
 
 

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA  
 

 

SCUOLA DI INGEGNERIA E ARCHITETTURA 

                                                                            

DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA, AMBIENTALE E DEI 

MATERIALI - DICAM 
                                       

INTERNATIONAL MASTER COURSE IN CIVIL ENGINEERING 

 

TESI DI LAUREA 

in 

Infrastructure Systems 

 

 

 

STUDY OF THE BITUMEN AGING EFFECTS ON THE 

RHEOLOGICAL PROPERTIES AND FATIGUE 

BEHAVIOR 

 

 

CANDIDATO: RELATORE: 

Mahdi Ali  Chiar.mo Prof. Andrea Simone. 

  

 CORRELATORI: 

Prof.Eng. Cesare Sangiorgi. 

 Dott.Ing. Francesco Mazzotta. 

 
 

 

Anno Accademico 2017/2018 

 

Sessione I 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

A miei genitori 
A mia sorella Maram 

A mia moglie Nur 
Grazie per aver creduto sempre in me. 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Keywords 

 
 

 

 

 

KEYWORDS: 

Bitumen 

Ageing 

Rheology 

Fatigue life 

Healing 

Polymer modified bitumen 

SBS 

Crumb rubber 

Dynamic Shear Rheometer (DSR) 

RTFOT 

Laboratory testing 

 

 

 



Acknowledgements 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Aknoloedgments 

vii 
 

ACKNOWLEDGEMENTS 

 

First, I would like to thank God for all opportunities and blessings that have been 

bestowed on me through the graduate school. I would not have been successful in this 

long journey without endless love, support and encouragement from my family. 

 

This research study was conducted under the supervision of Prof.Eng. Andrea Simone. I 

would like to express my deepest gratitude to him for providing me this opportunity which 

has been a great experience for me that will enrich my life forever. 

 

I would like to thank Dr. Eng. Francesco Mazzotta for his continuous support, guidance, 

patience and encouragement throughout my research study.  

 

I would like also to Prof. Cesare Sangiorgi for all his support both in technical and 

theoretical Part of the Research. 

 

This Thesis is dedicated to my dear family, my father Munther, my mother Mariam, my 

sister Maram and my sweet beautiful wife Nur. I would like to thank them for supporting 

me emotionally and morally throughout my life. Thank you for always believing in me. 

 

 

 

 

 

 

 

 

 

 



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Table of Contents 

 
 

Table of Contents: 

INTRODUCTION .............................................................................................................. 1 

1. CHAPTER 01: BITUEMEN AND AGING. ................................................................ 5 

1.1. Overview ....................................................................................................................... 5 

1.1.1. What Is Bitumen? ................................................................................................ 5 

1.1.2. Origin of Bitumen. ............................................................................................... 5 

1.1.3. Bitumen Crude .................................................................................................... 7 

1.1.4. Bitumen Applications .......................................................................................... 8 

1.1.5. How is bitumen Produced? ................................................................................. 9 

1.1.6. Bitumen Standards & Grades .......................................................................... 11 

1.1.7. Engineering properties of bitumen .................................................................. 13 

1.1.8. Different forms of bitumen ............................................................................... 14 

1.1.9. Requirements of Bitumen ................................................................................. 16 

1.1.10. Tests on bitumen ................................................................................................ 16 

1.2. Ageing ......................................................................................................................... 22 

1.2.1. Introduction ....................................................................................................... 22 

1.2.2. Influence of ageing on bitumen ........................................................................ 24 

1.2.3. Short and long term ageing .............................................................................. 25 

1.2.4. -6 Factors influencing aging of bitumen .......................................................... 27 

1.2.5. Combined effects of ageing and moisture diffusion on bitumen ................... 29 

1.2.6. Methods of laboratory ageing .......................................................................... 31 

1.3. SUPERPAVE PERFORMANCE GRADING (PG SYSTEM)................................................ 33 

1.3.1. Interpretation of G* and δ................................................................................ 35 

1.3.2. SHRP Properties ............................................................................................... 36 

1.3.3. PG Tests and Specifications ............................................................................. 36 

1.3.4. Performance Grade Nomenclature .................................................................. 37 

2. CHAPTER 2: Polymer Modified Bitumen (PMB) and Use of Crumb Rubber In Road 

Pavment. .......................................................................................................................... 41 

2.1. Polymer Modified Bitumen (PMB) ............................................................................. 41 

2.1.1. Introduction ....................................................................................................... 41 

2.1.2. PMB's qualities & usage: .................................................................................. 42 

2.1.3. Popular polymers for bitumen modification ................................................... 43 

2.1.4. Recyclability of PMB. ....................................................................................... 52 

2.2. Modified bitumen with rubber powder .................................................................... 53 



Table of Contents 

x 
 

2.2.1. Introduction ....................................................................................................... 53 

2.2.2. CR production ................................................................................................... 54 

2.2.3. CR-bitumen interaction .................................................................................... 55 

2.2.4. CR selection and acceptance ............................................................................ 56 

2.3. The Use of Recycled Tire Rubber (Crumb Rubber) to Modify Asphalt Binder and 

Mixtures. ................................................................................................................................. 57 

2.3.1. Tires .................................................................................................................... 59 

2.3.2. Various Processes for Creating CR Binders and Mixtures ........................... 61 

3. CHAPTER 03: Rheology of Bitumen ........................................................................ 69 

3.1. Introduction ................................................................................................................ 69 

3.2. Rheology, deformation and flow ............................................................................... 71 

3.2.1. Elasticity, plasticity and the behavior of solids ............................................... 71 

3.2.2. Viscosity and the behavior of liquids ............................................................... 72 

3.2.3. Visco-elasticity ................................................................................................... 73 

3.3. Rheological Properties of Bitumen Binders ............................................................... 74 

3.3.1. Dynamic Shear Rheometers (DSR): oscillatory tests ..................................... 75 

3.3.2. Representation of rheological data .................................................................. 78 

3.4. LINEAR VISCOELASTIC ANALYSIS ................................................................................ 85 

3.4.1. Amplitude Sweep test ........................................................................................ 85 

3.4.2. Frequency Sweep Test ...................................................................................... 87 

Temperature Sweep Test .................................................................................................... 90 

4. CHAPTER 4: Rutting and Fatigue Cracking ............................................................ 95 

4.1. Introduction ................................................................................................................ 95 

4.2. Rutting......................................................................................................................... 96 

4.2.1. Description ......................................................................................................... 96 

4.2.2. Problem .............................................................................................................. 96 

4.2.3. Possible Causes .................................................................................................. 96 

4.2.4. Repair ................................................................................................................. 97 

4.2.5. Performance Tests for Rutting ......................................................................... 97 

4.2.6. Creep Test ........................................................................................................ 101 

4.3. Fatigue Cracking in Asphalt ...................................................................................... 105 

4.3.1. Description ....................................................................................................... 105 

4.3.2. Problem ............................................................................................................ 106 

4.3.3. Possible Causes ................................................................................................ 106 

4.3.4. Repair ............................................................................................................... 106 



Table of Contents 

xi 
 

4.4. Fatigue Mechanisms ................................................................................................. 107 

4.5. Approaches to Characterize Fatigue Behavior ........................................................ 108 

4.5.1. Traditional Phenomenological approach ...................................................... 108 

4.5.2. Fracture Mechanics Approach ....................................................................... 111 

4.5.3. Dissipated Energy Approach .......................................................................... 111 

4.5.4. Initial Dissipated Energy Approach .............................................................. 112 

4.5.5. Cumulative Dissipated Energy Approach ..................................................... 113 

4.5.6. Work Ratio Approach .................................................................................... 115 

4.5.7. Improved Use of Dissipated Energy: Ratio of Dissipate Energy Change 

(RDEC) approach ............................................................................................................ 116 

4.5.8. Healing phenomenon ....................................................................................... 119 

4.6. Bitumen Fatigue........................................................................................................ 120 

4.6.1. Introduction ..................................................................................................... 120 

4.6.2. Bitumen Fatigue Criteria ................................................................................ 120 

4.6.3. Stiffness of Binder in Fatigue Testing ............................................................ 121 

4.6.4. Impact of Modified Binders............................................................................ 121 

4.6.5. Strain Amplitude ............................................................................................. 122 

4.6.6. Impact of Steric Hardening and Temperature ............................................. 122 

5. CHAPTER 05: Experimental Program. .................................................................. 127 

5.1. Introduction .............................................................................................................. 127 

5.2. Materials ................................................................................................................... 127 

5.3. Overview of experimental research program ......................................................... 128 

5.4. Preparation of modified binders .............................................................................. 130 

5.5. Methods of laboratory ageing ................................................................................. 132 

5.5.1. RTFOT ageing ................................................................................................. 132 

5.6. Test Methods. ........................................................................................................... 134 

5.6.1. Dynamic Shear Rheometer (DSR) ................................................................. 134 

5.6.2. Plate-plate system DSR ................................................................................... 135 

5.6.3. Amplitude Sweep Test .................................................................................... 136 

5.6.4. Frequency Sweep Test .................................................................................... 140 

5.6.5. Fatigue Test ...................................................................................................... 144 

5.6.6. Time Sweep Test for Fatigue and Healing. ................................................... 148 

5.6.7. Time Sweep Test with Fixed Initial Complex Modulus ............................... 149 

6. CHAPTER 06: Results Analysis. ............................................................................. 153 

6.1. Amplitude Sweep Results ......................................................................................... 153 



Table of Contents 

xii 
 

6.2. Frequency Sweep Test Results. ................................................................................ 153 

6.2.1. Master Curve ................................................................................................... 153 

6.2.2. Cross-over temperature method. ................................................................... 161 

6.2.3. Performance Grade ......................................................................................... 163 

6.3. Fatigue Test. .............................................................................................................. 165 

6.3.1. Fatigue Tests for Short Aged Bitumen .......................................................... 165 

6.3.2. Fatigue Tests at different temperature. ......................................................... 169 

6.3.3. Fatigue Tests for Long Aged Bitumen ........................................................... 169 

6.4. Time Sweep Test (Healing Test). .............................................................................. 170 

6.4.1. Healing Properties. .......................................................................................... 170 

6.4.2. Fatigue life with rest period for short aged bitumen.................................... 173 

6.4.3. Fatigue life with rest period at different temperatures. ............................... 175 

6.4.4. Fatigue life with rest period for Long aged bitumen.................................... 176 

7. CHAPTER 07. CONCLUSIONS. ............................................................................... 179 

References ...................................................................................................................... 181 

Sitography ...................................................................................................................... 185 

 

 



 List of figures and tables. 

 
 

List of Figures. 

Figure 1.1 -Percentage of usage of bitumen. ................................................................................. 5 

Figure 1.2 -Crude Oil .................................................................................................................... 7 

Figure 1.3 -Bitumen Chemistry. .................................................................................................... 7 

Figure 1.4 - S.A.R.A. .................................................................................................................... 8 

Figure 1.5 -Standard Bitumen Production Scheme ..................................................................... 11 

Figure 1.6 -Typical Bitumen Production Scheme ....................................................................... 11 

Figure 1.7 -Penetration Test Setup .............................................................................................. 18 

Figure 1.8 -Ductility Test ............................................................................................................ 19 

Figure 1.9 -Softening Point Test Setup ....................................................................................... 19 

Figure 1.10 -Viscosity Test ......................................................................................................... 20 

Figure 1.11 -Pavement cracking .................................................................................................. 24 

Figure 1.12 -Loss of aggregate .................................................................................................... 24 

Figure 1.13 -Rate of asphalt pavement hardening (Shell Bitumen Handbook, 1990) ................ 26 

Figure 1.14 -Penetration Grade test results for aged bitumen at different PAV ageing [32]. ..... 31 

Figure 1.15  -Rolling Thin Film Oven Test equipment ............................................................... 32 

Figure 1.16 -Samples pre- and post- RTFOT .............................................................................. 33 

Figure 1.17 - Relationship between G* and the components G’ & G’’ ...................................... 36 

Figure 2.1 - Typical Viscosity of Binder overlooking temperature. [19] .................................... 42 

Figure 2.2 -Structures of polyethylene (PE) and polypropylene (PP). ........................................ 45 

Figure 2.3 -Structure of ethylene-vinyl acetate (EVA). .............................................................. 46 

Figure 2.4 -Fluorescent images of EVA modified bitumen with various contents (by weight) of 

EVA. [20] .................................................................................................................................... 47 

Figure 2.5 -Structure of styrene-butadiene-styrene (SBS) and schematic illustration of reversible 

crosslinks in SBS. ........................................................................................................................ 48 

Figure 2.6 -Fluorescent images of SBS modified bitumen with various contents (by weight) of 

SBS. ............................................................................................................................................. 49 

Figure 2.7 -Morphology development with the storage time of a SBS modified bitumen at 160 

°C. ............................................................................................................................................... 50 

Figure 2.8 - Picture of a waste tire pile. ...................................................................................... 58 

Figure 2.9 - The three key benefits of recycled/reused materials. .............................................. 59 

Figure 2.10 -Ambient grind rubber (left) and Cryogenic fractured rubber (right). ................... 60 

Figure 2.11 -General processes for creating CR binders and mixtures. .................................... 61 

Figure 2.12 -Feed system to add dry CR into mixture production plant. ................................... 62 

Figure 2.13 -Wet Process On-site. .............................................................................................. 63 

Figure 2.14 -Terminal Blend CR (left); Mixture production plant with vertical binder storage 

tanks which allow for better agitation and storage (right). .......................................................... 64 

Figure 3.1 -Pitch drop experiment ............................................................................................... 70 

Figure 3.2 -Dynamic shear rheometer (DSR) ............................................................................. 70 

Figure 3.3 -Different types of flow curves .................................................................................. 73 

Figure 3.4 -Dynamic Shear Rheometer ....................................................................................... 75 

Figure 3.5 -Stress-Strain response during an oscillatory testing ................................................. 75 

Figure 3.6 -phase angle determination ........................................................................................ 76 

Figure 3.7 -Relationship between Shear Modulus and phase angle. ........................................... 77 

Figure 3.8 -Black Diagrams Representations .............................................................................. 78 

Figure 3.9 -Cole-Cole Diagram Representation. ......................................................................... 79 



List of figures and tables. 
 

xiv 
 

Figure 3.10 -Rouse Model ........................................................................................................... 81 

Figure 3.11 -Master Curve .......................................................................................................... 82 

Figure 3.12 -Parameters Master Curve ....................................................................................... 82 

Figure 3.13 -Preset of a shear strain amplitude sweep ................................................................ 85 

Figure 3.14 - Output amplitude sweep test. ................................................................................ 86 

Figure 3.15 -Output Amplitude Sweep test DSR software. ........................................................ 87 

Figure 3.16 -Preset of a frequency sweep controlled strain ........................................................ 88 

Figure 3.17 -Example output of the frequency sweep test .......................................................... 89 

Figure 3.18 -Preset Temperature Sweep Test ............................................................................. 91 

Figure 4.1 -Severe mix rutting. ................................................................................................... 96 

Figure 4.2 -Mix rutting. ............................................................................................................... 96 

Figure 4.3 -Outside wheelpath rutting. ........................................................................................ 96 

Figure 4.4 -Asphalt Mixture Performance Tester. ...................................................................... 98 

Figure 4.5 -Hamburg Wheel Tracking Device. ........................................................................... 99 

Figure 4.6 -Asphalt Pavement Analyzer. .................................................................................. 100 

Figure 4.7 -MSCR response curve. (Federal Highway Administration’s (FHWA’s) Asphalt, 

U.S. Department of Transportation, 2011). ............................................................................... 103 

Figure 4.8 -Typical Data MSCR and Jnr Definition. (Federal Highway Administration’s 

(FHWA’s) Asphalt, U.S. Department of Transportation, 2011) ............................................... 104 

Figure 4.9 -Determination of % Recovery in the MSCR test. .................................................. 105 

Figure 4.10 - Fatigue cracking as a result of frost action .......................................................... 106 

Figure 4.11 -Very severely fatigued cracked pavement ............................................................ 106 

Figure 4.12 -Fatigue cracking from a lack of edge support ...................................................... 106 

Figure 4.13 -Bottom-up cracking. ............................................................................................. 107 

Figure 4.14 -Top-Down cracking. ............................................................................................. 108 

Figure 4.15 -Wohler Curve ....................................................................................................... 109 

Figure 4.16 -Typical plot DER as a function of number of cycles in strain controlled test. ..... 115 

Figure 4.17 -RDEC curve with 3 behavior zone (Carpenter et al.2003) ................................... 118 

Figure 5.1 -Experimental research program flow chart ............................................................ 129 

Figure 5.2 -Silverson L4R High Shear Mixer. .......................................................................... 131 

Figure 5.3 -Rolling Thin Film Oven Test equipment. ............................................................... 133 

Figure 5.4 -Samples pre- and post- RTFOT .............................................................................. 133 

Figure 5.5 -Dynamic shear rheometer (DSR). .......................................................................... 135 

Figure 5.6 -Scheme of oscillatory test one cycle....................................................................... 136 

Figure 5.7 -Set up of temperature and Zero Gap DSR .............................................................. 137 

Figure 5.8 -Example of trimmed specimen ............................................................................... 137 

Figure 5.9 -Set up of the strain for Amplitude Sweep ............................................................... 138 

Figure 5.10 -DSR Diagram Amplitude Sweep Test for the short term aged sample (Hard_pfu.)

