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Abstract

Studiando le equazioni di Einstein-Maxwell si ricava la soluzione di Kerr-Newman che

descrive il comportamento generale di un buco nero rotante e carico. Questa soluzione

dipende da tre parametri m, a e Q che definiscono rispettivamente la massa, il momento

angolare e la carica del buco nero. Si ha un buco nero se m2 ≥ a2 +Q2.

Per a = Q = 0 si ottiene la soluzione di Schwarzschild che presenta un orizzonte degli

eventi in r = 2m.

Per a = 0 si ottiene la soluzione di Reissner-Nordstrøm per buchi neri carichi e per Q = 0

la soluzione di Kerr per buchi neri rotanti.

La termodinamica dei buchi neri è l’area di studio che cerca di estendere ai buchi neri

le leggi e i principali risultati della termodinamica classica e di farli riconciliare con

l’esistenza degli orizzonti degli eventi.

Ciò è possibile solo con l’inclusione della meccanica quantistica. Nonostante il collasso

gravitazionale conduca, apparentemente, a uno stato di entropia illimitata, l’inclusione

di questi effetti quantistici elimina questa divergenza, assegnando a un buco nero una

entropia definita. Jacob Bekenstein, nel 1972, congetturò che l’entropia del buco nero

fosse proporzionale all’area del suo orizzonte degli eventi A. Hawking, nel 1974, mostrò

che i buchi neri emettono radiazione termica corrispondente a una certa temperatura

(temperatura di Hawking). Questo permette di di fissare il coefficiente di proporzionalità

tra S e A.

Sulla base di questi risultati si dimostra che i buchi neri sono soggetti almeno alle prime

due leggi della termodinamica, mentre le condizioni di Nernst per la terza legge della

termodinamica non sono soddisfatte completamente: non c’è una chiara ragione ter-

modinamica per cui un buco nero non possa essere raffreddato sotto lo zero assoluto e

convertito in una singolarità nuda.

Tra i risultati di questa teoria si ha che tutta l’informazione riguardo allo stato termo-

dinamico del buco nero è contenuta nella relazione di Smarr, che lega M , J e Q. Da

questa relazione si trova l’espressione del primo principio della termodinamica per i buchi

neri e si ricavano altre grandezze termodinamiche. Si trova, inoltre, che i buchi neri di

Kerr-Newman subiscono una transizione di fase, dove la capacità termica cambia segno

attraverso una discontinuità infinita.
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Abstract

The Kerr-Newman solution that describes the general behaviour for a charged rotating

black hole is found studying the Einstein-Maxwell’s equations. The solution depends on

three parameters m, a e Q defining the mass, the angular momentum and the charge of

the black hole. To have a black hole, the condition is m2 ≥ a2 +Q2.

When a = Q = 0, the Schwarzschild solution, which has an event horizon at r = 2m, is

obtained.

The Reissner-Nordstrøm solution for charged black hole is obtained when a = 0 and the

Kerr solution for rotating black hole when Q = 0.

Black hole thermodynamics is the area of study that seeks to extend to black holes the

laws and the main results of classical thermodynamics and to reconcile them with the

existence of event horizons.

This is possible with the inclusion of quantum mechanics. Despite the gravitational

collapse apparently leads to a state of unbound entropy, the inclusion of quantum ef-

fects damps out this divergence and assigns a definite entropy to the black hole. Jacob

Bekenstein, in 1972, conjectured that the black hole entropy was proportional to the

area of its event horizon A. Hawking, in 1974, showed that black holes emit thermal

radiation corresponding to a certain temperature (Hawking temperature). In this way,

it is possible to fix the constant of proportionality between S and A.

Due to these results, it is found that black holes are subject at least to the first and second

laws of thermodynamics, while the Nernst conditions for the third law of thermodynamics

are not fully satisfied: there is no obvious thermodynamic reason why a black hole may

not be cooled down below absolute zero and converted into a naked singularity.

Among the results of this theory, there is that all the information about the thermody-

namic state of black hole matter is contained in the Smarr relation, which depends on

M , J and Q. From this relation, the expression of the first law of thermodynamics for

black holes and other thermodynamic quantities are found. Furthermore, it is found that

Kerr-Newman black holes undergo a phase transition, where the heat capacity changes

sign through an infinite discontinuity.
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Chapter 1

General Relativity

1.1 Principles of general relativity

The general theory of relativity is the geometric theory of gravitation published by Albert

Einstein in 1916 including the expression of his field equations. In the general principle

of relativity we find the theory’s foundations:

General Principle of Relativity. All observers are equivalent.

Every observer can discover the same laws of physics. The situation is different in

special relativity, where a preferred coordinates system exists: Minkowski coordinates.

This suggests that the theory should be invariant under a coordinate transformation.

The principle of general covariance follows:

Principle of General Covariance. The equations of physics should have tensorial

form.

This principle was of fundamental importance to Einstein. It states that it is necessary

to change all equations to their covariant form to switch from special to general relativity.

Nowadays many doubt the importance of this principle because it is now known that it

is possible to formulate any physical theory in tensorial form.

The principle of equivalence is another fundamental principle of general relativity; it can

be stated in its strong and weak form:
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2 Chapter 1. General Relativity

The Principle of Equivalence (Strong). The motion of a gravitational test particle

in a gravitational field is independent of its mass and composition.

The Principle of Equivalence (Weak). The gravitational field is coupled with everything.

The last formulation of the theorem is also known as the Galilean principle and can be

tested by verifying the equivalence of inertial and gravitational mass.

From this, it follows that no body can be shielded from the gravitational field. However,

it is possible to remove gravitational effects locally from our theory and thus regain

special relativity. We identify an inertial frame in a freely falling reference system, at

least locally in space and time. This leads to Einstein’s principle of equivalence:

The Principle of Equivalence. There are no local experiments which can distinguish

non-rotating free fall in a gravitational field from uniform motion in the space in the

absence of a gravitational field.

These requests bring forward the idea of a curved space-time in place of a plain one. In

Minkowski coordinates, the test particle’s equation of motion is given by

d2xα

dτ 2
= 0,

that can be easily extended to a more generic expression through the metric connection

Γαβγ, dependant on the metric tensor gαβ:

d2xα

dτ 2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= 0.

The affine connection’s dependence on the metric is given by

Γαβγ =
1

2
gαν(gνγ,β + gνβ,γ − gβγ,ν), (1.1)

in which we have defined

gνγ,β = ∂βgνγ =
∂

∂xβ
gνγ.
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Through the covariant derivative this expression can be written as

uµ∇µu
α = (∇uu)µ = 0

and uµ = dxµ

dτ
is the 4-velocity. This is the geodesic’s equation, where a geodesic extends

the concept of straight lines to a curved manifold. The affine connection is dependent

on the metric tensor, that is not anymore just a flat space’s one. A freely falling particle

follows the geodesics, determined by the metric, that in a curved manifold are no longer

straight lines.

Furthermore, not only are geodesic curves followed by massive particle, but also by

photons. From the derivative of the relation uµu
µ = 0, valid for photons in special

relativity, we obtain:

0 =
d(0)

dλ
= uµ∇µ(0) = uµ∇µ(uαu

α) = uµuα∇µ(uα) + uµuα∇µ(uα);

0 = 2uα(uµ∇µu
α).

We have obtained the geodesics’ equation again.

1.2 Field equations

The considerations about the principles expressed led us to conclude that, locally, namely

neglecting variations in the gravitational field, we can regain special relativity. However,

we require a curved metric which may be thought of as the gravity field’s potentials in

a non-local situation. Correspondence with Newton’s theory then suggests us to search

for second-order field equations in such potentials and, from the principle of covariance,

these equations have to be in covariant form.

We now introduce the ten complete field equations that we can apply in the presence of

other fields beyond the gravitational one through the stress-energy tensor Tαβ:

Gαβ = kTαβ. (1.2)
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k is a constant of proportionality called coupling constant. On the left side, we have the

Einstein tensor that depends directly on the Ricci tensor Rαβ:

Gαβ = Rαβ − 1

2
gαβR, (1.3)

where R is the scalar curvature or Ricci scalar, R = Rα
α. The Riemann-Christoffel tensor

is defined:

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓεβδΓ

α
εγ − ΓεβγΓ

α
εδ, (1.4)

from which Ricci tensor follows as

Rαβ = Rβα = Rγ
γαβ.

The stress-energy tensor has become the field equations’ source. This tensor follows a

conservation law in special relativity:

∂βT
αβ = 0,

that can be extended to general relativity by a covariant derivative:

∇βT
αβ = 0.

Follows that ∇βG
αβ=0. We know that the covariant derivative of the Einstein tensor

vanishes through the Bianchi identities:

∇αRδεβγ +∇γRδεαβ +∇βRδεγα = 0,

from which the contracted Bianchi identities follow as

∇βG
β
α = 0.

The coupling constant k’s value can be found considering that Newton equation must
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hold in the non-relativistic limit. Then, the coupling constant in non-relativist units is:

k = 8π
G

c2
,

where G is the universal gravitational constant and c is the light velocity in the vacuum.

We will, mainly, work in relativist units, in which we can take both G = 1 and c = 1.

Therefore, the coupling constant is:

k = 8π.

The vacuum field equations of general relativity are field equations in the absence of

any field beyond the gravitational one. Then, the stress-energy tensor vanishes and our

equations take the form:

Gαβ = 0. (1.5)



Chapter 2

Schwarzschild Metric

2.1 Spherically symmetric solutions

The simplest case to find solutions to the vacuum field equations 1.5 is that of spherical

symmetry. To proceed, we need to define what a Killing vector is.

In differential geometry we have a symmetry if, moving along a direction, defined by a

vector v, our quantity of interest, described by a tensor T , does not change. We can

express this idea through the use of Lie derivatives:

£vT = 0.

If the vector v stand for the axes direction xi, we have:

£vT =
∂T

∂xi
= 0.

