
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

A Flexible Readout Board for HEP
Experiments

Relatore:

Prof. Alessandro Gabrielli

Correlatore:

Dott. Gabriele D’Amen

Presentata da:

Giuseppe Gebbia

Anno Accademico 2017/2018

Abstract

This thesis will present my contributions to the development of the “πLUP” board
along with a general overview of its features and capabilities. The πLUP board is a
general-purpose FPGA-based readout board for data acquisition systems under develop-
ment by the University of Bologna and the Instituto Nazionale Fisica Nucleare (INFN)
and intended for high energy physics experiments, where the sheer amount of data gen-
erated by detectors often requires custom hardware solutions.

This board was initially proposed for the next upgrade of the ATLAS Pixel detector.
In this context its purpose would be to interface the Front-End readout chip RD53A
with the FELIX card and provide advanced testing features such as an emulator for the
RD53A that will help the development of the other parts of the data acquisition chain.
Nonetheless, since the early stages of development, the hardware has been designed to
offer great flexibility so that the same hardware platform could be directly used in other
applications. To this purpose an important feature of the board is the great extendibility
offered by the presence of different interfaces, such as and 3 FMC connectors (two low
density and one high density), a PCI Express x8 interface, gigabit ethernet and an
integrated SFP connector.

The computing power of the πLUP is provided by of two FPGAs, a Zynq-7 SoC and a
Kintex-7 produced by Xilinx, intended to be used in master-slave configuration. In this
case the Zynq, with its dual-core ARM processor and the possibility to run an embedded
linux distribution, would be used as main interface with the other functionalities in
the board. The main objective of this thesis is the development of such software and
firmware control infrastructure, starting from the firmware solutions for the inter-FPGA
communication to the low-level software to control the system.

Sommario

In questa tesi saranno presentati i miei contributi allo sviluppo della scheda “πLUP”
insieme ad una panoramica delle sue funzionalità e applicazioni. La πLUPè una scheda di
readout general-purpose basata su tecnologia FPGA in sviluppo da parte dell’Università
di Bologna e l’Istituto Nazionale di Fisica Nucleare (INFN). La scheda è mirata ad
applicazioni in sistemi di acquisizione dati per esperimenti di fisica delle alte energie, nei
quali l’elevata quantità di dati generati dai sistemi di rilevazione richiede spesso l’utilizzo
di soluzioni hardware su misura.

Inizialmente la πLUP è stata proposta come soluzione per il prossimo upgrade del
Pixel Detector dell’esperimento ATLAS. In tale sistema il suo utilizzo consisterebbe
nell’interfacciare il chip di front-end RD53A con la scheda di readout FELIX, mettendo
a disposizione funzionalità di testing, come ad esempio un emulatore per il RD53A,
per facilitare lo sviluppo delle varie parti della catena di acquisizione dati. Nonostante
questo, fin dalle prime fasi di sviluppo, l’hardware della scheda è stato progettato per
offrire grande flessibilità in maniera da poter adattare la stessa piattaforma a diverse
applicazioni. A tal fine un importante caratteristica di questa scheda è la presenza
di diverse interfacce fisiche che contribuiscono all’estensibilità delle scheda, come ad
esempio 3 connettori FMC (due a bassa densità ad uno ad alta densità), un connettore
PCI Express ed un SFP+.

La πLUP è dotata di due FPGA, un SoC Zynq-7 ed una Kintex-7 prodotte da Xi-
linx, tipicamente utilizzate in una configurazione master-slave. In tale configurazione
la Zynq, che include un processore ARM dual-core con la possibilità di supportare una
distribuzione Linux completa, sarebbe l’interfaccia principale con le funzionalità presenti
sulla scheda. Lo scopo principale di questa tesi è lo sviluppo di tale struttura firmware
e software.

Contents

1 Introduction 2

2 The ATLAS Experiment 5
2.1 Inner Detector . 6
2.2 Calorimetry and Muon Tracking . 8
2.3 Trigger System . 10
2.4 ATLAS Pixel Detector . 11

2.4.1 Future Upgrades . 14

3 The πLUP Platform 21
3.1 Hardware Overview . 21
3.2 Firmware Control Infrastructure . 27

3.2.1 Inter-FPGA communication . 28
3.2.2 AXI Register Block . 29
3.2.3 Interface with the Software . 31

4 Applications 34
4.1 Protocol Converter . 34
4.2 RD53A Emulator . 37

5 Conclusions 39

Appendices 40

A FPGA Architecture 41

B Transmission Protocols 46
B.1 The AXI Protocol . 46
B.2 Aurora 64b/66b . 48
B.3 GigaBit Transceiver (GBT) . 50
B.4 Felix FULL mode . 52

1

Chapter 1

Introduction

The πLUP board (pronounced “pile-up”, an acronym for PIxel detector Luminosity UP-
grade board) is a readout card developed by the university of Bologna and the Instituto
Nazionale Fisica Nucleare (INFN) section of Bologna for experiments in high energy
physics. Most experiments in this sector involve huge data rates and/or very strict
timing requirements from quite complex sensor systems; for example the entire ATLAS
experiment, in its current state, generates a raw data-rate with an order of magnitude of
1 petabyte/s. In this context, the role of a readout card is interface with the front-end
electronics (mixed-signals devices that read and digitalize the information from the sen-
sors) and to process the incoming raw data, generally performing data formatting and
monitoring, which may include some form of on-line analysis.

The πLUP was initially developed to be part of the upgrade for the DAQ of the
ATLAS experiment pixel detector in view of the next Large Hadron Collider (LHC)
luminosity upgrade, that will increase the luminosity to the maximum design value [1].
In high energy physics experiments the luminosity L is defined as the proportionality
factor between the number of events N generated per unit of time and the cross section
σ of the event:

dN

dt
= L · σ (1.1)

This value characterize the ability of the machine to produce a certain scattering event,
and so the luminosity upgrade aim to increase the number of collisions per unit of time.
The next major upgrade of the LHC (during the period referred as Long Shutdown 2)
plan to increase the luminosity by an order of magnitude to increase the probability of
observing rare events (characterized by a small σ) at the various experiments present
along the LHC circumference. As an obvious consequence, this implies an equally sizable
increase of the already huge amount of data to be processed and stored, making it
necessary, among the others, to replace several parts of the aging pixel detector DAQ
system, currently based on the “ROD-BOC” system [2]. While the development of
this board was justified by the need to replace said system, the πLUP aims to be a

2

general-purpose readout card, capable to adapt to different use cases and experiments.
Additionally, the board comes equipped with a software and firmware infrastructure that
will ease further developments in view of any possible future application by providing
higher-level control over the functionalities implemented in the board and in particular
in the FPGAs firmware.

A picture of the latest version to date is shown in fig.1.1, while a block schematic
showing the main components present on the board in fig.3.1 in the next chapter. The
board is based on two Xilinx FPGAs, a Zynq SoC and Kintex, used in a master-slave
configuration. The Kintex acts as the “muscle” of the board, driving the higher speed
interfaces and running most of the more complex firmware applications. The Zynq on
the other side, with its integrated ARM CPU, acts as the main control interface to the
board and so can be considered as the “master” of the system. In most applications
studied the ARM processor runs an embedded Linux distribution. The choice to include
a Zynq FPGA was mostly driven by such need to have a generic (hardware) CPU on
the board and between the wide choice of ARM-based SoC an FPGA-based SoC was
deemed to be the most interesting to met the flexibility and extendibility target set
by the project; indeed the reconfigurability offered by such systems make it easier to
repurpose and adapt the board to other uses by allowing to implement new features and
fix flaws long after the hardware design is completed.

A variety of different I/O interfaces also adds to the versatility of this board; some of
the most useful are the PCI Express connector and the SFP+. The PCIe connectivity
is a standard choice for a read-out or DAQ card, since it is one of the most common

Figure 1.1: The πLUP board rev. 1.1

3

and sensible options to interface and transfer data with an host computer. The SFP+
connector offers a higher bandwidth alternative, possibly over optic fiber connection, to
the two gigabit ethernet ports, one of which is connected to the Zynq processor and is
one of the main “access points” to communicate with the system. Additionally three
FPGA Mezzanine Connectors (FMC), a Low-Pin Count (LPC) and a High-Pin Count
connected to the Kintex and another LPC connected to the Zynq, leave wide room to
interface the board with other devices.

The following discussion in divided in three chapters: The first will describe in broad
terms the data acquisition system of the ATLAS experiment and its recent developments.
In the second, after a quick overview of the πLUP hardware, the firmware and software
infrastructure implemented on the board will be described. Finally in the last chapter
some specific applications developed will be presented, and in particular the protocol
converter between the RD53A and the FELIX card, as well as the emulator for the
former.

4

Chapter 2

The ATLAS Experiment

The ATLAS (A Toroidal LHC ApparatuS) experiment is one of the major experiments
at the Large Hadron Collider (LHC)[3]. The detector, shown in fig.2.1, is a massive
general-purpose particle detector designed to detect the variety of particle produced by
collisions between high energy (up to 14 TeV) protons at its core. At the current state
of the LHC, after the run-2 upgrade, at interaction point bunches of ∼ 1011 protons
from the two beams cross with a peak rate of 40 MHz, generating a total of 6 · 108

proton-proton collisions per unit of time (only ∼ 20 collisions per bunch crossing) [4].
As expected from the broad definition of the problem, the detector is composed of

Figure 2.1: Cut-away view of ATLAS showing the placements of its detectors [3].

5

several “sub-detectors” specialized in reconstructing specific observables from different
particles. The entire system has a cylindrical geometry, with detectors placed in both
surfaces; barrel-shaped detectors with orientation parallel to the direction of the beam
are referred as “barrel” detectors while the ones placed on the base of the cylinder, and
so with orientation incident to the beam, “end-caps” detectors.

The collision point between the two beams, right at the centre of the cylinder, is
taken as origin of the coordinate system, with the x axis pointing to the centre of the
LHC ring and the y axis in a direction normal to the circle (and consequently, z along
the same direction of the beam). Generally the coordinate system is expressed in polar
variables, with φ being the azimuthal angle and θ the polar angle. The trajectory angle
of a particle produced by the collision respective to the beam axis is expressed by the
pseudorapidity η = − ln (tan (θ/2)).

2.1 Inner Detector

As suggested by its name the inner detector (ID), schematized in fig.2.2, is the innermost
layer of ATLAS, and therefore the closest to the beam (and the collision point). Data
from this detector is mainly used to perform particle tracking, and so its purpose is to
detect the passage of charged particles, reconstructing spatial and temporal informations
about the event. Using these informations is also possible to measure the energy of the
particle from the trajectory of the particle; to this purpose the ID is submerged in a
strong magnetic field (∼ 2 T) that curves the trajectory of charged particles, allowing to
measure their momentum from the curvature once the particle is identified.

