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ABSTRACT 

3D printed steel is becoming more and more common. This research aims to assess the 

potential of steel 3D-printing in the building sector. A case study is used to investigate 

possibilities and limitations of 3D-printed steel for structural elements. The analysis is 

based on the structural optimization of a branch of an existing dendriform column. An 

algorithm based on a second order non-linear analysis has been generated to perform the 

shape and size optimization of the branch. An assessment of the hard constrains to be 

applied for the minimization of the mass is reported. Finally, an investigation on the 

effects of imperfections on the optimization process has been performed.  
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NOMENCLATURE 

i. List of Symbols 

Symbol Description Unit 

   
α  Coefficient of thermal expansion /°C 

𝜆  Slenderness - 

𝜆̅  Relative slenderness - 

𝜆𝑒  Limit slenderness - 
γ Density 𝐾𝑔/𝑚3   
𝜃  Total angle of rotation of the hoops 𝐷𝑒𝑔/𝑚   
∅  Outer diameter 𝑚𝑚  

   

𝐴  Area 𝑚𝑚2 or 𝑐𝑚2 

𝑎  Shape amplification factor 𝑚  

𝐵𝐹  Buckling Factor - 

𝐸  Young modulus 𝑀𝑝𝑎  

𝑒0  Initial crookedness 𝑚𝑚  

𝑒0  Factored crookedness 𝑚𝑚  

𝑓𝑦  Yielding strength 𝑀𝑃𝑎  

G Shear Modulus 𝑀𝑃𝑎  

𝐼  Modulus of inertia 𝑚𝑚4 or 𝑐𝑚4 

𝑘  Buckling Factor - 

𝐿  Member length 𝑚𝑚  

𝐿𝑚𝑒𝑎𝑠  Measured length 𝑚𝑚  

𝐿𝑒𝑓𝑓  Effective length 𝑚𝑚  

𝑀𝑒  Maximum external bending moment 𝑘𝑁 𝑚  

𝑁𝑒  Maximum external axial force 𝑘𝑁  

𝑛ℎ  number of hoops - 

𝑛𝑖  number of inclined elements - 

𝑃  Applied load 𝑘𝑁  

𝑃0  Design load 𝑘𝑁  

𝑝(𝑥)  Shape pattern - 

𝑅  Actual radius 𝑚𝑚   
𝑟  Radius of gyration 𝑚𝑚  

𝑟𝑟  Reference radius 𝑚𝑚  

T Wall thickness 𝑚𝑚  

𝑉𝑒  Maximum external shear force 𝑘𝑁  
𝑣   Poisson Ratio - 

𝑈  Utilization - 

𝑈𝑚  Average Utilization - 
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ii. List of Abbreviations 

Abbreviation Description 

  

1D One Dimensional 

3D Three Dimensional 

3DS 3D printed steel 

AM Additive Manufacturing 

C-S Cross-Section 

DOF Degree of Freedom 

EC3 Eurocode 3 

GI Global Imperfections 

LF Load Factor 

MAM Metal Additive Manufacturing 

MOO Multi-Objective Optimization 

NI No Imperfections (perfect system) 

OC Original Column 

SLS Serviceability Limit State 

SS Stainless steel 

TS Traditional Steel 

TUDelft Delft University of Technology 

ULS Ultimate Limit State 

UNIBO University of Bologna 

WAAM Wire Arch Additive Manufacturing 

  

 

iii. Labels used for Geometries 

OC= original column, column located on site 

CHS 𝑥 𝑦= Circular Hollow Section; d= 𝑥 mm; t= 𝑦 mm 

Pattern_ImperfectionsUsedInOptimization_Imperfections_Modifications 

Example: P2_GI_P_M 

Column with shape pattern P2, obtained from reference geometry optimized with initial 

global imperfections, perfect (straight axis), modified (cross sections are modified with 

respect to reference geometry) 
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RESEARCH 

QUESTIONS AND 

METHODOLOGY 

1 INTRODUCTION 

 

Figure 1. 3D printed steel bridge the at MX3D [1] 

The technology is running fast, 3D printing in no more limited to small plastic elements 

but is coming up also in the building sector. A lot of companies and start-ups are investing 

time and resources to develop new methods to fabricate metal pieces with geometries not 

achievable with traditional production processes. However, to exploit these new shapes, 

designer need to be prepared to welcome these technologies into their sector and be 

capable to ensure sufficient levels of safety in their design. 

MX3D, born in 2014 as a start-up is now a world-wide know reality in the sector of 3D 

printing with steel, thanks to their 3D printed pedestrian bridge (Figure 1). Although the 
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bridge is still not placed on side, the structure is already fully assembled, making it the 

very first fully functional 3D printed steel structure in the world. 

This unique design shows exactly how this technology can achieve shapes never seen 

before in the building industry (at least for load bearing elements). However, engineers 

must be ready to welcome all the freedom coming from the advancement of the 

production process and develop design strategies ad hoc to make sure that their design 

satisfy the safety requirements set by national and international design codes. 

 

Figure 2. Laser-cut cardboard columns [2] 

 

 

Figure 3. Largest 3D printed shell structure at the Laboratory of Creative Design, 

Beijing [3] 
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2 RESEARCH QUESTION 

This paper aims to investigate how traditional elements can be reinvented thanks to the 

3D printing process. Studies on the application of this technology on small steel 

loadbearing parts can be already be found in the literature. [4], [5]. However, no 

information is publicly available on how to design big structural elements with 3D printed 

steel. Therefore, this research tries to close this gap with a case study on a simply 

supported straight column. Through this case study the author tries to answer the 

following questions: 

• How would an optimized 3D printed column look like? 

• Is it already possible to achieve better performances with 3D printing? 

3 RESEARCH METHODOLOGY 

The research is organised so that the reader can gain the basic knowledge of the key 

elements that are utilized in the actual analysis. 

Chapter 4-5 

A literature review on the following topics is presented: 

• 3D printing of steel: printing process and consequent material properties 

• Basic concepts of structural optimization 

• Buckling of steel structures 

Chapter 6 

A case study is used to answer the research questions identified in the previous chapter, 

thus, also basic information on the reference building and its structural requirements are 

presented. Technical details on the properties of the reference column are given. 

Chapter 7-8-9-10 

From this basic information, the analysis is developed. Settings and properties of the 

structural model and the optimization algorithm are presented.  

Chapter 11-12 

The optimum solutions are presented and analysed. Effects of imperfections on the 

optimization problem and on the structural performance are investigated  

Chapter 13-14 

Comparison between the various solutions that have been found, 3D printed circular 

hollow tubes and the original steel column in place. 
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Figure 4. Structure of the report 
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BACKGROUND OF 

THE RESEARCH 

4 3D-PRINTING PROCESS AND MATERIAL 

PROPERTIES 

4.1 OVERVIEW ON ADDITIVE MANUFACTURING 
Additive Manufacturing, also known as 3D-printing, consists in the layer-upon layer 

deposition of material to build a three-dimensional product. The technique has grown 

significantly in the last few decades thanks to the increase of the computer power and the 

consequent improvement of the automation and CAD industry. 

 

Figure 5. Timeline of AM growth [6] 

 

These two elements are essential for the development and diffusion of AM. Automation 

is fundamental to achieve standardized, high quality products. Similarly, high quality 

CAD models are necessary to convert the design into a numerical input to guide the 

printing machine. The direct link between machines and CAD software packages allows 

to move from the computational model to the actual product in few ours, or even minutes 

(depending on technique, complexity and size and the product). At the same time, 

automation ensures that the product will have specific characteristics as human error 

cannot interfere. This allows to achieve a more standardised quality, both in terms of 
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accuracy but also in terms of defects. The combination of speed of production and the 

quality control brings to the conclusion that it is possible to achieve highly customized 

products, on demand, with a certified quality. In his thesis, van Bolderen [6], based also 

on the analysis of Attaran [7], the identified all the advantage reported in Table 1. 

 

Table 1. Overview of advantages of additive manufacturing [6] 

 
 

4.2 METAL ADDITIVE MANUFACTURING 
AM is suitable for a large series of materials including metals, ceramics, polymers, 

composites and biological systems. [8] For structural applications the most suitable 

material is certainly metal as demonstrated from the common practice. Successful 

experiments have been already conduced with Metal Additive Manufacturing (MAM) on 

aluminium, titanium, copper alloys, carbon and stainless steel. [6] 
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Figure 6. Certified WAAM propeller made of copper built at RamLAB, Rotterdam [9] 

[10] 

Application in the automotive, aerospace, maritime and medical industry are already 

common practice [7] , and as demonstrate by MX3D, new applications are coming up 

also in the building sector.[11][12] 

The technologies related to MAM are classified depending on the heat source and the 

form of the material source (feedstock). According to this classification we can 

distinguish the technologies in Figure 7. 

 

Figure 7. MAM technologies [13] 
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4.2.1 Powder Bed Process 

This process is very similar to a normal thermal printing process for receipts, where a heat 

source is focused on photosensible paper. The only difference is that instead of printing 

on paper we are melting metallic powder. 

The process consists in alternating a specific cycle: 

1. A powder bed is spread in the printing chamber. 

2. The heat source melts the upper layer (20 to 100 µm) that solidifies onto the 

previous layer 

3. The support of the powder bed moves down and a new layer of powder is added 

to balance the vertical downward displacement of the support. 

4. The cycle restarts. 

This technique is particularly suitable for mechanical parts of limited dimensions as 

allows to achieve accuracies of the order of 100µm with very low printing errors. 

However, it has the drawbacks of being confined into a chamber, thus it cannot be applied 

to print voluminous elements.  

 

Figure 8. Powder bed MAM [14] 

4.2.2 Powder Feed Process and Wire Additive Manufacturing 

These two processes are similar in terms of printing process and heat source, but differ 

for the feedstock. The former usually requires a power beam (either laser or electron) 

mounted on a robotic arm, to concentrate the heat on the metallic powder that is “sprayed” 

or deposited by means of another nozzle on the previously deposited layer of material. 

With this process accuracies of the order of 200µm can be achieved. It is usually applied 

to fabrication or repair of small parts and take place in a protected environment. Its 

advantage is the high accuracy and that it is theoretically possible to switch from one 

material to the other without any interruption in the printing process.[15]  

The second technology utilizes a similar printing process, based on a robotic arm, but 

utilizes a traditional welding wire as input material. The heat source can be either a power 

beam or an arc. The use of a traditional wire in combination with the arc technology are 
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key elements as allow, with specific modifications, the use of traditional welding robots 

to 3D print steel elements. This is a major economical advantage as both robots and input 

material have already been available on the market for a long time, making them more 

affordable. 

      

Figure 9. Powder feed AM vs WAAM [12] [16] 

Another advantage of Wire Arc Additive Manufacturing is the most suitable to construct 

parts of relevant dimensions. This is because the printing area is not constrained into the 

boundaries of a chamber. However, it has to be noticed that the actual technology is still 

not capable to be applied to very large scale. This is because of robot limitations. Unless 

further movable supports are provided to the robots, the printing space is still limited to a 

certain volume. Another practical limitation of this printing process is that the material 

properties are deeply influenced by the deposition sequence (toolpath) and orientation 

both due to how the material settles onto the previous layer, and due to the thermal 

residual stresses induced by the cooling down of the fused material. This means that, 

despite the arm of the robot has 6 degrees of freedom, usually a movable base plate is 

used as a support for the object to be printed in order to add other 3 degrees of freedom, 

and ensure the correct deposition angle1. This condition further restrains the printable area 

and the dimensions of the printable products. 

Nevertheless, the diagram depicted in Figure 11 clearly shows how this technology is the 

most suitable when high accuracies and geometrical complexities are not needed.  