 ................................................................................................................................................... 139 

Figure 5.11 -Setting up Temperature DSR ................................................................................ 140 

Figure 5.12 -DSR screen setting up limit LVE range ............................................................... 141 

Figure 5.13 -DSR software output Frequency Sweep Test for the short term aged (Hard_pfu).

 ................................................................................................................................................... 142 

Figure 5.14 -G*-f Curve for the short term aged sample (Hard_pfu) ....................................... 143 

Figure 5.15 -Master Curve for the short term aged sample (Hard_pfu.) ................................... 144 

Figure 5.16 -DSR screen setting up of Fatigue test. .................................................................. 145 



List of figures and tables. 
 

xv 
 

Figure 5.17 -Schematic of Dissipated Energy Ratio versus Number of Cycles ........................ 147 

Figure 5.18 -Graph from fatigue test Soft_pfu at 2% strain DSR software. ............................. 147 

Figure 5.19 -DSR screen for time sweep test. ........................................................................... 149 

Figure 6.1 -Master Curve VR (Unaged, Short and long aged). ................................................ 154 

Figure 6.2 - Master Curve Hard_pfu (Unaged, Short and long aged) ..................................... 155 

Figure 6.3 -Master Curve Hard (Unaged, Short and long aged) ............................................... 156 

Figure 6.4 -Master Curve Soft_pfu (Unaged, Short and long aged). ........................................ 157 

Figure 6.5 -Master Curve Soft (Unaged, Short and long aged)................................................. 158 

Figure 6.6 -Master Curve (All tested bitumen - unaged). ......................................................... 159 

Figure 6.7 -Master Curve (All tested bitumen – short term aged). ........................................... 160 

Figure 6.8 -Master Curve (All tested bitumen – Long term aged). ........................................... 161 

Figure 6.9 - Tan δ vs temperature for Unaged Bitumen. .......................................................... 162 

Figure 6.10  -Tan δ vs temperature for short aged Bitumen...................................................... 162 

Figure 6.11 - Tan δ vs temperature for Long aged Bitumen. .................................................... 163 

Figure 6.12 -Performance grade of bitumen at 60° C – Unaged bitumen. ................................ 163 

Figure 6.13 -Performance grade of bitumen at 60° C – Short aged bitumen. ........................... 164 

Figure 6.14 -Performance grade of bitumen at 10° C – Long aged bitumen. ........................... 164 

Figure 6.15 -Average initial G* for each short aged bitumen. .................................................. 165 

Figure 6.16 -Failure Curve N50  -  Short aged bitumen (VR) @2% strain level. ..................... 166 

Figure 6.17 -Failure Curve DER Approach. ............................................................................. 167 

Figure 6.18 -Comparison Wohler from N50 approach - without rest period  (short aged 

bitumen). ................................................................................................................................... 167 

Figure 6.19  -Comparison Wohler from DER approach - without rest period  (short aged 

bitumen). ................................................................................................................................... 168 

Figure 6.20 -Fatigue life at different temperatures – 4% stain level. ........................................ 169 

Figure 6.21-Comparison Fatigue life between short and long aged bitumen at 4% strain level170 

Figure 6.22 -Complex modulus as a function of loading cycles obtained from a healing test. . 171 

Figure 6.23 - Variation of NR. .................................................................................................. 172 

Figure 6.24 -Variation of Healing. ............................................................................................ 173 

Figure 6.25 - Wohler curve - with rest period – N50 approach. .............................................. 174 

Figure 6.26 -Wohler curve - with rest period – DER approach. ............................................... 174 

Figure 6.27 - Comparison DER approach – with and without rest period. ............................... 175 

Figure 6.28 -Fatigue life at different temperatures – 4% strain level. ....................................... 176 

Figure 6.29 -Fatigue life for long aged bitumen at 4% strain level. .......................................... 176 

 

List of Tables. 

Table 1.1 - Distinction between petroleum bitumen and coal tar.................................................. 6 

Table 1.2 - Diffusion coefficients of oxygen and moisture ......................................................... 30 

Table 1.3 -The Performance Grade Table Results ...................................................................... 35 

Table 1.4  -PG graded criteria, tests, temperatures and ageing conditions. ................................ 37 

Table 1.5  -PG grades for different bitumen blends. ................................................................... 38 

Table 2.1- Popular polymers for bitumen modification. ............................................................. 44 

Table 2.2 - Basic Components of Tires ....................................................................................... 59 

Table 5.1 - bitumen types used in this study ............................................................................. 128 

Table 5.2 -Results of γLVE from Amplitude Sweep on tested materials. (Unaged Bitumen). . 139 



List of figures and tables. 
 

xvi 
 

Table 5.3 -Results of γLVE from Amplitude Sweep on tested materials. (Short Term Aging).

 ................................................................................................................................................... 139 

Table 5.4 -Results of γLVE from Amplitude Sweep on tested materials. (Long Term Aging).140 

Table 5.5 -Experimental plan for Fatigue Test.......................................................................... 144 

Table 5.6 -Experimental plan for Time Sweep Test. ................................................................. 148 

Table 5.7 -Temperatures adopted for Time Sweep Test with fixed initial G*. .......................... 149 

Table 6.1 -Results of γLVE from Amplitude Sweep on tested materials. ................................... 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Introduction 

1 
 

INTRODUCTION 
           

Use of recycled materials has been gaining popularity all over the world to provide a 

sustainable future for next generations. Crumb Rubber (CR) has been the mostly recycled 

product in the asphalt industry. The use of shredded tire rubber (i.e., crumb rubber – CR) 

in asphalt pavements is one of the sustainable recycling approaches. Increasing the 

amount of CR integrated into asphalt pavements reduces various risks involved with 

stockpiling, burning, damping into landfills and other undesirable disposal methods of 

scrap tires.  

 

Another benefit of using CR is being an alternative for polymer modification. Polymer 

modification of asphalt binders has gained quite a large popularity in many transportation 

agencies, primarily due to the superior crack and rut-resistant performance. However, 

added cost of polymer modification results in an appreciable increase in the initial cost of 

an asphalt pavement. Use of Recycled Tire Rubber (RTR) is a more economical and 

sustainable alternative to polymers. 

 

Five polymer modified bitumen with or without rubber were made by wet process, were 

provided by an oil company to be tested. The main purpose of this thesis is the studying 

of the bitumen aging effects on the rheological properties and fatigue behavior. 

 

The ageing phenomenon is related to oxygen presence, temperature, ultraviolet radiation 

and time. All these factors lead to chemical, physical and rheological changes of 

bituminous materials. This thesis has wanted to compare effects of short term aging which 

simulates aging at high temperature during asphalt mixing, storage and laying, and long 

term aging at ambient temperature during in-service. 

 

Bituminous materials are used in multiple areas especially in road pavements. Repeated 

loadings in pavement layers cause damage. Durability of road pavement materials is a 

recurring problem which is an important research topic. This thesis presents the 

experimental device, the Dynamic Shear Rheometer (DSR). The testing procedure and 



Introduction 
 

2 
 

specific results are developed. Moreover, fatigue criteria, for life duration, are introduced. 

Then information about the fatigue characteristic of bitumen are discussed. 

 

It is emphasized that the entire experimental and study phase was carried out in the 

laboratory of School of Engineering and Architecture of Bologna, DICAM (Department 

of Civil, Chemical, Environmental and Materials Engineering), Road section. The results 

were discussed and analyzed in detail in chapter 06. 
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1. CHAPTER 01: BITUEMEN AND AGING. 
 

1.1. Overview 

1.1.1. What Is Bitumen? 

Bitumen is a black or dark-colored (solid, semi-solid, viscous), amorphous, cementitious 

material that can be found in different forms, such us rock asphalt, natural bitumen, tar 

and bitumen derived from oil, which is referred to as petroleum bitumen. 

Currently most of the roads globally are paved with bitumen. Today the world’s demand 

for bitumen accounts for more than 100 million tons per year which is approximately 700 

million barrels of bitumen consumed annually. 

Petroleum bitumen is typically referred to as bitumen or asphalt. In Europe for instance 

bitumen means the liquid binder. In North America, on the other hand the liquid binder 

is referred to as asphalt, or asphalt cement. 

 

Figure 1.1 -Percentage of usage of bitumen. 

1.1.2. Origin of Bitumen. 

In general the term “bituminous materials” is used to denote substances in which bitumen 

is present or from which it can be derived. Bituminous substances comprise of primarily 

bitumen and tars. 
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Bitumen occurs in nature in several forms: hard one - easily crumbled bitumen in rock 

asphalt and softer, more viscous material which is present in tar sands and asphalt 'lakes'.  

Another way in which bitumen can be obtained is through petroleum processing in this 

manner the bitumen is essentially the residue yielded through a distillation process of 

petroleum. Although bitumen can be found in natural form, the world currently relies for 

all purposes on petroleum. The material has been produced in this way for over a hundred 

years. 

Tars on the other hand do occur in nature. Tars derive as condensates from the processing 

of coal (at very high temperatures), petroleum, oil-shale, wood or other organic materials. 

Pitch is produced when a tar is partially distilled so that the volatile components have 

evaporated. 

Often coal tar is confused with bitumen however they are two entirely chemically 

different products and should not be mistaken. For the distinction drawn between 

petroleum bitumen and coal tar see the distinction table below: 

 

Table 1.1 - Distinction between petroleum bitumen and coal tar. 
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1.1.3. Bitumen Crude 

 

1.1.3.1. UNDERSTANDING BITUMEN FEEDSTOCK & 

TECHNOLOGY 

 

Figure 1.2 -Crude Oil 

 

Figure 1.3 -Bitumen Chemistry. 
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1.1.3.2. S.A.R.A. 

 

Figure 1.4 - S.A.R.A. 

It is fundamentally insufficient to define the quality of a bitumen by its physical properties 

only. That is by normally defined properties of penetration, viscosity, softening point etc. 

You have good quality bitumen if the substance group (S.A.R.A) are presented in the 

right balance to each other. 

Asphaltenes are important (10-20) but there should not be too many. A well-balanced 

ration and embedment by, the resins is at least equally important. 

1.1.4. Bitumen Applications 

Known for its adhesive and cohesive assets, bitumen is mostly utilised in the construction 

industry. Bitumen is applied on road paving because it is viscous when hot, but solid once 

it cools down. Therefore, Bitumen operates as the binder/glue for pieces of the aggregate. 

 

Bitumen is applied in construction and maintenance of: 

Highways 

Airport runways 

Footways / Pedestrian Ways 
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Car parks 

Racetracks 

Tennis courts 

Roofing 

Damp proofing 

Dams 

Reservoir and pool linings 

Soundproofing 

Pipe coatings 

Cable Coatings 

Paints 

Building Water Proofing 

Tile underlying waterproofing 

Newspaper Ink Production 

And many other applications 

In order realize the complexity of bitumen as a product an in-depth knowledge and 

detailed understanding for one of the way the roads are built is crucial. Specialists in 

bitumen know bitumen as an advanced and complex construction material, not as a mere 

by-product of the oil refining process. The ultimate paving material (also referred to hot 

mix asphalt concrete – HMAC or HMA) consists of about 93 – 97% mineral aggregate 

(stone), sand and filler. The remaining percentage is bitumen. 

 

1.1.5. How is bitumen Produced? 

Petroleum Bitumen, normally called “Bitumen” or “Asphalt” is produced by refining 

crude oil. Used as a binder in road-building products, it is a very viscous, black or dark 

brown material. 

The crude oil is pumped from storage tanks, where it is kept at about 60°C, through a heat 

exchanger system where its temperature is increased to typically 200°C by exchanging 

heat gained from the cooling of newly produced products in the refining process. The 

crude is then further heated in a furnace to typically 300° C where it is partly vaporized 
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into an Atmospheric Distillation Column. Here the physical separation of the components 

occurs. The lighter components rise to the top and the heaviest components (the 

atmospheric residue) fall to the bottom of the column and pass through a second heat 

exchanger prior to treatment in a vacuum distillation column. Finally, Bitumen is obtained 

by vacuum distillation or vacuum flashing of atmospheric residue from the vacuum 

distillation column. This is "straight run bitumen”. This process is called bitumen 

production by straight run vacuum distillation. 

An alternative method of bitumen production is by precipitation from residual fractions 

by propane or butane-solvent deasphalting. The bitumen thus obtained has properties 

which derive from the type of crude oil processed and from the mode of operation in the 

vacuum unit or in the solvent deasphalting unit. The grade of the bitumen depends on the 

amount of volatile material that remains in the product: the smaller the amount of 

volatiles, the harder the residual bitumen. 

Specialists in bitumen view bitumen as an advanced and complex construction material, 

not as a mere by-product of the oil refining process. 
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Figure 1.5 -Standard Bitumen Production Scheme  

 

Figure 1.6 -Typical Bitumen Production Scheme 

 

1.1.6. Bitumen Standards & Grades 

1.1.6.1. Standardizing Bodies 

 

In different regions and countries, different Standards and Grading systems are used for 

determining the quality of petroleum bituminous Binders. The most recognized standards 

for petroleum bitumen are published by 

• European Committee for Standardization (CEN) 

o Deutsche Industrie Norm (DIN EN) 

o Association Française de Normalisation (AFNOR – NF EN) 

o BSI Standards - the UK's National Standards Body (NSB - BS EN) 

• American Society for Testing and Materials (ASTM) 

• American Association of State Highway and Transportation Officials 

(AASHTO) 
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• South African Standard Organization (SABS) 

• Standards Australia (AS) 

1.1.6.2. Most Commonly Used Bitumen Specifications. 

 

STANDARD PETROLEUM BITUMEN GRADES 

 

• ASTM D 946 and AASHTO M 20 (Penetration @ 25°C) 

• ASTM D 3381 and AASHTO M 226 (Viscosity @ 60°C) 

• ASTM D 6373 and AASHTO M 320 (PG-Graded Binder) 

• EN 12591 (Penetration @ 25°C) → NF EN; BS EN; DIN EN; etc. 

• AS 2008 (Viscosity @ 60°C) 

• SABS 307 (Penetration @ 25°C; Viscosity @ 60°C after RTFOT) 

• IS 73 (India) changed in 2006 from PEN grades to VG Grades (based on Viscosity 

@ 60°C); however, CRMB modified bitumen is still graded based on 

penetration. 

POLYMER MODIFIED BITUMEN 

 

• ASTM D 5976; ASTM D 5840; ASTM D 5841 (based on polymer type; now 

outdated and not used in the USA, but still used in some developing countries) 

• ASTM 6373 and AASHTO M 320 (PG-Graded Binder; applicable to Unmodified 

and Polymer Modified Bitumen) 

• EN 14023 (Framework Standard for Polymer Modified Binder) 

• AUSTROADS Framework Specifications (Australia) 

BITUMEN EMULSIONS (ANIONIC; CATIONIC; UNMODIFIED; POLYMER 

MODIFIED) 

 

• USA Anionic Emulsions: ASTM D 977 and AASHTO M 140 

• USA Cationic Emulsions: ASTM D 2397 and AASHTO M 208; Polymer 

Modified Cationic Emulsion: AASHTO M 316 

• Europe: Harmonized Framework Standard EN 13808 for Cationic Unmodified 

and Polymer Modified Emulsions; many different national 



CHAPTER 01: BITUEMEN AND AGING 

 

 

13 
 

• Annexes. (Note: Internationally there exist a very broad range of emulsion 

specifications; many of them are technically inaccurate and confusing.) 

CUTBACK BITUMEN 

 

• ASTM D 2026, D 2027 and D 2028 for Slow, Medium and Rapid Curing Cutback 

• AASHTO M 81, M 82 for Rapid and Medium Curing Cutback 

• EN 15522 Cutback and Fluxed Bituminous Binder [1.1]. 

 

1.1.7. Engineering properties of bitumen 

The use of bitumen as such, or as a binder in diverse composite materials, is based on its 

mechanical properties and on the way these properties depend on the loading time and 

temperature. For the structural design of pavements, it is essential to be able to measure 

and predict the fundamental mechanical characteristics of paving materials (Bonnaure et 

al., 1977). The stiffness modulus of an asphalt depends on the stiffness modulus of the 

bitumen and the volume fractions of the different mixture components (aggregates, 

bitumen and air). The stiffness modulus of bitumen is also a suitable parameter for the 

breaking properties of the bitumen itself and of the asphalts prepared with it (Heukelom, 

1966). 

 

 

1.1.7.1. Stiffness Modulus  

 

A viscous material is one that is semi-fluid in nature. When stressed, it will deform or 

tend to deform, any deformation being permanent because it is not recovered when the 

loading is removed. Elastic materials also deform or tend to deform when stressed, but, 

when the loading is removed, any deformation is fully recovered. Bitumens are visco-

elastic materials. The degree to which their behavior is viscous and elastic is a function 

of both temperature and the period of loading.  

In order to define the visco-elastic properties, the concept of the stiffness modulus is a 

fundamental parameter to describe the mechanical properties of bitumens.  

At high temperatures or long loading times they behave as viscous liquids, whereas at 

very low temperatures or short loading times they behave as elastic (brittle) solids. The 
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intermediate range of temperature and loading times, more typical of conditions in 

service, results in visco-elastic behavior.  

