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Abstract

We study the stability of fast-spinning D = 5 black rings making use of the blackfold
formalism. We also construct a new e�ective theory involving blackfolds with transverse
momenta, able to describe rotating higher dimensional black holes with a set of �nite
angular momenta. The blackfold approach is a perturbative formalism that allows to
capture the behaviour of higher dimensional black holes with high angular momenta.
We use it to discuss the dynamic instabilities of boosted black strings, obtaining the
expressions for longitudinal and elastic quasinormal modes up to O(r2

0). A longitudinal
Gregory-La�amme instability is found, as expected. We also study the instabilities of
black rings, and we compute the quasinormal frequencies for high mode numbersm = kR
and up to O(r0). They agree with the corresponding large-D frequencies, and they signal
the presence of a Gregory-La�amme instability. Finally, we construct a new e�ective
theory describing blackfolds with transverse angular momenta, considering explicitly
Kerr black strings, doubly-spinning Myers-Perry black strings and black ring strings.
We use these results to build six-dimensional solutions with S2 × T2 horizon topology,
and black ring p-balls with even p, endowed with horizon geometry S2 × S1 × Bp. The
range of validity of our calculation includes relatively low reduced transverse momenta
j & 0.1, considerably improving the original blackfold description of a large class of
con�gurations. Finally, as an example, we analyse the leading order stability of black
ring p-branes and of D = 5 Myers-Perry black branes. In both cases, any accessible
con�guration turns out to be unstable.





Sommario

In questa tesi studiamo la stabilità di D = 5 black rings utilizzando l'approccio black-
fold. Compiamo anche la costruzione sistematica di una nuova teoria e�ettiva basata
su blackfolds con momenti trasversi, in modo tale da poter descrivere buchi neri rotanti
in dimensioni più alte con solo alcuni momenti angolari in regime di ultra-rotazione.
Introduciamo inizialmente la teoria dei buchi neri in dimensioni più alte, analizzando
nello speci�co le soluzioni di Myers-Perry e i black rings. Presentiamo poi l'approccio
blackfold, un formalismo perturbativo che permette di descrivere il comportamento di
buchi neri in dimensione più alta con alti momenti angolari. Lo impieghiamo quindi
per discutere le instabilità della dinamica di black strings con boost non nullo, per cui
otteniamo la forma esplicita dei modi quasinormali longitudinali ed elastici trascurando
correzioni di ordine O(r2

0) con validità per ogni dimensione trasversa n = D−4. Si rileva
la presenza di una instabilità longitudinale di Gregory-La�amme, come da aspettative.
Introducendo un contributo di curvatura estrinseca, analizziamo la stabilità dei black
rings, di cui calcoliamo le frequenze quasinormali per alti modi m = kR e trascurando
termini di ordine O(r0). I risultati sono in perfetto accordo con quelli corrispondenti
provenienti dall'approssimazione di alta dimensione D, e riscontriamo la presenza di una
instabilità di Gregory-La�amme. Il secondo raggiungimento di questa tesi è la costruzio-
ne di una nuova teoria e�ettiva in grado di descrivere blackfolds con momenti angolari
trasversi. Valutiamo il tensore energia-impulso e�ettivo secondo la prescrizione quasilo-
cale di Brown-York e otteniamo le equazioni estrinseche dei blackfold per black strings
costruite a partire da Kerr, da Myers-Perry con due rotazioni e da black rings, commen-
tando in particolare generalizzazioni a un numero più alto di momenti angolari trasversi
e di dimensioni extra. Usiamo quindi questi risultati per generare nuove soluzioni ap-
prossimate in sei dimensioni con topologia S2 × T2, oltre che black ring p-balls con p
pari, con orizzonte di geometria spaziale S2 × S1 × Bp. L'analisi dei diagrammi di fase
mostra che i risultati trovati sono validi �no a momenti angolari ridotti relativamente
bassi j & 0.1, segnalando un miglioramento signi�cativo rispetto all'approccio blackfold
originale. Studiamo in�ne la stabilità di due classi rappresentative di black branes che
è possibile usare come punti di partenza di questa nuova teoria e�ettive, cioè black ring
black branes e D = 5 Myers-Perry black branes. In entrambi i casi, si riscontra una
instabilità di Gregory-La�amme per ogni con�gurazione accessibile.
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Introduction

Several properties are well-established for stationary asymptotically �at black holes in
four dimensions. For instance, they must be endowed with spherical horizon topology,
they are all uniquely determined by their mass, electric charge and angular momentum,
and they also satisfy the so-called Laws of Black Hole Mechanics. Moreover, their most
striking feature seems to reside in the possibility of attributing them a thermodynamic
nature.

One may then ask oneself if these are essential aspects of black holes, or if they are
simply four dimensional accidents. By performing a dimensional reduction of General
Relativity, we see that gravity in lower dimensions has a rather di�erent behaviour from
the one that it exhibits in D = 4: for example, in D = 3 there is no asymptotically �at
vacuum black hole solution to Einstein's Field Equations at all. This simple observation
hints at the possibility that black holes in higher dimensions may actually behave very
di�erently. Indeed, it turns out that not all the properties above are universal, since
non-spherical horizons are allowed and uniqueness can be continuously broken in higher
dimensions, as we will see in Chapter 2. However, the Laws of Black Hole Mechanics are
dimension-independent, and in turn this suggests that black holes must be thought of as
thermodynamic objects and that there must be a sound underlying black hole Statistical
Mechanics.

Besides the interest in understanding how gravity itself behaves in general, there is
also the possibility that higher dimensional black holes may describe actual physical
con�gurations, if large extra-dimensions exist. Thus, it is reasonable to inspect the
stability under perturbations of these higher dimensional solutions, in order to learn
if they are long-lasting and if we should expect to see their e�ects on the observable
universe. The idea is to perturb stationary solutions and to study the phase transitions
that can occur between them. If instabilities are presents, lumpy or pinched horizon
con�gurations can arise, and actually from numerical analyses [1] naked singularities are
seen to show up in these cases. On the other hand, black holes in D = 4 are believed
to be stable under perturbations. Considering the stability of higher dimensional black
holes becomes then a new interesting way to study the validity of the Cosmic Censorship
Conjecture, which requires no naked singularity to arise from the evolution of regular
physical initial con�gurations.
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A particularly useful perturbative formalism to deal with higher dimensional black
holes is the blackfold approach. It describes solutions with a well-separated hierarchy
of length scales along di�erent directions over the horizon. Its starting point is the
observation that, in some speci�c limit of high angular momenta, the entire set of known
neutral rotating black holes geometries in higher dimensions behave locally as black
p-branes. The geometry of these objects can be understood as the product between
the D ≥ 4 generalization to Schwarzschild black holes and a certain number p of �at
directions. We de�ne the worldvolume of the black brane as constituted by the product
of the �at extra-directions with the timelike direction of the Schsarzschild sector, while
the transverse space is formed by the remaining spatial directions. In view of this, the
blackfold approach takes black branes as leading order con�gurations to describe locally
ultra-spinning rotating black holes. Then, at the leading order, the hierarchy of length
scales mentioned above consists of the horizon radius r0 of the transverse space, and of the
extrinsic curvature radius R characterizing worldvolume deformations, with r0/R� 1.

As a consequence, this separation of length scales allows to split the gravitational
degrees of freedom into short wavelength and long wavelength ones. The latter are
described by a background spacetime into which the worldvolume is embedded, while the
former are gathered into an e�ective theory describing a �uid living on the worldvolume.
This e�ective �uid is a perfect one at leading order in r0/R, while, for example, it gets
viscous contributions at �rst order. The intrinsic and extrinsic dynamics of the e�ective
�uid within the background spacetime are encoded into the blackfold equations, which
follow in turn from Einstein's Equations, and they account for the behaviour of the black
hole itself in the high angular momenta limit.

Conversely, one can use the blackfold formalism to generate new solutions with high
angular momenta. In this regime, the stability analysis of black holes becomes easier as
well, since it translates into the study of longitudinal and elastic perturbations acting
on the e�ective �uid. It is well-known that neutral black branes are unstable, due
to the so-called Gregory-La�amme instability, a long wavelength instability involving
oscillatory perturbations along the worldvolume directions. Given that blackfolds are
locally wrapped black p-branes, we expect also ultra-spinning black holes to su�er from
such an instability. As we will see in Section 4.1, this is actually the case.

The aim of this thesis is twofold. After reviewing di�erent aspects of higher-dimensional
black holes and of the blackfold approach in the �rst three chapters, in Chapter 4 we make
use of the blackfold approach to analyse the dynamic instability of black rings. They
constitute a particular class of D = 5 exact solutions with horizon topology S2 × S1,
where the sphere S2 is characterized by a length scale r0 while the circle S1 has associ-
ated length scale R. Numerical studies [2, 3] support the presence of several dynamic
instabilities for this class of solutions. Thin rings with r0 . R su�er from a longitudi-
nal instability similar to the one found by Gregory and La�amme for �at black branes.
On the other hand, fat black rings with r0 & R appear to be unstable under elastic
perturbations.
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Even though it was the �rst family of black holes with a non-spherical horizon topol-
ogy to be discovered, a complete theoretical picture of their dynamics is still lacking, as
analytic treatments are di�cult to perform using the exact solution. It has been pos-
sible to capture the behaviour of black rings only partially, for example by expanding
the theory in a large number of dimensions D, as performed in [4, 5]. In [6], it was
also shown that the blackfold approach is able to describe very accurately the stationary
sector of black rings. Furthermore, numerical data is not statistically signi�cant for very
thin rings with r0 . 0.1R, and this fact makes it even more interesting to study this
issue from the blackfold point of view.

The second aim of this thesis is to build a new e�ective theory based on the blackfold
formalism and to describe higher dimensional solutions with non-zero angular momenta
along transverse directions. Once analysed the foundations of this e�ective theory in
Chapter 5, we will make use of it in Chapter 6 to inspect new classes of solutions in
D ≥ 6 built from black ring blackfolds. Finally, as representative examples, we will
study the leading order stability of black ring blackfolds and 5D Myers-Perry blackfolds,
and make a comparison with the stability of Schwarzschild blackfolds.
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Chapter 1

An Introduction to General Relativity

In this chapter, we present several well known solutions and results concerning 4-dimensional
black holes. We will restrict ourselves to proving or obtaining only the aspects that are
relevant to the work carried out in this thesis.

1.1 Einstein Field Equations

The Einstein Field Equations (EFE)

Rµν −
1

2
gµνR = 8πTµν (1.1)

relate the D-dimensional spacetime geometry described by a metric tensor gµν to the
energy distribution determined by the stress-energy tensor Tµν . They can be obtained in
several ways, either following Einstein's path of searching for a relativistic generalization
to Newtonian gravitation, or from a variational principle, performing a variation of the
classical Hilbert-Einstein action

IHE =

∫
d4x
√
−g
[

R

16πG
+ LM

]
, (1.2)

where LM is the Lagrangian density of the matter content of the spacetime. From this
action integral, one recovers eq. (1.1), with the stress-energy tensor de�ned as

Tµν = − 2√
−g

δ(
√
−gLM)

δgµν
. (1.3)

Let us now analyse the meaning of �nding a solution to these equations. Recalling
the symmetry of gµν , eq. (1.1) corresponds to 1

2
D(D + 1) second order PDEs with the

1
2
D(D + 1) independent components of gµν as variables. Then one could think that a
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metric tensor is uniquely determined by a speci�c stress-energy tensor Tµν and a well-
posed set of boundary conditions. On the contrary, the metric components are expressed
in terms of the chosen set of coordinates, but of course we expect the solution to EFE
to be chart-independent. This explains why we must think of the solution to EFE as an
equivalence class of D-dimensional metric tensors gµν related by di�eomorphisms.

Indeed, we can trace the source of these additional D degrees of freedom within the
known contracted Bianchi identities

∇νG
µν = ∇ν

(
Rµν − 1

2
Rgµν

)
= 0, (1.4)

corresponding to D di�erential equations among the 1
2
D(D + 1) �eld equations. As a

consequence, we are left with only 1
2
D(D+1)−D independent equations of motion �xing

the metric components.
Equation (1.4) can be also considered as a dynamical one. From (1.1), it implies

∇µT
µν = 0, (1.5)

which is a set of D equations dictating the evolution of the matter content of our space-
time according to its curvature (encoded in the connection, which enters the covariant
derivative). Equation (1.5) includes the conservation of the energy stress tensor as well,
and in case of �at spacetime in Cartesian coordinates the familiar conservation law
∂αT

αβ = 0 is recovered.
Finally, we notice that EFE reduce to Rµν = 0 in regions where a vacuum condition

holds, namely Tµν = 0. We will only have the chance to appreciate a part of the great
variety of physical situations that are described by this single set of equations.

1.2 Schwarzschild solution

A particularly important D = 4 vacuum solution is the Schwarzschild metric

ds2 = −
(

1− r0

r

)
dt2 +

(
1− r0

r

)−1

dr2 + r2
(
sin2 θ dϕ2 + dθ2

)
. (1.6)

The coordinate t refers to the proper time of a static observer at spatial in�nity, while
the angular coordinates 0 ≤ φ < 2π and 0 ≤ θ ≤ π parametrize the sphere S2 obtained
as spacelike surfaces at t, r = const. The radial coordinate r is chosen according to the
areal gauge, in such a way that a sphere determined by a certain r has surface 4πr2.

It is important to point out the asymptotic �atness of this solution, since we re-
cover the Minkowski metric in spherical coordinates in the limit r → ∞. Besides being
spherically symmetric, this solution has also an isometry de�ned by the Killing vector
∂t.
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The metric components are independent of the coordinate t, in such a way that we
can state that (1.6) is static for r > r0. In the region r < r0 the coordinate t becomes
spacelike while r becomes timelike, so that r and t switch their role. As a consequence,
we see easily that the metric cannot be static for an observer inside the horizon, since
its components do depend on r.

In particular, as proven by Birkho�'s theorem, it can be shown that the Schwarzschild
metric is the unique D = 4 asymptotically �at vacuum solution to EFE describing the
gravitational �eld outside a static and spherical symmetric source of mass m. Taking the
weak �eld limit, we can compare the local acceleration measured by a static observer at
spatial in�nity with the Newtonian one, and in this way it is possible to �x r0 = 2Gm.

Let us now inspect the concept of horizon [7]. We consider �rst a null hypersurface
N , that is a 3-surface whose normal vector has a null norm anywhere on it but non-
vanishing components. Then N is said to be a Killing horizon if there exists a Killing
vector �eld ξα with a neighbourhood of N as domain, such that ξα must be orthogonal
to N . Since ξα has constant null norm on N , the gradient of ξαξa is orthogonal to N as
well, and hence it will be proportional to ξα. Thus, for some scalar function κ over N ,
it holds true that

∇α(ξβξβ)
∣∣
N = −2κξα, (1.7)

where we label κ as the surface gravity associated to the Killing horizon N . Making use
of the de�nition of a Killing vector, we can also rewrite (1.7) as

ξβ∇βξ
α
∣∣
N = κξα. (1.8)

It is interesting to recall that the a�ne parametrization of a geodesic trajectory is unique
(neglecting possible translations). If we describe a geodesic arbitrarily parametrized and
with V as tangent vector, it is well known that the geodesic equation

∇V V = 0 (1.9)

does not hold any more. Instead, we have in general

∇V V ∝ V. (1.10)

From this point of view, equation (1.8) suggests that κ essentially measures to what
extent the integral curve of ξα cannot be a�nely parametrized. In connection with this,
it can be shown that the surface gravity corresponds to the force per unit mass required
at in�nity to maintain a static observer near the horizon [8].

Returning to the Schwarzschild solution, we observe that the Killing vector ∂t is null
at r = r0, and hence we recognize the 3-surface r = r0 to be a Killing horizon, with
generator ∂t. From the de�nitions given above, it is also easy to compute its surface
gravity, which results in

κ =
1

4Gm
, (1.11)
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clearly implying that the bigger is a black hole, the lower is its surface gravity.
However, we still have to analyse the regularity of this spacetime near r = r0. A �rst

hint comes from the Kretschmann scalar RµνρσR
µνρσ, which is �nite at r = r0. It is also

possible to �nd an analytical extension of the solution (1.6), showing that the singularity
on the horizon is just related to Schwarzschild coordinates.

If we restrict ourselves to the vicinity of r = r0, by setting r− 2Gm ' ξ2

8m
, the metric

reads

ds2 ' − ξ2

16m2
dt2 + dξ2 + 4m2dΩ2

(2). (1.12)

Putting aside the S2 sector, we observe that the �rst two terms in the r.h.s are similar
to a 2-dimensional �at metric dρ2 + ρ2dφ2 in polar coordinates, once we identify ξ → ρ
and t

4m
→ iφ. We have not solved the singularity in r = r0 yet, since it has simply been

translated into the well known polar coordinates' singularity at ρ = 0. If we move to
Cartesian coordinates, by de�ning1

X = ρ cos(φ) = ξ cosh
t

4m
(1.13)

T = ρ sin(φ) = ξ sinh
t

4m
, (1.14)

the metric near the horizon takes the form

ds2 ' −dT 2 + dX2 + 4m2dΩ2
(2). (1.15)

It means that the Schwarzschild metric can be smoothly deformed into the product of
R1+1×S2 in that region, and we can safely state that the spacetime is regular at r = r0,
which is the Killing horizon of this solution. Two other very common sets of coordinates
regular at the horizon are the ones by Eddington and Finkelstein. Considering the
outgoing chart, we de�ne the Regge-Wheeler tortoise radial coordinate

r∗ = r + 2Gm ln
∣∣∣ r

2Gm
− 1
∣∣∣ (1.16)

and the null coordinate v = t+ r∗, related to outgoing null geodesics. Consequently, the
Schwarzschild metric reads

ds2 = −
(

1− 2Gm

r

)
dv2 + 2dvdr + r2dΩ 2

2 , (1.17)

which again is regular at r = r0.
We now turn to the study of the other singularity of the metric, namely the one

occurring at r = 0. Here the Kretschmann scalar diverges, hence we are in the presence

1In fact, in this way we are considering the expansion of Kruskal coordinates near the horizon.

7



of an actual curvature singularity. It is important to notice that r is a timelike coordinate
in this region, and r = const identi�es spacelike surfaces. We conclude that r = 0 is
a spacelike singularity, and must be thought of as at an instant in time and not at a
point in space, according to an infalling observer. We have already mentioned that r
and t switch roles for r < r0, with r becoming a timelike coordinate and t becoming a
spacelike coordinate. From a physical point of view, it means that an observer cannot
be static here, and must have lower and lower values of r as time goes by. Then nothing
can prevent him from getting to the origin r = 0, where tidal forces diverge.

From the analysis of radial null trajectories, it is also easy to show that an observer
placed in rO measures the frequency of a signal emitted at rE as

νO =

√
gtt(rE)

gtt(rO)
νE, (1.18)

which has limit
νO =

√
gtt(rE)νE (1.19)

for an observer placed at spatial in�nity. In particular, if the signal is emitted at rE = r0,
gtt(rE) vanishes and the observer at in�nity will never receive it. Therefore, this Killing
horizon is also a surface of in�nite redshift.

1.3 Kerr solution

We say that a black hole is stationary if its metric admits a Killing vector �eld which is
timelike at spatial in�nity. It was shown by Carter and Hawking that the most general
neutral stationary black hole solution with an axial symmetry is described by the Kerr
metric. In the so-called Boyer-Lindquist coordinates [9, 10, 11], it reads

ds2 =− ∆− a2 sin2θ

ρ2
dt2 − 2a sin2θ (r2 + a2 −∆)

ρ2
dtdφ+

+
ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

µr

ρ2
a2 sin2 θ

)
sin2θdφ2,

(1.20)

where we have de�ned

ρ2 = r2 + a2 cos2θ, ∆ = r2 + a2 − µr. (1.21)

Its components do not depend on the coordinate φ, which is compatible with the re-
quirement of axial symmetry. We notice that it is not static according to an observer
at in�nity, due to the presence of the mixing term gtφ. The parameters of this solutions
are µ and a, which describe the mass and the angular momentum density of this class
of solutions. Actually, one �nds that the spacetime is asymptotically �at; furthermore,
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considering up to O(1/r) contributions, one sees that µ coincides with twice the ADM
mass, while the ADM angular momentum has the form J = 1

2
aµ.

In the limit a→ 0, we recover the Schwarzschild solution and thus staticity at spatial
in�nity. Instead, if we take µ→ 0, we obtain the �at metric in ellipsoidal coordinates:

ds2 = −dt2 +
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2, (1.22)

with

x =
√
r2 + a2 sin θ sinφ,

y =
√
r2 + a2 sin θ cosφ,

z =r cos θ.

(1.23)

The Kerr metric (1.20) is apparently singular at ∆ = 0 and ρ2 = 0. In the latter
case, one can show that the Kretschmann invariant diverges and thus it points out to
a curvature singularity. We also notice that ρ2 = 0 holds only if r = 0 and θ = π

2
.

In view of (1.23), then this singularity corresponds to a circular ring on the equatorial
plane θ = π

2
, with radius a. Of course, this feature is linked to the presence of an angular

momentum, and we see that the ring degenerates into the known Schwarzschild point-like
singularity if a → 0. Nonetheless, in case of rotation, it is important to stress that the
spacetime is regular in the region in the center of the ring.

While ρ2 = 0 turns out to describe a curvature singularity, for ∆ = 0 the Kretschmann
scalar does not diverge and hence we expect that it is possible to �nd other sets of
coordinates in such a way that the new metric is manifestly regular here. Kerr coordinates
are a suitable set, and in principle they are a generalization of Eddington-Finkelstein
coordinates for Schwarzschild.

We observe that the condition ∆ = 0 dictating the singularity of grr in (1.20) is
satis�ed when the radial coordinate gets the values

r± =
µ

2
±
√
µ2

4
− a2. (1.24)

It is easy to see that the surfaces described by r = r+ and r = r− are null surfaces, and
we will label them outer and inner horizon respectively. Of course, the presence of r±
divides the spacetime into three regions:

• r > r+, which is is the exterior of the black hole, where r is a spacelike coordinate;

• r− < r < r+ , where r is the timelike coordinate, and hence both ingoing and
outgoing observers must fall towards the inner horizon;

• r < r−, and here r is again spacelike. This is the region in which the physical
singularity ρ2 = 0 resides.
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It is noteworthy that r+ and r− coincide if µ = 2a, and in this case we have a single
degenerate horizon. This condition is called extremality, and we notice that for a > µ

2

there is no horizon at all. A physical observer could move from the singularity to in�nity
and then we say that a naked singularity is present when the Kerr bound a ≤ µ

2
is not

satis�ed.
A rather peculiar feature of the Kerr metric is that even observers with zero angular

momentum have a non-vanishing angular velocity. This frame dragging e�ect is easily
understood to be due to the spin of the black hole itself. The co-rotation angular velocity
for such an observer placed in (r, θ) is

Ω =
µar

(r2 + a2)2 − a2 sin2 θ∆
(1.25)

and it has always the same sign as the black hole angular momentum.
As it can be easily inspected, the Kerr metric (1.20) in these coordinates admits two

Killing vectors, namely ∂t and ∂φ. Their speci�c combination

k = ∂t + ΩH∂φ (1.26)

can be shown to generate the outer horizon r = r+, which is then also a Killing horizon,
with

ΩH =
a

r2
+ + a2

. (1.27)

In particular, we observe that Ω(r+) = ΩH , a fact that can be interpreted by saying
that, due to frame dragging, a zero angular momentum observer at r = r+ has the same
angular velocity as the (outer horizon of the) black hole.

When more than one parameter enter a class of solutions, it can be interesting to
study its phase space in order to compare its properties in di�erent regimes. We proceed
by de�ning some dimensionless quantities with reference to a unique common scale, and
we conveniently choose it to be the total mass of the solution. We consider the reduced
angular momentum

j =
J

GM2
=

2a

µ
, (1.28)

and the reduced horizon area

aH =
AH

8πGM2
= 1 +

√
1− 4a2

µ2
= 1 +

√
1− j2, (1.29)

where the outer horizon area can be easily computed from the spatial sections of the
metric at r = r+ and it results

AH = 2πµ
(
µ+

√
µ2 − 4a2

)
. (1.30)

10



0.2 0.4 0.6 0.8 1.0 1.2
j

1.2

1.4

1.6

1.8

2.0

aH

Figure 1.1: We show here the phase diagram for Kerr black holes. In the Schwarzschild limit
j → 0 the reduced area is maximal, while it decreases up to vanish approaching extremality
j = 1, where the Kerr bound is saturated and the horizon disappears.

In Figure 1.1 the behaviour of the reduced area in terms of j is plotted. We approach
extremality in the limit a → µ

2
, that is when j → 1, and there a vanishing reduced

horizon area agrees with the disappearance of the horizon itself discussed above.
In Section 1.2 we saw that a convenient way of �nding the horizon of a static solution

is to simply look at the points where gtt = 0, since we had a timelike Killing vector
∂t which is orthogonal to spatial surfaces. Considering now stationary black holes, this
procedure is no longer sensible, and it is necessary to inspect explicitly where the norm
of the Killing vector that generates the horizon (here k) becomes zero.

However, studying where gtt = 0 is still worthy, and it happens if the radial coordinate
takes the values

r±IR =
µ

2
±
√
µ2

4
− a2 cos2 θ, (1.31)

where it holds r−IR < r− < r+ < r+
IR. Of course, an observer in (r, θ)OBS would measure

the frequency of a signal emitted at (r, θ)EM with a redshift determined by

νOBS =

√
gtt(r, θ)EM
gtt(r, θ)OBS

νEM , (1.32)

in such a way that a signal coming from r+
IR undergoes an in�nite redshift, and has

vanishing energy according to any observer outside that surface. Furthermore, it is
noteworthy that in the interval r−IR < r < r+

IR the component gtt is positive. It involves
that here ∂t is a spacelike coordinate and that there can be no static observer. Thus, for
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Figure 1.2: The most important features of the Kerr spacetime are shown in this cartoon [10],
such as the ring curvature singularity, the horizons and the ergosphere.

rotating black holes there exists a new region r+ < r < r+
IR called ergosphere where an

observer cannot stand still, but from which he can get to spatial in�nity. A summary of
the above considerations is displayed in Figure 1.2.

The Kerr metric can be generalised in order to include electric charge (in such a way
that it becomes an electro-vacuum solution). The result is the Kerr-Newman metric.
It is a solution to EFE, now coupled to Maxwell equations, and it is characterized by
an additional asymptotic conserved charge Q, which is of course the electric charge of
the source. The Black Hole Uniqueness Theorem actually states that, together with
well-motivated physical assumptions, the only possible asymptotically �at, stationary
and axisymmetric black hole solution to Einstein-Maxwell equations in D = 4 is the
Kerr-Newman metric. In this way, we can completely characterize such a black hole by
simply pointing out its mass M , total angular momentum J and electric charge Q [12].

A remarkable assumption that underlies this work is the so-called Cosmic Censorship
Conjecture, originally brought forth by Penrose. It states that any physical spacetime
must exhibit global hyperbolicity, that is it must admit at least one Cauchy surface,
leading to the predictability of the spacetime [13]. Consequently, it can be restated by
saying that naked singularities cannot develop in nature from a set of regular initial
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conditions. Its �rst consequence is a constraint on the possible range of values of the
black hole parameters M , J and Q, following from the Kerr-Newman extremality bound

M2 ≥ a2 +Q2, (1.33)

which is a simple generalization of the Kerr bound mentioned above.

1.4 Black Hole Mechanics

In 1973 Bardeen, Carter and Hawking provided a general proof of four laws that constrain
the dynamic behaviour of stationary black holes [14, 11]. We now turn to a brief review
of these Four Laws of Black Hole Mechanics.

It is possible to calculate surface gravity from equation (1.7) also for Kerr and Kerr-
Newman black holes. Although being de�ned locally, κ is constant on the whole horizon.
In fact, this statement can be proven to be a general result, simply following the assump-
tions of stationarity and the properties of a Killing horizon, and it is usually referred to
as the Zeroth Law.

The First Law consists in a �rst order identity relating variations of the characteristic
parameters for a stationary black hole, and it reads

δM =
κ

8πG
δA+ ΩHδJ + ΦHδQ. (1.34)

where A is the horizon area, while ΦH is the electric potential on the horizon.
The Second Law coincides with the well known Area Theorem, which was proven

by Hawking requiring the strong energy condition on the energy-stress tensor and the
global hyperbolicity of the spacetime. It asserts that the horizon area is a non-decreasing
function of the timelike coordinate outside the horizon.

Finally, the Third Law states that it is impossible to make the surface gravity vanish
in a �nite number of steps. From the explicit form of κ, in turn it means that one cannot
make a stationary black hole reach extremality in a �nite number of variations involving
its characteristic parameters. Then, if we consider a physical situation, it appears to be
impossible to reach extremality at all.

1.5 Black Hole Thermodynamics

The �rst reason that compels us to think of a black hole as of a thermodynamic object
is the fact that otherwise it would get very easy to violate the Second Law of Thermo-
dynamics. In principle, it would be su�cient to let a physical system fall into a black
hole horizon in order to have a decrease of the total entropy, corresponding to the loss of
the entropy of the system according to an observer outside the black hole. Following the
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celebrated paper by Bekenstein [15], we can estimate the subsequent increase that the
black hole entropy should undergo in order not to violate the Second Law of Thermody-
namics, and this led Bekenstein to associate to a black hole an entropy proportional to
its horizon area.

This way of reasoning is further justi�ed by the explicit similarity between the Four
Laws of Black Hole Mechanics and the usual Laws of Thermodynamics. From this point
of view, a review of the Zeroth and Third Law let us recognize an analogy between the
behaviour of the temperature T of a thermodynamic system and the one followed by the
surface gravity κ.

It is also customary to write the First Law of Thermodynamics in case of conserved
charges Ni as

dU = TdS − δW +
∑
i

µiNi. (1.35)

Then, if we consider a situation with no work done on the system δW = 0, we see that
(1.35) coincides perfectly with (1.34), once we make the black hole massM correspond to
the internal energy of the system. The conserved charges here are the angular momentum
J and the charge Q, and hence the surface angular momentum and electric potential can
be thought of as being their conjugated chemical potentials.