Isometries are the symmetries of the metric tensor, then T = g:

£vg = 0. (2.1)

The Killing vectors are the vectors that define the directions along we move.

A time-independent solution is called stationary, but this does not mean that it is not

evolutionary, only that time does not enter into it explicitly. Being static is a stronger

6



2.1. Spherically symmetric solutions 7

requirement for a solution because it is a solution that cannot be evolutive and nothing

would change if, at any time, we ran the time backwards; then there is a temporal

symmetry for any origin of time. We can express a stationary solution through the

equation 2.1 mathematically; there is an isometry with respect to the Killing vector that

is the time coordinate x0:

∂gαβ
∂x0

= 0.

The spherical symmetry can be expressed by Killing vector fields too. A space-time is

called spherically symmetric only when it admits three linearly independent spacelike

Killing vector fields Xα whose orbits are closed and satisfy

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

It can be proven that in a spherically symmetric space-time, there exists a coordinates

system (xα), called Cartesian, in which the Killing vector fields Xα are

X0 = 0, Xα = ωαβx
β with ωαβ = −ωβα.

The quantity ωαβ depends on three paramet-

ers that state the three spacelike rotations.

Figure 2.1: The standard spherical coordinates.

These results lead to the line element ca-

nonical form, but here we will give a heur-

istic way to reach it. The spherical sym-

metry suggests the existence of a favourite

point in space, called origin O. The system

must be invariant under rotations about

this point. Therefore, we can consider the

spherical coordinates of centre O with the

polar angle φ and azimuthal angle θ, as

shown in figure 2.1.
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At a fixed moment in time, we consider a point P at a distance a from the origin O.

Through the space-rotations the point P describes a 2-sphere centred on O. Q is the

projection of P on the xy-plane. φ and θ, to represent all points on the 2-sphere, take

values in the ranges:

−π < φ ≤ π, 0 ≤ θ ≤ π.

Moreover, the line element of the 2-sphere is

ds2 = a2(dθ2 + sin2 θdφ2). (2.2)

In four dimensions we can consider adding an arbitrary timelike coordinate t and a radial

parameter r to φ and θ, so the line element is reduced to the expression 2.2 on a 2-sphere

t = constant, r = constant. Spherical symmetry requires that the line element does not

change when angles φ and θ are varied, so φ and θ appear in the line element only in the

form (dθ2 + sin2 θdφ2). Furthermore, there must be no crossed terms in dφ or dθ because

the metric has to be separately invariant under the reflections:

θ → θ′ = π − θ and φ→ φ′ = −φ.

We start, then, from the hypothesis that exists a reference frame

(xα) = (x0, x1, x2, x3) = (t, x, y, z)

in which the line element takes the form

ds2 = Adt2 − 2Bdtdr − Cdr2 −D(dθ2 + sin2 θdφ2), (2.3)

where A, B, C and D are functions of t and r

A = A(t, r), B = B(t, r), C = C(t, r), D = D(t, r).
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We can introduce a new radial coordinate by the transformation:

r → r′ = D
1
2 ,

whereby 2.3 becomes:

ds2 = A′(t, r′)dt2 − 2B′(t, r′)dtdr′ − C ′(t, r′)dr′2 − r′2(dθ2 + sin2 θdφ2).

Considering the differential

A′(t, r′)dt−B′(t, r′)dr′,

the theory of ordinal differential equations claims that we can always multiply it by an

integrating factor, I = I(t, r′), which makes it a perfect differential. We use this result

to define a new time coordinate t′ by requiring:

dt′ = I(t, r′)[A′(t, r′)dt−B′(t, r′)dr′].

Squaring:

dt′2 = I2(A′2dt2 − 2A′B′dtdr′ +B′2dr′2);

A′dt2 − 2B′dtdr′ = A′−1I−2dt′2 − A′−1B′2dr′2,

the line element becomes

A′−1I−2dt′2 − (C ′ − A′−1B′2)dr′2 − r′2(dθ2 + sin2 θdφ2).

We can define two new functions ν and λ by

A′−1I−2 = eν (2.4)

and C ′ + A′−1B′2 = eλ, (2.5)

where ν = ν(t′, r′), λ = λ(t′, r′).
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Dropping the primes, we obtain the line element:

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2). (2.6)

The definitions of ν and λ in 2.4 and 2.5 are given in exponential terms, which, being

always positive, ensure that the signature of the metric is always -2.

2.2 The Schwarzschild solution

We use the vacuum field equations 1.5 to determinate the unknown functions ν and λ

in the line element 2.6. The covariant metric is

gαβ = diag(eν ,−eλ,−r2,−r2 sin2 θ).

We know that

gαβg
βγ = δαγ ,

where δαγ is the Kronecker tensor; the contravariant metric must be diagonal as well and

its elements must be the multiplicative inverse of those of the covariant one:

gαβ = diag(e−ν ,−e−λ,−r−2,−r−2 sin−2 θ). (2.7)

We use the expressions 2.2 and 2.7 to find the non-vanishing elements of the Einstein

tensor through its definition 1.3, having found the affine connection 1.1 and, then, the

Riemann tensor 1.4:

G0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
; (2.8)

G1
0 = −e−λr−1λ̇ = −eλ−νG0

1; (2.9)

G1
1 = −e−λ

(
ν ′

r
+

1

r2

)
+

1

r2
; (2.10)

G2
2 = G3

3 =
1

2
e−λ

(
ν ′λ′

2
+
λ′

r
− ν ′

r
− ν ′2

2
− ν ′′

)
+

1

2
e−ν

(
λ̈+

λ̈2

2
− λ̇ν̇

2

)
. (2.11)



2.2. The Schwarzschild solution 11

In these expressions we have written λ′ and ν ′ for the derivatives in relation to R and λ̇

and ν̇ for the derivatives in relation to t. The contracted Bianchi identities 1.2 reveals

that equation 2.11 vanishes if the equations 2.8, 2.9 and 2.10 all vanish as well. Thus, it

remains only three linearly independent equations to solve:

e−λ
(
λ′

r
− 1

r2

)
+

1

r2
= 0; (2.12)

e−λ
(
ν ′

r
+

1

r2

)
− 1

r2
= 0; (2.13)

λ̇ = 0. (2.14)

Adding equation 2.12 to 2.13, we obtain:

λ′ + ν ′ = 0;

which, integrated, returns

λ+ ν = h(t),

where h is an arbitrary function of integration. λ is only function of r by equation 2.14,

thus equation 2.8 is an ordinary differential equation which can be written as

e−λ − re−λλ′ = (re−λ)′ = 1.

Integrating, we obtain

re−λ = r + constant.

Choosing the constant to be −2m, we obtain:

eλ = (1− 2m/r)−1,

which reduces our metric 2.2 to:

gαβ = diag(eh(t)(1− 2m/r),−(1− 2m/r)−1,−r2,−r2 sin2 θ).
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It remains the dependence on h that can be removed by a transformation to a new

temporal coordinate t′, that is defined by the relation

t′ =

∫ t

c

e
1
2
h(u) du,

where c is an arbitrary constant. Clearly, only the component of the metric g00 changes

under this transformation:

t′ =

∫ t

c

e
1
2
h(u) du, dt′ = e

1
2
h(t)dt =⇒ dt2 = e−h(t)dt′2;

g′00 =

(
1− 2m

r

)
.

Dropping the primes, there is always a coordinate system where the most generic spher-

ically symmetric solution to the vacuum field equations is

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (2.15)

This is the Schwarzschild line element.

The solution 2.15 is both time-symmetric, since it is invariant under temporal inver-

sion t → t′ = −t, and time translation invariant, since it is invariant under temporal

translation t→ t′ = t+ constant. Hence, this solution is static.

In this way, we have proven Birkhoff’s theorem.

Birkhoff’s Theorem. A spherically symmetric vacuum solution in the exterior region

is necessary static.

This theorem implies that, if a spherically symmetrical source, like a star, changes

its shape maintaining spherical symmetry, it cannot spread any radiation in the space

around. If a spherically symmetrical source is restricted to a limited region r ≤ a, for a

certain a > 2m, the solution for r > a is the Schwarzschild solution, called Schwarzschild

exterior solution. However, it is not true the opposite: a source does not inherit the
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symmetries of its field, then the source is not necessarily spherically symmetrical even if

its field is the Schwarzschild exterior solution.

Considering the limit of 2.15 as r →∞, we regain the flat metric of special relativity in

spherical polar coordinates (that was our purpose), that is:

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdφ2).

Then, a vacuum spherically symmetrical solution is necessary asymptotically flat. Know-

ing this and that we have to find the Newton potential φ = −GM
r

in the weak-field limit,

with a mass M situated at the origin O, we find that m value is:

m =
GM

c2
.

m has the dimensions of length and is sometimes called geometric mass. In relativistic

units, m is the mass of the object at the origin O.

2.3 Coordinates for the Schwarzschild solution

Now we have to consider the Schwarzschild solution in the form expressed in the equation

2.15. The components of the metric are:

g00 =

(
1− 2m

r

)−1

, g11 = −
(

1− 2m

r

)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
.

In this coordinates system, t is timelike and r, θ and φ are spacelike. The matrix is

independent of t and there are not crossed terms in dt, hence the solution is static. r is

a radial parameter which has the property that the 2-sphere t = constant, r = constant

has the standard line element

ds2 = −r2(dθ2 + sin2 θdφ2),

from which it follows that the surface area of the 2-sphere is 4πr2. θ and φ are the usual

polar coordinates on the 2-sphere and are defined invariantly by the spherical symmetry.
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The Schwarzschild coordinates (t, r, θ, φ) are canonical coordinates, defined invariantly

by the symmetries.

