Pij is a constant ∀i, j
which also entails Pij = Pij(xk).

Consequently, passing to the limit in (6.62) as k →∞, we achieve that

∆P ≤ 0, as desired, inasmuch εk → 0 and (C1 +C
√
nεk)→ C1, which

is a constant.

(ii) If instead x̄ ∈ B1/2 ∩ {xn = 0} , we argue exactly in the same way of

the proof of Lemma 3.1 and we get Pn(x̄) ≤ 0 as desired.

As in the proof of Lemma 3.1, we also consider the case of a quadratic

polynomial P (x) touching ũ at x̄ ∈ B1/2 ∩ {xn ≥ 0} strictly from above.

In particular, we need to prove that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P ≥ 0;

(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≥ 0.

Always since ũk → ũ in the sense specified above, there exist points xk ∈
Ω1/2(uk) and constants ck → 0 such that

P (xk) + ck = ũk(xk) (6.63)
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and

ũk ≤ P + ck in a neighborhood of xk. (6.64)

Repeating the same argument used in the proof of Lemma 3.1, from the

definition of ũk, (6.63) and (6.64) read

uk(xk) = Q(xk) (6.65)

and

uk(x) ≤ Q(x) in a neighborhood of xk (6.66)

where

Q(x) = εk(P (x) + ck) + xn.

We distinguish two cases again.

(i) If x̄ ∈ B1/2 ∩ {xn > 0} then, repeating the argument used in the proof

of Lemma 3.1, we achieve that xk ∈ B+
1/2(uk) for k large. Moreover,

from (6.65) and (6.66) we have that Q touches uk from above at xk,

where Q ∈ C2(B1/2), inasmuch P ∈ C∞(B1/2) and xn ∈ C∞(B1/2) and

hence in particular, Q ∈ C2(B+
1/2(uk)).

To sum it up, for k large, we have Q ∈ C2(B+
1/2(uk)) touching uk from

above at xk ∈ B+
1/2(uk).

Therefore, inasmuch uk is a solution to (6.1) in B1, and thus also in

B1/2, with coefficients akij and bki , right hand side fk and free boundary

condition gk satisfying (6.3)-(6.4) with εk, we get∑
i,j

akij(xk)Qij(xk) +
∑
i

bki (xk)Qi(xk)

=
∑
i,j

akij(xk)(εk(P (x) + ck) + xn)ij(xk)

+
∑
i

bki (xk)(εk(P (x) + ck) + xn)i(xk)

=
∑
i,j

akij(xk)εkPij(xk) +
∑
i

i 6=n

bki (xk)εkPi(xk) + bn(xk)(εkPn(xk) + 1)

εk
∑
i,j

akij(xk)Pij(xk) + εk
∑
i

bki (xk)Pi(xk) + bkn(xk) ≥ fk(xk),
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in other words

εk
∑
i,j

akij(xk)Pij(xk) + εk
∑
i

bki (xk)Pi(xk) + bkn(xk) ≥ fk(xk),

which implies

εk
∑
i,j

akij(xk)Pij(xk) ≥ fk(xk)− εk
∑
i

bki (xk)Pi(xk)− bkn(xk). (6.67)

Now, from the first inequality of (6.3), i.e. ‖fk‖L∞(B1) ≤ ε2
k, we obtain

|fk(x)| ≤ ε2
k, with x ∈ B1, hence, since xk ∈ B+

1/2(uk) ⊂ B1, namely

xk ∈ B1, we have |fk(xk)| ≤ ε2
k, which also gives fk(xk) ≥ ε2

k. As a

consequence, from (6.67) we get

εk
∑
i,j

akij(xk)Pij(xk) ≥ −ε2
k − εk

∑
i

bki (xk)Pi(xk)− bkn(xk). (6.68)

In addition, repeating the same argument by which we have obtained

(6.55) with bkn(xk) in place of −bkn(xk), we also have bkn(xk) ≤ ε2
k, and

thus −bkn(xk) ≥ −ε2
k, which entails from (6.68)

εk
∑
i,j

akij(xk) ≥ −2ε2
k − εk

∑
i

bki (xk)Pi(xk). (6.69)

Concerning −
∑
i

bki (xk)Pi(xk), as in case of x̄ ∈ B1/2 ∩ {xn > 0} for P

touching ũ from below at x̄, we can rewrite it as −bk(xk) · ∇P (xk) and

this time, for the Cauchy-Schwarz inequality, we get−bk(xk)·∇P (xk) ≥
−
∣∣bk(xk)∣∣ |∇P (xk)| , which gives from (6.57) and (6.59)

−bk(xk) · ∇P (xk) ≥ −C
√
nε2

k.

Consequently, in view of this fact, from (6.69) we have, because εk > 0,

εk
∑
i,j

akij(xk)Pij(xk) ≥ −2ε2
k − εkC

√
nε2

k,

and dividing by εk > 0,∑
i,j

akij(xk)Pij(xk) ≥ −2εk − εkC
√
nεk = (−2− C

√
nεk)εk,
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that is ∑
i,j

akij(xk)Pij(xk) ≥ (−2− C
√
nεk)εk. (6.70)

Therefore, from (6.61) and (6.70), we obtain, repeating the same com-

putations done in the proof of Lemma 3.1 to get (3.45),

∆P =
∑
i,j

(δij − akij(xk))Pij +
∑
i,j

akij(xk)Pij

≥
∑
i,j

Pij≥0

−εkPij +
∑
i,j

Pij<0

εkPij + (−2− C
√
nεk)εk

=

(
−
∑
i,j

Pij≥0

Pij +
∑
i,j

Pij<0

Pij − 2− C
√
nεk

)
εk

= (C1 − C
√
nεk)εk,

in other words

∆P ≥ (C1 − C
√
nεk)εk, (6.71)

inasmuch P (x) is a quadratic polynomial and hence Pij is a constant

∀i, j, which also implies Pij(xk) = Pij. As a consequence, passing to the

limit in (6.71) as k → ∞, we get ∆P ≥ 0, as desired, because εk → 0

and (C1 − C
√
nεk)→ C1, which is a constant.

(ii) If x̄ ∈ B1/2 ∩ {xn = 0} , we argue exactly in the same way of the proof

of Lemma 3.1 and we have Pn(x̄) ≥ 0 as desired.

Step 3: Improvement of flatness. In this step, we argue exactly in the same

way of the final step of Lemma 3.1.

6.4 Theorems

We introduce here the results for the problem (6.1), corresponding to

Theorem 4.2 and 4.1.
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Theorem 6.8 (Flatness implies C1,α). Let u be a viscosity solution to

(6.1) in B1. Assume that 0 ∈ F (u), g0 = 1 and aij(0) = δij. There exists a

universal constant ε̄ > 0 such that, if the graph of u is ε̄-flat in B1, i.e.

(xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1, (6.72)

and

[aij]C0,β(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, ‖b|L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄, (6.73)

then F (u) is C1,α in B1/2.

Remark. The Remark following the statement of Theorem 4.2 holds also for

Theorem 6.8.

Proof . We proceed in the same way of the proof of Theorem 4.2, explaining

only the main differences and referring to the proof of Theorem 4.2 for all

the details.

Let u be a viscosity solution to (6.1) in B1 with 0 ∈ F (u), g(0) = 1 and

aij(0) = δij. Consider the sequence of rescalings

uk(x) :=
u(ρkx)

ρk
, x ∈ B1,

with ρk = r̄k, k = 0, 1, . . . , for a fixed r̄ such that

r̄β ≤ 1

4
, r̄ ≤ r0,

with r0 the universal constant of Lemma 6.7.

Repeating the same argument used in the proof of Theorem 4.2, we remark

that uk is well-defined.

In parallel to the proof of Theorem 4.2, we claim that each uk solves a prob-

lem of the type satisfied by u.

In particular, we state that each uk solves (6.1) in B1 with coefficients

akij(x) := aij(ρkx) and bki (x) := ρkbi(ρkx), right hand side fk(x) := ρkf(ρkx)

and free boundary condition gk(x) := g(ρkx).

Specifically, we need to prove that
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(i) if ϕ ∈ C2(B+
1 (uk)) touches uk from below (above) at x0 ∈ B+

1 (uk) then∑
i,j

akij(x0)ϕij(x0) +
∑
i

bki (x0)ϕi(x0) ≤ fk(x0)

(
resp.

∑
i,j

akij(x0)ϕij(x0)

+
∑
i

bki (x0)ϕi(x0) ≥ fk(x0)

)
;

(ii) if ϕ ∈ C2(B1) and ϕ+ touches uk from below (above) at x0 ∈ F (uk)

and |∇ϕ| (x0) 6= 0 then

|∇ϕ| (x0) ≤ gk(x0) (resp. |∇ϕ| (x0) ≥ gk(x0)).

Let us start showing that (i) is verified. For this purpose, we take ϕ ∈
C2(B+

1 (uk)) touching uk from below at x0 ∈ B+
1 (uk), and we have

ϕ(xk) = uk(xk) (6.74)

and

ϕ(x) ≤ uk(x) in a neighborhood O of x0. (6.75)

In particular, repeating the same argument used in the proof of Theorem 4.2,

(6.74) and (6.75) read

(ρkϕ)

(
ρkx0

ρk

)
= u(ρkx0) (6.76)

and

(ρkϕ)

(
ρkx

ρk

)
≤ u(ρkx) in O. (6.77)

At this point, calling O′ = ρkO, we have, from the proof of Theorem 4.2, that

O′ is a neighborhood of ρkx0 and repeating the same argument used in the

proof of Theorem 4.2, we obtain from (6.76) and (6.77) that (ρkϕ)
(
·
ρk

)
∈

C2(O′) touches uk from below at ρkx0 ∈ B+
1 (u).

Consequently, since u is a viscosity solution to (6.1) in B1, we get∑
i,j

aij(ρkx0)

(
(ρkϕ)

(
·
ρk

))
ij

(ρkx0) +
∑
i

bi(ρkx0)

(
(ρkϕ)

(
·
ρk

))
i

(ρkx0)

≤ f(ρkx0). (6.78)
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Now, from (4.10), we have(
(ρkϕ)

(
·
ρk

))
ij

(ρkx0) =
1

ρk
ϕij(x0). (6.79)

In addition,(
(ρkϕ)

(
·
ρk

))
i

= ρk

(
ϕ

(
·
ρk

))
i

= ρk
1

ρk
ϕi

(
·
ρk

)
= ϕi

(
·
ρk

)
,

in other words (
(ρkϕ)

(
·
ρk

))
i

= ϕi

(
·
ρk

)
,

which implies (
(ρkϕ)

(
·
ρk

))
i

(ρkx0) = ϕi

(
ρkx0

ρk

)
= ϕi(x0),

namely (
(ρkϕ)

(
·
ρk

))
i

(ρkx0) = ϕi(x0). (6.80)

Therefore, in view of (6.78), together with (6.79) and (6.80), we obtain∑
i,j

aij(ρkx0)
1

ρk
ϕij(x0) +

∑
i

bi(ρkx0)ϕi(x0) ≤ f(ρkx0),

which also gives, inasmuch ρk > 0,∑
i,j

aij(ρkx0)ϕij(x0) + ρk
∑
i

bi(ρkx0)ϕi(x0) ≤ ρkf(ρkx0),

i.e. ∑
ij

aij(ρkx0)ϕij(x0) +
∑
i

ρkbi(ρkx0)ϕi(x0) ≤ ρkf(ρkx0),

and for the definitions of akij, b
k
i and fk,∑

i,j

akij(x0)ϕij(x0) +
∑
i

bki (x0)ϕi(x0) ≤ fk(x0).

Repeating an analogous argument, but with opposite inequalities, if ϕ ∈
C2(B+

1 (uk)) touches uk from above at x0 ∈ B+
1 (uk), we get∑

i,j

akij(x)(uk)ij +
∑
i

bki (x)(uk)i = fk in B+
1 (uk) in the viscosity sense.

(6.81)
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As regards the condition |∇uk| = gk on F (uk) in the viscosity sense, we can

repeat exactly the argument used in the proof of Theorem 4.2 and we obtain

|∇uk| = gk on F (uk) in the viscosity sense. (6.82)

At this point, putting together (6.81) and (6.82), we have that each uk is a

solution to (6.1) in B1 with coefficients akij and bki , right hand side fk and

free boundary condition gk.

Moreover, repeating the same argument used in the proof of Theorem 4.2,

we can show that for the chosen r̄, akij, fk and gk satisfy the assumption (6.3)

in B1, with εk = 2−kε0(r̄). In particular, as in the proof of Theorem 4.2, we

have ε̄ = ε0(r̄)2.

We now show that also bk verifies (6.4) in B1 with εk.

Indeed, if we fix x ∈ B1, and we consider bki (x) with i ∈ {1, . . . , n} , we have,

since ρk > 0 ∣∣bki (x)
∣∣ = |ρkbi(ρkx)| = ρk |bi(ρkx)| ,

that is ∣∣bki (x)
∣∣ = ρk |bi(ρkx)| . (6.83)

In particular, since from (4.3), ρkx ∈ B1, if x ∈ B1, we obtain from (6.83)∣∣bki (x)
∣∣ ≤ ρk ‖bi‖L∞(B1) . (6.84)

Furthermore, we know from the definition of ‖b|L∞(B1) that

‖bi‖L∞(B1) ≤ max
i=1,...,n

‖bi‖L∞(B1) = ‖b‖L∞(B1) ,

in other words

‖bi‖L∞(B1) ≤ ‖b‖L∞(B1) ,

which gives from (6.84) ∣∣bki (x)
∣∣ ≤ ρk ‖b‖L∞(B1) . (6.85)

In addition, we have from (6.73) that ‖b‖L∞(B1) ≤ ε̄, as a consequence, we

get from (6.85) ∣∣bki (x)
∣∣ ≤ ρkε̄,
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which entails, because ρk = r̄k and ε̄ = ε0(r̄)2,∣∣bki (x)
∣∣ ≤ r̄kε0(r̄)2. (6.86)

At this point, repeating the same argument used in the proof of Theorem 4.2

to obtain ‖fk‖L∞(B1) ≤ ε2
k, we have r̄ ≤ 1/4 = 2−2 and hence r̄k ≤ 2−2k for

k = 0, 1, . . .