The ID is in its turn composed by three sub-detectors: the pixel detector, the semi-
conductor tracker (SCT) and the transition radiation tracker (TRT). Each offering a
different trade-off in terms of granularity, precision and area covered.

Pixel Detector The pixel detector is composed of four barrel-shaped matrices of sil-
icon pixels plus 3 end-caps rings (with pixel modules orthogonal to the direction of the
beam rather than parallel), offering the highest level of granularity (i.e. spatial resolution)
near the beam where the (spatial) density of events is the higher. Its data acquisition
system is of main interest to this work, and a more detailed description of this detector
and its DAQ system will be provided later in this chapter.

Semiconductor Tracker The successive 4 layers are part of the SCT, also including
9-layers end-caps; this is also a silicon-based detector, but each module of the “pixel”
matrix is composed by a series of elongated microstrips (with a width of 80 µm and length
12 cm) rather than squared pixels. While this detector offers a lower precision compared
to the pixel detector, the SCT covers a larger area. Together, the pixel detector and the
SCT cover the pseudorapidity area |η| < 2.5.

6

Figure 2.2: Cut-away of the inner detector (top) and placements and distance of the
three barrel sub-detectors from the beam (bottom).

7

Transition Radiation Tracker Last, the TRT is composed by 4 mm diameter straws
with orientation parallel to the beam in the barrel part and perpendicular at the end-caps.
Each tube is filled with a gas mixture of Xe(70%)CO2(27%)O2(3%) (recently the Xenon
was replaced with Argon for cost reasons) and the straw shell is kept at a negative high
potential with respect to an anode wire running along the centre of the straw. A charged
particle crossing this structure generates a ionization in the gas that can be measured as
a current signal between anode and cathode. Additionally the space between the straws
is filled with polymer fibers to generate transition radiation that can be absorbed by Xe
atoms. This two event can be distinguished by the front-end electronics by the strength
of the current signal.

The TRT doesn’t offer a spatial resolution competitive with the other two detectors,
but its lower cost respect a pixel-based detector (and also inherent physical structure)
allows to build a more extensive apparatus, offering more precise momentum estimation
of the particle by measuring more points in a larger range along a track.

2.2 Calorimetry and Muon Tracking

The role of the calorimeters is to measure the energy of a crossing particle. The general
design of a calorimeter employs a series of layers with a high probability of interaction
with the particles of interest interleaved with detectors able to measure the occurrence
of an event and/or the amount left by it. A calorimeter must be then designed to fully
contain the particle shower generated by one particle interacting with the detector, which
is the factor that determine the (often quite extensive) physical extension of the detector.
While all the calorimeter systems offer some information about the position of the event
with various level of granularity, the precision is definitely not comparable with the inner
detector and so the information from those detectors is not directly intended for track
reconstruction. The calorimeters are mainly used for particle identification and so are
also crucial for the triggering system.

The different calorimeter systems are designed to interact with different particles:
the innermost Liquid Argon (LAr) electromagnetic calorimeter is divided, as shown in
fig.2.3, in a barrel element covering the pseudorapidity region |η| < 1.475 and three
end-caps: the EM end-cap (EMEC), plus the hadronic end-cap (HEC) and forward
(FCal) calorimeters, covering the range 1.375 < |η| < 3.2. The LAr EM calorimeters are
designed to absorb electrons and photons, and are composed by a series of alternating
layers of absorber elements (typically a metal such as lead or copper) and layers filled of
liquid argon that ionize when an high-energy particle crosses it. The HEC overlaps in
the same pseudorapidity area of the EMEC to detect hadronic particles non absorbed by
the latter. Similarly, particle not contained by the LAr barrel calorimeter are absorbed
by the tile calorimeter, which detection system is based on layers of scintillating tiles
(i.e. photonic signals) rather than electric signal in a ionized medium.

8

Figure 2.3: Cut-away of the calorimeters system [3].

Muon System The last and most external (and also large) detector is the muon
spectrometer, covering the range |η| < 2.7. In a similar manner to the inner detector, the
muon spectrometer employs strong magnets to deflect the trajectory of muons (which
pass across the other detectors mostly undisturbed due their low cross-section) to a
series of detecting chambers to estimate their momentum. There are various types of
detector chambers: the precision tracking chambers composed by the Monitored Drift
Tubes (MDT) covering most of the pseudorapidity range and the Cathode Strip Chambers
(CSC) which offer higher granularity in the 2 < |η| < 2.7 pseudorapidity region; the
trigger chambers covering the |η| < 2.4 range and divided in Resistive Plate Chambers
(RPC) in the barrel section and Thin Gap Chambers (TGC) in the end caps.

As suggested by the name, the role of the precision tracking chambers is to track
the trajectory of the muons to get precise estimations of their momenta. The detection
method is again based on ionization of a gas mixture caused by the inelastic collision
with the charged muons. The difference between MDT and CSC is related to the higher
density of tracks in the pseudorapidity range covered by the latter, which made it neces-
sary to employ a more complex detector system with better multi-tracks discrimination
capabilities.

The precision chambers are complemented by the trigger chambers, which are based
on similar principles for the detection of muons but are designed to provide a fast response
to use in the trigger system (which as will be explained later puts very strict limits to

9

the timing in order to generate a response).

2.3 Trigger System

To deal with the enormous data rate coming from the various detectors, the ATLAS
experiment uses a multi-stage trigger and data acquisition system (TDAQ) which exploits
a subset of the available detector to select interesting events to be acquired and stored.
The main components of the TDAQ system are schematized in fig.2.4. The Level 1
Trigger is hardware-based (FPGA or ASIC) and uses part of the information from the
muon trigger chambers and the calorimeters to detect possible events of interest, such as
the generation of particles with high transverse momentum. A Central Trigger Processor
(CTP) then uses this informations to take a decision in under 2.5 µs (the time between
bunch crossings) and in case triggers the detector read-out drivers (ROD) to read the

Level-1

Le
ve

l-
1

A
cc

ep
t

Level-1 Muon

Endcap
sector logic

Barrel
sector logic

Level-1 Calo

CP (e,γ,τ)
CMX

JEP (jet, E)
CMX

Central Trigger

MUCTPI

L1Topo

CTP

CTPCORE

CTPOUT

Preprocessor
nMCM

Detector
Read-Out

ROD

FE

ROD

FE

ROD

FE...

DataFlow

Read-Out System (ROS)

Data Collection Network

Data Storage

Muon detectors

Calorimeter detectors

High Level Trigger
(HLT)

Processors O(28k)

RoI

Event
Data

Fast TracKer
(FTK)

TileCal

Accept

P
ix

el
/S

C
T

Tier-0

Figure 2.4: Block diagram of the TDAQ system of the ATLAS experiment showing the
two main trigger blocks (Level-1 and HLT) and their interacion with the readout and
acquisition system [4].

10

buffer pipelines from the front-end electronics (FE) holding the data from the detectors
(including the inner detector). Since both the signals in the calorimeters and the muons
flight-time in the detector are longer than the bunch crossing interval, another crucial
role of the L1 trigger is to track the number and timing of the bunches crossing and
attach to the trigger signal informations related to the exact bunch that generated the
event. The L1 trigger also builds a Region of Interest (RoI) map of the event, that will
used by the rest of the system for a more accurate analysis of the data selected in this fist
triggering stage. After the L1 trigger filtering the date rate is reduced to about 75 kHz.

To the L1 trigger follows the software-based High Level Trigger (HLT, in turn com-
posed by the Level-2 Trigger and the Event Builder), which runs on “conventional” CPUs
and reduces the rate to ∼200 Hz performing a deeper analysis around the RoI detected
by the L1 trigger using the full data from the detectors. This includes tracking informa-
tion from the inner detector so the L2 trigger performs an approximate reconstruction
of the event in the RoI. Finally the data selected by the HLT is stored in the Tier 0 data
center for off-line analysis.

An additional Fast TracKer (FTK) [5] is under development and intend to use infor-
mations from the inner detector for an intermediary stage between the L1 trigger and
the HLT. This system will be based on FPGA and custom ASIC chips and will imple-
ment fast parallel tracking algorithms, based on associative memories, for track fitting.
This will provide the HLT with precise track informations even at higher event rates not
manageable with conventional CPUs.

2.4 ATLAS Pixel Detector

As previously introduced, the ATLAS pixel detector is composed by 4 barrel-shaped
matrices of pixels plus end-caps organized as shown in fig.2.5: the B Layer, the Layer
1 and 2 [3], and after the Run-2 upgrade by the Insertable Barrel Layer (IBL)[6, 7].
The three original pixel layers are composed by a matrix of 63.4 mm× 24.4 mm sensor
modules each containing 47232 pixels of nominal size of 50 µm× 400 µm, while in the
IBL layer the pixel size is reduced to 50 µm× 250 µm to obtain a higher resolution. The
modules are mounted on staves with pitch of ∼ 20 degrees for the L1–2 and BL, and
∼ 14 degrees for IBL as shown in figure. The modules along a stave are also slightly
titled in the z axis (along the stave length) in the direction of the interaction point to
increase the geometric acceptance. Together, the four layers have in total 1680 modules.

Other than the pixel sensors itself every module includes the front-end chips to read
and digitalize the information from the sensor, and a Module Chip Controller (MCC)
distributing timing, trigger and calibration signals and also generating events for the
Read-Out electronics. The IBL modules present a number of differences from the ones
in the other three layers: they are based on the newer FE-I4 front-end chip (succeeding
the FE-I3 adopted in the other layers) which communicates with the readout electronics

11

Figure 2.5: 3D view of the Pixel detector (top), barrel and stave structure of the IBL
(bottom). The scheme on the bottom also shows the pixel technology used along a IBL
stave [6].

directly without the need of a MCC. In the IBL, other than the already mentioned pixel
size, the pixels are not all identical; the 3 older layer use a planar silicon technology, while
the IBL combine in the same stave planar pixels with pixels based on a 3D technology,
as shown in the bottom part of fig.2.5. In 3D pixels the electrodes are realized by
etching of vertical columns crossing the device, reducing the charge drift distance since
the distance between electrodes is no longer fixed by the wafer thickness and so can
be arbitrary. This leads to improvements in response times, bias voltage requirements
and potentially smaller probability of trapping by impurities (which might mitigate the
effects caused by radiation damage).