 

                                                 
1 Note that RamLAB applies this technology while MX3D does not yet 



11 

 

 

Figure 10. Printing set up at RamLAB 

 

Figure 11. Comparison of the MAM techniques [6] 

4.3 PRINTING PROCESS FOR WAAM 
The printing process involves 4 steps: 

1. Conversion of the CAD model to a remodelling software specific for 3d printing 

2. Creation of the optimal toolpath 

3. Import the toolpath model into the software of the robot. 

4. Send the input to the robot and set up the printing parameters. 

5. Actually print the element 

. 
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Figure 12. WAAM propeller, finished vs raw surface 

In most cases a 6th phase is also needed. Due to imperfections, defects and the thickness 

of the layers, very often a milling phase is required to achieve a smooth finish 

4.4 PROPERTIES OF 3D-PRINTED STEEL 
Since most of the data utilized in this thesis are extracted from researches on MX3D 

WAAM products, this chapter aims to collect all the base information needed to develop 

a computational model of a structure made of such a technique and material. 

Both Van Bolderen (TUDelft) and University of Bologna (UNIBO) have investigated the 

properties of 3D-printed steel [6], [17]. The base material used in the tests, that is also the 

most commonly used by MX3D, is the ER 308L stainless steel. 

This material is generally the choice due to its weldability, its ability to be corrosion 

resistant, but also due to its mechanical properties. Another alloy, SS ER 316L is also a 

valuable choice, due to its better mechanical properties and better resistance to corrosion, 

but the price over advantages ratio is usually in favour of the ER 308L. It is not a case in 

fact, that the famous bridge printed by MX3D is made of this material. 

Since all the test performed so far by the referenced sources are based on SS alloy ER 

308L, the only possible design assumption is to utilize this material in the model. 

According to the studies conducted by TU Delft [6] and UNIBO  [11] the feedstock 

material conserves most of its properties. More details about SS ER 308L used in the 

specimen can be found in Appendix V.  

In the following sections the material properties of 3D-printed steel will be discussed. 

Note that the results refer to continuously printed columns as this is the production 

technique that has been assumed for the model that will be presented later. 
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Figure 13. Printing process of tubular specimens 

 

4.4.1 Specimens and tests overview 

3 types of specimens have been used for determining the material properties of 3D printed 

steel. Rectangular and plates have been tested in tension to determine the elastic modulus 

of the material. Tubular specimens have been tested in compression, bending and 

buckling to assess all the other mechanical properties. 

However, before performing these destructive tests, some geometrical measurements 

have been performed. Figure 14 describes all the measurements that have been collected. 

 

Figure 14. Diagram of geometrical measurements [6] 
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These tests provide the basic information to elaborate the data obtained from the 

mechanical test. Figure 15 summarises the mechanical tests that have been performed and 

their relative output. 

 

Figure 15. Mechanical tests and corresponding outputs [6] 

4.4.2 Hand Measurements 

These measurements have been performed with traditional mechanical tools like scale, 

square and paper. Mass and length of the specimens are the most important outputs of 

this analysis. However some other measurements can also be collected to have a rough 

idea of the general geometrical properties. Nevertheless, more advanced techniques have 

been used to refine these measurements. 

 

Figure 16 Set up for hand measurements [6] 

 



15 

 

4.4.3 Superficial imperfections 

3D scans have been used to investigate the raw surface of plates and tubes and to check 

for misalignments in the axis of tubular specimens. 

 

Figure 17. High resolution3D laser scanning of tubular elements 
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Figure 18. Investigation on the imperfections of the specimens [6] 

This analysis is meant to define whether recursions can be identified in the pattern of the 

imperfections and eventually the leading parameters that generate such imperfections. 

 

4.4.4 Density 

Archimedes principle has been used to determine the total volume of the specimens. The 

specimens are totally submerged into a PVC tube with a known quantity of water. By 

measuring the increment in the level of water after the submersion of the specimen it is 

possible to retrieve the volume of the specimen. 

Finally knowing the mass, also the density can be found. Measured densities on 

continuously printed elements stood at 7.94 𝑔/𝑐𝑚3 which is very close to the value of 

7.90 𝑔/𝑐𝑚3declared by the producer of the feedstock. [6] 

 

4.4.5 Tensile test: Young Modulus- Yield and Ultimate Tensile Strength -  

One of the key input of a structural model is the Young modulus of the material as it 

affects the stiffness of the elements. In order to determine its value a total of 35 tensile 

tests have been analysed by Van Bolderen and UNIBO. As highlighted in Chapter 4, the 

material properties are deeply influenced by the printing process hence two different 

typologies of specimens have been tested: one with the toolpath parallel to the testing 

direction (longitudinal,x) and one perpendicular (transversal,y). 



17 

 

\  

Figure 19.Longitudinal ( ) and Transverse specimens( ) 

 

Table 2. Results of tensile test performed at UNIBO [11] 

 

Table 3. Summary of results obtained by TU Delft [6] 

 

As we can see from Table 2 and Table 3,  the results are quite variable. Since a unique 

value has to be chosen, in accordance with the assumptions made in [18], an average 

value of E=100 GPa and 𝑓𝑦 = 350 𝑀𝑃𝑎  are assumed as design value for the FEM model. 
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4.4.6 Compression Tests: Young modulus, Yield and Compressive strength 

Unibo performed compression tests to assess the behaviour of the material also in 

compression. Table 4 summarises the results for C-S areas measured with callipers. As 

we can see from the mean values reported in the last row, the values are far lower than 

traditional steel and those highlighted by the tensile test. The Young modulus, yield 

strength and ultimate strength are about 40%, 65%  and 80% of the values of the feedstock 

material. 

Unfortunately these results have been available only at the end of the research, hence 

there has been no time to include them in the model.  

 

4.4.7 Imperfections 

According to the wide experimental campaign conducted by the ECCS (European 

Convention for Construction Steelwork) on standard hot rolled, cold-formed and welded 

steel elements, there are three main sources of imperfections. 

• Tolerances in the geometrical properties of steel products 

• Residual stresses, due to uneven cooling of steel 

• Variations of yield strength 

From these tests, the curves reported in Figure 20 have been developed. 

Table 4. Summary of results of compression test for measured cross sections 

I.D Am                                     

[mm2] 
Em                                     

[MPa] 
FMAX                                     

[kN] 
fy                                     

[MPa] 
fu                                     

[MPa] 

850 A 830.88 69865.96 327.56 228.68 394.23 

850 B 838.14 69054.53 305.63 233.50 364.65 

850 C 828.78 66513.10 208.70 214.31 251.81 

1050 A 773.15 82033.50 289.93 230.19 375.00 

1050 B 810.54 71916.22 305.16 235.38 376.50 

1050 C 811.88 76878.37 279.69 237.27 344.49 

1200 A 766.97 80222.87 303.38 244.55 395.56 

1200 B 841.25 72603.90 254.74 212.31 302.82 

1200 C 750.45 76959.24 304.34 242.01 405.54 

  74005.30  230.91 356.73 
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Figure 20. Buckling curves according to Eurocode 3 

Where a0, a, b, c, d depend on the classification of Table 6.2 of EC3 (Figure 22). 

However, these curves are not developed for 3D-printed elements. Hence TUDelft and 

UNIBO have performed also buckling tests on tubular specimens with different 

slenderness. The goal of this analysis was to identify the reduction factor as function of 

the member slenderness for 3D printed columns. 

Figure 21 depicts the proposed curve. It has to be stressed that these curves have been 

developed with the assumption of 𝐸 = 100 𝐺𝑃𝑎 and 𝑓𝑦 = 350 𝑀𝑃𝑎 (retrieved from the 

test described here above). 

 

Figure 21. Interpolation of the experimental results for mean-2standard deviations with 

EC3 formulation ( 𝛼 = 1.00 ; 𝜆̅0 = 0.2)  [18] 
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Figure 22. Table 6.2 EC3 
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5 STRUCTURAL OPTIMIZATION 

With the growth of the population and the limited amount of resources on planet Hearth, 

the reduction of the usage of material in becoming more and more important. The goal of 

structural optimization (SO) is exactly this: assess where the material is most needed 

within a domain to achieve a specific task.[19] SO is suitable to achieve the following 

tasks: 

- Minimum cost 

- Minimum weight 

- Resources usage 

- Limitation of stress concentrations 

- Limitation of displacements (stiffness)  

Three different levels of SO are usually recognised in literature [19]: 

• Topology Optimization: most general form of optimization, defines where higher 

material densities are needed. 

• Shape Optimization: allows to identify form and contour of the domain. 

• Size Optimization: the design is known, only the size of the components needs be 

determined. 

 

Figure 23. Example of different levels of optimization. a) Size optimization of a truss, b) 

Shape optimization of holes in a beam, c) Topology optimization for a simply supported 

beam. [20] 

5.1 MATHEMATICAL PROGRAMMING PROBLEM 
The word “optimization” itself has no meaning unless a goal is set. This is usually 

performed by defining a so called “objective function” f(x) . Hence the structural 

optimization problem can be reduced to the following stamen [21]: 

Find 𝑥, to minimize 𝑓(𝑥), subject to 𝑔(𝑥) ≤ 0.    
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where 𝑓(𝑥)  is a scalar, x is n-dimensional vector and g, the “constrain function”, is an 

m-dimensional vector and can be rewritten as: 

𝑔(𝑥) ≤ 0 = {

𝑔1 ≤ 0
𝑔2 ≤ 0

⋮
𝑔𝑚 ≤ 0

  

These constrains can have multiple origins: 

• Geometric constraints: due to external limitations in the domain 

• Technological constraints: due to production or construction issues 

• Performance constraints: to ensure minimum performances with respect to other 

functions.  

 

5.2 MULTI-OBJECTIVE OPTIMIZATION 
Usually in real life problems tools are required to satisfy multiple requirements. Despite 

boundary values can be set as constrains for a single objective optimization, it is usually 

necessary to find a balance between the optimum solution with respect to an objective 

and the general performances of the object. Here is where the multi-objective 

optimization starts to play.[22] 

In general Multi-Objective Optimization (MOO) is applied when a trade-off of the 

objectives is needed. The classic example is the minimization of the weight of a structure 

and the maximization of the stiffness. As a general rule, the more material we remove, 

the smaller the stiffness, the higher the displacements. If we want to achieve our goal a 

balance has to be found between the removal of material and the reduction of the stiffness. 

In order to have a quantitative evaluation of which design leads to the optimum design, a 

new mathematical problem has to be written. 

The mathematical multi-objective problem can be formulated as: 

{

minimize          F(𝑥) = (𝑓1(𝑥) … 𝑓𝑛𝑓
(𝑥))

subject to         G(𝑥) =  (𝑔(𝑥) …  𝑔(𝑥))   

with                                             𝑥 ∈ Rn

  

The solution of this mathematical problem has been widely studied by Pareto, an 

economist lived in the 19th century[23]. After his studies he formulated the following 

principle [24]: 

“ A Pareto optimal solution is one for which any improvement in one objective will 

result in the worsening of at least one other objective. Mathematically, a point f* (which 

is a vector of length 𝑛𝑓) is called Pareto optimal if there does not exist a point 𝑓𝑝 in the 

feasibility domain such that:  

𝑓𝑗
∗  ≥  𝑓𝑗

𝑝       ∀𝑗  
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 𝑓𝑗
∗  >  𝑓𝑗

𝑝     for at least one   𝑗       “ 

The set of all the Pareto optimum solutions is then defined as the “Pareto front”. 

 

Figure 24. Geometric diagram of Pareto Front [25] 

Mathematically, none of the Pareto solution is objectively better than any other solution. 