In the case of visco-elastic materials such as bitumen, a tensile stress σ applied at a loading 

time t = 0 causes a strain ε that increases, but not proportionately, with the loading time.  

The stiffness modulus St at a loading time t is defined as the ratio between the applied 

stress and the resulting strain at the loading time t. It follows from the above that the value 

of the stiffness modulus is dependent on the temperature and the loading time that is due 

to the special nature of bitumen. Consequently, it is necessary to state both the 

temperature T and the loading time t of any stiffness modulus measurement. 

 

The methods used to measure the stiffness modulus of bitumen are often based on shear 

deformations. The resistance to shear is expressed in terms of the shear modulus G, which 

is defined as: 

 

In dynamic tests, the shear stress is usually applied as a sinusoidally varying stress of 

constant amplitude and fixed frequency. The deformation of the material under test also 

varies sinusoidally with the same frequency as the applied stress. Tests are carried out at 

various values of frequency, and the ratio of the stress to strain can be plotted against the 

inverse of the angular frequency. The degree of elasticity of the bitumen under the test 

conditions is given by how much the deformation response is out of phase from the 

applied shear stress, and this is referred to as the phase angle. For purely elastic materials 

the phase angle is zero. For purely viscous materials the phase angle is 90°.  [2] 

 

1.1.8. Different forms of bitumen 

1.1.8.1. Cutback bitumen 

 

Normal practice is to heat bitumen to reduce its viscosity. In some situations preference 

is given to use liquid binders such as cutback bitumen. In cutback bitumen suitable solvent 
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is used to lower the viscosity of the bitumen.  From the environmental point of view also 

cutback bitumen is preferred. The solvent from the bituminous material will evaporate 

and the bitumen will bind the aggregate. Cutback bitumen is used for cold weather 

bituminous road construction and maintenance. The distillates used for preparation of 

cutback bitumen are naphtha, kerosene, diesel oil, and furnace oil. There are different 

types of cutback bitumen like rapid curing (RC), medium curing (MC), and slow curing 

(SC). RC is recommended for surface dressing and patchwork. MC is recommended for 

premix with less quantity of _ne aggregates. SC is used for premix with appreciable 

quantity of _ne aggregates. 

 

1.1.8.2. Bitumen Emulsion 

 

Bitumen emulsion is a liquid product in which bitumen is suspended in a _nely divided 

condition in an aqueous medium and stabilised by suitable material. Normally cationic 

type emulsions are used in India. The bitumen content in the emulsion is around 60% and 

the remaining is water. When the emulsion is applied on the road it breaks down resulting 

in release of water and the mix starts to set. The time of setting depends upon the grade 

of bitumen. The viscosity of bituminous emulsions can be measured as per IS: 8887-1995. 

Three types of bituminous emulsions are available, which are Rapid setting (RS), Medium 

setting (MS), and Slow setting (SC). Bitumen emulsions are ideal binders for hill road 

construction. Where heating of bitumen or aggregates are difficult. Rapid setting 

emulsions are used for surface dressing work. Medium setting emulsions are preferred 

for premix jobs and patch repairs work. Slow setting emulsions are preferred in rainy 

season. 

 

1.1.8.3. Bituminous primers 

 

In bituminous primer the distillate is absorbed by the road surface on which it is spread. 

The absorption therefore depends on the porosity of the surface. Bitumen primers are 

useful on the stabilized surfaces and water bound macadam base courses. Bituminous 

primers are generally prepared on road sites by mixing penetration bitumen with 

petroleum distillate. 
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1.1.8.4. Modified Bitumen 

 

Certain additives or blend of additives called as bitumen modi_ers can improve properties 

of Bitumen and bituminous mixes. Bitumen treated with these modi_ers is known as 

modified bitumen. Polymer modified bitumen (PMB)/ crumb rubber modi_ed bitumen 

(CRMB) should be used only in wearing course depending upon the requirements of 

extreme climatic variations. The detailed speci_cations for modi_ed bitumen have been 

issued by IRC: SP: 53-1999. It must be noted that the performance of PMB and CRMB 

is dependent on strict control on temperature during construction. The advantages of using 

modified bitumen are as follows 

•  Lower susceptibility to daily and seasonal temperature variations 

• Higher resistance to deformation at high pavement temperature 

• Better age resistance properties 

• Higher fatigue life for mixes 

• Better adhesion between aggregates and binder 

• Prevention of cracking and reflective cracking 

1.1.9. Requirements of Bitumen 

The desirable properties of bitumen depend on the mix type and construction. In general, 

Bitumen should possess following desirable properties. 

•  The bitumen should not be highly temperature susceptible: during the hottest 

eather the mix should not become too soft or unstable, and during cold weather 

the mix should not become too brittle causing cracks. 

• The viscosity of the bitumen at the time of mixing and compaction should be 

adequate. This can be achieved by use of cutbacks or emulsions of suitable 

grades or by heating the bitumen and aggregates prior to mixing. 

• _ There should be adequate a_nity and adhesion between the bitumen and 

aggregates used in the mix. 

 

 

1.1.10. Tests on bitumen 
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There are a number of tests to assess the properties of bituminous materials. The following 

tests are usually conducted to evaluate different properties of bituminous materials. 

• 1. Penetration test 

• 2. Ductility test 

• 3. Softening point test 

• 4. Speci_c gravity test 

• 5. Viscosity test 

• 6. Flash and Fire point test 

• 7. Float test 

• 8. Water content test 

• 9. Loss on heating test 

1.1.10.1. Penetration test 

 

It measures the hardness or softness of bitumen by measuring the depth in tenths of a 

millimeter to which a standard loaded needle will penetrate vertically in 5 seconds. BIS 

had standardised the equipment and test procedure. The penetrometer consists of a needle 

assembly with a total weight of 100g and a device for releasing and locking in any 

position. The bitumen is softened to a pouring consistency, stirred thoroughly and poured 

into containers at a depth at least 15 mm in excess of the expected penetration. The test 

should be conducted at a specified temperature of 25o C. It may be noted that penetration 

value is largely influenced by any inaccuracy with regards to pouring temperature, size 

of the needle, weight placed on the needle and the test temperature. A grade of 40/50 

bitumen means the penetration value is in the range 40 to 50 at standard test conditions. 

In hot climates, a lower penetration grade is preferred. The Figure 1.1 shows a schematic 

Penetration Test setup. 
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Figure 1.7 -Penetration Test Setup 

 

1.1.10.2. Ductility test 

 

Ductility is the property of bitumen that permits it to undergo great deformation or 

elongation. Ductility is defined as the distance in cm, to which a standard sample or 

briquette of the material will be elongated without breaking. Dimension of the briquette 

thus formed is exactly 1 cm square. The bitumen sample is heated and poured in the mould 

assembly placed on a plate. These samples with moulds are cooled in the air and then in 

water bath at 27o C temperature. The excess bitumen is cut and the surface is leveled 

using a hot knife. Then the mould with assembly containing sample is kept in water bath 

of the ductility machine for about 90 minutes. The sides of the moulds are removed, the 

clips are hooked on the machine and the machine is operated. The distance up to the point 

of breaking of thread is the ductility value which is reported in cm. The ductility value 

gets affected by factors such as pouring temperature, test temperature, rate of pulling etc. 

A minimum ductility value of 75 cm has been specified by the BIS. Figure 1.1 shows 

ductility moulds to be filled with bitumen. 
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Figure 1.8 -Ductility Test 

 

1.1.10.3. Softening point test 

 

Softening point denotes the temperature at which the bitumen attains a particular degree 

of softening under the specifications of test. The test is conducted by using Ring and Ball 

apparatus. A brass ring containing test sample of bitumen is suspended in liquid like water 

or glycerin at a given temperature. A steel ball is placed upon the bitumen sample and the 

liquid medium is heated at a rate of 5o C per minute. Temperature is noted when the 

softened bitumen touches the metal plate which is at a specified distance below. 

Generally, higher softening point indicates lower temperature susceptibility and is 

preferred in hot climates. Figure 1.3 shows Softening Point test setup. 

 

Figure 1.9 -Softening Point Test Setup  
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1.1.10.4.  Specific gravity test 

 

In paving jobs, to classify a binder, density property is of great use. In most cases bitumen 

is weighed, but when used with aggregates, the bitumen is converted to volume using 

density values. The density of bitumen is greatly influenced by its chemical composition. 

Increase in aromatic type mineral impurities cause an increase in specific gravity. 

The specific gravity of bitumen is defined as the ratio of mass of given volume of bitumen 

of known content to the mass of equal volume of water at 27o C. The speci_c gravity can 

be measured using either pycnometer or preparing a cube specimen of bitumen in semi 

solid or solid state. The specific gravity of bitumen varies from 0.97 to 1.02. 

1.1.10.5. Viscosity test 

Viscosity denotes the fluid property of bituminous material and it is a measure of 

resistance to ow. At the application temperature, this characteristic greatly inuences the 

strength of resulting paving mixes. Low or high viscosity during compaction or mixing 

has been observed to result in lower stability values. At high viscosity, it resist the 

compactive effort and thereby resulting mix is heterogeneous, hence low stability values. 

And at low viscosity instead of providing a uniform film over aggregates, it will lubricate 

the aggregate particles. Orifice type viscometers are used to indirectly find the viscosity 

of liquid binders like cutbacks and emulsions. The viscosity expressed in seconds is the 

time taken by the 50 ml bitumen material to pass through the orifice of a cup, under 

standard test conditions and specified temperature. Viscosity of a cutback can be 

measured with either 4.0 mm orifice at 25°C or 10 mm orifice at 25 or 40° C. 

 

Figure 1.10 -Viscosity Test 
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1.1.10.6. Flash and fire point test 

 

At high temperatures depending upon the grades of bitumen materials leave out volatiles. 

And these volatiles catches fire which is very hazardous and therefore it is essential to 

qualify this temperature for each bitumen grade. BIS defined the ash point as the 

temperature at which the vapour of bitumen momentarily catches fire in the form of ash 

under specified test conditions. The fire point is defined as the lowest temperature under 

specified test conditions at which the bituminous material gets ignited and burns. 

 

1.1.10.7.  Float test 

 

Normally the consistency of bituminous material can be measured either by penetration 

test or viscosity test. But for certain range of consistencies, these tests are not applicable 

and Float test is used. The apparatus consists of an aluminum oat and a brass collar filled 

with bitumen to be tested. The specimen in the mould is cooled to a temperature of 5°C 

and screwed in to oat. The total test assembly is floated in the water bath at 50°C and the 

time required for water to pass its way through the specimen plug is noted in seconds and 

is expressed as the oat value. 

 

1.1.10.8.  Water content test 

 

It is desirable that the bitumen contains minimum water content to prevent foaming of the 

bitumen when it is heated above the boiling point of water. The water in a bitumen is 

determined by mixing known weight of specimen in a pure petroleum distillate free from 

water, heating and distilling of the water. The weight of the water condensed and collected 

is expressed as percentage by weight of the original sample. The allowable maximum 

water content should not be more than 0.2% by weight. 

1.1.10.9.  Loss on heating test 

 

When the bitumen is heated it loses the volatility and gets hardened. About 50gm of the 

sample is weighed and heated to a temperature of 163°C for 5hours in a specified oven 

designed for this test. The sample specimen is weighed again after the heating period and 
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loss in weight is expressed as percentage by weight of the original sample. Bitumen used 

in pavement mixes should not indicate more than 1% loss in weight, but for bitumen 

having penetration values 150-200 up to 2% loss in weight is allowed. [1] 

 

1.2.  Ageing 

1.2.1. Introduction 

 The aging of bituminous binders is one of the key factors determining the lifetime of an 

asphalt pavement. The process of aging involves chemical and/or physical property 

changes that usually make bituminous materials harder and more brittle, thus increasing 

risk of pavement failure. The aging-related pavement failure modes include cracking 

(thermal or traffic induced) and ravelling. Cracks on pavement surface may increase aging 

of the binder because of increased exposure area to atmospheric oxygen.  

In general, bitumen aging takes place in two stages, namely short-term aging at high 

temperature during asphalt mixing, storage and laying, and long-term aging at ambient 

temperature during in-service. The mechanisms of aging include oxidation, evaporation 

and physical hardening. Physical hardening is a reversible process, which changes the 

rheological properties of bitumen without altering its chemical composition. At ambient 

temperatures, physical hardening normally is very slow, but it can speed up at low 

temperatures. For bituminous binders, loss of volatile components (evaporation) is also 

considered as an aging mechanism. However, today’s penetration grade bitumens are 

relatively involatile, thus during pavement in-service this type of aging is negligible.  

As a principal mechanism, oxidative aging is an irreversible chemical reaction between 

components of bitumen and oxygen. It may occur through different reactions, such as 

photo-oxidation and thermal oxidation [3]. The light (mainly ultraviolet, UV) catalyzed 

reaction occurs rapidly and generally takes place within the top 5 μm of the exposed 

binder film, since bitumen is a good light absorber [3] [4]. In spite of the limited 

penetration into bitumen, the photo-oxidation induced aging may have an influence on 

durability, particularly for some polymer modified binders [5]. Nowadays, most of aging 

on the road is still regarded as thermally induced. The rate of thermal oxidation of bitumen 

is approximately doubled for every 10°C rise in temperature. Thus aging rate in service 

depends to a large extent on pavement temperature [6] [7]. Certainly, the oxidative aging 



CHAPTER 01: BITUEMEN AND AGING 

 

 

23 
 

is influenced by the chemical nature of bitumen. It has been shown that different bitumens 

have very different increase of viscosity with aging time, and the temperature-dependence 

of aging kinetics is strongly dependent on the bitumen [8] [9] [10].  

Another important factor affecting bitumen aging on the road is the void content of 

asphalt mixture. Much work has indicated that asphalt mixtures of low voids show a low 

degree of bitumen aging while higher void content facilitates the aging process [3] [6] 

[11] [12] [13]. Presumptively, void content determines the rate of aging by controlling 

oxygen access to the bitumen. Thus, the oxidative aging of bitumen as function of depth 

in the pavement is closely related to void content of the mixture. 

 

To simulate field aging in laboratory, different types of test may be used, including 

conduction of accelerated aging on bituminous binders, loose asphalt mixture, or on 

compacted asphalt specimen. For bituminous binders, there are three European 

standardized tests [14] for short-term aging at high temperatures, namely Rolling Thin-

Film Oven Test (RTFOT, EN 12607-1), Thin Film Oven Test (TFOT, EN 12607-2), and 

Rotating Flask Test (RFT, EN 12607-3). These tests reasonably simulate aging 

particularly during mixing process in an asphalt mixing plant.  

For long-term aging during in-service, laboratory simulation is rather difficult. Ideally, a 

laboratory test should be able to predict chemical and physical property changes in the 

bitumen which occur after certain years on asphalt pavement. This may be achieved by 

conducting an aging test at artificially severe conditions, e.g. at temperatures higher than 

pavement service temperature and at pressures higher than ambient pressure. Two 

European standardized long term aging tests are Pressure Aging Vessel (PAV) [15] and 

Rotating Cylinder Aging Test (RCAT) [16]. Although numerous investigations have been 

carried out, solid data, especially field data for different types of binders under different 

climatic conditions, are still not sufficient to support if these laboratory aging tests are 

relevant or if natural aging occurred in the pavement can be properly predicted. It is also 

believed that aging of bitumen at a higher temperature may be fundamentally different 

from aging at lower temperature that is more accurately simulating pavement temperature 

[7]. 
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1.2.2. Influence of ageing on bitumen 

 

Figure 1.11 -Pavement cracking 

 

 

Figure 1.12 -Loss of aggregate 

Aging or Age hardening of bitumen is one of the main factors that can significantly affect 

the durability of bituminous paving materials. When the bitumen is age hardened, the 

asphalt mixture will become brittle and its ability to support traffic-induced stresses and 

strains may significantly decrease. Pavements may be deteriorated due to cracking. In 

addition, excessive 

hardening can also weaken the adhesion between the bitumen and aggregate, resulting in 

loss of materials at the surface layer and generate weakening of the asphalt mixture. 

Bitumen is manufactured from crude oil. Bitumen is obtained as the last residue in 

fractional distillation of crude petroleum. Crude petroleum is different molecular 

weights.  In the petroleum refineries the individual components like LPG, naphtha, 

Kerosene, Diesel etc. are separated through the process of fractional distillation. The 
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heaviest material Obtained from the fractional distillation process is further treated and 

blended to make different grades of paving grade bitumen. Bitumen is defined as “A 

viscous liquid, or a solid consisting essentially of hydrocarbons and their derivatives, 

which is soluble in tr-chloro-ethyelene and is substantially non-volatile and softens 

gradually when heated. It is black or brown in color & possesses waterproofing and 

adhesive properties. It is obtained by refinery processes from petroleum, and is also found 

as a natural deposit or as a component of naturally occurring asphalt, in which it is 

associated with mineral matte. 

It is generally agreed that aging is primarily associated with bitumen oxidation and the 

loss of volatile/oily components from the bitumen to the air and/or aggregates during 

asphalt mixture production (short-term aging) and in-place service period (long-term 

aging). Both factors cause an increase in viscosity (or stiffness) of the bitumen and 

consequential stiffening of the asphalt mixture.  