Therefore, in some sense we expect to be able to associate an entropy and a temper-
ature to a black hole in the form

TH = λκ, (1.36)

SBH =
A

8πGλ
, (1.37)

for some real constant λ. We also notice that a correspondence for the Second Law
follows straightforwardly from the Area Theorem with an entropy of the form (1.37).
Of course, at the moment these relations are still lacking a physical meaning. A naive
interpretation may be misleading, since for instance classically the temperature of a black
hole is zero. The attribution of a Statistical Mechanics and of a phase space to this black
hole Thermodynamics is puzzling as well.

In fact, the meaning of the previous discussion is partly explained by a quantum
mechanical e�ect, namely Hawking radiation. Given a spacetime with a black hole and
a set of �elds φi on that spacetime, at late times an observer placed at spatial in�nity
detects particles of the �elds φi with an energy distribution following the black body
spectrum with a speci�c temperature TH , at leading order.

The origin of this phenomenon is essentially related to the e�ect that the non-trivial
causal structure has on the �elds propagation in the vicinity of the horizon [16]. The
most standard way to �nd out Hawking radiation makes use of Bogoliubov formalism,
inspecting the change of basis that the creation and annihilation operators of a �eld
undergo when switching from a freely falling frame and its ground state to an asymptotic
static observer. Of course, we can state that only the latter detects particles in the usual
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Minkowski QFT meaning, since we are dealing with asymptotically �at spacetimes. An
essential ingredient is then to recall that the energy of a state and, in particular, its
positivity is frame-dependent in GR. As a consequence, it turns out that the ground state
of the infalling observer is not a vacuum state according to the asymptotic Minkowskian
observer. He actually detects particles with a Planckian number distribution

N(ω) ≈ 1

exp(2πω
κ

)− 1
, (1.38)

where κ is the surface gravity, in such a way that

TH =
~κ

2πkB
. (1.39)

From relation (1.37), it also means that the entropy of a black hole is

SBH =
A

4G
. (1.40)

We remark that the outgoing spectrum is Planckian just at leading order, since there
are several corrections that one has to take into account [17]. Here we will only mention
the so called grey-body factors, which change the previous number distribution as

N(ω) ≈ f(ω)

exp(2πω
κ

)− 1
, (1.41)

with 0 < f(ω) ≤ 1 a suppression function related to the backscattering of outgoing
modes. These get re�ected before reaching spatial in�nity due to the curvature of space-
time, which acts e�ectively as a potential barrier. The main outcome is an e�ective
temperature Teff ≤ TH measured by an asymptotic static observer.

It is now interesting to think of the implications of Hawking radiation. First, we
notice that its most immediate consequence is the fact that black holes loose mass over
time and eventually evaporate. However, due to the low emitted power, it would take
some 1050s for a solar-mass black hole to evaporate. We also observe that this fact does
not disagree with the requirement of a total entropy increase, even though the horizon
area apparently decreases with time. As a matter of fact, at any given moment, Hawking
radiation involves a decrease of the black hole entropy

dSBH = −|dM |
TH

, (1.42)

while an entropy variation

dSrad = +
|dM |
Teff

(1.43)
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corresponds to the outgoing radiation, so that the total entropy variation is

dS = dSBH + dSrad = |dM |
(

1

Teff
− 1

TH

)
≥ 0, (1.44)

and the Second Law of Thermodynamics does still hold.
In conclusion, an analogy with ordinary Thermodynamics is suggested from a classical

approach involving only GR. In addition, from a semiclassical point of view it is possible
to obtain a physical explanation of associating a non-vanishing temperature TH to a
black hole, and this leads us to go beyond the analogy and to understand the actual
presence of a black hole Thermodynamics.

One would expect the next step to consist in �nding a clear Statistical Mechanics from
which the Bekenstein-Hawking entropy should emerge, perhaps at the quantum gravity
level. Here we will not delve into the many (promising) attempts to �nd these related
microstates that have been pursued since the �rst satisfactory stringy computation by
Strominger and Vafa in 1996 [18], and we will simply assume the validity of (1.40) in the
following sections.
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Chapter 2

Black Holes in Higher Dimensions

As we saw in Chapter 1, there are several features that are common to any D = 4
stationary vacuum black hole solution. For instance, they are all characterized by a
spherical horizon topology and the Uniqueness Theorem strictly constraints the possible
solutions of this kind. On the contrary, in this Chapter we will partly inspect how wide
and populous the zoo of higher dimensional black holes is found to be. We restrict
ourselves to discussing the solutions that we will make use of in the following sections,
leaving aside the more complicated cases of doubly spinning black rings and multi black
holes such as black saturns, bi- and di-rings.

We anticipate that for rotating higher dimensional black holes it becomes both inter-
esting and necessary to perform a phase diagram analysis to compare di�erent regimes
and di�erent solutions with the same conserved quantities. In order to make consistent
comparisons, we intend to de�ne a general form of the dimensionless angular momentum
and horizon area depending only on the dimension D of the solution [19]. It is convenient
to de�ne

jD−3 = cJ
JD−3

GMD−2
, aD−3

H = cA
AD−3
H

(GM)D−2
, (2.1)

with numerical constants

cJ =
ΩD−3

2D+1

(D − 2)D−2

(D − 3)
D−3
2

, cA =
ΩD−3

2(16π)D−3
(D − 2)D−2

(
D − 4

D − 3

)D−3
2

. (2.2)

2.1 Schwarzschild and black branes

A relatively straightforward generalization of the Schwarzschild solution was found by
Tangherlini [20], and it describes the D dimensional spacetime outside a source with
spherical symmetry. Its explicit form is

ds2 = −
(

1− rD−3
0

rD−3

)
dt2 +

(
1− rD−3

0

rD−3

)−1

dr2 + r2dΩ2
D−2, (2.3)
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and it can be easily understood to be a Ricci-�at metric. It is apparent that it shows the
same features as the well known 4-dimensional counterpart: we have a horizon located
at r = r0 with (D − 2)-spheres as spatial sections. The di�erence is now that the
gravitational potential has a stronger radial fall-o� in the Newtonian limit, with power
law 1/rD−3. Due to it, we will continue to refer to this metric simply as Schwarzschild
solution.

It is noteworthy that the easiest way to obtain a vacuum black hole solution in
D > 4 dimensions is by adding extra �at directions to another known vacuum solution
[19]: given a solution Υ(d) in d dimensions with horizon spatial sections H(d−2), one can
construct a solution in d+ p dimensions by adding p �at directions to it, that is

ds2
d+p = ds2

d(Υ) +

p∑
i=1

(dzi)2. (2.4)

As a consequence, this new solution has horizon topology H(d−2)×Rp, or H(d−2)×Tm×
Rp−m if we require a periodicity of some m directions.

For example, one can consider adding extra-dimensions to the Schwarzschild-Tangherlini
metric and the result is a Schwarzschild black p-brane (or more commonly just black p-
brane), with metric

ds2 = −
(

1− rn0
rn

)
dt2 +

(
1− rn0

rn

)−1

dr2 + r2dΩ2
n+1 +

p∑
i=1

(dzi)2, (2.5)

where we have set n = D− p− 3 for later convenience. Of course, Kerr black branes can
be constructed in an analogous way.

2.2 Myers-Perry black holes

Myers-Perry (MP) metrics can be seen as a generalization of the Kerr solution to dimen-
sions D ≥ 4, and consequently they admit more than one plane of rotation [21, 22]. One
�nds that it is necessary to distinguish between the case of odd and even dimensions.

For D = 2n+ 1 and D ≥ 5, the metric is usually written in the form

ds2 = −dt2 +
µr2

ΠF

(
dt+

n∑
i=1

aiµ
2
i dφi

)2

+
ΠF

Π− µr2
dr2 +

n∑
i=1

(
r2 + a2

i

)(
dµ2

i + µ2
i dφ

2
i

)
,

(2.6)
where we have de�ned

F = 1−
n∑
i=1

a2
iµ

2
i

r2 + a2
i

, Π =
n∏
i=1

(
r2 + a2

i

)
. (2.7)

18



Implicitly, the coordinate system splits the 2n spatial dimensions onto n planes, each
labelled by i. Then, µi is the projection of the point over the i-th plane, and φi is the
angle related to it. From these de�nitions, not all the µi are independent, since the
constraint

∑n
i=1 µ

2
i = 1 is present.

We identify also (µ, ai) as the n+ 1 parameters of these solutions1. From the asymp-
totic analysis of the metric, it can be shown that they determine the mass and angular
momenta of the black hole as

M =
(D − 2)ΩD−2

16πG
µ, J i =

ΩD−2

8πG
µai =

2

D − 2
Mai, (2.8)

so that µ is related to the Schwarzschild radius and ai gives an estimate of the i-th angular
momentum density per unit mass. This is in agreement with the fact that setting every
ai = 0 leads to the Schwarzschild-Tangherlini solution.

In the case of even dimensions D = 2n + 2 (D ≥ 4), there is an extra direction to
take into account and the metric can be cast in the form

ds2 = −dt2+
µr

ΠF

(
dt+

n∑
i=1

aiµ
2
i dφi

)2

+
ΠF

Π− µr
dr2+

n∑
i=1

(
r2 + a2

i

)(
dµ2

i + µ2
i dφ

2
i

)
+r2dα2,

(2.9)
where −1 ≤ α ≤ 1 and the constraint on the direction cosines clearly becomes α2 +∑n

i=1 µ
2
i = 1.

The Kerr metric is recovered explicitly if one considers D = 4 dimensions and thus
only one plane of rotation, i.e. n = 1. It can be easily shown that both metrics (2.6) and
(2.9) have n+ 1 commuting Killing vectors, related to shifts in t and SO(2) rotations of
the n planes.

It is now useful to approach the case of solutions with a single non-vanishing spin
parameter [23]. If we set a1 = a, ai>1 = 0, for any D ≥ 4 the metric reduces to

ds2 = −dt2+
µ

rD−5ρ2

(
dt+ a sin2θ dφ

)2
+
ρ2

∆
dr2 + ρ2dθ2+

+(r2 + a2) sin2θdφ2 + r2 cos2θdΩ2
D−4,

(2.10)

where we have also set µ1 = sin θ and

ρ2 = r2 + a2 cos2θ, ∆ = r2 + a2 − µ

rD−5
. (2.11)

1They are the parameters of this particular class of solutions in D ≥ 4, but, as we will see, in general
for D > 4 they are not enough to determine uniquely a black hole if we do not specify the class of
solutions that we are considering, via some topological invariants. On the contrary, as well known, in
D = 4 they do point out uniquely a black hole by themselves.
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Let us now study the outer event horizon of the metric (2.10), focussing on the largest
root r+ of grr = 0, i.e.

∆(r+) = 0 i� r2
+ + a2 − µ

rD−5
+

= 0. (2.12)

For D = 4, it leads to r2
+ − µr+ + a2 = 0 and we recover the well known Kerr bound

a ≤ µ/2 by imposing the reality of the horizon radius. Analogously, in D = 5 we �nd
a similar bound for the angular momentum: a2 ≤ µ. Again, beyond this value of a, no
outer event horizon arises, and a naked singularity is present.

Instead, if we examine the case of D ≥ 6, there is no such bound on a, since

∆(r+) −→ +∞ for r+ →∞,
∆(r+) −→ −∞ for r+ → 0,

and hence there is always a positive real root r+. As a consequence, we �nd an admissible
black hole solution for each value of a, and we can analyse the ultra-spinning regime
a � µ of these metrics. In particular, we notice that in this limit we can give an
asymptotic solution to eq. (2.12) in the form

r+ =

(
µ

r2
+ + a2

) 1
D−5

≈
( µ
a2

) 1
D−5

(2.13)

for high rotation parameters a.
The horizon of this class of solutions is a (D−2)-surface homeomorphic to SD−2, and

it has size l‖ =
√
r2

+ + a2 ≈ a along the two directions parallel to the plane of rotation,
while it sweeps a radial distance l⊥ = r+ along the other D − 4 directions. The horizon
area then results

A = ΩD−2 r
D−4
+ (r2

+ + a2) ≈ ΩD−2 a
2
( µ
a2

)D−4
D−5

, (2.14)

and it is worth stressing that A decreases down to zero if we increase the angular momen-
tum, while keeping the mass �xed. We also observe that the characteristic length scales
l‖ and l⊥ of the horizon spatial sections have very di�erent values in the ultra-spinning
regime, a fact that is usually expressed by saying that the horizon gets a pancake shape
along the plane of rotation.

Figure 2.1 shows the phase diagram of singly-spinning MP solutions in D = 5, 6, 8.
The plot related to the D = 5 case has the same features as the one for Kerr, as already
discussed. Instead, for D ≥ 6 the reduced horizon area is still a decreasing function
of the angular momentum, but we have no more a naked limit and the ultra-spinning
regime j � 1 becomes accessible.

Thus, it becomes interesting to study the metric (2.10) in the so-called black mem-
brane limit, by taking j →∞ in D ≥ 6. We are interested in the case of a non vanishing
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Figure 2.1: We display here the phase diagram for MP black holes in D = 5 (thick line),
D = 6 (dashed line) and D = 8 (dotted line). In the �rst case, the plot has essentially the
same behaviour as for a Kerr black hole (compare with Figure 1.1), while for D ≥ 6 we obtain
a range of physical angular momenta that runs up to in�nity.

horizon area, and hence we cannot simply set a → ∞, as seen from eq. (2.14). For
instance, a suitable way to regularize this limit is by keeping µ̂ = µ

a2
�xed, while letting

µ → ∞. In order to avoid divergences of the metric components, it is also necessary to
keep r �nite and θ near the rotation axis θ ∼ 0 , in such a way that

σ = a sin θ is �nite,

ρ2

∆
≈ 1

1− µ̂
rD−5

,

ρ2dθ2 ≈ dσ2.

(2.15)

This procedure then leads to

ds2 = −
(

1− µ̂

rD−5

)
dt2 +

(
1− µ̂

rD−5

)−1

dr2 + r2dΩD−4 + dσ2 + σ2dφ2. (2.16)

That is, we obtain the metric of a �at black 2-brane in vacuum with horizon scale

r0 = µ̂
1

D−5 and spatial topology R2×SD−4, where the plane is described by the coordinates
(σ, φ). The one obtained is also a static solution, as actually the component gtφ related

to the angular velocity vanishes once we take the limit σ2

a
→ 0. The result (2.16) naively

agrees with the limiting condition of a pancaked horizon, and if we move away from the
rotation axis, we also expect corrections to this metric to order σ

a
, σ

2

a2
and r2

a2
.
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2.3 Black rings

The black ring (BR) geometry was the �rst explicit higher dimensional black hole solution
with a non-spherical spatial horizon topology [24, 25]. It was found in D = 5, and its
existence can be somehow intuitively expected.

Let us take a Schwarzschild spacetime and add an extra dimension, as we did in
Section 2.1. The obtained geometry is known as black string and has horizon topology
S2 × R. We can think of wrapping the extra-dimension on itself, so that the resulting
topology is now S2 × S1. However, this is an unstable condition, since the ring would
tend to shrink due to its tension and gravitational self-attraction, but we foresee that
making the black ring spin may then balance this contraction.

In the present section, we will see that this intuitive reasoning is well based, to some
extent. We will consider �rst a suitable parametrization of the �at D = 5 Minkowski
spacetime, namely one adapted to the ring shape, and then we will deform the obtained
metric by adding a ring-shaped mass.

We start by dividing R4 into two independent planes as

x1 = r1 cosφ, x2 = r1 sinφ, (2.17)

x3 = r2 cosψ, x4 = r2 sinψ, (2.18)

so that
dx2 = dr 2

1 + r 2
1 dφ

2 + dr 2
2 + r 2

2 dψ
2. (2.19)

Now we consider a foliation of this space consisting of the equipotential surfaces of a
2-form potential Bµν with a charged circular ring of radius R as a source. Of course, Bµν

can be related to a 3-form �eld strength H = dB with vacuum equations

∇µH
µνρ = 0 i.e. ∂µ

(√
−gHµνρ

)
= 0 (2.20)

outside the ring-shaped source. We take the latter lying on the plane (x3, x4), with
r1 = 0, r2 = R, 0 ≤ ψ < 2π. It is also useful to work with the Hodge dual of H, de�ning
a 1-form A via H = ∗dA, such that H is the curl of A.

With these choices and naming Σ =
√

(r 2
1 + r 2

2 +R2)2 − 4R2r 2
2 , we can de�ne the

coordinate

y = −R
2 + r 2

1 + r 2
2

Σ
, −∞ < y ≤ −1, (2.21)

corresponding to spatial surfaces with constant Btψ. They can be understood as toroids
surrounding the ring, and, in particular, y = −1 identi�es the axis2 of rotation related
to ψ (it means that Btψ = 0), while in the limit y → −∞ (where Btψ →∞) we recover
the source position.

2It is actually a plane orthogonal to the ring, since we are in R4.
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Analogously, we can de�ne a second coordinate

x =
R2 − r 2

1 − r 2
2

Σ
, −1 ≤ x ≤ 1, (2.22)

which foliates the space with surfaces of constant Aφ. If we keep the two angular coor-
dinates �xed, we see from the de�nition of x that they represent circles passing through
the ring source. The circle with in�nite radius is given by x = −1 and has vanishing Aφ;
therefore we approach spatial in�nity in the limit x→ −1, y → −1.

Once extracted the inverse relations

r1 = R

√
1− x2

x− y
, r2 = R

√
y2 − 1

x− y
, (2.23)

we can recast the metric (2.19) as

dx2 =
R2

(x− y)2

[
dy2

y2 − 1
+

dx2

1− x2
+ (y2 − 1)dψ2 + (1− x2)dφ2

]
. (2.24)

It is possible to understand more easily the geometrical meaning of this construction
near the ring by making a suitable change of coordinates. In fact, at �xed ψ and φ
we notice that surfaces at y = const e�ectively determine di�erent radial distances
from the ring, and conversely we can use the x coordinate to de�ne a direction on the
plane. Following these ideas, we can replace (x, y) with a pair of new radial and angular
coordinate (r, θ) such that

r = −R
y
, cos θ = x, (2.25)

0 ≤ r ≤ R, 0 ≤ θ ≤ π. (2.26)

This choice then leads to a spatial metric of the form

dx2 =
1(

1 + r
R

cos θ
)2

[(
1− r2

R2

)
R2dψ2 +

dr2

1− r2

R2

+ r2
(
dθ2 + sin2 θdφ2

)]
. (2.27)

We notice that spatial in�nity x→ −1, y → −1 corresponds here to θ = π and r → R,
and that we have a singularity of the coordinates at r = R, which corresponds to the
rotation axis around ψ, in view of what observed above.

It is also easier to understand the meaning of y with this new set of coordinates.
Setting r = const, the metric becomes of the form

dx2
∣∣
r

= a(θ; r, R)dψ2 + b(θ; r, R)
(
dθ2 + sin2 θdφ2

)
. (2.28)

Hence we see explicitly that surfaces at constant y (and r) have topology equal to the
product S1 × S2.
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Furthermore, in the vicinity of the ring r � R (i.e. y → −∞), the metric (2.28)
reduces to

dx2
∣∣
r
≈ R2dψ2 + r2

(
dθ2 + sin2 θdφ2

)
. (2.29)

In this way, ψ parametrizes a ring with radius R, the pair (θ, φ) describe the sphere of
radius r transverse to the ring, and we recover the interpretation of r as specifying the
radial distance from the ring. This all is in agreement with the intuitive picture given
above.

We can now analyse the neutral singly spinning black ring in 5 dimensions. In this
case, the spatial sector of the metric has the same structure as in the parametrization
(2.24) of �at space, now deformed with factors accounting for the global non-zero curva-
ture of the space-time. There appears also a mixing term gtψ describing a possible spin
along φ, that is along the circle S1.

The solution involves two dimensionless parameters λ and ν such that 0 < ν ≤ λ < 1,
characterizing the shape and rotation of the solution, and the length scale R of the ring.
De�ning then the functions

F (x) = 1 + λx, (2.30)

G(x) = (1− x2)(1 + νx), (2.31)

and the constant

C =

√
λ(λ− ν)

1 + λ

1− λ
, (2.32)

one can show that

ds2 = −F (y)

F (x)

(
dt− CR1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

[
−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dφ2

]
(2.33)

is a solution to EFE, with −∞ < y ≤ −1 and −1 ≤ x ≤ 1 as before. It is noteworthy
that one recovers the corresponding form of the �at Minkowski metric (2.24) switching
o� both λ and ν, which implies F (x) = 1, G(x) = 1 − x2 and C = 0. A recap of the
features of these coordinates is shown in Figure 2.2.

In order to get some insight on (2.33) , we can de�ne two coordinates (r, θ) as done
in (2.25) with ranges (2.26) and rede�ne the parameters of the solution as

ν =
r0

R
, λ =

r0

R
cosh2 σ. (2.34)

We also restrict ourselves to the so-called thin ring or ultra-spinning (US) limit, consid-
ering

r, r0, r0 cosh2 σ � R (2.35)

and setting ψ = z
R
as a new parametrization of the ring, where of course we have to

identify z with period 2πR. In this limit,we see by direct substitution that we recover
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Figure 2.2: We show here the meaning of the BR coordinates (x, y) , by considering a spatial
section of the spacetime while keeping φ constant [26]. For x → −1, y → −1 we approach
spatial in�nity, and at y → −∞ we recover the ring source. From an explicit analysis of the
black ring metric, a Killing horizon is found at y = −1/ν.

the metric of a boosted black string with boost parameter σ, boosted along the directions
(t, z), where z is the string coordinate. In addition, it results that r0 is the horizon scale
of the black string.

On the whole, it makes sense since we are focussing on the near ring region r ∼ r0

with this choice of coordinates. Furthermore, we are taking the ring radius (related to
S1) to be much greater than its thickness (related to the transverse sphere S2) R� r0.
We notice then that ν measures the ratio between these two radii, that is, the linear mass
density of the ring, and we retrieve the picture of a boosted black string when ν, λ� 1:
smaller ν correspond to thinner rings.

Also, the ratio λ
ν

= cosh2 σ clearly measures the boost of the black string and thus
the spin of the ring in the non-limiting situation. From this, we can also de�ne a local
boost velocity on the black string as

v = tanhσ =

√
1− ν

λ
. (2.36)

In conclusion, this discussion tells us that in some sense a black ring can be thought
of as a boosted black string shaped into a circle, in agreement with the hand-waving
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argument we reported above. But we have not imposed a balancing condition on the
spinning ring, so that in general the described con�guration will be actually unstable,
for unspeci�ed values of λ and ν. We intend to study more formally this requirement of
stability of the solution. In order to achieve it, we need to demand the stability of the
system over time , without any external force. This corresponds to requiring the absence
of conical singularities.

In general [11, 8], we have come across curvature singularities, at points of the space-
time where the Kretschmann invariant RµνρσR

µνρσ diverges. For instance, this is the
case at r = 0 in the Schwarzschild solution, as we saw. What happens in this situation
is that an observer reaching r = 0 disappears after a �nite amount of proper time, and
geometrically it translates to a geodetic incompleteness. Nonetheless, the latter can be
present also for extendible spacetimes, a class of solutions that refers to spacetimes that
cannot be embedded as a subset into another larger spacetime. For example, it is the
case if we remove a point from a regular solution.

But we can have a singular behaviour also without any curvature divergence, even
if the spacetime is inextendible. This can happen due to conical singularities, that can
be thought of as unbalanced external stresses. The most clear example is obtained by
considering Minkowski in spherical coordinates

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
(2.37)

if we remove a wedge of the manifold, restricting φ to 0 ≤ φ < φ̃ for some φ̃ < 2π.
Then, if we restore a periodicity by identifying the points with φ = 0 and φ = φ̃, it is
easy to show with arguments using neighbourhoods that we can recover a �at metric
at all points of the new manifold, except for r = 0. There we have no more a smooth
behaviour if an observer approaches that point, and we say that a conical singularity is
present3.

For example, usually there is one in black hole solutions where the mass parameter
enters the angular sector of the metric, and it can bring about angular defects. This is our
situation with the metric (2.33), but we can easily trace and remove conical singularities
by evaluating the proper length of the orbits where a speci�c angular coordinate is
constant.

In this case, one can check that

• at in�nity x = −1, y = −1, we must impose a periodicity of the angular variables

∆φ = ∆ψ = −4π

√
F (−1)

G′(−1)
= 2π

√
1− λ

1− ν
; (2.38)

• near the ring at x = 1, we must identify the points along the orbits of ∂φ with

3And it is now clear the origin of the name itself.
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periodicity

∆φ = 2π

√
1 + λ

1 + ν
. (2.39)

We see that these conditions are compatible if and only if the balancing condition holds:

λ =
2ν

1 + ν2
. (2.40)

The non-singular periodicity of φ and ψ is then

∆φ = ∆ψ =
2π√

1 + ν2
. (2.41)

From a physical point of view, the meaning of (2.40) is remarkable. Once the mass of
the ring r0 and its radius R are known, namely once we know ν, the angular velocity of
the black ring (which is related to λ) must be chosen in such a way that the centrifugal
force balances its gravitational self-attraction. It implies the absence of conical defects
inside the ring that prevent it from collapsing. In turn, the angular velocity gets �xed
and consequently the free parameters of the solution become just r0 and R.

Singularities and Observables

The metric (2.33) exhibits also a singularity for y → −∞, which actually corresponds
to a spacelike curvature singularity located on the ring source. On the other hand, G(y)
vanishes at y = −1/ν and here the metric becomes singular (while G(x) can never be
zero, thanks to the domain of x). It is possible to show straightforwardly with a change
of coordinates that this is not a physical singularity. Instead, we have a Killing horizon
with spatial topology S2 × S1 and with Killing generator

k = ∂t + Ω ∂ψ̃, (2.42)

where ψ̃ = 2π
∆ψ
ψ is the asymptotic ring coordinate with periodicity 2π. Ω is the horizon

angular velocity, and reads

Ω =
1

R

√
λ− ν
λ(λ+ 1)

=
1√
2R

√
1− ν + ν2 − ν3

ν + 1
(2.43)

for a black ring in equilibrium. We stress for later interest that

Ω ≈ 1√
2R

(2.44)
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in the US limit (2.35). Keeping in mind the balancing condition (2.40), a computation
of the horizon area and of the surface gravity shows that

A = 8π2R3 ν
3/2
√
λ(1− λ2)

(1− ν)2(1 + ν)
, (2.45)

T =
1

4πR
(1 + ν)

√
1− λ

λν(1 + λ)
. (2.46)

If we now turn to spatial in�nity, an ADM analysis of gtt and gtψ from (2.33) shows4

that the conserved charges are

M =
3πR2

4G

λ

1− ν
, (2.47)

J =
πR3

2G

√
λ(λ− ν)(1 + λ)

(1− ν)2
. (2.48)

By making use of the de�nitions (2.1), it is possible to study the phase diagram of
such a singly-spinning black ring in equilibrium. The dimensionless parameters result in

j =
(1 + ν)3/2

√
8ν

, aH = 2
√
ν(1− ν), (2.49)

and we can plot them parametrically in terms of the linear mass density ν, as displayed
in Figure (2.3).

The cusp is located at j0 = 3
√

3
4
√

2
, and it implies that there can be two di�erent

black ring solutions with the same characteristic parameters M and J within the whole
interval j0 ≤ j < 1. This is enough to exclude a possible generalization of the Uniqueness
Theorem to D > 4, or at least to D = 5. But furthermore, if we compare this phase
diagram with the one related to a 5-dimensional MP black hole, we observe that also a
MP black hole is present for each value of M and J in that same interval of j.

We can divide conveniently black rings into two classes, one for each branch of the
phase diagram. We call fat rings the ones that live in j0 < j < 1, and that have
consequently a relatively low j, implying that r0 ∼ R. We label thin rings the ones that
live in the interval j0 < j < ∞ and that can access the ultra-spinning regime r0 � R
(as in (2.35)). Finally, we call minimally spinning black ring the one with j = j0 (which
corresponds to ν = 1/2).

The extremal limit for singly-spinning black rings corresponds to a naked singularity
at (j, aH) = (1, 0). The same happens for D = 5 MP black holes.

4We will provide a set of coordinates suitable for this task in Section 5.3.
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Figure 2.3: We compare here the phase diagram of a black ring (solid line) with the one for a
MP black hole in D = 5 (dashed line). Noticeably, the existence of a MP black hole, a fat and a

thin ring for each dimensionless angular momentum j in the interval 3
√

3
4
√

2
≤ j < 1 precludes the

possibility of a generalization of the Uniqueness Theorem to higher dimensional black holes.
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Chapter 3

The Blackfold Approach

We saw in Chapter 2 that singly spinning MP black holes in D ≥ 6 develop a pancake
horizon and exactly approach the shape of a black membrane when we increase the
angular momentum of the solution up to the ultra-spinning limit. Something similar
happens to black rings. We saw that thinner rings correspond to higher angular momenta,
and we recover the metric of a black string in the thin ring limit, again if we focus
on the near horizon region. This can be shown to be the case also for multi-spinning
solutions [23]. It hints at the fact that, in some particular regime, neutral rotating higher
dimensional black holes exhibit similar features as those of black branes.

We observe that this happens in the cases studied previously when a distinct hierarchy
of length scales arises. For MP black holes, we see it in the presence of an angular
momentum scale l‖ (which goes to in�nity in the ultra-spinning limit) and of a much
smaller mass scale l⊥, related to the radius of the transverse sphere SD−4. Black rings
behave in a similar way, with R � r0 in the thin ring limit, where, as we remarked, R
becomes the length scale associated to rotation, after imposing the balancing condition.

Therefore, the picture that emerges suggests that one could treat any rotating higher
dimensional black hole solution admitting an ultra-spinning regime as a series expansion
in lM/lJ , whose leading order is locally a black brane with the right dimensions D. Each
term that follows in the expansion is then understood as a correction proportional to
powers of lM/lJ that allows us to consider lower and lower angular momenta and to
capture the behaviour of that solution away from the ultra-spinning limit. The black
brane approximation is clearly valid only in the horizon vicinity, as we inspected explicitly
for black rings and MP black holes.