The front-end chips, schematized in fig.2.6, are directly bonded to the pixel sensors
and so is exposed to great doses of radiation as well. The FE-I3 was fabricated with
250 nm CMOS technology with various radiation hardening techniques. Good part of the
chip area is occupied by the pixel read-out cells; each cell is composed by two analogue
parts (based on a buffer and amplifier stage, and a programmable amplitude comparator)
reading data from two pixels, and a digital part which transfer the address of the hit and
the Time over Threshold (ToT) to the hit buffers at the periphery of the chip. Those
buffers must be deep enough to hold the data until the L1 trigger accepts or discards an

12

event (up to 2.5 µs of data).
The much bigger FE-I4 [8] used in the IBL, based on 130 nm CMOS technology,

has been designed to deal with the increased radiation exposition and higher data rates
caused by the shorter distance from the collision point, especially in view of future
luminosity upgrades that would overflow the FE-I3 hit buffers. As can be seen from fig.2.6
the new chip abandons the centralized memory/logic approach in favour to a distributed
memory architecture; read-out cells are consequently much bigger, also reading 4 pixels
rather than 2, and including on the digital part per-pixel Hit Processors and FIFO data
buffers, and per-cell trigger logic as well. The Hit Processor calculates the hit Time over
Threshold and append a time-stamp, this information is stored in the pixel dedicated
buffer to be then transmitted to the End of Chip Logic only in presence of a trigger.
The use of Hamming coding for both intra-chip and external communication increase the
device yield. From the End Chip Logic the data is streamed out with 8b/10b encoding
at a rate of 160 Mb/s via E-Link serial protocol communicating directly with the readout
electronics.

Figure 2.6: Layout of the FE-I3 chip [3] (left) and the FE-I4 [8] (right).

The Pixel Detector ReadOut Driver electronics is based on the IBL ROD-BOC sys-
tem [2] schematized in fig.2.7; this is composed by a series of paired FPGA-based cards,
the ReadOut Driver (ROD) and the Back Of Crate (BOC), connected via VME bus.

13

The BOC board reads and configures the front-end modules (16 per board in the case
of the IBL layer, more for the other layers where every modules requires a smaller band-
width), communicating with the front-end over the optical e-links. The data received is
sent via VME bus to the ROD board in the same crate which performs data formatting,
which consist mainly in data packaging attaching an header with metadata such as trig-
ger informations. Formatted data is sent back to the BOC which in turn forwards it to
the ATLAS data acquisition system via S-Link protocol. The ROD additionally acts as
interface to configure the font end modules and build the calibration histograms, that
are sent via ethernet to a server farm for further analysis.

Figure 2.7: Block diagram of the ROD-BOC readout drivers [2].

2.4.1 Future Upgrades

During the planned shutdown from the start of 2019 to the start of 2021 (the “Long
Shutdown 2” preceding the Run-3 operations) the LHC and its experiment will receive
extensive upgrades to reach the collider design operating energy and luminosity. This
section will introduce two new components of interest for this discussion that will have
an important role in the future of the ATLAS TDAQ. The first one is the new FELIX
Readout Driver [9] system, that will gradually replace the entire ROD and readout
system starting from the run 3, with full introduction expected for the run 4. The other
relevant project is the RD53A font-end module [10], which is mainly intended to deal
with the increased luminosities of the High Luminosity upgrade (run 4), and aims to
study and develop font-end architectures for future pixel detectors not limited to the
ATLAS experiment.

14

RD53A The RD53A chip is a demonstrator prototype for the next generation of pixel
front-end chips designed to deal with the increased datarate and radiation from the LHC
High Luminosity upgrade. It is based on 65 nm CMOS technology and adopts (and
extends) the distributed memory approach of the FE-I4 to efficiently cope with higher
datarates.

The layout of the chip is schematized in fig.2.8. A peculiar characteristic is the “analog
islands” design, where squared block of analog electronics (the “islands”), containing 4
analog front-end each reading a different pixel, are embedded in a “sea” of synthesized
digital logic composing the digital part of the pixel read-out logic. This includes buffering,
ToT computation, triggering and read-out. The analog islands are further organized
in groups of 16, composing a “pixel core” (which reads a matrix of 8 × 8 pixels), as
schematized in fig.2.9. Pixel cores are stacked in columns, with each element relaying
the information from the previous core to the next. This hierarchical organization is
necessary to include “regional” buffers to manage the high amount of data and avoid
saturation of the bandwidth along a column.

While all elements in a single column are identical, for evaluation purposes the chip
area is divided in three regions each adopting a completely different design for the analog
front-end that will be characterized against the different intended uses of this chip. In
any case, as usual, the information from the analog front-end consist in a logical signal

Figure 2.8: Layout of the RD53A [10]

15

Figure 2.9: Block diagram of a RD53A digital core [10], several cores are stacked in rows
to obtain a pixel matrix.

indicating that the analog signal from the pixel is in that particular instant higher than a
certain programmable threshold (from this then follows the computation of the ToT). The
analog front-ends also include an injection circuit driven from the digital logic necessary
to generate test pulses for calibration.

The digital pixel region logic also comes in two variants: the Distributed Buffer
Architecture (DBA) and Central Buffer Architecture (CBA). The main difference is that
DBA stores the ToT values in dedicated per-pixel buffers, while the CBA uses a common
buffer for each core with the advantage of performing zero suppression of ToT values but
requiring the storage of a 16-bit hit-map (if null ToT values are removed, it is necessary
to record which of the 16 pixels in the core generated the hit associated with each stored
ToT value). The memory efficiency trade-off of the two architectures generally depends
on the pixel logic region size, density of events and bit precision for the ToT counters.
In the RD53A for the DBA the region size chosen is 8 rather than 16, and both DBA
and CBA use 4-bit ToT.

The data from the digital core columns is read from the Digital Chip Bottom (DCB)
at the periphery of the chip. This serializes the data according to the Aurora 64b/66b
protocol generating an output over up to 4 lines with strict alignment (see section B.2)
at 1.28 Gbps each. The DCB includes the control logic to decode external commands,
received from a E-LINK [11] interface at 160 Mbps, and is also connected to the Analog
Chip Bottom (ACB) containing, as suggested by the name, all the required analog cir-
cuitry (for example configure the analog front-ends bias or ToT threshold, the PLL for
the E-link clock recovery and the Aurora transceiver, etc. . .).

In its Aurora implementation the RD53A defines 5 custom command blocks, referred
as “register blocks”; the output stream format consist of N data frames (with the asso-
ciated separator block at the end of each data frame) interleaved with a single register

16

block, as shown in fig.2.10. The value of N is user-programmable, allowing to control
the fraction of bandwidth dedicated for data. Fig.2.10 also explains the format of both
data and register frames: A data frame can be composed by an Aurora data block (a)
formatted with two 32-bit blocks of data (containing, as shown, hit data with address
of the event and ToT data, or an even header with trigger trigger informations), a sep-
arator command block with 0 or 4 octets valid indicating the end of a data frame (b
and c, with c also used to signal idle), or an Aurora specific status/idle command block
(d). Finally, register frames (e) are composed by a single custom command block (with
possible type codes “zz” documented in the manual) containing a 4-bit status code and
the address/value of two registers. The registers transmitted are either requested by
an external command or selected automatically, the two cases are distinguished with a
different command block code.

Figure 2.10: Schematics of RD53A output format [10].

FELIX The Front End LInk eXchange (FELIX) is the new front-end Read-out Driver
developed mainly for the ATLAS TDAQ, but also of interest for other projects. Even
inside the ATLAS experiment the FELIX platform is not intended only for the pixel
detector read-out, but is planned, by the time of the Run 4, to interface with the en-
tire Front-End and Trigger system, inclusive of all detectors mentioned in the previous
section. One of the main goals of the FELIX project is to reduce the complexity and
maintenance burden of the ATLAS TDAQ system, right now largely based on custom
hardware specific to each (sub)-detector, by introducing commercial off-the-shelf hard-
ware as soon as possible in the data acquisition chain, as schematized in fig.2.11. The
board itself, based on a Virtex-7 FPGA and featuring a 16 lines Gen 3 PCI-Express

17

Figure 2.11: ATLAS DAQ with the (partial) introduction of the FELIX system [9].

connector, will be mounted in a commercial server setup. For this reason the FELIX
card is often described as a “detector-agnostic data router”, relaying data from the front-
end to a commodity switched network composed by conventional server implementing
any further data processing in software (referred as SW ROD). The introduction of a
switched network based on commercial standards instead of point-to-point links with
custom hardware is also another advantage, making the system more flexible and in
principle easier to extend.

Fig.2.12 illustrate the Felix system and the structure of the firmware in the FPGA.
The connection with the front-end is over optical lines using either the radiation hardened
Gigabit Transceiver Protocol (GBT, see section B.3) or the Felix “FULL mode” protocol
(section B.4), with the latter offering twice as much bandwidth (9.6 Gbps). The FULL
mode protocol is currently only implemented for downlink from the front-ends, since
for command transmission the bandwidth offered by the GBT is generally sufficient.
Currently there are a number of Felix platform in use, the version used in this work
is the “Mini-FELIX”, a revision made available for initial development and offering 4
SFP+ connectors that can be used for an equal number of GBT/FULL mode links. The
latest final prototype, the BNL-711, offers 48 bidirectional optical links via MiniPOD
transceivers although the PCI-express link is not able to manage all of them running at

18

their full bandwidth. The board also distributes TTC signals to the font-end, and so the
firmware includes a dedicated TTC processor.

As said, data is exchanged between the FPGA and the host server (running a linux
distribution) via PCI-Express x16 bus, accessing the host machine system memory with
a custom-made DMA engine (Wupper Core [12]) offering a simple FIFO-based stream
interface. The DMA engine transfers the received data to a large circular buffer on
the system memory. This buffer is allocated on a contiguous area of physical memory to
simplify the DMA operations and maximize performances. The PCIe x16 link is actually
split in two x8 channels due a limitation of the PCIe End Point IP core provided by Xilinx.
The two channels work independently and are connected to the same PCIe x16 connector
by means of a dedicated on-board switch IC (Broadcom PEX8732); consequently on the
host system a Felix card will be detected as two different devices, but both are managed
by the same driver and control software instance.

The Felix server is connected to a switched network through optical connections
based on commercial networking hardware and industry standards such as ethernet and

Figure 2.12: Felix card firmware structure [9].