[24] To define the most suitable for the design, subjectivity has to be introduced. So, the 

final choice is in the hands of the designer. However, some quantitative evaluations are 

usually artificially created. The general approach is to generate utility functions with 

arbitrarily defined weighting factors (here is the subjectivity). 

There are different types of utility functions in the literature, however the most utilized 

are: 

• weighted sum 

• exponential weighted sum 
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Figure 25. Pareto front and utilities function approach, weighted sum and exponential 

weighted sum [24] 

However, as shown in Figure 25,if the domain has some convexities, these solutions could 

lead to a limitation in the possible achievable solutions and hence in a reduction options 

for the designer. 

 A more general, but also complex, approach is also available to designers to identify the 

whole Pareto front. The so called “objective function normalization”, that consist in 

scaling the objective functions so that the Pareto front falls into a hypercube of unitary 

side can also be applied. 

 

Figure 26. Objective function normalization approach [24] 

Nowadays, thanks to the computer aided design, the convergence to the Pareto front can 

be “guided” to the desired solution. This method is the so called “Goal Programming” 

and consists in allowing the designer to specify a target value and two weights 𝑤, that 

represent the slopes of the preference functions, one per side of the target value. Any 

deviation (𝑑) from the target value leads to an increase of the preference function value 

that is proportional to the weights. The program then tries to converge to the solution that 

minimizes the sum of the preference functions. 

 

Figure 27.Graphical explanation of the definition of the deviation d for Goal 

Programming [24] 
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6 CASE STUDY: ZLOTE TARASY  

6.1 OVERVIEW OF THE BUILDING 
The building under analysis is located in Warsaw, Poland. The Zlote Tarasy, “Golden 

Terraces” in English, takes its name from the street where the building is located: Zlota 

Street. The building has been structurally designed by Aroup for ING Real Estate with 

the goal to enrich the city centre of the city with multi-porpoise centre. 40 000𝑚2 of 

underground car parking, 6000𝑚2 truck service yard, 24 000𝑚2 of offices, 54 000 𝑚2 

of restaurants, retail and department stores, eight cinema halls and a 780 seats auditorium, 

14 000𝑚2 of public areas and malls,6000𝑚2 of terraces and gardens, for a total area of 

200 000𝑚2, these are the numbers the Zlote Tarasy. 

The space is organised as depicted in Figure 28. As we can see there are 6 main areas: 

two office blocks: the “Lumen” and the “Skylight”, the roof terrace, the food court, the 

“Drum” (a 3-storey tower containing all the escalator to allow connection between the 

car park and the different floors) and the Cinema. [26] 

 

 

 

Figure 28. Conceptual distribution of the areas and aerial view of the 

complex [26] [27] 
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6.2 THE ATRIUM ROOF 

6.2.1 The concept 

One of the main peculiarities of this complex is the roof of the atrium that hosts part of 

the retails and the food court. Its iconic design has been proposed by Jerde Partnership 

with the purpose of giving the customers the idea of walking in a tree forest.  This feeling 

is further strengthened by the shape of the dendriform columns. The concept has been 

developed via a computational simulation of the falling of a cloth over series of spheres. 

From this simulation a series of geometries have been extracted and the most suitable, a 

8-domes canopy, has been finally chosen for the architectural design.  

 

Figure 29. The “cascade”, external view of the atrium [28] 

  

6.2.2 Geometry and Structural Properties 

The atrium roof develops on an elliptical plan, 160m long and 100 m wide, for a total 

covered area of 10 240𝑚2 and reaches about 35m above the ground level. According to 

Arup [26], it is made of 7123 200mmx100mm steel RHS beams with variable steel class 

and thickness, 2300 steel nodes and 4788 glass panels, none of them equal to the other. 

The result is a grid shell with a variable triangular mesh. 

Some attempts have been made to standardise the geometry, in order to allow the 

repetition of similar elements and cut the costs, but the architectural design and other 

design constrictions, such as the water drainage of the roof, the snow sliding, and the 

smoke concentration required such a free form grid made it impossible.  
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Figure 30. Topology optimization studies applied to the nodes to investigate the 

possibility of 3D printing customized nodes for the building [4] 

 

Another relevant constrain that led to this choice is the complexity of the support. The 

structure is supported at different levels both due to its irregular shape but also due to the 

its “hugging” function among all the nearby buildings. The final design required a 

complex combination of supporting structures: 11 internal tree-like columns, 26 

perimeter posts at level 3, 2 sliding bearings at the drum, 2 rotational bearings, 2 “flying 

struts”, and 16 supports at the base of the cascade. 

   

Figure 31. Atrium roof supports[26] 

These solutions are the outcome of a complex design study aimed to ensure the structure 

to be: 

• structurally efficient, minimising displacements and stress concentrations due to 

thermal expansion of steel 

• architectonically appealing and visually “light”  

• easy to maintain 
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6.2.3 Branched Columns 

The over 100m span of the roof required some internal supports. A total of 11 tree-like 

columns has been carefully placed in order to minimize displacement and stresses but 

also to ensure a clear view of the walkways. 

Each tree is composed of a trunk, a tapered 2m high steel tube filled with reinforced 

concrete, 3 primary branches, each of these diverging into other 4 secondary branches. 

All the branches have different inclinations and are made of tubular steel beams of 

different lengths. 

 

Figure 32. Dendriform roof supports 
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6.3 STRUCTURAL PROPERTIES OF THE ELEMENT 
Since the objective of this study is to define an optimization method, a simple but 

significant case has been chosen. A slender simply supported column working in 

compression has been chosen as case study. 

  

    

Figure 33. Overview of the dendriform column and detail of element 12787 and 

connection [29] 

The structural details of the element have been retrieved from the GSA [30]structural 

model used by Arup for the design. Due to the complexity of the canopy over 1700 ULS 

load cases have been applied to over 7000 beams, making it the biggest GSA structural 

model ever analysed by Arup at that time. [26] 

The element chosen is the first order branch of the tree that is closest to the drum tower. 

The element is a CSH273x12.5 tubular section with a total length (𝐿0) of 7m. 

Drum Tower 

 

Element 12787 
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SECTION PROPERTIES 

Type CSH273x12.5 

∅ (mm) 273 

𝑡 (mm) 12.5 

𝑚 (kg/m) 80.3 

𝐴 (cm2) 102 

𝐼𝑦𝑦(cm4) 8697 

 

As discussed in Appendix I, dendriform structures are usually designed so that they work 

only in compression. Seems like this approach has been followed also by the Arup 

designers as shown by the choice of the restrains in the structural model. Both the 

connection with the trunk and with the second order branches are pinned. 

RESTRAINS 

Direction Top Bottom 

Tx Fix fix 

Ty Fix fix 

Tz Fix fix 

Rx Fix fix 

Ry Release Release 

Rz Release Release 

Looking at Figure 33, in particular at the picture of the connection with the minor 

branches, we can observe that the axes of rotation of the connections are not aligned, 

hence, assuming that the roof is stiff and the that the elevate number of minor branches 

offer a stiff connection with the roof (all connections of the grid shell are bending 

resistant), we can assume that the only degree of freedom allowed is along the axis of the 

beam. 

According to these assumptions, the structural system for the single branch has been 

simplified to the scheme reported in Figure 34. 

  

Figure 34. Structural system assumed for the analysis 

 

MATERIAL PROPERTIES 

Type S355 

E (MPa) 205 

v 0.3 

G (MPa) 77850 

γ (kg/m3) 7850 

α (/°C) 1.20E-05 

P0 

L0 
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COMPUTATIONAL 

MODEL AND 

OPTIMIZATION 

ALGORITHM 

7 STRUCTURAL ANALYSIS FOR PARAMETRIC 

DESIGN 

7.1 PARAMETRIC DRAWING 
The possibilities open by additive manufacturing require CAD programs with high 

flexibility. At the time being, few software packages are capable of such a flexibility. 

Rhinoceros [31] in combination with Grasshopper [32] are probably the most used in the 

Building industry. Parametric design is a fundamental tool to achieve and mathematically 

describe complex shapes. At the same time, it offers an incredible flexibility as changing 

few parameters completely new forms can be found. 

On the other hand, free form design has some drawbacks. Sometimes the complexity of 

the shapes is so high that the physical and engineering sense can be lost. Hence it is 

fundamental to ensure that the developed geometry is physically possible. Later on, an 

example of how geometrical and physical compatibility must be verified will be discussed 

(see Chapter 8.8). 

Another drawback is that traditional FEM software packages are not suitable to draw such 

complex geometries so usually CAD models have to be converted into a format readable 

by the FEM software and then imported. However, this process is usually not so smooth 

as not always the CAD software can export in the desired format, hence intermediate 

steps are needed and the risk of losing accuracy and details gets higher and higher. 

Furthermore, whenever changes on the design needs to be performed, the process has to 

be repeated over and over again. 

For this reason, Karamba [33], a FEM software fully embedded in the Grasshopper 

environment, has been used for solving the structural analysis for the optimization 

problem.  
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Figure 35. Parametric studies for the design of the Lotte tower, retrieved from [34] 

,based on [35] 

7.2 NON-LINEAR ANALYSIS 

7.2.1 Non-linear analysis in GSA 

Karamba offers a variety of possible types of structural analysis and tools to examine the 

results. Due to the imperfections associated to the printing process a non-linear analysis 

was the only choice for the analysis. 

Differently from a linear analysis, in a non-linear analysis the load is applied 

incrementally. At each step, the stiffness matrix, loads and displacements are computed 

in order to find the following equilibrium state and update the input for the following 

iteration. This allows to include geometrical, material and constrains non-linearities.  

When large deformations occur, the assumption of small displacements in no more true, 

hence the deformed shape, the geometrical non-linearity, has to be taken into account. 

Similarly, when the material is subjected to high stresses and deformations the 

assumption of a linear relation between the two units is no more realistic. Hence different 

models need to be included. 

Finally, loading and boundary conditions may be affected by the behaviour of the system 

(displacements or actions). Hence, these behaviours can be captured with the iterative 

process of a non-linear analysis. 

The drawback of a non-linear analysis is that, due to the iterative process, is 

computationally much more expensive than a traditional linear analysis, where the 

solution needs to be computed only once.  

For the optimization process only geometrical non linearities will be considered as plastic 

analysis is not implemented in the software and the constrain condition are assumed to be 
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independent form the behaviour of the system. Details on how the non-linear analysis is 

implemented in Karamba can be found in Rubin’s work. [36] [37] 

However, for steel structures plastic analysis is fundamental hence, in order to perform a 

complete analysis and verify the results obtained in Karamba, non-linear analyses with 

both geometrical and material non linearities have been used. For this porpoise, Oasys 

GSA[30] has been used. According to the user manual, the software uses the relaxation 

method to perform the analysis. 

This involves the following steps[38] : 

1. Compute equivalent nodal forces and moments. In this process, member loads are 

converted into nodal force or moments. These are the forces that initiate vibration. 

2. Construct dummy mass and dummy inertia for the unrestrained (active) nodes 

according to the translational and rotational stiffness of the members at the nodes 

3. Compute the acceleration, speed and displacement for each node at each cycle. 

4. Compute a new nodal position and rotation for each node at each cycle; update the 

nodal stiffness and member force acting on the nodes. 

5. Check the force and moment residuals at each node at the current position. 

6. If no residual exceeds the limit, the analysis is considered to have converged and the 

final position is considered as the equilibrium position of the structure. 

7. If any residual is not satisfied, the analysis is continued to the next step. 

8. Compute the total kinetic energy of the structure. If the kinetic energy at a cycle 

overshoots the maximum, it is considered that the equilibrium position has been passed. 

Therefore, all nodes will be re-positioned so that they are closer to the equilibrium 

position. Reset the speed and acceleration to be zero and let the structure start to vibrate 

again from the new position. 