We consider a �at Schwarzschild black p-brane in D dimensions of the same form as
in (2.5). As we saw in Section 2.1, it can be build by adding a set of p �at directions
to each point of a Schwarzschild-Tangherlini solution in n+ 3 dimensions. On the other
hand, we can identify a worldvolume Wp+1 described by the �at metric ηab and spanned
by the p-brane during its evolution along t. We de�ne σa = (t, zi) , a = 0, 1 . . . p as the
directions parallel to the worldvolume, and (r,Ωn+1) as the directions orthogonal to the
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worldvolume. The parameter r0 is the constant radius of the transverse sphere horizon.
We can make a more general construction by boosting the points of the p-brane

along the worldvolume with homogeneous velocity ua. These components are not all
independent, due to the constraint uaubηab = −1, so we take the spatial ui as the
independent ones. The metric can then be recast in the form

ds2 =

(
ηab +

rn0
rn
uaub

)
dσadσb +

dr2

1− rn0
rn

+ r2dΩn+1, (3.1)

where the parameters of this solution are the horizon transverse radius r0, the p indepen-
dent components of ua, and the D − p− 1 coordinates {X⊥} �xing the position on the
worldvolume within the transverse space (i.e. along the radial and angular directions).
For simplicity, we are collectively setting them to zero, assuming (3.1) to lie in the origin
of the transverse space.

Our purpose will be to build perturbatively new black holes solutions in higher di-
mensions and to study their stability by slowly perturbing the black brane parameters
along both worldvolume and transverse directions, such that the perturbative length
scale R is much larger than the brane thickness r0, that is R � r0. In general, R is
either related to the gradient of the worldvolume parameters (as ln r0 and ui) or to the
smallest extrinsic curvature radius of Wp+1. The requirement of slow variations over
length scales R ensures in particular that all the higher-derivative terms are suppressed
by factors O

(
r0
R

)
.

Therefore, the scale hierarchy mentioned above allows us to split the gravitational de-
grees of freedom of the considered spacetime into short and long wavelength components
as

gµν = {g(short)
µν , g(long)

µν }, (3.2)

where g
(short)
µν describes the geometry in the horizon vicinity for r � R, while g

(long)
µν

describes it far away from the black brane, namely for r � r0. Then, considering
perturbations over the scale R, we can simply think of a thin brane (locally described

by g
(short)
µν ) embedded into a curved background spacetime g

(long)
µν . For consistency, we

require the matching of these two metrics in the interval r0 � r � R. For the moment,
we discuss this framework at the probe brane level, that is we neglect any backreaction
of the brane on the background spacetime, considering them decoupled from each other.

It is also convenient to introduce a set of coordinates {Xµ}, obtained by adding
redundant degrees of freedom to the transverse coordinates {X⊥}. Its convenience resides
in having manifest covariance and in being able to �x completely the embedding Xµ(σ)
of the submanifold determined by the worldvolume inside the background spacetime1.
Hence, we can consider

γab = g(long)
µν ∂aX

µ∂bX
ν (3.3)

1We refer the reader to Appendix A for some useful results and derivations related to submanifold
calculus.
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as the induced metric of this embedding on Wp+1.
We restrict now to the study of perturbations to �rst order in the perturbative expan-

sion, and this makes it possible to analyse separately intrinsic and extrinsic �uctuations,
as they decouple. We can build perturbations around �at con�gurations longitudinally
and transversely toWp+1 by allowing {r0(σ), ui(σ)} and {Xµ(σ)} to vary over the world-
volume respectively. The black brane metric under this kind of perturbations will assume
the form

ds2 =

(
γab(X

µ(σ)) +
rn0 (σ)

rn
ua(σ)ub(σ)

)
dσadσb +

dr2

1− rn0 (σ)

rn

+ r2dΩn+1 + hµν(x)dxµdxν ,

(3.4)
where hµν(x) gathers terms of order O

(
r0
R

)
in derivatives of ln(r0), ui andX⊥, which are

necessary to ensure that ds2 is a solution to EFE. Here xµ = (σa, r, θ,Ωn+1) in such a
way that these extra-terms are added to each component of the metric, in principle. In
view of the considerations above, the metric (3.4) is descriptive of the geometry at short

distances, playing the role of g
(short)
µν . The term blackfolds will denote then black branes

whose worldvolume is treated as a submanifold within a background spacetime.

3.1 The e�ective stress-tensor

In this framework, we can build an e�ective theory where the presence of the source
is encoded at long distances into an e�ective stress-energy tensor [27]. We proceed in
this way by considering the quasilocal stress-energy tensor provided by the Brown-York
formalism [28]: let us consider a boundary surface with constant r = L, with L � r0

and induced metric γ̃αβ obtained as

γ̃αβ = eµαe
ν
β g

(short)
µν . (3.5)

Then we de�ne the Brown-York (BY) energy-stress tensor as

8πGT
(BY )
αβ = Kαβ − γ̃αβK −

(
K

(0)
αβ − γ̃αβK

(0)
)
. (3.6)

Here Kαβ = K r
αβ refers to the extrinsic curvature of the boundary surface, which has

codimension 1, so it can be simply expressed as

Kαβ = −1

2
£nγ̃αβ, (3.7)

naming n the unitary normal vector to the surface, which is proportional to ∂r; con-
versely, the scalar K identi�es the trace of Kαβ computed with γ̃αβ. In (3.6) we are also
subtracting the �at spacetime contribution from the usual BY stress tensor in order to
neglect the divergent �at parts of T

(BY )
αβ . That is, we take

K
(0)
αβ = −1

2
£nηαβ|r=L , (3.8)
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which coincides with turning o� the sources in equation (3.7).
For the �at brane (3.1), the hypersurface at r = L involves a set of p+1 �at directions,

with a transverse (n+1)-sphere of radius L at each point. We are considering a boundary
surface with topology Rp+1 × Sn+1, and consequently the induced metric reads

γ̃αβ =

(
ηab +

rn0
rn
uaub

r2

)
, (3.9)

where we put the worldvolume directions in the �rst row and column, followed by the
n+ 1 angular directions in the second row and column. Using (3.7), it leads to

Kαβ =

√
1− rn0

rn

(
n
2r

rn0
rn
uaub

−r

)
. (3.10)

After computing the inverse induced metric (3.9) and �nding the mean extrinsic curva-
ture Kαβ, we obtain

K = −
[
n

2r

rn0
rn

+
n+ 1

r

(
1− 1

2

rn0
rn

) ]
+O

(
r2n

0

r2n

)
. (3.11)

The background quantities read then

K
(0)
αβ =

(
0
−r

)
, K(0) = −n+ 1

r
, (3.12)

and the BY-tensor to �rst order in
rn0
rn

is

T
(BY )
ab =

rn0
16πG

1

rn+1
(nuaub − ηab) . (3.13)

In this perturbative setup, perturbations along transverse spheres and �at directions
decouple. This fact allows us to focus on the stress tensor living on the thin brane
worldvolume, by performing an integration of the tensor in (3.6) over the transverse
sphere:

Tab =

∫
Sn+1

rn+1dΩn+1 T
(BY )
αβ . (3.14)

A straightforward calculation leads to a perfect �uid energy-stress tensor, with form

Tab = (ε+ P )uaub + Pηab =
Ω(n+1)

16πG
rn0 (nuaub − ηab) , (3.15)

where Ωn+1 identi�es the volume of a (n+ 1)-sphere. Explicitly, the pressure and energy
density read

ε =
Ω(n+1)

16πG
(n+ 1) rn0 P = − ε

n+ 1
= −

Ω(n+1)

16πG
rn0 . (3.16)
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To sum up, our procedure consisted in integrating out the short-distance behaviour
of the brane and substituting it with an e�ective source that reproduces the brane e�ects
as if observed from outside the boundary surface. An observer placed far enough from
the brane would see its intrinsic dynamics described by a perfect �uid one at leading
order.

As a consequence, we �nd a thermodynamic behaviour for our higher dimensional
black hole. Let us compare it with the well-known black hole Thermodynamics inspected
in Section 1.5, by assuming its validity locally at each point σa of our black brane
worldvolume. It means that we require the Bekenstein-Hawking relation between the
horizon area and the entropy density to hold locally:

s =
Ω(n+1)

4G
r n+1

0 , (3.17)

as well as the relation by Hawking between surface gravity and temperature, which reads
in the case of a Schwarzschild black brane

T =
κ

2π
=

n

4πr0

. (3.18)

We see these choices to be consistent since both the First Law of Thermodynamics

dε = T ds (3.19)

and the Euler relation
ε+ P = T s (3.20)

are satis�ed as a consequence.

3.2 Blackfolds equations

In this section we �nd a set of equations de�ning both the intrinsic and extrinsic dynamics
of the black brane worldvolume. They follow as constraints from EFE, after imposing
variations of the metric with either intrinsic or extrinsic perturbations.

Intrinsic Equations

Following [27], we can impose slow variations of the parameters along the worldvolume
directions, keeping �xed the embedding Xµ 2. In this way, the unperturbed velocity �eld
ua = (1, 0 . . . 0) and horizon radius r0 become

u0(σ) = 1 +O(ε2), ui(σ) = εσa∂au
i +O(ε2), (3.21)

2 It is also possible to impose metric �uctuations as intrinsic perturbations related to the induced
Ricci tensor on the submanifold Wp+1. But this involves second derivatives of the induced metric
components, and in turn it results in negligible terms, again as long as we perform an up to �rst order
analysis.
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r0(σ) = r0(0) + εσa∂ar0(0), (3.22)

with ε being a small parameter accounting for the order in the perturbative expansion.
It is also convenient to switch to Eddington-Finkelstein coordinates in order to recover
the manifest regularity of the metric at the horizon. After renaming σa = (v, zi), the
short range metric reads

ds2 =−
(

1− r0(σ)n

rn

)
ua(σ)ub(σ)dσadσb − 2ua(σ)dσadr+

+ (ηab + ua(σ)ub(σ)) dσadσb + r2dΩ2
n+1 + εfµν(r)dx

µdxν +O(ε2),

(3.23)

where fµν(r) are further �rst order corrections needed to ensure that this metric is a
solution to EFE, in the same fashion as equation (3.4).

If we now turn to solving vacuum Einstein's Equations, an explicit calculation shows
that the components Rr

a = 0 do not depend on second derivatives of the metric compo-
nents, and so are not to be considered dynamic equations but simply constraints on the
evolution of ua(σ) and r0(σ). They are independent of the corrections fµν(r) and they
can be rewritten in terms of the e�ective stress-energy tensor as

DaT
ab = 0, (3.24)

where Da indicates the submanifold covariant derivative compatible with γab. We no-
tice then that equations (3.24) de�nes the intrinsic dynamics of the brane, seen as the
continuity equation for the e�ective �uid living on the worldvolume itself.

The other independent EFE Rµν = 0 are indeed dynamic equations, and it is possible
to solve them explicitly in order to �nd fµν(r) and hence obtain the complete perturbed
metric under intrinsic perturbations to �rst order in ε. After this, it is possible to go
ahead in the perturbative expansion proper of the blackfold approach by performing the
BY computation for this new metric, and it leads to a perturbed stress-energy tensor of
the form

Tab =
Ω(n+1)

16πG
rn0 (σ) (nua(σ)ub(σ)− γab(σ)) +O(∂u, ∂r0). (3.25)

We can interpret these extra-terms as viscous corrections to the perfect �uid behaviour
of the brane, recasting them as

Tab = ρuaub + P∆ab − ζθ∆ab − 2ησab, (3.26)

where
∆ab = ηab + uaub (3.27)

is the orthogonal projector to the boost direction, and

θ = ∂au
a, σab = ∆ c

a

(
∂(cud) −

1

p
∆cd

)
∆d

b (3.28)
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are the expansion and the shear tensor of the velocity �eld, respectively. The coe�cients
η and ζ are the shear and bulk viscosity, with explicit form

η =
Ω(n+1)

16πG
rn+1

0 , ζ =
2

p

(
1 +

p

n+ 1

)
η =

Ω(n+1)

8πG

(
1

p
+

1

n+ 1

)
rn+1

0 . (3.29)

We will not delve further into this computation, and we refer to [27] for a more complete
discussion.

Extrinsic Equations

Following [29],we now study the extrinsic behaviour of the brane, and we proceed by
considering extrinsic perturbations. In particular, our aim is to �nd another local rela-
tion akin to (3.24), describing the dynamics of the black brane within the background
spacetime.

The extrinsic curvature tensor has the general form

K ρ
µν = γ σ

ν ∇µγ
ρ
σ . (3.30)

Here we have the �rst fundamental form γαβ of the worldvolume, which expresses the
induced metric γab in terms of the background coordinates:

γαβ = γab∂aX
α∂bX

β. (3.31)

We have also de�ned the tangential covariant derivative ∇µ as the projection of the
background covariant derivative (built with gµν) on the worldvolume, in such a way that
∇µ = γ σ

µ ∇σ.
Restricting ourselves to a �rst order analysis in derivatives, we observe that extrinsic

�uctuations of the metric do contribute. Indeed, they must involve the extrinsic cur-
vature tensor (3.30), which only contains �rst derivatives of the �rst fundamental form
components.

On more general grounds, for later convenience, we think of the worldvolume Wp+1

spanned by a classical p-brane in a background spacetime as a submanifold moved away
from �atness by intrinsic and extrinsic curvature perturbations. We de�neR as the length
scale for extrinsic perturbations, and it holds that K i

ab ∼ 1
R
. Analogously, we introduce

the intrinsic curvature radius Rint, whose size determines the intrinsic perturbations
scale, once we keep �xed r0 and ua.

It is also possible to build �rst order intrinsic �uctuations around �atness, with a
choice of normal coordinates σa on Wp+1 such that �rst derivatives of the metric are
zero, and Γcab = 0. De�ning also yi as the transverse directions to the worldvolume and
setting Wp+1 at yi = 0, the metric reads [29]

ds2 = ηabdσ
adσb + δijdy

idyj +O (y/R) +O
(
σ2/R2

int

)
, (3.32)
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where O (y/R) identi�es the extrinsic curvature perturbations, while O (σ2/R2
int) the

intrinsic ones, which are negligible to �rst order, as explained above.
We intend to study explicitly the �rst order O (y/R), and we proceed by considering

a set of Fermi normal coordinates associated to an observer on the worldvolume, in order
to make calculations more straightforward. In general, Fermi coordinates are the natural
choice of coordinates system based on a particular observer in a certain spacetime, and,
as a consequence, they are de�ned only in a neighbourhood of his trajectory. A common
and non-trivial example is the set of Rindler coordinates, which are the Fermi coordinates
for an accelerated observer in Minkowski spacetime; as well known, they are not de�ned
globally but only in the right sector of Minkowski.

If we generalize Fermi coordinates to the motion of a p-brane within a background
spacetime, they will naturally make use of the a�ne parameters related to geodesics or-
thogonal toWp+1 as coordinates y

i along the transverse directions. Since yi parametrize
geodesics, it holds that

Γµij = (∇jei)
µ = 0 for µ = a, i. (3.33)

Recalling that the woldvolume lies at yi = 0, from (A.18), the extrinsic curvature
tensor has components

K i
ab = Dae

i
b + Γiµνe

µ
a e

ν
b = Γiab, (3.34)

where as usualXµ are the embedding coordinates and e µ
b = ∂bX

µ are the tangent vectors
to the submanifold.

It is now important to understand how the extrinsic curvature should contribute to
the metric. For p = 0, we recover the standard geodesic motion of a point particle, with
the worldvolume indices reducing to a = t: in this case, we have simply K i

tt = ai, with
ai acceleration of the particle within the background spacetime. Then, as well known [9],
such an acceleration contribution has to �t into the worldvolume sector of the metric.

In general, we could also have terms of �rst order in derivatives of the same form
as (3.34), but mixing worldvolume and transverse directions. They are linked to the
holonomies of the connection considered, and must be proportional to the twist or ex-
ternal rotation coe�cients de�ned as

ω ν
µ ρ =⊥νσ n i

ρ ∇µn
σ
i, (3.35)

which tells how the angle between two normal vectors vary when they are moved along
a curve of direction µ on a given submanifold (here Wp+1). Recalling the choices made
so far, it is easy to see that these coe�cients reduce to

ω ν
µ ρ =⊥νσ n i

ρ γ
λ
µ

(
∂λn

i
ρ + Γσλαn

i
α

)
= Γνµρ, (3.36)

where we notice that the indices ν and ρ are orthogonal to the worldvolume, while µ is
parallel to it. Then we can safely state that in our case it holds that

ω i
a j = Γiaj. (3.37)
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They are clearly �rst order terms, which must be included.
On the whole, the perturbed metric reads

ds2 =
(
ηab − 2K i

ab yi
)
dσadσb+2ω i

a jyi dσ
adyi+dyidy

i+O
(
y2/R2

)
+O

(
σ2/R2

int

)
, (3.38)

where the new terms are of order O (y/R). However, it can be shown that mixed con-
tributions like (3.37) can be gauged away by simply performing a rotation along the
transverse directions:

yi 7−→ yi − σaω j
a iyj +O(σ2). (3.39)

Eventually, we can rewrite the perturbed metric of any classical brane as

ds2 =
(
ηab − 2K i

ab yi
)
dσadσb + dyidy

i +O
(
y2/R2

)
+O

(
σ2/R2

int

)
. (3.40)

Therefore, if we restrict ourselves to a boosted Schwarzschild black p-brane, the
contributions from extrinsic curvature lead to

ds2 =

(
ηab − 2K i

ab yi +
rn0
rn
uaub

)
dσadσb +

dr2

1− rn0
rn

+ r2dΩ2
n+1+

+ hµν(y
i)dxµdxν +O

(
y2/R2

)
+O

(
σ2/R2

int

)
,

(3.41)

where the radial coordinate can be restated in terms of the transverse directions as
r =

√
yiyi . We are also gathering all the other �rst-order extrinsic �uctuations inside

the symmetric tensor hµν(y
i) in order to ensure that (3.41) is a solution to EFE.

Since we are working to �rst order, we can make use of the decoupling of transverse
�uctuations from each other. It means that we can study them individually, assuming
for example K i

ab to be non-zero only along one orthogonal direction î. As a consequence,

we can introduce an angle θ related to yî as

yî = r cos θ, (3.42)

so that we can extract it from the angular part dΩ2
n+1 and recast hµν(y

i) = hµν(r, θ).
The metric reads then

ds2 =

(
ηab − 2K î

ab r cos θ +
rn0
rn
uaub

)
dσadσb +

dr2

1− rn0
rn

+

+ r2
(
dθ2 + sin2 θdΩ2

n

)
+ hµν(r, θ)dx

µdxν +O
(
y2/R2

)
+O

(
σ2/R2

int

)
.

(3.43)

Furthermore, working at this perturbative order also allows us to express hµν as a
dipole of the natural spherical foliation of the spacetime, in such a way that

hµν(r, θ)dx
µdxν = cos θ ĥµν(r)dx

µdxν =

= cos θ
[
ĥab(r)dσ

adσb + ĥrr(r)dr
2 + ĥθθ(r)

(
dθ2 + sin2 θdΩ2

n

)]
,
(3.44)
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where we took advantage of the gauge freedom to choose hrθ = hθr = 0 [30].
We can expand the metric (3.43) far away from our black brane source, focussing on

the sector r � r0, and the result is

ds2 =

(
ηab − 2K î

ab r cos θ +
rn0
rn
uaub

)
dσadσb +

(
1 +

rn0
rn

)
dr2+

+ r2
(
dθ2 + sin2 θdΩ2

n

)
+ cos θĥµν(r) dx

µdxν +O

(
r2n

0

r2n

)
,

(3.45)

where we are now keeping explicit only the order of the mass/distance ratio rn0/r
n.

But, as we know from the intrinsic analysis, the e�ective energy-stress tensor (3.15)
accounts for the dynamics of a Schwarzschild black brane as seen from far away. There-
fore, it is wise to recast r0 (which is the only free parameter of this solution) in terms
of Tab. We also remark that in this case the Brown-York energy-stress tensor must be
evaluated on a boundary surface with radius L such that r0 � L� R, in order to have
a weak gravitational �eld from the background and ensure in turn that Tab is considering
only the black brane e�ects. From eq. (3.15) it follows that

T = ηabT
ab = −

Ω(n+1)

16πG
rn0 (D − 2), (3.46)

and hence

rn0 = − 16πG

Ω(n+1)

T

D − 2
,

rn0 uaub =
16πG

nΩ(n+1)

(
Tab −

T

D − 2
ηab

)
.

(3.47)

In this way, after substituting into (3.45), we obtain [29]:

ds2 =

(
ηab − 2K î

ab r cos θ +
16πG

nΩ(n+1)

(
Tab −

T

D − 2
ηab

)
1

rn

)
dσadσb+

+

(
1− 16πG

Ω(n+1)

T

D − 2

1

rn

)
dr2 + r2

(
dθ2 + sin2 θdΩ2

n

)
+

+ cos θ ĥµν(r)dx
µdxν +O

(
T 2
ab

r2n

)
.

(3.48)

We denote this form as the Camps-Emparan form of the metric for a Schwarzschild black
brane. Later on we will see the convenience of making a black brane solution dependent
only on its related e�ective energy-stress tensor. In fact, it will be shown that it is
possible to recast a very general class of black branes into eq. (3.48) form, with very few
modi�cations.
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We intend now to extract a set of constraint describing the extrinsic evolution of the
perturbed p-brane within the background spacetime. Again, we will restrict ourselves to
an analysis up to �rst order in the ratio r0/R, where the mass scale is rn0 ∼ Tab and the
extrinsic radius is such that R ∼ 1

K i
ab
; we also consider hµν of order 1 in this ratio.

After some computations, one can observe that a particular combination of Grθ and
Grr does not involve the perturbations ĥµν , and can be thought of as acting as a constraint

for each transverse direction yî:

Grθ −
r tan θ

n+ 1
Grr =

n+ 2

n+ 1

sin θ

rn
8πG

Ω(n+1)

T abK î
ab . (3.49)

We can interpret this result in this way: since we have a vacuum condition, the l.h.s.
must be zero; it means that, if the extrinsic constraint

T abK î
ab = 0 (3.50)

holds, then the geometry does not develop other singularities. Otherwise, it could develop
conical or curvature singularities at sin θ = 0, that is on the axis θ = 0, π. These
singularities can be thought of as arising from unbalanced stresses.

Finally, we observe that one can �nd ĥµν(r) explicitly by requiring (3.48) to be a
solution to the whole set of vacuum equations Rµν = 0, in the same way as it was done
for fµν(r) in (3.23).

Remarkably, we can give a very intuitive interpretation to blackfold extrinsic equa-
tions. After expanding the extrinsic curvature tensor (3.30) in terms of the connection,
we can recast it in the form

T ab ⊥ ρ
σ

(
∂a∂bX

σ + Γσµν∂aX
µ∂bX

ν
)

= 0, (3.51)

where ⊥ρσ is the orthogonal projector to the worldvolume submanifold as usual. It

has now the same form as Newton's Second Law m~a − ~F = 0 considered along the
transverse direction ρ, and thus equation (3.50) can be seen as a generalization of the
geodesic equation to p-brane dynamics.

Observations

To sum up, we started with a worldvolume-�at Schwarzschild black brane, and it was
possible to �nd a set ofD constraints on the evolution of the brane under long wavelength
perturbations (both intrinsic and extrinsic ) once we stayed at the leading order, since

• it allowed us to neglect dissipative e�ects on the worldvolume. It led to an e�ective
perfect �uid description of the brane, with Tab satisfying the p+1 intrinsic blackfold
equations

DaT
ab = 0; (3.52)
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• neither the backreaction of the brane on the background spacetime nor bending
e�ects appear at this perturbative order. Consequently, we obtain the D − p − 1
extrinsic blackfold equations

T abK î
ab = 0. (3.53)

In [31] it was also shown that this set of D constraints follow directly from the prop-
erties of EFE. We refer to Tµν as the push-forward of Tab on the background spacetime,
and it can be considered as an energy-stress tensor with support on the worldvolume.
Being the Einstein tensor divergenceless, Tµν must satisfy the D equations

∇µT
µν = 0. (3.54)

It is easy to see that this relation contains the whole set of both intrinsic and extrinsic
blackfold equations. If we project (3.54) onto the orthogonal and tangential directions,
we obtain

∇µT
µρ = ∇µ (T µνγ ρ

ν ) = T µν ∇µγ
ρ
ν + γ ρ

ν ∇µT
µν =

= T µσγ ρ
σ ∇µγ

ρ
ν + γ ρ

ν ∇µT
µν =

= T µνK ρ
µν + (∂bX

ρ)DaT
ab,

(3.55)

where ρ is meant to be orthogonal to Wp+1 in the �rst term and parallel to Wp+1 in the
second one. As a consequence, we can decompose (3.54) into two independent sets of
equations, namely (3.52) and (3.53). But it is also possible to reverse this argument and
observe that equation (3.54) has the same meaning as blackfold equations, presenting
them in an often more useful form.

In connection with this, it is relevant to approach the issue of backreaction. So
long we have disregarded it, but one could think of going beyond the approximation of
test branes by adding a coupling between the brane and the background. As observed
above, Tab describes the short wavelength gravitational degrees of freedom of the brane
as seen from far away. Accordingly, it also accounts for the e�ects of the brane on the
background geometry. Then, one can add a new set of equations to the intrinsic and
extrinsic blackfold equations:

R(long)
µν − 1

2
R(long) g(long)

µν = 8πGTµν (3.56)

with R
(long)
µν and R(long) evaluated with the background metric g

(long)
µν .

In summary, at the leading order, one has to consider only equations (3.24) and
(3.50), and this is the way we follow in the rest of this dissertation. Otherwise, up to a

generic order, one has to consider also (3.56), with g
(long)
µν , Tµν and K i

ab of the suitable
order.

The de�nition we gave of the e�ective stress-energy tensor guarantees that the short
wavelength metric g

(short)
µν describing the brane is well matched with the background
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g
(long)
µν in the range r0 � r � R, since it reproduces the correct Physics of the brane
in this range. We point out once more that asymptotically the only relevant quantity
gathering all the short wave-length behaviour of a Schwarzschild black brane is its ADM
mass, through Tab and r0.

3.3 Stationary blackfolds

In the previous sections we studied how the e�ective behaviour of a black brane can be
captured by an e�ective �uid (a perfect one, at the leading order) that an observer far
away describes as living on the brane itself. We can then demand the stationarity of this
relativistic �uid, by requiring it to have a 4-velocity �eld ua whose �ow lines are invariant
according to the class of observers following orbits of a certain timelike vector k de�ned
on Wp+1. From a GR point of view, this requirement will be related to considering a
stationary black hole spacetime, with some Killing vector k.

Furthermore, it can be shown that the intrinsic worldvolume velocity must be pro-
portional to this Killing vector, once we neglect dissipative e�ects within the �uid:

u =
k

k
, (3.57)

where k =
√
−γabkakb , and with k satisfying the intrinsic Killing equations

D(akb) = 0. (3.58)

Remarkably, equation (3.57) embodies the connection between the black hole picture
and the e�ective �uid paradigm in this stationary case: the velocity �eld of the e�ective
�uid is strictly related to the vector �eld k encoding the symmetries of the considered
spacetime.

Furthermore, it is possible to enlarge the presence of this Killing vector to the back-
ground, or at least to some region close enough to the worldvolume, when the condition
on the mass scale r0 � R holds with r0 �nite. In this case, there is a timelike Killing
vector k = kµ ∂

∂Xµ on the background, satisfying

∇(µkν) = 0, (3.59)

whose pullback on Wp+1 coincides with ka∂a. Indeed, we impose the existence of such a
timelike Killing vector on the background (describing the geometry at in�nity) matching
with the one on the worldvolume since we want to describe a stationary black hole
solution.

It is also convenient to rewrite the blackfold equations more explicitly. We allow all
the parameters of our brane to vary, that is ua(σ), r0(σ) on the worldvolume, and also
the embedding Xµ due to a generally non-null extrinsic curvature K i

ab .
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Applying equation (3.54) to the case of a deformed Schwarzschild black brane with
e�ective energy-stress tensor (3.25), we obtain

∇νT
µν = uµuν

(
∇νε+∇νP

)
+ (ε+ P )

(
u̇µ + uµ∇νu

ν
)

+

+ γµν∇νP + P∇νγ
µν ,

(3.60)

where we have de�ned u̇µ = uν∇νu
µ. From de�nition (3.30), the mean extrinsic curvature

is
Kρ = γµνK ρ

µν = γµνγαν∇µγ
ρ
α = ∇µγ

µρ. (3.61)

Then we can rewrite equation (3.54) as

uµuν∇νε+ (uµuν + γµν)∇νP + (ε+ P )
(
u̇µ + uµ∇νu

ν
)

+ PKµ = 0. (3.62)

Taking into account the energy density and pressure in (3.16), an explicit form of the
blackfold equations can be found. Projecting (3.62) orthogonally to the worldvolume
results in

Kρ = n ⊥ρν u̇ν , (3.63)

while projecting it along Wp+1 leads to

u̇a +
1

n+ 1
uaDbu

b = ∂a ln r0. (3.64)

Contracting now the background Killing equation (3.59) with kµkν brings us to the
relation kµ∂µk = 0. In view of this, we obtain

u̇µ = uν∇νu
µ =

kν

k
∇ν

kµ

k
=
kν

k2∇νk
µ. (3.65)

Using again equation (3.59) brings us to

u̇µ = ∂µ ln k. (3.66)

With respect to the intrinsic blackfold equations (3.64), we also notice that the velocity
�eld expansionDau

a vanishes thanks to the worldvolume Killing equation. On the whole,
it means that

∂a ln k = ∂a ln r0, (3.67)

which has solution
r0

k
= const (3.68)

over the whole worldvolume.
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One can �x this constant by studying the norm k close to the p-brane. Here the
geometry is well described by metric (3.4), so that in this region of the transverse space
we have

kµkνg(short)
µν =

(
γab +

rn0
rn
uaub

)
kakb = −

(
1− rn0

rn

)
k, (3.69)

since k properly lives on the worldvolume. This tells us that actually a Killing vector
living on the wordlvolume of a Schwarzschild black brane is the generator of the whole
Killing horizon of the solution, as it becomes null when r → r0. Furthermore, one can
easily evaluate its surface gravity, which results in

κ =
nk

2r0

. (3.70)

It means that the surface gravity is proportional to the constant over Wp+1 that we
found in equation (3.68), and, in turn, κ is constant over the entire horizon; of course,
this hints at a well de�ned thermodynamics.