19

EDR infiniband with link speeds up to 100 Gbps. Being a “data router”, the Felix
system itself doesn’t perform any form of manipulation on the data from the front-ends,
apart from packetization and in general anything necessary to propagate data on the
switched network. Any operation on the data (such as formatting, fragment building, or
histogramming) is performed in software by a farm of server individually connected to
the network (the SW ROD shown in fig.2.11). The Felix network stack is implemented
by the NetIO library, which, in short, serve the received data with a publish–subscribe
model to the SW ROD in the network and also route commands from the DAQ system
to the front-end.

This approach allows to use commercial hardware and flexible software solutions
for any detector-specific application, with custom-made general-purpose hardware (i.e.
adaptable to any detector) relegated to generic data routing purposes.

20

Chapter 3

The πLUP Platform

3.1 Hardware Overview

The first hardware design of the πLUP was based on two prototype boards, the ZC702
and the KC705, produced by Xilinx which also distributes the schematics, so most com-
ponents present on those boards are also present on the πLUP. The idea was to put
together in the same board a “conventional” FPGA chip, providing the main computing
power for the particular applications intended for this board, and a SoC including a CPU
to ease control and monitoring operations, which are in general implemented in software.
For this purpose a Zynq SoC includes a fairly performant ARM-based embedded with an
FPGA, offering all the advantages of a full (but in this case smaller) secondary FPGA,
which adds to the flexibility of the board. A block diagram showing the main hardware
features of the πLUP is presented in fig.3.1.

Consequently the processing power of the board is delivered by two 7-series Xil-
inx FPGAs, a Zynq-XC7Z020 integrating a dual-core ARM Cortex-A9 processor and a
Kintex-XC7K325T, used in a master-slave configuration and connected by a bus com-
posed by 21 differential lines plus 5 single-ended lines. A full characterization of this
bus has not been performed yet, but some stress-tests employing the 21 differential lines
using the LVDS (Low Voltage Differential Signaling) I/O standard resulted in a reliable
source-synchronous transmission up to 200 MHz DDR (Double Data Rate), resulting in
a total bandwidth of 8.4 Gbps, without the need of performing a deskewing calibration
on the single transmission lines. This is widely sufficient for the intended use of this bus
since, as said, the Zynq will access the firmware components implemented in the Kintex
mostly for configuration and monitoring purposes. In the future, would some application
require an higher bandwidth between the two FPGAs, it should be possible to gain a
higher bandwidth employing the SERDES present in the FPGA I/O blocks. Since not
all of the 21 FPGA pin are connected to the same I/O bank, for a source-synchronous
transmission this would require splitting the bus in smaller units, or using a self-clocking

21

E
th

e
rn

e
t

x
2

HPC LPC

LPC

1GB DDR3

ZynqKintex
SFP+

PCIe x8

sma

S
O

-D
IM

M
D

D
R

3

U
A

R
T
 x

2

USB
JTAG

Figure 3.1: Logical components on the πLUP.

protocol that doesn’t need a dedicated clock line such as the Aurora protocol. A brief
overview of the FPGA I/O resources is presented in Appendix A, while the system used
for the communication between the two FPGA is discussed later in this chapter.

In terminology used by Xilinx for their SoC devices, the FPGA-side of the chip is
called Programmable Logic (PL) and the “static” ARM-based system Processing system
(PS). A block diagram describing the structure of a Zynq SoC, with particular attention
to the PS feature, is shown in fig.3.2. Apart from the APU (Application Processor
Unit), featuring two ARM CPUs with 256 KB of on-chip SRAM (OCM), the PS also
includes controllers for a variety of interfaces, including a DDR3 memory controller. The
main channels of communication between the PS and the PL are the General-Purpose
and High-Performances AXI ports (the AXI protocol is briefly described in appendix
section B.1). In particular the latter can give direct access to both the OCM and DDR
controller, allowing high speed DMA transactions between PS and PL (12.8 Gbps per
channel). As said, since the main role of the ARM will be control and monitoring without
the need for exchange of large quantities of data, most application studied employ only
the GP ports. There are 2 GP AXI ports available with 1 GB of address space each (the
complete address map of the PS can be found in ref.[14] ch.4). The system also feature
16 PS-PL interrupts lines that can be used hook the logic implemented in the FPGA
fabric directly to the APU Global Interrupt Controller (GIC).

22

Figure 3.2: Block diagram of the Zynq Processing System, from [13].

I/O Interfaces Since the main purpose of the πLUP is front-end readout, the board
present a number of high speed interfaces, many of which are connected to the Kintex
FPGA. The Kintex features 16 integrated multi-gigabit transceivers (MGT) divided in 4
different FPGA I/O banks and capable of speeds up to 12 Gbps. Their use is distributed
between the various interfaces present in the board as shown in table 3.1. Half of the
available transceiver are employed for the 8-line Gen 2 PCI Express connector, which
is capable of a (raw) datarate of 4.0 GB/s and is the main interface to exchange data
with an host machine. A high speed external interface is offered by the 10 Gb/s SFP+
connector. For instance, in an application such as the protocol converter for the FELIX
that will be discussed in the chapter 4, this interface is used to communicate with the
FELIX board when only one optical link is required. Another transceiver is connected
to a differential SMA connector pair, than can be used for a high speed card-to-card
communication over coaxial copper cable. This solution, while noticeably cheaper than
an optical link, is extremely limited in range especially at higher speeds.

23

I/O Bank MGT I/O iface

115

0 PCIe lane 7
1 PCIe lane 6
2 PCIe lane 5
3 PCIe lane 4

116

0 PCIe lane 3
1 PCIe lane 2
2 PCIe lane 1
3 PCIe lane 0

117

0 SMA
1 Gb Ethernet
2 SFP+
3 FMC LPC

118

0 FMC HPC 0
1 FMC HPC 1
2 FMC HPC 2
3 FMC HPC 3

Table 3.1: Usage of FPGA MGT.

The two gigabit ethernet interfaces, one connected to the Kintex and the other to
Zynq, are present mainly to offer a control interface to the board. To this end the Zynq
ethernet has particular importance since it will be the main “user access window” to the
board; this port is driven by the dedicated ethernet controller in the Zynq PS, on which is
quite simple to implement a full network stack and utility services. On the other way, the
ethernet on the Kintex side will be most likely removed in a future revision, redirecting
its transceiver to alternative applications (such as an additional SFP+ connector).

As it is common on FPGA platform, the πLUP features some FMC connectors:
one VITA 57.1 LPC FMC connectors for each PFGA chip plus another HPC FMC
for the Kintex, the latter also connected to 4 MGTs. FMC connectors leverage the
reprogrammable nature of FPGAs to define a standard daughter-card connection which
allow to extend the board with a substantial variety of commercial or custom devices.
For this reason it was considered a sensible design choice to dedicate a good part of the
FPGAs I/O resources to FPC connectors.

Fig.3.3 shows the Bit Error Rate (BER) eye diagrams for some of the transceivers.
The diagrams were acquired at a speed of 10 Gb/s transmitting a pseudo-random binary
sequence in a loopback configuration using the Integrated BER test (IBERT) IP core
provided by Xilinx [15]. The eye diagrams for the transceivers connected to the HPC
FMC were acquired connecting an FMC board providing 4 SFP+ connectors (FM-S14

24

FMC), again in a loopback connection. The IBERT test was ran until a BER of 10−14

was reached, which satisfy the requirements requested by CERN for data acquisition
hardware. Apart from the SMA test, the eye open area is also satisfactory.

Figure 3.3: Eye diagrams for the Kintex MGTs, in left-right top-bottom order: the 4
FMC, SFP+ and SMA.

The I/O capabilities are complemented by other low-speed interfaces present on the
board such as the two USB-UART (Universal asynchronous receiver-transmitter) bridges,
again one for the Zynq and the other for the Kintex, and various GPIO headers not
shown in fig.3.1. Both are mainly intended for debugging and development purposes.
The unused I/O interfaces offered by the Zynq PS (schematized in fig.3.2), are also
connected to GPIO headers, so it is possible to experiment with them in case some
interest should arise.

Memory Devices 1 GB of DDR3 RAM, required for the operations of the ARM
processor, is soldered directly on the board and controlled by the DDR controller in the
Processing System, which offer exactly 1 GB of address space for the external memory.
The Kintex is connected to a DDR3 SO-DIMM slot, with the maximum amount of RAM
supported mostly limited by the FPGA firmware. The maximum speed of the memory
bus is currently limited to 400 MHz, most likely due some timing violation related to the

25

traces length on the PCB. Future revisions of the board will aim to improve this value
up to 800 MHz through a better design of the physical memory bus. This frequency
is the maximum supported frequency by the memory controller PHY in the particular
Kintex model chosen for the πLUP.

On-board non-volatile memory for storage is provided by 3 flash chips: a 512 Mb
PC28F00AP30TFA NOR chip and a 128 Mb N25Q128 QSPI chip, both connected to
the Kintex, and another N25Q128 connected to the Zynq. All three memories are used
to store the firmware for the FPGA, but while the Kintex only need the programming
bitstream, the flash connected to the Zynq will also have to hold the Linux kernel image
and filesystem including any software developed. The 128 Mb (= 16 MB) offered by
the N25Q128 flash chip, while being the biggest supported on a single QSPI chip by
the Zynq integrated flash controller [14], resulted to be barely sufficient for the current
use but generally an excessive limitation, especially considering the capabilities offered
by the Zynq: as shown in the diagram in fig.3.2, the Zynq PS includes two SD memory
controllers, but in the current board revision the pins associated with both controllers are
connected to an header. Given the advantage of having a large easily writable memory
on-board, especially during software development, as a temporary solution it was decided
to produce a simple expansion card adding a SD socket to connect to said header; since
the logic level of the SD controller is at 1.8 V but the SD cards communicate with 3.3
V, this card also includes a level-shifter IC specific for SD cards. Future revisions of the
board will most likely include this simple circuit in the main board.

Other Components Apart for a few fixed crystal oscillators required by various com-
ponents (such as two 200 MHz oscillators for the two FPGA system clock, the reference
clock for the gigabit ethernet PHY, etc. . .), the boards includes two Si570 programmable
clock oscillators (again, one for the Zynq and another for the Kintex) and a Si5326 PLL,
both programmable by I2C. The Si5326 feature two differential inputs and outputs, in
the πLUP one input and one output is directly connected to the FPGA pins and the
other pair to a paired of SMA connectors couple.

Any component connected to the I2C bus is connected to the FPGA through a bus
multiplexer (PCA9548) to avoid collision between peripherals with the same hard-coded
bus address; while the I2C components present on the board (the clock sources just
described and a few EEPROM chips) have all different addresses, the I2C bus is also
connected to the FMC connector (as per VITA specification), which might be used con-
nect daughter cards including components with conflicting I2C addresses. An important
detail is that there are two separate I2C bus on the board, one controlled by the Zynq and
the other by the Kintex. For this reason it was necessary to implement a I2C controller
in the Kintex firmware, that can be nonetheless controlled by the Zynq PS thanks to the
setup presented in the next section.