Bitumen, like any organic matter, is affected by factors like presence of oxygen, 

ultraviolet rays and changes in temperature. These factors are responsible for hardening 

of bitumen. Hardening results in decrease in penetration increase in softening point and 

increase in penetration index (PI).For increased life of bituminous pavement it is essential 

that excessive hardness does not take place. 

The aging of bituminous binders is one of the key factors determining the lifetime of an 

asphalt pavement. The process of aging involves chemical and/or physical property 

changes that usually make bituminous materials harder and more brittle, thus increasing 

risk of pavement failure. The aging-related pavement failure modes include cracking 

(thermal or traffic induced) and ravelling. Cracks on pavement surface may increase aging 

of the binder because of increased exposure area to atmospheric oxygen.  

 

1.2.3. Short and long term ageing 

In general, bitumen aging takes place in two stages, namely short-term aging at high 

temperature during asphalt mixing, storage and laying, and long-term aging at ambient 

temperature during in-service. The mechanisms of aging include oxidation, evaporation 

and physical hardening. Physical hardening is a reversible process, which changes the 

rheological properties of bitumen without altering its chemical composition. At ambient 
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temperatures, physical hardening normally is very slow, but it can speed up at low 

temperatures. For bituminous binders, loss of volatile components (evaporation) is also 

considered as an aging mechanism. However, today’s penetration grade bitumen’s are 

relatively in volatile, thus during pavement in-service this type of aging is negligible.  

As a principal mechanism, oxidation aging is an irreversible chemical reaction between 

components of bitumen and oxygen. It may occur through different reactions, such as 

photo-oxidation and thermal oxidation. The light (mainly ultraviolet, UV) catalysed 

reaction occurs rapidly and generally takes place within the top 5 μm of the exposed 

binder film, since bitumen is a good light absorber. In spite of the limited penetration into 

bitumen, the photo-oxidation induced aging may have an influence on durability, 

particularly for some polymer modified binders. Nowadays, most of aging on the road is 

still regarded as thermally induced. The rate of thermal oxidation of bitumen is 

approximately doubled for every 10°C rise in temperature. Thus aging rate in service 

depends to a large extent on pavement temperature. Certainly, the oxidative aging is 

influenced by the chemical nature of bitumen. It has been shown that different bitumen 

has very different increase of viscosity with aging time, and the temperature dependence 

of aging kinetics is strongly dependent on the bitumen. [2.2] 

Ageing process that occurs first is faster compared to that is due during the in 

service life, in fact, the short-term ageing can also be called primary ageing. Rates of 

ageing phase are shown in figure 1.13. [17] 

 

Figure 1.13 -Rate of asphalt pavement hardening (Shell Bitumen Handbook, 1990) 
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1.2.4. -6 Factors influencing aging of bitumen  

Bitumen, like any organic matter, is affected by factors like presence of oxygen, 

ultraviolet rays and changes in temperature. These factors are responsible for hardening 

of bitumen. Hardening results in 

▪ Decrease in penetration value 

▪ Increase in softening point temperature and 

▪ Increase in penetration index (PI). 

For increased life of bituminous pavement, it is essential that excessive hardness does not 

take place. 

Hardening of bitumen takes under the influence of external factors in the following ways: 

 OXIDATIVE HARDENING: 

When bitumen is exposed to atmosphere for a prolonged period the oxygen starts reacting 

with the bitumen constituents and higher molecular weight molecules are formed. Larger 

molecules results in lesser flexibility and hence increased hardness. The degree of 

hardness is dependent on factors like ambient temperature, exposure time & thickness of 

bitumen film. It is observed that for 100C increase in temperature above 1000C, the rate 

of oxidation doubles. 

 HARDENING DUE TO LOSS OF VOLATILES: 

Over a period of time the volatile components in bitumen evaporate. The rate of 

evaporation is dependent on temperature only. The volatiles in bitumen are relatively very 

low and hence hardening due to loss of volatiles is relatively small. 

PHYSICAL HARDENING: 

At ambient temperatures bitumen molecules slowly reorient themselves. This results in 

physical hardening. This process is an extremely slow process and hence actual hardening 

due to the above factor is very low. 



CHAPTER 01: BITUEMEN AND AGING 

 

 

28 
 

EXUDATIVE HARDENING: 

Exudative hardening takes place due to the movement of oily components out of bitumen 

over a period of time. The rate of hardening due to this process is dependent on the type 

of bitumen and also on the porosity of the aggregate. 

HARDENING OF BITUMEN DURING STORAGE: 

Bitumen is stored in above ground tanks at high temperatures and presence of oxygen are 

the two primary factors responsible for hardening of bitumen. Hence it is very important 

that bitumen be handled at the lowest possible temperature, consistent with efficient use. 

Also the storage tanks should have low surface to volume ratio so as to minimize the 

exposed surface area.. Lower exposed surface area would mean lower oxidation rate. 

While designing the tanks it should be ensured that the recirculation pipelines always 

enter the tank below the bitumen surface. This will reduce splashing during recirculation. 

When the recirculation line enters the tank above the product surface all the three factors 

which promote oxidation viz. high temperature, access to oxygen and high exposed 

surface to volume ratio, are present. Therefore bitumen quality deteriorates very fast. 

If handled properly the hardening in tanks can be insignificant as the product is stored for 

shorter durations. If bitumen is to be stored for long durations (4 to 5 days) then the 

temperature should be reduced to 200C to 250C above softening point. 

In case where bitumen is to be reheated to increase the temperature adequate precautions 

have to be exercised. Bitumen should not be heated continuously in the beginning. 

Continuous heating can result in very high localized temperatures in area close to the 

heating source. 

HARDENING OF BITUMEN ON ROAD: 

Some hardening of bitumen can also take place on the road due to oxidation. The level of 

oxidation is purely dependent on the access to oxygen. If the pavement is well graded and 

well compacted the hardening is nominal as the void content will be low. [HP Bitumen 

Handbook] [3.3] 
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1.2.5. Combined effects of ageing and moisture diffusion on bitumen 

Many laboratory ageing tests can be performed in order to simulate the short and long-

term ageing on bitumen. The material may be submitted to the effect of oxygen, heat and 

pressure, but conditions that occur during the service life of asphalt pavements are 

different and they combine several factors together. During their in-service life, many 

different weathering factors, especially water in forms of rainfall, mist, hail or dew 

affected the pavement performance causing their prematurely failure. In general, 

laboratory ageing leads to achieve higher levels of oxidation compared to results of 

samples coming from actual field pavement. It is due to the combined effects of several 

parameters. Variability of asphalt paving on the permeability, so on the various air voids 

content and differences in maximum pavement temperatures in different environment. 

Also minerals contained in aggregates affect bitumen oxidation, albeit slightly, because 

they act as catalysts of the more non-polar fraction, i.e. naphthene aromatics (Petersen, 

2009). Moreover, film thickness influences the oxidation (Karlsson and Isacsson, 2003). 

Thus, for a better understanding of bitumen ageing process in the field, it is necessary 

change the standard protocol of tests to more accurately characterise the ageing effect of 

field factors [32]. 

As oxygen diffuses into mixtures, binders and bitumen, in the same way also moisture 

infiltrates into these materials. In general, water is transported in a porous material, not 

only through diffusion process, but also due to capillary flow and hydraulic flux. The 

controlling process depends on the relative humidity content (RH) and the driving 

potential. When RH is less than 95% diffusion is the main mechanism. Capillary 

transportation occurs only if the RH is higher than 95%. Finally, when a pavement is 

super-saturated the flux is regulated by the law of hydraulic flux, the so-called Darcy’s 

law (Apeyagyei et al., 2013). Among all, we focus only on diffusion process because it 

governs the infiltration of water into the element of mixtures. Similarly to oxygen, 

moisture diffusion is studied with the first and second Fick’s laws. The key parameter of 

the process remains the diffusion coefficient. Main studies has focused their attention on 

diffusion in asphalt mixtures. Many factors that affect oxygen diffusion and mixture 

oxidation, also influence moisture diffusion. The main effect of moisture diffusion is the 
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softening of binder and further cohesive failure of film. The diffusion coefficient is also 

influenced by temperature and viscosity (Arambula et al., 2010). 

In table 1.2 data referring to coefficient diffusion for both oxygen and moisture are 

reported. Only representative values are listed in order to compare the magnitude of the 

diffusion coefficients for the two processes. 

 

Table 1.2 - Diffusion coefficients of oxygen and moisture 

Both oxygen and moisture diffusion coefficients widely vary, because they are strictly 

connected to bitumen source, temperature and viscosity. Moreover, they also depend on 

the techniques used to evaluate the diffusivity. Thus, it is very important specify all 

detailed conditions because there is not a general value. 

Huang et al. (2008) investigated the influence of both, moisture and ageing on bitumen, 

in detail, they compared the chemical and rheological properties of bitumen aged with or 

without the presence of water. Analyzing the chemical properties of bitumen, results 

suggested a disruption of colloidal structure of their molecules due to the water during 

the oxidative ageing process. On the other hand, the construction of the master curve 

showed a decrease of stiffness, but this was not the rule. It was found that the source of 

bitumen affected its response. 

Also, Tao et al. (2011) [32]; analyzed the response of bitumen subjected to both moisture 

and ageing conditioning, by comparing the results obtained from penetration tests, Ring-

and-Ball test and investigating chemical and rheological properties of bitumen with and 

without the presence of water. The values of penetration, at 25°C, for neat bitumen 

decreased with a longer ageing time, instead the opposite behavior was observed by the 

softening point as shown in figure 1.14. 
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Figure 1.14 -Penetration Grade test results for aged bitumen at different PAV ageing [32]. 

 

Moreover, the figures show a worsening of the performance due to moisture conditioning. 

Also, the viscosity and the ratio between complex modulus and sine of phase angle due  

to ageing were analysed. Moisture accelerated the effects of natural bitumen ageing. On 

the other hand, polymer modified bitumen had a better moisture ageing resistance. The 

spectrum of materials showed an increase of carbonyl groups, such as ketones or 

carboxylic acids [32]. concluded that various factors like heat, oxygen, pressure and water 

have mutual effects on bitumen ageing processes, which can cause an increase in stiffness 

and embrittlement for both, neat and modified bitumen. Additional effects due to the 

combined effects of moisture and ageing result in more low-temperature cracking 

propensity. 

 

1.2.6. Methods of laboratory ageing 

Several methods of laboratory ageing were developed during the years in order to 

simulate the effects of bitumen oxidation. These can be divided in two main categories, 

that is tests able to simulate the short-term ageing and methodologies for simulating the 

long-term effects of oxidation process. The most common European method, which 

simulates the ageing during the storage, mixing with aggregates, transportation and 

laying, is the Rolling Thin Film Oven Test (RTFOT). Other tests, like Rotating 

Cylindrical Ageing Tests (RCAT), are performed following the American standards. On 

the other hand, Pressure Ageing Vessel (PAV) is the most widely used laboratory test for 

the simulation of long-term ageing. 



CHAPTER 01: BITUEMEN AND AGING 

 

 

32 
 

All of them are based on the variation of three main factors: temperature, pressure and 

time. Temperature is strongly related to the oxygen diffusion coefficient. The raising of 

pressure and the extension of ageing time can surely apply greater ageing, speed up the 

process of oxidation, and consequently, results in major deterioration. The correct balance  

between these parameters in each ageing test was established through much comparison 

between samples aged with the laboratory devices and the specimens extracted in field. 

Also, the use of simple devices like oven, or a pressurized machinery allows the 

observation of the single effect of high temperature and pressure respectively [17]. 

1.2.6.1.  RTFOT ageing 

 

The Rolling Thin Film Oven Test (RTFOT) was developed during the SHRP (Behera et 

al., 2013) in order to simulate the short-term ageing of bitumen which occurs especially 

during mixing in asphalt plan. Bitumen suffers high temperature, 163°C, combined with 

a constant and specific supply of air, following the standard procedure described in 

standard EN 12607-1:2014. The apparatus consists of an oven which inside is equipped 

with an aluminium carriage. It has eight opening and springs clips for firmly holding the 

corresponding eight glass containers in a horizontal position. Moreover, an air jet is 

placed in a specific location. Figure 1.15 shows the outside and inside of the device. [17] 

 

Figure 1.15  -Rolling Thin Film Oven Test equipment 

During the test, the carriage rotates about the horizontal axis with a certain speed, which 

allows the air jet to enter in each glass. In detail, the air shall blow along the main axis of 
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each glass container. In the same time, high temperatures lead the material to liquefy. The 

rotation together with the applied temperatures lead bitumen to cover the entire surface 

of each container forming a thin film, which also rotates following the carriage 

movement. 

Temperature is continuously monitored with a thermometer positioned inside the device. 

Figure 1.16 shows pictures of bitumen containers before and after the test. 

 

Figure 1.16 -Samples pre- and post- RTFOT 

The glass containers should be filled with 35,0±0,5 g of bitumen, a specific amount that 

ensure that the material does not leak from the containers during rotation. The number of 

necessary glass depends on the planned characterization tests of the operator [17]. 

The RTFOT was performed one time for each type of modified bitumen that we are focus 

on in this research which are: 

 

- PMB 45/80-70 Hard+ recycled tires powder + viscous reducer. 

- PMB 45/80-70 Hard+ recycled tires powder. 

- PMB 45/80-70 Hard. 

- PMB 45/80-55 Soft+ recycled tires powder. 

- PMB 45/80-55 Soft. 
 
 
 

1.3. SUPERPAVE PERFORMANCE GRADING (PG SYSTEM) 
 

Recognizing the limitations of the empirical testing, the Strategic Highway Research 

Program (SHRP) sponsored a US$ 50 million research effort to develop performance 

based tests and specifications for binders and hot mix asphalt mixtures in 1987 [33]. 
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 The main features of the Superpave tests and specifications are: [33] 

 

• Instead of performing a test at a constant temperature and varying the specified 

value, the temperature at which the specified criteria (kept constant) must be met 

varies in consideration of the binder grade selected for the prevalent climatic 

conditions 

• physical properties measured are directly related to field performance by 

engineering principles 

• the testing regime simulates the three critical stages of a binder’s life. Refer to 

Section 1.3.3 for further details. 

• the entire range of pavement temperatures experienced at the project site is 

considered 

• the tests and specifications are designed to eliminate or control three specific types 

of pavement distresses i.e. rutting (high temperatures), fatigue cracking 

(intermediate temperatures) and thermal cracking (low temperatures) 

• SI units are used for the specifications developed and not imperial units, as 

previously. 

In the Superpave performance specification (M320-05), SHRP introduced two important 

properties to determine the performance grading of a binder over a range of temperatures 

and loading rates (angular frequency) i.e. complex modulus (G*) and phase angle (δ), see 

Table 1.3. These two properties can be measured using a Dynamic Shear Rheometer 

(DSR). [33] 
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Table 1.3 -The Performance Grade Table Results 

 

1.3.1. Interpretation of G* and δ 

G* is defined as the ratio of stress developed and the strain imposed. By using sinusoidal 

loading in the DSR, the stress and strain developed varies periodically and the frequency 

of loading can be varied within a test. G* indicates the stress resulting from the strain. 

Phase angle (δ), which is expressed in degrees, is the phase shift between the applied 

stress and strain response of the material. This property ranges from 0° for a simple elastic 

material to 90° representing a simple (Newtonian) viscous material. 

Combinations of G* and δ are used to characterise the visco-elastic properties of a binder. 

G* is made up of two components i.e. viscous component (G’’) and elastic component 

(G’). 

 

 To derive (G’) and (G’’) from G* and δ:  

Elastic component, (storage modulus) G’ = G* cos δ 

Viscous component, (loss modulus) G’’ = G* sin δ 
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Figure 1.17 - Relationship between G* and the components G’ & G’’ 

 

1.3.2. SHRP Properties 

The PG grading system covers both the high and low service temperatures likely to be 

experienced by a binder, refer to Table 1.4. 

 

For high service temperature, the PG system defines the specification starting from 46°C 

through to 82°C in 6°C intervals. To meet the specification requirement, the value of G*/ 

sinδ needs to be a minimum of 1 kPa at the grading temperature and not exceed the 

requirements of the next grade. 

 

At low service temperature, PG defines the specification requirement as G*sinδ.  

 

 

1.3.3. PG Tests and Specifications 

The PG system measures the physical properties of binders through tests that are intended 

to be directly related to field performance by engineering principles. These tests are 

conducted under the temperature extremes a pavement experiences to simulate the three 

critical stage of a binder’s life, namely: [33] 
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• first stage – transportation, storage and handling prior to mixing with aggregate. 

 

• second stage – after mixing production and construction (RTFO treatment is used 

to approximate this stage of short-term ageing). 

 

• third stage – binder ageing on the road (the pressure ageing vessel (PAV) is used 

to simulate long-term ageing of the binder). 

 

Table 1.4 lists some of the test equipment, temperatures, performance related parameters 

and ageing conditions of a binder. [33] 

 

 

Table 1.4  -PG graded criteria, tests, temperatures and ageing conditions. 