As a matter of fact, equations (3.70) and (3.18) jointly tell us that we can de�ne a
global temperature T = kT constant on the whole worldvolume. Conversely, we can
make explicit the dependence of the local temperature T on the point σa as

T (σ) =
T

k
, (3.71)

that is, it is equal to the redshifted global one. Also, we can interpret this result by
stating that the brane thickness varies on Wp+1 as

r0(σ) =
n

4πT
k, (3.72)

in such a way that T remains constant there.
It is well established that black hole thermodynamics has a global nature: its laws

involve only global quantities, such as the ADM mass, the event horizon area and the
temperature, and they must be evaluated by an observer at in�nity. On the other hand,
ordinary thermodynamics holds at any point of a given system. Thus, it is interesting to
see how in this picture the ordinary (that is, local) thermodynamics of the e�ective �uid
on the worldvolume allows us to reconstruct the global and geometrical nature of black
hole thermodynamics as seen from the background, through red-shifted global quantities
like T .

Turning back to solving the blackfold equations, from the above discussion we can
give automatically an expression for the parameters ua and r0 in the stationary case,
once we know the explicit form of the Killing vector k. In particular, we can choose
a vector �eld basis {ξ, χi} formed by p + 1 orthogonal vectors3 from the background

3Originally k was a vector on the worldvolume, and consequently it has at most p + 1 degrees of
freedom.

44



spacetime. We will generally assume that it is possible to pick them up in such a way
that ξ is the generator of time translations at in�nity, and that χi are the generators of
asymptotic rotations. With these choices, we can write on the background

k = ξ +

p∑
i=1

Ωiχi, (3.73)

with Ωi independent of the coordinates. Furthermore, even if not strictly required, we
also assume that {ξ, χi} are Killing vectors individually.

It is convenient to introduce p + 1 functions Ra(σ) on the worldvolume, de�ned as
the moduli

R0(σ) =
√
−ξ2

∣∣∣
Wp+1

Ri(σ) =
√
−χ2

i

∣∣∣∣
Wp+1

, (3.74)

which e�ectively describe the embedding as much asXµ do. With the basis chosen above,
we can give a clear interpretation of these quantities. Apparently, R0(σ) measures the
redshift between background in�nity and the point σa of the worldvolume. On the other
hand, a function Ri(σ) represents the proper radius of the orbit generated by χi passing
through σa. As a consequence, we see that Ωi is the related angular velocity of the
horizon, and equivalently it describes the angular velocity along the direction χi of static
observers following orbits of ξ on the horizon.

Starting from the functions in (3.74), we can de�ne a set of p + 1 vectors on the
worldvolume, with the property of being orthonormal according to the worldvolume
induced metric γab:

∂

∂t
=

1

R0

ξ

∣∣∣∣
Wp+1

,
∂

∂zi
=

1

Ri

χi

∣∣∣∣
Wp+1

. (3.75)

De�ning then

Vi(σ) =
u · ∂zi
−u · ∂t

=
ΩiRi(σ)

R0(σ)
(3.76)

as the spatial velocities of the e�ective �uid along the direction zi at the point σa, we
can recast the Killing vector k in terms of the coordinates of Wp+1. In turn, it leads to
a more explicit form of the intrinsic parameters r0 and ua: on the worldvolume, it holds
that

k = ξ +

p∑
i=1

Ωiχi = R0
∂

∂t
+
∑
i

ΩiRi
∂

∂zi
=

= R0(σ)

(
∂

∂t
+
∑
i

Vi(σ)
∂

∂zi

)
,

(3.77)
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which means that
k =

√
−γabkakb = R0(σ)

√
1− V 2(σ) , (3.78)

with

V 2(σ) =
∑
i

V 2
i =

1

R2
0

∑
i

Ω2
iR

2
i (σ). (3.79)

It is clear in this form that k(σ) incorporates the total redshift both gravitational
(through R0(σ)) and kinematic (through

√
1− V 2(σ) ) that a static observer on an orbit

of ξ at in�nity would see with respect to the point σa of the e�ective �uid on Wp+1.
In conclusion, we obtain straightforwardly the explicit solutions to the intrinsic equa-

tions (3.52) in the stationary case, and they read

u(σ) =
k

k
=

1√
1− V 2(σ)

(
∂

∂t
+
∑
i

Vi(σ)
∂

∂zi

)
, (3.80)

r0(σ) =
n

2κ
R0(σ)

√
1− V 2(σ) , (3.81)

once we �x the horizon Physics of the solution through κ and Ωi.
From a more practical point of view, one can actually reverse this argument. Let us

think of a background spacetime with a Killing vector kµ. We also assume that its pull-
back on the worldvolume is a Killing vector. As a consequence, we know automatically
the velocity �eld ua of the e�ective �uid due to equation (3.57). Then we can solve for
r0 the intrinsic equation (3.64), and it is proportional to the Killing vector modulus k.

Since r0 and ua completely determine the e�ective energy stress tensor (3.15), now
the set of extrinsic equations (3.63) can be solved, and this leads to

Kρ = ⊥ρµ ∂µ ln (kn) = n ⊥ρµ ∂µ ln
(
R0

√
1− V 2(σ)

)
. (3.82)

In this way, an up to �rst order solution for the whole set of free parameters in our e�ective
theory follows automatically from stationarity. As we will inspect �rst in Chapter (3.7),
the requirement of stationarity allows us to generate very easily new classes of higher
dimensional black hole solutions.

3.4 Horizon topology and blackfolds with boundaries

With the blackfold construction, the transverse sphere Sn+1 corresponding to the Schwarzschild
horizon can be thought of being mapped to each point σa of the worldvolume. It is
parametrized by Ωn+1 in (3.1) and it has radius r0(σ), depending on the point. Given
the hypersurface-orthogonal timelike vector ξa, we can foliate the worldvolume in space-
like slices Bp, each of which is orthogonal to ξa and has topology T(Bp). Then the
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topology of the entire blackfold horizon is T(Bp)×Sn+1, where r0 is the parameter which
determines how much this product is warped, due to its variation over Bp.

This picture changes if we have boundaries within the worldvolume. Let us assume
to have a boundary ∂Wp+1 determined by a function f(σ) such that f |∂Wp+1

= 0. We
demand that the e�ective �uid stays within this boundary on any spatial slice Bp, and
hence the velocity �eld must maintain itself parallel to it

ua ∂af |∂Wp+1
= 0. (3.83)

By multiplying equation (3.52) by f , reverting the derivative on f and evaluating the
result on ∂Wp+1, it follows that the intrinsic blackfold equations read on the boundary

[(ε+ P )uaub + Pγab] ∂af |∂Wp+1
= 0. (3.84)

Then, comparing this equation with (3.83), we observe that the pressure must be null on
the boundary, which is a well understood consequence of perfect �uid dynamics in case
of bounded �uids. The speci�c form of pressure (3.16) implies that the thickness r0 of
the horizon must approach a zero size at the boundary

r0|∂Wp+1
= 0, (3.85)

and consequently the horizon of the blackfold must close at its edge.
In turn, this fact also implies through equation (3.72) that k → 0 at the boundary

as well. It can happen in case of

• V 2 → 1, that is the �uid locally moves at the speed of light near the boundary.
It is the most common case, and in the known cases the blackfold solutions that
one can obtain in this situation do match at the boundary with EFE analytical
solutions with regular horizons. We will see an example of this in Section 3.7.2;

• R0 → 0, that is the blackfold ends on a surface of in�nite redshift, that is the
worldvolume meets another horizon at its boundary. This can happen when the
background exhibits a horizon and when the scale hierarchy allows the two horizons
to meet. Contrary to the previous case, it can happen that the corresponding
known solutions are not endowed with a regular horizon at the boundary.

However, we are still lacking a general understanding or proof of the conditions that lead
to a regular horizon at the edge of the blackfold4.

If worldvolume boundaries are present, it means that r0 shrinks to zero there, and in
turn it does not lead anymore to a horizon topology T(Bp)× Sn+1, but instead we have
a non-trivial �bration, and it will be necessary to discuss it on a case by case basis.

4I am grateful to Roberto Emparan for an interesting discussion on this issue.
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3.5 The observables

We intend now to study the main features of the blackfold construction, by analysing the
observables quantities. Let us consider �rst the horizon area, which of course involves
short wavelength physics at distances r ∼ r0. Thus we need to focus on g

(short)
µν of

equation (3.4).
To the lowest order in r0

R
, its spatial horizon sections have metric

ds2
H = (δij + uiuj) dz

idzj + r2
0dΩ2

(n+1), (3.86)

where ui = u ·∂zi as before. We name aH(σ) the local horizon area at each point σa ∈ Bp,
and it is only related to the transverse sphere Sn+1. Therefore, to the lowest order we
have

aH(σ) = Ω(n+1)r
n+1
0

√
1 + δijuiuj . (3.87)

Recalling the de�nitions given above, one has

ui = u · ∂zi =
ΩiRi

R0

√
1− V 2

, (3.88)

and in turn we can rewrite

√
1 + δijuiuj =

√
1 +

∑
i

R2
iΩ

2
i

R2
0(1− V 2)

=
1√

1− V 2
, (3.89)

in such a way that

aH(σ) =
Ω(n+1)√
1− V 2

rn+1
0 = Ω(n+1)

( n
2κ

)n+1(
1− V 2

)n
2 Rn+1

0 (σ), (3.90)

where we made use of the intrinsic solution for r0 given in (3.81).
But we know that the local area aH(σ) involves only the area of the transverse sphere

of radius r0(σ). Consequently, the global area of the horizon will be

AH =

∫
Bp
dV(p)aH(σ), (3.91)

where dV(p) refers to a volume element on Bp. This de�nition means that the global
entropy is

S =
AH
4G

, (3.92)

once assumed the validity of the Bekenstein-Hawking relation.
We are now able to interpret this result from the e�ective �uid theory point of view.

First, we de�ne the local entropy current sa = s(σ)ua of the �uid, with s(σ) given by
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(3.17). As usual, the related conserved charge can be interpreted as the global entropy
of the �uid

S = −
∫
Bp
dV(p)san

a =

∫
Bp
dV(p)

R0

k
s(σ), (3.93)

where we have also introduced for convenience the unit timelike vector orthogonal to Bp
as

na = (∂t)
a =

1

R0

ξa, (3.94)

so that ξa = R0 n
a. We see that this global entropy matches perfectly with (3.92).

Analogously, let us assume to be working with a type of black branes with a transverse
angular momentum. It would be the case if we started from a Kerr black brane, whose
horizon has an angular momentum along the transverse sphere. In such a situation, we
could �nd a local current J a = J ua from the short wavelength physics as we did for sa.
In fact, we can extract J a from the mixing component of the metric g

(short)
µν , according

to the ADM prescription. After that, it is possible to de�ne a global angular momentum
Ĵ as the integral over the spacelike slice Bp of this current. We will make use of this kind
of procedures in the Chapter 6.

Returning to the study of Schwarzschild black branes, we notice that the intrinsic
equations (3.53) allow us to de�ne in principle up to p + 1 conserved global charges of
the �uid, one for each direction of Wp+1. We have the (ADM) mass

M =

∫
Bp
dV(p)Tµνn

µξν , (3.95)

related to the component T00. From the de�nitions given in Section 3.3, we can give a
more explicit form of it as

M =
Ω(n+1)

16πG

( n
2κ

)n ∫
Bp
dV(p)R

n+1
0

(
1− V 2

)n
2
−1(

n+ 1− V 2
)
. (3.96)

Also, we can �nd the worldvolume angular momenta Ji from T0i as

Ji = −
∫
Bp
dV(p)Tµνn

µχ νi =

=
Ω(n+1)

16πG

( n
2κ

)n
nΩi

∫
Bp
dV(p) R

n−1
0 R 2

i

(
1− V 2

)n
2
−1
.

(3.97)

So, in summary, worldvolume isometries lead to conserved charges from the e�ective
energy stress tensor. One can have further conserved currents on the transverse space,
and they lead to other corresponding charges.

We conclude this section with a remark on a possible way to measure the validity of
the blackfold approach in case of stationary con�gurations [32]. As explained at the be-
ginning of this chapter, in general one must require at each order that at any point of the
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worldvolume the local horizon thickness r0 is much smaller than the length scales related
to the intrinsic and extrinsic geometry at the next order in the perturbative expansion.
This is necessary to ensure that we recover locally the description of a Schwarzschild
black brane, and, according to the analysis above, it means that r0 must be smaller than
any possible curvature scalar radius that can be made up with the induced Riemann
tensor R, the extrinsic curvature tensor K i

ab and the derivatives of the collective brane
variables. As a consequence, if we work at the leading order, in general it is necessary
to require that at each point of Wp+1

r0 � min

(
|R|−

1
2 ,
∣∣uaubRab

∣∣− 1
2 ,
∣∣KiKi

∣∣− 1
2 ,
∣∣KabiKabi

∣∣− 1
2 ,
∣∣uaubK ci

a Kbci

∣∣− 1
2 ,

∣∣∣∣∇a∇ak

k

∣∣∣∣− 1
2

)
.

(3.98)

3.6 The e�ective action formalism

The splitting of the gravitational degrees of freedom (3.2) into the long wavelength and
the short wavelength sectors can also be analysed in terms of actions. Actually, the
complete Hilbert-Einstein action in vacuum for the system can be separated as

IHE[g] =
1

16πG

∫
dDx
√
−g R ≈ 1

16πG

∫
dDx

√
−g(long) R(long) + Ieff

[
g(long)
µν , φ

]
,

(3.99)

where R and R(long) refer to the Ricci scalars computed with gµν and g
(long)
µν respectively.

The �rst term in the r.h.s. is the one that accounts for the background dynamics, and it
involves the backreaction of the brane (as one can see for example from equation (3.56)).

On the other hand, the second term describes the e�ective brane dynamics related to
the �uid endowed with the energy stress tensor Tab. From an action-based point of view,
it can be interpreted as the result of integrating out the short wavelength gravitational
degrees of freedom in IHE[g], and it matches with the meaning of the e�ective stress
energy tensor description that we gave in Section 3.1. As a consequence, Ieff shows
a dependence only on the long wavelength metric and on the e�ective brane dynamics
parameters, called φ = {r0, u

i, Xµ} in equation (3.99).
This action-based formalism will be equivalent to the one previously showed involving

the explicit metrics g
(short)
µν , g

(long)
µν if and only if it allows to recover the equations of

motion (3.52) and (3.53).
As far as it concerns the intrinsic equations, given Ieff we can de�ne an e�ective

energy stress tensor

Tµν = − 2√
g(long)

δIeff
δgµν(long)

∣∣∣∣∣
Wp+1

, (3.100)
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in the same fashion as the stress tensor that one usually de�nes in GR. Remarkably, it can
be shown to be equal to the one de�ned in Section 3.1, and also to satisfy a conservation
equation analogous to (3.53) [31]. Therefore we recover perfectly the intrinsic behaviour
of the brane.

In order to obtain the extrinsic equations from (3.99), we need to carry out a leading
order analysis concerning the explicit form of Ieff for stationary con�gurations [33]. The
dynamics is completely �xed by the induced metric γab and the Killing vector ka in this
case, which means that in general the only scalars that one can build are functions of the

modulus k =
∣∣γab kakb∣∣1/2. We can then assume without restrictions that at this order

the e�ective action is a generalization of the Polyakov action, with form

Ieff
[
r0, u

i, Xµ, γab
]

=

∫
Wp+1

dp+1σ Leff (γab, k) =

∫
Wp+1

dp+1σ
√
−γ λ(k), (3.101)

where the dependence on g(long) is just through γab at this order, while the embedding
Xµ also encodes the dependence on Ra(σ), as mentioned above. It means in turn that
in (3.101) the true dependence is only on Xµ and γab, since we were able to express r0

and ui in terms of Ra in the stationary case.
Recasting the de�nition of e�ective energy stress tensor above as

T ab = − 2√
−γ

δLeff
δγab

, (3.102)

and noticing that
δ
√
−γ

δγab
= − 1

2
√
−γ

δγ

δγab
=

√
−γ
2

γab (3.103)

and that
δλ(k)

δγab
= λ′(k)

δk

δγab
= −λ

′(k)

2k
kakb = −1

2
λ′(k) kuaub, (3.104)

we obtain explicitly
T ab = λ′(k) kuaub − λ(k)γab. (3.105)

We see that (3.105) describes a perfect �uid, with

P = −λ(k), (3.106)

ε+ P = λ′(k) k. (3.107)

Hence, the local entropy and the local free energy result in

s =
k

T
λ′(k), (3.108)

F = ε− T s = −P = λ(k). (3.109)
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Therefore, we can de�ne a global free energy F as the integral over the worldvolume

F =

∫
Wp+1

dσp+1
√
−γ F , (3.110)

where of course we must think of the time direction as Wick rotated in order to make
this integration sensible. We also remark that the Euclidean rotation is trivial since we
are dealing with a foliation of Wp+1 into time-independent slices Bp. Consequently,

F = −β
∫
Bp
dV(p) R0 P, (3.111)

where the redshift factor R0 comes from integrating over the Euclidean asymptotic (that
is, background) time span β.

This framework is constructed consistently since now we can verify the following
relation between global quantities

F = M − TS −
∑
i

ΩiJi, (3.112)

and we observe again that the angular momenta Ωi have the same role as a set of
chemical potentials related to the conserved charges Ji. Furthermore, if we take as usual
dF |Ωi,T = 0 as variational principle, we can easily obtain the First Law

dM = TdS +
∑
i

Ωi dJi. (3.113)

If we return now to the e�ective action, we can consider to integrate it over an
asymptotic span of time ∆τ = ∆t/R0, again in view of the relation (3.75) between
background and worldvolume time translations. In this way, we �nd

Ieff = −∆τ

∫
Bp
dV(p) R0P, (3.114)

from which we see explicitly the equivalence with the free energy (3.110). Noticeably, by
using equation (3.16) and (3.72) it is possible to rewrite the pressure as

P = −
Ω(n+1)

16πG

( n

4πT

)n
kn = −

Ω(n+1)

16πG

( n

4πT

)n
Rn

0

(
1− V 2

)n/2
, (3.115)

which means that, up to a numerical factor, we can consider a variational principle based
on the e�ective action

Ĩeff [X
µ] =

∫
Bp
dV(p) R0 k

n =

∫
Bp
dV(p) R

n+1
0

(
1− V 2

)n/2
. (3.116)
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Then, thanks to the result (A.32), we note that this action actually leads to the extrinsic
equations in the form (3.82), as desired. Of course, we can also recast the variational
principle in terms of the free energy as

δĨeff
δXµ

= 0, (3.117)

and it corresponds to demanding

δM

δXµ
= T

δS

δXµ
+
∑
i

Ωi
δJi
δXµ

. (3.118)

Then we have proven the equivalence between the approach followed in the previous
sections and the one based on an e�ective action. In fact, it is remarkable that one can
consider the pressure as found in the e�ective energy stress tensor, integrate it as in
(3.110) and straightforwardly recover the full thermodynamics of Section 3.5 by simply
performing the following derivatives:

S = − ∂F

∂T

∣∣∣∣
Ωi

, Ji = − ∂F

∂Ωi

∣∣∣∣
T,Ωj 6=i

. (3.119)

As we will see, it is often a shorter and more viable computation to go through.

3.7 Examples of blackfolds

In this section, we consider some basic examples of blackfold solutions. In particular, we
intend to show the usefulness of this approach by describing how both MP black holes
and black rings in the US regime are easily recovered as speci�c cases.

3.7.1 Black one-folds

In this section we give a basic demonstration of the power of the blackfold setup, by
studying the whole set of possible stationary p = 1 blackfolds at once [34, 32]. This will
also give us the chance to appreciate the advantages related to the two approaches shown
in Chapter 3 at the perfect �uid level, namely solving explicitly the blackfold equations
and deriving the observables from an e�ective action.

We are dealing here with p = 1 and then with a two dimensional worldvolume,
endowed with coordinates σa = (t, z). We can choose to parametrize the vector space
related to this worldsheet with two tangential orthonormal vectors ua and va, where va

is spacelike and ua is the timelike unit vector describing the velocity �eld of the e�ective
�uid. As a consequence, we have

u2 = −1, v2 = 1, uava = 0. (3.120)
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The �rst fundamental form associated to the worldsheet can be simply written as

hµν = −uµuν + vµvν , (3.121)

in agreement with the fact that hµν + uµuν is the projector on the direction orthogonal
to the �uid boost ua. If we consider their push-forwards uµ and vν , it follows that we
can rewrite the pull-back of the perfect �uid stress tensor (3.15) as

T µν = εuµuν + Pvµvν . (3.122)

The worldsheet origin of uµ and vν implies of course that [u, v] must lie again in the
vector algebra of the worldsheet, that is

⊥µρ [u, v]ρ = 0. (3.123)

We are dealing with stationary solutions, and thus ua must be proportional to a
certain Killing vector ka. Recalling the machinery presented in Section 3.3, we consider
the vectors ξ = ∂t (restrincting to R0 = 1) and ζ = ∂z. Then we can perform a change
of basis on the worldsheet vector space de�ned uniquely by a real parameter α such that

u = coshα ξ + sinhα ζ,

v = sinhα ξ + coshα ζ.
(3.124)

We notice that this change of basis simply corresponds to switching from static observers
following orbits of ∂t to the �uid-comoving ones, via a boost with α as parameter.

We can now turn to the explicit solution of the extrinsic equations. By using relation
(A.15), it is easy to show that they correspond to

⊥ρµ (ε∇uu
µ + P ∇vv

µ) = 0. (3.125)

In terms of ξ and ζ, they read then

⊥ρµ ∇uu
µ =⊥ρµ [coshα∇ξ (coshα ξµ + sinhα ζµ) + sinhα∇ζ (coshα ξµ + sinhα ζµ)] .

(3.126)
It is reasonable to assume that ξ is a Killing vector by itself; furthermore, it is normalized
and hence its integral curves must satisfy ∇ξξ = 0, that is they must be geodesics. We
can also assume that ζ is parallel-transported along these curves, which means that
∇ξζ = 0. Since we are considering a zero-torsion spacetime, these assumptions imply
that

∇ζξ = − [ζ, ξ] . (3.127)

Recalling that the worldsheet vector algebra must close according to (3.123), it holds
that

⊥ρµ (∇ζξ)
µ = 0 (3.128)
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as well. Hence, on the whole,

⊥ρµ ∇uu
µ =⊥ρµ sinh2 α (∇ζζ)µ , (3.129)

and analogously
⊥ρµ ∇vv

µ =⊥ρµ cosh2 α (∇ζζ)µ , (3.130)

in such a way that the extrinsic equations can be recast in the form(
ε sinh2 α + P cosh2 α

)
∇ζζ = 0. (3.131)

Consequently, they lead to ε sinh2 α + P cosh2 α = 0 , i.e.

tanh2 α = −P
ε

=
1

n+ 1
. (3.132)

By comparing with equation (4.10), we conclude that the local e�ective �uid velocity
β = tanhα is equal to the propagation speed of transverse perturbations on the 1-brane,
independently of the worldsheet point σa. Furthermore, we can consider ζ in terms of a
background spacelike vector χ describing an asymptotic isometry as

ζ =
1

R
χ, (3.133)

where R is the norm of χ on the worldsheet, and in general it depends on σa. By
introducing the spatial velocity �eld V = RΩ as above, thanks to relation (3.132), it is
possible to obtain the constraint between the angular velocity and the orbits radius R(σ)

V = ΩR =
1√
n+ 1

, (3.134)

which clearly reminds us of the balance condition (2.44) for ultra-spinning black rings in
D = 5. In particular, we notice that the radius R is independent of the worldsheet point,
namely there is just one possible radius for the orbits, once we �x the angular velocity
Ω.

Let us now inspect how to obtain (3.134) with the e�ective action formalism. We
start by taking two background vectors ξ and χ tangent to the worldsheet, on such a way
that they are timelike and spacelike respectively, with χ describing orbits of periodicity
2π. Here we can consider their norms R0 and R on the worldsheet to be constant form
the start, since we can always choose their push-forwards as the vector basis of the
worldsheet. Explicitly, we have again

ξ = R0∂t, χ = R∂z. (3.135)

From (3.114) and neglecting the time span factor, we obtain the e�ective action

I = 2πRR0

[
R2

0 − Ω2R2
]n/2

, (3.136)
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and we can vary it along the transverse radial direction to �nd the solution to extrinsic
equations, namely

ΩR =
R0√
n+ 1

, (3.137)

which reduces to (3.134) for R0 = 1. Once more, we interpret it as the necessary condition
on the radius in order to have a stationary con�guration.

Instead of picking up a speci�c one-fold con�guration and computing its observables,
it was noticed that it possible to gather the whole zoo of p = 1 blackfolds into a general
discussion if we choose a Minkowski background with R0 = 1 [34].

With this choice of background, requiring stationarity with respect to asymptotic ob-
servers corresponds to taking ξ and χi as the Minkowski time translations and rotations
generators, respectively. We also choose the 1-dimensional spatial sections of the world-
sheet to be invariant under background translations generated by ∂x, with associated
coordinate x describing compact orbits of length 2πRx. For later convenience, we also
introduce an angular coordinate φx = x/Rx with standard periodicity 2π.

Let us now consider the subspace of Minkowski spacetime over which the 1-fold
embedding is non-trivial, that is where the 1-fold actually lies, in such a way that the
other embedding coordinates can be set identically to zero. Following the exact solutions
discussed in Sections (2.2) and (2.3), we parametrize the spatial slices of this subspace
as

dl2 = R2
xdφ

2
x +

m∑
i=1

(
dr2

i + r2
i dφ

2
i

)
. (3.138)

In this way, we are splitting them onto the direction x and onto m planes over which the
projection of the 1-fold is invariant under translations ∂x and rotations χi respectively.
In general, we have 2m ≤ D − 1, and not D − 2 since the x direction can also collapse
into a point. In addition, we notice that by construction the m radial directions ri are
orthogonal to the 1-fold itself, as well as the D−(1+2m) = n+3−2m trivial embedding
directions. Thus, we see that these total n + 3 − m coordinates must account for the
transverse sphere sn+1 of radius r0.

This choice allows to simply parametrize the spatial curve the string lies along as

φx = nxσ, φi = niσ, (3.139)

where we also set the embedding ri = Ri, with σ characterizing the proper length of the
1-fold in the interval 0 ≤ σ < 2π. Then, any φa can span up to 2πna, with a = x, 1 . . .m.
Of course, if the 1-fold closes on itself, the na must be all integers, and in particular we
think of na ≥ 0. It means in turn that each ratio ni/nj is rational. Furthermore, if we
want to restrict ourselves to single-covering parametrizations of the 1-fold, we observe
that it necessary to require that the smallest winding nmin is coprime with respect to all
the remaining na.

We can now proceed with a complete classi�cation of stationary 1-folds, consisting of
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• black strings, for nx 6= 0, ni = 0 ∀ i. The resulting curve has no winding, as a
consequence;

x
0 2πRx

• black rings, for nx = 0 and ni = 1 ∀ i. The direction x collapses to a point, and
in particular we impose ni = 1 in order to avoid multiple coverings. The radius of
these black rings will be given by R2 =

∑
iR

2
i ;

x

R

• helical black strings, for nx 6= 0 and ni > 0 for some planes i. Clearly, the number
of ni > 0 speci�es the dimensionality of the spatial non-trivial subspace. We depict
here the case of n1 > 0 only, in such a way that the spatial subspace is 3-dimensional
and that we have two characteristic length scales, namely R1 and Rx;

x

(r1, φ1) R1

• helical black rings, if nx = 0, ni 6= 0 for at least two distinct i, j such that 0 < ni <
nj. In this case, we obtain a con�guration like

Ri

Rj
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where the number of windings is nj/ni. We can recover a helical black string by
performing a suitable limit of large Ri.

We notice that the constraint on m discussed above implies that

m ≤
[
n+ 3

2

]
. (3.140)

As we know, we need at least a plane for helical black strings and two of them for
helical black rings to be present. This means that it is possible to �nd both of these
con�gurations already in n = 1, according to that constraint. In Chapter 2 we analysed
the exact analytic solutions for black strings and black rings in D = 5, while the explicit
solution for helical black strings and rings (which have the same horizon topology as
those known solutions) has not been found yet.

Let us now consider the spatial �uid velocity V , whose value is �xed by (3.134). We
can decompose it along the directions related to the chosen rotational and translational
Killing vectors dividing V into the components ΩiRi and Vx = ΩxRx. In this way, its
modulus reads

V 2 =
∑
a

Ω2
aR

2
a =

1

n+ 1
, (3.141)

due to the balancing condition.
We can now turn to the evaluation of the relevant thermodynamic quantity both

from the free energy functional and from the conserved currents. After observing that
the 1-fold length is simply

L = 2πR, (3.142)

where R =
√∑

a n
2
aR

2
a , the observables result in

S =
πΩ(n+1)

2G

√
n+ 1

n
rn+1

0 R, (3.143)

M =
Ω(n+1)

8G
(n+ 2)rn0R, (3.144)

Ja = ±
Ω(n+1)

8G

√
n+ 1rn0naR

2
a, (3.145)

where we de�ned the horizon radius conveniently as

r0 =
n3/2

√
n+ 1

1

4πT
. (3.146)

It is remarkable that they coincide with the corresponding singly-spinning D = 5
black ring quantities discussed in Section 2.3 if we take the ultra-spinning limit in n = 1,
and de�ne the radius of the ring as R. Of course, we have to set nx = 0 and nî = 1 for
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only one speci�c î (since we are considering a singly-spinning BR). We also notice that
we have fully recovered the intuitive black ring picture of a black string bent to form a
circle. In addition, we observe that these results hint at the existence of black rings in
any D ≥ 5, since we found a well-de�ned thermodynamics of their US counterparts.

This is an outstanding check of the blackfold approach, which was precisely conceived
in order to grasp the dynamics of solutions in higher dimensions with high angular
momenta. At this point, we can be persuaded that also helical black rings and strings
describe exact solutions in the US regime, with the thermodynamic properties above.

If we now turn to the analysis of relations (3.143)-(3.145), after disregarding numerical
factor except for the na, we can easily combine these quantities into

Sn ∼ Mn+2∑
a naJa

, (3.147)

which relates the behaviour of entropy to the conserved charges. We see that entropy
tends to decrease if we increase the winding numbers na of the solution while keeping
�xed its conserved charges. This is an interesting check of our analysis, since e�ectively
we are making the string longer and hence we are decreasing its mass density (a fact that
causes an entropy decrease in NG classic strings as well). From these considerations, we
also understand that black rings are the most favourable singly spinning 1-folds.