Therefore, from (6.86) we get, inasmuch εk = 2−kε0(r̄),∣∣bki (x)
∣∣ ≤ 2−2kε0(r̄)2 = ε2

k,

i.e. ∣∣bki (x)
∣∣ ≤ ε2

k. (6.87)

Consequently, for the arbitrariness of x ∈ B1, we have that ε2
k is an upper

bound of the set
{ ∣∣bki (x)

∣∣ , x ∈ B1

}
, and thus∥∥bki ∥∥L∞(B1)

= sup
x∈B1

∣∣bki (x)
∣∣ ≤ ε2

k,

namely ∥∥bki ∥∥L∞(B1)
≤ ε2

k, i ∈ {i, . . . , n} . (6.88)

In addition, for the definition of
∥∥bk∥∥

L∞(B1)
, (6.88) implies∥∥bk∥∥

L∞(B1)
= max

i=1,...,n

∥∥bki ∥∥L∞(B1)
≤ ε2

k,

that is ∥∥bk∥∥
L∞(B1)

≤ ε2
k,

as desired. To sum it up, each uk solves (6.1) in B1, with coefficients akij and

bki , right hand side fk and free boundary condition gk, satisfying (6.3)-(6.4)

with εk.

This fact allows us to apply Lemma 6.7 with uk and the continuance of the

proof is the same of that of Theorem 4.2.

Theorem 6.9 (Lipschitz implies C1,α). Let u be a viscosity solution to

(6.1). Assume that 0 ∈ F (u) and g(0) > 0. If F (u) is a Lipschitz graph in a

neighborhood of 0, then F (u) is C1,α in a (smaller) neighborhood of 0.
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Remark. As in Theorem 4.1, the size of the neighborhood where F (u) is

C1,α depends on the radius ρ of the ball Bρ where F (u) is Lipschitz, on the

Lipschitz norm of F (u), on [aij]C0,β(Bρ), ‖g‖C0,β(Bρ) , ‖f‖L∞(Bρ) and ‖b‖L∞(Bρ) .

Proof . The proof follows the scheme of the proof of Theorem 4.1 and there

are only small differences with the proof of Theorem 4.1, which we will ex-

plain, while for all the details see the proof of Theorem 4.1.

Let u be a viscosity solution to (6.1) in Ω with 0 ∈ F (u) and g(0) > 0. As

in the proof of Theorem 4.1, we can assume without loss of generality that

Ω = B1 and g(0) = 1.

Indeed, concerning g(0) = 1, arguing as in the proof of Theorem 4.1, if

g(0) 6= 1, since g(0) > 0 and hence g(0) 6= 0, we can divide g by g(0) to get

g̃ := g
g(0)

, and if we set ũ=
u
g(0)

, we state that ũ is a viscosity solution to (6.1)

in Ω with coefficients aij and bi, free boundary condition g̃ and right hand

side f̃ := f
g(0)

.

Precisely, if ϕ ∈ C2(B+
1 (ũ)) touches ũ from below at x0 ∈ B+

1 (ũ), we have

ϕ(x0) = ũ(x0) (6.89)

and

ϕ(x) ≤ ũ(x) in a neighborhood O of x0. (6.90)

In particular, from the definition of ũ, repeating the same calculations done

in the proof of Theorem 4.1, (6.89) and (6.90) read

g(0)ϕ(x0) = u(x0) (6.91)

and

g(0)ϕ(x) ≤ u(x) in a neighborhood O of x0. (6.92)

Consequently, repeating the same argument used in the proof of Theorem

4.1, we get from (6.91) and (6.92) that g(0)ϕ ∈ C2(B+
1 (u)) touches u from

below at x0 ∈ B+
1 (u).
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Therefore, inasmuch u is a viscosity solution to (6.1) in B1, we have∑
i,j

aij(x0)(g(0)ϕ)ij(x0) +
∑
i

bi(x0)(g(0)ϕ)i(x0)

=
∑
i,j

aij(x0)g(0)ϕij(x0) +
∑
i

bi(x0)g(0)ϕi(x0)

= g(0)
∑
i,j

aij(x0)ϕij(x0) + g(0)
∑
i

bi(x0)ϕi(x0) ≤ f(x0),

namely

g(0)
∑
i,j

aij(x0)ϕij(x0) + g(0)
∑
i

bi(x0)ϕi(x0) ≤ f(x0),

which entails, since g(0) > 0,∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) ≤ f(x0)

g(0)
,

in other words, for the definition of f̃ ,∑
i,j

aij(x0)ϕij(x0) +
∑
i

bi(x0)ϕi(x0) ≤ f̃(x0).

As a consequence, repeating the same argument if ϕ ∈ C2(B+
1 (ũ)) touches ũ

from above at x0 ∈ B+
1 (ũ), but with opposite inequalities, we obtain∑

i,j

aij(x)ũij +
∑
i

bi(x)ũi = f̃ in B+
1 (ũ) in the viscosity sense. (6.93)

As regards the condition |∇ũ| = g̃ on F (ũ), we can repeat exactly the same

argument used in the proof of Theorem 4.1 and we get

|∇ũ| = g̃ on F (ũ) in the viscosity sense. (6.94)

Hence, putting together (6.93) and (6.94), we have that ũ is a viscosity

solution to (6.1) in B1 with coefficients aij and bi, right hand side f̃ and free

boundary condition g̃.

Moreover, for simplicity we take aij(0) = δij.
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Now, as in the proof of Theorem 4.1, we consider the blow-up sequence

uk := uδk(x) =
u(δkx)

δk
,

with δk → 0 as k →∞.
In particular, repeating the same argument used in the proof of Theorem 6.8,

each uk solves (6.1) with coefficients akij := aij(δkx) and bki (x) = δkbi(δkx),

right hand side fk(x) := δkf(δkx) and free boundary condition gk(x) :=

g(δkx).

Furthermore, repeating the same argument used in the proof of Theorem 4.1,

we also have that, for k large, fk, gk and akij satisfy (4.2) in B1 with ε̄ and

(6.3) in B1 with ε̄.

At this point, we prove that bk satisfies (6.4) in B1 with ε̄, which is the same

condition in (6.73).

Specifically, we fix x ∈ B1 and we consider bki (x), with i ∈ {1, . . . , n} .
From the definition of bki , we have, because δk > 0,∣∣bki (x)

∣∣ = |δkbi(δkx)| = δk |bi(δkx)| ,

i.e. ∣∣bki (x)
∣∣ = δk |bi(δkx)| . (6.95)

In particular, since δk → 0 as k → ∞ and δk > 0, we have that there exists

k̄ ∈ N such that

δk < 1, ∀k ∈ N, k ≥ k̄,

in other words for k large δk < 1.

Thus, for these k’s, if x ∈ B1, inasmuch δk > 0,

|δkx| = δk |x| < |x| < 1,

that is δkx ∈ B1. Therefore, consider k large enough so that δk < 1, which

also gives δkx ∈ B1 if x ∈ B1 and as a consequence from (6.95) we obtain∣∣bki (x)
∣∣ ≤ δk ‖bi‖L∞(B1) . (6.96)
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Now, always because δk → 0 as k →∞, there also exists k̄ ∈ N such that

δk <
ε̄

‖bi‖L∞(B1)

, k ∈ N, k ≥ k̄,

i.e. for k large δk <
ε̄

‖bi‖L∞(B1)
.

Consequently, if we take k large so that this condition is satisfied, we have

from (6.96) ∣∣bki (x)
∣∣ ≤ δk ‖bi‖L∞(B1) ≤

ε̄

‖bi‖L∞(B1)

‖bi‖L∞(B1) = ε̄,

namely ∣∣bki (x)
∣∣ ≤ ε̄. (6.97)

Hence, from the arbitrariness of x ∈ B1, we get from (6.97) that ε̄ is an upper

bound of the set
{∣∣bki (x)

∣∣ , x ∈ B1

}
, and thus∥∥bki ∥∥L∞(B1)

= sup
x∈B1

∣∣bki (x)
∣∣ ≤ ε̄,

i.e. ∥∥bki ∥∥L∞(B1)
≤ ε̄. (6.98)

As a consequence, from the definition of
∥∥bk∥∥

L∞(B1)
, we obtain∥∥bk∥∥

L∞(B1)
= max

i=1,...,n

∥∥bki ∥∥L∞(B1)
≤ ε̄,

which gives ∥∥bk∥∥
L∞(B1)

≤ ε̄.

Therefore, bk satisfies (6.4) with ε̄ for k large so that

δk < min

1,
ε̄

max
i=1,...,n

‖bi‖L∞(B1)

 .

To sum it up, we have for k large that fk, gk, a
k
ij and bki satisfy (6.73) in B1

with ε̄ and in parallel fk, gk, a
k
ij and bki satisfy (6.3)-(6.4) in B1 with ε̄.

The remaining part of the proof is the same of the proof of Theorem 4.1,

remarking these two facts.
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(i) Also a solution to (6.1)-(6.3)-(6.4) is Lipschitz continuous and satisfy

a nondegeneracy property like that expressed by Lemma 5.1.

(ii) The blow-up limit u0 is always a global solution to the free boundary

problem ∆u0 = 0 in {u0 > 0}

|∇u0| = 1 on F (u0).

6.5 Nondegeneracy property

In this section, we provide the nondegeneracy property also for a solution

to (6.1)-(6.3)-(6.4).

Lemma 6.10. Let u be a solution to (6.1)-(6.3)-(6.4) with ε ≤ ε̃ a universal

constant. If F (u) ∩ B1 6= ∅ and F (u) is a Lipschitz graph in B2, then u is

Lipschitz and nondgenerate in B+
1 (u), i.e.

c0d(z) ≤ u(z) ≤ C0d(z) for all z ∈ B+
1 (u),

with d(z) = dist(z, F (u)) and c0, C0 universal constants.

Proof . The proof follows exactly the scheme of the proof of Lemma 5.1 and

we explain only the main differences, referring to the proof of Lemma 5.1 for

all the details.

As in the proof of Lemma 5.1, assume without loss of generality that 0 ∈
B+

1 (u) and set d := d(0).

Consider always the rescaled function

ũ(x) =
u(dx)

d
, x ∈ B1.

Repeating the same argument used in the proof of Theorem 6.8, we get that

ũ satisfies (6.1) in B1 with coefficients ãij(x) := aij(dx) and b̃i(x) = dbi(dx),

right hand side f̃(x) := df(dx) and free boundary condition g̃(x) := g(dx).
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In addition, repeating the same computations done in the proof of Lemma

5.1, we achieve d ≤ 1 and the assumption (6.3) holds in B1 for ãij, f̃ and g̃.

At this point, we claim that b̃ satisfies (6.4) in B1.

Precisely, if we fix x ∈ B1, and we consider b̃i(x), we have, because 0 ≤ d ≤ 1,∣∣∣b̃i(x)
∣∣∣ = |dbi(dx)| = d |bi(dx)| ≤ |b(dx)| ≤ ‖bi‖L∞ ,

namely ∣∣∣b̃i(x)
∣∣∣ ≤ ‖bi‖L∞ . (6.99)

Moreover, we know from hypothesis that b satisfies (6.4), as a consequence

we have

‖bi‖L∞ ≤ ‖b‖L∞ ≤ ε2,

in other words

‖bi‖L∞ ≤ ε2,

which implies from (6.99) ∣∣∣b̃i(x)
∣∣∣ ≤ ε2. (6.100)

Therefore, for the arbitrariness of x ∈ B1, we obtain from (6.100) that ε2 is

an upper bound of the set
{∣∣∣b̃i(x)

∣∣∣ , x ∈ B1

}
, and thus∥∥∥b̃i∥∥∥

L∞(B1)
= sup

x∈B1

∣∣∣b̃i(x)
∣∣∣ ≤ ε2,

i.e. ∥∥∥b̃i∥∥∥
L∞(B1)

≤ ε2. (6.101)

Consequently, from the definition of
∥∥∥b̃∥∥∥

L∞(B1)
, we get∥∥∥b̃∥∥∥

L∞(B1)
= max

i=1,...,n

∥∥∥b̃i∥∥∥
L∞(B1)

≤ ε2,

that is ∥∥∥b̃∥∥∥
L∞(B1)

≤ ε2

and hence b̃ satisfies (6.4) in B1.

At this point, as in the proof of Lemma 5.1, we wish to show that

c0 ≤ ũ(0) ≤ C0.
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Specifically, we assume for contradiction that ũ(0) > C0, with C0 to be made

precise later.

As in the proof of Lemma 5.1, let

G(x) = C(|x|−γ − 1)

be defined on the closure of the annulus B1 \ B1/2.