9. After analysis has been converged, the element forces, moments and stresses are 

calculated according to the final equilibrium position of the nodes. 

7.3 SECOND ORDER EFFECTS 
According to EN 1993-1-1: 2005 (E) chapter 5.2, the second order effects (deformed 

geometry) and initial imperfections should be included if they affect significantly the 

structural behaviours. The verification can be performed totally by global analysis, 

partially by global and local analysis, or, for simple structures, by individual check on 

individual members using buckling length according to the buckling mode of the 

structure. Another option is to take into account second order effects is to apply equivalent 

forces to destabilize the structure. Figure 36 depicts, how to implement these forces. 
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Figure 36. Equivalent forces for modelling global imperfections of frames 

For traditional columns, the initial crookedness 𝑒0 can be retrieved from Table 5.1 of EN 

1993-1-1: 2005 (E), and L is the actual length of the member. However, since we are 

dealing with 3D-printed steel elements a different value has to be assumed. University of 

Bologna (Unibo) conduced some tests on WAAM columns. The results are summarized 

in Table 5. 

Table 5. Summary of 𝑒0 , based on  UNIBO [18] 

SPECIMEN I.D L/x 

850-A 137 

850-B 137 

850-C 149 

1050-A 204 

1050-B 172 

1050-C 172 

1200-A 196 

1200-B 175 

1200-C 128 

 

Since a unique value has to be assumed, the average value of all the tested specimens will 

be assumed, hence from now on 𝑒0 = 𝐿/157. 

The sway imperfection can be computed instead as  

Φ =  Φ0 𝛼ℎ 𝛼𝑚 

Where: 

 Φ0 = 1/200    (basic value) 

𝛼ℎis a reduction factor due to height of the structure ℎ (in meters): 

𝛼ℎ =
2

√ℎ
 

2

3
< 𝛼ℎ < 1.0 
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𝛼𝑚 is a reduction factor that takes into account that the more the columns in a row, the 

smaller the sway effect: 

𝛼𝑚 = √0.5 (1 +
1

𝑚
) 

However, due to the properties of the system, the sway imperfections have not been 

considered. Only global imperfections, on the axis of the column, have been used instead. 

 

7.4 INITIAL IMPERFECTIONS OF STEEL COLUMNS 
Chapter 6.3 of EN 1993-1-1: 2005 (E), suggests also a procedure to estimate the reduction 

in strength of steel columns due to the initial imperfections introduced by the production 

process of steel elements. 

The verification for buckling of uniform members in compression is based on the 

following formula: 

𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑
≤ 1.0 

Where 𝑁𝐸𝑑 is the design value of the compression force and 𝑁𝑏,𝑅𝑑 is the design buckling 

resistance of the compression member, defined as (Class 1,2,3): 

𝑁𝑏,𝑅𝑑 =
𝜒 𝐴 𝑓𝑦

𝛾𝑀1
  

Where 𝜒 ≤ 1 is the reduction factor that takes into account the imperfections. 

𝜒 can be computed as: 

𝜒 =
1

𝛷 + √𝛷2 − 𝜆2̅̅̅ 
 

With: 

𝛷 = 0.5 [ 1 + 𝛼(𝜆̅ − 0.2) + 𝜆̅2] 

𝜆̅ = √
𝐴 𝑓𝑦

𝑁𝑐𝑟
 

Where 𝑁𝑐𝑟  is the Eulerian load 𝑁𝑐𝑟 = 𝜋2  
𝐸 𝐼

(𝑘 𝐿)2  and 𝑘  is a factor depending on the 

boundary conditions of the element. 
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Figure 37. k coefficients for different boundary conditions 

Finally, the imperfection factor, 𝛼, can be retrieved from Table 6.1 of EC3 according to 

the classification of the Table 6.2 of EC3 (Figure 22). 

 

Table 6. EC3: Imperfection factors for buckling curves 
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8 SETTINGS AND CALIBRATION OF THE MODEL 

8.1 LOADING CONDITIONS AND MATERIAL 
In order to make a fare comparison between the original element, made of a traditional 

hollow cross section, and a 3D printed element, the two elements have to be designed for 

the same loading conditions. Therefore, the structural model highlighted in Chapter 6.3 

have been applied to study the buckling load of the column. 

Table 8 summarises the results obtained by applying the procedures reported in Chapter 

7.4, to the properties of the column (summarised in Table 7). 

Table 7. Input values for buckling analysis of original column 

Geom properties Section properties Material properties Imperfection properties 

L (mm) K A (cm2) I (cm2) E (MPa) fy (MPa) Curve α γM1 

6963 1.00 102 8697 205000 355 C 0.49 1 

 

Table 8. Numerical results for buckling analysis with initial imperfections 

𝑵𝒄𝒓 (KN) 𝝀̅ 𝚽 𝝌 𝑵𝒃,𝑹,𝒅 (KN) 

3'629.36 1.00 1.19 0.54 1957 

 

Hence the design load used for the structural analysis 𝑃, will be assumed as 𝑃 = 𝑃0 =

1957 kN. Furthermore, the self-weight of the structure has been considered as additional 

loading condition in order to trigger the buckling of the column in a specific direction and 

assign the imperfections accordingly. (see Figure 49 for direction of g force) 

As already anticipated in Chapter 4.4.5, the material properties are assumed according to 

the properties identified by previous researches and EC3: 

𝐸 = 100 𝐺𝑃𝑎  

𝑓𝑦 = 350 𝑀𝑝𝑎  

𝑣 = 0.3  

8.2 TOPOLOGY OPTIMIZATION 
A verification with a Topology optimization tool [39] have been performed to assess the 

optimal distribution of material to withstand a vertical load acting along an axis. The tool 

utilizes  the density approach implemented in [20] to a 4 nodes finite element mesh used 

to solve the elasticity problem. More information about how the tool is implemented can 

be found in the link reported in reference [39]. 

As we would expect, for the problem under analysis the material needs to be distributed 

along the thrust line, that for this simple case, is the straight line that connects load and 

supports. However, since we are dealing with a continuous, the solutions are infinite as 

there are infinite shapes according to the amount of material that is to be removed. Thus, 
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further research is needed to assess how much material can be removed without 

compromising the safety of the column. 

 

  

Figure 38. Results of topology optimization for 50% and 70% volume reduction 

respectively. 

8.3 SHAPE OPTIMIZATION 
As discussed above, there are infinite feasible shapes for the problem under analysis. 

Hence an investigation of the optimal has been made. 

In order to define univocally the external shape of the column mathematical functions are 

needed. As a general formulation the external shape has been defined as the surface of 

revolution described by:  

𝑅(𝑥) = 𝑟𝑟 +  𝑎  𝑝𝑖(𝑥) 

where 𝑎 is the shape amplification, that describes how stocky the column is, 𝑥, is the 

coordinate of the point along the axis, and 𝑝𝑖(𝑥) that is a mathematical function (pattern) 

that describes the shape of the column.  

Finally, 𝑟𝑟, the reference radius, describes the radius of the column at the extremities. In 

fact a minimum radius is needed both at the top and at the bottom to ensure that there is 

sufficient room for the minimum quantity of material needed to witstand the load. At the 

same time, we have to consider that the branch has to be connected to the other branches 

and to the trunk, hence a minimum area has to be ensured for the constructability of the 

connection. 𝑟𝑟 = 100𝑚𝑚 has been assumed as minimum radius to ensure the correct load 

transfer from the connection to the column. However, it is to be said that this is a pure 

assumption based on the observation of the size of the elements constituting the tree-like 

columns. 

This minimum radius has been compared with the minimum radius to prevent yielding of 

the column. 

𝑁

𝐴
=

𝑃0

𝐴
𝜎𝑚𝑎𝑥 = 𝑓𝑦 

𝑁

𝑓𝑦
=

1957 𝑘𝑁

350 𝑀𝑃𝑎
= 𝐴𝑚𝑖𝑛 = 1780𝑚𝑚2 
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According to this result the minimum 𝑟𝑟 to prevent yielding is 42.2 mm that is smaller 

than the radius assumed for constructability of the connection. 

 

Figure 39. Parametrization of the shape  

It is to be mentioned that 𝑟𝑟  could have been maimed as a free parameter and the 

constructability and strength constrains simply used as limit values of the optimizations. 

However, the evolutionary algorithm implemented in Grasshopper has a limit in the 

number of input parameters. Due to this limitation, an assumption had to be made.  

Another assumption has been made in the shape optimization process. Despite any shape 

is theoretically achievable with the 3D printing process, from an engineering point of 

view we still need to utilize shapes that are known. Hence two different shapes have been 

proposed for the analysis: a sine shape, and a shape retrieved from the literature. 

The sine shape (pattern 𝑝1) has been assumed by approximating the shapes obtained from 

the topology optimization. Again, there are infinite functions that can approximate those 

shapes, but, according to EC3, the imperfections are modelled applying a sinus shape to 

the axis of the column, hence in order to have a uniform distribution of bending moments, 

seems reasonable to assume a sine-shape for the external shape of the column. (See Figure 

40 b) 

On the other hand, the other pattern has been found in the literature. According to 

analytical studies on columns under compression, the most optimized shape for a circular 

hollow strut would be described by the following expression [40]: 

Axis of rotation 

𝑝(𝑥) 

𝑎 𝑝(𝑥) 

𝑝(𝑥𝑖) 

𝑟𝑟 

𝑎 𝑝(𝑥𝑖) 

𝑅(𝑥𝑖) 

𝑥𝑖 
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𝑝(𝜃) =
1

𝜋
 (𝜃 −

1

2
sin 2𝜃)    0 ≤ 𝜃 ≤ 𝜋 

Where, in order to refer to the coordinates on the axis we need to apply: 𝑥 =
𝜃

𝜋
 (

𝐿0

2
) 

The difference between the two patterns is depicted in Figure 40. 

a) 

 

b) 

 

    

Figure 40.  a) Difference between sine-shaped pattern  𝑝1(𝑥)(in red) and 𝑝2(𝑥)(in blue) 

                    b) Topology optimization with 35% vol. reduction and sine approximation 

                     

In order to have a first estimate of the performance of the two patterns a preliminary 

analysis has been performed in Karamba with shell elements. As we can see from Table 

9 and Graph  1, both patterns have pros and cons. On one hand, 𝑝1 have a lower average 

utilization that means that on average the elements are less loaded, that gives more room 

for optimization. On the other hand, higher maximum utilizations U have been registered, 

that means that more peaks of stresses are likely to occur, and failure with it. 

The same reasoning, but inverted, is valid for 𝑝2. 
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Table 9. Results of investigation on performances of different shapes patterns with shell 

elements 

MAX UTILIZATION AVERAGE UTILIZATION 

𝒂 𝑈(𝑝1) 𝑈(𝑝2) 𝑈(𝑝1)/𝑈(𝑝2) 𝑈𝑚(𝑝1) 𝑈𝑚(𝑝𝑏) 𝑈𝑚(𝑝1)/𝑈𝑚(𝑝2) 

0.1 0.263 0.261 1.01 0.209 0.219 0.95 

0.2 0.267 0.262 1.02 0.180 0.196 0.92 

0.3 0.272 0.263 1.04 0.159 0.181 0.88 

0.4 0.301 0.263 1.14 0.145 0.169 0.86 

0.5 0.345 0.263 1.31 0.134 0.161 0.83 

0.6 0.388 0.264 1.47 0.125 0.155 0.81 

0.7 0.441 0.263 1.68 0.119 0.150 0.79 

0.8 0.495 0.264 1.88 0.114 0.147 0.77 

0.9 0.551 0.264 2.09 0.109 0.144 0.76 

1 0.616 0.263 2.34 0.106 0.143 0.74 

  

 

 

Graph  1. Graphical interpretation of the Utilization for the two patterns 

8.4 DEFINITION OF THE GEOMETRY 

8.4.1 General Observations 

So far, only the outer shape of the strut has been defined. However, in order to reduce the 

use of material a criterion has to be determined. In this work, a discrete parametric mesh, 

made of 1D beam elements has been used to investigate the optimization. It has to be 

underlined that, although the mesh is parametric, the possible combinations of 

distribution of material are still limited. This limitation could have been avoided by 

utilizing 3D topology optimization. However, as reported in [4], [5] the computation of 

the solution and the post processing are very expensive, time consuming and involve the 

direct intervention of the designer to make the final adjustments. 
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On contrary, using beam elements allows for direct control on the geometry. The only 

drawback of such an approach is that we are dealing with 1D elements, lines, to which 

only in the FEA a cross section is assigned. Hence, particular attention has to be paid to 

ensure compatibility between the cross section and the actual distance between elements. 