Finally, we observe that these solutions are endowed with them+1 conserved charges
M and Ji. On the other hand, a helical black ring described at the perfect �uid level has
2m independent parameters, that is the horizon scale r0, the radii Ri and the m inde-
pendent winding numbers ratios ni/nmin. We can then conclude that we are in presence
of an in�nite non-uniqueness, as for each observable helical black ring con�guration with
some M and Ji, there is an in�nite class of solutions parametrized by m − 1 rational
numbers with the same mass and angular momenta.

3.7.2 Black discs

We give now another example of the solution-generating power of the blackfold approach
by considering a Schwarzschild black 2-brane within a Minkowski background [34, 32].
We take the embedding map to be

X0 = τ,

X1(ρ, φ) = ρ cosφ, X2(ρ, φ) = ρ sinφ, (3.148)

X i = 0 for each i = 3 . . . D − 1,

with ρ ≥ 0 and 0 ≤ φ < 2π. With these choices, the induced metric on the spatial
section B2 of the worldvolume reads

ds2 = −dτ 2 + dρ2 + ρ2dφ2. (3.149)
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We observe that this is a minimal surface embedding with K i
ab = 0, and hence the

extrinsic equations are automatically solved.
To implement a rotation of B2, it is su�cient to introduce a Killing vector �eld

k = ∂τ + Ω∂φ with norm k =
√

1− Ω2ρ2 , (3.150)

where we notice that R0 = 1 here, since we are dealing with a �at background. As
explained in Section 3.4, this leads to a limiting surface at k = 0, that is for ρ+ = 1

Ω
.

Therefore the worldvolume geometry becomes compact due to this circular boundary of
radius ρ+.

Thanks to the formalism developed above for stationary blackfolds, this setup is
enough to evaluate the observables related to that con�guration.

r

r0(ρ)

ρ+

Minkowski
background

R2

Figure 3.1: We show here a cartoon of the black disc setup, considering a space D − 1
dimensional slice at t = const. The boundary around the disc is at ρ = ρ+, while the
solid line over the disc represents the pancaked horizon with spatial topology SD−2. At
spatial in�nity, the dashed line represents a space slice of Minkowski background.

First, we notice that the horizon has the geometry of a 2-ball (that is, a disc) D with
(n+1)-spheres �bered over, each with radius r0(ρ) depending on the worldvolume point.
As one can see from Figure 3.1, it consists in a n + 1 + 2 = D − 2 dimensional surface,
and the �bration leads to a SD−2 topology.

The horizon width has explicit form

r0(ρ) =
n

4πT
k =

n

4πT

√
1− Ω2ρ2 . (3.151)
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Then it gets to zero at the boundary r0(ρ+) = 0, while it is maximal at the centre of the
disc, where

r+ = r0(ρ = 0) =
n

4πT
. (3.152)

Interestingly, this horizon topology is the same as for a singly spinning MP black hole in
the US regime, where it has a pancaked shape. Arguably, we can expect our observables
to match the ones of this con�guration for D ≥ 6 (where the US regime actually exists
for MP black holes).

Applying the validity analysis of the blackfold approach in Section 3.3 to this case,
we stress that both the Riemann curvature tensor and the extrinsic curvature vanish
here, so that the requirement (3.98) reduces to demanding

r0 �
∣∣∣∣∇a∇ak

k

∣∣∣∣− 1
2

=
1

Ω

1− Ω2ρ2√
2− Ω2ρ2

. (3.153)

Recalling that r0 = r+

√
1− Ω2ρ2 , we see that near the rotation axis at ρ→ 0 equation

(3.153) is equivalent to requiring r+ � 1
Ω
, i.e. r+ � a making use of the de�nitions

of Section 2.2. Thus, we recognize the usual form of the US limit, with the angular
momentum length scale much bigger than the horizon scale, and this agrees with the
correspondence suggested above.

On the other hand, close to the boundary at ρ→ ρ+, one �nds from (3.153) that

r+ �
1

Ω

√
1− Ω2ρ2

2− Ω2ρ2
−−−−→
ρ→ρ+

0, (3.154)

which is not satis�ed by any positive r+. As a consequence, it is wise to introduce a
small parameter ε � 1 describing the radial distance from the boundary. We consider
then the blackfold approach to be valid in the range 0 ≤ ρ ≤ ρ+ − ε, but we assume the
existence of a regular limit of the blackfold observables for ε→ 0.

We can now safely deal with the observables, and we start by evaluating the free
energy functional. The pressure of the e�ective �uid is

P = −
Ω(n+1)

16πG
rn0 = −

Ω(n+1)

16πG
r n+
(
1− Ω2ρ2

)n
2 , (3.155)

and subsequently the free energy (3.111) reads

F =
Ω(n+1)

16πG
r n+

∫ 2π

0

dφ

∫ ρ+−ε

0

dρ ρ
(
1− Ω2ρ2

)n
2 =

=
Ω(n+1)

8G
r n+

1− [ εΩ (2− εΩ) ]
n
2

+1

(n+ 2) Ω2
=

=
Ω(n+1)

8G
r n+

(
1

(n+ 2) Ω2
+O

(
ε
n
2

+1
))

.

(3.156)
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Of course, we can calculate the free energy for a MP black hole in the US regime
from the known thermodynamics relations and the observables from Section 2.2. It can
be easily seen to coincide to �rst order in ε with (3.156), and then it is guaranteed that
the observables will match as well, as anticipated. Therefore we can conclude that the
blackfold approach allows to describe the US regime of another class of known analytic
exact solutions, that is MP black holes, in addition to black rings, as we found in Section
3.7.1.
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Chapter 4

Black Ring Stability and Blackfolds

Besides generating new solutions, another interesting application of the blackfold ap-
proach consists in studying the dynamic stability of higher dimensional black holes,
which basically reduces to the analysis of e�ective �uid perturbations. In this chapter,
we approach black ring stability with the blackfold formalism. As we noticed in Section
3.7, solutions with the same topology as the �ve-dimensional black ring are present in
any D ≥ 5. Consequently, we will analyse the case in generic dimensions.

We �rst review static black branes stability by considering the quasinormal modes
propagating transversally and longitudinally to the worldvolume. Then, we turn to
boosted black strings, and �nally we tackle a more realistic modelling of black rings by
introducing a �nite extrinsic radius R. We evaluate also the viscous corrections to the
boosted black string modes.

4.1 Stability of static blackfolds

In this section, we present the most simple instance of stability analysis making use of
blackfolds. We consider a Schwarzschild black brane with a �at, non-compact (p + 1)-
dimensional worldvolume, endowed with the properties outlined in the previous sections
[31, 35].

We take then an e�ective �uid with energy-stress tensor (3.15) with the known uni-
form energy density ε and pressure P . We set the initial velocity to be ua = (1, 0 . . . 0),
in such a way that the initial �uid is static and the worldvolume is not boosted. Finally,
we consider conveniently a static embedding of the worldvolume into �at space as

X0 = t, X i = zi, with i = 1 . . . p, (4.1)

while initially we keep the transverse coordinates Xm, m = p+1 . . . D �xed to a constant
value independent of σa. Accordingly, the unperturbed e�ective energy-stress tensor has
form

T ab = (ε+ P )uaub + Pηab = diag(ε, P . . . P ). (4.2)
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Let us introduce perturbations with characteristic wavelength in the interval r0 �
r � R where the blackfold framework is valid. In that range, we can work at the
leading order as before, in such a way that the worldvolume can be considered �at
(K ρ

ab ≈ 0), while intrinsic and extrinsic dynamics decouple. The �uid parameters are r0

and the velocity �eld ua. If we impose a variation of r0 dependent on σa, it will bring
about a δε(σ) and a δP (σ) = dP

dε
δε, once given the known equation of state. We also

impose a variation of the velocity �eld, which now reads ũa = (1, vi(σ)), and it is still
unit-normalized, since vivi ≈ 0 at �rst order. We also introduce perturbations of the
embedding δXm = ξm(σ).

First, we notice that we still have a �at induced metric ηab, because its components
do not involve the coordinates and we are not perturbing the embedding along the
worldvolume directions. Consequently, the perturbed energy-stress tensor reads

T ab =

[
ε+ P +

(
1 +

dP

dε

)
δε

]
uaub+(ε+P )

(
uaδub + ubδua

)
+

(
P +

dP

dε
δε

)
ηab, (4.3)

or, more explicitly, we can write its non-zero components as

T 00 = ε+ δε, T 0i = (ε+ P )vi, T ii = P +
dP

dε
δε. (4.4)

Due to the embedding perturbations, the extrinsic curvature is no more vanishing. It
results in

K ρ
ab = Da∂bX

ρ + Γρµν∂aX
µ∂bX

ν , (4.5)

where now X̃µ = Xµ + ξµ(σ), and so Γρµν∂aX
µ∂bX

ν is a second order term and we
can neglect it. Analogously, since the worldvolume geometry is �at for this interval of
wavelength, the perturbed extrinsic curvature has non-vanishing components with simple
form

K m
ab = ∂a∂bξ

m. (4.6)

As we mentioned, extrinsic and intrinsic perturbations decouple in this setup, and it
means that we can deal with the intrinsic and extrinsic blackfold equations separately.
Let us now turn to the former. Requiring the validity of (3.53) coincides with demanding

T ab(0)K
m

ab = 0, (4.7)

since we are working at �rst order. After substituting, we obtain(
ε∂2

t + P∂2
i

)
ξm = 0, (4.8)

which is a well-known dispersion equation. If we take a plane-wave behaviour of the
variations

ξm(σ) = ξm ei(−wt+kiz
i), (4.9)
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it tells us that transverse elastic perturbations of the worldvolume have group velocity

c2
T = −P

ε
=

1

n+ 1
. (4.10)

It means that cT > 0 and hence we have simply an oscillatory evolution of the pertur-
bations, corresponding to an extrinsic stability of Schwarzschild �at black branes at the
leading order.

Let us now inspect the dynamics of longitudinal modes with the p intrinsic equations

DaT
ab = 0, (4.11)

from which it is customary to extract the second order di�erential equation

∂2
t T

00 − ∂i∂jT ij = 0. (4.12)

After substituting, it reads (
∂2
t −

dP

dε
∂2
i

)
δε = 0. (4.13)

If we consider
δε(σ) = δε ei(−wt+kiz

i), (4.14)

then equation (4.13) implies an imaginary sound speed, that is

c2
L =

dε

dP
= − 1

n+ 1
. (4.15)

It means that we have a real exponential amplitude in�uencing the propagation of sound-
modes on the worldvolume, and hence we can conclude that an intrinsic instability is
present for Schwarzschild black branes at the leading order.

Indeed, these results agree with the well-known longitudinal instability that Gregory
and La�amme found for low frequency perturbations of black branes by linearising the
whole set of EFE [36, 37]. Instead, we observe that here it was just necessary to take
into account the constraints (3.52) and (3.53), thanks to the blackfold machinery. In
view of the discussion above, this fact also means that we expect any higher dimensional
black hole admitting an ultraspinning regime to be unstable for perturbations along
the directions corresponding to the worldvolume in the blackfold approach. Numerical
simulations actually show that this is what happens for very high angular momenta.

By making use of the duality developed so far between dynamical behaviour and
thermodynamics of the e�ective �uid, it can be interesting to compare these results with
the thermodynamic stability of the �uid. From equation (3.19) and (3.20) we can �nd
the Gibbs-Duhem relation

dP = sdT , (4.16)
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which leads to
dP

dε
=
dP

dT
dT
dε

=
s

cv
, (4.17)

where cv is the speci�c heat at constant volume. It is well-known that a thermodynamic
system is unstable if cv < 0. Since s > 0, we see a perfect relation between the two
pictures: the local Thermodynamics of the e�ective �uid is unstable (cv < 0) if and
only if the dynamics of the black brane is unstable under long wavelength soundmode
perturbations (c2

L < 0), as it was found to be in (4.15).

4.2 Stability of boosted black strings

We study now the dynamics of a boosted black string under perturbations. In comparison
with the setup of Section 4.1, we have an additional boost, described by the Killing vector

ka∂a = ∂t + β∂z, k =
√

1− β2, (4.18)

which entails a velocity �eld

ua =
ka

k
=

(
1√

1− β2
,

β√
1− β2

)
. (4.19)

The unperturbed energy-stress tensor has now components

T 00
(0) =

ε

n+ 1

(
n

1− β2
+ 1

)
, (4.20)

T 01
(0) =

ε

n+ 1

nβ

1− β2
, (4.21)

T 11
(0) =

ε

n+ 1

(
nβ2

1− β2
− 1

)
. (4.22)

We introduce the perturbations δε(σ), δua(σ), ξm(σ) with explicit form

δξm(σ) = δξm ei(−wt+kz),

δu1(σ) = δu1 ei(−wt+kz), (4.23)

δε(σ) = δε ei(−wt+kz).

Of course, we notice that δu0 will be simply related to δu1 according to

δu0(σ) =
u1

u0
δu1(σ). (4.24)

In this way,

δT ab =
ε

n+ 1

[(
nuaub − ηab

) δε
ε

+ n(uaδub + ubδua)

]
, (4.25)

while
K m
ab = ∂a∂bξ

m. (4.26)
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Extrinsic equations. For each ξm, we obtain the equation(
n

1− β2
+ 1

)
w2 − 2

nβ

1− β2
wk +

(
nβ2

1− β2
− 1

)
k2 = 0, (4.27)

leading to

w1,2(k) =
nβ ±

√
n+ 1 (1− β2)

1 + n− β2
k. (4.28)

We can specialize them to the boosted black string obtained as a US limit of a black ring
in equilibrium, by setting β = 1√

n+1
, as found in Section 3.7.1. The resulting frequencies

are

w1,2(k) = 0 ,
2
√
n+ 1

n+ 2
k = 0 ,

2
√

2

3
k (4.29)

in the speci�c case of n = 1 and β = 1√
2
.

Intrinsic equations. They simply read ∂aδT
ab = 0, leading to[

−
(
n(u0)2 +

1

n

)
w + u0u1k

]
δε

ε
+

[
−2u1w +

(
u0 +

(u1)2

u0

)
k

]
δu1 = 0, (4.30)

[
−u0u1w +

(
(u1)2 − 1

n

)
k

]
δε

ε
+

[
−
(
u0 +

(u1)2

u0

)
w + 2u1k

]
δu1 = 0. (4.31)

Setting the determinant related to this system to zero, we �nd the frequencies

w3,4 =
β(n+ 2)± i

√
n+ 1(1− β2)

1 + n+ β2
k. (4.32)

We can consider again β = 1
n+1

, which leads to

w3,4 = (n+ 2± n i)
√
n+ 1

n2 + 2n+ 2
k = (3± i)

√
2

5
k, (4.33)

once we choose n = 1.
Then, as for the static black string, we �nd elastic stability, while we have a Gregory-

La�amme instability under longitudinal perturbations. This is shown explicitly by the
presence of an imaginary part in the frequencies (4.33), and we notice that they are no
longer purely imaginary as in (4.15), due to the presence of a boost.
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4.3 Black rings leading order stability

We start with a generic D = n+ p+ 1 = n+ 4 Schwarzschild boosted black string, and,
as mentioned above, we intend to bend it into a ring. Thus, naming as usual Xµ the
background coordinates, we choose the Minkowski metric

ds2 = −d(X0)2 + d(X1)2 + (X1)2d(X2)2. (4.34)

as the worldvolume embedding, with X1 = r and X2 playing the role of a radial and
angular coordinate, respectively. The transverse coordinates X3, X4 . . . XD−1 are set
identically to zero. The only non-vanishing components of the connection are

Γ1
22 = −X1, Γ2

12 = Γ2
21 =

1

X1
. (4.35)

We consider the embedding map

X0 = t, X1 = R, X2 = φ,

with R being the radius of the ring. The induced metric γab then reads

ds2
∣∣
R

= −dt2 +R2dφ2, (4.36)

and the induced connection is now zero: Γcab = 0. We notice that the tangent vectors
eµa = ∂aX

µ and the normal vector nµi are essentially Kronecker deltas with this choice
of embedding. Finally, since we want to describe a rotating solution, we introduce a
worldvolume Killing vector k. Due to the balancing condition in the US limit, we know
that it must have form

k = ∂t + Ω∂φ = ∂t +
1

R
√
n+ 1

∂φ, (4.37)

with modulus k =
√

n
n+1

.
It is now possible to evaluate the extrinsic curvature

K ρ
ab = Da∂bX

ρ + Γρµν∂aX
µ∂bX

ν . (4.38)

The �rst term in the r.h.s vanishes, and then it follows that the only non-zero component
is K r

φφ = −R. Furthermore, we take an initial energy-stress tensor of the usual form

T ab(0) =
ε

n+ 1

(
nuaub − γab

)
, (4.39)

where the speci�c values of the velocity �eld components ua = (u0, u1) are dictated by
the Killing vector k as

ua(0) =
ka

k
=

(√
n+ 1

n
,

1

R
√
n

)
. (4.40)
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Let us now perform a variation of the embedding only along the radial direction:

Xr 7→ Xr + ξr(σ), (4.41)

implying a perturbed position of the worldvolume R+δR(σ). Introducing eµa = ∂aX
µ as

the tangent vectors to the worldvolume (see Appendix A and [38]), one has the variations

δeµa = ∂aξ
µ = δµr∂aξ

r, (4.42)

δγab = 2eµae
ν
b∇(µξν) = −2K r

ab ξr, (4.43)

so that the only new contribution is δγφφ = 2RδR. We can read this variation also on
the background metric as

δgµν = ξr∂rgµν , (4.44)

and we get a non-vanishing connection on the worldvolume of the perturbed con�gura-
tion. Explicitly, on the surface we have

Γrφφ = −R− δR, Γφrφ = Γφφr =
1

R

(
1− δR

R

)
,

Γtφφ = R∂tδR, Γφtφ = Γφφt = ∂t
δR

R
, Γφφφ = ∂φ

δR

R
.

We can now compute the perturbed extrinsic curvature tensor. Again, from (A.18) we
have

δK r
ab = ∂aδe

r
b − ercδΓcab − Γcabδe

r
c + eµae

ν
bδΓ

r
µν + Γrµν (eµaδe

ν
b + eνbδe

µ
a) . (4.45)

From the choices above and keeping to the linear order in the perturbations, the only
non-vanishing terms result in

δK r
ab = ∂a∂bδR− δR δφaδφb. (4.46)

After perturbing also the energy density and the velocity �eld with δε(σ) and δua(σ),
the stress tensor variation results in

δT ab =
ε

n+ 1

[(
nuaub − γab

) δε
ε

+ n(uaδub + ubδua)− δγab
]
, (4.47)

where we have that
δγab = −γacγbdδγcd. (4.48)

As usual, we consider the variation of the δu1 component of the velocity as independent,
thanks to the normalization uau

a = −1, which actually entails

δu0 =
(u1)2

2u0
δγφφ +

γφφ
γtt

u1

u0
δu1. (4.49)
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Finally, it is convenient to de�ne a dimensionless perturbation of the velocity δū1 = Rδu1,
in order to deal more easily with the limit of large radii R.

We can now turn to the extrinsic equation along the direction r, which reads

δT 11K
(0) r
φφ + T 00

(0)δK
r

tt + 2T 01
(0)δK

r
tφ = 0. (4.50)

After substituting the relations above together with the on-shell velocities, and taking a
plane-wave behaviour of the perturbations

δR(σ) = δR ei(−wt+kRφ),

δū1(σ) = δū1 ei(−wt+kRφ), (4.51)

δε(σ) = δε ei(−wt+kRφ),

we �nd√
n(n+ 1)

R
δū1 +

[√
n+ 1

R2
+ w
√
n+ 1

((n
2

+ 1
)
w −
√
n+ 1 k

)]
δR = 0. (4.52)

On the other hand, the two intrinsic equations DaT
ab = 0 have the form

∂tT
00 + ∂φT

10 + ΓφtφT
00
(0) + ΓφφφT

10
(0) = 0, (4.53)

∂tT
01 + ∂φT

11 + 3ΓφtφT
01
(0) = 0, (4.54)

and, more explicitly, they read

√
n+ 1

[
k
√
n+ 1− (n+ 2)w

] δε
ε

+
√
n
[
(n+ 2)k − 2

√
n+ 1w

]
δū1+

+
k(n+ 2)−

√
n+ 1(n+ 4)w

R
δR = 0,

(4.55)

− (n+ 1)w
δε

ε
+
√
n
[√

n+ 1k − (n+ 2)w
]
δū1 +

2
√
n+ 1k − (4 + 3n)w

R
δR = 0. (4.56)

First, we observe that intrinsic and extrinsic equations are coupled in this case, and it
is related primarily to an initial non-zero extrinsic curvature. Secondly, we notice that
equation (4.52) decouples from the intrinsic sector for large R. Furthermore, it readily
reduces to (4.27) once we set β = 1√

n+1
, which is the boost of the black string that

we obtain in the thin ring limit. In the same way, (4.55) and (4.56) reduce to (4.30)
and (4.31) respectively in the thin ring limit, and they decouple from the variations δR.
On the whole, this is again consistent with the picture of a black ring seen locally as a
boosted black string.
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We intend to �nd the dispersion relation related to these �uctuations, and therefore
we set the determinant of this three-equation system to zero. It is possible to write the
four solutions with a generic n as

w1,2(k) = 0 ,
2
√
n+ 1

n+ 2
k, (4.57)

w3,4(k) =
√
n+ 1

(n+ 2)kR±
√

2(n2 + 2n+ 2)− n2k2R2

(n2 + 2n+ 2)R
. (4.58)

We notice that w1,2(k) coincide exactly with the extrinsic stable modes found for the
boosted black string, and hence they do not get corrections in 1/R at the perfect �uid
level. On the other hand, we also expect w3,4(k) to recover the intrinsic (unstable)
behaviour of the boosted black string in the limit of large R. After expanding them,
actually we �nd

w3 =
√
n+ 1

[
n+ 2 + n i

n2 + 2n+ 2
k − i

nkR2
− i(n2 + 2n+ 2)

2n3k3R4

]
+O

(
1

m6

)
=

=
√
n+ 1

n+ 2 + ni

n2 + 2n+ 2
k

[
1− n+ i(n+ 2)

2n k2R2
− (n+ i(n+ 2)) (n2 + 2n+ 2)

4n3 k4R4

]
+O

(
1

m6

)
,

(4.59)

and similarly for its complex conjugated w4. From the �rst line, we observe that only
the imaginary part of the frequency gets corrected.

It is interesting to observe that (4.58) implies that w3,4(k) are real if the modem = kR
satis�es

m < mmin =

√
2

n

√
n2 + 2n+ 2. (4.60)

The behaviour of mmin is shown in Figure 4.1, and we remark that it is O(1) for each
n. In particular, we have mmin(1) =

√
10, while its asymptotic value for large n is

√
2.

The mode m = 1 leads to real w3,4 for each n, while the modes m ≥ 2 corresponds to
complex frequencies for n ≥ 3.

From numerical analyses, we would expect to �nd intrinsic instability and hence
complex frequencies. But this contradiction comes as no surprise, since we know that
the blackfold approach is valid at the perfect �uid order if the �uctuations considered
have wavelength such that r0 � λ� R, where R is here precisely the extrinsic curvature
scale. This means in turn that we should trust our computations for modes

m = kR ∼ R

λ
� 1. (4.61)

Equation (4.60) means that we can associate to each n a lower boundary mmin above
which w3,4 are real, but conceivably we should trust our results only for larger modes
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Figure 4.1: We display here the behaviour of the threshold mode mmin(n), below which the
frequencies w3,4 are real.

m� mmin and we should consider the frequencies w3,4 only in the perturbative form of
equation (4.59) .

It is interesting to compare our large R results in any n with the ones resulting
from a large dimensions analysis. In [5] it was found that for n � 1 the elastic and
intrinsic instability of a black ring could be described, up to O(1/n), by the characteristic
frequencies1

w
(T )
1,2 = 0, 2

√
R2 − r2

0

R

k√
n

+O

(
1

n

)
, (4.62)

w
(T )
3,4 =

√
R2 − r2

0

R

kR± i
√
k2R2 − 2√
nR

+O

(
1

n

)
. (4.63)

If we now expand w
(T )
2 and w

(T )
3 at large R, we obtain

w
(T )
2 =

2k√
n
− k√

n

r2
0

R2
− k

4
√
n

r4
0

R4
+O

(
r6

0

R6
,

1

n

)
, (4.64)

1The dictionary with respect to that paper is mΦ → m = kR and m̂→ m√
nR

. It was also considered

r0 = 1 as de�nition of length scales there. Modes with ` = 0 correspond to our longitudinal frequencies,
while ` = 1 are translated into our elastic modes.
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w
(T )
3 = (1 + i)

k√
n
− 1

R2

[
i

k
√
n

+
(1 + i)kr2

0

2
√
n

]
−

− 1

2R4

[
i

k3
√
n
− ir2

0

k
√
n
− (1 + i)kr4

0

4
√
n

]
+O

(
r6

0

R6
,

1

n

)
.

(4.65)

On the other hand, we can expand our frequencies (4.57) and (4.58) for large n and �nd

w2 =
2k√
n

+O

(
1

n

)
, (4.66)

w3 = (1 + i)
k√
n
− i√

nkR2
− i

2
√
nk3R4

+O

(
1

m6
,

1

n

)
, (4.67)

that is, we �nd the same terms as Tanabe's, up to O
(
r0
R

)
contributions. This makes

sense, since we are assuming the scale hierarchy r0 � λ � R, and we are imposing
�uctuations on the leading order e�ective stress-energy tensor. In this way, we can
inspect the dynamics of �uctuations with new contributions to the boosted black string

behaviour with form λj

Rj
, while we neglect corrections like

rj0
Rj
, coming from the near

horizon physics. The latter are related to thickness e�ects of the black ring, and it is
conceivable that we could access instabilities at smaller angular momenta by considering
the �rst order viscous e�ective stress tensor.

Finally, until now we have assumed that radial and longitudinal perturbations does
not couple with the dynamics along the other embedding transverse directions Xm, with
m 6= r. We intend now to check this.

Let us calculate the variation of the extrinsic curvature along such a generic transverse
direction Xm under embedding variations

Xr 7→ Xr + ξr(σ), (4.68a)

Xm 7→ Xm + ξm(σ). (4.68b)

The general form of this variation is

δK m
ab = δ

(
Da∂bX

m + Γmµν∂aX
µ∂bX

ν
)

=

= ∂a δe
m
b − emcδΓcab − Γcabδe

m
c + δΓmµνe

µ
ae
ν
b + Γmµν (eµaδe

ν
b + eνbδe

µ
a) ,

(4.69)

where δeµa = ∂aξ
µ. We have again

δγab = eµae
ν
b (∇µξν +∇νξµ) = −2Kr

abξr, (4.70)

which means that the perturbed induced connection Γcab is the same as well. If we turn
to the embedding metric gµν , it is easy to see that

δgµν = ξr∂rgµν , (4.71)
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as well as before. Since the unperturbed transverse directions are �at, we recall that for
the unperturbed connection it holds Γmµν = 0, while

δΓmµν =
1

2
gmα (∇µδgαν +∇νδgαµ −∇αδgµν) , (4.72)

where
δgmν = ξν∂rgmν = 0, (4.73)

and
∇mδgµν = ∂mδgµν = 0. (4.74)

As a consequence, δΓmµν = 0, which means in turn that

δK m
ab = ∂a∂bξ

m. (4.75)

We have no unperturbed extrinsic curvature K m
ab and also T 11

(0) = 0 , in such a way that
the associated extrinsic equation simply reads

T abK m
ab = T 00

(0)δK
m

00 + 2T 01
(0)δK

m
01 = 0, (4.76)

that is [
T 00

(0)∂
2
t + 2T 01

(0)∂t∂φ
]
ξm = 0, (4.77)

leading to the known �at boosted black string dispersion relation, with frequencies

w(k) = 0 ,
2
√
n+ 1

n+ 2
k. (4.78)

Hence these transverse perturbations do couple neither with the ones along the radial
direction r, nor with the intrinsic equations, as we found no additional variation of the
induced metric.

4.4 Viscous boosted black strings stability

We consider now the stability of a boosted black string endowed with the �rst order
viscous e�ective stress tensor

Tab = ρuaub + P∆ab − ζθ∆ab − 2ησab (4.79)

that we saw in Section (3.2). We start by considering homogeneous velocity �eld and
energy density on the worldvolume. It implies that the unperturbed stress tensor T ab is
just the same as for the leading order discussion, since the �rst order terms are propor-
tional to the derivatives of the �elds. We also expect intrinsic and extrinsic equations to
be still uncoupled.
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In order to prevent unphysical frequencies from appearing, we can proceed by solving
perturbatively these dispersion equations at the viscous order. We assume then the
modes to have form

wi = w
(PF )
i +

r0

R
w̃i, (4.80)

where i = 1 . . . 4 and w
(PF )
i are the frequencies that we obtained at the perfect �uid level.

If we perturb the embedding as

Xm 7→ Xm + ξm(σ), (4.81)

and the energy density and velocity �eld2 with δε(σ) and δu1(σ), we �nd δK m
ab = ∂a∂bξ

m,
just as before. Therefore, since we have a vanishing unperturbed extrinsic curvature, the
extrinsic equations will read

T ab(0) ∂a∂bξ
m = 0, (4.82)

leading to the elastic frequencies w1,2 (4.28) and (4.29) previously found.
Of course, we expect new contributions to the intrinsic equations. From their explicit

form, we notice �rst that we can rewrite the variations of the shear and bulk viscosities
as

δη

η
=

δζ

ζ
=

n+ 1

n

δε

ε
. (4.83)

From these de�nitions, and considering β = 1√
n+1

together with perturbations of the
form

δu1(σ) = δu1 ei(−wt+kz), (4.84)

δε(σ) = δε ei(−wt+kz),

it is straightforward to see that the intrinsic equations ∂aT
ab = 0 read

−k
√

1 + n+ (2 + n)w

n+ 1

δε

ε
+

+
ik2(1 + n)2ζ + w

(
2n
√
n(1 + n)ε+ i(1 + n)wζ

)
− k

(
n
√
n(n+ 2)ε+ 2i(n+ 1)

√
n+ 1wζ

)
n(1 + n)3/2ε

δu1 = 0,

w√
1 + n

δε

ε
+

ik2(1 + n)2ζ − 2k
(
n
√
nε+ i(1 + n)

√
n+ 1wζ

)
+ w

(
n
√

n
n+1 (n+ 2) ε+ i(1 + n)wζ

)
n(1 + n)ε

δu1 = 0.