Nevertheless, the Schwarzschild coordinates have some singularities. There are coordin-

ates singularities because these coordinates do not cover the axes θ = 0, π, where the

line element becomes degenerate; this degeneration can be removed using Cartesian co-

ordinates (x, y, z):

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

This kind of singularities reflects deficits of the reference frame and can be easily re-

moved changing the frame itself. There are other two coordinates values that return

singularities: r = 0 and the Schwarzschild radius r = 2m. The latter is a removable

coordinate singularity too, as indicated by the Riemann tensor scalar invariant

RαβγδR
αβγδ = 48

m2

r6
,

which is finite for r = 2m. Its value is the same in every and each reference frame being it

a scalar. Instead, in the origin r = 0, this invariant diverges: in this case the singularity

is real and irremovable, therefore is variously called intrinsic, curvature, physic, essential

or real singularity. r = 2m is a null hypersurface that divides the manifold into two

separated regions 2m < r < ∞ and 0 < r < 2m. In the second region the coordinates

r and t reverse their character, t becomes spacelike and r timelike. The Schwarzschild

solution is an exterior vacuum solution for every spherically symmetrical body of radius

a > 2m. A different metric would describe the body itself for r < a but then it would

correspond to a matter distribution, that is a not vanishing stress-energy tensor.

2.4 A radially infalling particle

Considering a particle of mass µ infalling radially toward the origin, we can notice that

it moves on a timelike geodesic. Our line element is 2.15; we can use the variational
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principle to find the trajectory’s equation

S[xµ(τ)] = µ

∫ B

A

dS = µ

∫ B

A

√
−gµν ẋµẋνdτ, (2.16)

where τ is the proper time of the particle and gµν , x
µ, ẋµ = dxµ

dτ
are respectively elements

of the metric, the 4-vector and the 4-velocity in tensorial notation. We can define 2T =

−gµν ẋµẋν whose value can be considered 1. Then the equation for the variations 2.16

becomes:

δS = µ

∫
δT√
2T

dτ = µ

∫
δTdτ.

T is the Lagrangian of the system and, having required the condition 2T = 1, we obtain:

2T =

(
1− 2m

r

)
ṫ2(τ)−

(
1− 2m

r

)−1

ṙ2(τ)− r2(θ̇2(τ) + sin2 θφ̇2(τ)) = 1. (2.17)

Considering µ = 1 for convenience, the Euler-Lagrange equations are:

d

dτ

[(
1− 2m

r

)
ṫ

]
= 0;

d

dτ
(r2θ̇)− r2 sin θ cos θφ̇2 = 0;

d

dτ

(
r2 sin2 θφ̇

)
= 0.

It will not be necessary to resolve these equations because there are already three first

integrals of motion, namely T and the generalized momenta of cyclic coordinates t and

φ. Then, from equation 2.17, we define the conserved quantities:

E =

(
1− 2m

r

)
ṫ, (2.18)

J = r2 sin2 θφ̇. (2.19)

We find that, if the motion takes place on the equatorial plane, it will remain there like

in classical mechanics; hence, thanks to the spherical symmetries of the gravitational
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field, we can always consider θ = π
2
, θ̇ = 0 and φ̇ = 0. Therefore, equation 2.19 becomes:

J = r2φ̇ = 0.

Since 2T = 1, we obtain the equation

(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 = 1. (2.20)

E can be considered the energy of the particle and its value corresponds to different

initial conditions. Let’s consider the case, in relativistic coordinates G = 1, C = 1, of a

particle with initial zero velocity, thus E = 1. Therefore, for r −→ ∞, it is ṫ ' 1, that

is, asymptotically ṫ ' 1. From 2.18 and 2.20, it is obtained

(
dτ

dr

)2

=
r

2m
.

We consider the negative root of this equation because the particle is getting closer to

the origin. Integrating:

τ − τ0 =
2

3(2m)
1
2

(r
3
2
0 − r

3
2 ), (2.21)

where the particle is in the position r0 at the proper time τ0. At the Schwarzschild

radius, there is no singular behaviour and the particle falls continuously to r = 0 in a

finite proper time.

Things change if the motion of the particle is described in terms of the Schwarzschild

coordinate time t:

dt

dr
=
ṫ

ṙ
= −

( r

2m

) 1
2

(
1− 2m

r

)−1

.

Integrated, it returns

t− t0 = − 2

3(2m)
1
2

(r
3
2 − r

3
2
0 + 6mr

1
2 − 6mr

1
2
0 ) + 2m ln

[r
1
2 + (2m)

1
2 ][r

1
2
0 − (2m)

1
2 ]

[r
1
2
0 + (2m)

1
2 ][r

1
2 − (2m)

1
2 ]
. (2.22)

For situations where r and r0 are much larger than 2m, the results of the equations 2.21
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and 2.22 are approximately the same. Instead, if r values is very close to 2m, we find

r − 2m = (r0 − 2m)e−(t−t0)/2m.

It clearly follows:

t −→∞ =⇒ r − 2m −→ 0.

So we see that 2m is approached without ever being reached. t corresponds to the proper

time measured by a observer at rest far away from the origin; from this observer, the

particle takes an infinite amount of time to reach 2m.

The singularity at r = 2m follows from the coordinates system used and can be removed

using a more adapt system, namely Eddington-Finkelstein coordinates. We apply the

coordinate change

t −→ t̄ = t+ 2m ln (r − 2m).

Applying this change to the line element 2.15, we obtain the Eddington-Finkelstein form

ds2 =

(
1− 2m

r

)
dt̄2 − 4m

r
dt̄dr −

(
1 +

2m

r

)
dr2 − r2(dθ + sin2 θdφ2). (2.23)

We can write the solution 2.23 in a simpler form introducing the null coordinate

v = t̄+ r,

which is called an advanced time parameter. The resulting line element is

ds2 =

(
1− 2m

r

)
dv2 − 2dvdr − r2(dθ + sin2 θdφ2). (2.24)

Now the solution is regular at r = 2m, the surface there lets only the radially outgoing

photons remain where they are while all the rest is pulled toward the centre. At r < 2m

all photons are drawn to the centre singularity too. The surface r = 2m acts as a one-way

membrane, letting future-directed timelike and null curves cross only from the outside to

the inside. This surface is called event horizon because it represents the limit of all events
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visible by an external observer. The Schwarzschild event horizon is absolute because it

seals off all internal events from every external observer.

2.5 Non-rotating black holes

The theory of stellar evolution tells us that stars with a mass of the order of the sun can

reach a final equilibrium state as white dwarfs or neutron stars. For much larger masses,

this equilibrium is not possible; in these cases, the star will contract until the gravitation

effects overcome the internal pressure and stresses which will no longer be able to halt the

further collapse. The theory of general relativity foretells that a spherically symmetrical

star will necessarily contract until all its matter arrives at the singularity in the centre.

Now the collapse of a non-rotating spherically symmetrical star that continues until the

star’s surface approaches the Schwarzschild radius has to be considered. The Schwarz-

schild vacuum solution remains the star exterior field, but a signal at r = 2m will never

escape the surface r = 2m and, for r < 2m, all signals will necessarily fall toward the

singularity at the centre. A distant external observer will always be able to see only the

star’s surface as it was before reaching the Schwarzschild radius. In practice, however,

the observer will never be able to see the surface of the star as it was before it plunged

through the Schwarzschild radius and the star would quickly fade from sight leaving

behind a black hole in space.

It would seem that the request for a spherically symmetrical solution, which does not

even consider charge or rotation, is too tight. However, although there are different

details in different cases, the main characteristics of black holes (absolute event horizons

and singularities) persist.

The idea of the black hole as an object with such a gravitational field from which not even

light can escape is a consequence of the Newton corpuscular theory of light. Considering

a particle with mass m radially moving away from a matter distribution with radius R
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and mass M , if the particle has a velocity v at a distance r from the centre, its energy is

E = kinetic energy + potential energy =

=
1

2
mv2 − GMm

r
.

The escape velocity v0 is defined as the velocity at the surface of the distribution of

matter which allows the particle to escape to infinity with zero velocity. So v0 = 0 as

r −→∞, that leads to E = 0. Hence, the escape velocity is

v2
0 = 2GM/r.

The velocity of light in the vacuum is c and it escapes toward infinity only when it is

related to R and M through the relation

c2 = 2GM/R.

The distribution of matter is, in this way, bound by the radius limit condition

R =
2GM

c2
,

which corresponds to our definition of the Schwarzschild radius in non-relativistic co-

ordinates.
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Reissner-Nordstrøm Metric

3.1 Maxwell’s equations

Working in Heavyside-Lorentz units with c = 1, we can rewrite Maxwell’s equations for

special relativity; thus we find that Maxwell’s equations in vacuo for the electromagnetic

field split up into two pairs of equations: the source equations

divE = ρ (3.1)

curlB − ∂E

∂t
= j, (3.2)

and the internal equations

divB = 0 (3.3)

curlE +
∂B

∂t
= 0, (3.4)

where E is the electric field, B the magnetic induction, ρ the charge density and j

the current density. ρ and j cannot be assumed independent, but they must follow a

continuity equation:

∂ρ

∂t
+ divj = 0. (3.5)

20
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To write these equations in a tensorial form, we define an anty-symmetric tensor Fαβ,

called the electromagnetic field tensor or Maxwell tensor, by

Fαβ =



0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


(3.6)

and the current density or source 4-vector jα by

jα = (ρ, j).

The continuity equation 3.5 becomes

∂αj
α = 0.

Hence, the source equations, 3.1-3.2, and internal equations, 3.3-3.4, can be written in

the form

∂βF
αβ = jα, (3.7)

∂αFβγ + ∂γFαβ + ∂βFγα = 0. (3.8)

The anti-symmetry of Fαβ means that the equations 3.8 can be written simply as

∂[αFβγ] = 0.