In particular, in view of the uniform ellipticity of the coefficients ãij(see

Lemma A.5 in Appendix A), repeating the same calculations done in the

proof of Lemma 6.6, we can choose γ large universal so that (for ε small)∑
i,j

ãijGij +
∑
i

b̃iGi > ε2 on B1 \ B1/2. (6.102)

Furthermore, we can choose the constant C so that

G = 1 on ∂B1/2,

and from the proof of Lemma 5.1, we achieve

C =
1

(1/2)−γ − 1
.

In addition, repeating the same argument used in the proof of Lemma 5.1,

we get ũ > 0 in B1.

Consequently, in view of this fact and inasmuch ũ solves, in the viscosity

sense, a uniformly elliptic equation in B1 with right hand side f̃ , we can

apply the the Harnack inequality to obtain

sup
B1/2

ũ ≤ C1

(
inf
B1/2

ũ+ C2

∥∥∥f̃∥∥∥
L∞(B1)

)
,

which gives, repeating the same computations done in the proof of Lemma

5.1,

ũ ≥ cũ(0) on B1/2. (6.103)

At this point, as in the proof of Lemma 5.1, we define v(x) := cũ(0)G(x) and

we state that ũ− v satisfies∑
i,j

ãij(ũ− v)ij +
∑
i

b̃i(ũ− v)i ≤ 0 in B1 \ B1/2
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in the viscosity sense, that is ũ− v is a viscosity supersolution of
∑
i,j

ãij(ũ−

v)ij +
∑
i

b̃i(ũ− v)i = 0 in B1 \ B1/2, see Definition B.4 in Appendix B.

Precisely, if ϕ ∈ C2(B1 \ B1/2) touches ũ−v from below at x0 ∈ (B1 \ B1/2),

we have

ϕ(x0) = (ũ− v)(x0) = ũ(x0)− v(x0) (6.104)

and

ϕ(x) ≤ (ũ− v)(x) = ũ(x)− v(x) in a neighborhood O of x0. (6.105)

In particular, (6.104) and (6.105) read

ϕ(x0) + v(x0) = (ϕ+ v)(x0) = ũ(x0) (6.106)

and

ϕ(x) + v(x) = (ϕ+ v)(x) ≤ ũ(x) in a neighborhood O of x0. (6.107)

Consequently, from (6.106) and (6.107), repeating the same argument used

in the proof of Lemma 5.1, we achieve that (ϕ+ v) ∈ C2(B1 \ B1/2) touches

ũ from below at x0 ∈ (B1 \ B1/2)+(ũ).
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Hence, since ũ is a solution to (6.1) in B1 and also in B1 \ B1/2, we get∑
i,j

ãij(x0)(ϕ+ v)ij(x0) +
∑
i

b̃i(x0)(ϕ+ v)i(x0)

=
∑
i,j

ãij(x0)(ϕ+ cũ(0)G)ij(x0) +
∑
i

bi(x0)(ϕ+ cũ(0)G)i(x0)

=
∑
i,j

ãij(x0)(ϕij(x0) + cũ(0)Gij(x0)) +
∑
i

b̃i(x0)(ϕi(x0) + cũ(0)Gi(x0))

=
∑
i,j

ãij(x0)ϕij(x0) +
∑
i,j

ãij(x0)cũ(0)Gij(x0)

+
∑
i

b̃i(x0)ϕi(x0) +
∑
i

b̃i(x0)cũ(0)Gi(x0)

=
∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0)

+
∑
i,j

ãij(x0)cũ(0)Gij(x0) +
∑
i

b̃i(x0)Gi(x0)

=
∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0)

+ cũ(0)
∑
i,j

ãij(x0)Gij(x0) + cũ(0)
∑
i

b̃i(x0)Gi(x0)

=
∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0)

+ cũ(0)

(∑
i,j

ãij(x0)Gij(x0) +
∑
i

b̃i(x0)Gi(x0)

)
≤ f̃(x0)

in other words∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0)

+ cũ(0)

(∑
i,j

ãij(x0)Gij(x0) +
∑
i

b̃i(x0)Gi(x0)

)
≤ f̃(x0),

which entails∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0) ≤ f̃(x0)

− cũ(0)

(∑
i,j

ãijcũ(0)Gij(x0)−
∑
i

b̃i(x0)Gi(x0)

)
. (6.108)
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In addition, in view of (6.102), inasmuch x0 ∈ (B1 \ B1/2), we obtain from

(6.108) taking ε2 = cũ(0)ε2,∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0) ≤ f̃(x0)− ε2. (6.109)

Now, from the first inequality in (6.3), i.e.
∥∥∥f̃∥∥∥

L∞(B1)
≤ ε2, we also have∣∣∣f̃(x)

∣∣∣ ≤ ε2, ∀x ∈ B1 and thus, because x0 ∈ (B1 \ B1/2) ⊂ B1, that is

x0 ∈ B1,
∣∣∣f̃(x0)

∣∣∣ ≤ ε2, which also gives f̃(x0) ≤ ε2.

Therefore, in view of this fact, we achieve from (6.109)∑
i,j

ãij(x0)ϕij(x0) +
∑
i

b̃i(x0)ϕi(x0) ≤ 0,

which implies that ũ − v is a viscosity supersolution to
∑
i,j

ãij(ũ − v)ij +∑
i

b̃i(ũ− v)i = 0 in B1 \ B1/2.

At this point, the remainder of the proof is the same of the proof of Lemma

5.1, with the only difference that G̃t̃ is a strict supersolution to (6.1), in place

to (2.1), but with the same computations to see it.



Appendix A

Some definitions and auxiliary

theorems

We introduce here general tools used in the work.

Definition A.1. Let Ω be an open subset of Rn and BC(Ω) be the

bounded continuous functions on Ω. For u ∈ BC(Ω) and 0 < β ≤ 1 let

‖u‖C(Ω) := sup
x∈Ω
|u(x)|

and

[u]C0,β(Ω) := sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|β

.

If [u]C0,β(Ω) < ∞, then u is Hölder continuos with holder exponent β. The

collection of β-Hölder continuos function in Ω will be denoted by

C0,β(Ω) :=
{
u ∈ BC(Ω) : [u]C0,β(Ω) <∞

}
and for u ∈ C0,β(Ω) let

‖u‖C0,β(Ω) := ‖u‖C(Ω) + [u]C0,β(Ω) .

Definition A.2. Let (X, d) a metric space and A, B ⊂ X two non-empty

subsets. We define their Hausdorff distance dH(A,B) by

dH(A,B) := max {e(A,B), e(B,A)} ,

185
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where

e(A,B) := sup
x∈A

d(x,B)

and

d(x,B) := inf
y ∈B

d(x, y).

Theorem A.3 (Ascoli-Arzelà Theorem). Let K ⊂ Rn be a compact set.

Let (fn)n∈N be a sequence of functions in C(K,R) such that

(i) (fn)n∈N is uniformly bounded, that is ∃ M > 0 such that

|fn(x)| ≤M ∀x ∈ K, ∀fn;

(ii) (fn)n∈N is equicontinuos, i.e ∀ε > 0, ∃ δ > 0 such that ∀x, y ∈ K,

d(x, k) < δ

|fn(x)− fn(y)| < ε ∀fn.

Then there exists a subsequence (fnk)k∈N that converges uniformly.

We provide here two general results.

Lemma A.4. Let Γ(θ0, e2) = {τ : α(τ, e2) < θ0} be the open cone of axis

e2 and aperture θ0 in R2, where e2 = (0, 1), 0 < θ0 and α(τ, e2) is the angle

between the vectors τ and e2, and let u be a solution to∆u = f in Γ(θ0, e2)

u = 0 on ∂Γ(θ0, e2).
(A.1)

Then u is not necessary Lipschitz.

Proof . First of all, let us do a change of variables and we writex = ρ cos(θ)

y = ρ sin(θ),
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with ρ, θ the polar coordinates in R2.

In particular, after this change of variables, if u is a solution to (A.1), we

obtain∆u(ρ cos(θ), ρ sin(θ)) = f(ρ cos(θ), ρ sin(θ)) in Γ(θ0, e2)

u(ρ cos(θ), ρ sin(θ)) = 0 on ∂Γ(θ0, e2).
(A.2)

Let us set then v(ρ, θ) = u(ρ cos(θ), ρ sin(θ)) and let us see what it means

that u(ρ cos(θ), ρ sin(θ)) satifies (A.2).

Let us start with calculating

∂v(ρ, θ)

∂ρ
=

∂

∂ρ

(
u(ρ cos(θ), ρ sin(θ))

)
=
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

) ∂
∂ρ

(
ρ cos(θ)

)
+
∂u

∂y

(
ρ cos(θ), ρ sin(θ)

) ∂
∂ρ

(
ρ sin(θ)

)
=
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
sin(θ),

which gives

∂v

∂ρ
(ρ, θ) =

∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
cos(θ)+

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
sin(θ). (A.3)

Analogously,

∂v(ρ, θ)

∂θ
=

∂

∂θ

(
u(ρ cos(θ), ρ sin(θ))

)
=
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

) ∂
∂θ

(ρ cos(θ)) +
∂u

∂y

(
ρ cos(θ), ρ sin(θ)

) ∂
∂θ

(
ρ sin(θ)

)
=
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
(−ρ sin(θ)) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ),

namely

∂v

∂θ
(ρ, θ) = −∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ)

+
∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ). (A.4)

At this point, we also calculate the second derivative of v(ρ, θ) respect to ρ

and the second derivative of v(ρ, θ) respect to θ, in order to find an expression
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for ∆u(ρ cos(θ), ρ sin(θ)).

Specifically, from (A.3), we have

∂2v(ρ, θ)

∂ρ2
=

∂

∂ρ

(
∂v(ρ, θ)

∂ρ

)
=

∂

∂ρ

(
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
sin(θ)

)
=

(
∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) +

∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)) sin(θ)

)
cos(θ)

+
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

) ∂
∂ρ

(
cos(θ)

)
+

(
∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
sin(θ)

)
sin(θ)

+
∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)∂
ρ

(
sin(θ)

)
=
∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
cos2(θ) +

∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
sin(θ) cos(θ)

+
∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) sin(θ) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
sin2(θ),

i.e.

∂2v

∂ρ2
(ρ, θ) =

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
cos2(θ)

+
∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
sin(θ) cos(θ) +

∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) sin(θ)

+
∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
sin2(θ). (A.5)
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Analogously, from (A.4), we achieve

∂2v(ρ, θ)

∂θ2
=

∂

∂θ

(
∂v(ρ, θ)

∂θ

)
=

∂

∂θ

(
−∂u
∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

)
=

(
−∂

2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
(−ρ sin(θ))− ∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
(ρ cos(θ))

)
× ρ sin(θ)− ∂u

∂x

(
ρ cos(θ), ρ sin(θ)

) ∂
∂θ

(
ρ sin(θ)

)
+

(
∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
(−ρ sin(θ)) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

)
× ρ cos(θ) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

) ∂
∂θ

(
ρ cos(θ)

)
=
∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin2(θ)− ∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos(θ) sin(θ)

− ∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

− ∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin(θ) cos(θ) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos2(θ)

− ∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ),

in other words,

∂2v

∂θ2
(ρ, θ) =

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin2(θ)

− ∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos(θ) sin(θ)− ∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

− ∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin(θ) cos(θ) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos2(θ)

− ∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ). (A.6)
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In particular, from (A.5) and (A.6), we get

ρ2∂
2v

∂ρ2
(ρ, θ) +

∂2v

∂θ2
(ρ, θ) =

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos2(θ)

+
∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin(θ) cos(θ) +

∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos(θ)

× sin(θ) +
∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin2(θ) +

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin2(θ)

− ∂2u

∂y∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos(θ) sin(θ)− ∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

− ∂2u

∂x∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ2 sin(θ) cos(θ) +

∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ2 cos2(θ)

− ∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ) =

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
ρ2(cos2(θ) + sin2(θ))

+
∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
ρ2(sin2(θ) + cos2(θ))− ∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
ρ cos(θ)

− ∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
ρ sin(θ) = ρ2

(
∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
+
∂2u

∂y2

(
ρ cos(θ),

ρ sin(θ)
))
− ρ

(
∂u

∂x

(
ρ cos(θ), ρ sin(θ)

)
cos(θ) +

∂u

∂y

(
ρ cos(θ), ρ sin(θ)

)
sin(θ)

)
,

and thus, in view of (A.3) and inasmuch

∂2u

∂x2

(
ρ cos(θ), ρ sin(θ)

)
+
∂2u

∂y2

(
ρ cos(θ), ρ sin(θ)

)
= ∆u

(
ρ cos(θ), ρ sin(θ)

)
,

we obtain

ρ2∂
2v

∂ρ2
(ρ, θ) +

∂2v

θ2
(ρ, θ) = ρ2∆u

(
ρ cos(θ), ρ sin(θ)

)
− ρ∂v

∂ρ
(ρ, θ),

which implies

ρ2∆u
(
ρ cos(θ), ρ sin(θ)

)
= ρ2∂

2v

∂ρ2
(ρ, θ) +

∂2v

∂θ2
(ρ, θ) + ρ

∂v

∂ρ
(ρ, θ),

and dividing by ρ2, which is strictly positive in Γ(θ0, e2), given that Γ(θ0, e2)

is an open,

∆u(ρ cos(θ), ρ sin(θ)) =
∂2v

∂ρ2
(ρ, θ) +

1

ρ2

∂2v

∂θ2
(ρ, θ) +

1

ρ

∂v

∂ρ
(ρ, θ). (A.7)



191

Consequently, if u solves ∆u = f in Γ(θ0, e2), in polar coordinates we have

from (A.7)