After setting the determinant of this system to zero and after expanding the solutions
up to O(k2), we obtain the longitudinal frequencies

w3,4 =
(1± i)

√
1 + n

(1± i) + n
k − i

√
n(1 + n)5/2ζ

2((1± i) + n)3ε
k2 +O(k3). (4.85)

2As usual, we consider δu1 as the independent variation and δu0 = u1

u0 δu
1.
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First, we notice that we have no dependence on the shear viscosity η, and this is consistent
with the results concerning static black strings. We recall that we are dealing with an
e�ective �uid in a single spatial dimension, so intuitively we can say that there is no way
to shear through it.

We recognize immediately that w3,4 have the same linear order as the longitudinal
frequencies found from the leading order analysis. In addition, it is possible to check that
they recover the known values for a static black string by inspecting the corresponding
solutions with general β in the limit β → 0.

From the explicit forms of ε and ζ, and after setting n = 1, these longitudinal
frequencies can be written as

w3,4 =

√
2

5
(3± i) k +

3
√

2

125
(11± 2i) r0 k

2 +O(k3). (4.86)

This form makes clear the fact that we are now considering contributions coming from
the near-horizon dynamics, with terms in r0/λ� 1, where λ is the wavelength associated
to the wave-number k.

We can also compare our longitudinal frequencies with the ones following from the
large-D expansion of boosted black strings [5]. After de�ning the boost parameter α =√
nβ, the elastic modes (4.28) can be expanded for large n as

w1,2 =
∓1 + α√

n
k ± 1∓ 2α + 2α2

2n
√
n

k +O
(
k3, n5/2

)
, (4.87)

while the expansion of our generic β longitudinal modes is

w3,4 =
±i+ α√

n
k − i

n
r0k

2 ∓ i∓ 2α + 2iα2

2n
√
n

k +
−2i± 6α + 3iα2

2n2
r0k

2±

± 3i∓ 8α− 4iα2 ∓ 8α3

8n2
√
n

+O
(
k3, n3

)
,

(4.88)

and they match perfectly with the corresponding known frequencies3.

3In [5], the Killing vector related to boost symmetry is written as

k = ∂t + β∂z = ∂t +
α

R
∂φ,

in such a way that our linear coordinate z gets translated into z = RΦ =
√
nRφ.
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Chapter 5

Extrinsic Equations for Spinning

Blackfolds

In this chapter, we show how it is possible to obtain the blackfold extrinsic equations
by perturbing branes endowed with transverse angular momenta. We start with a Kerr
black string, then we analyse the multi-spinning case with the doubly-spinning MP black
strings, which has two transverse angular momenta. Finally, we introduce a new set of
coordinates suitable for dealing with the asymptotic region of black ring spacetimes,
and we recover the extrinsic equations for black ring black strings as well. We will also
discuss how to generalize these procedures to con�gurations with a higher number of
worldvolume dimensions.

5.1 Kerr black strings

We consider �rst a singly-spinning MP black hole in D ≥ 5, with metric (2.10), and we
add a new direction described by a coordinate l. Then, (t, l) represents the worldvolume
while the whole metric

ds2 = −dt2+
µ

rD−6ρ2

(
dt+ a sin2θ dφ

)2
+
ρ2

∆
dr2 + ρ2dθ2+

+(r2 + a2) sin2θdφ2 + r2 cos2θdΩ2
D−5 + dl2

(5.1)

describes a so called singly-spinning MP black string. For convenience, we also report
here the functions

ρ2 = r2 + a2 cos2θ, ∆ = r2 + a2 − µ

rD−6
. (5.2)

We can boost this metric along the worldvolume directions, by considering

σa = Λa
b σ
′ b, with Λa

b =

(
u0 −u1

−u1 u0

)
, (5.3)
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and uau
a = ηabu

aub = −u2
0 + u2

1 = −1 as before. After a direct substitution and after
deleting the primes from the boosted coordinates, we obtain the compact form

ds2 =

(
ηab +

µ

rD−6ρ2
uaub

)
dσadσb − 2a

µ

rD−6ρ2
ua sin2 θdσadφ +

+

(
r2 + a2 +

µ

rD−6ρ2
a2 sin2 θ

)
sin2 θdφ2 +

ρ2

∆
dr2+

+ ρ2dθ2 + r2 cos2 θdΩ2
D−5.

(5.4)

Thus, we observe that the main di�erence here is the spin-related mixing term gaφ,
involving both transverse and worldvolume directions, if we compare this metric with
the boosted Schwarzschild black brane (3.1). We remark that, in turn, rotation also
implies a deviation of the angular part from sphericity.

We now turn to the case of a Kerr black string, setting D = 5. This choice makes
calculations more straightforward but it does not in�uence the results; furthermore, a
generalization to any dimension will be immediate. Explicitly, metric (5.4) reduces to

ds2 =

(
ηab +

µr

ρ2
uaub

)
dσadσb − 2

Jar

ρ2
sin2 θdσadφ +

+

(
r2 + a2 +

µr

ρ2
a2 sin2 θ

)
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2,

(5.5)

with
ρ2 = r2 + a2 cos2θ, ∆ = r2 + a2 − µr. (5.6)

We have also de�ned the angular momentum current

Ja =
1

2
JADM ua = aµ ua, (5.7)

which, up to an integration constant, coincides with the ADM angular momentum [10].
We also notice that with these de�nitions we have µ = 2MADM , as expected.

Following the path paved by [29] and as explained in Section 3.2, we now focus on
studying how to �nd a set of constraints (analogous to (3.50)) after introducing extrinsic
perturbations of this metric on scales larger than the characteristic lengths of the system
(here a2 and r0).

First, we expand this metric asymptotically, considering up to 1/rn contributions,
with n = 1 1. Then ρ2 ≈ r2 and, on the whole, the expanded metric reads

ds2 ≈
(
ηab +

µ

r
uaub

)
dσadσb − 2a

µ

r
ua sin2 θdσadφ +

+ r2 sin2 θdφ2 +
(

1 +
µ

r

)
dr2 + r2dθ2.

(5.8)

1It makes sense since this is the power law in r that we �nd in gab, and furthermore it is the value
of n = D − p− 3 that we recover in the Schwarzschild-Tangherlini limit a→ 0 .
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It is remarkable that in this regime of expansion the presence of an angular momentum
density a does not a�ect any component, except for the mixing gaφ, where it appears
inside the momentum current Ja.

Our aim now is to perturb this metric along the transverse directions by adding
contributions of the form (3.40), which we recall to hold for any classical brane. Once
eliminated the holonomies from the metric, we obtain

ds2 ≈
(
ηab − 2K i

ab yi +
µ

r
uaub

)
dσadσb − 2a

µ

r
ua sin2 θdσadφ +

+ r2 sin2 θdφ2 +
(

1 +
µ

r

)
dr2 + r2dθ2 + hµν(y

i)dxµdxν +O
(
y2/R2

)
,

(5.9)

where yi are the transverse directions. We do not want to break the symmetries on the
rotational plane, and thus, thanks to the decoupling of the perturbations at this order, we
can introduce a perturbation along any single direction yî. One can argue that here the
explicit expression of yî must be di�erent from the one in the Schwarzschild case (3.42),
including for example extra-contributions from the angular momentum inside the radial
part (as ρ =

√
r2 + a2 cos2 θ instead of r), but asymptotically we recover yî = r cos θ as

well as before.
Making the same assumptions as above, the perturbed metric can then be written as

ds2 ≈
(
ηab − 2K i

ab r cos θ +
µ

r
uaub

)
dσadσb − 2a

µ

r
ua sin2 θdσadφ +

+ r2
(
dθ2 + sin2 θdφ2

)
+
(

1 +
µ

r

)
dr2 + cos θ ĥµν(r) dx

µdxν ,
(5.10)

where we consider the same non-null components of ĥµν as in (3.44). One could actually
consider o�-diagonal perturbation as haφ, har or haθ, which correspond to adding extra-
momentum along the transverse directions, but they neither enter nor in�uence the �nal
result, as one can see from the explicit calculations.

We can now turn to the evaluation of the Brown-York tensor up to �rst order in
the mass scale µ, in order to get to the Camps-Emparan form of this metric. We start
from the unperturbed and expanded metric (5.8); the consequent extrinsic curvature
tensor and related quantities are the same as in equations (3.10)-(3.12) at this order,
once we change rn0 with µ. As a consequence, the leading contribution to the e�ective
energy-stress tensor reads

Tab =
Ω(2)

16πG
µ (uaub − ηab) . (5.11)

Flat background quantities are obtained in the limit µ→ 0, and in turn it means that
Tab is formally independent of a2 with this parametrization. Therefore, we can write this
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metric in the Camps-Emparan form, expressing it only in terms of conserved currents:

ds2 =

(
ηab − 2K î

ab r cos θ +
16πG

Ω(2)

(
Tab −

T

3
ηab

)
1

r

)
dσadσb−

− 2
Ja
r

sin2 θdσadφ+

(
1− 16πG

Ω(2)

T

3r

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
+

+ cos θ ĥµν(r)dx
µdxν +O

(
T 2
ab

r2

)
.

(5.12)

As expected, the main di�erence with the analogous Schwarzschild black string metric is
the presence of a new conserved current Ja related to the transverse spin of the solution
initially considered, involving the o�-diagonal gaφ components.

Computing then the Einstein tensor components, one notices that the combination
(3.49) is independent of hµν as well as before, and we have to leading order

Grθ −
r

2
tan θ Grr =

3

2

sin θ

r

8πG

Ω(2)

T abK î
ab +O

(
a2

r2
,
µ2

r2

)
, (5.13)

so that we recover the known expression for the blackfold extrinsic equations. Once more,
it is noteworthy that the presence of an explicit dependence on the angular momentum
density a is only at higher orders.

5.2 Doubly-spinning 6D MP black strings

We proved that it is possible to obtain the extrinsic equations for a 5D Kerr black string,
which hints to the possibility of retrieving them in any case with transverse momenta.
As we will see, increasing the number of transverse dimensions makes this issue less and
less trivial.

We intend now to face the situation of two transverse momenta considering a D = 6
MP black string. We start from a 5-dimensional doubly-spinning MP black hole, whose
metric, as we saw in Section 2.2, takes the form

ds2 = −dt2 +
µr2

ΠF

(
dt+

∑
i=1,2

aiµ
2
i dφi

)2

+
ΠF

Π− µr2
dr2 +

∑
i=1,2

(
r2 + a2

i

) (
dµ2

i + µ2
i dφ

2
i

)
,

(5.14)
where we have now two planes for rotation, labelled by i = 1, 2. For each of them, we
take the direction cosines to be

xi = rµi cosφi, yi = rµi sinφi, r2 =
∑
i=1,2

(
x2
i + y2

i

)
. (5.15)
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We also de�ned

F = 1−
∑
i=1,2

a2
iµ

2
i

r2 + a2
i

, Π =
∏
i=1,2

(
r2 + a2

i

)
. (5.16)

We take now µ1 = sin θ and µ2 = cos θ as the direction cosines on the two planes and
we name the angular momentum parameters a1 = a and a2 = b. Adding then an extra
direction l, the metric of a D = 6 MP doubly-spinning black string can be written as

ds2 =−
(

1− µ

Σ

)
dt2 + 2a sin2 θ

µ

Σ
dtdφ1 + 2b cos2 θ

µ

Σ
dtdφ2+

+
(
r2 + a2 +

µ

Σ
a2 sin2 θ

)
sin2 θdφ 2

1 +
(
r2 + b2 +

µ

Σ
b2 cos2 θ

)
cos2 θdφ 2

2 +

+ 2ab
µ

Σ
sin2 θ cos2 θdφ1dφ2 +

r2Σ

Π− µr2
dr2 + Σdθ2 + dl2,

(5.17)

with
Π = (r2 + a2)(r2 + b2), Σ = r2 + a2 cos2 θ + b2 sin2 θ. (5.18)

By boosting this metric along the worldvolume directions σa = (t, l), we obtain

ds2 =
(
ηab +

µ

Σ
uaub

)
dσadσb − 2

J1 a

Σ
sin2 θdσadφ1 − 2

J2 a

Σ
cos2 θdσadφ2+

+
(
r2 + a2 +

µ

Σ
a2 sin2 θ

)
sin2 θdφ 2

1 +
(
r2 + b2 +

µ

Σ
b2 cos2 θ

)
cos2 θdφ 2

2 +

+ 2ab
µ

Σ
sin2 θ cos2 θdφ1dφ2 +

r2Σ

Π− µr2
dr2 + Σdθ2.

(5.19)

We notice that if we make a comparison with the Kerr black string, the main novelty is
that the worldvolume boost brings about two angular momentum currents J1 a = aµua
and J2 a = bµ ua, with related o�-diagonal terms in the metric. Also, from the original
5D MP metric, we �nd an additional mixing component gφ1φ2 .

Since we are starting from a 5-dimensional metric, it corresponds to taking n = 2 in
the Schwarzschild discussion. It is consistent with [µ] ∼ L2, and hence the �rst order
asymptotic expansion must be up to µ

r2
contributions. In this way, the expanded metric

reads

ds2 =
(
ηab +

µ

r2
uaub

)
dσadσb − 2

J1 a

r2
sin2 θdσadφ1 − 2

J2 a

r2
cos2 θdσadφ2+

+
(
r2 + a2

)
sin2 θdφ 2

1 +
(
r2 + b2

)
cos2 θdφ 2

2 + 2ab
µ

r2
sin2 θ cos2 θdφ1dφ2+

+

(
1 +

µ

r2
− a2 sin2 θ + b2 cos2 θ

r2

)
dr2 +

(
r2 + a2 cos2 θ + b2 sin2 θ

)
dθ2.

(5.20)

It is now possible to perform the Brown-York computation of the e�ective energy-
stress tensor, which results in

8πGT abBY =
µ

r3

(
uaub − 1

2
ηab
)
. (5.21)
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After integrating over the transverse sphere S3, we recover the same perfect �uid form

T ab =
Ω(3)

16πG
µ
(
2uaub − ηab

)
(5.22)

as for the n = 2 Schwarzschild black string. After rescaling

16πG

2Ω(3)

T ab 7−→ T ab, (5.23)

we can substitute

µ = −T
2
, µuaub = T ab − T

4
ηab (5.24)

into (5.20), and get the Camps-Emparan form

ds2 =

[
ηab +

1

r2

(
Tab −

T

4
ηab

)]
dσadσb − 2

J1 a

r2
sin2 θdσadφ1 − 2

J2 a

r2
cos2 θdσadφ2+

+
(
r2 + a2

)
sin2 θdφ 2

1 +
(
r2 + b2

)
cos2 θdφ 2

2 − 2ab
T

2r2
sin2 θ cos2 θdφ1dφ2+

+

(
1− T

2r2
− a2 sin2 θ + b2 cos2 θ

r2

)
dr2 +

(
r2 + a2 cos2 θ + b2 sin2 θ

)
dθ2.

(5.25)

Our intention is to pull the extrinsic blackfold equations out of this metric. We see at
�rst sight that a calculation based on the spherical symmetric framework that was used
with Schwarzschild and Kerr black strings is doomed to fail, as here the angular sector
is not symmetric under SO(n+ 2) transformations.

Instead, we notice that corrections in a2

r2
and b2

r2
are present in the radial and angular

diagonal components. Hence a promising guess is to perform a change of the coordinates
(r, θ) of the form

θ = χ+
a2

ρ2
h(χ) +

b2

ρ2
m(χ),

r = ρ+
a2

ρ
l(χ) +

b2

ρ
n(χ).

(5.26)

It is possible to �nd h(χ),m(χ), l(χ) and n(χ) by requiring that the following new con-
tributions to the metric components do restore spherical symmetry in the angular sector.
In principle, the change of coordinates (5.26) would require also an additional mixing
term proportional to ab

r2
. As one can see from the explicit solution of the resulting sys-

tem of PDEs, selecting the gauge in such a way that gφ1φ2 vanishes actually makes this
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additional term unnecessary. It turns out that, up to O(1/r4), the desired change of
coordinates is

θ = χ− a2

4ρ2
sin(2χ) +

b2

4ρ2
sin(2χ),

r = ρ+
a2

2ρ
sin2 χ− b2

2ρ
cos2 χ.

(5.27)

In these new coordinates, the expanded metric becomes

ds2 =

[
ηab +

1

ρ2

(
Tab −

T

4
ηab

)]
dσadσb − 2

J1 a

ρ2
sin2 χdσadφ1 − 2

J2 a

ρ2
cos2 χdσadφ2+

+

(
1− T

2ρ2

)
dρ2 + ρ2dχ2 + ρ2 sin2 χdφ 2

1 − 2ab
T

8ρ2
sin2(2χ)dφ1dφ2 + ρ2 cos2 χdφ 2

2 .

(5.28)

We observe that, besides the angular momentum components, (5.28) is precisely of the
same form as the one from the Schwarzschild black brane computation, even in the
transverse sector. We have here a non-vanishing component gφ1φ2 , but it is of �rst order
in the mass scale T and, in particular, it consists in a 1

ρ4
contribution to the angular

sector. Then, as it is easy to see with an explicit calculation, gφ1φ2 does not in�uence the
�nal result, as much as gaφi does not. (5.28) behaves as if it were spherical symmetric.
However, we observe that S3 is parametrized in a di�erent way from before. As a
consequence, in this new set of coordinates the extrinsic equations are found in the same
way as in the previous sections.

We will not delve further into the computation itself, since it is essentially equivalent
to the ones already outlined. We just intend to remark that of course one can return to
the more physical coordinates (r, θ) once performed the calculation. For instance, both
the coe�cient between the Einstein tensor components Grθ and Grr in the combination
(3.49) and the factor in front of K î

ab gets corrections in a2

r2
and b2

r2
. In particular, the

transverse coordinates yî vary as well, and this fact follows again from the initial breaking
of spherical symmetry due to the presence of angular momenta.

Finally, we notice that this change of coordinates is not necessary with the Kerr black
string since there we have a lower number of transverse directions and consequently the
expansion in r stops at O

(
1
r

)
. In D ≥ 5, singly-spinning MP black strings do require

a change of the transverse coordinates similar to (5.27) in order to recover a manifest
spherical symmetry. As far as it concerns the discussion of more complicated situations,
we consider the present section as an outline of the procedure to follow for any other
higher-dimensional multi-spinning MP black strings. As a matter of fact, here we have
dealt with and commented on the whole set of characteristics of a generic MP black
string, namely the deformation of the transverse sphere in the expanded metric due to
the angular momenta, the coupling of di�erent angular momenta (as it happens for gφ1φ2
in (5.20)) and the presence of extra o�-diagonal components like gaφi .
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5.3 Black ring strings

We intend now to obtain the extrinsic equations for a singly-spinning black ring string
(BRS), and it is apparent that we have several di�erent issues to deal with in this
case. The �rst problem that we come across consists in the fact that the black ring
solution (2.33) by Emparan and Reall does not include a global spherical symmetry of
the spacetime in the angular part. In particular, we have rotational symmetry over S2

and S1 separately. Furthermore, the horizon itself has non-spherical topology.
However, intuitively we understand that if we expand the metric at spatial in�nity

and we place an observer there, he should simply see the e�ects of a point source, at
�rst order in the mass scale. In turn, we must �nd �rst a set of coordinates where it is
easier to see asymptotic �atness and to work with spatial in�nity (which is described by
x, y → −1 in Emparan-Reall solution).

First of all [39], we impose the balancing condition (2.40) in the metric (2.33). In
addition, we rede�ne the angular coordinates as

(φ, ψ) 7−→
√

1 + ν2(φ, ψ), (5.29)

in order to recover a periodicity of 2π and consequently a more standard behaviour of
the angular coordinates. It is also convenient to rede�ne the ring radius as

R 7−→
√

1 + ν2R. (5.30)

Renaming then the parameter ν into λ, and adding an extra-direction l, the BRS metric
can be written as

ds2 =− H(y)

H(x)
(dt+ Ωψdψ)2 + dl2+

+
R2H(x)

(x− y)2

[
G(x)

H(x)
dφ2 +

dx2

G(x)
− G(y)

H(y)
dψ2 − dy2

G(y)

]
,

(5.31)

where we set

H(x) = 1 + 2λx+ λ2, G(x) = (1− x2)(1 + λ),

Ωψ = −CR1 + y

H(y)
, with C = λ(1 + λ)

√
2

1 + λ

1− λ
.

(5.32)

Performing then a generic boost along the worldvolume directions, the boosted metric
has form

ds2 =

[
ηab +

(
1− H(y)

H(x)

)]
dσadσb − 2CR

1 + y

H(x)
uadσ

adψ−

− R2

H(x)H(y)

[
C2(1 + y)2 +

H(x)2G(y)

(x− y)2

]
dψ2+

+
R2H(x)

(x− y)2

[
G(x)

H(x)
dφ2 +

dx2

G(x)
− dy2

G(y)

]
.

(5.33)
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We can now perform a change of coordinates in order to make the metric explicitly
asymptotically �at. Following [39], we reparametrize (x, y) as

x = −1 +
2R2

ρ2
(1− λ) cos2 θ,

y = −1− 2R2

ρ2
(1− λ) sin2 θ,

(5.34)

with new domains R
√

1− λ ≤ ρ <∞ and 0 ≤ θ ≤ π. From this explicit transformation,
it is easy to see that Minkowski in spherical coordinates

ds2 ≈ −dt2 + dρ2 + ρ2(dθ2 + cos2 θdφ2 + sin2 θdψ2, (5.35)

is recovered at the leading order in 1/ρ, as desired. Instead, if we expand up to order 1
ρ2
,

we �nd

ds2 ≈
(
ηab +

4R2λ

(1− λ)ρ2
uaub

)
dσadσb + 2

2
√

2R3

ρ2
λ

(
1 + λ

1− λ

) 3
2

sin2 θ uadσ
adψ +

+

(
1 +

R2

ρ2

2λ+ (1− 2λ+ 3λ2) cos(2θ)

1− λ

)
dρ2+

+ 2
R2

ρ
(1− 3λ) sin θ cos θdρdθ + ρ2

(
1 +

4R2λ

(1− λ)ρ2
cos2 θ

)
dθ2

+ ρ2 cos2 θ

(
1− R2

ρ2
(1− 3λ) cos2 θ

)
dφ2+

+ ρ2 sin2 θ

(
1 +

R2

ρ2

4λ cos2 θ + (1 + 3λ2) sin2 θ

(1− λ)

)
dψ2,

(5.36)

which can be recast in the more compact form

ds2 ≈
(
ηab +

µ

ρ2
uaub

)
dσadσb + 2

Ja
ρ2

sin2 θ dσadψ +

+

(
1 +

µ

ρ2
cos2 θ +

R2

ρ2
D(µ) cos(2θ)

)
dρ2 + 2

R2

ρ
D(µ) sin θ cos θdρdθ+

+ ρ2

(
1 +

µ

ρ2
cos2 θ

)
dθ2 + ρ2 cos2 θ

(
1− R2

ρ2
D(µ) cos2 θ

)
dφ2+

+ ρ2 sin2 θ

(
1 +

µ

ρ2
+
R2

ρ2
D(µ) sin2 θ

)
dψ2,

(5.37)

once we de�ne the mass parameter µ, D(µ) and the angular momentum current as

µ =
8

3π
MADM =

4R2λ

1− λ
←→ λ =

µ

4R2 + µ
,
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D(µ) = 1− 3λ(µ) =
3µ

4R2 + µ
, (5.38)

Ja =
4

π
JADMu

a = 2
√

2R3λ

(
1 + λ

1− λ

) 3
2

ua =
µ

4R2 + µ
(2R2 + µ)3/2ua.

It is worth studying in more detail the weak-gravity limit of this metric. Introducing
Φ as the asymptotic (Newtonian) potential, from the g00 component of (5.33) it follows
that

H(y)

H(x)
≈ 1− 2Φ, (5.39)

and consequently

Φ ≈ − 2R2(1− λ)

ρ2(1− λ)2 + 4λR2(1− λ) cos2 θ
. (5.40)

But we are dealing with large ρ, and then we can neglect the second term in the denom-
inator, obtaining a purely Newtonian behaviour of the e�ective gravitational potential2

Φ ≈ − µ

2ρ2
, (5.41)

where the remaining black ring physics is included in the e�ective Newtonian mass µ
de�ned in (5.38). Therefore, we can be con�dent that an observer placed at spatial
in�nity would simply measure a spherically symmetric gravitational �eld. As discussed
above, this hints at the possibility of �nding the extrinsic equations in a way similar to
the ones followed in the previous sections.

We can now perform the calculation of the Brown-York stress tensor; once integrated
over the transverse sphere parametrized by (θ, φ, ψ), it can be recast in the usual perfect
�uid form

Tab =

∫
S3

dθdφdψ
√
gθθgφφgψψ T

(BY )
ab =

Ω(3)

16πG
µ (2uaub − ηab), (5.42)

which coincides with the known Schwarzschild result taking n = 2. Rescaling the stress
tensor as in (5.24) for convenience, we get exactly the Camps-Emparan form in the
worldvolume sector of the metric:

ds2 =

[
ηab +

1

ρ2

(
Tab −

T

4
ηab

)]
dσadσb + 2

Ja
ρ2

sin2 θ dσadψ +

+

(
1− T

2ρ2
cos2 θ +

R2

ρ2
D(T ) cos(2θ)

)
dρ2 + 2

R2

ρ
D(T ) sin θ cos θdρdθ+

+ ρ2

(
1− T

2ρ2
cos2 θ

)
dθ2 + ρ2 cos2 θ

(
1− R2

ρ2
D(T ) cos2 θ

)
dφ2+

+ ρ2 sin2 θ

(
1− T

2ρ2
+
R2

ρ2
D(T ) sin2 θ

)
dψ2,

(5.43)

2We recall that with D = 5 transverse directions the Newtonian potential has power law ∼ 1
r2 .
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where

D(T ) =
3T

T − 8R2
. (5.44)

Now we want to investigate the possibility of recasting the whole angular part of this
metric into a manifest spherically symmetric form, as done before. Here the starting met-
ric did not show spherically symmetry at all, but, as we suggested above, the asymptotic
expansion may have smoothed the S1 dipolar contributions to the metric.

We consider an Ansatz for the new coordinates (r, χ) of the form

θ = χ+ f(χ)
R2

r2
+ g(χ)

T

r2
, (5.45)

ρ = r + h(χ)
R2

r
+ l(χ)

T

r
, (5.46)

and we impose this change of coordinates to cancel out the deviations from sphericity
due to both the mass and the transverse angular momentum scale R. By solving the
related system of PDEs up to 1

r2
, one obtains

θ = χ− sin(2χ)

4r2

(
R2 − T

8

)
, (5.47)

ρ = r +
1

2r

(
R2 cos(2χ) +

T

8

(
2 cos2 χ+ 1

))
. (5.48)

Up to 1
r2

orders, the metric reads then

ds2 =

[
ηab +

1

r2

(
Tab −

T

4
ηab

)]
dσadσb + 2

Ja
r2

sin2 χdσadψ+

+

(
1− T

2r2

)
dr2 + r2dχ2 + r2 cos2 χdφ2 + r2 sin2 χdψ2,

(5.49)

which manifestly exhibits spherical symmetry.
Since we are analysing a singly-spinning transverse spacetime, we do not have a non-

vanishing mixing component gφψ. As noticed in Section 5.2, it becomes now straightfor-
ward to obtain explicitly the corresponding blackfold extrinsic equations.

As shown in Appendix B, it is also possible to �nd the extrinsic equations explicitly
for a BRBS by following a perturbative procedure. In fact, we know that the change
of coordinates (2.25) and (2.26) lead to an asymptotically �at form of a singly-spinning
black ring metric as well. In particular, we studied in Section 2.3 how to recover a black
brane (with boost �xed by the balancing condition) by performing the ultra-spinning
limit, which coincides with taking the angular momentum of the considered solution
to be ideally in�nite. We have already analysed how to obtain the extrinsic equations

87



for such a class of solutions, but one can inspect lower and lower angular momenta by
expanding the black ring metric order by order in powers of r0

R
. This allows to �nd the

extrinsic equations perturbatively up to some O
(
rj0
Rj

)
. Even if apparently this procedure

is closer to the spirit of the original blackfold discussion, of course it gets quickly rather
involved. The main issue resides in the assumption a priori of the explicit form of the
contributions hµν . The detailed procedure at �rst order in r0

R
can be found in Appendix

B, but we believe that further discussions concerning the matching with the generic
angular momenta results of this section are required in order to eliminate the remaining
ambiguities.
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Chapter 6

New Solutions and Stability

Thanks to the results of Chapter 5, we are guaranteed that the blackfold approach
can be generalized to con�gurations with transverse spins1. Since MP black holes are
characterized by a spherical topology, we propose here to inspect more deeply black ring
blackfolds instead, starting from black ring branes (BRBs) and using the results from
Section 5.3.

In this chapter, we present the general setup for BRBs by considering the local ther-
modynamics associated to their e�ective theory, then we build new solutions. The con-
�gurations obtained in Section 6.2 do match with the corresponding solutions with same
horizon topology previously found with the original Schwarzschild blackfold approach.
On the other hand, the black ring p-balls of Section 6.3 are endowed with completely
new features and horizon topology. After analysing their phase diagrams, we deal with
the black ring branes stability.

Finally, we study the e�ective theory related to 5D singly-spinning MP black branes
and their stability.

6.1 Black ring branes local thermodynamics

From the known black ring thermodynamics discussed in Section 2.3, we can obtain the
leading order local thermodynamics for black ring p-branes. Parametrizing the black
ring mass as in Section 5.3

M =
3π

8
µ, (6.1)

the local temperature reads

T =
R√
2πµ

. (6.2)

1We will discuss elsewhere how to obtain the set of intrinsic equations for these con�gurations.