26

3.2 Firmware Control Infrastructure

This section describes the base frame of the firmware structure and in particular the
implementation of the various control channels part of the master-slave structure of the
two FPGAs. A block diagram that summarize the main components of this structure
is shown in fig.3.4. As already said the ARM processor in the Zynq, running a Linux
distribution, accesses the PL through the general purpose AXI ports shown in fig.3.2.
This AXI bus is then transparently bridged to the Kintex using the AXI Chip2Chip IP
core offered by Xilinx [16], allowing the ARM to access the peripherals present in the
Kintex as if they where implemented directly in the Zynq PL. Any peripheral not offering
an AXI interface can be controlled using a block of control registers addressable by AXI
(as so directly addressable from the ARM). The various I2C-programmable devices are
controlled using another IP core, the “AXI IIC Bus Interface”, again provided by Xilinx.

The main external access to this system is the ethernet connectivity on the Zynq;
the use of a Linux distribution gives all the advantages that come with a full embedded
operating system, offering to the developer a simple environment to control the system
and develop software. It also makes it possible to easily offer network services such as
an SSH server with also a webserver offering diagnostic informations and possibly more
planned.

Linux Chip2Chip
master

Chip2Chip
slave

20 LVDS lines

AXI SMARTCONNECT

AXI register
block

AXI SMARTCONNECT

AXI
Periph.

Custom
Logic

E
th

e
rn

e
t

U
A

R
T

AXI
I2C

MUX
Si570

Si5326

Figure 3.4: Control infrastructure on the πLUP.

27

3.2.1 Inter-FPGA communication

The communication between the two FPGA is established with the Chip2Chip (C2C)
IP core, which as just said transparently extend the AXI bus (plus an optional AXI-lite
bus) from the master to the slave device. A block diagram describing the structure of
this core is shown in fig.3.5. This core can be customized to fit a number of applications
with different availability of I/O resources and required datarate for the inter-chip trans-
mission. For the πLUP the main limitation is the number of available pins: consequently
in the setup used the AXI interface has a data width of 32-bits and the channel multi-
plexer is set to the highest multiplexing ratio available leading to a total occupation of
20 differential lines of the bus between the Zynq and the Kintex (9 data lines plus clock
for each direction). The optional AXI-Lite interface is disabled since it would require
more pins. The number of pins required also depend on the PHY type selected and clock
settings, in this case the native “selectIO” interface with a rate of 200 MHz in DDR mode
is used. In general the PHY can be clocked independently from the rest of the design
to increase the throughput. Those settings give the smallest pin usage possible when
using the SelectIO interface, the alternative would be to use the Aurora PHY interface
which offer a way smaller use of pins (from 1 to 6 lines with a 128-bits AXI bus) but also
requires a separate IP core managing the Aurora protocol and also a SERDES or even
a MGT transceiver for every transmission line, depending on the desired transmission
speed.

Figure 3.5: Diagram of the Chip2Chip IP core, extracted from [16].

The core also offers 4 dedicated interrupt channels per direction (master to slave
and slave to master) that are given higher priority by the channel multiplexer over
AXI data. In Zynq all slave-to-master interrupts are connected to the global interrupt
controller (GIC) in the PS (see fig.3.2), which offer 16 interrupt channels. Only edge-
triggered interrupts seems to be supported by the C2C core. In the case where more
than 4 interrupts signals are required there are three possible solutions: First, the most
common solution would be to share the same interrupt line between multiple peripheral,
if supported by both the involved cores and drivers; this requires the peripheral to have

28

some internal register to store the interrupt state, so when the CPU receive an interrupt
the drivers associated with the same line can check which peripheral was the one to
actually generate the signal. If the design requires separate interrupts then it is possible
to use the single-ended lines of the KZ bus (currently only one of the 5 lines available is
occupied by a master to slave reset signal) as dedicated interrupt lines. Finally, an AXI
Interrupt Controller IP core is offered by Xilinx, which allows to send interrupt to the
Zynq via AXI bus and in this case would be connected to the C2C slave AXI interface.

The C2C doesn’t require any special management during its operation; once out
of reset, the system automatically start a calibration procedure, that also involves the
deskewing of the single data lines employing the programmable delays present in the
output block of the FPGA (see appendix A), and then is immediately ready to use. As
shown in figure, the C2C feature only a AXI slave port on the master side and a AXI
master port on the slave side, so the bridge is in a certain sense unidirectional (as only
AXI master peripheral on the Zynq can initiate a read or write transaction with slave
peripherals on the Kintex).

3.2.2 AXI Register Block

The structure of the AXI register block, schematized in fig.3.6, is quite simple. It
is composed of two sequential arrays of 32-bit registers: “CTRL” registers that are
read/writable from AXI and output their content to some logic, and “STATUS” regis-
ters that are only readable from AXI and their content is updated at every clock cycle
from some external signal.

To access the register the simpler AXI-Lite protocol is used, and the AXI address of
a transaction is directly mapped to the address of a particular register. The behaviour
of this core is similar to a simple memory, so the AXI transaction must be aligned to
the 4 bytes boundaries. To select a particular 32-bit register the 3 least significant bits
of the AXI address are discarded by the core to pass from the “bit-addressing” scheme

AXI4
LITE

32 bit word

S
TA

T
U

S
C

T
R

L

AXI

ADDR

0x0

0x100

0x4

Figure 3.6: AXI register block, the AXI address is directly mapper to 32-bit register.

29

of the AXI interface to the “byte-addressing” scheme of this core. In a write transaction
it is possible to decide which bytes of the 32 bit words are actually written by means of
the STROBE signal defined in the AXI specification.

In the application described in the next chapter, a single AXI register block is used
to control any custom peripheral implemented in the Kintex. In general, while it would
be the most preferable solution, not all peripheral use the same clock for their control
interface, so different register ranges in this core will have to interface with different
clock domains. Just sampling the asynchronous signal (i.e. registering its value in a flip
flop (FF)) will most likely lead to metastability issues (the signal get sampled during its
transition to another logic value violating the hold time of the receiving FF and making
its output unstable). For a single signal the simplest solution is the double-FF register,
shown in fig3.7: The asynchronous signal from clock domain 1 is sampled by a FF clocked
with the destination domain clock, its output is possibly metastable so it is sampled again
with another FF after 1 clock cycle. This assumes that the metastability stabilize after
1 clock cycle, otherwise it is possible to add others FF to the chain. Typically the Mean
Time Between Failures (MTBF) of each stage is taken as [17]:

MTBFt =
et/τ

Twfcfd
(3.1)

where fc is the clock of the receiving domain, fd is the data toggling frequency and τ and
Tw system-specific constant that may depend on the operating conditions. In the Vivado
toolchain, the registers part of the synchronizer should be marked with the ASYNC REG

constraint, so that the tool will try to place them as close as possible (possibly in the
same CLB) to minimize the routing logic between them (and also skip the timing analysis
on the path in question).

q

CLK1

CLK2

Figure 3.7: Double-FF signal synchronizer.

The FF-based synchronizer is not appropriate for multi-bit signals (or data buses in
general), since a small timing difference between the various lines may cause corruption
of one or more bits. If the data to be transmitted comes from a monotonic counter, then
it may be possible to use a Grey counter, where the worst error would be a 1-bit delay
of the counter. Otherwise for normal data an handshaking state machine is needed: in
the source clock domain the data to be transmitted is frozen and a “data valid” signal

30

is generated. This is received by the destination clock domain which reads the data and
generate an acknowledge signal. Finally the acknowledge signal is synchronized in the
source domain so that it can move on the next value. The main disadvantage of this
method is that the control signals exchange introduce a relatively high latency and so
it is not feasible when the source domain need to transmit a new value too frequently.
In this case a dual-clock FIFO is generally used (typically based on a dual-ported RAM
and using Grey counters to move the value of the write and read pointers from one clock
domain to the other).

Since the control registers will be read and written from software, which commands
being sent occasionally compared to the clock of the design, the increased latency is not
an issue in this case. Consequently this design for the πLUP employs simple three-stage
FF synchronizer for single-bit signals and an handshaking FSM for multi-bit signals.

CLK2

Destination
FSM

Source
FSM

CLK1

data_valid

ack

DATA

Figure 3.8: Handshake-based data bus synchronizer.

3.2.3 Interface with the Software

The embedded Linux distribution is generated with the Xilinx Petalinux toolchain, which
automatizes most of the steps required to build and deploy a linux image on the Zynq
platform while also offering a fair level of customization.

The boot procedure is roughly schematized in fig.3.9, and proceed as follows [14]: the
first code executed by the CPU once out of reset is stored in the bootROM implemented
in the PS hardware and, being a ROM, not writable. All the other components are
generated by the user (possibly with petalinux) and loaded via JTAG or saved on a
memory in the board, the Zynq can boot from either the QSPI flash or an SD card.
The main role of the BootROM is to determine the boot mode (set by a jumpers block
on the board) and load the First Stage Boot Loader (FSBL). This, in turn, initialize
the PS (sets its internal registers, initialize the DDR controller, etc. . .), load the FPGA

31

bitstream and handoff the execution to the second stage bootloader, for which U-Boot
is a very common choice for embedded systems. Only the FSBL along with U-Boot
really need to be stored in some on-board memory: U-Boot features basic networking
capabilities and is able to load the linux image from a remote server using the Trivial
File Transfer Protocol (TFTP). When this is a viable option, the limitation given by a
lack of an SD socket on the πLUP (mentioned in the previous section) is largely relieved.

BootROM FSBL U-BOOT LINUX

Stage 0 Stage 1 Stage 2

Figure 3.9: Zynq boot stages in order of execution.

The linux system prepared for this board features full networking support with an
SSH server enabled by default, and additionally a number of drivers and utilities to
control the peripheral in the FPGA are also included. Most AXI IP cores provided
by Xilinx also ships with a driver, often part of the official kernel source tree. The
kernel also includes drivers for the I2C multiplexer, which is managed transparently
and just shows to the system the 8 multiplexed buses accessible from user space from
the respective character device, and the Si570 clock generator, as part of the Common
Clock Framework (CCF). It is possible to set the clock rate of the Si570 from user space
thanks to a custom-made “userclk” kernel module that behaves in the CCF context as
clock “consumer” and exposes a debugfs entry accepting an integer value for the new
rate desired. The Si5326 PLL on the other end is programmed from a user space tool,
which, given the input clock rate and two numerical values for a multiplication and

Kernel space

usrclk

debug fs PLLFitter
(Si5326)

Si570 AXI IICUIO

User space
/dev/uio

AXI Register
Block

I2C
BUS

Figure 3.10: Summary of the driver employed to control the system.