8.4.2 Parametrization of the Geometry 

As discussed in the previous chapter, a parametric geometry made of 1D elements have 

been assumed as base geometry for the optimization. The choice of the mesh is justified 

by the observations on the structural performances of this type of mesh highlighted by 

[41] in the parametric studies performed on these geometries. Furthermore, this type of 

mesh is particularly suitable to achieve a large number of possible designs. 

The geometry is obtained by the composition of a parametric base module. This module 

is made of 3 elements: a bottom circle, a top circle, and the inclined element. Figure 41 

depicts the procedure to produce the mesh (further details can be found in Appendix II. 

1. The two cicles are drawn and a segments is generated between two alligned points. 

2. The top circle, and the reference point with it, is rotated of a given angle. 

3. The same procedure is repeated for the desired number of inclined elements 

4. Changing the parameters, like the dimensions and angle of rotation of circles, the 

number of elements and adding a elements running in the other direction, more 

complex geometries can be achieved. 

The basic modules are then combined to produce the 7m column, so that: 

• The number of inclined elements is the same in all modules 

• The inclined elements of two adjacent modules converge in the same point in the 

circles 

• The radius of the circles is scaled according to the pattern 𝑝(𝑥)identiefied in 

Chapter 8.3. 

Figure 42 depicts some of the geometries that can be achieved with this process. All of 

them are possible combinations of the following parameters: 

• 𝑟𝑟  and 𝑎: reference radius and shape amplification factor (alredy introduced in 

Chapter 8.3) 

• 𝑛𝑖: number of inclined elements 

• 𝑛ℎ:number of hoops 

• 𝜃: total angle of rotation of the hoops per meter in degrees 

For ore information on how the mesh is generated refere to Appendix II 
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Figure 41. Process used to generate the module of the mesh 
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Figure 42. Examples of geometries achievable by varying the parameters for 𝑝1 
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Figure 43. Examples of geometries achievable by varying the parameters for 𝑝2 
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8.5 OPTIMIZATION ALGORITHM 
 

  

Figure 44. Optimization algorithm 
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Figure 44 shows the algorithm that has been implemented in Grasshopper. The algorithm 

takes as input: the parameters described in Chapter 8.4.2, the material properties, the 

loading and boundary conditions, a generic cross section (the minimum C-S has been 

used) to perform a second order analysis. 

In this very first stage, if the analysis requires to take into account global imperfections, 

initial global bow imperfections are applied to the axis of the column to reproduce the 

imperfections analysed in Chapter 7.3. 

Once the second order analysis is completed the software automatically performs the size 

optimization according to the list of C-Ss fed to the algorithm. A final second order 

analysis is needed to assess the redistribution of the actions due to the changes of the 

stiffness of the elements. Mass, displacements, forces, buckling load and utilization of 

elements are then retrieve and used to assess whether the constrains of are respected or 

not. 

These processes are iteratively repeated by the evolutionary solver implemented in 

Grasshopper to converge to the combination of parameters that minimises the mass. 

8.6 SETTINGS FOR THE EVOLUTIONARY SOLVER 
Evolutionary solvers, thanks to their versatility and affinity with non-linear problems are 

particularly suitable for structural optimization of structures.[42] 

In order to converge to the geometry that satisfies the constrains and minimises the mass, 

Galapagos, the evolutionary solver already implemented in Grasshopper, has been used. 

Due to the elevate computational cost of the analysis the number of individuals per 

population has been kept quite low (15 individuals), except for first population were a 

Boost Factor of 3 has been applied in order to have an initial higher range of choice for 

the following generation. The convergence conditions depended on the goal of the 

analysis. For intermediate analysis time constrains have been used (generally 1 hour) 

while the full convergence has been assumed when the fitness value was not changing for 

the following 5 generations. 

8.7 APPLICATION OF CONSTRAINS 
In order to limit the feasible domain of the optimization problem, two types of hard 

constrains have been used: one on the strength of the structure and one on the 

serviceability.  

The strength constrain have been already introduced in the Size Optimization chapter. In 

order to satisfy the requirements of EC3, a limit on the utilization on all the elements has 

been set (note that 𝑈 represents the maximum value of utilization recorded between all 

the elements): 

• 𝑈 < 1.0 
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The serviceability of the column has been verified by imposing a limit on the maximum 

horizontal displacement at any node, and on the vertical displacement at the tip. 

The assumed limits are: 

• 𝛿𝑣 =
𝐿

400
= 18𝑚𝑚    𝛿ℎ =

𝐿

150
= 47𝑚𝑚  

which are slightly less conservative than the 
𝐿

500
 and 

𝐿

200
 that are typically assumed for 

steel structures. This reduction is added in order to take into account that the safety 

coefficients for the loads are generally lower in the SLS than for the ULS. Furthermore, 

we have to consider that we are still in the preliminary phase of the design hence it is not 

reasonable to be too strict on the SLS constrains. 

 

8.8 SIZE OPTIMIZATION 
Karamba comes to the users with a size optimization component already implemented. 

Due to time limitations and the possible computational cost added to the algorithm in the 

eventuality of an algorithm developed by the author (the component would probably 

result much more optimized and stable) the size optimization has been performed with 

the component “Optimize Cross section” already implemented in software package. 

According to the manual [43] this component performs checks on axial force, local 

buckling, lateral torsional buckling, bending, shear and torsion in accordance with EC3 

EN 1993-1-1.. However, dealing with straight beams discretized in multiple elements, the 

buckling length cannot be computationally estimated correctly, hence the software 

consider as buckling length the minimum distance between two nodes with more than 3 

elements converging (unless there is a free end, in that case it is doubled). This result in 

an inappropriate estimation of the buckling length, but still lies on the safe side for the 

geometry under analysis, where all the physical connections between the beams are 

assumed as bending resistant and have at least other 5 elements that converge into the 

nodes. (except for the initial and final elements but, as discussed in the following chapter, 

they will be considered as restrained). 

According to the manual the “Optimize Cross Section” component performs all the 

verifications cited above iteratively on a list of cross sections assigned as inputs. The 

algorithm starts with the first cross section of the list and, if it doesn’t satisfy the limits 

that are set (either utilization or displacements, or both) it moves to the following C-S on 

the list and so on. Hence, to achieve the maximum performance and reduce the usage of 

material it is fundamental to calibrate the model correctly. In the calibration process a lot 

of effort has been put into the definition of the list of cross sections and into the definition 

of the limits set for the optimization.  

The calibration of the latter was particularly complicate because during the iteration 

process the forces are not updated to take into account the different stiffness of the 

elements. Hence, ideally an iterative process that alternates size optimization and 

calculation of forces would be needed. However, these processes are some of the 

computationally most demanding of the entire model. Hence, the iterative process is not 

suitable for an optimization. The only other option was to set a lower term for the 
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estimated final utilization (0.9), so that when the forces of the model with the new 

stiffnesses are computed, the utilization is still lower than the limit set by the constrains 

of the optimization (1.0). According to the manual the total optimization is computed as: 

𝑁𝐸𝑑

𝑁𝑅𝑑
+

𝑀𝑦,𝐸𝑑

𝑀𝑦,𝑅𝑑
+  

𝑀𝑧,𝐸𝑑

𝑀𝑧,𝑅𝑑
≤ 1 

Where 𝑁𝑅𝑑  𝑀𝑦,𝑅𝑑 and, 𝑀𝑧,𝑅𝑑 are the design values taking into account also the reduction 

due to shear. 

As introduced previously another important setting for achieving an optimized column is 

the definition of a list of cross sections (C-S) correctly organized. This, process can result 

not too complicated when dealing with traditional C-S but, it is when theoretically any 

shape is available. Since most of the test performed so far on 3D printed material have 

been performed circular C-S, hollow and solid circular C-S have been used. 

 

 

Figure 45. Constrained vs unconstrained domain 

From an optimization point of view, the more freedom is left to the system the most 

optimized the final product would be (convergence to absolute maxima). However, some 

boundaries have to be introduced in order to ensure that the result was physically 

compatible. An example is the cross section of the elements at the base, where the stresses 

are concentred and bigger C-Ss are needed, but the available space is limited. In order to 

take this into account, initially a limit was set to the number of inclined elements 

according to the maximum cross section in the list in order to ensure that no superposition 

occurs between different elements. However, this resulted too limiting for the 

optimization process, thus the constrain was later on deleted and assumed as part of the 

post-processing.  
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Figure 46. Detail of the collision between C-S at the base of the column and modelling 

of point of application of loads and boundary conditions at the top. 

 

In fact, once the final design is known, it is possible to intervene directly on the elements 

and assess if they are compatible or if the compatibility can be achieved by manually 

changing the cross section. A final countermeasure could also be substituting part of the 

grid mesh with a solid hollow cross section, in order to exploit the shell behaviour and 

stat the grid mesh as soon as the stresses are more suitable for beam elements. This 

solution is particularly interesting as it is also compatible with the traditional ways of 

performing the connections with hollow C-S, but of course would also ensure sufficient 

strength to an equivalent 3D printed connection. 

 

Figure 47. Traditional pinned connection for a hollow cross section. [44] 

 

 Nevertheless, this is still not achievable in Karamba where the choice of elements is 

limited to only two types (beams or shell). For such an analysis more complex FEM 

software packages are needed. In addition, such a complex analysis would probably 

require an elevate computational cost itself, making it not appropriate for an optimization 

problem. 
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Therefore, for this early design stage, the assumption of compatibility has been removed, 

and only visual checks on the final mesh have been performed. Nevertheless, a limitation 

in the dimension of the C-S has been set. 100mm have been assumed as the limiting 

threshold both for architectural appearance and compatibility. On the other hand quite 

some freedom has been left for the internal wall thickness. In accordance with the printing 

process settings at RamLAB and MX3D, the average bead size is 5mm. Hence, assuming 

that the cross sections are created as concentric circles with radii that are multiples of the 

bead size the minimum C-S is 10mm and the maximum is 100mm. The same reasoning 

has been applied for the determination of the possible wall thicknesses. The wall thickness 

varies from one width bead, 5mm, up to a solid cross section, with steps of 5mm. With 

this solution, not only the singular cross sections are certainly printable, but also the 

transition between one cross section to the other can be more easily performed.  

 

Figure 48. Detail of the bead thickness [45] 

8.9 BOUNDARY CONDITIONS 
Since we are dealing with a three-dimensional mesh, it was not possible to simply restrain 

the degrees of freedom according to the structural model identified in Chapter 6.3. For 

this reason, additional stiff elements, representing stiff steel plates, have been added to 

the end points of the mesh. The central points of these element have finally been used to 

assign load and restrains, and to ensure a realistic redistribution of the actions. (see Figure 

46). 