∂2v

∂ρ2
(ρ, θ)+

1

ρ2

∂2v

∂θ2
(ρ, θ)+

1

ρ

∂v

∂ρ
(ρ, θ) = f(ρ cos(θ), sin(θ)) in Γ(θ0, e2). (A.8)

Let us consider now the particular case when f = 0 in Γ(θ0, e2) and we

achieve in view of (A.8)

∂2v

∂ρ2
(ρ, θ) +

1

ρ2

∂2v

∂θ2
(ρ, θ) +

1

ρ

∂v

∂ρ
(ρ, θ) = 0 in Γ(θ0, e2). (A.9)

This equation lead us to look for the function v(ρ, θ) in the form v(ρ, θ) =

ϕ(ρ)ψ(θ) and we obtain from (A.9)

ϕ′′(ρ)ψ(θ) +
1

ρ2
ϕ(ρ)ψ′′(θ) +

1

ρ
ϕ′(ρ)ψ(θ) = 0

and dividing by ϕ(ρ)ψ(θ), which we suppose different from 0 for every (ρ, θ),

we get
ϕ′′(ρ)

ϕ(ρ)
+

1

ρ2

ψ′′(θ)

ψ(θ)
+

1

ρ
ϕ′(ρ)ϕ(ρ) = 0,

which entails

1

ρ2

ψ′′(θ)

ψ(θ)
= −

(
ϕ′′(ρ)

ϕ(ρ)
+

1

ρ

ϕ′(ρ)

ϕ(ρ)

)
= −ρϕ

′′(ρ) + ϕ′(ρ)

ρϕ(ρ)
,

and multiplying by ρ2

ψ′′(θ)

ψ(θ)
= −ρ2 ρϕ

′′(ρ) + ϕ′(ρ)

ρϕ(ρ)
= −ρ ρϕ

′′(ρ) + ϕ′(ρ)

ϕ(ρ)
= −ρ2 ϕ

′′(ρ)

ϕ(ρ)
− ρ ϕ

′(ρ)

ϕ(ρ)
,

namely
ψ′′(θ)

ψ(θ)
= −ρ2 ϕ

′′(ρ)

ϕ(ρ)
− ρ ϕ

′(ρ)

ϕ(ρ)
. (A.10)

Notice, at this point, that in (A.10) we have a function ψ′′(θ)
ψ(θ)

, which depends

only on θ, equal to a function −ρ2 ϕ
′′(ρ)
ϕ(ρ)
− ρ ϕ

′(ρ)
ϕ(ρ)

which depends only on ρ,

for every ρ and for every θ, and this fact implies that the only possibility is
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that both the functions are constant and seeing as how they are equal, the

constant is the same, in other words there exists a constant k such that

ψ′′(θ)

ψ(θ)
= k (A.11)

and

−ρ2 ϕ
′′(ρ)

ϕ(ρ)
− ρ ϕ

′(ρ)

ϕ(ρ)
= k. (A.12)

We treatise the two equations separately.

As regards the first equation, we can rewrite (A.11) as

ψ′′(θ) = kψ(θ). (A.13)

Let us recall now that v(ρ, θ) = u(ρ cos(θ), ρ sin(θ)), where u(ρ cos(θ), ρ sin(θ))

satisfies (A.2). As a consequence, v(ρ, θ) fulfills v(ρ, θ) = 0 on ∂Γ(θ0, e2).

Specifically, the values of θ which correspond to ∂Γ(θ0, e2) are
π

2
− θ0 and

π

2
+ θ0, therefore we want to solve the following problem:


ψ′′(θ) = kψ(θ) in Γ(θ0, e2)

ψ(π
2
− θ0) = 0 on ∂Γ(θ0, e2)

ψ(π
2

+ θ0) = 0 on ∂Γ(θ0, e2),

(A.14)

where ψ′′(θ) = kψ(θ) is fulfilled in Γ(θ0, e2), recalling that this equation

derives from (A.9).

We distinguish three cases depending on k.

(i) If k > 0, the general integral of (A.13) is

ψ(θ) = C1e
√
kθ + C2e

−
√
kθ,

and if we impose the conditions in (A.14), we obtain the systemψ(π
2
− θ0) = C1e

√
k(π2−θ0) + C2e

−
√
k(π2−θ0) = 0

ψ(π
2

+ θ0) = C1e
√
k(π2 +θ0) + C2e

−
√
k(π2 +θ0) = 0.
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Consequently, if we call A the matrix

A :=

(
e
√
k(π2−θ0) e−

√
k(π2−θ0)

e
√
k(π2 +θ0) e−

√
k(π2 +θ0),

)

we have to solve

A

(
C1

C2

)
= 0, (A.15)

which admits a solution different from the trivial one only if detA = 0,

in other words if

e
√
k(π2−θ0)e−

√
k(π2 +θ0) − e−

√
k(π2−θ0)e

√
k(π2 +θ0) = 0. (A.16)

In particular, we can rewrite the left term in (A.16) as

e
√
k(π2−θ0)e−

√
k(π2 +θ0) − e−

√
k(π2−θ0)e

√
k(π2 +θ0) = e

√
k π

2
−
√
kθ0e−

√
k π

2
−
√
kθ0

− e−
√
k π

2
+
√
kθ0e

√
k π

2
+
√
kθ0 = e−2

√
kθ0 − e2

√
kθ0 ,

thus from (A.16), we achieve

e−2
√
kθ0 − e2

√
kθ0 = 0,

which implies

e−2
√
kθ0 = e2

√
kθ0 ,

that is
1

e2
√
kθ0

= e2
√
kθ0 ,

and

e4
√
kθ0 = 1. (A.17)

At this point, the only possibility that (A.17) will have a solution is that

k = 0, but we are in case of k > 0, hence (A.17) give a contradiction.

As a consequence, the only solution of (A.15) is the trivial one, namely

C1 = 0 and C2 = 0, which gives ψ(θ) = 0 ∀θ, that contradicts the

hypothesis we have done, i.e. ψ(θ) 6= 0 ∀ θ.
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(ii) Suppose now that k = 0. In this case, the general integral of (A.13) is

ψ(θ) = C1 + C2θ,

and imposing the conditions in (A.14), we get
ψ(π

2
− θ0) = C1 + C2

(π
2
− θ0

)
= C1 + C2

π

2
− C2θ0 = 0

ψ(π
2

+ θ0) = C1 + C2

(π
2

+ θ0

)
= C1 + C2

π

2
+ C2θ0 = 0,

(A.18)

where, subtracting the two equations, we obtain

2C2θ0 = 0,

and thus, because θ0 6= 0, C2 = 0, which gives, from the equations in

(A.18), also C1 = 0 and hence we achieve that ψ(θ) = 0 ∀θ, contradict-

ing again the hypothesis ψ(θ) 6= 0 ∀θ.

(iii) Suppose finally that k < 0 and the general integral in this case is

ψ(θ) = C1 cos(
√
|k|θ) + C2 sin(

√
|k|θ). (A.19)

Imposing the conditions in (A.14), we get this timeψ(π
2
− θ0) = C1 cos(

√
|k|
(
π
2
− θ0

)
) + C2 sin(

√
|k|(π

2
− θ0)) = 0

ψ(π
2

+ θ0) = C1 cos(
√
|k|
(
π
2

+ θ0

)
) + C2 sin(

√
|k|(π

2
+ θ0)) = 0.

(A.20)

In particular, using the addition and subtraction formulas for cosine

and sine, we can rewrite the first equation in (A.20) as

C1 cos
(√
|k|
(π

2
− θ0

))
+ C2 sin

(√
|k|
(π

2
− θ0

))
= C1 cos

(√
|k|π

2
−
√
|k|θ0

)
+ C2 sin

(√
|k|π

2
−
√
|k|θ0

)
= C1

(
cos
(√
|k|π

2

)
cos(

√
|k|θ0) + sin

(√
|k|π

2

)
sin(
√
|k|θ0)

)
+ C2

(
sin
(√
|k|π

2

)
cos(

√
|k|θ0)− cos

(√
|k|π

2

)
sin(
√
|k|θ0)

)
= C1 cos

(√
|k|π

2

)
cos(

√
|k|θ0) + C1 sin

(√
|k|π

2

)
sin(
√
|k|θ0)

+ C2 sin
(√
|k|π

2

)
cos(

√
|k|θ0)− C2 cos

(√
|k|π

2

)
sin(
√
|k|θ0),
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and analogously, we can rewrite the second equation in (A.20) as

C1 cos
(√
|k|
(π

2
+ θ0

))
+ C2 sin

(√
|k|
(π

2
+ θ0

))
= C1 cos

(√
|k|π

2
+
√
|k|θ0

)
+ C2 sin

(√
|k|π

2
+
√
|k|θ0

)
= C1

(
cos
(√
|k|π

2

)
cos(

√
|k|θ0)− sin

(√
|k|π

2

)
sin(
√
|k|θ0)

)
+ C2

(
sin
(√
|k|π

2

)
cos(

√
|k|θ0) + cos

(√
|k|π

2

)
sin(
√
|k|θ0)

)
= C1 cos

(√
|k|π

2

)
cos(

√
|k|θ0)− C1 sin

(√
|k|π

2

)
sin(
√
|k|θ0)

+ C2 sin
(√
|k|π

2

)
cos(

√
|k|θ0) + C2 cos

(√
|k|π

2

)
sin(
√
|k|θ0).

Consequently, from (A.20), we obtain



C1 cos
(√
|k|π

2

)
cos(

√
|k|θ0) + C1 sin

(√
|k|π

2

)
sin(
√
|k|θ0)

+C2 sin
(√
|k|π

2

)
cos(

√
|k|θ0)− C2 cos

(√
|k|π

2

)
sin(
√
|k|θ0) = 0

C1 cos
(√
|k|π

2

)
cos(

√
|k|θ0)− C1 sin

(√
|k|π

2

)
sin(
√
|k|θ0)

+C2 sin
(√
|k|π

2

)
cos(

√
|k|θ0) + C2 cos

(√
|k|π

2

)
sin(
√
|k|θ0) = 0

(A.21)

and if we call A the matrix

A :=



cos
(√
|k|π

2

)
cos(

√
|k|θ0) sin

(√
|k|π

2

)
cos(

√
|k|θ0)

+ sin
(√
|k|π

2

)
sin(
√
|k|θ0) − cos

(√
|k|π

2

)
sin(
√
|k|θ0)

cos
(√
|k|π

2

)
cos(

√
|k|θ0) sin

(√
|k|π

2

)
cos(

√
|k|θ0)

− sin
(√
|k|π

2

)
sin(
√
|k|θ0) + cos

(√
|k|π

2

)
sin(
√
|k|θ0),


we achieve from (A.21)

A

(
C1

C2

)
= 0, (A.22)

which admits a solution different from the trivial one only if detA = 0,
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in other words if(
cos
(√
|k|π

2

)
cos(

√
|k|θ0) + sin

(√
|k|π

2

)
sin(
√
|k|θ0)

)(
sin
(√
|k|π

2

)
× cos(

√
|k|θ0) + cos

(√
|k|π

2

)
sin(
√
|k|θ0)

)
−
(

sin
(√
|k|π

2

)
× cos(

√
|k|θ0)− cos

(√
|k|π

2

)
sin(
√
|k|θ0)

)(
cos
(√
|k|π

2

)
cos(

√
|k|θ0)

− sin
(√
|k|π

2

)
sin(
√
|k|θ0)

)
= 0.

(A.23)

Developing the left term in (A.23), we have

cos
(√
|k|π

2

)
sin
(√
|k|π

2

)
cos2(

√
|k|θ0) + cos2

(√
|k|π

2

)
cos(

√
|k|θ0)

× sin(
√
|k|θ0) + sin2

(√
|k|π

2

)
sin(
√
|k|θ0) cos(

√
|k|θ0) + sin

(√
|k|π

2

)
× cos

(√
|k|π

2

)
sin2(

√
|k|θ0)− sin

(√
|k|π

2

)
cos
(√
|k|π

2

)
cos2(

√
|k|θ0)

+ cos2
(√
|k|π

2

)
sin(
√
|k|θ0) cos(

√
|k|θ0) + sin2

(√
|k|π

2

)
cos(

√
|k|θ0)

× sin(
√
|k|θ0)− cos

(√
|k|π

2

)
sin
(√
|k|π

2

)
sin2(

√
|k|θ0) = 0,

which gives

2 cos2
(√
|k|π

2

)
cos(

√
|k|θ0) sin(

√
|k|θ0) + 2 sin2

(√
|k|π

2

)
sin(
√
|k|θ0)

× cos(
√
|k|θ0) = 0,

that is

2
(

sin2
(√
|k|π

2

)
+ cos2

(√
|k|π

2

))
sin(
√
|k|θ0) cos(

√
|k|θ0)

= 2 sin(
√
|k|θ0) cos(

√
|k|θ0) = sin(2

√
kθ0) = 0,

and thus to sum it up, we have detA = 0 if sin(2
√
|k|θ0) = 0.

Now, sin(2
√
|k|θ0) = 0 if and only if

2
√
|k|θ0 = mπ with m ∈ N ∪ 0, (A.24)
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where we take m ∈ N ∪ 0 and not in Z, recalling that for hypothesis

0 < θ0 and hence 2
√
|k|θ0 is positive or equal to 0.

Also, from (A.24), we have

√
|k| = mπ

2θ0

, with m ∈ N ∪ 0, (A.25)

which entails,

|k| = m2π2

4θ2
0

with m ∈ N ∪ 0, (A.26)

raising to 2 both the terms of the inequality in (A.24), which is possible

recalling that they are both positive or equal to 0 for what we have said

above.