32

division factors, calculates the optimal values of the required parameters and write them
in the PLL register accessing directly the correct I2C multiplexed bus.

To implement user space drivers for peripherals controlled through the AXI register
block, the best choice is most likely the Linux Userspace I/O (UIO) driver. This offers
a simple way to develop drivers, with even the ability to manage interrupts, directly in
user space. The UIO driver simply expose the memory space associated with a certain
peripheral thought a character device (usually /dev/uiox) that can be simply mapped
in the virtual memory space of an user space process driving the peripheral. This is
in practice quite similar to accessing the system physical memory directly (through
/dev/mem), but is much safer and “clean” and, as just said, it also offers a way to handle
interrupts.

33

Chapter 4

Applications

This chapter describes the most relevant applications of the πLUP board developed to
this date. The first one is a protocol converter to interface the Felix card with the RD53A
front-end chip; as described in subsection 2.4.1, the data output of the RD53A uses the
Aurora protocol while the Felix card can only transmit via the GBT or FULL mode
protocols. The development of a protocol converter is then justified as a means to offer
a solution to this incompatibility, and so offer a way to interface the two system during
at least the testing phase of the system.

The other major application is an emulator for the RD53A chip entirely described
in VHDL/Verilog and implemented in the FPGA logic. A front-end emulator is often
useful in the development and testing of a data acquisition system, since it allows to run
tests of the system even when the real chip is not available or lack the ability to generate
simulated or real data in a convenient manner.

4.1 Protocol Converter

To interface the Felix card with the RD53A front-end chip, the πLUP will have to offer
the electrical connectivity to interface with both components and then implement a
firmware to convert the data from the RD53A, received via the Aurora 64b/66b, to the
FULL mode protocol supported for the Felix downlink. Fig.4.1 shows a block diagram
of the setups proposed for this application, with also the main components part of the
πLUP firmware.

For testing and development the RD53A will be mounted on a custom PCB containing
a single chip, referred as Single Chip Card (SCC) [18]. The digital input and output
of the chip are both connected to a Display Port (DP) connector. As described in
subsection 2.4.1 the RD53A can use up to 4 Aurora lines for the data output, occupying
4 differential lines of the DP link, and a single differential line for the e-link input. The DP
connections on the πLUP can be provided with a FMC card, with two adapters already

34

πLUP

FELIX

RD53A
SCC

D
P

FM
C

DP
e-link

Aurora

GBT_FPGA
Protocol

Converter

TTC
Encoder

SFP / FMC SFP

G
B

T

FU
LL

 m
o
d
e

Figure 4.1: Block diagram of the protocol converter interfacing the Felix, connected via
SFP+ optical links, with the SCC RD53A, employing a single DP connector for both
e-link and 4 Aurora lines. The figure also shows the main firmware bocks implemented
in the Kintex on the πLUP.

developed for the SCC [18]: an HPC single-chip card, used to connect a single SCC
and offering additional connectivity for other interfaces present on the SCC intended for
debugging and testing, and a LPC version multi-chip card, offering 4 mini-DP connectors
and able to interface with 4 different SCC. Since each Aurora line transmits at a rate
of 1.28 Gbps, the link doesn’t require the use of a MGT and can be driven using the
SERDES integrated in the FPGA output logic. It should therefore be possible to interface
the πLUP with 4 SCC using the LPC FMC, reaching a total downstream data rate of
20.48 Gbps.

When interfacing with a single SCC the connection with the Felix card can be estab-
lished over a single optical fiber pair using the on-board SFP+ connector on the πLUP,
which is well capable of sustaining the 9.6 Gbps data rate required by the FULL mode
(and so the 4.8 Gbps GBT link in other direction). Otherwise, it is possible to use
all the 4 optical links offered by the Mini-Felix card using another FMC card adding 4
SFP+ connectors (such as the commercial FM-S14 card), by employing the 4 MGT of
the Kintex connected to the HPC FMC connector. The resulting 38.4 Gbps bandwidth
would definitely be sufficient to read the 4 SCC that is possible to connect to πLUP.

The main functional block of the πLUP shown in fig.4.1 are all implemented in the

35

Kintex FPGA. The GBT-FPGA is an open implementation of the GBT protocol written
in VHDL and supporting various families of FPGA, with sources available on the GBT
project website [11]. Commands received from the GBT are sent to the TTC Encoder
block, which encodes them in the protocol expected by the RD53A (documented in
ref. [10]) and send them over the serial e-link connection. For convenience the TTC
Encoder can also generate trigger signals by itself at a configurable frequency, feature
that reduces furtherly the hardware required for a test setup to use during development.
As suggested by the fact that only one DP line is dedicated to the e-link, the RD53A
chip expects commands and clock to be encoded in the same link. For this reason the
GBT core must also recover the DAQ clock from the GBT data stream, which is then
distributed to any component the need to be synchronous with the TTC clock.

A diagram showing the clock distribution in the πLUP is presented in fig.4.2; the 120
MHz reference clock for the MGT transceiver bank (SMA MGT REFCLK) used for the
GBT receiver (GT TX) is generated from the Si570 chip and sent (via SMA connector)
to the CPLL. The GT RX recovers the TTC clock encoded in the GBT data steam
(RECCLK) which is then sent to a FPGA internal PLL (RECCLK MMCM) for use by
other firmware blocks than need to be synchronous with the ATLAS clock and also to
the external Si5320 PLL. The PLL is used to clean and multiply the recovered clock
by a factor 2 to generate the 240 MHz clock required for the QPLL driving the FULL

Figure 4.2: Clock distribution in the Kintex, the GT* TX and GT* RX are the
transceivers for the FULL mode and GBT respectively.

36

mode transceiver (GT RX). Given the limited maximum speed offered by the CPLL (as
explained in Appendix A), the use of the QPLL for the FULL Mode link is required even
when the transmission is over a single optical line.

Returning to fig.4.1, in the downlink direction the four Aurora lines from the RD53A
are merged in a single FULL mode stream by the Protocol Converter. The output format
of the RD53A has been described in subsection 2.4.1; the transmission over the 4 Aurora
lines follows the strict alignment (see section B.2) and the data sent is parallelized over
the 4 links according the their enumeration. The Protocol Converter decodes the Aurora
stream and serializes the data received in a FIFO buffer, also attaching an header to
describe the packet type (for example, to distinguish a RD53A register frame from a
data frame). As mentioned in the previous chapter about synchronization methods,
the buffer is a dual-clock FIFO and is needed for the high-throughput clock domain
crossing between the Aurora and FULL mode driving logic. The buffer is then read from
a finite state machine controlling and feeding data to the FULL mode implementation
core according to the header attached to the data.

4.2 RD53A Emulator

To ease the development of DAQ system it can be convenient to develop an emulator
for the RD53A chip. The emulator was implemented directly in the protocol converter
firmware, as shown in fig.4.3, but can also be easily implemented standalone in any

πLUP

FELIX

GBT_FPGA
Protocol

Converter

TTC
Encoder

SFP / FMC SFP

G
B

T

FU
LL

 m
o
d
e

RD53A
EMULATOR

Figure 4.3: Block diagram of the protocol converter with the RD53A emulator.

37

FPGA board with sufficient resources.
The emulator is able to decode the commands from the Felix card and generate a

coherent response according to the RD53A documentation. Currently some configuration
parameters are fixed, such as the number of Aurora lines to use (fixed to 4), while
anything related to the configuration of the analog part of the chip is simply recorded
but doesn’t change the state of the system (i.e. the behaviour of the digital logic doesn’t
change if the configuration of the ToT threshold or pixel bias voltage is altered since
the analog part of the chip is not simulated and the data in generated arbitrarily). In
presence of a trigger the emulator generates a dynamically configurable number of hits
containing random data for the ToT value and row/column address of the event, but a
valid trigger and event header (the RD53A output format is schematized in fig.2.10). The
particular mechanism used for the random generator is not of particular importance since
its only purpose is to produce data avoiding repetition of the same specific pattern, so the
quality of the randomness is not an important parameter. For reference, the generator is
a pseudo-random number generator based on a Linear Feedback Shift Register (LFSR)
using some of the informations from the trigger for the initial seed.

38

Chapter 5

Conclusions

This thesis presented a general overview of the design efforts to produce a simple and
extendible high-speed readout board. While most part of the discussion concerned its use
in the ATLAS experiment, as described in the second chapter a number of design choices
taken aimed at the realization of a board adaptable to different applications. In the same
chapter a generic control interface, allowing simple communication between software and
firmware, was presented. Such structure can be considered the basic “template” of a
generic project employing the πLUP (i.e. a new application can directly reuse most of
the work done with minimal changes), and was one the main points of this thesis.

The final chapter described the main applications developed for the ATLAS experi-
ment, demonstrating how the features offered by the πLUP can be successfully used in
one of the major HEP experiments; the protocol converter allows to interface the FELIX
read-out board with the RD53A front-end chip, and the RD53A emulator is an useful
tools for the development and test of the DAQ system.

Future works aim at both the improvement of current platform, with a number of
hardware optimizations, and at the development of other applications. The current
main target is the developments of a demonstrator capable of performing the readout
and configuration of the RD53A SCC via PCI-express connectivity. Successive versions
of the board will also adopt more powerful FPGA chips from the Xilinx higher line
of products. This is of particular importance to extends the capability of the πLUP:
other than the obvious advantages provided by a faster and larger FPGA logic, extra
features such as more integrated MGT allows the upgrade the board I/O features with,
for example, a Gen 3 16-lines PCI-express connector.

39

Appendices

40

Appendix A

FPGA Architecture

Compared to the fist examples of this technology, modern Field-Programmable Gate
Arrays (FPGA) are more “heterogeneous” systems consisting of different components
specialized for different applications, often including dedicated digital components such
as high-speed transceivers, entire CPUs (as in the case of the Xilinx Zynq platform), or
even analog and mixed-signals systems. The major logic components typically found on

Figure A.1: Diagram summarizing the architecture of a FPGA.

41

an FPGA are shown in fig.A.1, and are here shortly described:

Configurable Logic Block (CLB) A CLB is small grouping of the most basic compo-
nents found in any FPGA, often further divided in “logic slices”, containing the compo-
nents used to implement logic functions. Every CLB is associated with a programmable
switching matrix which connects the slices together and to the complex FPGA routing
nets. The exact structure of a logic slice generally differ between FPGA generations and
manufacturer and is omitted here for brevity, but they are generally composed by Look
Up Tables (LUT) of various sizes, a number of Flip Flops (FF), some multiplexers, carry
logic and other specific combinatorial elements.