Furthermore, in addition to the actual load, the self-weight of the structure has been added 

to the loading conditions. This is not due to the relevance of the load itself but it is 

important to trigger buckling in a given direction and hence allow to assign correctly the 

direction of the initial imperfections. 
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Figure 49. Direction of g force and initial global bow imperfection 20 times scaled. 
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9 ANALYSIS OF CONVERGENCE 

Since there is no direct control on the convergence of the analysis, some post-analyses 

have been performed. The results showed that some geometries were included in the 

feasible domain only because the random numbers generated by the non-convergence of 

the analysis were satisfying the constrains. 

In order to verify how to detect when these random solutions are erroneously included in 

the feasible domain, 10 geometries have been tested. The values of the most relevant 

output of the analysis (see Figure 50) have been recorded as a function of the compressive 

load 𝑃. Here follows the analysis of the results, further details on geometries and general 

results can be found in Appendix III. 

 

Figure 50. Algorithm for the definition of outputs as a function of applied load P 

 

 

Figure 51. Plot for the analysis of convergence for geometry2 

Figure 51 reports the graph that has been used to assess the stability of the solution. The 

black continuous line represents the plot of the “Buckling load factor” (BF), output of the 
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component “Buckling Mode” implemented in Karamba, as a function of load P. The 

dashed lines instead represent the trend of the other outputs (horizontally rescaled for the 

comparison).  

Despite this component is not meant to analyse imperfect geometries, such as those that 

we are under investigation, a correlation between the stability of the analysis and this BF 

has been found. As we can see when 𝐵𝐹 ≈ 1 peaks occur. 

These peaks are clearly a computational spurious behaviour as it is physically impossible 

that increasing the vertical load on an imperfect column values like the vertical and 

horizontal displacement reach a certain value and then start to decrease again. 

 

Figure 52. Time lapse of failure of imperfect column [46] 

The same behaviour was found for the other geometries. For values of 1.0 < 𝐵𝐹 < 1.1, 

spurious peaks in the outputs occurred. Hence, despite no final conclusions can be drawn, 

it is clear that whenever 𝐵𝐹 is smaller than 1.1 (that is the maximum value of BF for 

which peaks have been identified), the solution needs to be verified with the procedure 

here presented. 

It has to be underlined that theoretically it would have been possible to include this check 

directly in the algorithm, however this would have almost doubled the time required to 

find a solution. Thus, it resulted more efficient to apply the following procedure: 

1. Save the solution at the end of every optimization loop 

2. Once the optimization process is completed, verify the convergence with the 

procedure here highlighted 

3. Exclude the spurious solutions  

4. Retrieve the “best non-spurious” solution from the saved ones. 
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10 SUMMARY OF SETTINGS FOR OPTIMIZATION 

PROCESS 

10.1 SETTINGS FOR FINITE ELEMENT ANALYSIS 

10.1.1 Material 

E=100Gpa 

𝑣 = 0.3  

𝐺 =
1

2 (1+𝑣)
= 38.5 𝑀𝑃𝑎  

𝑓𝑦 = 350 𝑀𝑃𝑎  

10.1.2 Geometry 

𝐿0 = 6996 𝑚𝑚  

Reference radius: 𝑟𝑟 = 100 𝑚𝑚  

Shape amplification: 0 ≤ 𝑎 ≤ 1  

Number of inclined elements: 1 ≤ 𝑛𝑖 ≤ 15  

Number of hoops: 1 ≤ 𝑛ℎ ≤ 35  

Total angle of rotation of the hoops per meter: 0° ≤ 𝜃 ≤ 100°  

10.1.3 Analysis 

Due to limitations in the capabilities of the software, only non-linear geometry is 

considered. The material is considered linear elastic and the boundary conditions are 

independent from the load. 

10.1.4 Boundary Conditions 

Since the column is inclined and an axial symmetric geometry is used it is reasonable to 

assume that the column buckles in the direction of the gravity force (assumed as acting 

on plane xz) where the self-weight triggers the buckling of the column. Hence: 

Table 10 Boundary condition for redesigned geometry 

DOF NODE 1 NODE 2 

TX Fix fix 

TY Fix fix 

TZ Fix free 

RX Fix fix 

RY Free free 

RZ Fix fix 
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Figure 53. Structural model along plane xz 

The design load instead is the buckling load of OC: 𝑃0 = 1957 𝑘𝑁 

10.2 SETTINGS FOR OPTIMIZATION ALGORITHM 

10.2.1 Imperfections 

Since no models are available for the design of free form 3D printed steel columns the 

imperfections have been assigned in accordance with EC3. A sine shape has been 

assigned to the axis of the column with 𝑒0 =
𝐿

157
= 44.5 𝑚𝑚 

10.2.2 Optimization goal and Constrains  

The goal of the optimization process is the identification of the column capable of 

withstanding the load 𝑃0 = 1957 𝑘𝑁  (strength constrain: 𝑈 < 1 ) with reasonable 

deformation (serviceability constrains: 𝛿𝑣 =
𝐿

400
= 18𝑚𝑚     𝛿ℎ =

𝐿

150
= 47𝑚𝑚 ) and 

minimum mass. 

10.2.3 Convergence 

The evolutionary loop is stopped whenever the best solution is not updated in the 

following 5 generations. 

In order to ensure that the solution is not spurious a verification has to be performed by 

applying the method described in Chapter 9. 
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ANALYSIS OF 

RESULTS 

11 DEFINITION OF THE OPTIMUM SOLUTION FOR 𝒑𝟏 

11.1 SOLUTION OF OPTIMIZATION WITHOUT IMPERFECTIONS 

11.1.1 Optimization and Analysis in Karamba 

As a first step, the optimization process has been performed on a geometry without initial 

imperfections (NI). Table 10 and Figure 54 depict the geometrical properties of the 

geometry found through the optimization process. 

Table 11. Parametric description of the optimized solution 

𝑰𝒎𝒑. 𝒎 (𝒌𝒈) 𝒂 𝒏𝒊 𝒏𝒉 𝜽 

NI 557 0.11 4 22 71 

      

 

Figure 54. Optimized geometry 
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According to the results of the non-linear analysis performed with Karamba, this structure 

has a maximum utilization of the elements 𝑈 = 0.95, while the vertical and horizontal 

displacements stood at 17.20 and 4.16 mm respectively. As we can see these results 

respect the boundaries imposed as hard constrains for the optimization process. 

11.1.2 Verification of the structural performance 

In order to assess the reliability of Karamba the results obtained from the optimization 

process have been compared with those obtained from an analysis with a more reliable 

FEM software: Oasys GSA. The geometry obtained in Rhino has been exported with a 

plugin called Geometry Gym [47] (available for free for academic use) and imported 

directly in GSA. Geometric and material2 non-linearities have been taken into account for 

the analyses in GSA. 

According to the results the maximum vertical and horizontal maximum displacements 

are 17.35 and 14.65 mm respectively. As we can see, the vertical displacement is almost 

unaltered while the horizontal displacements are significantly different with respect to the 

one identified in Karamba. 

 

              

Figure 55.  50-times scaled deformed configurations in Karamba (left) and GSA (right) 

 

                                                 
2 GSA is only capable to model Elasto-plastic material  
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11.1.3 Assessment of robustness 

The same geometry has been tested after the application of imperfections (𝑒0 =
𝐿

157
=

44𝑚𝑚 ) on the axis. (id: P1_NI_I) 

An incremental analysis has been performed in GSA to assess the ultimate load of the 

imperfect column. 

 

Graph  2. Load factor VS horizontal displacement of node 108 for perfect and imperfect 

shape 

 

 

Figure 56. Location of the node where displacement is traced (node 108) 

As we can see the maximum achievable load is about 60% of the applied load 𝑃0 =

1957 𝑘𝑁. Therefore, we can conclude that, despite the perfect structure is capable to 

withstand the design load (Pcr=2050 kN), as soon as imperfections are considered, the 

structural system is not stable and hence cannot be considered sufficiently robust. 
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11.2 OPTIMIZATION WITH IMPERFECTIONS 

11.2.1 Optimization and Analysis in Karamba 

The Optimization algorithm has been applied to an initial geometry with global axial 

imperfections (GI) already included in the initial geometry ( id: P1_GI_I ). The algorithm 

converged to a solution with the geometrical properties reported in Table 12 and Figure 

57. 

Table 12. Parametric description of the Optimized geometry 

𝑰𝒎𝒑. 𝒎 (𝒌𝒈) 𝒂 𝒏𝒊 𝒏𝒉 𝜽 

GI 584 0.13 9 35 55 

 

      

 

Figure 57. NI (left) vs GI(right) optimized geometry with reference node  

As we can see the structure is significantly different from the one identified previously. 

The optimization process converged to a solution characterized by higher values of each 

parameter, making the mesh much denser.  

 

11.2.2 Verification of geometry optimized with imperfections 

Despite not completely correct from an engineering point of view (the structure is not 

axial-symmetric, also in the C-S), the structure with initial imperfections identified with 

Karamba have been checked in GSA (id: P1_GI_I). 
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 KARAMBA GSA 

IMP. GI GI 

𝜹𝒗(𝒎𝒎) 16.53 16.54 

𝜹𝒉(𝒎𝒎) 17.69 17.78 

 

As we can see in this case the two Software packages converged to almost the same 

solution. Furthermore, the structure results verified under the design load. 

In order to investigate the ultimate load of this configuration, an incremental analysis has 

been performed in GSA. 

 

Graph  3. Results of incremental analysis for geometry optimized with global 

imperfections 

As we can see this structure is capable to withstand the design load with a safety margin 

equal to 1 −
𝑃𝑢𝑙𝑡

𝑃0
= 1 −

2426 𝑘𝑁

1957 𝑘𝑁
= 0.24 = 24% 

 

11.3 SOLUTION FOR RANDOM IMPERFECTIONS 
Despite an optimized solution has been found an observation is necessary. It is not 

reasonable to assess the robustness of the imperfect structure under the same conditions 

for which the structure has been designed for due to the randomness of imperfections. 

Hence, in order to take into account the randomness of imperfections, only the parametric 

description of the mesh has been used while the definition of the cross sections has been 

performed on a straight column, so that the structure results symmetric. 

11.3.1 Verification of structural performances and robustness verification for 

modified GI 

The same parametric description of the geometry obtained from the optimization process 

with GI has been used as input for a size optimization. Hence this structure is 

characterized by a totally equal mesh but different C-S with respect to P1_GI_I 
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The structure with and without imperfections (id: P1_GI_P_M and P1_GI_I_M ) has been 

tested in GSA.  

 
Figure 58. Exploded view of distribution of C-S, inclined elements and hoops for 

geometry optimized with initial imperfections (P1_GI_I) 

 

 

Graph  4. Results of incremental analysis on geometry modified, optimized with initial 

global imperfections 
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Figure 59. Failure mode and corresponding stresses for P1_GI_P_M (left, scale 1:100) 

and P1_GI_P_M (right, scale 1:10) 

 

 

Graph  5. Summary of results of incremental analyses for 𝑝1 
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12 DEFINITION OF THE OPTIMUM SOLUTION FOR 𝒑𝟐 

The same procedure described above have been applied also for geometries with external 

shape defined by 𝑝2. 

All the results have been summarized in Graph  6. 

 

Graph  6. Summary of results for pattern 2. 

As we can see, again the structures without imperfections are much stiffer and have higher 

ultimate load. Between the imperfect geometries, only the geometry with both mesh and 

C-S optimized for global imperfections (P2_GI_I) is sufficiently strong to withstand the 

design load. 

Figure 60 depicts the failure mode of the columns for the different configurations. As 

shown, the central “bulb” is not significantly affected by deformations, while the bearings 

are highly deformed, and as we know, the higher the deformations, the higher the stresses. 