89



Following then [34] and accordingly to the discussion in Section B, we also de�ne the
horizon scale as

r0 =
1

4
√

2πT
=

µ

4R
, i.e µ = 4 r0R. (6.3)

We intend now to recast the parameters of our solutions R and µ in terms of the
local independent thermodynamic variables T and ω, with

ω =
1√

2R2 + µ
. (6.4)

From equations (6.2) and (6.4), we obtain

µ(ω, T ) =

√
ω2 + 16π2T 2 − ω

8π2ωT 2
, (6.5)

R(ω, T ) =

√
ω2 + 16π2T 2 − ω

4
√

2πωT
. (6.6)

De�ning then a global temperature T = k T and a global transverse angular velocity
Ω = kω, we can straightforwardly rewrite them as

µ(Ω, T ) =

√
Ω2 + 16π2T 2 − Ω

8π2ΩT 2
k2, (6.7)

R(Ω, T ) =

√
Ω2 + 16π2T 2 − Ω

4
√

2πΩT
k2. (6.8)

It means in turn that the pressure can be expressed as

P = −
Ω(3)

16πG
µ = −

√
Ω2 + 16π2T 2 − Ω

64πGΩT 2
k2. (6.9)

Analogously, the transverse ADM angular momentum can be rewritten as

J =
π

4

µ(ω, T )

4R2 + µ(ω, T )
(2R2 + µ(ω, T ))3/2 =

π

4

k3

Ω2
√

Ω2 + 16π2T 2
. (6.10)

Finally, we write the explicit form of the local entropy via the horizon area:

s =
AH
4G

=
π2Rµ2

√
2G(4R2 + µ)

=
Ω2 + 8π2T 2 − Ω

√
Ω2 + 16π2T 2

32πΩT 3
√

Ω2 + 16π2T 2
k3. (6.11)

For later convenience, we also de�ne

f̃(Ω, T ) =

√
16π2T 2 + Ω2 − Ω

64πGT 2Ω
. (6.12)
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Finally, by integrating the related conserved currents as done for Schwarzschild black
branes in Section 3.5, we can give a general expression for the mass and the worldvolume
angular momenta of a con�guration described by a Killing vector k with modulus

k = R0(σ)
√

1− V 2(σ) (6.13)

as

M = f̃(Ω, T )

∫
Bp
dV(p)R0(σ)

[
R0(σ)2(1− V 2) + 2

]
, (6.14)

Ji = 2Ωif̃(Ω, T )

∫
Bp
dV(p)R0(σ)R2

i (σ), (6.15)

while the transverse momentum and the entropy read

J =
π

4Ω2
√

Ω2 + 16π2T 2

∫
Bp
dV(p)R

3
0(σ)(1− V 2), (6.16)

S =
Ω2 + 8π2T 2 − Ω

√
Ω2 + 16π2T 2

32πΩT 3
√

Ω2 + 16π2T 2

∫
Bp
dV(p)R

3
0(σ)(1− V 2). (6.17)

Ultraspinning regime

The reduced angular momentum squared for a black ring is

j2 =
(2R2 + µ)3

µ(4R2 + µ)2
, (6.18)

and it is large if µ � R2, which e�ectively corresponds to the thin black ring limit, as
well known from the phase diagram analysis in Figure 2.3.

We could also decide to write j2 in terms of the global temperature and transverse
angular velocity; for j2 large, it can be shown that

j2 ≈ T

Ω
, (6.19)

while the reduced horizon area has behaviour

aH ≈
√

Ω

T
. (6.20)

From the previous results, the asymptotic values of the thermodynamic observables
in the sector where µ� R2 holds result in

J ≈ π√
2
r0R

2, (6.21)

ω ≈ 1√
2R

, (6.22)

s ≈ 2
√

2π2r2
0R. (6.23)
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We can now compare these quantities with the corresponding ones displayed in Section
3.7.1, in order to check again the claim that the blackfold approach reproduces the
correct dynamics in the ultraspinning regime. A quick inspection shows that they match
perfectly.

In general, we notice also that a very high angular momentum cannot translate into a
high angular velocity simply because we are treating them as conjugated thermodynamic
variables. Equations (6.21) and (6.22) explain this counterintuitive behaviour of the
reduced angular momentum in (6.19) in the ultraspinning limit R2 � µ, since while J
increases with R2, the angular velocity is actually inversely proportional to R.

6.2 Black ring rings

We consider now a compact extra-dimension with topology S1, that we think of as
embedded in a generic worldvolume with constant redshift factor R0. We endow it with
an angular velocity by choosing a Killing vector k with modulus

k =
√
R2

0 −R2
WΩ2

W . (6.24)

In Section 6.1 we obtained that

P = −f̃(Ω, T )
(
R2

0 −R2
WΩ2

W

)
, (6.25)

which means that in this case the e�ective action has form

I[Xµ] = −
∫
Bp
dV(p) R0P = 2πR0RW

(
R2

0 −R2
WΩ2

W

)
f̃(Ω, T ), (6.26)

after performing the integration over the spatial slices of the worldsheet. The equilibrium
condition then follows from

δI

δRW

= 0 ⇐⇒ RW =
R0√
3ΩW

. (6.27)

Imposing it, we �nd the on-shell e�ective action

IOS =
R4

0

48
√

3GΩW

√
Ω2 + 16π2T 2 − Ω

ΩT 2
. (6.28)

Interpreting it as a free energy and considering also the ultraspinning regime, the
global entropy is

S = − ∂F

∂T

∣∣∣∣
ΩW ,Ω

=
R4

0

24
√

3GΩW

Ω2 + 8π2T 2 − Ω
√

Ω2 + 16π2T 2

ΩT 3
√

Ω2 + 16π2T 2

≈ πR4
0

12
√

3GΩWΩT 2
,

(6.29)
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while the worldvolume angular momentum reads

JW = − ∂F

∂ΩW

∣∣∣∣
T,Ω

=
R4

0

48
√

3GΩ2
W

√
Ω2 + 16π2T 2 − Ω

ΩT 2

≈ π

12
√

3G

R4
0

Ω2
WΩT

,

(6.30)

and analogously the transverse momentum is

J = − ∂F

∂Ω

∣∣∣∣
T,ΩW

=
π2

3
√

3G

R4
0

ΩWΩ2
√

Ω2 + 16π2T 2

≈ π

12
√

3G

R4
0

ΩWΩ2T
.

(6.31)

Of course, the very same results are obtained by proceeding with the integration of
the local conserved currents from equations (6.15), (6.16) and (6.17), while the mass
results in

M =
R4

0

4
√

3G

√
Ω2 + 16π2T 2 − Ω

ΩWΩT 2
≈ π√

3G

R4
0

ΩWΩT
. (6.32)

It is interesting to notice that these quantities in the US limit match the corresponding
ones of a Schwarzschild 2-Torus that one can compute with the usual blackfold formalism
[34]. In fact, the horizon geometry of our solution consists in the transverse s2 × s1

(coming from the black ring initial structure) �bered over S1, where S1 must be thought
of as endowed with a very high spin. Instead, with the usual blackfold formalism we
obtain a transverse s2 �bered over S1 × S1 = T2, in such a way that we have an overall
topology s2 × T2 in both cases. Nonetheless, with our procedure we are inspecting a
wider range of con�gurations with that same topology, since e�ectively we are extracting
one S1 from the worldvolume sector and hence we can access �nite spins along that
direction.

Let us now analyse the phase diagram of this class of solutions within Minkowski
backgrounds, where R0 = 1. Following the de�nitions (2.1), we start by de�ning the
reduced horizon area aH , the transverse angular momentum j and the worldvolume an-
gular momentum jW . Parametrizing these quantity in terms of the reduced temperature
and of the angular momenta ratio

τ =
T

Ω
, ω =

Ω

ΩW

, (6.33)

they can be written as

a3
H =

√
2

34 π

1 + 8π2τ 2 −
√

1 + 16π2τ 2

τω (1 + 16π2τ 2)3/2
, (6.34)
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j3 =
210π8

34

τ 8

ω (1 + 16π2τ 2)3/2 (√1 + 16π2τ 2
)4 − 1

, (6.35)

j3
W =

ω2

26 34

(
1 +
√

1 + 16π2τ 2
)
. (6.36)

The range of validity of the e�ective theory tells us the interval of the parameters τ and
ω where we can trust our results. We know that any transverse scale is required to be
much smaller than the typical worldvolume length scale, which is determined here by
RW = 1√

3ΩW
. We �nd then

r0 � RW ⇐⇒ τ � τ0 =

√
3

4
√

2πω
, (6.37)

R� RW ⇐⇒ ω � 1, (6.38)

meaning that we are describing con�gurations which are hot enough and rotating much
faster along the transverse s1, as expected2.

It is interesting to compare this regime of validity with the one related to the ob-
servables from the original blackfold formalism in [34]. In this case, the reduced horizon
area and angular momenta can be evaluated as

a3
H =

1

324
√

2π2

1

τ̃ 2 ω̃
, (6.39)

j3
1 =

π τ̃

1296 ω̃
, (6.40)

j3
2 =

π τ̃ ω̃2

1296
, (6.41)

where we de�ned

τ̃ =
T

Ω1

, ω̃ =
Ω1

Ω2

. (6.42)

This time the interval of validity is determined by the conditions

r0 � R1 ⇐⇒ τ̃ � τ̃1 =

√
3

4π
, (6.43)

r0 � R2 ⇐⇒ τ̃ � τ̃2 =

√
3

4πω
, (6.44)

In Figures 6.1 and 6.2 in black we plot the reduced area as a function of the transverse
and worldvolume angular momenta respectively for di�erent values of ω. On the other
hand, the solid blue lines correspond to the plots from the original blackfold approach.

2We recall that higher angular velocities correspond to lower angular momenta.

94



0.05 0.10 0.15 0.20 0.25 0.30
j

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

aH

Figure 6.1: We display here the phase diagram aH(j) of black ring rings for ω = 4, 8, 20 with
the black dotted, dashed and solid line, respectively. As a comparison, in blue we depict the
corresponding phase diagrams obtained from the original blackfold approach [34].We plot the
phase curves in their regime of validity for values τ > 100τ0 and τ̃ > 100τ̃1. The dashed
blue lines represent the Schwarzschild blackfold phase diagrams outside their proper regime of
validity, with τ̃ & 10τ̃1.

From the considerations above, it follows that more accurate plots are found for higher
ratios ω and ω̃. In order to implement the conditions τ � τ0 and τ̃ � τ̃0, the quantities
are plotted only for τ > 100τ0, τ̃ > 100τ̃1 and τ̃ > 100τ̃2. We see that actually these
conditions restrict the validity of our approach to con�gurations with high worldvolume
angular momentum jW & 1, in the same fashion as for Schwarzschild blackfolds. On the
other hand, we observe that we can access much lower transverse angular momenta with
j & 0.05 than before, thanks to our black ring e�ective theory.

In connection with this, the dashed blue curves show the behaviour of the phase
diagrams from the original blackfold approach, once we consider them outside their
proper regime of validity, that is for very low angular momenta j (we are plotting τ̃ & 10τ̃1

and τ̃ & 10τ̃2 ). We observe that there is no signi�cant improvement as far as it concerns
the phase diagrams of jW . On the other hand, as one can see in Figure 6.1, the original
blackfold approach appears to di�er signi�cantly from ours for lower reduced angular
momenta j.

On more general grounds, one can also admit a dependence of R0 on RW , as it
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Figure 6.2: We present here the phase diagram aH(jW ) of black ring rings for ω = 4, 8, 20
with the black dotted, dashed and solid line, respectively. As a comparison, in blue we depict
the corresponding phase diagrams obtained from the original blackfold approach [34]. We plot
the phase curves in their regime of validity for values τ > 100τ0 and τ̃ > 100τ̃2. The dashed
blue lines represent the Schwarzschild blackfold phase diagrams outside their proper regime of
validity, with τ̃ & 10τ̃2.

happens in the case of non trivial background spacetimes. Here

k =
√
R2

0(RW )−R2
WΩ2

W , (6.45)

and hence the balancing condition reads

δI

δRW

+
dR0

dRW

δI

δR0

= 0. (6.46)

In turn, it leads to

Ω2
W =

R2
0

R2
W

3R′0RW +R0

R′0RW + 3R0

, (6.47)

which matches with (6.27). We notice that R0 is in terms of RW , in such a way that this
equation gives ΩW uniquely as a function of RW , as before. For formal convenience, we
consider RW as the independent variable, leaving ΩW implicit.
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After imposing the balancing condition, the free energy (6.26) becomes

F = RWR
3
0

R′0RW −R0

R′0RW + 3R0

Ω−
√

16π2T 2 + Ω2

16T 2Ω
, (6.48)

from which we can obtain the entropy

S = − ∂F

∂T

∣∣∣∣
RW ,Ω

= RWR
3
0

R0 −R′0RW

R′0RW + 3R0

8π2T 2 + Ω
(
Ω−
√

16π2T 2 + Ω2
)

8T 3Ω
√

16π2T 2 + Ω2
, (6.49)

as well as the transverse angular momentum

J = − ∂F

∂Ω

∣∣∣∣
T,RW

= RWR
3
0

R0 −R′0RW

R′0RW + 3R0

π2

Ω
√

16π2T 2 + Ω2
. (6.50)

We can �nally turn to the worldvolume angular momentum

JW = − ∂F

∂ΩW

∣∣∣∣
T,Ω

= −
(
dΩW

dRW

)−1
∂F

∂RW

∣∣∣∣
T,Ω

. (6.51)

Using the balancing condition, we �nd

JW = R2
WR

2
0

√
3R′0RW +R0

R′0RW + 3R0

√
16π2T 2 + Ω2 − Ω

16T 2Ω
. (6.52)

One can check that these quantities all match with the previous ones, once R0(RW ) is
set to a constant.

6.3 Black ring discs and p-balls

We intend now to build a D = 7 solution with discs as worldvolume spatial sections and
discuss its thermodynamics. We start by choosing the following embedding into a �at
background

X0 = t,

X1(ρ, χ) = ρ cosχ, X2(ρ, χ) = ρ sinχ, (6.53)

X i = 0 for each i = 3 . . . 6,

with ρ ≥ 0 and 0 ≤ φ ≤ 2π, in a way analogous to (3.148). Consequently, the induced
metric reads

ds2 = −dτ 2 + dρ2 + ρ2dχ2. (6.54)
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We introduce now a rotation on the worldvolume, by imposing the existence of a
Killing vector

k = ∂t + ΩW∂χ, with k =
√

1− Ω2
Wρ

2 , (6.55)

where we are considering only �at backgrounds. It means that we have a boundary
surface on each worldvolume spatial section, determined by the maximum radius

ρ+ =
1

ΩW

, (6.56)

leading in turn to a spatial horizon geometry S2 × S1 × D2. From the local BRB ther-
modynamics discussed above, we �nd the horizon radius

r0 =
1

4
√

2πT
k =

1

4
√

2πT

√
1− Ω2

Wρ
2 , (6.57)

which decreases down to zero at the boundary ρ → ρ+. As well as for Schwarzschild
black discs, we must require

r0 �
1

ΩW

1− Ω2
Wρ

2√
2− Ω2

Wρ
2

(6.58)

in order to ensure the validity of our procedure. This condition does not hold true for
any temperature T near the limiting surface, and it means that we have to introduce
again a small length parameter ε and to assume to be working within the radial interval
0 ≤ ρ ≤ ρ+ − ε.

We propose to study the thermodynamics of this class of solutions. Rewriting the
pressure (6.9) as

P = −f̃(Ω, T )
(
1− Ω2

Wρ
2
)
, (6.59)

with

f̃(Ω, T ) =

√
ω2 + 16π2T 2 − ω

64πGω T 2
=

√
Ω2 + 16π2T 2 − Ω

64πGΩT 2
, (6.60)

the free energy results in

F = −
∫
B2
dV2P = 2πf̃(Ω, T )

∫ ρ+−ε

0

dρρ
(
1− Ω2

Wρ
2
)

=

=
π

2
f̃(Ω, T )

[
1

Ω2
W

− ε2

4
(εΩW − 2)2

]
=

π

2
f̃(Ω, T )

[
1

Ω2
W

+O(ε2)

]
,

(6.61)

and it admit a �nite limit for ε→ 0. By deriving F in the suitable conjugated variables
as usual, we obtain the thermodynamic observables

J = − ∂F

∂Ω

∣∣∣∣
T,ΩW

=
π2

8G

1

Ω2
WΩ2
√

16π2T 2 + Ω2
, (6.62)
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JW = − ∂F

∂ΩW

∣∣∣∣
T,Ω

=

√
16π2T 2 + Ω2 − Ω

64GΩ3
WΩT 2

, (6.63)

S = − ∂F

∂T

∣∣∣∣
ΩW ,Ω

=
8π2T 2 + Ω

(
Ω−
√

16π2T 2 + Ω2
)

64GΩ2
WΩT 3

√
16π2T 2 + Ω2

. (6.64)

One can check these results by integrating the conserved currents as well. Following
(6.14), we �nd also the global mass of this solution, with form

M =

∫
B2
dV(2) Tµνn

µξν = 2π

∫ ρ+−ε

0

dρ ρ T00 =
5

128G

√
16π2T 2 + Ω2 − Ω

Ω2
WΩT 2

, (6.65)

in the limit ε→ 0.
In order to study the phase diagram of this class of solutions, we compute the reduced

horizon area and the reduced angular momenta as usual and they result in

a4
H =

2 55

34π2

(
1 + 8π2τ 2 −

√
1 + 16π2τ 2

)4

τ 2ω2 (1 + 16π2τ 2)2 (√1 + 16π2τ 2 − 1
)5 , (6.66)

j4 =
214 55π10

36

τ 10

ω2
(√

1 + 16π2τ 2 − 1
)5

(1 + 16π2τ 2)2
, (6.67)

j4
W =

55

4 36

(
1 +
√

1 + 16π2τ 2
)
ω2, (6.68)

where we de�ned the reduced temperature τ and the angular velocities ratio ω as in
(6.33).

Let us now turn to the validity analysis of our results. The condition (6.58) near the
pole ρ = 0 allows to identify the characteristic worldvolume length scale to be ρ+√

2
. The

requirement r0 � ρ+√
2
implies then

τ � τ0 =
1

4πω
, (6.69)

while demanding R� ρ+√
2
leads to ω � 1, similarly to the black ring ring case.

In Figures 6.3 and (6.4) we show the phase diagrams related to the transverse and
worldvolume angular momenta. We plotted the curves for τ > 100τ and for di�erent
values ω = 4, 8, 20. Again, we must consider more accurate the curves with higher ω.
We observe again that we can access only very high worldvolume angular momenta with
jW & 7, while our procedure must be considered correct down to rather low transverse
angular momenta j & 0.3.
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Figure 6.3: We display here the phase diagram aH(j) of black ring discs in Minkowski back-
ground for ω = 4, 8, 20 with the dotted, dashed and solid line, respectively. We plot the phase
curves for values τ > 100τ0.

Let us now discuss the general case of p-balls embedded into Minkowski, with even
p = 2m. In this case, we must consider the �at embedding

ds2 = −dτ 2 +
m∑
i=1

(
dρ2

i + ρ2
i dχ

2
i

)
. (6.70)

We introduce m angular momenta Ωi with the Killing vector

k = ∂t +
m∑
i=1

Ωi∂i, with modulus k2 = 1−
m∑
i=1

Ω2
i ρ

2
i . (6.71)

As a consequence, we have again compact worldvolume spatial slices, due to the con-
straint

m∑
i=1

Ω2
i ρ

2
i < 1, (6.72)

leading to an ellipsoidal con�guration, as desired. The overall horizon geometry consists
then in the �bration s2 × s1 × B2m. De�ning again

P = −f̃(Ω, T ) k2, (6.73)
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Figure 6.4: We present here the phase diagram aH(jW ) of black ring discs in Minkowski
background for ω = 4, 8, 20 with the dotted, dashed and solid line, respectively. We plot the
phase curves for values τ > 100τ0.

we can evaluate the free energy as

F = (2π)mf̃(Ω, T )

∫
V

(
m∏
i=1

ρidρi

)[
1−

m∑
i=1

Ω2
i ρ

2
i

]
, (6.74)

where the integration is restricted to the region V identi�ed by the constraint (6.72). As
customary, we de�ne xi = Ωiρi where 0 ≤ xi < 1, and hence

F = f̃(Ω, T )
m∏
i=1

(
2π

Ω2
i

)∫
V ′

(
m∏
i=1

xidxi

)[
1−

m∑
i=1

x2
i

]
. (6.75)

We can take advantage of the symmetry of this con�guration and recast xi in terms of
the vector cosines µi of S

m−1 as
xi = rµi, (6.76)

with the constraint now reading µi ≥ 0. By doing this, it is possible to notice that∫
V ′

(
m∏
i=1

xidxi

)[
1−

m∑
i=1

x2
i

]
=

Ω(2m−1)

(2π)m

∫ 1

0

dr
(
r2p−1 − r2p+1

)
, (6.77)

in such a way that, on the whole, the free energy functional reads

F (Ωi,Ω, T ) =
Ω(2m−1)

2m(m+ 1)
f̃(Ω, T )

m∏
i=1

1

Ω2
i

, (6.78)
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and we recover correctly the black disc case (6.61) for m = 1.
Then, we can compute the entropy and the angular momenta by deriving F as usual,

and they result

S =
Ω(2m−1)

2m(m+ 1)

Ω
(
Ω−
√

16π2T 2 + Ω2
)

+ 8π2T 2

32πGT 3Ω
√

16π2T 2 + Ω2

m∏
i=1

1

Ω2
i

, (6.79)

J =
π

4G

Ω(2m−1)

2m(m+ 1)

1

Ω2
√

16π2T 2 + Ω2

m∏
i=1

1

Ω2
i

, (6.80)

Ji =
Ω(2m−1)

2m(m+ 1)

√
16π2T 2 + Ω2 − Ω

32πGT 2Ω

1

Ω3
i

∏
j 6=i

1

Ω2
j

. (6.81)

On the other hand, we can calculate the mass M from (6.14), which leads to

M = (2π)mf̃(Ω, T )

∫
V

(
m∏
i=1

ρidρi

)[
3−

m∑
i=1

Ω2
i ρ

2
i

]
. (6.82)

If we de�ne again xi = Ωiρi and the direction cosines as in (6.76), we �nd

M = f̃(Ω, T )
Ω(2m−1)

2

3 + 2m

m2 +m

m∏
i=1

1

Ω2
i

, (6.83)

which again returns correctly to (6.65) once we set p = 1.

6.4 Black ring branes stability

We start from a static �uid with velocity �eld ua = (1, 0̄) and with homogeneous energy
density ε and pressure P described by (5.42). The e�ective �uid is now characterized by a
conserved local transverse charge J , which we consider homogeneous on the worldvolume
as well. We also choose a static gauge for the worldvolume embedding, that is

X0 = t, X i = zi with i = 1 . . . p, (6.84)

keeping the transverse coordinates Xm, m = p + 1 . . . D �xed to a constant value. We
refer to the worldvolume coordinates as σa = (t, zi) as usual. We intend to work at the
leading order, which means that for our purposes the worldvolume intrinsic and extrinsic
curvature vanish:

Γ(0) ≈ 0 and K
(0) i
ab ≈ 0. (6.85)
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We assume plane wave perturbations of the independent thermodynamic variables

T −→ T + δT ei(wt+kjzj),
ω −→ ω + δω ei(wt+kjz

j),

ua −→
(

1, δui ei(wt+kjz
j)
)
.

(6.86)

These variations will result in variations of the other thermodynamic quantities, as pre-
scribed by the local thermodynamics in Section 6.1.

Longitudinal stability analysis

Our �rst aim is to study the linearized dynamics of longitudinal perturbations encoded
into the intrinsic blackfold equation, with the transverse charge conservation equation
acting as a constraint. Hence, the unperturbed equations that we have to deal with are

∂aT
ab
(0) = 0, (6.87)

∂aJ a
(0) = 0, (6.88)

with J a = J ua, and they are trivially satis�ed for the initial conditions chosen above.
In the perturbed case we have a dependence of the quantities on σa. We name for

convenience W = ε + P and θ = ∂au
a the expansion of the velocity �eld; we indicate

also the derivative projected along ua with a dot. Then, the stress tensor conservation
leads to

(Ẇ +Wθ)ub +Wu̇b + ∂bP = 0 (6.89)

for each b. Furthermore, we can use the orthogonal projector to the boost direction

∆ab = ηab + uaub (6.90)

in order to extract the dynamics on the surface orthogonal to ua from (6.89). Recalling
that the 4-acceleration aµ = duµ

dτ
= u̇µ is orthogonal to the 4-velocity, it is easy to see

that by contracting (6.89) with ∆ab we obtain

Wu̇a + ∂aP + uaṖ = 0. (6.91)

Inserting it into (6.89), we recognize the projection of ∇aT
ab = 0 along ua to be

ε̇ = −Wθ. (6.92)

Analogously, the conservation law for the transverse angular momentum results in

J̇ = −J θ. (6.93)
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Let us now translate these last three independent equations in terms of the phase of
the perturbations. We recall that locally the First Law for such a charged �uid reads

dε = T ds+ ωdJ (6.94)

and it involves di�erentials of extensive quantities. On the other hand, the Euler relation
becomes

ε+ P = T s+ J ω, (6.95)

leading to the Gibbs-Duhem relation for the BRB e�ective �uid:

dP = sdT + J dω. (6.96)

Since this expression only involves di�erentials of intensive quantities (which are the ones
we are considering independent), we can use it to relate δP with δT and δω. Thus, with
a straightforward computation we can recast eqs. (6.91), (6.92) and (6.93) as

wWδui + ki (sδT + J δω) = 0, (6.97)

w

(
∂ε

∂T

∣∣∣∣
ω

δT +
∂ε

∂ω

∣∣∣∣
T
δω

)
+Wkiδui = 0, (6.98)

w

(
∂J
∂T

∣∣∣∣
ω

δT +
∂J
∂ω

∣∣∣∣
T
δω

)
+ J kiδui = 0. (6.99)

As usual, it is possible to �nd the dispersion relation of the wave perturbations w(|k|)
by imposing the existence of a solution to this system, namely requiring its determinant
to vanish. The result turns out to be independent of the dimension p of the considered
brane, and it reads

w2 =
sJ ∂ε

∂ω
+WJ ∂J

∂T − sW
∂J
∂ω
− J 2 ∂ε

∂T
∂ε
∂ω

∂J
∂T −

∂J
∂ω

∂ε
∂T

|k|2

W
= c2

s|k|2. (6.100)

Taking into account the known local thermodynamic relations from Section 6.1, we obtain
a speed of sound

c2
s = −1

3
, (6.101)

which agrees with the corresponding result for Schwarzschild blackfolds if we take n = 2.
However, it is di�erent from the one that could be naively computed as ∂P

∂ε
= −2

3
, as

prescribed for neutral black branes. This fact must be considered related to the additional
non-trivial transverse charge conservation constraint. Finally, we notice that this value
of cs leads to a dispersion relation w(|k|) independent of T and ω at �rst order.
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Transverse stability analysis

We now turn to the analysis of the extrinsic perturbations, following the previous disser-
tation for Schwarzschild blackfolds. We impose a variation of the transverse embedding
with form

Xm −→ Xm + ξm. (6.102)

We assume again that

• we work at �rst order in the mass scale, which means that the set of extrinsic
equations read

T abK i
ab = 0,

without additional spin-related terms in the r.h.s;

• we have a �at embedding at this order, that is

K
(0) i
ab ≈ 0, Γ(0) ≈ 0,

in such a way that the variation of the extrinsic curvature can be written once
more as

δK m
ab = ∂a∂bξ

m.

With this setup, we fully recover the calculation for Schwarzschild blackfolds, and
therefore from the extrinsic equations we obtain straightforwardly(

ε∂2
t + P∂2

i

)
ξm = 0, (6.103)

so that

c2
T = −P

ε
=

1

3
. (6.104)

From these dispersion relations and after noticing that cT and cL are independent
of T and ω, we conclude that a �rst order longitudinal Gregory-La�amme instability
occurs for each possible con�guration3 with T , ω > 0.

Thermodynamic stability analysis

It is possible to make a comparison with the thermodynamic instabilities of the BRB
e�ective �uid. We know that a thermodynamic system endowed with a conserved charge
like J is stable if and only if both the speci�c heat

cv =
∂ε

∂T

∣∣∣∣
ω

(6.105)

3We exclude zero values of T and ω since we have no well-de�ned extremal limit for a black ring,
and intuitively we can see the reason of this in having required a balancing condition for the angular
velocity.
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Figure 6.5: The left side shows the qualitative behaviour of the speci�c heat for a BRB
as a function of the reduced temperature T /ω. As a comparison, the dashed line is the
qualitative behaviour of the speci�c heat for a Schwarzschild black brane. On the right
side, we display the permittivity of a BRB as a function of the reduced temperature.

and the acting-permittivity

c =
∂J
∂ω

∣∣∣∣
T

(6.106)

are positive. An explicit calculation shows that

cv = −3
8π2T 2 + ω

(
ω −
√

16π2T 2 + ω2
)

32πωT 3
√

16π2T 2 + ω2
, (6.107)

while the permittivity results in

c = − π

4ω3

32π2T 2 + 3ω2

(16π2T 2 + ω2)
3
2

. (6.108)

Their qualitative behaviour is shown in Figure 6.4, where they are plotted as functions
of the reduced temperature τ = T

ω
for a �xed value of ω. We notice that both cv and c

are negative for all T , ω > 0, in perfect agreement with the previously found Gregory-
La�amme dynamic instability. This actually coincides with what happens for all the
other known cases. For example, we analysed explicitly this matching of dynamic and
thermodynamic instability for neutral Schwarzschild black branes in Section 4.1, but it
can be also shown for black branes with other conserved transverse charges instead of J
[40].

The dashed line in the l.h.s of Figure 6.4 represents the qualitative behaviour of the
speci�c heat of a Schwarzschild black brane as a function of the local temperature T . In
fact, we have r0 ∼ T −1, and hence εSchw ∼ T −2 for n = 2, which means that its speci�c
heat goes as cv ∼ T −3. As a consequence, we see that the presence of a transverse
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angular momentum makes the black brane less and less thermodynamically unstable as
we approach a vanishing reduced temperature τ (which does not correspond to a physical
con�guration). We also recall that the US regime j2 →∞ is accessed as τ →∞.