Figure A.2: Configurable Logic Block [13].

Embedded Memory Most FPGAs include a few columns of Block RAM, for a total
ranging from ∼ 10 to more than ∼ 200 Mb of memory. This memory is important for
a number of applications, from simple data buffering to the study of non-Von Neumann
computation architectures.

Digital Signal Processors (DSP) Another common component found in FPGA are
DSPs. The particular structure is again technology-dependant, the simplified schematic
of a DSP48E1 slice found in the 7-series Xilinx FPGA is shown in fig.A.3. They are not
really relevant in the applications presented in this document, but, obviously, they have
a great importance in the implementation of digital processing algorithms and SIMD
architectures for fpga-based accelerators (which are recently gaining great interest, for
example, in machine learning [19]).

42

Figure A.3: Simplified schematic of a DSP48E1 slice.

I/O Block (IOB) The IOBs contains the logic to interface with the FPGA external
pins. In the Xilinx terminology they are referred as “SelectIO” resources [20]. IOBs
are in a certain sense inherently mixed-signal devices and their structure and variety of
features offered is quite complex, ranging from programmable digital I/O logic elements
to programmable analog behaviour of output pads such as the possibility to set the
electric I/O standard, termination resistance, slew rate and more.

Fig.A.4 shows a block diagram with the main selectIO logic components. The tiles
labeled “IOB” and “PAD” contains the various programmable buffers and analog/mixed-
signals components to adapt to various electrical standards. A number of IOBs are
connected to two pads to allow differential links (such as LVDS). The I/O delays can be
used in introduce a (run-time) programmable delay to the I/O signal. Finally I/O Logic
Blocks contains SERDES, I/ODDR and sometimes FIFO buffers, and are the interface to
the internal FPGA logic. The interconnections between all elements are programmable
as well.

Other important selectIO resources found on FPGAs are Multi-Gigabit Transceivers

Figure A.4: Largely simplified diagram of the main SelectIO resources.

43

(MGT) and other custom PHY (for example, for DDR controllers). Both are extremely
complex components and a detailed is then omitted. In general MGT are a from of
high-speed SERDES with transmission speed greater than 1 Gbps and up to 58 Gbps
depending on the model (the GTX MGT present on the FPGA used in the work presented
in this thesis feature a max speed of 12.5 Gbps) [21]. Fig.A.5 shows the clock scheme
of a block of four GTX MGT; a single Quad PLL (QPLL) is present in each block to
generate the clock for all the 4 MGT channels in the block. Each MGT channel also
includes a Channel PLL (CPLL) that can be used to generate the clock required by the
channel independently from the other MGT in the same block. The QPLL feature higher
operating speeds (from 5.93 GHz to 12.5 GHz rather than 1.6 GHz to 3.3 GHz offered by
the CPLL) and so its use is required for higher link performances.

Figure A.5: Clock generation and distribution in a quad MGT [21].

Other Components Another fundamental component found in FPGAs are PLL of
different level of complexity and various circuitry dedicated to clock management (such as

44

the Mixed-Mode Clock Management (MMCM) tiles) and routing (clock buffers, etc. . .).
The discussion in this regard could be again quite extensive, but is omitted for brevity.

FPGA often also includes dedicated Analog-to-Digital Converters (ADC). For ex-
ample the Xilinx XADC found in the 7-series FPGA offer 12 channel at 1 Mbps plus
monitoring of the package temperature and power supply voltages.

45

Appendix B

Transmission Protocols

B.1 The AXI Protocol

The Advanced eXtensible Interface (AXI) protocol [22], defined by the ARM Advanced
Microcontroller Bus Architecture (AMBA) standard, is one of the standard link-layer
protocols used for on-chip communication in embedded processors. It is a memory-
mapped interface featuring separate address, control and data phases, separate write
and read channels, burst transactions and more. There are three variation of the AXI4
protocol fitting various applications: AXI, AXI-Lite and AXI-Stream.

AXI4 The most general definition of the AXI protocol, supporting bursts of memory-
mapped transactions. The structure of a read and write transaction is schematized
in fig.B.1, where the handshaking signals have been omitted. The role of master and
slave interfaces can’t be swapped so it will always be the master peripheral to initiate
a transmission. As said the data, command and address buses are separated, as well
as the write and read channels. The behaviour of the burst transaction is controlled by
a dedicated BURST control signal; the self-explanatory available options are “fixed”,
“incremental” and “wrap”.

AXI4-Lite A simpler version of AXI4 used for single transactions (no burst), generally
used when the higher complexity (and throughput) of the “full” AXI protocol is not
required. A typical use case is, for example, writing and reading the control registers of
a certain peripheral.

AXI4-Stream High performance “FIFO-like” interface for a continuous stream of
(possibly packetized) data. Differently from the other two, the AXI-stream has a single
data channel used to stream data from the master to the slave. An application requiring
stream in both directions will have to implement both a master and a slave interface.

46

Nonetheless this interface is the one with the smaller logic footprint and is quite easy
to implement. AXI-Stream obviously does not include an address bus, but an optional
DEST signal is used to identify a particular slave in an infrastructure where a master
interface is connected to multiple slaves.

In all three variants the data/write bus can have a width ranging from 22 to 210 bits.
The protocol also includes a STROBE signal than indicates which bytes of the incoming
data are valid.

Master
interface

Slave
interface

Address
and control

Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

Figure B.1: AXI read and write burst transactions.

47

B.2 Aurora 64b/66b

The Aurora protocol is an open link-layer protocol developed by Xilinx for multi-gigabit
links employing the 64b/66b encoding (with also a 8b/10b specification existing) [23].
Fig.B.2 schematically shows a generic Aurora link, which can be composed by a variable
number of parallel duplex or simplex data lines.

Every clock cycle each line transmits a block of data with 66b/66b encoding, where
a 64-bit payload is extended with a 2-bit header indicating if the payload is either data
(012) or a command block (102). This also called a sync header and it guarantees a
minimum number of bit transitions in a data frame making clock recovery easier. The
most significant byte of a command block is used to specify the type of command block,
with 15 values defined in the specification of which 5 are specific to the Aurora protocol
(commands, status, flow control, etc. . .) and the other are user-defined. Whether it
is a data or a command block, the 64-bit payload of a block is scrambled with a self-
synchronizing scrambler defined by the polynomial G(x) = 1 + x39 + x58.

Aurora
Lane 1

Aurora
Core

Aurora
Channel

Aurora
Lane n

Aurora Channel
Partners

User
Application

User
Application

User
Interface

User
Interface

User Data User Data64B/66B
Encoded Data

Aurora
Core

SP011_C1_01_021408

Figure B.2: n-lines full-duplex Aurora link [23].

To transmit a frame of user data, a core implementing the Aurora protocol will split
the data in octets, which are then used to generate floor (x/8) data blocks. If the number
of remainder octets is 7, they are inserted in a Separator-7 command block (code 0xe1).
Otherwise the Separator command block (code 0x1e), which use one octet to signal
the number of valid octets in the frame, is used as shown in fig.B.3. A reminder of
0 results in a Separator block with zero valid octets being generated; the presence of
either a Separator or Separator-7 block in data frame is required so that the receiver
can distinguish a data frame from the other. The IDLE state is signaled by sending a
dedicated idle command block (code 0x78, and with bit 10, 11 and 12 low) or empty

48

2 9 10 17

Separator Block Code (8 Octets)

650 1

SYNC
HEADER

1 0
Valid Octet
Count[0:7]

Frame Data
Octet n+5/
Don’t Care

Frame Data
Octet n+4/
Don’t Care

Frame Data
Octet n+3/
Don’t Care

Frame Data
Octet n+2/
Don’t Care

Frame Data
Octet n+1/
Don’t Care

Frame Data
Octet n/

Don’t Care

8’h1E

Figure B.3: Separator frame [23].

separator frames (with no valid octets) at every clock cycle of inactivity.
In a multi-line channel the frame are transmitted in parallel over the n channel,

following an enumeration of the lines that must match between receiver and transmitter.
Additionally Aurora follows the strict alignment rule, which requires that all lines must
transmit the same block type (data or command) at each clock cycle.

49

B.3 GigaBit Transceiver (GBT)

The GigaBit Transceiver (GBT) project developed by CERN is a radiation-hardened
link intended for data exchange between front-end electronics and the DAQ system of a
detector [11]. It is a quite extensive project, delivering both physical and data link layer
specifications. This appendix will shortly describe some details of the protocol format.

While the GBT protocol can be used as a generic data transmission protocol, it was
designed to interface the off-detector electronics with the on-detector front-ends. Fig.B.4
shows the typical topology of the link between front-end electronics and off-detector DAQ
using the GBT link. A number of font-end modules are connected via duplex serial links
(the e-links [24]) with possible link speed of 80/160/320 Mbit/s, to a GBT transceiver
(the GBTx, an ASIC implementation of the GBT). The GBTx encapsulates data from
the font-ends in a GBT data frame to be then transmitted to the read-out electronics via
optical links, and also decodes incoming frames containing commands for the front-ends.

Font End

Font End

Font End

GBTX
e-links

GBT ROD

Figure B.4: GBT e-link topology.

As shown in Fig.B.5, a GBT frame is composed by 120 bits, with 80 bits dedicated to
data. Frames are sent at a frequency of 40 MHz (corresponding to the current average
bunch crossing frequency at the LHC) leading to a data rate of 4.8 Gb/s (and an effective
data bandwidth of 3.36 Gb/s). In this context the GBT data field is sectioned in 5 (16
bits wide) groups, each group is associated to a grouping of e-links composed by a number

Figure B.5: GBT frame [11].

50

of elements dependant on their data rate mode: with the GBTx data bandwidth of 3.36
Gb/s the possible number of e-links per group is 2/4/8 for 80/160/320 Mb/s respectively.

The 8 bits preceding the data are divided in a 4-bit header (H, with possible values
0x5 for data and 0x6 for idle), and another 4 bits for Slow Control (Internal Control (IC)
and External Control (EC)). The last 32 bits of the frame are used for Forward Error
Correction; the GBT protocol use a Reed-Solomon coding by interleaving two (15,11)
encoders, allowing to correct up to 16 consecutive bit errors. Before the Reed-Solomon
computation the content of the frame (excluding the header and obviously the RS code
field itself) is split in 4 segments and each is scrambled with a 21-bit self-synchronizing
scrambler to archive DC balance. Finally before transmission the frame is interleaved by
splitting it in symbols of 4 bit to improve the performance of the error correcting code
(since this potentially split longer sequences of errors when the frame is de-interleaved
on the receiving side). The various steps are schematized in fig.B.6.