This hypothesis is confirmed by the analysis of the stress distribution reported in Figure 

61. From the picture we can clearly see that both the area of the bulb in compression and 

the area next to the supports are particularly stressed. 
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Figure 60. 1:25 deformed shapes at failure 

 

 

Figure 61. Analysis of stress distribution at failure for P2_ NI_P and P2_NI_I 
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13 COMPARISON OF RESULTS 

All the results of the non-linear analyses performed on the different models have been 

summarized in Graph  7 and Table 13. 

 

Graph  7. Summary of incremental analyses of all model tested 

 

Table 13. Summary of strength performances of different solutions (highlighted in red 

those that fail under the design load) 
 

P1 P2 

imp. opt.3 NI GI GI_M NI GI GI_M 

𝒎 (𝒌𝒈)  557 584 607 560 685 609 

𝒊𝒎𝒑  P I I P I P I I P I 

𝑷𝒄𝒓 4(𝒌𝑵)  2192 - - 3072 - 2388 - - 2955 - 

𝑷𝒖𝒍𝒕 (𝒌𝑵)  2050 1124 2426 2387 1507 2309 1037 2293 2286 1428 

𝑷𝒖𝒍𝒕/𝒎 (𝒌𝑵/𝒌𝒈)  3.68 2.02 4.15 3.93 2.48 4.12 1.63 3.35 3.75 2.34 

𝑳𝑭5 = 𝑷𝒖𝒍𝒕/𝑷𝟎  1.05 0.57 1.24 1.22 0.77 1.18 0.53 1.17 1.17 0.73 

 

  

                                                 
3 Imperfections used in the optimization process and eventual modifications 
4 Computed via modal analysis in GSA 
5 Load Factor 

0

500

1.000

1.500

2.000

2.500

 -  10  20  30  40  50  60

P
 [

K
N

]

horiz. displ [mm]

P1_NI_P P1_NI_I P1_GI_I P1_GI_P_M P1_GI_I_M

P2_NI_P P2_NI_I P2_GI_I P2_GI_P_M P2_GI_I_M



69 

 

13.1 ASSESSMENT OF THE OPTIMIZATION LEVEL 
Since it is the main goal of this thesis, it is now time to assess whether this structures are 

actually optimized. Despite the structures resulted highly optimized in Karamba, the 

limitations of the software to perform accurate analysis led to discrepancies between the 

performances used in the optimization and the “real performances” assumed to be the one 

provided by GSA. It is to be said that this inaccuracy are due to the type of analysis 

implemented in Karamba, where only geometric non-linearities can be taken into account. 

However, probably this type of analysis has been preferred as material non linearities 

increase dramatically the time for the analysis. Consider that, for these types of 

geometries, the analysis in Karamba take about 5-10 seconds, against the 6-12 hours for 

the one in GSA. Taking this into consideration, the speed of Karamba is fundamental 

when dealing with optimization problems, where thousands of models have to be 

analysed. 

On the other hand, it is to be said that all the structures sized in Grasshopper via Karamba 

resulted verified in the conditions for which they have been designed for. Only when 

imperfections are added to structures designed for a perfect system (all those not in red 

in the table), they did not resulted verified. 

On the other hand all the structures tested in the conditions for which they have been 

designed performed with about a 20% margin (LF-1), except for geometry P1_NI_P that 

have only 5%, with respect to the minimum strength. Hence, we can conclude that the 

structures are still not fully optimized. 

As already mentioned, the reason for this margin is probably due to the difference in the 

type of analysis performed, but also due to the constrain used for the optimization problem 

(constrain on U), that do not relate directly to the stresses. 

 

13.2 ASSESSMENT OF STRENGTH AND EFFICIENCY 

13.2.1 Comparison between geometries 

As discussed in the previous chapter, the geometries resulted not completely optimized 

from the point of view of the load carried. However, it is interesting to verify whether 

these geometries are at least efficient. 

Looking at the ratio between the critical load 𝑃𝑢𝑙𝑡  and the design load 𝑃0 it can be clearly 

seen that most of the design are not strong enough to withstand the load ( highlighted in 

red). As expected these are all geometries with imperfections applied on the axis. The 

only imperfect geometries that are capable to resist the load are those that have been sized 

with imperfections already applied (GI_I). These geometries not only are able to resist 

the actions with the imperfections, but have ultimate load that is equivalent or higher than 

perfect structures. However, this is not completely for free as in order to achieve these 

performances higher quantities of material are needed. 
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Despite this, when looking at the ratio between 𝑃𝑢𝑙𝑡/𝑚, that is a factor that express the 

efficiency of the usage of material, the load carried per unit of mass, we can clearly see that these 

structures also have the highest efficiencies. 

13.2.2 Comparison with a Simple Hollow C-S 

In order to verify if these geometries are actually more efficient that a traditional hollow 

cross section, some test have been performed. Circular Hollow tubes of 3D printed steel 

have been designed so that they had the same weight and the same Eulerian load as the 

𝑃𝑢𝑙𝑡 of perfect geometries. 

The results of the non-linear analyses performed on GSA under the same loading and 

boundary conditions, and same level of imperfections are summarized in Graph  8 and 

Table 14. 

As we can see from the table the ultimate load of the columns designed without 

imperfections (NI_I) is lower than the CHS column. Hence these columns cannot be 

considered better than traditional hollow C-S. The process of optimization with initial 

imperfections (GI), instead, brought to geometries with slightly advantageous bearing 

capacity. 

Another major advantage is the serviceability of the column. In fact, as we can see from 

the graph, all the designed columns result significantly stiffer than the traditional hollow 

C-S with the same material properties. 

 

Graph  8. Results of Incremental analysis for comparison with traditional hollow C-Ss 
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Table 14. Comparison of derived geometries and traditional hollow cross sections 

I.D CHS 305 10.9 CHS 344 10.5 CHS 316 10.5 CHS 337 10.7 

REFENCE COLUMN 6 P1_NI_P P1_GI_P_M P2_NI_P P2_GI_P_M 

𝒎 (𝒌𝒈)  557 607 560 609 

𝒅 (𝒎𝒎)  305 344 316 337 

𝒕 (𝒎𝒎)  10.9 10.5 10.5 10.7 

𝑷𝒄𝒓  (𝒌𝑵)  2192 3072 2388 2955 

𝑷𝒖𝒍𝒕 (𝒌𝑵)  1287 1466 1286 1424 

𝑷𝒖𝒍𝒕/𝒎 (𝒌𝑵/𝒌𝒈)  2.31 2.42 2.30 2.34 

𝑷𝒖𝒍𝒕/𝑷𝒖𝒍𝒕,,𝒓𝒄_𝑰
7  1.14 0.97 1.24 1.00 

 

13.3 COMPARISON WITH ORIGINAL COLUMN 
Part of the analysis involves also the comparison with the element in place, the original 

CHS column (OC). For this study, a non-linear analysis on OC with the imperfections 

prescribed by EC3 has been performed. 

The comparison is performed with the worst-case scenario, that means that both 

geometries are affected by global imperfections. The reason for this choice is obvious. 

Since the real structure would be affected by imperfections, it is not reasonable to perform 

a comparison with a design that is technologically not achievable. Hence, between all the 

structures presented in the previous chapters, only the GI_I_M are considered. 

 

Graph  9. Incremental analysis for optimised geometries with imperfections and original 

column. 

 

                                                 
6 Column with same Eulerian load and mass 
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Table 15. Summary of performance of the imperfect geometries 

I.D P1_GI_I_M P2_GI_I_M OC 

𝒎 (𝒌𝒈)  607 609 554 

𝑷𝒖𝒍𝒕 (𝒌𝑵)  1507 1428 1738 

𝑷𝒖𝒍𝒕/𝒎 (𝒌𝑵/𝒌𝒈)  2.48 2.34 3.14 

𝑷𝒖𝒍𝒕/𝑷𝟎  0.77 0.73 0.89 

 

As we can see from Graph  9, thanks to a Young modulus that is more than twice the 

Young modulus of 3D printed steel, OC displaces less than the 3D printed columns and 

hence less stresses are developed. As a consequence, OC is capable to carry higher loads 

compared to the geometries that have been found. 

Furthermore, the element in place has a lower mass. The combination of strength and 

lightness make OC much more efficient than the 3D printed columns that have been 

developed. 
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DISCUSSION 

14 CONCLUSIONS 

14.1 SUMMARY OF THE PROCESS 
The basic knowledge needed to approach the world of structural optimization for WAAM 

elements has been summarised. The advantages and disadvantages of 3D printed steel 

columns have been introduced and further discussed in the analysis. The unit of 

comparison used for assessing these advantages and disadvantages was the structural 

optimization of a 7 m branch of a dendriform column. In order to evaluate the level of 

optimization of the element a mathematical approach, based on identification of the 

geometry with the lowest mass, has been used.  

In order find the optimized geometry an algorithm has been generated. This algorithm 

takes as input the parametric geometry its boundary conditions and performs two non-

linear analysis: the first to identify the internal forces and perform the size optimization 

and a second to compute the actions on the elements. This algorithm was integrated with 

an evolutionary solver to solve the optimization problem and find the parametric 

description of the optimized geometry were the resistance (limit on U) and the stability 

of the structure (limit on displacements). 

Some initial assumptions have been made to limit the feasible domain of the optimization 

problem: These assumptions were necessary to take into account external constrains like:  

• the compatibility of the distribution of the material (limit on the size of the cross 

sections and minimum spacing) 

• the constructability of the connections (definition of 𝑟𝑟) 

• the computational cost of optimization problems 

Due to the complexity and novelty of the topic, some other assumptions had to be made 

concerning the shape of the column. Despite, theoretically any shape is achievable thanks 

to 3D printing, in order to perform the structural analysis a mesh made of only 1D 

elements was chosen. Hence one of the assumptions was the mesh to be optimized. 

Another assumption was the external shape. From the literature a solution for a circular 

hollow strut has been retrieved. As a further analysis, this has been compared with a sine-

shaped column. 

Once the problem was fully defined, the optimization algorithm has been applied and the 

parametric description of the optimum solution identified. For this task the evolutionary 

solver was used. In order to ensure the stability of the algorithms, displacements, actions 

and utilization of elements are plotted as a function of the applied load. The location of 

the spurious peaks is then compared to the output the “Buckling Mode” component of the 
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FEM software to identify a threshold to the solutions that are considered safe from non-

convergence (BF>1.1). 

Two types of constrains have been used as hard constrains for the analysis: one based on 

resistance (U<1) and one based on serviceability, based on displacements as fractions of 

the length. The analysis has been run for 4 different combinations of external shape and 

levels of imperfection. 

             Imperfection 

Pattern NI GI 

p1 P1_NI P1_GI 

p2 P2_NI P2_GI 

14.2 SUMMARY OF RESULTS 
The geometries obtained from the optimization process have then been analysed and 

compared with the element on site and with circular hollow tubes with same 

imperfections, material, critical load and weight. According to the results, moving from 

Karamba, where the structures resulted very optimized for the constrains set, to GSA, 

where the actual strength properties are tested (geometrical and material non-linear 

analysis), the structures resulted still slightly oversized, with about a 20% safety margin 

that make the structures not fully optimized.  These behaviours are identified only when 

the structures have been tested under their design conditions. In fact, as soon as 

imperfections (note that 𝑒0 ≈ 44𝑚𝑚) are added the load capacity is reduced of about 

50%. 

GEOM. P1_NI P1_GI_M P2_NI P2_GI_M 

𝑷𝒖𝒍𝒕,𝑰/𝑷𝒖𝒍𝒕,𝑷
8 55% 63% 45% 62% 

 

Comparing the structural performances of the optimized geometries with circular hollow 

3D printed tubes with same imperfections and critical load the results varied depending 

on the condition under which the structures had been optimized. When no imperfections 

were added in the optimization process the geometries resulted weaker than the normal 

tubes. When GIs were added instead, the resulting geometry (GI_M) performed equally 

or better (3% of additional load bearing capacity) than the tubes. 