 

1.3.4. Performance Grade Nomenclature 

Superpave performance grading is reported using two numbers. The first number 

indicates the average seven day maximum pavement temperature (°C) while the second 

shows the minimum pavement design temperature (°C). For example, a PG 64-28 is 
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intended for use in an environment where the average seven day maximum pavement 

temperature is 64°C and the expected minimum pavement temperature is -28°C. 

 

The working temperature range determines whether a given grade of bitumen requires 

special manufacture or addition of a modifier. For example, a PG 64-28 has a working 

range of 92° (64 + 28 = 92). Usually, binders with a temperature difference of 92° or more 

would generally require some sort of modification (Table 1.5) [33]. 

 

 

Table 1.5  -PG grades for different bitumen blends. 
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2. CHAPTER 2: Polymer Modified Bitumen (PMB) and Use of 

Crumb Rubber In Road Pavment. 
 

2.1. Polymer Modified Bitumen (PMB) 
 

2.1.1. Introduction 

           Polymer modification of bitumen is the incorporation of polymers in bitumen by 

mechanical mixing or chemical reaction. During the last 40 years, more and more 

researchers began to concentrate themselves on polymer modification of bitumen and a 

rapidly increasing number of research articles have been published since 1970s. In these, 

the various investigated polymers included plastomers (e.g. polyethylene (PE), 

polypropylene (PP), ethylene-vinyl acetate (EVA), ethylene-butyl acrylate (EBA)) and 

thermoplastic elastomers (e.g. styrene-butadiene-styrene (SBS), styrene-isoprene-styrene 

(SIS), and styrene-ethylene/ butylene-styrene (SEBS)), although none of these were 

initially designed for bitumen modification. These polymers were reported to lead to some 

improved properties of bitumen, such as higher stiffness at high temperatures, higher 

cracking resistance at low temperatures, better moisture resistance or longer fatigue life 

[20]. 

 

Optimize and select appropriate materials for specific applications have been the main 

goals of materials processing and design engineers worldwide for a long time. Polymer 

modified bitumens (PMB) are not an exception. Several studies have shown that addition 

of polymers to bitumen can improve the final properties of PMB. 

 

The two main failure mechanisms suffered by asphalt mixtures are cracking and rutting 

(permanent deformation). Cracking is usually associated to brittle fracture of bitumen at 

low temperatures, while rutting is associated to plastic or viscous behavior of bitumen at 

high temperatures. In order to reduce cracking, bitumen has been typically modified by 

addition of elastomeric polymers; usually requiring mixing and shearing at high 

temperatures in order to uniformly disperse the polymers into the blends. In general, the 

elastomeric polymers added to bitumen build a physical network assisted by bitumen’s 

phases but do not create a chemical reaction, leaving bitumen as a continuous phase. On 

the other hand, thermoplastic polymers have been also added to bitumen pursuing 
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improvements on rutting resistance at high temperatures, making use of the hardening 

effect of these polymers at high temperatures. [18]  

 

Figure 2.1 - Typical Viscosity of Binder overlooking temperature. [19] 

2.1.2.  PMB's qualities & usage: 

 

The main qualities of PMB are:  

 

- Greater Rigidity  

- Better resistance to permanent deformation  

- Better moisture resistance or longer fatigue life 

- Much higher durability 

- higher stiffness at high temperatures 

- higher cracking resistance at low temperatures [19]. 

 

An extensive summary was given that an effective polymer modification results in a 

thermodynamically unstable but kinetically stable system in which the polymer is 

partially swollen by the light components of bitumen [20]. 

 

The PMB is used for:  

 

- Very stressed pavements  

- High traffic volume  

- High loading  

- High temperature amplitude  
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- More durable pavements  

- Draining pavements [19]. 

 

In addition to the reported advantages, researchers also encountered various challenges, 

including high cost, some PMBs’ high temperature sensitivity, low ageing resistance, 

poor storage stability and the limited improvement in elasticity. In this, the combination 

of bitumen oxidation and polymer degradation was reported to cause PMB’s ageing 

propensity, which seems especially challenging for some unsaturated polymers, e.g. SBS. 

The poor storage stability of some PMBs usually results from the poor compatibility 

between polymer modifiers and bitumen which is controlled by polymers’ and bitumen’s 

different properties such as density, molecular weight, polarity and solubility. The 

chemical structure and reactivity of polymers, however, are also supposed to affect their 

compatibility with bitumen, which may have a direct relationship with the resulting PMB 

properties. In order to conquer these challenges, researchers have tried different 

categories of solutions, such as saturation, sulfur vulcanization, adding antioxidants, 

using hydrophobic clay minerals, functionalization and application of reactive polymers 

(which also can be considered as new functionalized products) [20]. 

 

2.1.3. Popular polymers for bitumen modification 

As mentioned in the above, after World War II ended, synthetic polymers began to be 

used to modify bitumen. Over the years, researchers developed various polymer 

modifiers. Today, widely used polymers for bitumen modification can be classified into 

two categories: plastomers and thermoplastic elastomers. plastomers have little or no 

elastic component, usually resulting in their quick early strength under load and the 

following permanent deformation or brittle failure. As for thermoplastic elastomers, they 

soften on heating, harden on cooling and are able to resist permanent 

deformation by stretching under load and elastically recovering once the load is removed, 

which leads to their greater success than plastomers as bitumen modifiers. Some popular 

polymers for bitumen modification are listed in Table 1 with their advantages and 

disadvantages. Among them, SBS attracted the most attention due to its relatively good 

dispersibility (or appropriate solubility) in bitumen as well as the relatively excellent 

properties and acceptable cost of SBS modified bitumen. Of course, besides these listed 

polymers, some others like styrene-butadiene rubber (SBR, random copolymers), styrene-
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butadiene diblock copolymers (SB) and ethylene-propylene-diene monomer rubber 

(EPDM) were also popular for bitumen modification. In addition, some small molecule 

organic materials, such as PPA and paraffin wax, were also widely used as modifiers for 

bitumen [20].  

 

It is worth to note that even for a given polymer modifier, selection of base bitumen still 

has some important effects on the resulting PMB, as each bitumen has its own particular 

chemical composition and structure. Additionally, base bitumen usually composes over 

90% of the PMB by weight, which could introduce overriding influences on the final 

properties of the PMB. Good-quality base bitumen helps to enhance the effects of 

polymer modification, while poor-quality one may make the modification futile. 

Regarding the compatibility between polymer and bitumen, selection of base bitumen is 

usually completed by laboratory experiments. However, some theoretical trends were also 

highlighted based on the SARA (saturates, aromatics, resins and asphaltenes) fractions of 

bitumen: for example, high asphaltenes content may decrease the compatibility between 

polymer and bitumen and the aromaticity of the maltenes needs to fall between certain 

values to reach a good level of compatibility. Some other researchers even gave the 

components distribution of base bitumen with the optimum compatibility with SBS [20]. 

 

 
Table 2.1- Popular polymers for bitumen modification. 

 

2.1.3.1. Plastomers 

As an important category of plastomers, polyolefin is one of the earliest used modifiers 

for bitumen. Various polyolefin materials, including high-density polyethylene (HDPE), 
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low density polyethylene (LDPE), linear low-density polyethylene (LLDPE), IPP and 

APP, have been studied for application in bitumen modification due to the relatively low 

cost and the benefits they might bring. Typical Structures of the popular PE and PP are 

given in Figure 2.2. After polyolefin materials are added into bitumen, they are usually 

swollen by the light components of bitumen and a biphasic structure is formed with a 

polyolefin phase (dispersed phase) in the bitumen matrix (continuous phase). As the 

polyolefin concentration increases, phase inversion occurs in the modified bitumen. Two 

interlocked continuous phases are ideal for polyolefin modified bitumen, which could 

improve the properties of bitumen to some extent. Those used materials were usually 

found to result in high stiffness and good rutting resistance of modified bitumen, although 

they are quite different in chemical structure and properties. 

 
Figure 2.2 -Structures of polyethylene (PE) and polypropylene (PP). 

 

However, those used polyolefin materials failed to significantly improve the elasticity of 

bitumen. In addition to this, the regular long chains of those polyolefin materials give 

them the high tendency to pack closely and crystallize, which could lead to a lack of 

interaction between bitumen and polyolefin and result in the instability of the modified 

bitumen. Furthermore, some researchers claimed that the compatibility of polyolefin with 

bitumen is very poor because of the non-polar nature of those used materials. As a result, 

the limited improvement in elasticity and potential storage stability problems of 

polyolefin modified bitumen restrict the application of polyolefin materials as a bitumen 

modifier, whereas they are popular in production of impermeable membranes. 

 

More used plastomers in bitumen modification are ethylene copolymers, such as EVA 

and EBA. Due to their similar chemical structures, EVA is discussed here as an example 

of ethylene copolymers. As seen in Figure 2.3, EVA copolymers are composed of 

ethylene-vinyl acetate random chains. Compared with PE, the presence of polar acetate 

groups as short branches in EVA disrupts the closely packed crystalline microstructure of 
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the ethylene-rich segments, reduces the degree of crystallization and increases the polarity 

of the polymer, which were both believed to be beneficial to improving the storage 

stability of modified bitumen by some researchers. However, the properties of EVA 

copolymers are closely related to the vinyl acetate content. When the vinyl acetate content 

is low, the degree of crystallization is high and the properties of EVA are quite similar to 

those of LDPE. As the vinyl acetate content increases, EVA tends to present a biphasic 

microstructure with a stiff PE-like crystalline phase and a rubbery vinyl acetate-rich 

amorphous phase. The higher the vinyl acetate content, the higher the proportion of 

amorphous phase. But the degree of crystallization should be controlled carefully when 

EVA is used as a bitumen modifier, because neither too low (getting easy to be disrupted) 

nor too high (causing the lack of interactions with bitumen) degree of crystallization is 

good for bitumen modification [20]. 

 
Figure 2.3 -Structure of ethylene-vinyl acetate (EVA). 

 

After EVA copolymers are added into bitumen, the light components of bitumen usually 

swell the copolymers. At low EVA concentrations, a dispersed EVA-rich phase can be 

observed within a continuous bitumen-rich phase. As the EVA concentration increases, 

phase inversion occurs in modified bitumen and the EVA-rich phase becomes a 

continuous phase. The process of phase inversion in EVA modified bitumen was 

presented by fluorescent images as Figure 2.4. If two interlocked continuous phases form 

in the modified bitumen, the properties of bitumen could be improved to a large extent. 

EVA was found to form a tough and rigid network in modified bitumen to resist 

deformation, which means that EVA modified bitumen has an improved resistance to 

rutting at high temperatures. 
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Figure 2.4 -Fluorescent images of EVA modified bitumen with various contents (by weight) of 

EVA. [20] 

 

Although some properties of bitumen are enhanced by EVA modification, there are still 

some problems limiting its application. One large limitation is the fact that EVA cannot 

much improve the elastic recovery of bitumen due to the plastomer nature of EVA. 

Furthermore, the glass transition temperature (Tg) of EVA copolymers, which strongly 

depends on the vinyl acetate content, is not low enough to significantly improve the low-

temperature properties of bitumen. It was reported that (Tg) of EVA copolymers with 

28.4 wt % of vinyl acetate is -19.9 °C [129], which is even quite close to (Tg) of some 

base bitumen. As a result, EVA’s ability to improve the low-temperature properties of 

bitumen is rather limited, especially at high EVA concentrations [20].  

 

2.1.3.2.  Thermoplastic elastomers 

 

Thermoplastic elastomers are usually more effective than plastomers for bitumen 

modification. The most popular thermoplastic elastomers as bitumen modifiers are SBS 

copolymers and SIS copolymers. Due to their similar chemical structures, SBS is 

discussed here as an example of thermoplastic elastomers. SBS copolymers are composed 

of styrene-butadiene- styrene triblock chains with a biphasic morphology of rigid 

polystyrene (PS) domains (dispersed phase) in the flexible polybutadiene (PB) matrix 

(continuous phase), shown as Figure 2.5.A. The chemical linkages between PS and PB 

blocks can immobilize domains in the matrix. Tg of PS blocks is around 95 °C and Tg of 

PB blocks is around -80 °C. Under the usual service temperatures of paving bitumen, PS 
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blocks are glassy and contribute to the strength of SBS while PB blocks are rubbery and 

offer the elasticity. Furthermore, the incompatibility between PS and PB blocks makes it 

possible to physically crosslink PS blocks as uniformly distributed domains by 

intermolecular forces at ambient temperatures. This aggregation of PS blocks disappears 

at high temperatures when the kinetic energy of molecular thermodynamic movements is 

greater than the energy of intermolecular forces. However, as shown in Figure 2.5, the 

physical crosslinking among PS blocks can be reformed and the strength and elasticity of 

SBS can be restored after cooling, which is very important for SBS to be a popular 

bitumen modifier. 

 
Figure 2.5 -Structure of styrene-butadiene-styrene (SBS) and schematic illustration of 

reversible crosslinks in SBS. 

After SBS copolymers are added into bitumen, some interactions happen between 

bitumen and SBS. Intermolecular interactions between bitumen and the PB blocks are 

stronger than those with the PS blocks. They believed that PB blocks interact with 

positively charged groups in bitumen through their π-electrons, whereas PS blocks 

interact with electron-rich groups in bitumen through their aromatic protons. Mixed with 

bitumen, PS blocks in SBS copolymers absorb some saturated branches and a few rings 
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in light components of bitumen, which leads to the swelling of PS blocks and the 

hardening of bitumen. When the polymer content is low, SBS is dispersed as a discrete 

phase in the bitumen. As the SBS concentration increases, phase inversion starts in the 

modified bitumen. The process of phase inversion in SBS modified bitumen was 

presented by fluorescent images as Figure 2.6. It is ideal to form two interlocked 

continuous phases: bitumen-rich phase and SBS-rich phase. Within the SBS-rich phase, 

there are two subphases: swollen PB matrix and essentially pure PS domains. Once the 

SBS-rich phase forms, a rubbery supporting network is created in the modified bitumen, 

which results in the increased complex modulus and viscosity, improved elastic response 

and enhanced cracking resistance at low temperatures of SBS modified bitumen. 

 

Figure 2.6 -Fluorescent images of SBS modified bitumen with various contents (by weight) of 

SBS.  

 

The repeatedly reported excellent properties, relatively good dispersibility (or appropriate 

solubility) in bitumen and acceptable cost have made SBS popular as a bitumen modifier. 
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However, SBS copolymers are far from perfect. For example, the compatibility between 

bitumen and SBS is not that good. Storage instability of SBS modified bitumen was 

reported with images as Figure 2.7. Thermoplastic elastomers and asphaltenes compete 

to absorb the light components of bitumen in SBS bitumen blends. If these light 

components are insufficient, phase separation could occur in modified bitumen. It was 

noted that bitumen with high aromatics content can be helpful in producing a compatible 

and stable SBS modified bitumen and addition of aromatic oils can improve the 

compatibility between SBS and some bitumen with low aromatics content. Too high 

aromatics content in modified bitumen, however, may lead to the swelling and anti-

plasticization of some PS blocks, which is not good for the resulting properties of the 

modified bitumen [20]. 

 
Figure 2.7 -Morphology development with the storage time of a SBS modified bitumen at 160 

°C.  

 

Another problem with SBS modification of bitumen is its low resistance to heat, oxidation 

and ultraviolet (UV) because of the presence of double bonds and α-H in PB blocks. In 

fact, the instability of SBS copolymers is mainly due to the high activity of α-H and low 

bond energy of the π-bond in double bonds. Undesired chemical reactions (e.g. 

formation of peroxy radicals and hydroperoxides) make them sensitive to heat, oxidation 
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and UV. In order to overcome this disadvantage, researchers firstly paid much attention 

to saturated thermoplastic elastomers such as SEBS.  

 

SEBS copolymers, which can be obtained by hydrogenation of SBS, consist of triblock 

styrene-ethylene/butylene-styrene chains. The chemical saturation makes them highly 

resistant to heat, oxidation and UV. However, as the double bonds disappear, some 

researchers claimed that the polarity of the copolymers is considerably reduced. 

Meanwhile, the ethylene/butylene blocks in SEBS have a trend to crystalize. So the 

compatibility between SEBS and bitumen was believed to become even worse. According 

to the research by Polacco et al. [21], stable SEBS modified bitumen can only be prepared 

at a low polymer content (below about 4 wt% of the total mass) when SEBS acts just as 

filler and does not improve the viscoelastic properties of bitumen significantly. On the 

contrary, when SEBS content is high enough to really modify bitumen, the prepared PMB 

is unstable and tends to phase separate. Additionally, extra cost involved by the 

hydrogenation process and poorer elastic properties were observed in SEBS modified 

bitumen, which further limits its application as a bitumen modifier [20]. 

 

In order to avoid drawbacks of SEBS modification, researchers from Mexico attempted 

to use partially saturated SBS copolymers in bitumen modification. They prepared 

styrene-butadiene-ethylene/butylene-styrene (SBEBS) copolymers with various degrees 

of saturation by partial hydrogenation of SBS copolymers and found that SBEBS 

modified bitumen has better mechanical properties (e.g. higher rutting resistance and 

better elasticity) than SBS modified bitumen. Although partial hydrogenation may also 

cause weaker polarity and possible crystallization of the copolymers, it was claimed that 

SBEBS dispersed better in bitumen and led to improved storage stability of modified 

bitumen in the research. An explanation for this phenomenon was given in terms of 

solubility parameters of copolymers in aromatic compounds. However, no further reports 

on the application of SBEBS are found to support its success in bitumen modification. 