However, rather than working with the fields E and B, it is more convenient working

with the potentials: the scalar potential φ and the vector potential A defined by

E = −gradφ− ∂A

∂t
,

B = curlA.
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We define the 4-potential by

φα = (φ,A),

from which we regain the Maxwell tensor 3.6 as

Fαβ = ∂βφα − ∂αφβ. (3.9)

The 4-potential is not defined uniquely by this equation because we may perform a gauge

transformation

φα = φ̄α = φα + ∂αψ, (3.10)

where ψ is an arbitrary scalar field. The gauge transformation does not alters Fαβ and,

therefore, E and B. In solving particular problems, it is often convenient to reduce the

gauge freedom by imposing a constraint on φα, called a gauge condition. An important

gauge condition to discuss electromagnetic radiation is given by the Lorentz gauge

ηαβφα,β = 0, (3.11)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric. Imposing this constraint on 3.10,

we find a scalar field that is no longer arbitrary but it must be a solution of the wave

equation

2ψ ≡ ηαβψα,β = 0,

where 2 is the d’Alambertian operator

2 ≡ ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 .

The internal equations 3.8 are automatically satisfied by the definition 3.9, and the

source equations 3.7, in terms of the 4-potential, become, raising the indexes with the

Minkowski metric:

∂β[ηαγηβδ(∂δφγ − ∂γφδ)] = jα,
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which, with the Lorentz gauge 3.11, becomes

2φα = jα.

In a source-free region, the equation simplifies to

2φα = 0.

Then, φα and Fαβ, and thus E and B, are solutions to the wave equation.

Until now, we have restricted our attention only to special relativity in Minkowski co-

ordinates. From the general covariance principle, we know that, to obtain the covariant

formulation, it is simply necessary to exchange all ordinary derivatives with covariant

derivatives. Nevertheless, 3.8 does not change because

∇[αFβγ] = ∂[αFβγ] and ∇[αφβγ] = ∂[αφβγ].

The covariant formulation of Maxwell’s equations in the vacuo is

∇Fαβ = jα (3.12)

∂[αφβγ] = 0, (3.13)

with the restrain

∇αj
α = 0.

3.2 The Maxwell energy-momentum tensor

Our goal is to build the energy-momentum tensor for the electromagnetic field and, to do

so, we will use the variational principle. To simplify the problem, we will work in vacuo

in special relativity in Minkowski coordinates and restrict our attention to a source-free

region, that is a region where jα vanishes. Hence, let’s consider the Lagrangian for the
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electromagnetic field

LE(φα, Fαβ) =
1

4π

[
−1

2
FαβF

αβ + (φα,β − φβ,α)Fαβ

]
.

The field equations corresponding to a variation with respect to φα are

δLE

δφα
=
∂LE

∂φα
−
(
∂LE

∂φα,β

)
,β

= 0− 1

4π
(Fαβ − F βα),β;

(Fαβ − F βα),β = 0. (3.14)

In the same way, the field equations corresponding to a variation with respect to Fαβ are

δLE

δαβ
=
∂LE

∂Fαβ
=

∂

∂Fαβ

1

4π

[
−1

2
ηγεηδνFγδFεν + ηγεηδν(φγ,δ − φδ,γ)Fεν

]
=

1

4π

[
−1

2
ηαεηβνFεν −

1

2
ηγαηδβFγδ + ηγαηδβ(φγ,δ − φδ,γ)

]
=
ηαγηβδ

4π
[−Fγδ + (φγ,δ − φδ,γ)];

Fαβ = φα,β − φβ,α. (3.15)

This last equation defines Fαβ in terms of the 4-potential, as seen in 3.9, and it shows

us that Fαβ is anti-symmetric. This equation also implies that the internal equations 3.8

are automatically fulfilled and equations 3.14 become

Fαβ
,β = 0,

that are the source equations in a source-free region. As a result of equations 3.15, we

can rewrite the Lagrangian in the form

LE =
1

8π
ηαγηδβFαδFγδ. (3.16)
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Let’s assume that the Lagrangian 3.16, in the transition to the complete theory, becomes

LE =
(−g)

1
2

8π
gαγgδβFαβFγδ.

The factor (−g)
1
2 is included to ensure that LE is a scalar density, in Minkowski’s

coordinates it becomes 1. g is the determinant of the metric and its differential is

δ
√
−g = −1

2

√
−ggαβδgαβ.

Hence, we find

∂LE

∂gαβ
=

∂

∂gαβ
(−g)

1
2

8π
gεγgδνFενFγδ

=
(−g)

1
2

8π
gδνFανFβδ +

(−g)
1
2

8π
gεγFεβFγα+

− 1

2

(−g)
1
2

8π
gβαg

εγgδνFενFγδ.

Remembering that gαβ is symmetric and Fαβ antisymmetric, the relation reduces to

∂LE

∂gαβ
= −(−g)−

1
2

4π

(
−gγδFαγFβδ +

1

4
gαβFγδF

γδ

)
= −(−g)

1
2Tαβ.

In the last line, we have introduced the stress-energy tensor, in such a way we define the

Maxwell energy-momentum tensor in a source-free region by

Tαβ =
1

4π

(
−gγδFαγFβδ +

1

4
gαβFγδF

γδ

)
. (3.17)

The trace of this tensor vanishes for the properties of the metric tensor gαβ and of the

Maxwell tensor Fαβ:

Tαα = gαβTαβ = 0.
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3.3 The Reissner-Nordstrøm solution

We are searching for the Reissner-Nordstrøm solution for a charged mass point. There-

fore, we will look for a static, asymptotically flat, spherically symmetric solution of the

Maxwell-Einstein field equations. We have seen that the Maxwell-Einstein field equations

1.2 in relativist coordinates are

Gαβ = 8πTαβ, (3.18)

where Tαβ is the stress-energy tensor which vanishes in a source-free region, as we have

seen in § 1.2, returning as a result the vacuum field equations 1.5.

In this particular case, the stress-energy tensor we will use is the Maxwell energy-

momentum tensor 3.17 the trace of which vanishes, as we have said. Knowing the

expression for Einstein tensor 1.3, we see that the trace of the Ricci tensor, the curvature

scalar R, must vanish as well. Hence, we can also work with equations equivalent to 3.18,

namely

Rαβ = 8πTαβ. (3.19)

Furthermore, the Maxwell’s tensor Fαβ 3.6 must satisfy Maxwell’s equations 3.12 and

3.13 in a source-free region:

∇Fαβ = 0, (3.20)

∂[αφβγ] = 0. (3.21)

The assumption of spherical symmetry means we can introduce a new set of coordinates

(t, r, θ, φ) in which the line element reduces itself to the canonical form 2.6:

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2),

where ν and λ are functions of t and r but, if we impose to the solution to be static,

they become only functions of r:

ν = ν(r), λ = λ(r).
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To work in polar coordinates we need the Maxwell tensor 3.6 expressed in this coordin-

ates, namely a tensor that describes the electromagnetic field of a charged mass point;

thus, we will find that the magnetic field vanishes because the charge is still and that

the electric field is a function only of r for the spherical symmetry of the charge. In the

end, it remains

Fαβ = E(r)



0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


. (3.22)

We find that the Maxwell’s equations 3.21 are immediately satisfied by the tensor 3.22.

Now we apply this tensor and this line element to the equations 3.20. Considering

gαβ = diag(eν ,−eλ,−r2,−r2 sin2 θ), we obtain

∇βF
αβ = ∂βF

αβ + ΓαγβF
γβ

= ∂βF
αβ +

1

2
gαδ(∂γgδβ + ∂βgδγ − ∂δgγβ)F γβ = 0;

d

dr
(e

1
2

(ν+λ)r2E) = 0.

Integrating, it returns

E(r) = e
1
2

(ν+λ)Q

r2
,

where Q is a constant of integration. The solution must be asymptotically flat, hence

ν, λ −→ 0 as r −→ ∞. Thus, asymptotically, it must be E ∼ Q/r2. This result is the

same we obtain classically for a mass point of charge Q in the origin. Therefore, we can

consider Q as the charge of the mass point.

Now, we can find the Maxwell’s energy-momentum tensor by its definition 3.17. Plugging

this tensor in the field equations 3.19, we find that the 00 and 11 equations lead to

dλ

dr
+
dν

dr
= 0

which result in λ = −ν for the asymptotic conditions. The 22 equation is the one to
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remain independent and it leads to

d

dr
(reν) = 1− Q2

r2
,

the integration of which returns

eν = 1− 2m

r
+
Q2

r2
,

where m is the constant of integration. We have finally arrived at the Reissner-Nordstrøm

solution:

ds2 =

(
1− 2m

r
+
Q2

r2

)
dt2 −

(
1− 2m

r
+
Q2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (3.23)

When Q = 0, we regain the Schwarzschild line element 2.15 and thus we identify m as

the geometric mass.

As for Schwarzschild solution, the assumptions of a static and asymptotically flat solution

were not necessary. We can find, hence, an analogue to Birkhoff theorem (§ 2.2).

Theorem. A spherically symmetrical exterior solution of the Einstein-Maxwell field

equations is necessary static.

3.4 Coordinates for the R-N solution

Considering the coefficients

g00 = −(g11)−1 = 1− 2m

r
+
Q2

r2
=
G

r2
,

where

G = r2 − 2mr +Q2.

The discriminant of the quadratic G is

∆ = m2 −Q2.
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If this is negative, that is Q2 > m2, the quadratic has no real roots and it is positive

for all values of r except at the origin r = 0. Hence, it follows that the line element

3.23 is non-singular for all values of r except at the origin r = 0. However, the solution

has an intrinsic singularity at r = 0, as can be seen calculating the Riemann invariant

RαβγδRαβγδ. This fact does not come as a surprise because in the origin the point charge

producing the field is located.

The more interesting case occurs when Q2 ≤ m2, then the metric has singularities when

Q vanishes, namely at r = r+ and r = r−, where

r± = m± (m2 −Q2)
1
2 .