Figure B.6: GBT frame construction [11].

The GBT can also work without forward error correction in the so-called wide frame
mode. In this case the 32 bits for the FEC are used to fit two additional e-link groups
(labeled G5 and G6), increasing the bandwidth to 4.48 Gb/s. This additional slice of
data is scrambled with another dedicated 16-bit scrambler.

51

B.4 Felix FULL mode

The FULL mode is a light weight link-layer protocol proposed by the Felix project
for high bandwidth data downlink. The protocol employs 8b/10b encoding to achieve
DC-balance and uses 32-bit logic packets transmitted at a rate of 9.6 Gbps (and so,
accounting the 8b/10b encoding, a 7.68 Gbps data bandwidth).

The structure of a data frame is schematized in fig.B.7. A data chunk composed by
an undefined (variable) number of 32-bit words, is framed between a Start Of Packet
K-character (0x3c) and a End of Packet K-character (0xdc), both placed in the least
significant octet of a dedicated 32-bit word. While in the SoP 32-bit word any octet
apart the fist is unused, in the EoP the 20 bits after the EoP symbol ([8:27]) are used
for the Cyclic Redundancy Check (CRC) code of the data chunk for error correction.
Finally the MSB of the EoP word can be used to forward the ATLAS BUSY-ON/OFF
signal (which is a form of Flow Control for the L1 trigger to avoid overflowing the DAQ
chain) from the front-end. The protocol also defines an IDLE K-char (0xbc) sent when
no data is to be transmitted.

Figure B.7: FULL mode data frame [25].

52

Bibliography

[1] B. Schmidt, “The high-luminosity upgrade of the lhc: Physics and technology
challenges for the accelerator and the experiments,” Journal of Physics:
Conference Series, vol. 706, no. 2, p. 022002, 2016. [Online]. Available:
http://stacks.iop.org/1742-6596/706/i=2/a=022002 ↑2

[2] A. Gabrielli, M. Backhaus, G. Balbi, M. Bindi, S. Chen, D. Falchieri, T. Flick,
S. Hauck, S. Hsu, M. Kretz, A. Kugel, L. Lama, R. Travaglini, and M. Wensing,
“Firmware development and testing of the atlas pixel detector / ibl rod card,”
Journal of Instrumentation, vol. 10, no. 03, p. C03037, 2015. [Online]. Available:
http://dx.doi.org/10.1088/1748-0221/10/03/C03037 ↑2 , ↑13 , ↑14

[3] G. Aad et al., “The atlas experiment at the cern large hadron collider,” JINST,
vol. 3, p. S08003, 2008. [Online]. Available: https://doi.org/10.1088/1748-0221/3/
08/S08003 ↑5 , ↑9 , ↑11 , ↑13

[4] M. Aaboud et al., “Performance of the atlas trigger system in 2015,” Eur. Phys. J.,
vol. C77, no. 5, p. 317, 2017. [Online]. Available: http://cds.cern.ch/record/2235584
↑5 , ↑10

[5] I. Maznas, “Ftk: The hardware fast tracker of the atlas experiment at cern,” EPJ
Web Conf., vol. 137, 2017. [Online]. Available: 10.1051/epjconf/201713712001 ↑11

[6] M. Backhaus, “The upgraded pixel detector of the atlas experiment for run 2 at the
large hadron collider,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 831, pp.
65 – 70, 2016. [Online]. Available: https://doi.org/10.1016/j.nima.2016.05.018 ↑11 ,
↑12

[7] M. Capeans, G. Darbo, K. Einsweiller, M. Elsing, T. Flick, M. Garcia-Sciveres,
C. Gemme, H. Pernegger, O. Rohne, and R. Vuillermet, “Atlas insertable b-layer
technical design report,” no. CERN-LHCC-2010-013. ATLAS-TDR-19, Sep 2010.
[Online]. Available: https://cds.cern.ch/record/1291633 ↑11

53

http://stacks.iop.org/1742-6596/706/i=2/a=022002
http://dx.doi.org/10.1088/1748-0221/10/03/C03037
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
http://cds.cern.ch/record/2235584
10.1051/epjconf/201713712001
https://doi.org/10.1016/j.nima.2016.05.018
https://cds.cern.ch/record/1291633

[8] M. Barbero, “The fe-i4 pixel readout chip and the ibl module,” Tech.
Rep. ATL-UPGRADE-PROC-2012-001, Jan 2012. [Online]. Available: https:
//cds.cern.ch/record/1415701 ↑13

[9] A. Aggarwal, K. T. Bauer, A. Borga, H. Boterenbrood, H. Chen, K. Chen,
M. Donszelmann, F. Filthaut, I. Grayzman, D. Guest, R. C. Habraken,
M. Joos, S. Kolos, A. Lankford, F. Lanni, G. Lehmann Miotto, L. Levinson,
J. Narevicius, M. B. Oberling, F. P. Schreuder, J. Schumacher, A. Roich,
S. Tang, G. Unel, W. Vandelli, J. Vermeulen, W. Wu, J. Zhang, J. G.
Panduro Vazquez, and A. Paramonov, “Felix: the new detector interface for the
atlas experiment,” no. ATL-DAQ-PROC-2018-010, Jun 2018. [Online]. Available:
http://cds.cern.ch/record/2626890 ↑14 , ↑18 , ↑19

[10] M. Garcia-Sciveres, The RD53A Integrated Circuit, Geneva, Oct 2017. [Online].
Available: https://cds.cern.ch/record/2287593 ↑14 , ↑15 , ↑16 , ↑17 , ↑36

[11] “Gbt project.” [Online]. Available: https://espace.cern.ch/GBT-Project/default.
aspx ↑16 , ↑36 , ↑50 , ↑51

[12] “Wupper: Pcie dma engine for xilinx fpgas.” [Online]. Available: https:
//opencores.org/project/virtex7 pcie dma/overview ↑19

[13] L. Crockett, R. Elliot, M. Enderwitz, and R. Stewart, The Zynq Book: Embedded
Processing With the ARM R© Cortex R©-A9 on the Xilinx R© Zynq R©-7000 All
Programmable SoC, 2014. [Online]. Available: http://www.zynqbook.com/ ↑23 , ↑42

[14] UG858 - Zynq-7000 Technical Reference Manual, Xilinx Inc. [On-
line]. Available: https://www.xilinx.com/support/documentation/user guides/
ug585-Zynq-7000-TRM.pdf ↑22 , ↑26 , ↑31

[15] PG132 - IBERT for 7 Series GTX Transceivers, Xilinx Inc. [Online].
Available: https://www.xilinx.com/support/documentation/ip documentation/
ibert 7series gtx/v3 0/pg132-ibert-7series-gtx.pdf ↑24

[16] PG067 - AXI Chip2Chip v5.0 Product Guide, Xilinx Inc. [Online].
Available: https://www.xilinx.com/support/documentation/ip documentation/
axi chip2chip/v5 0/pg067-axi-chip2chip.pdf ↑27 , ↑28

[17] R. Ginosar, “Metastability and synchronizers: A tutorial,” vol. 28, pp. 23–35, 09
2011. [Online]. Available: https://doi.org/10.1109/MDT.2011.113 ↑30

[18] “Rd53 collaboration website.” [Online]. Available: http://rd53.web.cern.ch/rd53/
↑34 , ↑35

54

https://cds.cern.ch/record/1415701
https://cds.cern.ch/record/1415701
http://cds.cern.ch/record/2626890
https://cds.cern.ch/record/2287593
https://espace.cern.ch/GBT-Project/default.aspx
https://espace.cern.ch/GBT-Project/default.aspx
https://opencores.org/project/virtex7_pcie_dma/overview
https://opencores.org/project/virtex7_pcie_dma/overview
http://www.zynqbook.com/
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ibert_7series_gtx/v3_0/pg132-ibert-7series-gtx.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ibert_7series_gtx/v3_0/pg132-ibert-7series-gtx.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_chip2chip/v5_0/pg067-axi-chip2chip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_chip2chip/v5_0/pg067-axi-chip2chip.pdf
https://doi.org/10.1109/MDT.2011.113
http://rd53.web.cern.ch/rd53/

[19] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba,
M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast inference of deep neural networks
in fpgas for particle physics,” no. FERMILAB-PUB-18-089-E. [Online]. Available:
https://arxiv.org/abs/1804.06913 ↑42

[20] UG471 - 7 Series FPGAs SelectIO Resources, Xilinx Inc. [On-
line]. Available: https://www.xilinx.com/support/documentation/user guides/
ug471 7Series SelectIO.pdf ↑43

[21] 7 Series FPGAs GTX/GTH Transceivers, Xilinx Inc. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/user guides/ug476 7Series
Transceivers.pdf ↑44

[22] AMBA AXI Protocol Specification, ARM Holdings. [Online]. Available: https:
//www.arm.com/products/system-ip/amba-specifications ↑46

[23] SP011 - Aurora 64B/66B Protocol Specification, Xilinx Inc. [Online].
Available: https://www.xilinx.com/support/documentation/ip documentation/
aurora 64b66b protocol spec sp011.pdf ↑48 , ↑49

[24] S. Bonacini, K. Kloukinas, and P. Moreira, “E-link: A radiation-hard low-
power electrical link for chip-to-chip communication,” 2009. [Online]. Available:
https://cds.cern.ch/record/1235849 ↑50

[25] FELIXGroup, FELIX Final Design Review, Technical Specification and Implemen-
tation, March 2018. [Online]. Available: https://atlas-project-felix.web.cern.ch/
atlas-project-felix/publications.html ↑52

55

https://arxiv.org/abs/1804.06913
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
https://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://cds.cern.ch/record/1235849
https://atlas-project-felix.web.cern.ch/atlas-project-felix/publications.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/publications.html

	Introduction
	The ATLAS Experiment
	Inner Detector
	Calorimetry and Muon Tracking
	Trigger System
	ATLAS Pixel Detector
	Future Upgrades

	The LUP Platform
	Hardware Overview
	Firmware Control Infrastructure
	Inter-FPGA communication
	AXI Register Block
	Interface with the Software

	Applications
	Protocol Converter
	RD53A Emulator

	Conclusions
	Appendices
	FPGA Architecture
	Transmission Protocols
	The AXI Protocol
	Aurora 64b/66b
	GigaBit Transceiver (GBT)
	Felix FULL mode