 

Another attempt for enhancing the ageing resistance of SBS modified bitumen was to 

transfer the double bonds from the backbone to branches, i.e. using high vinyl content 

SBS copolymers. From 1,3-butadiene, people usually prepare SBS copolymers with the 

structure as Figure 2.5.A by 1,4-addition mechanism. Some researchers claimed that a 
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novel class of SBS copolymers, called high vinyl content SBS copolymers, can be 

obtained from 1,3- butadiene by 1,2-addition mechanism with special additives and 

processing conditions. This SBS copolymer has the double bonds on the branches, which 

was believed to result in lower viscosity and better compatibility with bitumen. As heat, 

oxidation and UV preferably attack double bonds on branches, the backbone tends to be 

left intact. So it was claimed that the ageing resistance of SBS modified bitumen modified 

could be improved by using high vinyl content SBS copolymers. In addition to this, when 

employed to modify hard bitumen for base layers, this SBS copolymer was believed to 

reduce the layer thickness by as much as 40% and material cost by some 25%. A 

representative patent, which relates high vinyl content diblock copolymers, linear triblock 

copolymers, multiarm coupled block copolymers and mixtures thereof, was granted to 

Scholten and Vonk of Kraton Polymers. However, people currently do not have much 

experience with high vinyl content SBS copolymers. It is still necessary to carry out more 

research and field tests to find out to what extend they work for bitumen modification, 

especially in service. Care should still be taken now when introducing high vinyl content 

SBS copolymers to bitumen modification. 

 

2.1.4. Recyclability of PMB. 

Almost 30 years have passed since PMB began to be increasingly used in the late 1980s. 

Many of the early-constructed PMB pavements have reached the end of their service life 

and need resurfacing. It complies with the principle of sustainable development to recycle 

PMB after its service life ends. Researchers tried to investigate the recyclability of PMB, 

especially the most widely-used SBS modified bitumen. Although some of these 

investigations concluded that it is technically feasible to recycle aged PMB by adding 

rejuvenators or virgin bitumen, there is still no widely-accepted PMB recycling technique 

available today, which also affects the popularization of PMB in turn. Additionally, the 

mechanism of PMB ageing and rejuvenating is still not well understood. So, in the future, 

more research should be focused in this direction. As for developing new-type polymer 

modifiers, the concept of sustainable design should be introduced. Many of the current 

problems with recycling result from the fact that the property of recyclability was not 

involved when most products were designed. If a modifier is initially designed with 
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recyclability in mind, it will lead to products with better evaluation of life cycle and its 

popularization will be much easier [20]. 

 

2.2. Modified bitumen with rubber powder 
 

2.2.1. Introduction 

Crumb rubber (CR) derived from grinding of end-of-life tyres (ELTs) may be 

successfully used as a bitumen modifier or as a supplementary component in the 

production of bituminous mixtures employed for the construction and maintenance of 

road pavements. However, CRs deriving from different sources and production processes 

yield effects on performance of corresponding paving mixtures under traffic loading and 

on gaseous emissions produced during laying on site which may change considerably 

depending upon their physical and chemical properties. In order to quantitatively assess 

the possible variability of CR characteristics [22]. 

 

Management of end-of-life tyres (ELTs) has become a critical problem worldwide due to 

the increasing number of vehicles circulating in the road network and to the crucial role 

that mobility has assumed in society development. Since landfill disposal has been banned 

in most Countries, alternative final destinations have been sought, with a major effort 

being placed in trying to exploit in the most efficient manner the high energy potential of 

ELTs. Nevertheless, due to the fact that rubber employed in tyre fabrication is the result 

of specialized materials’ selection, recycling and reuse seem to be preferable options for 

such a high-quality waste material [22]. 

 

Practical experience and research have shown that crumb rubber (CR) derived from 

grinding of ELTs may be successfully used as a bitumen modifier or as a supplementary 

component in the production of bituminous mixtures employed for the construction and 

maintenance of road pavements. Available technologies can be grouped into two main 

categories which are associated to the so-called “wet” and “dry” production processes. 

Within each group, different versions of the technology have been conceived and 

subjected to trials either in the laboratory or at the industrial scale, in the constant attempt 

of exploiting more efficiently the performance-related benefits of CR.In the “wet” 

process, CR is preliminarily mixed with bitumen, thus obtaining a ductile and elastic 
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modified binder, known as “asphalt rubber” (ASTM D6114-09), that is then combined 

with aggregates in the hot mix plant. Resulting mixtures are generally of the gap-graded 

(GG) or open-graded (OG) type, characterized by a very high binder content (of the order 

of 7.5–10% b.w. of dry aggregates) and by a non-continuous particle size distribution that 

allows CR to be accommodated within the composite material. GG and OG mixtures are 

employed for the formation of surface courses and have earned a satisfactory reputation 

with respect to field performance [22]. 

 

In the “dry” method, CR is introduced in the production flow of bituminous mixtures as 

a supplementary component, substituting part of the aggregates and providing enhanced 

elastic response under loading. Mixtures are usually of the dense-graded (DG) type, with 

a continuous particle size distribution and an optimal binder content (usually of the order 

of 5–6%) which is only slightly higher than that adopted for standard mixtures containing 

no recycled rubber. Unfortunately, the performance record of these mixtures has been 

quite inconsistent, with the frequent occurrence of early ravelling phenomena and 

moisture-related damage. This also explains the limited diffusion of such a technology, 

with full-scale applications that have been generally carried out locally rather than at the 

network level. 

 

For both the abovementioned technologies, concerns have been raised on the use of CR 

in bituminous mixtures with respect to its potential contribution to gaseous emissions 

during production and laying, and to the possible consequences which it can cause on the 

health of construction workers. However, a limited number of experimental studies have 

been carried out on this specific topic, with no clear quantification of the actual hazardous 

effects of CR [22]. 

 

2.2.2. CR production 

Processing of ELTs is carried out in various phases during which rubber is separated from 

other materials (textile fibers and metals), mechanically reduced in granular form and 

finally divided into particle size fractions. When shredding, shear and abrasion operations 

occur with no specific temperature conditioning, the process is known as “ambient size 

reduction”. In some plants, however, ELTs are brought below rubber glass transition 

temperature with adequate cooling systems and the resulting process is referred to as 

http://www.sciencedirect.com/science/article/pii/S0956053X15003542?via%3Dihub#b0010
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“cryogenic”. Moreover, novel processing methods are continuously developed in order 

to optimize plant efficiency. As an example, size reduction has also been attempted by 

means of the “high pressure waterjet” system, based on the abrasive effects caused by 

water jets at 3.000 bar which pulverize ELTs. 

 

Depending upon the type of treatment process and on the origin of ELTs fed to it, CR 

may have different physical and chemical characteristics. In particular, particles deriving 

from ambient size reduction generally have irregular shape and rough surface; moreover, 

it has been postulated that in some cases heat generated during mechanical processing 

may induce a partial devulcanization of rubber. By comparison, cryogenically produced 

CRs are mostly made of cuboid-shaped particles with a smooth surface. With respect to 

ELT origin, it is well known that tire producers employ different rubber formulations and 

that truck tires generally have a higher natural rubber content than car tires. However, in 

practice only the second factor may influence CR production since there are plants that 

treat only truck (or car) tires, but none are dedicated to a single tire producer. 

 

2.2.3. CR-bitumen interaction 

In the asphalt rubber “wet” production process, CR is thoroughly mixed with bitumen at 

a temperature in the 175–225 °C range. The resulting binder is then kept in agitation at 

high temperature (150–215 °C) for the time period (of the order of 45–60 min) which is 

necessary for interaction phenomena between the components to occur. In particular, CR 

particles are partially digested in the bituminous matrix and absorb part of the aromatic 

fraction of bitumen, with a resulting volume expansion and formation of a gel-like surface 

coating which gives the binder its peculiar physical and rheological characteristics. In this 

form, CR particles are still visible in the composite binder which has a distinctive 

granular-like appearance. If curing is carried out at an excessive temperature and/or for a 

too long time period, degradation phenomena become prevalent and CR is totally digested 

in bitumen: as a consequence, the resulting binder does not have the typical characteristics 

of asphalt rubber and may exhibit unsatisfactory performance. 

 

Asphalt rubber binders usually have a CR content comprised between 18% and 22% (b.w. 

of total binder), with a high viscosity at storage/mixing temperatures and enhanced elastic 

properties in service. Binder characteristics are dependent not only upon chemical 
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composition of employed components, but also on CR dosage, particle size and 

morphology. In such a context, it has been proven that the intensity of the above described 

interaction phenomena tends to increase with CR dosage and specific surface area. 

Therefore, CRs which are considered more reactive are those which are finer, constituted 

by rough, irregular particles. 

 

In the production of “dry” mixtures CR is usually employed with a dosage comprised 

between 1% and 3% (b.w. of dry aggregates). Depending upon the type of plant, either 

batch or drum-mix, CR can be introduced in the production flow of bituminous mixtures 

by means of different methods but is always added to the heated aggregates before coming 

in contact with bitumen. When this condition occurs, even though CR particles are not 

digested in bitumen, they do absorb part of its aromatic fractions. However, such an 

interaction takes place in non-controlled conditions, starting from the mixing process in 

the plant and progressing throughout the early phases of service life. Studies performed 

in the past have shown that in this respect beneficial effects can be obtained by pretreating 

CR by means of function-specific catalysts or extender oils [22]. 

 

2.2.4. CR selection and acceptance 

 

Selection and acceptance of CR for use in asphalt rubber classically relies upon the 

requirements that have been set in ASTM D6114. These are expressed in terms of 

cleanliness (fiber content <0.5%; metal content <0.01%), moisture content (<0.75%), 

density (equal to 1.15 ± 0.05) and maximum particle size (2.36 mm). However, the 

standard also specifies that the exact size distribution of CR should be agreed upon 

between producer and end-user. 

 

Based on experience and local tradition, in other contexts requirements may be slightly 

different. As an example, technical specifications of the California State Department of 

Transportation require the use of natural and synthetic rubber in given proportions and 

provide size distribution acceptance intervals which should be satisfied by single CR 

components [22]. 



CHAPTER 2: Polymer Modified Bitumen (PMB) and Use of Crumb Rubber in Road Pavement. 

57 
 

In the case of the “dry” production technology, depending upon the desired effect on the 

resulting bituminous mixture, CR can be employed with different size distributions, 

ranging from “ultrafine” (entirely passing the 0.3 mm sieve) to “coarse” (passing the 

6 mm sieve and totally retained on the 2.36 mm sieve). Since it has been recognized that 

size distribution (and related specific surface area) is the main factor controlling 

performance properties of “dry” mixtures, specific requirements are usually not set on 

other CR characteristics. 

Physical and rheological properties of asphalt rubber are also subjected to acceptance 

requirements in technical specifications. This is done either by referring to the results of 

classical empirical tests (penetration, softening point, etc.) or by considering viscoelastic 

properties measured at representative temperatures, frequencies and ageing conditions. 

All evaluation systems also include acceptance criteria referred to apparent viscosity, 

which is typically required to be comprised between 1500 and 5000 mPa s. Such a 

property, which refers to the flow behavior of asphalt rubber, is considered as a good 

quality indicator that can be also measured on site, from storage tanks, with portable hand-

held viscometers. 

 

2.3. The Use of Recycled Tire Rubber (Crumb Rubber) to Modify 

Asphalt Binder and Mixtures. 

Crumb rubber (CR), from waste tires (Figure2.8) has been used in asphalt by the paving 

industry since the 1960’s. CR has been used as an asphalt binder modifier and asphalt 

mixture additive in gap-graded and open-graded asphalt mixtures and surface treatments 

[23]. 
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Figure 2.8 - Picture of a waste tire pile. 

 

Until recently the routine use of CR in pavements has been limited to a few states. While 

performance is generally good, CR cost has been high when compared to conventional 

practices. Asphalt binder costs have increased over the past several years due to the rising 

cost of crude oil. In addition, polymers, such as styrene-butadiene-styrene (SBS), have 

also seen an increase in cost due to other market demands and fluctuations in availability. 

In contrast, over this same time period CR from car and truck tires has experienced a 

relatively stable market price. Local, State, and Federal regulations have also created an 

increase in the availability of recycled tire rubber. This has driven a renewed interest in 

CR as an asphalt binder modifier and mixture additive – with the goal of providing a long-

life, cost-competitive, environmentally-responsible pavement system [23]. 

 

In 2006 the FHWA Recycled Materials Policy was established and is located at: 

http://www.fhwa.dot.gov/legsregs/directives/policy/recmatpolicy.htm 

 The FHWA policy states:  

1. Recycling and reuse can offer engineering, economic and environmental benefits 

(Figure 2.9).  

2. Recycled materials should get first consideration in materials selection.  

http://www.fhwa.dot.gov/legsregs/directives/policy/recmatpolicy.htm


CHAPTER 2: Polymer Modified Bitumen (PMB) and Use of Crumb Rubber in Road Pavement. 

59 
 

3. Determination of the use of recycled materials should include an initial review of 

engineering and environmental suitability.  

4. An assessment of economic benefits should follow in the selection process.  

5. Restrictions that prohibit the use of recycled materials without technical basis should 

be removed from specifications. 

 
Figure 2.9 - The three key benefits of recycled/reused materials. 

 

This Technical Brief provides background on the various CR processes used in asphalt 

pavements and information on how to incorporate CR into the Superpave design system 

[23]. 

 

2.3.1. Tires 

The make-up of tires varies depending on the type, truck or passenger, and manufacture. 

However, the basic components are about the same and are provided in Table 2.2 below. 

 
Table 2.2 - Basic Components of Tires 

 

In the past it was believed that different types of tires or different portions of the tires 

produced better material for blending with asphalt binder. However, with modern tires 
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there is little difference between truck and passenger tires. There are slight variances in 

the percentage of natural and synthetic rubber, but this is not believed to cause differences 

in CR modified binder performance. 

 

Tire Processing: 

Processing is required to make tires usable as a modifier or additive. The steel and fiber 

must be removed from the tires and then the remaining tire must be reduced in size to 

small particles for blending into the asphalt binder or mixture. Several different processes 

are used to reduce the CR size for asphalt modification. The two primary processes are 

ambient grinding and cryogenic fracturing. Processing the tires using cryogenic fracturing 

involves cutting up the larger tire pieces into smaller, typically 50 mm particles, using 

sharp steel cutters. These smaller pieces are then frozen and fractured. The fracturing 

process produces a large variety of sizes from very small, passing the 75 µm sieve, to 

larger 4 or 5 mm size particles. The rubber particles produced by cryogenic fracturing 

have a tendency to be cubical with a smooth surface. The ambient grinding process starts 

the same way as the cryogenic process; the tires are cut into smaller pieces with sharp 

cutting blades. The smaller pieces are then passed through shredders that grind and tear 

the rubber into smaller particles. Similar to cryogenic fracturing, the ambient grinding 

produces sizes ranging from small, passing the 75 µm sieve, to larger 4 to 5 mm size 

particles. The main difference between the two processes is the surface texture of the 

rubber particles. Ambient grinding produces a rough texture with increased surface area 

due to the tearing process. Figure 2.10 below shows the two different types of particles. 

On the left is the ambient grind with the rough surface texture and on the right is cryogenic 

fractured with smoother surface texture. 

 
Figure 2.10 -Ambient grind rubber (left) and Cryogenic fractured rubber (right). 
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The surface area of the rubber particles, in addition to blending temperature, controls how 

fast the particles will react with asphalt binder where the rubber particles absorb some of 

the asphalt binder and swell. The greater the surface area the faster the reaction time with 

asphalt binder. It is critical to know the size of the rubber to control the reaction process. 

Using a different size in production than used in the mix design may not produce optimal 

results [23]. 

 

2.3.2. Various Processes for Creating CR Binders and Mixtures 

Figure 2.11 shows the three general processes used for creating CR asphalt pavements. 

 

 
Figure 2.11 -General processes for creating CR binders and mixtures. 

 

Each of these processes will produce AR pavements with different properties and 

different performance. Agencies need to understand these differences so they can make a 

choice on the type of process that will perform best for their desired application. Agencies 

are encouraged to determine their goals when using CR so the correct process can be 

selected for their needs. Further, each of these processes has different risks in terms of 

success. Agencies need to understand the testing and inspection resources necessary to 

commit to each of these types of processes to ensure success.  

 

2.3.2.1. Dry Process 

CR used in the dry process is considered to be an aggregate replacement in the mix as 

opposed to a binder additive. Dry process asphalt rubber is the least commercially 

significant type of asphalt rubber. Dry CR is added similar to reclaimed asphalt pavement 
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(RAP) at the mixture production plant. The rubber is typically larger size particles 

between 4 to 18 mesh or 4.75 to 1.00 mm. Cryogenic rubber is typically used in this 

process. Gapgraded aggregate mixtures are required to provide space for the rubber 

particles. Figure 2.12. shows CR being auger fed into the RAP collar on the drum of a 

mixture production plant. 

 
Figure 2.12 -Feed system to add dry CR into mixture production plant. 