6.5 5D MP black branes stability

Let us consider now the local thermodynamics of a 5-dimensional singly spinning MP
black brane. Instead of de�ning the horizon scale r0 from the local temperature as done
for the black ring, here it is more viable to use the explicit solution of the event horizon
equation (2.12). In D = 5, the outer solution is

r0 =
√
µ− a2. (6.109)

Consequently, we decide to consider r0 and a as independent parameters of these so-
lutions. From the study of the Killing vector �eld generating the horizon, we found
that

ω =
a

r2
0 + a2

. (6.110)

On the other hand, by calculating the surface gravity, one obtains

T =
1

2π

r0

r2
0 + a2

. (6.111)

These two equalities are enough to recast r0 and a in terms of the local temperature and
angular velocity. They result in

r0(T , ω) =
2πT

4π2T 2 + ω2
, (6.112)

a(T , ω) =
ω

4π2T 2 + ω2
, (6.113)

and they allow to write the mass parameter as

µ(T , ω) = r2
0 + a2 =

1

4π2T 2 + ω2
. (6.114)

It follows that

P (T , ω) = −
Ω(3)

16πG
µ = − π

8G

1

4π2T 2 + ω2
, (6.115)

ε(T , ω) = −3P =
3π

8G

1

4π2T 2 + ω2
, (6.116)
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which we notice to coincide with the ADM mass of our solution. From an asymptotical
analysis we �nd the transverse local angular momentum

J (T , ω) =
Ω(3)

8πG
µa =

π

4G

ω

(4π2T 2 + ω2)2 . (6.117)

Finally, from the horizon area one gets the local entropy density

s(T , ω) =
aH
4G

=
Ω(3)

4G
r0(r2

0 + a2) =
π3

G

T
(4π2T 2 + ω2)2 . (6.118)

Dynamic and thermodynamic stability

We are now able to study the dynamic and thermodynamic stability of a MPBB. We
could follow the same procedure as for BRBs, and we would obtain again the dispersion
relation (6.100). By using the local thermodynamics just found, it is easy to see that
also in this case the sound speed is

c2
s = −1

3
, (6.119)

and, analogously, following the previous discussion, we obtain

c2
T = −P

ε
=

1

3
, (6.120)

as well as before.
From these values, we can state that also for MPBBs a Gregory-La�amme instability

is present. Then, there are strong hints that the presence of a transverse spin does
not stabilize enough the dynamics, even if an extremal con�guration is accessible to the
system, as in this case.

It is interesting to compare this dynamic analysis with the thermodynamic stability of
the system, which is dictated by the positivity of the speci�c heat and of the permittivity.
The speci�c heat is

cv =
∂ε

∂T

∣∣∣∣
ω

= −3π2

G

T
(4π2T 2 + ω2)2 , (6.121)

while the acting-permittivity results

c =
∂J
∂ω

∣∣∣∣
T

=
π

4G

4π2T 2 − 3ω2

(4π2T 2 + ω2)3 . (6.122)

The speci�c heat is manifestly negative for each T , ω > 0, and it vanishes at extremality
T = 0. On the other hand, the permittivity is positive if T >

√
3

2π
ω ' 0.276ω. Their

precise behaviour is plotted in Figure 6.5.
We recall that we need both cv and c to be positive in order to have thermody-

namic stability. Thus, we conclude that a MPBB is dynamically and thermodynamically
unstable in each of its accessible con�gurations.
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Figure 6.6: The left side shows the qualitative behaviour of the speci�c heat for a MPBB
as a function of the reduced temperature T /ω. As a comparison, the dashed line is the
qualitative behaviour of the speci�c heat for a BRB. We stress out that for a MPBB the
con�guration T = 0 is accessible. On the right side, we display the permittivity of a
BRB as a function of the reduced temperature; remarkably, it is (slightly) positive for
T
ω
>
√

3
2π
. We compare it with the (dashed) permittivity of a BRB, and we notice that c

approaches the value of − 3π
4Gω4 in the limit T → 0 for both of these black branes.
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Conclusions

We introduced the main features of D = 4 neutral black holes discussing Schwarzschild
and Kerr solutions, then we turned brie�y to the reasons that allow to endow stationary
black holes with a well-de�ned thermodynamics.

In Chapter 2, we showed the di�erent behaviour that neutral higher dimensional
black holes can exhibit in comparison with their D = 4 relatives, by focussing on the
most important families of known exact solutions. We analysed the generalization of
Schwarzschild black holes and black branes, which result from adding �at extra-directions
to the former. We discussed Myers-Perry solutions, which can be thought of as a gener-
alization to Kerr black holes in D > 4, since they have spherical horizon topology and
they admit the presence of at most b(D − 1)/2c angular momenta. We also described
how a singly-spinning MP black hole in D ≥ 6 can access the ultra-spinning limit and
how it can be seen as a black 2-brane in this regime.

Another important class of higher dimensional black holes is represented by D = 5
black rings. As we saw in Section 2.3, their horizon topology is S2 × S1, and actually
they were the �rst solutions with non-spherical horizon topology to be discovered. If we
ask for a stable con�guration (or equivalently no conical singularity in the centre of the
ring), it is necessary to require a rotation along S1. It has the e�ect of balancing the ring
from its gravitational self-attraction. After analysing the phase diagram related to this
class of solutions, we also concluded that in D > 4 no black hole uniqueness principle
holds. Remarkably, a black ring with a very high angular momentum can be thought of
as a black brane (in particular, as a boosted black string), similarly to what happens to
ultra-spinning MP black holes.

In Chapter 3, we showed the main aspects of the blackfold approach, following [31, 35].
It was developed arguing that any neutral higher dimensional black hole in the ultra-
spinning limit must indeed follow a black brane behaviour, but it results to be a formalism
valid for dealing with any higher dimensional black hole solution with a well-separated
hierarchy of length scales along di�erent directions on the horizon. This assumption
allows a splitting between the long wavelength gravitational degrees of freedom and
the ones localized near the horizon. As a consequence, the long wavelength ones can
be associated to an asymptotic background geometry acting as the embedding of the
worldvolume, which is formed by the extended directions. On the other hand, as we saw
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in Section 3.1, the short wavelength degrees of freedom can be encoded into an e�ective
�uid living on the worldvolume, with energy-stress tensor de�ned by the Brown-York
quasilocal prescription. In this approximation, the black hole dynamics is speci�ed by
a set of D constraints (that we referred to as blackfold equations) that one can extract
from Einstein's Field Equations.

After that, we inspected how to generate approximated stationary solutions by �xing
a background spacetime and the symmetries of the considered black holes, as it was done
in [34]. It was showed how to solve the blackfold equations explicitly and we discussed
what are the consequent observables and horizon geometries. Finally, we presented an
alternative procedure relying on an e�ective action that leads to the blackfold equations,
and from which one can obtain (often more straightforwardly) the same observables and
thermodynamics.

We concluded the part of this thesis devoted to previous work with Section 3.7, where
we discussed extensively some simple examples of approximated solutions that one can
build. We presented the general theory of p = 1 blackfolds, specializing then to the
case of Minkowski background in general dimensions. In these conditions, a complete
classi�cation of stationary 1-folds was found, and it was noticed that ultra-spinning
D = 5 black rings are correctly recovered as a particular case. Black discs were discussed
as well, and they were found to reproduce perfectly the thermodynamics of ultra-spinning
D = 6 MP black holes.

In Chapter 4, we �rst generalized the previous quasinormal modes analysis restricted
to static black strings from [31], by considering the e�ective theory of a boosted black
string in Minkowski background at the perfect �uid level. We found a longitudinal
Gregory-La�amme instability for any boost β, as expected.

Then we turned to ultraspinning black rings. After choosing a suitable worldvolume
embedding and after imposing rotation, we �nally added a �nite extrinsic curvature
radius R. Intrinsic and extrinsic perturbations here couple, and, as a result, we found

corrections in
(

1
R2

)j
to the boosted black string frequencies, with a perfect match with

the corresponding large-D expansions at the O(1/
√
n) order. We also discussed the range

of validity of our results with regards to the mode numbers m.
After that, we inspected the e�ects of viscous contributions brought about by the

�rst order e�ective theory. The boosted black string modes get further corrections in
r0
R
, and again they perfectly agree with the known results in the limit of a large number

of dimensions D. New imaginary terms suppressed in r0
R

arise, in such a way that the
longitudinal unstable behaviour gets corrections as well.

It would be interesting to analyse the e�ect of viscous corrections to the perfect �uid
black ring frequencies in Section 4.3. Due to the coupling between intrinsic and extrinsic
equations, we expect to capture, at least partially, also the thin ring transverse insta-
bility that was detected numerically in [3]. Furthermore, one can consider second-order
dissipative corrections to the �uid behaviour, as well as the so-called bending contribu-
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tions to the ring, leading to modi�cations of the blackfold equations form, as explained
in [33, 6].

The aim of Chapters 5 and 6 was to build a new e�ective theory based on the
blackfold formalism and describing higher dimensional solutions with non-zero angular
momenta along the transverse directions. Then, instead of a Schwarzschild spacetime, in
Chapter 5 we considered transverse spaces consisting in rotating black holes. We com-
puted the Brown-York e�ective energy-stress tensor and showed explicitly how to extract
the extrinsic blackfold equations from Einstein's Equations in case of Kerr black strings,
doubly-spinning Myers-Perry black strings and black ring strings. We also discussed how
to generalize these calculations to p > 1 and to a higher number of transverse angular
momenta.

In Chapter 6, thanks to these achievements, we studied black ring blackfolds and their
local thermodynamics, in view of using them as starting point to generate new solutions.
First, we built black holes with S2×T2 horizon topology. These con�gurations have two
angular momenta, one of which is very high, while the other can span a wider range of
values in comparison with the analogous horizon con�guration found in [34], which was
endowed with two very high angular momenta instead.

In addition, we inspected a new class of higher dimensional black hole solutions with
horizon geometry S2× S1×B2m, where B2m identi�es a 2m-dimensional ball. We found
a well-posed thermodynamics, and, after analysing the corresponding phase diagrams,
we observe again that the new e�ective theory here developed is accurate down to rather
low transverse spins, allowing to describe higher dimensional black holes with not all the
angular momenta in ultra-spinning regime.

Finally, we studied the leading order stability of two representative classes of so-
lutions that one can build with this new e�ective theory, namely the ones following
from black ring branes and from D = 5 Myers-Perry black branes. In comparison with
the Schwarzschild black brane case, here the additional transverse angular momentum
conservation law had to be taken into account. The results con�rmed the presence of
a Gregory-La�amme-like instability under perturbations along the worldvolume direc-
tions. We also found a thermodynamic instability of these classes of black branes, and
thus we concluded that they are both dynamically and thermodynamically unstable in
each of their accessible con�gurations, similarly to what happens for Schwarzschild black
branes.

In principle, it is possible to develop further the e�ective theory involving rotating
blackfolds here depicted in the same ways followed for standard blackfolds. A future
development in this direction consists of �nding explicitly the intrinsic equations from
EFE for some speci�c classes of black branes, as done in Chapter 5 for the extrinsic
equations. In addiction to this, it would be interesting to generate other solutions with
non-trivial horizon topology, with the possibility of exploring in particular new Super-
gravity solutions.
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Appendix A

Submanifolds and Embeddings

In this appendix we present several results that are useful for dealing with submanifold
calculus, following Refs. [31, 38].

Consider a D-dimensional spacetime M with coordinates xα and metric gµν(x
α),

and a surface W with dimension p < D and boundary ∂W with coordinates σa, where
a = 1 . . . p.

We say that W is embedded intoM if there exists an injective map Xµ : Rp → RD

between the target space of the charts σa and xα, with the property of preserving the
di�erential structures.

We see that x−1 ◦X ◦ σ de�nes a di�eomorphism from W to a subset ofM, and it
allows us to perform the push-forward of vectors via eµa = ∂aX

µ as

V µ =
dXµ

dt
= eµaV

a (A.1)

from W toM. Analogously, we can build the pull-back of gµν fromM to W , resulting
in the induced metric on W

γab = eµae
ν
bgµν . (A.2)

If we think of eµa = (ea)
µ as a set of p tangent vectors to the subset of M corre-

sponding to W , we can simply identify the n = D − p normal vectors nµi = (n i)
µ by

demanding
eµan

i
µ = 0, nµin

ν
jgµν = 0. (A.3)

Of course, we notice that these requirements only �x the orthonormal vectors nµi up to
O(n) transformations acting on the orthogonal subspace.

Furthermore, these de�nitions allow us to recover a manifest covariance on the em-
bedding spacetime, by considering the subset ofM corresponding to W and forgetting
about the manifold W itself (and the indices a, b). We de�ne the �rst fundamental form
of this submanifold as

γµν = eµae
ν
bγ
ab = eµae

ν a, (A.4)
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while we can build the transverse metric ⊥µν= nµin
ν j in such a way that we can separate

the initial metric onM as
gµν = γµν + ⊥µν . (A.5)

From the conditions (A.3) it also follows that

γµν ⊥ λ
µ = 0, (A.6)

and we can state that γµν projects over the submanifold, while ⊥µν acts as a projector
over the transverse space. On the whole, we must expect to lose the global symmetries
which initially endowed gµν , while we will maintain the di�eomorphism invariance of the
submanifold and the O(n) invariance of the transverse space mentioned above.

From (A.4) it also follows that

γµν∂aX
ν = ∂aX

µ, i.e. γµνe
ν
a = eµa, (A.7)

as well as
γµνγ

ν
ρ = γµρ. (A.8)

Analogously, by using (A.5), these relations consistently imply

⊥µν eνa = 0, ⊥µν⊥νρ =⊥µρ . (A.9)

Now that we have build a sensible metric structure for the submanifold, we can think
of a suitable connection related to the metric connection of the target space. We de�ne
the tangential covariant derivative

∇λ = γµλ∇µ (A.10)

acting on tensors living on the submanifold; on such tensors both the projection ⊥µλ ∇µ

and the entire ∇µ are not well de�ned. We also notice that obviously
[
∇λ, gµν

]
= 0.

It allows us to de�ne the extrinsic curvature tensor as

K ρ
µν = γσν∇µγ

ρ
σ = −γσν∇µ ⊥ρσ, (A.11)

thanks to (A.5). From (A.11) we see that the two lower indices correspond to tangential
directions to the submanifold, while the upper index must be an orthogonal one, that is

⊥µα K ρ
µν =⊥να K ρ

µν = 0, γαρK
ρ

µν = 0. (A.12)

Let us inspect the geometrical meaning of K ρ
µν . First of all, it is possible to show

that the two lower indices are symmetric under exchange:

K ρ
µν = K ρ

(µν) . (A.13)
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Furthermore, it holds that
2Kµ(νρ) = ∇µγνρ, (A.14)

that is, we can interpret the extrinsic curvature tensor as a measure of the variations
of the tangential and orthogonal metric tensors γνρ and ⊥νρ along the surface direction
Xµ. On the other hand, given vα tangent vector to the submanifold, it is easy to show
with the de�nitions above that

vµvνK ρ
µν =⊥ρσ vµ∇µv

σ, (A.15)

and hence K ρ
µν is also related to the variation of tangent vectors along the direction Xρ

orthogonal to the surface. We will see later on that the extrinsic curvature is actually
related to second derivatives of the embedding coordinates Xµ. In turn, it justi�es its
name curvature, while this is not apparent from results (A.14) and (A.15).

Finally, in the previous sections we also made use of the contraction

Kρ = γµνK ρ
µν , (A.16)

which e�ectively consists in the mean extrinsic curvature of the submanifold, extracting
the orthogonal information contained in K ρ

µν .
However, it is often convenient to work explicitly with the construction over W . We

showed above the push-forward of vectors by using the tangent vectors eµa. Of course,
this can be generalized to the whole associated tensorial algebra, while the connection
transforms according to

eµae
ν
bγ
σ
ρ Γρµν = eσcΓ

c
ab − γσρ∂ae

ρ
b (A.17)

due to its non-tensorial nature. This relation also allows us to obtain a more compact
and manageable expression for the pull-back of K ρ

µν on W , and it reads

K ρ
ab = eµae

ν
bK

ρ
µν = Da∂bX

ρ + Γρµν∂aX
µ∂bX

ν , (A.18)

where of course we understand

Da∂bX
ρ = ∂a∂bX

ρ − Γcab∂cX
ρ. (A.19)

Variational calculus on submanifolds

Let us consider a congruence of curves with tangent vector �eld Nµ, intersecting W
orthogonally and smooth in a neighbourhood of W . From (A.5) it follows that

Nµγµν = 0, Nµ ⊥µν= Nν . (A.20)
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We can Lie-drag the points of W with the local map Xµ 7→ Xµ + λNµ, and it results
interesting to study the consequent variation of the tangential metric γµν . We have

£Nγµν = Nρ∇ργµν + γρν∇µN
ρ + γµρ +∇νN

ρ, (A.21)

leading to

γλµγ
σ
ν£Nγλσ = γλµγ

σ
νN

ρ∇ργλσ + γλµγ
σ
νγρσ∇λN

ρ + γλµγ
σ
νγλρ∇σN

ρ. (A.22)

We observe that the �rst term in the r.h.s. is zero, while

γσνγρσ∇µN
ρ + γλµγλρ∇νN

ρ = −2NρK
ρ

µν . (A.23)

Then, on the whole, (A.22) means that

NρK
ρ = Nργ

µνK ρ
µν = −1

2
γµν£Nγµν , (A.24)

which means that the mean extrinsic curvature tells how much the induced metric varies
after orthogonal Lie-dragging. By simply making use of the well-known matrix identity

D det(A) = det(A)Tr
[
A−1DA

]
, (A.25)

with D a derivative operator, it follows that

NρK
ρ = − 1

√
γ
£N
√
γ, (A.26)

where we de�ned γ = | det(γ)|.
This relation is particularly useful for dealing with several variational principles. For

instance, let us take a generic Polyakov-like volume action

S[W ] =

∫
W

√
γ. (A.27)

Thanks to (A.26), we can write the variation of the volume under Lie-dragging along Nρ

as
δNS = £N

√
γ = −

√
hNρK

ρ. (A.28)

Then, the related variational principle simply reads Kρ = 0 for any orthogonal vector
Nρ, and actually it is the usual condition associated with NG worldvolumes.

Starting instead from an action of the form

S[W ] =

∫
W

√
γΦ(σ) (A.29)

118



with Phi(σ) function over W , we �nd that its variation reads

δNS = £N (
√
γΦ) = −√γ (NρK

ρΦ−Nρ∂ρΦ) . (A.30)

Such a generic worldvolume functional is minimal δNS = 0 if

NρK
ρΦ = Nρ∂ρΦ, (A.31)

that is
Kρ = ⊥ρσ ∂σ(ln Φ), (A.32)

where we explicitly keep track of the orthogonality of the mean extrinsic curvature.
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Appendix B

Emparan-Reall US limit of a BRS

Starting from the known metric by Emparan and Reall, we can impose the balancing
condition, add an extra direction l and perform a boost along it. Then, if we expand in
the US limit r, r0 � R to the leading order in r0/R, we obtain the metric

ds2 =

(
ηab +

2r0

r
uaub

)
dσadσb +

√
2
r0

r
uadσ

adz +
(

1 +
r0

r

)
dz2

+
(

1 +
r0

r

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
,

(B.1)

with σa = (t, l). It is easy to see that we have recovered the asymptotic metric of
a boosted Schwarzschild black membrane, with a speci�c boost along z (�xed by the
balancing condition) and a generic one along l. Rede�ning the worldvolume coordinates

as σa = (t, l, z) and setting ua =
(
u0, u1, 1√

2

)
, it is possible to rewrite (B.1) in the usual

and more compact form

ds2 =

(
ηab +

2r0

r
uaub

)
dσadσb +

(
1 +

r0

r

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (B.2)

The subsequent e�ective energy-stress tensor can be computed straightforwardly, and it
results to be of the usual perfect �uid form, even if we are in presence of a compacti�ed
dimension, namely

Tab =
2π2

16πG
(4r0R) (2uaub − ηab). (B.3)

From the explicit calculation, one can observe that the right dimensionality of [L]2 is
restored thanks to the integration over the compact direction z, which provides a global
2πR factor. We also notice that (B.3) is in exact agreement with the stress tensor (5.42),
since the translation from Durkee's parametrization to this one reads in the US limit

µ =
4r0R

2

R− r0

≈ 4r0R. (B.4)
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As a consequence, we do not need to verify directly how to obtain the blackfold
extrinsic equations for a BRS in the thin ring limit, that is in case of a very high
transverse angular momentum. The whole calculation simply reduces to the one related
to Schwarzschild black p-branes, here with p = 2.

Our aim is to study if it is possible to recover the blackfold extrinsic equations for
any angular momentum, and not only for very high ones. Then, we intend to decrease J
a little, which is a requirement that e�ectively reduces to considering the next-to-leading
order corrections in r0/R to the membrane limit (B.1). Of course, this will prevent us
from dealing with z as an additional worldvolume direction, as it was done in (B.2).

In this way, if we neglect the terms proportional to (r0)m with m > 1 from the start
(since they will not enter our later analysis), the expanded metric becomes

ds2 =

(
ηab +

2r0

r

(
1 +

r

R
cos θ

)
uaub

)
dσadσb +

√
2
r0

r

(
1 +

r

R

)
uadσ

adz

+
(

1 +
r0

r
− 2

r

R
cos θ

) (
dz2 + dr2

)
+ r2

[
1− 2

r

R
cos θ

(
1 +

r0

2r

)] (
dθ2 + sin2 θdφ2

)
.

(B.5)

Except for gaz, we see that all the other corrections have a dipolar nature, as expected.
It is important to recall the length scale hierarchy r0 � r � R that is present in this
case.

Instead of going through the Brown-York computation of the e�ective stress tensor,
which is rather cumbersome to perform, we simply expand µ(r0) from (B.4) to �rst
order in 1/R and substitute it into (5.42). It turns out that µ ≈ 4r0R + O(r2

0), which
means that (B.3) remains unchanged at any order in (r0/R)j, as far as it concerns our
Camps-Emparan analysis. We �nd then

r0 = − T

16R
+O

(
1

R3

)
, (B.6)

r0uaub =
1

8R

(
Tab −

T

4
ηab

)
+O

(
1

R3

)
. (B.7)

Before plugging these reparametrizations into (B.5), it is relevant to think of the
perturbative orders that we are considering, and we can make an explicit comparison with
the analogue Schwarzschild discussion for n = 2. In the limit r0 � r, we are allowing the

presence of O
(
r2n0
r2n

)
= O

(
r40
r4

)
, but by construction we are also neglecting terms of order

equal to or higher than O
(
r20
R2

)
. This fact means that our US expansion e�ectively leads

the metric to satisfy automatically the requirement of slow, long wavelength intrinsic
perturbations. Then, working at r0/R order implies that we have still a rather simple
metric to deal with.
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From the relations found above, the Camps-Emparan form for a BRS in these limits
reads

ds2 =

[
ηab +

1

4Rr

(
Tab −

T

4
ηab

)(
1 +

r

R
cos θ

)
uaub

]
dσadσb

+ 2
(

1 +
r

R

)
Jadσ

adz +

(
1− T

16Rr
− 2r

R
cos θ

)(
dz2 + dr2

)
+ r2

[
1− 2r

R
cos θ

(
1− T

32Rr

)] (
dθ2 + sin2 θdφ2

)
,

(B.8)

where as usual we de�ne the angular momentum current

Ja =
r0√
2r
ua = − T

16
√

2Rr
ua. (B.9)

We see that the main di�erence from the Camps-Emparan form of a Schwarzschild black
brane is the presence of a dipolar deviation in r/R in the worldvolume sector. In fact,
we are not dealing anymore with a solution endowed with spherical topology, but with
a S1 × S2 topology, and hence we must expect corrections to the spherical setup with a
new dependence on the characteristic scale1 R of S1.

In the original procedure to extract the extrinsic equations from a Schwarzschild
black brane, spherical symmetry is present from the start, and subsequently one breaks
it by adding the dipolar perturbations hµν , linear in the inverse of the extrinsic curvature
scale. In this case, instead, SO(n+1) is broken by similar dipolar corrections, now linear
in the inverse of the transverse rotation scale R.

A good guess may be to perform a change of the coordinates (r, θ) in order to recover
explicitly the spherical symmetry in the angular sector of the metric (B.21). Naming the
new coordinates (θ̃, r̃), we set

θ = θ̃ +
g(θ̃, r̃)

R
, (B.10)

r = r̃ +
l(θ̃, r̃)

R
. (B.11)

Imposing the diagonality of the new metric and to recover spherical symmetry in the
angular part up to O(1/R2), we obtain the three conditions

gr̃θ̃ = 0, (B.12)

gθ̃θ̃ = r̃2, (B.13)

gφ̃φ̃ = r̃2 sin2 θ. (B.14)

1Remarkably, this scale is also the one associated with the angular velocity, due to the balance
condition for black rings.
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From these, one �nds the explicit form of the change of coordinates

θ = θ̃ +
sin θ̃

R
G(r̃), (B.15)

r = r̃ +
r̃

R
cos θ̃

(
r̃ +

T

32R
−G(r̃)

)
. (B.16)

where

G(r̃) =
r

2
− e−

T
16Rr

2r

T 2

256R2

∫ +∞

− T
16Rr

e−t

t
dt =

r

2
+O(T 2). (B.17)

Hence, as far as it concerns our analysis, we can write the new coordinates as

θ = θ̃ +
r̃

2R
sin θ̃, (B.18)

r = r̃

[
1− r̃

2R

(
1 +

T

16Rr̃

)
cos θ̃

]
, (B.19)

up to higher order contributions. In particular, we notice that r̃(r) is a monotonic
function, and does not show any singularity. Here we have chosen the gauge of r̃ in such
a way that it is zero when r = 0. Dropping now all the tildes, we can rewrite the metric
as

ds2 =

[
ηab +

1

4Rr

(
Tab −

T

4
ηab

)(
1 +

r

2R

(
1− T

16Rr

)
cos θ

)
uaub

]
dσadσb

+ 2

[
1− r

R

(
1 +

1

2

(
1 +

T

16Rr

)
cos θ

)]
Jadσ

adz

+

[
1− T

16Rr
− 2r

R

(
1− T

64rR

)
cos θ

]
dz2

+

[
1− T

16Rr

(
1 +

cos θ

2

)]
dr2 + r2

(
dθ2 + sin2 θdφ2

)
.

(B.20)

We keep in mind that, due to the form of µ(r0), T
R2 terms are allowed in our expansion,

since they are of the same order of r0
R
. Interestingly enough, we notice the dipolar

deviations related to the extrinsic perturbations and the dipolar corrections due to the
transverse rotation do not seem to decouple from each other, but they appear to factorize
their amplitudes. In short, this is connected with the fact that their two characteristic
length scales are independent and not related.
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At this point, we can add the extrinsic perturbations and the corrections hµν , in such
a way that the perturbed expanded metric reads

ds2 =

[
ηab − 2K î

ab yî +
1

4Rr

(
Tab −

T

4
ηab

)(
1 +

r

2R
cos θ

)
uaub

]
dσadσb

+ 2

[
1− r

R

(
1 +

1

2

(
1 +

T

16Rr

)
cos θ

)]
Jadσ

adz

+

[
1− T

16Rr
− 2r

R

(
1− T

64rR

)
cos θ

]
dz2

+

[
1− T

16Rr

(
1 +

cos θ

2

)]
dr2 + r2

(
dθ2 + sin2 θdφ2

)
+ hµν(r, θ)dx

µdxν .

(B.21)

At this point, a safe procedure to �nd the extrinsic equations consists in

1. imposing a variation of the transverse coordinate in r/R in such a way that the
�nal combination of Einstein components is proportional to the mass scale and
inversely proportional to the extrinsic curvature radius at each order in R, as it
should be;

2. once turned o� hµν and naming Grθ − αGrr, imposing a variation of the known
coe�cient α for Schwarzschild of the form

α =
r

2
tan θ

(
1 + f(θ)

r

R

)
,

and it is possible to �nd a unique f(θ) just by requesting Grθ−αGrr to be propor-

tional to K î
ab T

ab also at �rst order in r0/R (at the leading order we are guaranteed
that it is);

3. turning on hµν and using the coe�cient α found above, we impose θ-dependent
corrections in r/R in each of its component. It is then possible to make Grθ−αGrr

independent of hµν and �nd consequently the corrections of the latter.

Following this procedure, two solutions were found. They coincide as far as it concerns
both the transverse coordinates and the coe�cient α, but they are di�erent in the dipolar
corrections that one �nds for hµν . Even though we simply restrict to presenting these
solutions now, we believe that future discussions concerning the matching with the results
of Section 5.3 should be able to solve this ambiguity.

First solution Assuming the transverse coordinates and all the other (non-tensorial)
quantities to have corrections in 1/R independently of the mass scale r0, it is possible to
recover the blackfold extrinsic equations by taking the transverse coordinate to be

yî = r cos θ
(

1 +
r

4R cos θ

)
+O

(
1

R2

)
, (B.22)
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and a perturbation tensor consisting of both a spherical dipole (due to the bending of
S2) and of a dipolar correction related to the expansion in 1/R, only along the transverse
directions:

hµν(r, θ)dx
µdxν = cos θ

[
ĥabdσ

adσb +
(

1− r

R
cos θ

)(
ĥrrdr

2 + ĥzzdz
2+

+ r2ĥθθ(dθ
2 + sin2 θdφ2)

)]
,

(B.23)

together with the constraint ĥzz = 2ĥθθ − ĥrr. This all leads to a combination

Grθ −
r

2
tan θ

(
1 +

r

2R
sin θ tan θ

)
Grr =

=
3G

2πr
sin θ

(
1 +

r

2R cos θ
(1− 1

3
cos 2θ)

)
K î
ab T

ab
(B.24)

independent of hµν , where we left implicit higher orders in r0/R. We �nd that there is

no physical reason justifying such a strong constraint on ĥzz.

Second solution Instead, maintaining the same transverse components (B.22) and
�nal solution (B.24), we can think of having components hµν all independent of each
other, imposing now corrections also along the worldvolume. Nonetheless, we consider
the same dipolar variation for the spherical sector of the perturbations hµν , and anal-
ogously we assume that the worlvolume part of the metric gets corrected by a single
global function.

It can be shown by direct calculation that these assumptions are satis�ed uniquely
by the tensor

hµν(r, θ)dx
µdxν = cos θ

[(
1−m(θ)

r

R

)
ĥabdσ

adσb +
(

1− l(θ) r
R

)
ĥrrdr

2+

+
(

1− f(θ)
r

R

)
ĥzzdz

2 + r2
(

1− g(θ)
r

R

)
ĥθθ(dθ

2 + sin2 θdφ2)
]
,

(B.25)

with

m(θ) = −1

2
(cos θ + sec θ) , g(θ) =

1

3
(2 cos θ − sec θ) ,

l(θ) =
1

2
(3 cos θ + sec θ) , f(θ) =

1

4
(3 cos θ − sec θ) .
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