The line element 3.23 is regular in the regions:

I. r+ < r <∞,

II. r− < r < r+,

III. 0 < r < r−.

If Q2 = m2, only the regions I and III exist. The regions are separated by null hypersur-

faces r = r+ and r = r−. The situation at r = r+ is rather similar to the Schwarzschild

case, g00 = 1 − 2m
r

, at r = 2m. The coordinates t and r are timelike and spacelike,

respectively, in the regions I and III, but interchange their character in region II. Thus,

regions I and III are static, but region II is not. As in the case of the Schwarzschild

solution, it seems as that the regions I, II and III are totally disconnected. Therefore,

as we did for the Schwarzschild solution, we will not pursue the structure of the solu-

tion in these coordinates but we will look for the analogue of the Eddington-Finkelstein

coordinates.

We consider the case Q2 < m2 and we apply the coordinate change for r > r+

t̄ = t+
r2

+

r+ − r−
ln(r − r+)−

r2
−

r+ − r−
ln(r − r−).



30 Chapter 3. Reissner-Nordstrøm Metric

The line element 3.23 takes the form

ds2 = (1− f)dt̄2 − 2fdt̄dr − (1 + f)dr2 − r2(dθ2 + sin2 θdφ2),

where we have defined

f = 1− g00 =
2m

r
− Q2

r2
.

Now, we can introduce the advanced time parameter, as we did for the Schwarzschild

solution,

v = t̄+ r,

hence, we can write the Reissner-Nordstrøm solution in advanced Eddington-Finkelstein

coordinates:

ds2 =

(
1− 2m

r
+
Q2

r2

)
dv2 − 2fdvdr − r2(dθ2 + sin2 θdφ2). (3.24)

We find that there is an absolute event horizon at r = r+, hence no signal can escape

from region II to region I. Any particle entering region II will move necessary toward the

centre until it crosses r = r− or reaches it asymptotically. However, in the region III,

particles do not need to fall into the singularity at the centre and, in the case of neutral

particles, they cannot reach the singularity.
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Kerr Metric

4.1 Null tetrads

The Kerr solution describes rotating black holes. We will not resolve directly the vacuum

field equations for the Kerr solution, but we will, instead, use the Newman and Janis

”trick” to obtain the Kerr solution from the Schwarzschild solution. This same trick can

be applied on the Reissner-Nordstrøm solution to obtain the most generic solution for

charged rotating black holes: the Kerr-Newman solution. In order to use this approach,

we introduce the idea of a null tetrad.

The free test particle travels on timelike geodesics. We can consider a 2-surface S ruled

by a congruence of timelike geodesics, that is a family of geodesics such that exactly one

of the curves goes through every point of S. The parametric equation of S is given by

xα = xα(τ, ν),

where τ is the proper time and ν labels distinct geodesics. We define the vector field on

S by

vα =
dxα

dτ
,

where vα is the tangent vector to the timelike geodesics at each point.

31
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Now, we introduce an orthogonal frame of three unit spacelike vectors at any point P of

the curve C, on which the particle moves:

eαa = (eα1 , e
α
2 , e

α
3 ),

which are all orthogonal to vα and where a is a bold label running from 1 to 3. Therefore,

we can complete the set of four orthonormal coordinates defining

eα0 = vα,

hence, we have the following orthonormality relations


eα0 e0α = −eαaeaα = 1

eα0 eaα = eαaebα = 0

with a, b = 1, 2, 3; a 6= b.

The four vectors eαi (i = 0, 1, 2, 3) are said to form a frame or tetrad at P . The

orthonormality relations can be summarized by

eαi ejα = ηij ,

where ηij is the Minkowski metric, that is diag(1,−1,−1,−1). We name the vectors of

our frame

vα = eα0 , iα = eα1 , jα = eα2 , kα = eα3 .

The most important case is when the tetrad vectors are taken to be null vectors. To

study a null tetrad, working at a point, we define a matrix of scalar gij , called the frame

metric, by

gij = gαβe
α
i e

β
j . (4.1)

Since eαi are linearly independent and gαβ, now a more generic metric, is non-singular,

then the matrix gij is non-singular as well and, hence, it is invertible; its inverse is defined
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by

gijg
jk = δki .

We can use the frame metric to raise and lower tensor indices like we would use a metric

tensor. We find that the inverse relationship to 4.1 is

gαβ = gije
i
αe

j
β.

We now take

eα0 = lα =
1√
2

(vα + iα),

eα1 = nα =
1√
2

(vα − iα).

These are null vectors, that is

lαlα = nαnα = 0,

and they satisfy the normalization condition

lαnα = 1.

It is also advantageous to introduce a complex null vector and its complex conjugate

mα =
1√
2

(jα + ikα),

m̄α =
1√
2

(jα − ikα).

These are null vectors as well

mαmα = m̄αm̄α = 0,

and they satisfy the normalizing condition

mαm̄α = −1.
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If we choose (eα0 , e
α
1 , e

α
2 , e

α
3 ) = (lα, nα,mα, m̄α), we then define a null tetrad with frame

metric

gij =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


.

Thus, we have decomposed the metric tensor in terms of the vectors of the null tetrads

as

gαβ = lαnβ + lβnα −mαm̄β −mβm̄α;

the contravariant form of which is

gαβ = lαnβ + lβnα −mαm̄β −mβm̄α. (4.2)

4.2 The Kerr solution

The Schwarzschild solution in advanced Eddington-Finkelstein coordinates 2.24 returns

the contravariant metric in the form

g01 = −1, g11 = −
(

1− 2m

r

)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
.

The contravariant metric may be written, using the contravariant frame metric 4.2, in

terms of the following null tetrad


lα = ∂r,

nα = −∂v − 1
2

(
1− 2m

r

)
∂r,

mα = 1√
2r

(
∂θ + i

sin θ
∂φ
)
.

The Newman-Janis ”trick” starts by extending the coordinate r to take on complex

values. In addition to this, certain terms involving r are complex conjugated, while
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others are left alone. This ambiguous step results in the following tetrad


lα = ∂r,

nα = −∂v − 1
2

[1−m(r−1 + r̄−1)] ∂r,

mα = 1/
√

2r̄
(
∂θ + i

sin θ
∂φ
)
.

The ambiguity in the previous step is reflected by the fact that, if the complex conjugation

on r was done in a different way, the desired result at the end of the procedure will not

be derived. After this, we let the coordinate v take on complex values and perform the

complex coordinate transformation

v −→ v′ = v + ia cos θ, r −→ r′ = r + ia cos θ, θ −→ θ′ φ −→ φ′.

where a is a constant. The basis vectors transform as follow

∂v = ∂v′ ,

∂r = ∂r′ ,

∂θ = ∂θ′ − ia sin θ(∂v′ + ∂r′),

∂φ = ∂φ′ .

Applying this complex coordinate transformation to our null tetrad, requiring v′, r′, θ′

and φ′ to be real and dropping the primes, we obtain


lα = ∂r,

nα = −∂v − 1
2

(
1− 2mr

r2+a2 cos2 θ

)
∂r,

mα = 1√
2(r+ia cos θ)

(
−ia sin θ(∂v′ + ∂r′) + ∂θ + i

sin θ
∂φ
)
.
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Knowing the contravariant frame metric 4.2, we reach the line element

ds2 =

(
1− 2mr

ρ2

)
dv2 − 2dvdr +

2mr

ρ2
(2a sin2 θ)dvdφ̄+ 2a sin2 θdrdφ̄+

− ρ2dθ2 −
(

(r2 + a2) sin2 θ +
2mr

ρ2
a2 sin4 θ

)
dφ̄2,

where

ρ2 = r2 + a2 cos2 θ.

For convenience, we have replaced φ with φ̄. This is the advanced Eddington-Finkelstein

form of Kerr’s solution. To obtain the analogue of the Schwarzschild solution, we apply

the transformation to new coordinates (t, r, θ, φ) by

dv = dt+
2mr + ∆

∆
dr, dφ̄ = dφ+

a

∆
dr,

where

∆ = r2 − 2mr + a2.

The Boyer-Lindquist form of Kerr’s solution follows:

ds2 =
∆

ρ2
(dt− a sin2 θdφ)2 − sin2 θ

ρ2
[(r2 + a2)dφ− adt]2 − ρ2

∆
dr2 − ρ2dθ2. (4.3)

However, Kerr originally discovered the solution in Cartesian-type coordinates (t̄, x, y, z).

The Kerr form of the solution is

ds2 = dt̄2 − dx2 − dy2 − dz2+

− 2mr3

r4 + a2z2

(
dt̄+

r

a2 + r2
(xdx+ ydy) +

a

a2 + r2
(ydx− xdy) +

z

r
dz

)2

,
(4.4)

where

t̄ = v − r,

x = r sin θ cosφ+ a sin θ sinφ,

y = r sin θ sinφ− a sin θ cosφ,

z = r cos θ.

(4.5)
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4.3 Properties of the Kerr solution

To study the properties of the Kerr solution, we will make use of all its three forms. Let’s

start with the Boyer-Lindquist form 4.3. The solution depends on two parameters, a and

m; setting a = 0, we regain Schwarzschild solution in Schwarzschild coordinates, hence,

we find that m is the geometric mass. The metric coefficients in 4.3 are independent of

the coordinates t and φ, therefore we find that the Kerr solution is static and axially

symmetric and this means that ∂t and ∂φ are both Killing vector fields. These are the only

continuous symmetries. As for the discrete symmetries, the solution is not symmetric

separately under time or φ reflection, but it is symmetrical under the simultaneous

inversion of t and φ, that is

t −→ t′ = −t, φ −→ φ′ = −φ.

The line element is also invariant under the transformation

t −→ t′ = −t, a −→ a′ = −a.

These invariances suggest that the Kerr field may arise from a spinning source, since

running time backwards with a negative spin direction is the same as running the time

forward with a positive spin direction. Hence, a specifies a spin direction. There are also

different arguments that suggest a correlation between the angular velocity and a, and

that the angular momentum, as measured at infinity, is ma.

r is not the usual spherical polar radial coordinate except asymptotically. If we consider

Kerr solution in Kerr form 4.4, with (x, y, z) the usual Cartesian coordinates, we find

that the spherical polar radial coordinate R is defined by

R = x2 + y2 + z2,
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that, considering 4.5, becomes

R = r2 + a2 sin2 θ.