 

2.3.2.2.  Wet Process – On-site Blending 

The AR wet process with on-site blending has the longest history of use, Figure 2.13. The 

CR is field blended in a mixing tank and allowed to react with the asphalt binder for a set 

time. CR is typically field blended at 350 to 400°F (175 to 200˚C) for 45 to 60 minutes. 

The temperature and time depend on the base asphalt binder grade, percentage, and 

particle size of the CR. During this reaction time the rubber particles absorb some of the 

light fractions of asphalt binder and swell. This absorption and swelling causes an 

increase in the viscosity of the AR-asphalt binder blend. With extended reaction times the 

viscosity will then decrease slightly. This has typically been called “digestion” of the 

rubber in the asphalt binder. 
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Figure 2.13 -Wet Process On-site. 

 

The typical CR addition is 15 to 22 percent by weight of the asphalt and rubber blend. A 

minimum of 15 percent was initially set to maximize use of recycled tires and has not 

changed. This initial minimum percentage was not set for performance-related rationale. 

This is a recipe formulation and may not necessarily produce the optimum performance 

for traffic or environment at the project. A course graded CR material, 10 to 14 mesh or 

2.0 to 1.4 mm maximum size is used. The larger CR particle size requires a gap-graded 

or open-graded aggregate in the mixture to allow room for the rubber particles. If this is 

not done, compaction is difficult to achieve because the rubber particles push the 

aggregate particles apart as they are compressed during rolling and expand when the 

compaction force is removed.  

 

The increase in viscosity that CR provides to the asphalt binder also requires an 

appropriate increase in production temperatures for producing and placing mix. Increased 

temperatures can create unique odors and the potential for smoke. Worker health and 

safety issues need to be considered. Warm mix asphalt (WMA) technologies have been 

successfully used to help reduce AR mixture production and placement temperatures [23]. 
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2.3.2.3.  Wet Process - Terminal Blend 

Terminal blend CR modified AR asphalt binder is produced at a supplier’s terminal as 

shown in the left image of Figure 2.14 and shipped to the mixture production plant similar 

to standard asphalt binder. CR used in this process is typically a smaller particle grind, 

sized to minus 30 mesh or smaller than 0.6 mm. The smaller rubber particles are used to 

help improve storage stability and minimize CR particle settlement. In some systems, 

rubber is completely digested in asphalt with no particulate matter present. The terminal 

blend CR binders used alone or with polymers can be formulated to produce Superpave 

performance graded (PG) binders, typically using 5 to 10 percent CR by weight of the 

total binder. 

 
Figure 2.14 -Terminal Blend CR (left); Mixture production plant with vertical binder storage 

tanks which allow for better agitation and storage (right). 

 

Smaller CR particles and polymers are used in a terminal blend to produce an AR binder 

that is similar to standard polymer modified asphalt binder. It is shipped to the mixture 

production plant, stored in in the plant’s binder storage tanks and mixed with the 

aggregate, similar to standard asphalt mixture. It may be used in dense-graded mixes with 

no modification to the job mix formula. 

 

Depending on the technology used, storage stability can be a problem with terminal blend 

AR binders. If CR is simply mixed with the binder it will settle with time; because rubber 

is heavier than asphalt binder. Settlement time will vary depending on the size of the CR 
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particles and other additives or methods used to reduce separation. To avoid separation 

transport vehicles and storage tanks with agitation capability may be employed. Even 

with higher solubility AR binders, cleaning of tanks is recommended. Several patented 

methods have been developed to reduce separation and newer methods are in 

development. Continuous agitation in the storage tanks using stirring paddles and 

recirculation pumps will help reduce separation [23]. 

 

 

2.3.2.4. A Hybrid Terminal Blend - Dry Crumb Rubber Modified Asphalt 

Mixture – CRHY 

Benefits of CR modified asphalt pavements (CRMAPs) have been acknowledged by 

numerous researchers (Way, 1999; Carlson et al., 1999; Hicks et al., 1999). Most 

CRMAPs are made with the following three major methods: wet process (CRWet), dry 

process (CRDry), and terminal blend (CRTB) process. In CRWet process, crumb rubber 

(CR) is added to liquid asphalt at temperatures around 325-400 °F (163-205 ºC) and about 

15% - 22% CR by weight of the binder is utilized (1-1.5% by total weight of the mix) 

(Caltrans, 2005; Caltrans, 2005). The terminal blend (CRTB) process is similar to the wet 

process, except that less amount of CR is used (~10-12%) and a polymeric additive is 

used to keep the CR particles suspended in the binder. The characteristics of CRWet and 

CRTB modified asphalt binders depend on the type of rubber, binder type, size of the CR 

particles, duration and temperature of the reaction and modification method (Carlson et 

al., 1999; King et al., 1999). The CR particles react with asphalt binder in two different 

ways during modification process: swelling and/or degradation (Abdelrahman et al., 

1999). Depending on the reaction time and temperature, CR particles swell approximately 

two to three times of their original size (Jamrah et al., 2015). CRDry process is the method 

where the CR particles are added to the mix as a replacement of fine aggregates. In 

addition, there are several treated dry rubber technologies where the crumb rubber 

particles are pre-mixed with low viscosity petroleum-based products or aromatic oils 

compatible with the lighter fractions of asphalt binder. These treated rubber technologies 

are used as a CRDry process where they are added as a fine aggregate to the mixture [36]. 

By adding about 0.5% Dry CR (by weight of the mix), the amount of the rubber in the 
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mixture can be doubled as compared to the conventional CRTB mix. The relative 

performances of CRTB and CRTB+dry process (herein called CRHY) [36]. 

CRHY is a new crumb rubber modified asphalt method, which is a combination of 

terminal blend (CRTB) and dry process (CRDry). The goal of such combination is to 

increase the CR content of CRTB modified asphalt mixtures by adding about 0.5% CR 

(by weight of the mix) via dry process. The CRHY method approximately doubles the 

rubber content in CRTB method by adding dry crumb rubber particles [36]. 
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3. CHAPTER 03: Rheology of Bitumen 

 

3.1. Introduction 

         Understanding bitumen rheology is a major concern since the mechanical properties 

of binders are closely linked to the service behaviour of actual flexible pavements. 

 

Rheology involves the study and evaluation of the flow and permanent deformation of 

time-temperature dependent materials, such as bitumen, that are stressed (usually shear 

stress or extensional stress) through the application of force. The word rheology is 

believed to originate from the Greek words "ρεω", which can be translated as "the river, 

flowing, streaming", and "λογοο" meaning "word, science" and, therefore, literally means 

"the study of the flow" or "flow science" [24]. 

 

In the Rheology Bulletin, Morrison [25] translated the word rheology as, "Rheology is 

the study of the flow of materials that behave in an interesting or unusual manner. Oil and 

water flow in familiar, normal ways, whereas mayonnaise, peanut butter, chocolate, bread 

dough, and silly putty flow in complex and unusual ways. In rheology, we study the flow 

of unusual materials". The rheology of bitumen can be defined as the fundamental 

measurements associated with the flow and deformation characteristics of bitumen. 

 

Therefore, understanding the flow and deformation (rheological properties) of bitumen in 

an asphalt mixture is crucial for pavement performance. Asphalt mixtures that deforms 

and flows too readily may be susceptible to rutting and bleeding, while those that are too 

stiff may be exposed to fatigue and cracking. 

 

The study of bitumen rheology is not a new field and has been extensively studied all 

over the world. It is so well established that the most famous rheology tests on bitumen 

was started in 1927 at the University of Queensland in Brisbane, Australia (Figure 3.1). 

Professor Thomas Parnell initiated "the pitch drop" experiment, a test that consists of a 

bituminous-like pitch, slowly dripping out of a funnel at room temperature. 
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This test is considered as the longest rheology experiment and, up to the present time, 

only eight drops have fallen. The pitch has an estimated viscosity of approximately 

230MPa.s [26]. Considerable efforts have been undertaken by bitumen and paving 

technologists over the last five decades to study the rheological properties of bitumen 

[27]. 

 

The rheological properties of bitumen are measured using conventional tests including 

softening point, viscosity (at 65oC and 135oC), elastic recovery (at 25oC by using a 

ductilometer), storage stability (penetration point, softening point), flash point and tests 

after thin film oven ageing (softening point, viscosity, elastic recovery). However, these 

measurements are insufficient to properly describe the rheology and failure properties 

that are needed to relate bitumen properties to asphalt mixture performance. The 

reliability of the tests is also often questionable. In addition, these tests do not quantify 

the time-dependent response of the binder and are not suitable to measure the rheological 

properties of modified binders. 

 

Nowadays, the rheological properties of bitumen are usually determined using an 

oscillatory type testing apparatus known as a dynamic shear rheometer (DSR). This 

method was initially introduced during the Strategic Highway Research Program (SHRP) 

in 1993. The DSR is a very powerful tool used to determine the elastic, viscoelastic and 

viscous properties of bitumen over a wide range of temperatures and frequencies, often 

using the testing configuration shown in Figure 3.2.

 

Figure 3.1 -Pitch drop experiment 

 

Figure 3.2 -Dynamic shear rheometer (DSR)
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3.2. Rheology, deformation and flow 

Rheology is concerned with the study of the internal response of real materials to stresses.  

Rheology can be considered to be the study of materials that exhibit both solid and liquid 

characteristics. [5]  

 

A solid or a liquid retains its form; under load the material deforms, and when the load is 

removed this deformation can be either irrecoverable (viscous) or the deformation can be 

recoverable (elastic). In the simplest of terms, ideal solid materials behave in an elastic 

manner, and the deformation is recovered when the force or load is removed, whereas 

liquids behave in a viscous manner, and the load is not recovered but results in a 

permanent deformation of the material. Between these two ideal states, materials can 

exhibit what is referred to as visco-elastic behavior, in which the response to stress is  

partially viscous and partially elastic.  

Rheology involves the study and evaluation of the time-temperature dependent response 

of materials that are stressed or subjected to an applied force. Rheological properties of 

bitumen consist of age hardening, temperature susceptibility, shear susceptibility, 

stiffness, penetration, ductility, and viscosity.[2] 

 

3.2.1. Elasticity, plasticity and the behavior of solids 

The ability of a deformed material body to return to its original shape and size when the 

forces causing the deformation are removed is referred to as elasticity, and materials 

exhibiting this behavior are referred to as elastic. Most solid materials exhibit elasticity, 

and the response to relatively small stresses results in a directly proportional strain: this 

relationship was observed by Robert Hooke in 1660, and is referred to as Hooke’s law.  

 

Hooke’s law states that the applied force F = a constant “k” multiplied by the 

displacement or change in length: F = kx. 

The value of k depends not only on the kind of elastic material under consideration but 

also on its dimensions and shape. Bitumen exhibits elastic behavior at low temperatures.  
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The limit of proportionality is defined as the point beyond which Hooke’s law is no longer 

true when deforming a material, and the elastic limit is the point beyond which the 

material under load becomes permanently deformed so that the material does not return 

to its original length when the force is removed. It marks the onset of plastic behavior. 

For most brittle materials, stresses beyond the elastic limit result in fracture with almost 

no plastic deformation. 

 

3.2.2. Viscosity and the behavior of liquids 

Viscosity (η) is the measure of the resistance to flow of a liquid, and is defined as the ratio 

between the applied shear stress (τ) and the rate of shear strain (γ). 

The viscosity of all simple liquids, including bitumen, decreases with increasing 

temperature. 

3.2.2.1. Newtonian behavior and non-Newtonian behavior. 

Newtonian behavior is referred to where stresses arising are linearly proportional to the 

local strain rate, and the viscosity is independent of the rate of deformation 

If η is constant, the fluid is known as Newtonian viscosity, and only varies as the 

temperature varies. 

 

There are several ‘non-Newtonian’ effects, such as shear thinning which are termed 

‘pseudo-plastic’ (viscosity decreases as the shear rate increases) also shear thickening 

termed ‘dilatant’ (the viscosity increases as a function of the shear rate). Most polymer 

modified bitumen can be considered to be shear-thinning liquids. Another effect is the 

yield stress (Bingham Fluid). Fluid with yield stress, flow only when the applied stress is 

higher than the threshold stress, and this is one of the main characteristics in road asphalt. 

Many other effects are related to the non-Newtonian flow behavior such as Weissenberg 

effect, die swell and fluid memory. 

The following figure shows the shear stress dependence upon the shear rate for non-

Newtonian and Newtonian fluids behavior. 
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Figure 3.3 -Different types of flow curves 

 

3.2.3. Visco-elasticity 

The term visco-elasticity refers to the mechanical properties of a material that, in two 

limiting extremes, can result in the material behaving either as an elastic solid or a viscous 

fluid, depending on the temperature and the time of loading. Visco-elasticity differs from 

plasticity in that viscoelastic materials exhibit a time-related recovery when a load is 

removed: this is often referred to as a delayed elastic response. A plastic material does 

not return to its original form after the load is removed. 

 

Under load, a material can exhibit a mixed visco-elastic and plastic response in which a 

proportion of deformation occurs; this is an important characteristic of bitumen and 

asphalts where accumulated non-recovered deformation manifests itself in the 

development of ruts in asphalt pavements. Reducing this phenomenon has resulted in the 

adoption of ways to reduce the permanent deformation and includes the modification of 

bitumen using polymers. 

 

Bitumen can be considered a visco-elastic material where, typically, at low temperatures 

the elastic properties dominate, while at high temperatures the material behaves as a 

viscous fluid.  

 

The degree to which a material displays visco-elastic behavior can be quantified; the 

Deborah number (De) as a measure of a material’s visco-elasticity. 
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Where: 

λ = relaxation time 

t0 = observation time 

If the Deborah number tend to be larger than one (De»1) the time that the stress is applied 

is much shorter than the relaxation time then the material will behave more elastic than 

viscous, in the case of viscoelastic behavior De ≈ 1 and for the limit of Newtonian liquid 

De →0..[2] 

 

 

 

3.3. Rheological Properties of Bitumen Binders 

The bitumen shows viscoelastic properties; these properties are usually measured where 

the relationship between stresses and strains is influenced only by the temperature and 

loading time and not by their magnitude (linear viscoelastic condition, LVE). 

 

The LVE rheological properties of bitumen are normally presented in the form of both 

the complex modulus (|G*|) and phase angle (δ) master curves. |G*| is defined as the ratio 

of maximum (shear) stress to maximum strain when subjected to shear loading and δ is 

the phase difference between stress and strain in harmonic oscillation. 

 

The study and understanding of these variables takes considerable importance in view of 

performance of binders. A binder which under the application of a load manifests high 

deformations may give rise to phenomena of rutting in the conglomerate. On the contrary, 

a very hard bitumen may give the pavement a greater sensitivity to fatigue phenomena. 

Today, the rheological properties of the binders are usually determined using equipment 

that operates both in oscillatory and continuous regime. The main important laboratory 

equipment to determine these rheological properties is the Dynamic Shear Rheometer 

(DSR). [2] 
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3.3.1.  Dynamic Shear Rheometers (DSR): oscillatory tests 

This type of test imposes sinusoidal stress, as an oscillatory shear force to a bitumen 

sample sandwiched between two parallel plates. The typical arrangement of DSR is of a 

fixed lower plate and an oscillating upper plate through which the shear force is applied 

to the specimen as shown in figure 3.4. 

 

Figure 3.4 -Dynamic Shear Rheometer 

The amplitude of the responding stress is measured by determining the torque transmitted 

through the sample in response to the applied strain. (Fig. 3.5) 

 

Figure 3.5 -Stress-Strain response during an oscillatory testing 

 

The loading frequency (ω) is known as the angular frequency, rotational frequency or 

radian frequency and is defined as:  

𝜔=2𝜋f 
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Where: 

ω= angular frequency (rad/s) 

f = frequency (Hz). 

 

The response of the applied strain is the development of a stress that, for linear visco-

elasticity is sinusoidal, and the response of the material is out of phase with the applied 

strain, and is referred to as the phase angle δ. This is defined as the phase difference 

between the stress and the strain, and is also called the loss angle or the phase lag. The 

phase angle represents the time lag (Δt) between the applied shear stress and the resulting 

shear strain converted into degrees: 

 

It is shown graphically in figure 3.6, a purely elastic material would not show any phase 

difference between the stress and strain where as a pure viscous material shows a phase 

angle of 90°. 

 

Figure 3.6 -phase angle determination 

The ratio of the resulting stress to the applied strain is called the complex shear modulus, 

G*, and is also referred to as the complex modulus, shear modulus or, simply, the 

stiffness. 

G* is an indicator of the stiffness or resistance to deformation under load of bitumen and 

is defined by the following equation: 

𝐺∗ =
𝜏𝑚𝑎𝑥

𝛾𝑚𝑎𝑥
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Where: 

τmax= shear stress 

γmax = shear strain 

The norm of the complex modulus is analogous to the magnitude of a vector (Figure 3.7), 

as the value is calculated from the square root of the sum of the squares of the components. 

 

Figure 3.7 -Relationship between Shear Modulus and phase angle. 