In addition, we recall that in this case k < 0, therefore |k| = −k, and

as a consequence we get in view of (A.26)

−k =
m2π2

4θ2
0

, with m ∈ N ∪ 0,

which gives

k = −m
2π2

4θ2
0

, with m ∈ N ∪ 0,

where in particular, given that k 6= 0, we have to suppose m 6= 0.

Consequently, (A.22) admits a solution different from the trivial one if

and only if

k = −m
2π2

4θ2
0

with m ∈ N.

At this point, we want to look for C1 and C2 for these k’s.

Specifically, seeing as how detA = 0, it suffices to consider only an

equation in (A.21) and we choose the first one, where we substitute√
|k| found in (A.25) and we achieve

C1 cos

(
mπ

2θ0

π

2

)
cos

(
mπ

2θ0

θ0

)
+ C1 sin

(
mπ

2θ0

π

2

)
sin

(
mπ

2θ0

θ0

)
+ C2 sin

(
mπ

2θ0

π

2

)
cos

(
mπ

2θ0

θ0

)
− C2 cos

(
mπ

2θ0

π

2

)
sin

(
mπ

2θ0

θ0

)
= 0,
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namely

C1 cos

(
mπ

2θ0

π

2

)
cos
(mπ

2

)
+ C1 sin

(
mπ

2θ0

π

2

)
sin
(mπ

2

)
+ C2 sin

(
mπ

2θ0

π

2

)
cos
(mπ

2

)
− C2 cos

(
mπ

2θ0

π

2

)
sin
(mπ

2

)
= 0.

(A.27)

In particular, we know that sin
(
mπ
2

)
= 0 and cos

(
mπ
2

)
= ±1 if m is

even, while cos
(
mπ
2

)
= 0 and sin

(
mπ
2

)
= ±1 if m is odd, therefore we

distinguish two cases in (A.27).

(a) If m is even, inasmuch as sin
(
mπ
2

)
= 0, from (A.27) we obtain

C1 cos

(
mπ

2θ0

π

2

)
cos
(mπ

2

)
+ C2 sin

(
mπ

2θ0

π

2

)
cos
(mπ

2

)
= 0,

and inasmuch cos
(
mπ
2

)
= ±1, we have

C1 cos

(
mπ

2θ0

π

2

)
+ C2 sin

(
mπ

2θ0

π

2

)
= 0,

which gives

C2 = −cotan

(
mπ

2θ0

π

2

)
C1,

and substituting into (A.19), we get

ψ(θ) = C1

(
cos

(
mπ

2θ0

θ

)
− cotan

(
mπ

2θ0

π

2

)
sin

(
mπ

2θ0

θ

))
,

with θ ∈
(
π
2
− θ0,

π
2

+ θ0

)
.

(b) If m is odd, instead, cos
(
mπ
2

)
= 0, thus from (A.27) we achieve

C1 sin

(
mπ

2θ0

π

2

)
sin
(mπ

2

)
− C2 cos

(
mπ

2θ0

π

2

)
sin
(mπ

2

)
= 0,

which implies, given that sin
(
mπ
2

)
= ±1,

C1 sin

(
mπ

2θ0

π

2

)
− C2 cos

(
mπ

2θ0

π

2

)
= 0,
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in other words

C2 = tan

(
mπ

2θ0

π

2

)
C1,

and substituting into (A.19), we obtain

ψ(θ) = C1

(
cos

(
mπ

2θ0

θ

)
+ tan

(
mπ

2θ0

π

2

)
sin

(
mπ

2θ0

θ

))
,

with θ ∈
(
π
2
− θ0,

π
2

+ θ0

)
.

To sum it up, we have found that the solution of (A.14) is

ψ(θ) =

C1

(
cos
(
mπ
2θ0
θ
)
− cotan

(
mπ
2θ0

π
2

)
sin
(
mπ
2θ0
θ
))

, m ∈ N,m even,

C1

(
cos
(
mπ
2θ0
θ
)

+ tan
(
mπ
2θ0

π
2

)
sin
(
mπ
2θ0
θ
))

m ∈ N,m odd,

(A.28)

with θ ∈
[
π
2
− θ0,

π
2

+ θ0

]
.

Considering now (A.12), and we can rewrite this equation as

−ρ2ϕ′′(ρ)− ρϕ′(ρ) = kϕ(ρ),

i.e.

ρ2ϕ′′(ρ) + ρϕ′(ρ) + kϕ(ρ) = 0, (A.29)

which is an Euler type differential equation.

Set hence ρ = et and we define ϕ(ρ) = ϕ(et) := w(t), which satisfies

w′(t) = ϕ′(et)
d

dt

(
et
)

= ϕ′(et)et,

that is

w′(t) = ϕ′(et)et, (A.30)

and

w′′(t) =
d

dt

(
ϕ′(et)et

)
= ϕ′′(et)etet + ϕ′(et)et = ϕ′′(et)e2t + ϕ′(et)et,

namely

w′′(t) = ϕ′′(et)e2t + ϕ′(et)et. (A.31)
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In addition, since ρ = et, from (A.31), we also get

w′′(t) = ϕ′′(ρ)ρ2 + ϕ′(ρ)ρ,

which implies from (A.29)

w′′(t) = −kϕ(ρ) = −kw(t),

i.e.

w′′(t) = −kw(t). (A.32)

Now, for what we have achieved before establishing ψ(θ), we can accept only

k < 0 and in particular we have found that

k = −m
2π2

4θ2
0

,

as a consequence from (A.32), we have

w′′(t) =
m2π2

4θ2
0

w(t)

and the general integral of this equation is

w(t) = C1e

∣∣∣mπ2θ0

∣∣∣t
+ C2e

−
∣∣∣mπ2θ0

∣∣∣t
.

Moreover, using the fact that ρ = et, and w(t) = ϕ(ρ), we can rewrite the

general integral as

ϕ(ρ) = C1ρ
mπ
2θ0 + C2ρ

−mπ
2θ0 . (A.33)

At this point, let us recall that v(ρ, θ) = 0 on ∂Γ(θ0, e2) and this condition

implies, as regards the radius ρ in polar coordinates, that v(0, θ) = 0, which

give also ϕ(0) = 0 for how we have written v(ρ, θ).

Consequently, if we impose the condition ϕ(0) = 0 in (A.33), seeing as how

−
∣∣∣mπ2θ0

∣∣∣ ≤ 0, we have to set C2 = 0, therefore we get from (A.33)

ϕ(ρ) = C1ρ

∣∣∣mπ2θ0

∣∣∣
. (A.34)
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Now, putting together (A.28) and (A.34), where we call C1ψ the constant C1

in (A.28) and C1ϕ the constant C1 in (A.34), we obtain, because v(ρ, θ) =

ϕ(ρ)ψ(θ),

v(ρ, θ) =



C1ϕρ
mπ
2θ0C1ψ

(
cos
(
mπ
2θ0
θ
)
− cotan

(
mπ
2θ0

π
2

)
sin
(
mπ
2θ0
θ
))

with m ∈ N,m even

C1ϕρ
mπ
2θ0C1ψ

(
cos
(
mπ
2θ0
θ
)

+ tan
(
mπ
2θ0

π
2

)
sin
(
mπ
2θ0
θ
))

with m ∈ N,m odd,

(A.35)

with θ ∈
[
π
2
− θ0,

π
2

+ θ0

]
and where we have written

∣∣∣mπ2θ0

∣∣∣ = mπ
2θ0
, recalling

that mπ
2θ0

> 0 for what we have said above.

At this point, notice that, always since mπ
2θ0

> 0, we have

mπ

2θ0

< 1↔ 2θ0 > mπ ↔ θ0 >
mπ

2
.

Let us consider then the particular case with m = 1, and the condition

θ0 >
mπ
2

becomes θ0 >
π
2
. Let us take thus θ0 = 3

4
π, and

mπ

2θ0

=
π

2θ0

=
π

23
4
π

=
1
3
2

=
2

3
,

i.e.
mπ

2θ0

=
2

3
.

This fact, together with m = 1, give us from (A.35)

v(ρ, θ) = C1ϕρ
2
3C1ψ

(
cos

(
2

3
θ

)
+ tan

(
2

3

π

2

)
sin

(
2

3
θ

))
,

namely calling C = C1ϕC1ψ and inasmuch tan
(

2
3
π
2

)
= tan

(
π
3

)
=
√

3, that is

tan
(

2
3
π
2

)
=
√

3,

v(ρ, θ) = Cρ
2
3

(
cos

(
2

3
θ

)
+
√

3 sin

(
2

3
θ

))
. (A.36)

Suppose now that v(ρ, θ) found is Lipschitz, therefore v(ρ, θ) satisfies

|v(ρ1, θ1)− v(ρ2, θ2)| ≤ L |(ρ1, θ1)− (ρ2, θ2)| , ∀(ρ1, θ1), (ρ2, θ2) ∈ Γ(θ0, e2)

∪ ∂Γ(θ0, e2).

(A.37)
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In particular, if we take θ1 = θ2 = 0, ρ2 = 0 and ρ1 = t, with t > 0, we have

(t, 0) and (0, 0) ∈ Γ(θ0, e2)∪ ∂Γ(θ0, e2), recalling that θ0 = 3
4
π and hence, we

achieve from (A.37)

|v(t, 0)− v(0, 0)| ≤ L |(t, 0)− (0, 0)| = L |t| ,

in other words, because t > 0, and thus |t| = t,

|v(t, 0)− v(0, 0)| ≤ Lt. (A.38)

Let us analyze |v(t, 0)− v(0, 0)| and we remark that for (A.36), v(0, 0) = 0

and

v(t, 0) = Ct
2
3 ,

as a consequence, always since t > 0,

|v(t, 0)− v(0, 0)| =
∣∣∣Ct 2

3

∣∣∣ = |C| t
2
3 ,

which entails from (A.38)

|C| t
2
3 ≤ Lt, ∀t > 0,

and

t
2
3 ≤ L

|C|
t ∀t > 0, (A.39)

where we can divide by |C| , inasmuch as v(ρ, θ) 6= 0 in Γ(θ0, e2) and hence

C 6= 0.

At this point, dividing by t > 0 in (A.39), we get

t
2
3
−1 = t−

1
3 ≤ L

|C|
, ∀t > 0

i.e.

t−
1
3 ≤ L

|C|
, ∀t > 0, (A.40)

and letting t go to 0, t−
1
3 → ∞, therefore, seeing as how L

|C| is a positive

constant, we can find t̄ > 0 such that t̄−
1
3 > L

|C| , which gives from (A.40)

L

|C|
< t̄−

1
3 ≤ L

|C|
,



203

that is
L

|C|
<

L

|C|
,

which is a contradiction, and the contradiction derives from the fact that we

have supposed v(ρ, θ) Lipschitz.

As a result, v(ρ, θ) is not Lipschitz.

Now, v(ρ, θ) = u(ρ cos(θ), ρ sin(θ)), and with θ1 = θ2 = 0, ρ2 = 0, ρ1 = t, with

t > 0, (ρ1 cos(θ1), ρ1 sin(θ1)) = (t, 0) and (ρ2 cos(θ2), ρ2 sin(θ2)) = (0, 0), thus

repeating the reasoning done to show that v(ρ, θ) is not Lipschitz, we obtain

that u(ρ cos(θ), ρ sin(θ)) is not Lipschitz and returning to the coordinates

(x, y) u(x, y) is not Lipschitz.

To sum it up, we have proved that if u is a solution to∆u = f in Γ(θ0, e2)

u = 0 on ∂Γ(θ0, e2),

then u is not necessary Lipschitz, as desired.

Lemma A.5. Let A : Ω→ Sn, where Sn is the real symmetric n× n matrix

space and Ω is an open set in Rn. Assume that aij ∈ C0,β(Ω), ∀i, j = 1, . . . , n

and also that A(x) is positive definite ∀x ∈ Ω, in other words A(x)ξ · ξ > 0

∀ξ ∈ Rn \ {0}. There exists a universal constant ε̄ > 0 such that, if ∀i,
j = 1, . . . , n ‖aij − δij‖L∞(Ω) = sup

x∈Ω
|aij(x)− δij| ≤ ε, with 0 < ε ≤ ε̄, then A

is uniformly elliptic, that is there exist 0 < λ ≤ Λ such that

λ |ξ|2 ≤ A(x)ξ · ξ ≤ Λ |ξ|2 , ∀x ∈ Ω,∀ξ ∈ Rn.

Proof . Let us fix x ∈ Ω and we write

A(x)ξ · ξ =
n∑
i=1

(A(x)ξ)iξi =
n∑
i=1

(
n∑
j=1

aij(x)ξj

)
ξi =

n∑
i,j=1

aij(x)ξiξj,

namely

A(x)ξ · ξ =
n∑

i,j=1

aij(x)ξiξj. (A.41)
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Let us start thus from
n∑

i,j=1

aij(x)ξiξj and we have

n∑
i,j=1

aij(x)ξiξj =
n∑

i,j=1

(aij(x)− δij + δij)ξiξj

=
n∑

i,j=1

(aij(x)− δij)ξiξj +
n∑

i,j=1

δijξiξj

=
n∑

i,j=1

(aij(x)− δij)ξiξj +
n∑
i=1

ξ2
i , (A.42)

inasmuch δij = 1 if i = j and δij = 0 otherwise. Therefore, given that
n∑
i=1

ξ2
i = |ξ|2 , we achieve from (A.42)

∑
i,j

aij(x)ξiξj =
∑
i,j

(aij(x)− δij)ξiξj + |ξ|2 . (A.43)

Now, we have by hypothesis ‖aij − δij‖L∞(Ω) ≤ ε, for every i, j = 1, . . . , n,

hence for the point x ∈ Ω fixed, |aij(x)− δij| ≤ ‖aij − δij‖L∞(Ω) ≤ ε, in

other words |aij(x)− δij| ≤ ε, for every i, j = 1, . . . , n, which gives −ε ≤
aij(x)− δij ≤ ε for every i, j = 1, . . . , n.