For r >> a, we can expand R with the Taylor series:

R = r +
a2 sin2 θ

2r
+ . . . ,

which shows that R and r coincide, asymptotically. Nevertheless, they also correspond

as a −→ 0 in the Schwarzschild limit. Furthermore, it follows from Kerr solution 4.4

that

gαβ −→ ηαβ as R −→∞,

so that the Kerr solution is asymptotically flat.

Calculations of the Riemann invariant RαβγδRαβγδ reveals that the Kerr metric has an

intrinsic singularity at ρ = 0. Since

ρ2 = r2 + a2 cos2 θ = 0,

it follows that r = cos θ = 0, and, for the solution in Kerr form 4.4, this occurs when

x2 + y2 = a2, z = 0. (4.6)

This singularity is a ring of radius a lying in the equatorial plane z = 0. We can also find

the surfaces of infinite red-shift searching the values at which g00 vanishes. Considering

the Boyer-Lindquist form of the solution 4.3, we find

g00 = (r2 − 2mr + a2 cos2 θ)/ρ2 = 0,

from which

r = rs± = m± (m2 − a2 cos2 θ)
1
2 . (4.7)
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In the Schwarzschild limit a −→ 0, the surface S+ reduces to r = 2m and the surface

S− to r = 0. Let’s consider the case a2 < m2, namely, the spin is small compared with

the mass. The surfaces are axially symmetric, with S+ possessing a radius 2m at the

equator and a radius m+ (m2 − a2)
1
2 at the poles, and the surface S− being completely

contained inside S+.

The Killing vector field

Xα = (1, 0, 0, 0)

has magnitude

X2 = XαXα = gααX
αXα = g00

It follows from 4.6 and 4.7 that Xα is timelike outside S+ and inside S−, null on S+

and S−, and spacelike between S+ and S−. In analogy with the Schwarzschild solution,

we search for the event horizon by looking for the hypersurfaces where r = constant

becomes null, that is where g11 vanishes. From the Boyer-Lindquist form of the solution

4.3, we find

g11 = −∆

ρ2
= −r

2 − 2mr + a2

r2 + a2 cos2 θ
,

which results in two null event horizons (assuming a2 < m2)

r = r± = m± (m2 − a2)
1
2 .

As for Reissner-Nordstrøm solution 3.23, the Kerr solution is regular in the three regions:

I. r+ < r <∞,

II. r− < r < r+,

III. 0 < r < r−.

In the Schwarzschild limit a −→ 0, the two event horizons reduce to r = 2m and r = 0,

from which it follows that in the Schwarzschild solution the surfaces of infinite red-shift

and the event horizons coincide. The event horizon r = r+ lies entirely within S+,

generating to a region between the two known as the ergosphere.
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4.4 The Kerr-Newman solution

We obtain the most general black hole solution applying the Janis-Newman ”trick” to

the Reissner-Nordstrøm solution in advanced Eddington-Finkelstein coordinates 3.24.

We find the solution

ds2 =

(
1− 2mr

ρ2
+
Q2

ρ2

)
dv2 − 2dvdr +

2a

ρ2
(2mr −Q2) sin2 θdvdφ̄+ 2a sin2 θdrdφ̄+

− ρ2dθ2 − [(r2 + a2)2 − (r2 − 2mr + a2 +Q2)a2 sin2 θ]
sin2 θ

ρ2
dφ̄2,

which is the Kerr-Newman solution in advanced Eddington-Finkelstein coordinates. The

solution depends on three parameters m, a and Q, defining the mass, spin and charge.

The solution is static and axisymmetric and possess a stationary limit surface

r = m+ (m2 −Q2 − a2 cos2 θ)
1
2

and, provided that a2 +Q2 ≤ m2, an outer event horizon

r = m+ (m2 −Q2 − a2)
1
2 .



Chapter 5

The Thermodynamic Theory of

Black Holes

5.1 Classical thermodynamics

Classical thermodynamics fails to cope properly with self-gravitating systems: gravita-

tional collapse, apparently, leads to a state of unbound entropy and space curvature, but

it has long been established that such a collapse, in the presence of an event horizon,

leads to an equilibrium state, the black hole. However, the inclusion of quantum effects

by Hawking (1975) damps out this divergence and assigns a definite entropy to the black

holes. Furthermore, this entropy has a geometric definition through the general theory

of relativity. With the entropy is associated an all range of thermodynamic quantities

and the black hole system results thermodynamically completely defined.

Hence, before discussing the thermodynamic theory of black holes, we will recap the

most important results of classical thermodynamics that will be needed afterwards.

To define the thermal equilibrium between two systems, we introduce the temperature,

T : the two systems are in thermal equilibrium if they have the same temperature and, if

a system is in equilibrium, then its temperature is constant. The transitive relation can

be applied to this property, leading to the zero law of thermodynamics.

41
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Zero law. If two systems are both in thermal equilibrium with a third system, then they

are in thermal equilibrium with each other.

The thermodynamic system is described through equations of state that are thermody-

namic equations relating state variables which describe the state of matter under a given

set of physical conditions. An example is found with the first law of thermodynamics

that is, essentially, the law of conservation of energy in the context of thermodynamic

systems.

First law. The increase in internal energy of a closed system is equal to the total of the

energy added to the system:

∆U = W +Q,

where W is the work and Q the heat.

The second law of thermodynamics shows the irreversibility of natural processes, and

their tendency to lead towards spatial homogeneity of matter, of energy and, especially,

of temperature. It implies the existence of a quantity called the entropy, S, of a ther-

modynamic system. The entropy depends on the heat and temperature through the

relation

δQ = TdS.

Furthermore, Boltzmann demonstrated the existence of the equation

S = k lnw, (5.1)

where k is the Boltzmann constant and w the statistical weight of the macrostate with

entropy S, that is the number of possible microstates consistent with it.

The third law of thermodynamics, also known as Nernst theorem, states that:

Third law. The entropy differences that can be connected by an isothermal process must

vanish as T −→ 0.
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This is sometimes interpreted as implying the attainability of the absolute zero of tem-

perature.

An useful quantity we can define is the heat capacity, or thermal capacity, that is a

measurable physical quantity equal to the ratio of the heat added to (or removed from) an

object to the resulting temperature change. The thermal capacity of a body, maintaining

the quantity x constant, is

Cx =

(
∂Q
∂T

)
x

= T

(
∂S

∂T

)
x

. (5.2)

Between thermal capacities, it exists the relation

Cp − CV = TV
α2

K
,

where p is the pressure, α is the coefficient of thermal expansion, and K is the isothermal

compressibility. The expression of these coefficients is

α =
1

V

(
∂V

∂T

)
p

, K = − 1

V

(
∂V

∂p

)
T

.

The Maxwell relations, a set of thermodynamic equations which are derivable from the

symmetry of second derivatives and from the definitions of the thermodynamic potentials,

are also of great importance. A useful example is given by

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

.

The thermodynamic potential is a scalar quantity used to represent the thermodynamic

state of a system. A couple of examples are the internal energy and the Gibbs free

energy, that is a thermodynamic potential that can be used to calculate the maximum

of reversible work that may be performed by a thermodynamic system at a constant

temperature and pressure. It is defined by

G = U − TS + pV,
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where p is the pressure and V the volume.

Another thermodynamic potential we will need afterwards is the Helmholtz free energy

that measures the useful work obtainable from a closed thermodynamic system at a

constant temperature and volume. It is defined by

F = U − TS.

5.2 The Smarr relation

In order to discuss the black hole thermodynamics, we will give for granted the knowledge

of two important results by S. Hawking: the black holes temperature and the evaporation

of black holes. The latter is a black hole’s emission of black-body radiation, the Hawking

radiation, that reduces its mass, and therefore its energy, due to quantum effects near

the event horizon. Without another way to replenish the mass, the black hole will shrink

and, ultimately, vanish.

The relation between the geometrically defined thermodynamic quantities and their clas-

sical counterparts is not yet clear; we can apply, nevertheless, traditional thermodynamics

techniques to the Kerr-Newman black holes. The first and second law of thermodynamics

may be retrieved through the identification:


S ∝ area of the event horizon A.

T ∝ surface gravity κ,

that is

κ =

√
M2 −Q2 − J2/M2

2M2 −Q2 + 2M
√
M2 −Q2 − J2/M2

,

where M is the mass, J the angular momentum and Q the electric charge. The fact

that a quantity κ, which is constant over the event horizon, may be defined at all, is

equivalent to the zero law of thermodynamics, which asserts that the temperature of a

system at thermodynamic equilibrium is constant.
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Furthermore, L. Smarr (1973) found, originally for classical black holes systems, the

fundamental thermodynamic relation which contains all the information about the ther-

modynamic state of black hole matter

M2 =
1

4

(
A

4π

)
+

(
4π

A

)(
J2 +

1

4
Q4

)
+

1

2
Q2. (5.3)

It will be J = 0 for the Reissner-Nordstrøm solution, Q = 0 for the Kerr one and

J = Q = 0 for the Schwarzschild one. This relation 5.3 can be rewritten identifying A

with a real entropy:

S =
1

4
kA.