Contrarily, when the geometries are compared to the original column, made of traditional 

steel and produced according to the traditional processes (imperfections according to 

EC3), the geometries resulted 14% and 17% weaker for 𝑝1  and 𝑝2 respectively. 

Considering the results of the two comparisons, we can conclude that, under the 

conditions studied in this thesis and the actual state of the technology, the reduced Young 

modulus and the higher level of imperfections, make 3D printed steel elements not 

suitable for improving the structural performance of steel columns. 

 

                                                 
8 Ultimate load of imperfect geometry divided by ultimate load of perfect geometry 
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15  ANSWERS TO THE RESEARCH QUESTIONS 

• How would an optimized 3D printed column look like? 

    

Figure 62. Optimized 3D printed geometries 

According to shapes, mesh, boundary conditions, design load and hard constrains set for 

the analyses the appearance of column is the one reported in Figure 62. The sine-shaped 

one weights about 607 kg and has a radius of 330mm in the centre. The other one has a 

mass of 609 kg and is 400mm thick in the centre (GI_M geometries). 

 

• Is it already possible to achieve better performances with 3D printing? 

Although general conclusion cannot be drawn, according to the results obtained from the 

case study, thanks to a higher Young modulus and lower imperfections traditional steel 

elements should still be preferred for structural applications. 

. 

16 FINAL REMARKS AND FUTURE RESEARCH 

As highlighted in the conclusions the Young modulus is the key element for the design 

and optimization of structural elements. Further research is needed to reduce the 

uncertainties related to its value. Furthermore, the material shows highly anisotropic 

behaviours depending on the printing direction and angle [6], [48]the designer should be 

conscious and take into account the differences in properties according to the printing 
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direction. Hence, specific knowledge and familiarity with the printing process would be 

required to engineers to correctly predict the toolpath and hence the material properties. 

However, this may not be compatible to the computational cost of optimization problems, 

where the structural analysis needs to be performed iteratively.  This rises the following 

research questions: 

• Is it possible to solve the optimization problem taking into account the printing 

process? 

• Is it actually worth it to include it in the optimization process or the assumption 

of a unique Young modulus, depending on the general printing direction is 

sufficient? 

Finally, some observations need to be done on the assumption of the imperfections of 

WAAM elements. As highlighted in this thesis the imperfections play a significant role 

in the design and optimization of the structural elements. In this thesis the imperfections 

have been modelled in accordance with the EC3, that is not meant to 3D printed steel 

structures. As highlighted by van Bolderen [3] the imperfections of 3D printed elements 

are mainly associated to misalignment in the deposition of one layer onto the other, than 

due to general crookedness of the structural elements. Hence the following research 

question: 

• Are the procedures suggested in EC3 suitable to ensure a correct modelling of 3D 

printed structures? 
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APPENDICES 

 DENDRIFORM STRUCTURES 

As highlighted by the name itself, dendriform structures, also called branching structures, 

are characterized by a tree-like structure. From a technical point of view there is not a 

unique definition what actually a dendriform structure is, however according to 

Architecture Technology and Innovation Laboratory (2014), it could be defined as: 

“ flat or spatial structural systems which consist of separate branches, each one of which 

forks out at a specific point (knot) into at least two other branches. Such structures can 

be subjected to tension, to compression, to flexion and to torsion.”  

Despite this generic observation, dendriform structures are designed to avoid bending 

moments and work mainly in compression. It has to be underlined, that this behaviour is 

the result of a structural optimization based on a specific loading condition. Therefore, 

the designer has to be conscious that additional load cases would lead to undesired 

bending moments, and the structure has to be ready to withstand also these additional 

stresses. 

 

Figure 63. Tree principle [49] 

 The main idea behind the use of such structures is to reduce the lever arm of loads, 

collecting them at the application point, and transferring them through the branches to the 

main trunk. The main advantages of these structural systems are that the superstructure is 

continuously supported, and therefore the roof requests smaller supports, but at the same 

time the footprint at the basement level is limited and concentred in a single location. In 

other words, lighter roofs, higher spans and smaller footprint. [50] 
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DEFINITION OF THE GEOMETRY 

Morphology 

As we already know in nature trees are not geometrically perfect but are affected to a 

certain level or randomness. However, from a structural point of view randomness is not 

acceptable as is associated to unpredictability. Therefore, some numerical parameters 

have to be defined in order to describe mathematically this sort of randomness. Self-

similar fractal geometry is usually exploited in these cases. 

Fractals are formed by the repetition of an original shape through a geometric 

transformation, and then repeating this process iteratively in the next steps for infinite 

times. [50] 

 

Fractals are made so that the same pattern or geometry can be iteratively repeated 

indefinitely at different scales, to form an infinitely complex structure. However, they are 

made so that their behaviour can be described by an algorithm. This last property is 

fundamental, as computers have been built for the porpoise of solving complex 

algorithms. It is therefore understandable the decision to exploit the fractal geometry to 

design structures. 

An interesting example on how to describe the fractal behaviour has been proposed by 

Barnsley [51]. The theory is based on a geometrical transformation of the initial geometry 

through a simple mathematical operator that scales, rotates and shifts the initial geometry. 

The 2-dimensional form is the following. 

 

In order to maintain the initial proportions of the system the scale have to be created so 

that  ∑ λ𝑘
𝑖=1 𝑖

𝐷
= 1 

Figure 64. Examples of fractal geometries [59] 
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Figure 65. Examples of fractal transformations [50] 

 Patterns 

It is evident that infinite geometries can be obtained through the geometrical 

transformation proposed here above. Hence it is useful to have an overview of some 

possible combinations of number of elements, dimensions and lengths that can be applied 

in the practice. These patterns are particularly useful as given the geometry the element 

needs to support, a possible geometry is already suggested. 

 

Figure 66. Examples of geometrical patterns and geometrical surface [49] 

DESIGN TOOLS 
When computers were still not available, there were few methods available for designing 

this type of structures. Otto Frei and Antonio Gaudi explored the combination of physical 

models and graphic statics. 
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Figure 67. Otto Frei 's model for tree-like structures [49], [52] 

 Nowadays, the principle has remained the same. Graphic statics variations, usually in 

combination with more advanced computational techniques, are utilized for the analysis 

of dendriform structures. Advanced graphic statics [53] and 3D graphic statics [54] are 

good examples of this practice. The advantage of this techniques is that being graphical 

methods can be easily implemented into numerical algorithms for parametric design. 

 

Figure 68. In the left: computer aided graphic static for the design of a market roof; in 

the right: convex polyhedral force diagrams for the determination of internal forces. 

RECENT STRUCTURAL APPLICATIONS  
Before the introduction of fractals, architects were already experimenting with tree-like 

structures. One of the very first examples of actual dendriform architecture is the Art 

Nouveau of the beginning of 20th century. One of the most relevant examples of such an 

architecture is the interior terrace of the Grand Palais in Paris built in 1900. [52] 
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Almost in the same years in Spain Gaudi was experimenting the tree-like pillars for the 

Sagrada Familia. 

  
Figure 69. Terrace at Grand Palais in Paris [55], [56] 

 

Thanks to the spread of computers, in the last few decades the use of these structures has 

grown more and more. [52], [58] Just to cite few examples of existing structures: 

• 1991: Stuttgart Airport Terminal, Germany 

• 1992: Palaice de Justice, Melun, France. 

• 1994: Therme Bad Oeynhausen, Germany. 

• 1996: Oriente Station, Lisbon, Spain. 

• 2000: Beaverton Library, Oregon, USA  

• 2013: Tote Restaurant, Mumbai, India. 

Stuttgart Airport Terminal (1991)  Palaice de Justice (1992) Therme Bad Oeynhausen (1994) 

   
Oriente Station (1996)   Beaverton Library (2000) Tote Restaurant (2013) 

  

     

Figure 70. Detail of the dendriform pillars in the Sagrada Familia and physical 

model for the design of the church [57] 
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Looking at the pictures, it is clear how variable dendriform structures can be, both in 

terms of materials and geometries. 
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 GENERATION OF THE MESH 

i. Summary of Parameters and Conditions 

Parameters: 

• 𝑟𝑟  and 𝑎: reference radius and shape amplification factor (alredy introduced in 

Chapter 8.3) 

• 𝑛𝑖: the number of inclined elements 

• 𝑛ℎ:number of hoops 

• 𝜃: total angle of rotation of the hoops per meter in degrees 

Conditions: 

• The number of inclined elements is the same in all modules 

• The inclined elements of two adjacent modules converge in the same point in the 

circles 

• The radius of the circles is scaled according to the pattern 𝑝(𝑥)identiefied in 

Chapter 8.3. 
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ii. Generation Procedure 

1) Draw two circles spaced according to 𝒏𝒉 and connect two aligned points with a 

segment 

 

2) Scale circles according to R(x) 

 

𝑅(𝑥) = 𝑟𝑟 + 𝑎 𝑝(𝑥)    𝑥, coordinate along the axis 

 

3) Rotate point along the circumference of an angle 𝜶 

Example for 𝛼 = 45°  

 

Note that: 𝜃 = 𝛼/𝑑𝑥   𝑑𝑥,distance between circles 

 

𝛼 
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4) Repeat the same procedure 𝒏𝒊 times, with equispaced points 

Example for 𝑛𝑖 = 2  

 

Example for 𝑛𝑖 = 5  

 

5) Apply the same procedure with (−𝜶) 
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6) Apply same procedure for multiple elements 

6.1

 

6.2

 

6.3 
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6.4 

 

 

7) Transform the aches connecting the nodes into straight elements 
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  FULL RESULTS TEST ON CONVERGENCE  

i. Geometries tested for Convergence Analysis 

Here below the complete results of the convergence analysis. 

Table 16. Parametric description of the geometries that have been tested 

𝒓𝒓 𝒂 𝒏𝒊 𝒏𝒉 𝜽 

0 0.6 5 33 46 

50 0.6 5 28 35 

100 0.2 4 31 53 

150 0.1 5 35 52 

200 0.1 12 35 29 

0 0.8 9 35 11 

50 0.6 5 30 33 

100 1.3 8 30 15 

150 1.4 2 24 12 

200 1.7 1 6 64 

 

Full plot of BF as a function of applied load for the 10 geometries analysed. 

1. 

 

2. 

 
3.  

 

4. 
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5. 

 

6. 

 
7. 

7 

8. 

 

9. 

 
 

10. 
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Graphs for the comparison of the peaks of the estimated buckling load and the other scaled 

results of the non-linear analysis. 

 

1. 

 

2. 

 
3. 

 

4.  

 
5. 

 

6. 
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7. 

 

8. 

 
9.  

 
 

10.  
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ii. Algorithm for Convergence Analysis 
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 DISTRIBUTION OF CROSS-SECTIONS FOR 

OPTIMIZED GEOMETRY P1_GI_I 

 d:40.0 t:10.0 

 d:30.0 t: solid 

 d:30.0 t:10.0 

 d:30.0 t:5.0 

 d:20.0 t: solid 

 d:20.0 t:5.0 

 d:10.0 t: solid 

 

  

Back 

 

Front 

 

Left 

 

Right 

 

Bottom 

 

Top 
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 FEEDSTOCK MATERIALS 

Two different products have been used to produce the specimens used in the tests 

performed to assess material properties and imperfections. 

i. Ugiweld Welding Wire 

Here below the datasheet of the material used as feedstock to produce plate shaped 

specimens. 

 

ii. Oerlikon Welding Wire 

Here below the datasheet of the material used as feedstock to produce all specimens 

except the plate shaped ones. 
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