Consequently, if ξiξj ≥ 0, (aij(x) − δij)ξiξj ≤ εξiξj and (aij(x) − δij)ξiξj ≥
−εξiξj, whereas if ξiξj < 0, (aij(x)− δij)ξiξj ≥ εξiξj and (aij(x)− δij)ξiξj ≤
−εξiξj.
Thus, using these facts, we get

n∑
i,j=1

(aij(x)− δij)ξiξj ≤
∑
i,j

ξiξj≥0

εξiξj +
∑
i,j

ξiξj<0

−εξiξj = ε
∑
i,j

ξiξj≥0

ξiξj − ε
∑
i,j

ξiξj<0

ξiξj,

that is
n∑

i,j=1

(aij(x)− δij)ξiξj ≤ ε
∑
i,j

ξiξj≥0

ξiξj − ε
∑
i,j

ξiξj<0

ξiξj, (A.44)

and

n∑
i,j=1

(aij(x)− δij)ξiξj ≥
∑
i,j

ξiξj≥0

−εξiξj +
∑
i,j

ξiξj<0

εξiξj = −ε
∑
i,j

ξiξj≥0

ξiξj + ε
∑
i,j

ξiξj<0

ξiξj,
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i.e.
n∑

i,j=1

(aij(x)− δij)ξiξj ≥ −ε
∑
i,j

ξiξj≥0

ξiξj + ε
∑
i,j

ξiξj<0

ξiξj. (A.45)

As a consequence, from (A.43) and (A.44), we obtain

n∑
i,j=1

aij(x)ξiξj ≤ ε
∑
i,j

ξiξj≥0

ξiξj − ε
∑
i,j

ξiξj<0

ξiξj + |ξ|2 , (A.46)

while, from (A.43) and (A.45), we achieve

n∑
i,j=1

aij(x)ξiξj ≥ −ε
∑
i,j

ξiξj≥0

ξiξj + ε
∑
i,j

ξiξj<0

ξiξj + |ξ|2 . (A.47)

Now, for Cauchy inequality applied to ξi, ξj, with i, j ∈ {1, . . . , n} , we have

ξiξj ≤
1

2

(
ξ2
i + ξ2

j

)
, (A.48)

and multiplying by −1 this inequality,

−ξiξj ≥ −
1

2

(
ξ2
i + ξ2

j

)
. (A.49)

Furthermore, seeing as how Cauchy inequality holds for every couple of real

numbers, we can apply it also to −ξi and ξj, and we get, since (−ξi)2 = ξ2
i ,

−ξiξj ≤
1

2

(
ξ2
i + ξ2

j

)
, (A.50)

which entails also, multiplying by −1 this inequality,

ξiξj ≥ −
1

2

(
ξ2
i + ξ2

j

)
. (A.51)

Thus, from (A.46), in view of (A.48) and (A.50), we obtain

n∑
i,j=1

aij(x)ξiξj ≤ ε
∑
i,j

ξiξj≥0

ξiξj − ε
∑
i,j

ξiξj<0

ξiξj + |ξ|2

≤ ε
∑
i,j

ξiξj≥0

1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

−ξiξj + |ξ|2

≤ ε
∑
i,j

ξiξj≥0

1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2 ,
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namely

n∑
i,j=1

aij(x)ξiξj ≤ ε
∑
i,j

ξiξj≥0

1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2 . (A.52)

In addition, given that ε > 0,
1

2

(
ξ2
i + ξ2

j

)
≥ 0, we can increase the two sums

in the right term in (A.52) with
n∑

i,,j=1

1
2

(
ξ2
i + ξ2

j

)
, recalling that the couples

of indexes i, j are couples of indexes in {i, . . . , n} , and hence the number of

these couples is smaller than the number of all the couples of indexes i, j in

{1, . . . , n} . Therefore, from (A.52), we achieve

n∑
i,j=1

aij(x)ξiξj ≤ ε
n∑

i,j=1

1

2

(
ξ2
i + ξ2

j

)
+ ε

n∑
i,j=1

1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2

= 2ε
1

2

n∑
i,j=1

(
ξ2
i + ξ2

j

)
+ |ξ|2 = ε

n∑
i,j=1

(
ξ2
i + ξ2

j

)
+ |ξ|2

= ε

(
n∑

i,j=1

ξ2
i +

n∑
i,j=1

ξ2
j

)
+ |ξ|2 = ε

n∑
i,j=1

ξ2
i + ε

n∑
i,j=1

ξ2
j + |ξ|2

= ε
n∑
j=1

(
n∑
i=1

ξ2
i

)
+ ε

n∑
i=1

(
n∑
j=1

ξ2
j

)
+ |ξ|2

that is
n∑

i,j=1

aij(x)ξiξj ≤ ε
n∑
j=1

(
n∑
i=1

ξ2
i

)
+ ε

n∑
i=1

(
n∑
j=1

ξ2
j

)
+ |ξ|2 . (A.53)

Now, we have
n∑
i=1

ξ2
i = |ξ|2 and

n∑
j=1

ξ2
j = |ξ|2 , as a consequence, inasmuch |ξ|2

is a constant with respect to i and to j, we get from (A.53)

n∑
i,j=1

aij(x)ξiξj ≤ ε
n∑
j=1

(
n∑
i=1

ξ2
i

)
+ ε

n∑
i=1

(
n∑
j=1

ξ2
j

)
+ |ξ|2

= ε

n∑
j=1

|ξ|2 + ε

n∑
i=1

|ξ|2 + |ξ|2

= εn |ξ|2 + εn |ξ|2 + |ξ|2

= (nε+ nε+ 1) |ξ|2 = (2nε+ 1) |ξ|2 = Λ |ξ|2 ,
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setting Λ = 2nε+ 1, which implies

n∑
i,j=1

aij(x)ξiξj ≤ Λ |ξ|2 . (A.54)

Notice that Λ chosen as above satisfies Λ > 0, inasmuch as ε > 0.

In parallel, in view of (A.49) and (A.51), (A.47) gives

n∑
i,j=1

aij(x)ξiξj ≥ −ε
∑
i,j

ξiξj≥0

ξiξj + ε
∑
i,j

ξiξj<0

ξiξj + |ξ|2

≥ ε
∑
i,j

ξiξj≥0

−ξiξj + ε
∑
i,j

ξiξj<0

−1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2

≥ ε
∑
i,j

ξiξj≥0

−1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

−1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2 ,

i.e.

n∑
i,j=1

aij(x)ξiξj ≥ ε
∑
i,j

ξiξj≥0

−1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

−1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2 (A.55)
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and repeating the considerations done to find (A.54), we obtain from (A.55)

n∑
i,j=1

aij(x)ξiξj ≥ ε
∑
i,j

ξiξj≥0

−1

2

(
ξ2
i + ξ2

j

)
+ ε

∑
i,j

ξiξj<0

−1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2

≥ ε
n∑

i,j=1

−1

2

(
ξ2
i + ξ2

j

)
+ ε

n∑
i,j=1

−1

2

(
ξ2
i + ξ2

j

)
+ |ξ|2

= −2ε
1

2

n∑
i,j=1

(
ξ2
i + ξ2

j

)
+ |ξ|2 = −ε

n∑
i,j=1

(
ξ2
i + ξ2

j

)
+ |ξ|2

= −ε

(
n∑

i,j=1

ξ2
i +

n∑
ij=1

ξ2
j

)
+ |ξ|2 = −ε

n∑
i,j=1

ξ2
i − ε

n∑
i,j=1

ξ2
j + |ξ|2

= −ε
n∑
j=1

(
n∑
i=1

ξ2
i

)
− ε

n∑
i=1

(
n∑
j=1

ξ2
j

)
+ |ξ|2

= −ε
n∑
j=1

|ξ|2 − ε
n∑
i=1

|ξ|2 + |ξ|2

= −εn |ξ|2 − εn |ξ|2 + |ξ|2 = (1− 2nε) |ξ|2 = λ |ξ|2 ,

setting λ = 1− 2nε, which entails

n∑
i,j=1

aij(x)ξiξj ≥ λ |ξ|2 . (A.56)

Notice that λ, established as above, satisfies λ > 0 if and only if 1−2nε > 0,

that is ε < 1
2n

and hence we can choice the universal constant ε̄ as, for

instance, ε̄ = 1
4n

. So, if we take 0 < ε ≤ ε̄, λ > 0, recalling that ε ≤ 1
4n
< 1

n
,

namely ε < 1
2n
. In addition, we have also Λ > 0 and Λ = 1+2nε > 1−2nε =

λ, therefore from (A.54), (A.56) and (A.41), we obtain

λ |ξ|2 ≤ A(x)ξ · ξ ≤ Λ |ξ|2 , ∀x ∈ Ω, ∀ξ ∈ Rn,

with 0 < λ ≤ Λ, i.e. A is uniformly elliptic, as desired.



Appendix B

Viscosity solutions: a basic

introduction

We recall the basic definition of viscosity solution for elliptic partial dif-

ferential equations. An exhaustive source for this subject it can be found

in the following classical papers: [9] and [10]. We refer to them for further

details.

Definition B.1. Let Ω be an open set in Rn. We define:

(i) usc(Ω) :=
{
ϕ : Ω→ R | ϕ is upper semicontinuous in Ω and ϕ is upper

bounded
}
, where ϕ is upper semicontinuous in Ω if

lim
r→0

(
sup

y ∈Br(x) \ {x}
u(y)

)
≤ u(x), ∀x ∈ Ω;

(ii) lsc(Ω) :=
{
ϕ : Ω→ R | ϕ is lower semicontinuous in Ω and ϕ is lower

bounded
}
, where ϕ is lower semicontinuous in Ω if

lim
r→0

(
inf

y ∈Br(x) \ {x}
u(y)

)
≥ u(x), ∀x ∈ Ω.

We now introduce the operators, for which we will provide the definition

of viscosity solution.

209
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Definition B.2. Let F : Sn × Rn × R × Ω → R be a continuous function,

where Sn is the real symmetric n × n matrix space and Ω is an open set in

Rn and suppose that F satisfies:

(i) decreasing monotonicity in s, that is ∀r, s ∈ R, ∀M ∈ Sn, ∀p ∈ Rn,

∀x ∈ Ω, if s ≤ r, then F (M, p, r, x) ≤ F (M, p, s, x);

(ii) elliptic degeneracy (monotonicity in M), i.e. ∀M, N ∈ Sn, ∀p ∈ Rn,

∀r ∈ R, ∀x ∈ Ω, if M ≤ N, then F (M, p, r, x) ≤ F (N, p, r, x). Recall

that M ≤ N if N −M ≥ 0, in other words (N −M)ξ · ξ ≥ 0 ∀ξ ∈ Rn.

Definition B.3 (Viscosity subsolution). Let F be as in Definition B.2

and u ∈ usc(Ω). We say that u is a viscosity subsolution of F (D2u(x),∇u(x),

u(x), x) = 0 in Ω, if ∀x0 ∈ Ω, ∀ϕ ∈ C2(Ω), if u−ϕ realizes a local maximum

at x0, then

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≥ 0.

Recall that u−ϕ realizes a local maximum at x0 if there exists a neighborhood

of x0 where u− ϕ has a maximum at x0.

Definition B.4 (Viscosity supersolution). Let F be as in Definition B.2

and let u ∈ lsc(Ω). We say that u is a viscosity supersolution of F (D2u(x),

∇u(x), u(x), x) = 0 in Ω, if ∀x0 ∈ Ω, ∀ϕ ∈ C2(Ω), if u − ϕ realizes a local

minimum at x0, then

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≤ 0.

Recall that u−ϕ realizes a local minimum at x0 if there exists a neighborhood

of x0 where u− ϕ has a minimum at x0.

Definition B.5 (Viscosity solution). Let u ∈ C(Ω) and let F be as in Defi-

nition B.2. We say that u is a viscosity solution of F (D2u(x),∇u(x), u(x), x) =

0 in Ω, if u is both a viscosity subsolution and a viscosity supersolution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω.
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We provide now other definitions of viscosity subsolution and supersolu-

tion for this kind of equations and we prove the equivalence of these defini-

tions and those given before.

Definition B.6 (Definition of superjet of second order of u in Ω).

Let (p,X) ∈ Rn × Sn such that

u(y) ≤ u(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o(|y − x|2).

In this case, we say that (p,X) belongs to the superjet of second order of u

in Ω, which is denoted as J2,+
Ω u(x) at point x.

Definition B.7 (Definition of subjet of second order of u in Ω).

We define the subjet of second order of u in Ω as

J2,−
Ω u(x) :=

{
(p,X) ∈ Rn × Sn | u(y) ≥ u(x) + p · (y − x)

+
1

2
X(y − x) · (y − x) + o(|y − x|2)

}
.

Definition B.8 (Viscosity subsolution using superjet J2,+
Ω u(x)). Let

u ∈ usc(Ω) and F as in Definition B.2. If ∀x ∈ Ω, ∀(p,X) ∈ J2,+
Ω u(x), it is

satisfied

F (X, p, u(x), x) ≥ 0,

then we call u viscosity subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω.