We may regard the parameter S, J and Q as a set of global quantities for black holes

matter, M = M(S, J,Q). Total energy is, usually, a homogeneous first order function

of the global parameter, but 5.3 is not, that is because black holes matter cannot be

divided up into subsystems with a separate identity. Nonetheless, we will consider the

global quantities extensive as they are in classical thermodynamics. Then, choosing units

to make the value of k to be 1/8π for convenience, the fundamental equation becomes

M = M(S, J,Q) =

√
2S +

1

8S

(
J2 +

1

4
Q4

)
+

1

2
Q2. (5.4)

It is useful to invert this equation, considering the root with the plus sign because S > 0,

to obtain

S =
1

4
M2 − 1

8
Q2 +

1

4
M2

[
1− Q2

M2
− J2

M4

] 1
2

, (5.5)

As we know, the first law of thermodynamics states that, in any thermodynamic change,

the total energy is conserved; therefore, if M changes by an infinitesimal quantity:

dM = TdS + ΩdJ + φdQ, (5.6)
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where the quantities T , Ω and φ are defined by

T =
∂M

∂S
=

1

M

[
1−

J2 + 1
4
Q4

16S2

]
, (5.7)

Ω =
∂M

∂J
=

J

8MS
, (5.8)

φ =
∂M

∂Q
=
Q(Q2 + 8S)

16MS
. (5.9)

These are the corresponding intensive parameters which are constant on the horizon. Ω

is the angular velocity of the event horizon associated with the angular momentum J ,

φ is the electric potential associated with the electric charge Q, and T is the black hole

temperature as was found by Hawking (1975) from quantum theory. The three equations

5.7-5.9 are three equations of state.

The relation 5.4 can be made homogeneous of degree 1/2 considering M as a function

of Q2 instead of Q:

1

2
M = TS + ΩJ + ΘQ2 = TS + ΩJ +

1

2
φQ,

where

Θ =
φ

2Q
=
Q2 + 8S

32MS
.

This relation, firstly noted by Smarr, is the black hole equivalent of Gibbs-Duhem rela-

tion of thermodynamics that shows how the intensive thermodynamic quantities are not

independent but related.

5.3 The phase transition

From the Smarr relation 5.3, we can regain the fundamental results of thermodynamics;

this is the case for thermal capacity 5.2. Let’s suppose to hold a rotating black hole

in equilibrium, at some temperature T , in a temperature bath. If the external bath

temperature is increased slightly, the black holes will absorb the energy reversibly. This

absorption will be isotropic and it will not change, on average, the angular momentum
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J and the charge Q. Therefore, we will compute the heat capacity CJ,Q, where J and Q

are held constant, eliminating M through 5.5 and 5.4; hence, the result is

CJ,Q = T

(
∂S

∂T

)
J,Q

=
8MS3T

J2 + 1
4
Q4 − 8T 2S3

. (5.10)

An interesting example is the Schwarzschild case, J = Q = 0; in this case, the thermal

capacity C reduces to C ≡ −M/T ≡ −1/T 2 ≡ −M2. This quantity is negative definite,

then the Schwarzschild black hole gets hotter as it radiates energy.

Through 5.7, we can rewrite 5.10 as

CJ,Q ==
MST

2− T (2M + ST )
. (5.11)

As we approach the extreme case T −→ 0 for the general solution, namely the Kerr-

Newman one, we see that S −→ 1
4
M2 − 1

8
Q2 > 0, so CJ,Q −→ 0+; hence, CJ,Q changes

sign before the limit.

Figure 5.1: General behaviour of heat capacity
at constant J and Q. The broken
line indicates the position of the
phase transition, at which CJ,Q suf-
fers an infinite discontinuity. There-
fore, for low values of J/M2 and
Q/M , it is negative, but beyond the
line it is positive, falling to zero at
the extreme value E.

We reach another significant result if we express CJ,Q as a function of J,Q and M by

eliminating S and T from 5.10, using 5.4 and 5.5. A significant result is reached: there

are some values for J and Q where the specific heat presents an infinite discontinuity,

and changes from positive to negative. The general heat capacity behaviour is reported

in figure 5.1. To explore the meaning behind this discontinuity, we notice that at the

critical point S, T , Ω and φ are all continuous and finite. In particular, the Gibbs free
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energy

G = M − TS − ΩJ − φQ

is continuous and so are its gradients (∂G/∂T )Ω,φ, (∂G/∂Ω)T,φ and (∂G/∂φ)Ω,T . A trans-

ition characterized by the continuity of G and its first derivatives and by a discontinuity

in the second derivatives, e.g. the heat capacities, can be classified as a second order

phase transition.

This discontinuity occurs at J2 = αM4, Q2 = βM2 for some values of α, β > 0. From

5.10 follows the restriction J2 + 1
4
Q4 = 8T 2S3. Eliminating T and S with 5.7 and 5.5 in

the restriction and substituting J and Q, we obtain the equation

α2 + 6α + 4β = 3. (5.12)

We have also to impose another restriction: that α+ β > 1. This condition follows from

the fact that T > 0. Hence, for a given mass M , from 5.7 we obtain

J2 +
1

4
Q4 < 16S2.

We substitute 5.5 in this expression to obtain

J2

M4
+
Q2

M2
< 1 =⇒ α + β < 1.

In the case of an uncharged black hole, a Kerr one, we have β = 0, whence

α = 2
√

3− 3 ' 0.464.

The ratio J/M is usually called a, and so, at the critical point,

a ' 0.68M.

In the case of Reissner-Nordstrøm black holes, we have J = 0 =⇒ α = 0; then, at the
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Figure 5.2: Phase diagram for Kerr black hole.
The phase ± correspond to positive
negative values of the heat capacity
at constant J and the two regions
are divided by the phase line Ω =
0.23T .

critical point,

β =
3

4
,

or Q =
1

2

√
3M ' 0.86M.

Knowing the value of α, and hence J , at the critical point for Kerr metric, we can

eliminate M and S between 5.6, 5.7 and 5.8 to obtain the constant ratio

Ω

T
=

J

8MS

16S2M

16S2 − J2
' 0.23;

so that the phase line in figure 5.2 is straight.

For Reissner-Nordstrøm metric we know the value of β, and therefore Q, finding, through

the expressions 5.5 and 5.9, that the singularly occurs at

φ =
1√
3
' 0.58,

so that the phase transition takes place always at the same value of the electric potential,

irrespective of the mass of the black hole.

Restricting ourself to Kerr and Reissner-Nordstrøm solutions, we will be able to obtain

other thermal capacities by computing S as a function of T and Ω for the Kerr case or

as a function of T and φ for the Reissner-Nordstrøm case:

S =
(1− 16Ω2S)2

2T 2(1− 8Ω2S)
(Kerr),

S =
(1− φ2)2

2T 2
(R-N).



50 Chapter 5. The Thermodynamic Theory of Black Holes

We compute, then, the new heat capacities

CΩ ≡ T

(
∂S

∂T

)
Ω

= − 2TS

M(16Ω2 + T 2)
, (5.13)

Cφ ≡ T

(
∂S

∂T

)
φ

= −2S. (5.14)

Moreover, we can make use of the Maxwell relations between partial derivatives, as seen

in § 5.1, to obtain (
∂J

∂T

)
Ω

=

(
∂S

∂Ω

)
T

= − 8M3ΩS

4M3Ω2 + TS
, (5.15)

(
∂Q

∂T

)
φ

=

(
∂S

∂φ

)
T

=
2(−2φ)(1− φ2)

2T 2
= −Q

T
. (5.16)

Continuing our analogy with the classical thermodynamics and the heat capacities, we

can define something similar to the coefficients of thermal expansion and isothermal

compressibility:

α =


− 1
J

(
∂J
∂T

)
Ω
,

− 1
Q

(
∂Q
∂T

)
φ

;

K =


− 1
J

(
∂J
∂Ω

)
T
,

− 1
Q

(
∂Q
∂φ

)
T
.

Here, we can envisage α as a coefficient of thermal rotation or electric charging and

K as the ease with which the black hole may be spun, or charged up, at a constant

temperature.

Among these four thermal capacities we have defined, as we have seen in the classical

case, we can establish the relations

CΩ − CJ = TJ
α2

K
, Cφ − CQ = TQ

α2

K
. (5.17)

From the expressions 5.13 and 5.14, we see that CΩ and Cφ are both continuous across

the phase line Ω ' 0.23T or φ ' 0.58 as it is α, J and Q. Therefore, it follows from

5.17 that, for CJ and CQ to have a discontinuity across the phase line, K must vanish

at the critical point. That can be easily shown in the Reissner-Nordstrøm case through

the relation

Q = 2φ(1− φ2)/T
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Figure 5.3: (a) Isentropes and (b) isotherms for Reissner-Nordstrøm black hole. The broken
line indicates the phase transition at φ = 1/

√
3. Each Q,T generally corresponds

to two values of φ. The point φ = 1 is the thermodynamic limit, at which T = 0.

that returns

K = −2(3φ2 − 1)/TQ,

which vanishes at φ = 1/
√

3.

In figures 5.3a and 5.3b the general behaviour of the isotherms (T is a constant) and

isentropes (S is a constant) is represented on a φ,Q diagram for a Reissner-Nordstrøm

black hole. The same is represented in figure 5.4 for the Kerr black hole on an Ω,J

diagram. For a given value of Q or J , there are in general two possible values of φ or Ω

that give the same temperature: one value corresponds to a small mass black hole with

high φ or Ω, the other to a large mass object with small φ or Ω. At the phase transition

point, these two values coincide. The same cannot be said for the entropy.

Figure 5.4: (a) Isentropes and (b) isotherms for Kerr black hole. Each J, T generally corres-
ponds to two values of Ω.
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As an example of this theory applications, we will consider two Schwarzschild black

holes, each in equilibrium at constant temperature inside a small adiabatic enclosure,

with masses M , m and temperatures T , t respectively. We will ignore the mass of the

radiation, and we will consider the interaction between the two black holes to be small

in order to assign definite separate values at the thermodynamic parameter of each black

hole. The second condition is never really met, but the interaction can be considered

only a negligible disturbance from the equilibrium when the separation between the black

holes greatly exceeds their Schwarzschild radii. This two systems can be brought into

equilibrium in various ways.

The first is to join the enclosures together and remove the dividing wall, allowing the

two black holes to coalesce adiabatically. The final mass is the sum of the initial masses,

M +m, and the final temperature is given by 5.7, that is (M +m)−1 = Tt/(T + t), and

it is less than either T or t. The process is highly irreversible and the entropy jumps by

Mm from 1
2
(M2 + m2) to 1

2
(M + m)2. The entropy increases even if T = t, in contrast

to a conventional thermodynamic system.