Definition B.9 (Viscosity supersolution using subjet J2,−
Ω u(x)). Let

u ∈ lsc(Ω) and F as in Definition B.2. If ∀x ∈ Ω, ∀(p,X) ∈ J2,−
Ω u(x), it is

satisfied

F (X, p, u(x), x) ≤ 0,

then we define u viscosity supersolution of F (D2u(x),∇u(x), u(x), x) = 0 in

Ω.

Theorem B.10.
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(i) Let u ∈ usc(Ω) and F as in Definition B.2. Then, u is a viscosity

subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω if and only if u is

a viscosity subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω in the

sense of the superjet J2,+
Ω u(x)

(ii) Let u ∈ lsc(Ω). Then, u is a viscosity supersolution of F (D2u(x),∇u(x),

u(x), x) = 0 in Ω if and only if u is a viscosity supersolution of F (D2u(x),

∇u(x), u(x), x) = 0 in Ω in the sense of the subjet J2,−
Ω u(x).

Proof . Suppose that u is a viscosity subsolution of F (D2u(x),∇u(x), u(x), x) =

0 in Ω in the sense of the superjet J2,+
Ω u(x). Assume also that u−ϕ realizes a

local maximum at x0 ∈ Ω with ϕ ∈ C2(Ω). Then, there exists a neighborhood

O of x0 such that

u(x)− ϕ(x) ≤ u(x0)− ϕ(x0) in O,

which implies

u(x) ≤ u(x0)− ϕ(x0) + ϕ(x) in O. (B.1)

In addition, we can write ϕ with the Taylor expansion around x0 in O and

we obtain from (B.1)

u(x) ≤ u(x0)− ϕ(x0) + ϕ(x0) +∇ϕ(x0) · (x− x0)

+
1

2
D2ϕ(x0)(x− x0) · (x− x0) + o(|x− x0|2)

= u(x0) +∇ϕ(x0) · (x− x0) +
1

2
D2ϕ(x0)(x− x0) · (x− x0)

+ o(|x− x0|2) in O,

namely

u(x) ≤ u(x0)+∇ϕ(x0)·(x−x0)+
1

2
D2ϕ(x0)(x−x0)·(x−x0)+o(|x− x0|2) in O.

Consequently, for the definition of J2,+
Ω u(x0) and inasmuch as D2ϕ(x0) is a

symmetric matrix, recalling that u ∈ C2(Ω), we have that (∇ϕ(x0), D2ϕ(x0))
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belongs to J2,+
Ω u(x0), and thus, since u is a viscosity subsolution of F (D2u(x),

∇u(x), u(x), x) = 0 in Ω in the sense of J2,+
Ω u(x) and x0 ∈ Ω, we get

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≥ 0.

For the arbitrariness of x0 ∈ Ω and ϕ ∈ C2(Ω) such that u − ϕ realizes

a local maximum at x0, we achieve that u is a viscosity subsolution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω. Conversely, suppose that u is a vis-

cosity subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω. Let us fix x0 ∈ Ω

and we take (p,X) ∈ J2,+
Ω u(x0). Then, we have

u(x) ≤ u(x0)+p ·(x−x0)+
1

2
X(x−x0) ·(x−x0)+o(|x− x0|2), with x ∈ Ω.

(B.2)

Now, for definition of o(|x− x0|2), ∀ε > 0, there exists δε > 0 such that∣∣o(|x− x0|2)
∣∣ ≤ ε |x− x0|2 , ∀x ∈ Ω ∩Bδε(x0),

as a consequence, from (B.2), recalling that o(|x− x0|2) ≤
∣∣o(|x− x0|2)

∣∣ , we

obtain that ∀ε > 0, there exists δε > 0 such that

u(x) ≤ u(x0)+p·(x−x0)+
1

2
X(x−x0)·(x−x0)+ε |x− x0|2 , ∀x ∈ Ω∩Bδε(x0).

(B.3)

Therefore, if we call

ϕε(x) := u(x0) + p · (x− x0) +
1

2
X(x− x0)(x− x0) + ε |x− x0|2 ,

we get from (B.3)

u(x)− ϕε(x) ≤ 0, x ∈ Ω ∩Bδε(x0). (B.4)

Moreover,

ϕε(x0) = u(x0),

which entails from (B.4)

u(x0)− ϕε(x0) = 0 ≥ u(x)− ϕε(x), x ∈ Ω ∩Bδε(x0),
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that is u− ϕε realizes a local maximum at x0 ∈ Ω.

Furthermore, notice that ϕε ∈ C2(Ω), hence, given that u is a viscosity

subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, we achieve

F (D2ϕε(x0),∇ϕε(x0), u(x0), x0) ≥ 0. (B.5)

Let us calculate, at this point, ∇ϕε(x0) and D2ϕε(x0).

In particular, we have

∂ϕε
∂xi

(x) =
∂

∂xi

(
u(x0) + p · (x− x0) +

1

2
X(x− x0) · (x− x0) + ε |x− x0|2

)
=

∂

∂xi

(
u(x0) +

n∑
i=1

pi(xi − x0i) +
1

2

n∑
i,j=1

Xij(xi − x0i)(xj − x0j)

+ ε
n∑
i=1

(xi − x0i)
2

)

= pi +
1

2
2Xii(xi − x0i) +

1

2

n∑
j=1
j 6=i

(Xij +Xji)(xj − x0j) + ε2(xi − x0i)

which entails evaluating this equality in x0,

∂ϕε
∂xi

(
x0) = pi,

in other words,

∇ϕε(x0) = p. (B.6)

From the calculus to find (B.6), we have obtained

∂ϕε
∂xi

(x) = pi+Xii(xi−x0i)+
n∑
j=1
j 6=i

Xji(xj−x0j)+2ε(xi−x0i), ∀i = 1, . . . , n,

(B.7)

seeing as how the matrix X is symmetric and thus Xji + Xij = 2Xij, for

every j.
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Consequently, from (B.7), we get

∂2ϕε
∂xj∂xi

(x0) =
∂

∂xj

(
pi +Xii(xi − x0i) +

n∑
h=1
h6=i

Xhi(xh − x0h) + 2ε(xi − x0i)

)(
x0

)
=
(
Xiiδij +Xji(1− δij) + 2εδij

)(
x0

)
= Xiiδij +Xji(1− δij) + 2εδij,

which gives
∂2ϕε
∂xj∂xi

(x0) = Xiiδij +Xji(1− δij) + 2εδij, (B.8)

where

δij =

1 if i = j

0 if i 6= j.

Therefore, from (B.8), we achieve

D2ϕε(x0) = X + 2εI. (B.9)

As a consequence, substituting (B.6) and (B.9) in (B.5), we achieve

F (X + 2εI, p, u(x0), x0) ≥ 0,

and inasmuch F is continuous for hypotheses, letting ε go to 0, we obtain

F (X, p, u(x0), x0) ≥ 0,

hence for arbitrariness of x0 ∈ Ω and (X, p) ∈ J2,+
Ω u(x0), we get that u is a

viscosity solution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω in the sense of the

superjet J2,+
Ω u(x).

Suppose now, instead, that u is a viscosity supersolution of F (D2u(x),∇u(x),

u(x), x) = 0 in Ω in the sense of the subjet J2,−
Ω u(x). Let us fix thus x0 ∈ Ω

and ϕ ∈ C2(Ω) such that u − ϕ realizes a local minimum at x0, then there

exists a neighborhood O of x0, where u(x) − ϕ(x) ≥ u(x0) − ϕ(x0), in O,

and using the Taylor expansion of ϕ around x0, we obtain with the same

steps done in case of u viscosity subsolution, but with opposite inequalities,

u(x) ≥ u(x0)+∇ϕ(x0)·(x−x0)+
1

2
D2ϕ(x0)(x−x0)·(x−x0)+o(|x− x0|2) in O,
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therefore for the definition of J2,−
Ω u(x0) and since D2ϕ(x0) is a symmet-

ric matrix, recalling that ϕ ∈ C2(Ω), we have that (∇ϕ(x0), D2ϕ(x0) be-

longs to J2,−
Ω u(x0) and hence, given that u is a viscosity supersolution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω in the sense of the subjet J2,−
Ω u(x) and

x0 ∈ Ω, we achieve

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≤ 0.

For the arbitrariness of x0 ∈ Ω and ϕ ∈ C2(Ω) such that u − ϕ real-

izes a local minimum at x0, we get that u is a viscosity supersolution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω.

Conversely, suppose that u is a viscosity supersolution of F (D2u(x),∇u(x),

u(x), x) = 0 in Ω. Let us fix x0 ∈ Ω and (p,X) ∈ J2,−
Ω u(x0), then we have

u(x) ≥ u(x0) + p · (x− x0) +
1

2
X(x− x0) · (x− x0) + o(|x− x0|2), x ∈ Ω,

and repeating the considerations done in case of u viscosity subsolution, we

obtain, seeing as how if |o(|x− x0|)2| ≤ ε |x− x0|2 , o(|x− x0|2 ≥ −ε |x− x0|2

and thus −o(|x− x0|2 ≤ ε |x− x0|2 ,

u(x)− ϕε(x) ≥ 0, ∀x ∈ Ω ∩Bδε(x0), (B.10)

where

ϕε(x) := u(x0) + p · (x− x0) +
1

2
X(x− x0)(x− x0)− ε |x− x0|2 .

Furthermore,

ϕε(x0) = u(x0),

therefore from (B.10), we achieve

u(x)− ϕε(x) ≤ u(x0)− ϕε(x0) = 0, ∀x ∈ Ω ∩Bδε(x0),

i.e. u− ϕε realizes a local minimum at x0 ∈ Ω.

In addition, we remark that ϕε ∈ C2(Ω), hence, inasmuch u is a viscosity

supersolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, we get

F (D2ϕε(x0),∇ϕε(x0), u(x0), x0) ≤ 0,



217

and repeating the calculus done in case of u viscosity subsolution, with −ε
in place of ε,

F (X − 2εI, p, u(x0), x0) ≤ 0. (B.11)

Now, letting ε go to 0 in (B.11), we obtain

F (x, p, u(x0), x0) ≤ 0,

which implies, for the arbitrariness of x0 ∈ Ω and (p,X) ∈ J2,−
Ω u(x0), that

u is a viscosity supersolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω in the

sense of the subjet J2,−
Ω u(x).

We show, at this point, the equivalence of classical solution of F = 0

and viscosity solution of F = 0 under certain conditions, where F is as in

Definition B.3.

Lemma B.11. Let F be as in Definition B.2 and let u ∈ C2(Ω). u is a

classical solution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, if and only if u is

a viscosity solution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω.

Proof . Suppose that u is a classical solution of F (D2u(x),∇u(x), u(x), x) =

0 in Ω, then F (D2u(x),∇u(x), u(x), x) = 0 ∀x ∈ Ω. To prove that u is

also a viscosity solution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, we need to

show that u is both a viscosity subsolution and a viscosity supersolution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω. For this purpose, let now x0 ∈ Ω and

ϕ ∈ C2(Ω), such that u − ϕ realizes a local maximum at x0. Then, given

that x0 is a local maximum for u− ϕ, we have:

(i) D2(u− ϕ)(x0) ≤ 0;

(ii) ∇(u− ϕ)(x0) = 0.

In addition, we know that, in view of the linearity of the partial derivative,

D2(u− ϕ)(x0) = D2u(x0)−D2ϕ(x0), as a consequence from (i), we achieve

D2u(x0) ≤ D2ϕ(x0). Analogously, ∇(u− ϕ)(x0) = ∇u(x0)−∇ϕ(x0), hence

from (ii), we get ∇u(x0) = ∇ϕ(x0). To sum it up, we have D2u(x0) ≤
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D2ϕ(x0) and ∇u(x0) = ∇ϕ(x0). Now, seeing as how D2u(x0) and D2ϕ(x0)

∈ Sn for Schwarz’s theorem, recalling that u ∈ C2(Ω) and ϕ ∈ C2(Ω), we

can use the elliptic degeneracy of F, and

F (D2u(x0),∇ϕ(x0), u(x0), x0) ≤ F (D2ϕ(x0),∇ϕ(x0), u(x0), x0). (B.12)

Furthermore, since x0 ∈ Ω and u is a classical solution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω,

F (D2u(x0),∇u(x0), u(x0), x0) = 0, (B.13)

thus inasmuch ∇ϕ(x0) = ∇u(x0), we have from (B.12) and (B.13)

0 = F (D2u(x0),∇u(x0), u(x0), x0) ≤ F (D2ϕ(x0),∇ϕ(x0), u(x0), x0),

namely

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≥ 0.

Consequently, for the arbitrariness of x0 ∈ Ω and ϕ ∈ C2(Ω), such that u−ϕ
realizes a local maximum at x0, and inasmuch as if u ∈ C2(Ω), u ∈ usc(Ω),

we obtain that u is a viscosity subsolution of F (D2u(x),∇u(x), u(x), x) = 0

in Ω.

Consider now always x0 ∈ Ω, and we take ϕ ∈ C2(Ω) such that u−ϕ realizes

a local minimum at x0. In this case, given that x0 is a local minimum for

u− ϕ, we have:

(i) D2(u− ϕ)(x0) ≥ 0;

(ii) ∇(u− ϕ)(x0) = 0.

Repeating the reasoning done for the case when u− ϕ realizes a local max-

imum at x0, we achieve that D2u(x0) ≥ D2ϕ(x0) and ∇u(x0) = ∇ϕ(x0).

Therefore, using the elliptic degeneracy of F and the considerations done to

show that u is a viscosity subsolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω,

we get

F (D2u(x0),∇ϕ(x0), u(x0), x0) ≥ F (D2ϕ(x0),∇ϕ(x0), u(x0), x0). (B.14)
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Moreover, also in this case, x0 ∈ Ω and u is a classical solution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω, hence

F (D2u(x0),∇u(x0), u(x0), x0) = 0, (B.15)

and as a consequence, seeing as how ∇u(x0) = ∇ϕ(x0), from (B.14) and

(B.15) we obtain

0 = F (D2u(x0),∇u(x0), u(x0), x0) ≥ F (D2ϕ(x0),∇ϕ(x0), u(x0), x0),

i.e.

F (D2ϕ(x0),∇ϕ(x0), u(x0), x0) ≤ 0.

Consequently, for the arbitrariness of x0 ∈ Ω and ϕ ∈ C2(Ω), such that u−ϕ
realizes a local minimum at x0, and inasmuch if u ∈ C2(Ω), u ∈ lsc(Ω), we

achieve that u is a viscosity supersolution of F (D2u(x),∇u(x), u(x), x) = 0

in Ω.

To sum it up, we have proved that u is both a viscosity subsolution and

a viscosity supersolution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, so, be-

cause u ∈ C(Ω), if u ∈ C2(Ω), we get that u is a viscosity solution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω.

Conversely, suppose that u is a viscosity solution of F (D2u(x),∇u(x), u(x),

x) = 0 in Ω and we want to prove that u is also a classical solution of

F (D2u(x),∇u(x), u(x), x) = 0 in Ω.

For this purpose, let us fix x0 ∈ Ω, and inasmuch as u ∈ C2(Ω), we can write

the Taylor expansion of u around x0 in a neighborhood O of x0, O ⊂ Ω, and

we obtain

u(x) = u(x0) +∇u(x0) · (x− x0) +
1

2
D2u(x0)(x− x0) · (x− x0)

+ o(|x− x0|2), x ∈ O. (B.16)

In particular, for the definition of J2,+
Ω u(x0) and given that D2u(x0) is a

symmetric matrix, recalling that u ∈ C2(Ω), we achieve from (B.16) that

(∇u(x0), D2u(x0)) ∈ J2,+
Ω u(x0).
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Therefore, recalling that u is a viscosity solution of F (D2u(x),∇u(x), u(x),

x) = 0 in Ω, and thus also a viscosity subsolution, we get, from the equiva-

lence of two definitions of viscosity subsolution shown in Theorem B.10,

F (D2u(x0),∇u(x0), u(x0), x0) ≥ 0. (B.17)

On the other hand, from (B.16), we also obtain, for the definition of J2,−
Ω u(x0)

and always since D2u(x0) is a symmetric matrix, that (∇u(x0), D2u(x0)) ∈
J2,−

Ω u(x0).

Consequently, because u is a viscosity solution of F (D2u(x),∇u(x), u(x), x) =

0 in Ω, and hence in particular a viscosity supersolution, we achieve, from the

equivalence of two definitions of viscosity supersolution shown in Theorem

B.10,

F (D2u(x0),∇u(x0), u(x0), x0) ≤ 0. (B.18)

Putting together (B.17) and (B.18), we have

0 ≤ F (D2u(x0),∇u(x0), u(x0), x0) ≤ 0,

which entails

F (D2u(x0),∇u(x0), u(x0), x0) = 0,

and, from the arbitrariness of x0 ∈ Ω, we conclude that u is a classical

solution of F (D2u(x),∇u(x), u(x), x) = 0 in Ω, as desired.



Appendix C

The Harnack inequality for

elliptic operators

We recall here the classical Harnack inequality for uniformly elliptic op-

erators in non-divergence form. We also cite two other theorems, from which

the classical Harnack inequality follows as a corollary. For proofs and further

details, see [20].

First of all, we introduce the operators for which we state the classical Har-

nack inequality.

Specifically, we deal with operators in the general form:

Lu =
n∑

i,j=1

aij(x)uij +
n∑
i=1

bi(x)ui + c(x)u, (C.1)

with coefficients aij, bi, c, where i, j = 1, . . . , n defined on an open connected

set Ω in Rn.

In particular, we assume that (aij(x))i,j is a symmetric matrix ∀x ∈ Ω, and if

we call A the matrix-valued function such that A(x) = (aij(x))i,j, we suppose

in our case that A is uniformly elliptic, i.e. there exist 0 < λ ≤ Λ such that

λ |ξ|2 ≤ A(x)ξ · ξ ≤ Λ |ξ|2 , ∀x ∈ Ω,∀ξ ∈ Rn.
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In addition, we also suppose that bi and c are bounded in Ω, and accordingly,

we fix a constant ν such that (
|b|
λ

)2

,
|c|
λ
≤ ν.

At this point, we also need to introduce the notion of solution, for which the

classical Harnack inequality is satisfied.

Definition C.1 (Weak derivative). Let Ω be an open connected set in

Rn, u ∈ L1
loc(Ω) and α any multi-index. Then a locally integrable function v

is called the αth weak derivative of u if it satisfiesˆ
Ω

ϕv dx = (−1)|α|
ˆ

Ω

uDαϕ dx, for all ϕ ∈ C |α|0 (Ω).

We write v = Dαu and we notice that Dαu is uniquely determined up to sets

of measure zero.

Remark. Let us recall that we say α is a multi-index if

α = (α1, α2, . . . , αn),

where αi ∈ N ∪ 0, ∀i = 1, . . . , n, and we denote |α| with

|α| = α1 + α2 + . . .+ αn.

Moreover, with Dαϕ we refer to

Dαϕ =
1

|α|
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
ϕ.

Definition C.2 (Weakly differentiable). Let u ∈ L1
loc(Ω), with Ω as in

Definition C.1. We say that u is weakly differentiable if all its weak derivatives

of first order exist and k times weakly differentiable if all its weak derivatives

exist for orders up to and including k.

Definition C.3 (Sobolev spaces).

Let Ω be as in Definition C.1. Let us denote by W k(Ω) the linear space of k

times weakly differentiable functions in Ω.

In addition, for p ≥ 1 and k non-negative integer, we define

W k, p(Ω) :=
{
u ∈ W k(Ω); Dαu ∈ Lp(Ω) ∀α, with |α| ≤ k

}
.
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Definition C.4 (Strong solution).

Let be given an equation of the form

Lu = f in Ω, (C.2)

where Ω is as in Definition C.1, L is an operator of the type introduced in

(C.1) and f is a function on Ω.

We say that u ∈ W 2(Ω) is a strong solution of (C.2) if u satisfies C.2 almost

everywhere in Ω.

Remark. Notice that also when we will write the inequality Lu ≥ f and

Lu ≤ f in the following theorems, they will be considered satisfied almost

everywhere.

Theorem C.5. Let Ω as in Definition C.1 and u ∈ W 2, n(Ω). Suppose also

that Lu ≥ f in Ω, where f ∈ Ln(Ω) and L is an operator of the type intro-

duced in (C.1). Then for any ball B = B2R(y) ⊂ Ω and p > 0, we have

sup
BR(y)

u ≤ C


 1

|B|

ˆ

B

(u+)p

1/p

+
R

λ
‖f‖Ln(B)

 ,

with C = C
(
n, Λ

λ
, νR2, p

)
.

Theorem C.6. Let Ω as in Definition C.1 and u ∈ W 2, n(Ω). Suppose that

u satisfies Lu ≤ f in Ω, where f ∈ Ln(Ω) and L is an operator of the

type introduced in (C.1). Suppose also that u is non-negative in a ball B =

B2R(y) ⊂ Ω. Then 1

|BR(y)|

ˆ

BR(y)

up


1/p

≤ C

(
inf
BR(y)

u+
R

λ
‖f‖Ln(B)

)
,

where p and C are positive constants depending only on n, Λ
λ

and νR2.

Consequently, from (C.5) and (C.6), we can obtain the classical Harnack

inequality.
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Theorem C.7 (Classical Harnack inequality).

Let Ω as in Definition C.1 and u ∈ W 2, n(Ω). Suppose that u satisfies Lu = f

in Ω, where f ∈ Ln(Ω) and L is an operator of the type introduced in (C.1).

Suppose also that u ≥ 0 in Ω. Then for any ball B2r(y) ⊂ Ω, we have

sup
BR(y)

u ≤ C1

(
inf
BR(y)

u+ C2 ‖f‖Ln(Ω)

)
,

where C1 and C2 are positive constants depending only on n, Λ
λ

and νR2.

Harnack inequality also holds for fully nonlinear operators, see [7].

For the sake of simplicity, we restrict ourselves to the particular case of

uniformly elliptic operators. Specifically, we consider operators of the type:

F : Sn × Ω→ R, (C.3)

where Ω is a bounded open connected set in Rn and Sn is the space of real

n × n symmetric matrices. In addition, we assume that F is a uniformly

elliptic operator, that is,

Definition C.8. F is uniformly elliptic if there are two positive constants

λ ≤ Λ (called ellipticity constants) such that ∀M ∈ Sn and ∀x ∈ Ω

λ ‖N‖ ≤ F (M +N, x)− F (M,x) ≤ Λ ‖N‖ ∀N ≥ 0,

where we write N ≥ 0 whenever N is a non-negative definite symmetric ma-

trix. ‖M‖ denotes the (L2, L2)-norm of M (i.e., ‖M‖ = sup
|x|=1

|Mx|); therefore

‖N‖ is equal to the maximum eigenvalue of N whenever N ≥ 0.

At this point, we need to introduce Pucci’s extremal operators to state

the Harnack inequality.

Definition C.9 (Pucci’s extremal operators.).

Let 0 < λ ≤ Λ. For M ∈ Sn, we define

M−(M,λ,Λ) =M−(M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei

M+(M,λ,Λ) =M+(M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,
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where ei = ei(M) are the eigenvalues of M.

Remark. In particular, let now A be a symmetric matrix whose eigenvalues

belong to [λ,Λ], namely λ |ξ|2 ≤ Aξ · ξ ≤ Λ |ξ|2 for any ξ ∈ Rn. We will write

in this case that A ∈ Aλ,Λ.
Define a linear functional LA on Sn by

LAM = tr(AM) =
n∑

i,j=1

AijMji =
n∑

i,j=1

AijMij, M ∈ Sn.

Since M ∈ Sn, we have M = ODOt where Dij = eiδij (ei are the eigenvalues

of M) and O is an orthogonal matrix, and it proves that

M−(M,λ,Λ) = inf
A∈Aλ,Λ

LAM

M+(M,λ,Λ) = sup
A∈Aλ,Λ

LAM.

We now define the class of functions for which the Harnack inequality

holds.

Definition C.10. Let f be a continuous function in Ω, with Ω as in Defini-

tion C.3, and let λ ≤ Λ be two positive constants. We denote by S(λ,Λ, f)

the space of continuous functions u in Ω such that M+(D2u, λ,Λ) ≥ f(x)

in the viscosity sense in Ω, in other words if x0 ∈ Ω, ϕ ∈ C2(Ω) and u − ϕ
realizes a local maximum at x0 then

M+(D2ϕ(x0), λ,Λ) ≥ f(x0).

Definition C.11. Let f be a continuous function in Ω, with Ω as in Defini-

tion C.3, and let λ ≤ Λ be two positive constants. We denote by S(λ,Λ, f)

the space of continuous functions u in Ω such thatM−(D2u, λ,Λ) ≤ f(x) in

the viscosity sense in Ω, that is if x0 ∈ Ω, ϕ ∈ C2(Ω) and u − ϕ realizes a

local minimum at x0 then

M−(D2ϕ(x0), λ,Λ) ≤ f(x0).
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We also define, in the same hypotheses of Definition C.10,

S(λ,Λ, f) := S(λ,Λ, f) ∩ S(λ,Λ, f),

and

S∗(λ,Λ, f) := S(λ,Λ,− |f |) ∩ S(λ,Λ, |f |).

In particular, we will call the functions in S(λ,Λ, f), S(λ,Λ, f) S(λ,Λ, f)

subsolutions, supersolutions and solutions, respectively.

We now state a theorem which is the Harnack inequality for viscosity solu-

tions.

Theorem C.12. Let u ∈ S∗(λ,Λ, f) in Q1, where

Q1 :=

(
−1

2
,
1

2

)
× . . .×

(
−1

2
,
1

2

)
=

(
−1

2
,
1

2

)n
and f is continuous and bounded in Q1. Suppose also that u ≥ 0 in Q1. Then

sup
Q1/2

u ≤ C

(
inf
Q1/2

u+ ‖f‖Ln(Q1)

)
,

where C is a universal constant.

Remark. We notice that for the definition of S, we have S(λ,Λ, f) ⊂ S(λ,Λ,

− |f |), given that f ≥ − |f | , and analogously, for the definition of S, S(λ,Λ, f)

⊂ S(λ,Λ, |f |), inasmuch f ≤ |f | . Consequently,

S(λ,Λ, f) = S(λ,Λ, f)∩S(λ,Λ, f) ⊂ S(λ,Λ,− |f |)∩S(λ,Λ, |f |) = S∗(λ,Λ, f),

i.e. S(λ,Λ, f) ⊂ S∗(λ,Λ, F ) and hence the functions u ∈ S(λ,Λ, f), namely

the viscosity solutions, satisfy Theorem C.12.
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