The second method is to join the enclosures and allow a free flow of heat between them,

without letting the black holes come into contact. The final entropy is 2× 1
2
((M+m)/2)2,

that is always less than the initial one 1
2
(M2 + m2) if M 6= m; the process is therefore

forbidden by the second law. The final masses, and hence the temperatures, must be

equal for equilibrium to occur at a minimum of the entropy, that is a point of instability.

Then, a slight perturbation causes one black hole to feed on the other, drawing energy

from it and thereby increasing the temperature difference, accelerating until one black

hole is evaporated completely away.

The last method is to transfer energy reversibly from one enclosure to the other. The

second method reduces to this one after the equilibrium is broken. This method enables

the greatest amount of thermal energy to be extracted from the system in the form of

work. A reversible process occurs with no change of total entropy, hence, considering

M , m, T and t variables now, follows from the first law 5.6

dS = dM/T + dm/t = 0 =⇒ MdM +mdm = 0,
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that integrated yields

Mf =

[
1

2
(M2 +m2)

] 1
2

=⇒ Tf =

√
2Tt

(T 2 + t2)
1
2

.

These are the final mass and temperature of each black hole. In particular, the tem-

perature is the maximum equilibrium temperature that can be achieved. The energy

extracted during the process is

M +m− 2

[
1

2
(M2 +m2)

] 1
2

.

Numerous other different cases can be studied with this method if J,Q 6= 0.

5.4 Stability and equilibrium conditions

In the previous section we have considered a black hole in thermodynamic equilibrium,

and in this one, we will search the conditions for stable equilibrium by using the second

law of thermodynamics.

The entropy equation 5.5, we have found from the Smarr relation, reveals that, for a

given black hole mass M , the entropy is maximized by choosing J = Q = 0. From

this, it follows that a black hole will spin down and discharge. A rotating black hole

obeys the phenomenon of superradiance that predicts that boson quanta of axial angular

momentum m and frequency ω < mΩ cause stimulated emission of rotational energy.

For a charged black hole an analogous process occurs for modes with ω < eφ, where e

is the charge on the emitted quantum. In the former effect, the spin-down rate is very

slow while the electric discharge process is very much more efficient. For supermassive

black holes, the electric discharge will cease completely because the available thermal

and electromagnetic energy is insufficient, and as such unable to cause the emission of

charged particles with a non-zero rest mass.

Now, in the context of a black hole immersed in a bath of thermal radiation at the

temperature T , it is possible to neglect the superradiance because non-superradiant
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modes come into equilibrium; at that point J and Q can be considered as constants.

The equilibrium will be found at a turning point of Helmholtz free energy F , and it will

be stable if the turning point is a minimum. F is defined by

F = M − TS.

The condition dF = 0 reproduces the relation between M , T and S which follows from

5.7-5.9. Imposing d2F > 0

2(1− α− β)
3
2 < 6α− αβ − 3β − 2 =⇒ (4α + β2)(a2 + 6α + 4β − 3) > 0,

from which it follows the equation (a2 + 6α + 4β − 3) > 0, that is the condition for

the black holes to be in the higher J , Q phase (see 5.12). In this phase we know that

the heat capacity is positive; for values of α and β below the critical transition values

the equilibrium is unstable. For a negative heat capacity, the black hole will indefinitely

continue to feed on the external heat bath, while for a positive one, as the temperature

increases, the black hole will radiate some net energy causing the temperature to increase

further and further until the black hole will disappear in an explosion.

A similar technique can be also be applied to study the adiabatic equilibrium. Let’s

consider a Schwarzschild black hole inside a box with perfectly reflecting walls, then we

must take into account the accumulation of thermal evaporation radiation inside the box.

The equilibrium condition is that the total entropy of the box contents is an extremum

and the equilibrium is stable if that is a maximum. The total entropy is the sum of the

ones of the black hole and the radiation:

S =
1

2
M2 +

4

3
(aVM3

r )
1
4 ,

where Mr denotes the mass of the radiation, V is the volume of the box and a is the

radiation constant. The adiabatic condition for equilibrium is that dS = 0 with dM +

dMr.
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The result is

V =
MrM

4

a
.

We are searching for a maximum, and hence, from d2S < 0, it follows

M > 4Mr, V <
1

4

M5

a
. (5.18)

Hawking was the one to point out that Schwarzschild black holes with masses less than

four fifths of the total cannot be in stable adiabatic equilibrium with thermal radiation

and, therefore, they will either evaporate away or will grow in mass until conditions 5.18

are met.

For J,Q 6= 0, in order to maintain the stability, the volume of the box increases until,

at the critical values given by 5.12, V is infinite. If we require isothermal or adiabatic

equilibrium with Ω and φ held constant, it is necessary to deal instead with the Gibbs

function G or the enthalpy, respectively.

5.5 The third law

We have seen how the third law of thermodynamics, or Nernst theorem, can be read as

the unattainability of the absolute zero of temperature, and from this, it follows, as we

have seen, that, for a given mass M , for T −→ 0 we obtain the relation

α + β < 1.

The Kerr-Newman family of solutions must follow this condition to describe black holes

and not naked singularities, where a naked singularity is a gravitational singularity

without an event horizon. Hence the unattainability of the absolute zero is equival-

ent to the cosmic censorship hypothesis (R. Penrose 1969) which posit that no naked

singularities, other than the Big Bang singularity, exist in the universe.
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Therefore, we will need to examine how well the third law holds up for black holes. As

T −→ 0, equations 5.15 and 5.16 reveal that

(
∂S

∂Ω

)
T

−→ −2S

Ω
= −M3,

(
∂S

∂φ

)
T

−→∞.

Hence, the isothermal quantity α does not vanish at T = 0, in apparent contradiction to

the Nernst postulate.

We can, in fact, accept the third law in a stronger form, due to Planck, which states that

the entropy of a quantum thermodynamic system vanishes as T −→ 0. The statistical

foundation of this law is that there exists only one, unique, microstate associated with the

zero temperature state. There is a consistent statistical base for the black hole entropy

which is based on an examination of the microscopic particle states, which make up a

black hole with given M , J and Q. Nonetheless, neither this formulation of the law is

satisfied.

Inspection of 5.11 shows that

CJ,Q −→ 0 as T −→ 0,

so that the entropy change in a constant J,Q process remains finite as T = 0 is ap-

proached:

∆S =

∫ T

0

CJ,Q
T

dT <∞.

This is also true for a constant Ω process because from 5.13 follows

CΩ −→ 0 as T −→ 0.

Nevertheless, we have seen from 5.5 that, as T −→ 0, S −→ 1
4
M2 − 1

8
Q2 > 0 and it is

not possible to remove this zero point entropy with an additive constant because M and

Q are extensive parameters.
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Figure 5.5: (a) The entropy of a Kerr black hole does not vanish at T = 0, so lines of constant
Ω do not intersect there. A thermodynamically permitted path which reaches
absolute zero in a finite sequence of transition is shown.
(b) Lines of constant φ < 1 do not intersect T = 0.

For the existence of an M -dependent zero point entropy, lines at constant Ω (with Q = 0)

do not intersect T = 0 on an S − T diagram, see 5.5 (a). This is seen as a violation

of the third law because the system can be cooled down to T = 0 through a reversible

process in a finite number of steps, as represented in the figure through arrows, although

this is not enough to conclude that there exist thermodynamic ways to convert a black

hole into a naked singularity. There may be reasons, even non-thermodynamic ones, for

the process not to occur. For example, from 5.14 we see that Cφ remains finite at T = 0

in apparent violation of the third law: it is not possible to cool down a black hole along

a line of constant φ. The reason for this may be found eliminating S from 5.9

2φ

1 + φ2
=

Q

M
= β

1
2

from which it follows that for a given φ, β is constant and thus, it is impossible to

approach T = 0, β = 1 with fixed φ, as seen in figure 5.5 (b).

It is interesting to imagine what would happen if a black hole was cooled into a naked

singularity. For a non-rotating supermassive object carrying an enormous electric charge,

the disturbance due to superradiance disappears, and the black hole may be in complete

and stable equilibrium with its environment keeping a constant charge. If Q/M >
√

3/2

(β >
√

3/2), CQ is positive, so the black hole may be cooled down in the traditional way
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by manipulating the environment and allowing the black hole to radiate energy. Q/M

may or may not be decreased to 1 (T = 0) depending on whether the third law turns

out to apply to black holes.

What happens then can be determined with the use of the techniques developed by

P.C.W Davies, S.A.Fulling and W.G.Unruh for studying the energy-momentum tensor

of a quantum field in the proximity of a black hole and that may be extended to deal

with the naked singularity case. Without giving any detail of the calculation, it is found

that, for the Reissner-Nordstrøm case, the calculations are perfectly consistent with the

thermodynamic picture given for Q < M , but for Q > M the model predicts that

”naked” collapse also produces radiation, with such intensity that the collapsing matter

is entirely evaporated away before a naked singularity can form.

5.6 Conclusions

The developments on the quantum properties of black holes make it likely that they

are subject at least to the first and second laws of thermodynamics. Nevertheless, in

classical thermodynamics, the entropy is defined through the Boltzmann’s equation 5.1,

but a similar definition for a black hole would be only formal because there is no way,

even in principle, we could observe the constituent microstates from outside the black

hole. Moreover, it is not possible to consider the black hole entropy as being located

with a certain density in a certain region of space-time. Black hole entropy is a truly

global property.

From all this, it seems that the entropy is more a property of the gravitational field than

of the microscopic matter content of the black hole. It could, after all, be made entirely

of gravitons.

Furthermore, the temperature, and hence the entropy, is certainly affected by the distri-

bution of matter around it.

If the black hole entropy is really gravitational in origin, we might expect to encounter

entropy even in the absence of matter. Empty universes with gravitational fields can

occur if Einstein’s cosmological constant is non zero, changing the general form of the

Einstein equations.
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