 

The in-phase component of G* is called the shear storage modulus (G’), or more 

commonly the storage modulus. The storage modulus equals the stress that is in phase 

with the strain divided by the strain, or: 

𝐺′ = 𝑐𝑜𝑠𝛿. 𝐺∗ 

The shear loss modulus G”, or simply the loss modulus, is the out-of-phase component 

of G*. The loss modulus equals the stress 90° out of phase with the strain divided by the 

strain, or: 

𝐺" = 𝑠𝑖𝑛𝛿. 𝐺∗ 

Materials with higher storage moduli have greater ability to recover from deformation, 

and materials with higher loss moduli have greater ability to resist deformation at any 

prescribed frequency. 
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3.3.2. Representation of rheological data 

One possible representation of the data from the tests in oscillatory regime sinusoidal, 

alternative to the representation of viscoelastic functions in the frequency domain, is 

formed from the Black Diagram. (Fig. 3.8) 

 

A Black diagram is a graph of the magnitude (norm) of the complex modulus ([G*]) 

versus the phase angle (δ) obtained from a dynamic test. The frequency and the 

temperature are therefore eliminated from the plot, which allows all the dynamic data to 

be presented in one plot without the need to perform time–temperature superposition 

manipulations of the raw data. A smooth curve in a Black diagram is a useful indicator of 

time–temperature equivalency, while a disjointed curve indicates the breakdown of the 

time–temperature superposition, and potentially the presence of a high asphaltene 

structured bitumen, high wax content bitumen or a highly polymer modified bitumen. 

 

 

Figure 3.8 -Black Diagrams Representations 

 

Another possible representation is a Cole-Cole Diagram (Fig. 3.9) which is a graph of the 

loss (viscous) modulus (G”) as a function of the storage (elastic) modulus (G’). The plot 

provides a means of representing the visco-elastic balance of the bitumen without 

incorporating frequency and/or temperature as one of the axes. 
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Figure 3.9 -Cole-Cole Diagram Representation. 

 

3.3.2.1. Principle of Time-Temperature Superposition (TTS) 

Under a regime of static stress as in a dynamic regime of stress, there is experimental 

evidence that the effects of the loading time and the temperature are superimposable. This 

means that increases the time of loading (or reductions of the oscillation frequency) 

produce effects on the response of the viscoelastic material completely similar, and 

therefore superimposable, to those of an increase in test temperature; also applies vice 

versa. 

It follows that a viscoelastic function is measured for a certain charging time t1 and for a 

certain temperature T1 is identically obtainable for a different pair of values of the time t2 

and the temperature T2 connected to the preceding by precise relations. 

Viscosity–temperature equations are used to characterize the temperature dependency of 

bitumens, and therefore to determine the shift factors needed for the time–temperature 

superposition principle.  

 

Based on the previous the principle of Time-Temperature Superposition (TTS) provides 

that between the temperature changes and the time (or frequency) there is a relationship, 

and therefore the effects of time and temperature found to overlap and it is 

interchangeable. 

Several studies have shown that the modules G' and G'' recorded at different temperatures 

can be gathered together into a single curve, called master curve, by means of the principle 

of Time-Temperature Superposition (TTS). 
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On the basis of what has been mentioned it can be said that the variation of a mechanical 

quantity, such as the complex modulus G* obtained by varying the temperature at fixed 

frequency, can be obtained by varying the frequency and keeping constant the 

temperature. Immediate consequence is the possible display on a single curve of the 

viscoelastic behavior of the test material in a frequency range much wider than that 

available experimental apparatus to set temperature. 

In particular, it is assumed that a temperature variation corresponds to a variation, equal 

to a same factor called "shift factor", of all the relaxation times 𝜆𝑖, namely that all the 

relaxation times of the same system have the same dependence by the temperature. 

Therefore, if τ1 (T0), τ2 (T0), τ3 (T0) ... are the relaxation times of the system at the 

reference temperature T0, then the effect of varying the temperature to a different value T 

will be changed to these times: τ1 (aT), τ2 (aT), τ3 (aT) ... where aT is the shift factor 

depending on temperature and is 1 for T = T0.  

Therefore: 

 

𝜏1(𝑇) = 𝑎𝑇 ∗ 𝜏𝑖(𝑇0) 

 

The Williams, Landel and Ferry (WLF) equation (Williams et al., 1955) has been widely 

used to describe the relationship between the shift factors and temperature, and thereby 

determine the shift factors of bitumens. The equation is theoretical, based on the free 

volume theory (Ferry, 1971), and makes use of temperature differences, which makes it 

suitable for practical manipulations. The equation has also been found to be applicable to 

bitumen results. 

The WLF equation is: 

log(𝑎𝑇) = log
𝜂0(𝑇0)

𝜂0(𝑇)
=  

𝐶1(𝑇−𝑇0)

𝐶2+𝑇−𝑇0
  

 

Where a (T) is the shift factor at a temperature T0, η0(T0) is the Newtonian viscosity at a 

temperature T0, η0(T) is the Newtonian viscosity at the reference temperature T, and C1 

and C2 are empirically determined coefficients; which depend on the material or fitting. 

The WLF equation requires three constants to be determined, namely C1, C2 and T. The 

temperature dependency of bitumens can be described by one parameter, T, if universal 

constants are used for C1 and C2 in the WLF equation. 
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An alternative equation that can be used to describe the relationship between the shift 

factors and temperature is the Arrhenius equation: 

 

log (𝑎𝑇) =
𝐸𝑓

𝑅
(

1

𝑇
−

1

𝑇0
) 

 

Where a(T) is the horizontal shift factor, Ef is the activation energy, R is the universal gas 

constant, T0 is the temperature and T is the reference temperature. 

P.E.Rouse proposed a theory that can explain the origins and deduce the implications of 

time-temperature superposition principle. It examines the motion of a polymer chain 

represented as a series of masses connected by springs (Fig. 3.10). The masses undergo, 

then, the effect of viscous forces. The problem is studied researching the normal modes 

of oscillation. The results include the time-temperature superposition principle.  

 

 

Figure 3.10 -Rouse Model 

 

 

3.3.2.2. Master Curves 

The development of the master curves are based on the Time Temperature Superposition 

Principle (TTS) explained above. The master curves can be used to represent the behavior 

of the material in a wide range of time or frequencies where the trend of load is determined 

by the only experimental curve that encloses both effects of time and temperature. 

These master curves can be constructed either in the time domain or in the temperature 

domain. In their simplest form, master curves are produced by manually shifting modulus 

versus frequency plots at different temperatures along the logarithmic frequency axis to 

produce a smooth master curve. 
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The shape of the master curve of the complex modulus as a function of the reduced 

frequency, on a log–log scale, resembles the shape of a hyperbola. (Fig. 3.11) 

 

Figure 3.11 -Master Curve 

 

The curve has a horizontal asymptote (glassy modulus) at high frequencies and an 

asymptote at an angle of 45° (viscous part) at low frequencies, with a transition range in 

between. (Fig. 3.12) 

 

Figure 3.12 -Parameters Master Curve 

 

Some general consideration and parameters of the master curve are: 

• Glassy Modulus:  defines the limit behavior of the material at low temperatures 

and at high frequencies. The value of G* is said in correspondence with the glassy 

asymptote called Gg "Glassy Modulus": this is the value asymptote horizontal at 

which the complex modulus tends to low temperatures and high frequency load.  
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Gg is a constant value for each type of bitumen and the phase angle δ =0° when 

the bitumen tends to the glassy regime. 

• Viscous part: defines the limit behavior of the material at high temperatures and 

at low frequencies. In correspondence with the viscos asymptote, it is defined the 

viscosity of the steady state ηss that for small amplitudes can be put equal to η0. 

𝜂𝑠𝑠 = lim
𝑤→0

𝐺∗

𝜔
 

 

• Crossover frequency ωc [rad/sec]: corresponds to the intersection between the 

glassy asymptote and the viscos asymptote. Its inverse is called "crossover time". 

This value indicates the transition from zone to zone viscoelastic viscose, for 

which is an indicator of the consistency and hardness of the material.  

 

• Rheological index R: This parameter indicates the "velocity" with which the 

curve reaches the glassy asymptote, and it is configured as a parameter of 

fundamental importance, as it is directly proportional to the amplitude of the 

spectrum of relaxation, which gives it the property of being a good indicator of 

the type of rheological material. In practice, this parameter characterizes the 

performance of the rheological curves. It is independent from the reference 

temperature but not by the type of bitumen. 

 

• Linear Visco Elastic (LVE) limit:  It is in the field of linear viscoelasticity (LVE) 

if the stress-strain relationship, τ / γ, is constant at every point. The model 

determines the linear limit on the curve of frequency-elastic modulus defining the 

limit at the point at which the modulus drops to 95% of the maximum value 

obtained. It is also suggested to perform the tests with a tension not greater than 

75% that of the linear limit.  

 

• Viscosity stationary area: the area is configured as Newtonian viscosity reached 

at high temperatures and low frequency loading. It is also called asymptote 

viscous and is represented by a straight line with slope equal to 1. The phase angle 

is very close to δ = 90°.  
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As a summary the behavior of bitumen can be addressed in three regions: 

• A low temperature linear elastic region 

• A high temperature viscous region 

• An intermediate temperature visco-elastic region. 

 

Linear behavior is fulfilled at low temperatures and short loading times (high 

frequencies), where the bitumen behaves as an elastic solid. The linearity is also 

maintained (for unmodified bitumen) at high temperatures and long loading times (low 

frequencies), where the material behaves almost entirely as a Newtonian fluid. The area 

where non-linearity is prominent is therefore in the range of moderate temperatures and 

moderate loading times. These temperatures and loading are determined from the 

condition experienced in the field. 

 

• Intermediate Temperature visco-elastic region. 

 It is noticed that pavement in service has properties that are in the visco-elastic region. 

At these temperatures the bitumen shows elastic and viscous properties, and a time-

dependent relationship between the applied stress or strain and the resultant strain or stress 

as well. 

The two most common means of determining the visco-elastic properties of bitumen are 

by creep and recovery measurements and dynamic oscillatory measurements (alternating 

stress and strain of constant amplitude and frequency). 

   .   Creep and recovery tests:  

Steady state creep measurements can be used to calculate an apparent viscosity at 

intermediate pavement service temperatures.  

To conduct such measurements, it is necessary to apply a shear stress to the bitumen until 

the strain rate becomes constant. At low temperatures, longer times are required for 

delayed elasticity to be expended and steady state flow to occur. 

The time–temperature superposition principle can be applied to creep test data to produce 

a master curve from the creep data. [2] 
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3.4. LINEAR VISCOELASTIC ANALYSIS 

3.4.1. Amplitude Sweep test 

Amplitude Sweep test are oscillatory test performed at variable amplitudes, keeping the 

frequency and also the measuring temperature at a constant value. (Mezger, 2006) 

 

Figure 3.13 -Preset of a shear strain amplitude sweep 

 

The test uses cyclic loading with systematically increasing load amplitudes to accelerate 

the damages and provide sufficient data in less than thirty minutes. (Hintz, 2011). 

For test with controlled shear strain: 

𝛾(𝑡) = 𝛾𝐴 ∗ 𝑠𝑖𝑛𝜔(𝑡) 

With ω=constant and a variable strain amplitude  𝛾𝐴 = 𝛾𝐴(𝑡). 

For test with controlled shear stress: 

𝜏(𝑡) = 𝜏𝐴(𝑡) 

With ω=constant and a variable strain amplitude  𝜏𝐴 = 𝜏𝐴(𝑡). 

It is often selected the angular frequency ω= 10 rad/s. Since ω=2πf, this value correspond 

to a frequency of 1.59Hz. 
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Usually for strain sweeps, log (γ) is presented on the x-axis (and log (τ) for stress sweep)’ 

and log G’ and log G” are shown on the y-axis both in the same scale. 

 

Figure 3.14 - Output amplitude sweep test. 

The amplitude sweet test is perform with the objective to determine the linear viscoelastic 

range by keeping the frequency constant(10 rad/s) and the amplitude of the shear strain 

varied (starting from 0.01% to 100%). 

The length of the linear viscoelastic range is a measure of stability. For example in Fig. 

4.3, as long as the γ-amplitude are still below the limiting value γL, the G’ and G” curves 

are remaining constant (the structure of the sample is stable under those conditions) 

(Mezger, 2006). After the γL is exceeded the LVE range is also exceeded and finally the 

sample is broken. 

There are several ways to determine the LVE ranges most commonly the G’ curve is the 

one taken for the analysis because it is the first one to show the tendency to leave the LVE 

range. LVE range could be define either by a visual or manual analysis or automatic 

analysis with the help of the software analysis programs. 

The limiting values of γL may be considered as a value of the permissible maximum strain, 

with every unknown sample an amplitude sweep test should be done as the first 

oscillatory test at all. 
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Another way to determine LVE range is when the software from apparatus (DSR) 

generates a plot (fig. 16) where the complex modulus is placed on the x-axis while the 

strain γ is on the y-axis  

The limiting values of γL in this case is given by the same frequency, for which the LVE 

range is defined as the range in strange where the complex modulus takes a value equal 

to 90% of the initial one. (fig.4.4) 

 

Figure 3.15 -Output Amplitude Sweep test DSR software. 

Amplitude Sweep test on Dynamic Shear Rheometer (DSR). 

In accordance with the AASHTO T315-10 “Determining the Rheological Properties of 

Asphalt Binder using a Dynamic Shear Rheometer (DSR)” the test sample can be 1mm 

thick by 25 mm or 2 mm by a diameter of 8 mm. The strain γ ranges from 0.01% - 100% 

and ω= 10 rad/s 

During the test, one of the parallel plates from the DSR is oscillated with respect to the 

other at pre-selected frequencies and rotational deformation amplitudes (strain controlled) 

or torque amplitudes (stress controlled). (American Association of State Highway and 

Transportation Officials AASHTO, 2010) 

After the LVR is determined a frequency sweep test is performed in order to determine 

the nature of the material. 

3.4.2. Frequency Sweep Test 
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During the frequency sweep the frequency is varied while the amplitude of the 

deformation - or alternatively the amplitude of the shear stress - is kept constant. 

The amplitude is set within the Linear Viscoelastic (LVE) range, for this reason it is 

advisable to perform an amplitude sweep test to stablish the LVE. 

 

Figure 3.16 -Preset of a frequency sweep controlled strain 

The frequency test is used to investigate time-dependent shear behavior since the 

frequency is the inverse value of time (1/f). Short term behavior is simulated by rapid 

motion (i.e., at high frequencies) and long term by slow motion (i.e., at low frequencies). 

(Mezger, 2006) 

For test with controlled shear strain: 

𝛾(𝑡) = 𝛾𝐴 ∗ 𝑠𝑖𝑛𝜔(𝑡) 

With γ =constant and a variable strain amplitude  𝜔 = 𝜔(𝑡). 

For test with controlled shear stress: 

𝜏(𝑡) = 𝜏𝐴(𝑡) 

With τ=constant and a variable strain amplitude  𝜔 = 𝜔(𝑡). 

The information of the maximum permissible deformation (the limiting value of the γL) 

is given by the amplitude sweep test discussed in the previous pages. 
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The final output is usually the frequency is shown on the x-axis while the complex 

modulus G* is shown on the y-axis on the same scale. (fig.4.6) additional parameter is 

display like the phase angle δ on the y-axis 

 

Figure 3.17 -Example output of the frequency sweep test 

The frequency sweep is very important for polymer melts: By measuring frequency 

sweeps at different temperatures the characteristics like melting point, glass transition, 

rubbery-elastic characteristics, and entanglement density. The measurement results can 

be superposed to significant master curves.  

Dynamic Shear Rheometer (DSR) test setting 

The standard for this test is AASHTO T315-10 “Determining the Rheological Properties 

of Asphalt Binder using a Dynamic Shear Rheometer (DSR)” stated that the standard is 

suitable when the dynamic shear modules range between 100 Pa and 10 MPa. This range 

in modulus is typically obtained between 6 and 88°C at angular frequency of 10 rad/s 

depend on the grade, test temperature, and conditions of the asphalt binder. 

The test sample can be 1mm thick by 25 mm or 2 mm by a diameter of 8 mm and the 

setting of the parallel plates can be either stress controlled or strain controlled. 
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Oscillatory loading frequencies are set between 100 to 0.1 rad/s using a sinusoidal 

waveform and the maximum permissible deformation γ-value of the LVE range after a 

previously performed amplitude sweep test. 

According to the specification AASHTO T 315-10 testing is performed at a frequency of 

10 rad/s. 

The test evaluates the rheological parameters using the DSR computer software: 

• The complex modules G*  

• The phase angle δ. 

• Storage modulus or module of elastic restitution G';  

• Loss modulus or module of viscous dissipation G'';  

Temperature Sweep Test 

In a temperature sweep test, the frequency and the oscillation amplitude were kept 

constant, while the temperature was increased in some progression.  

The test is aimed to give the melting point for temperature dependent material. 

The temperature sweep test approximates a temperature at which will be satisfied the 

rutting factor and provide a better understanding about the dependence of the complex 

modulus G* and the phase angle δ with or without polymer and rubber. 
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Figure 3.18 -Preset Temperature Sweep Test 
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4. CHAPTER 4: Rutting and Fatigue Cracking 
 

4.1. Introduction 

       The American Association of State Highway and Transportation Officials 

(AASHTO) published its first asphalt binder specification based on penetration in 1931. 

The penetration test is commonly performed at 25 °C with a 100 g weight needle allowed 

to penetrate for 5 s and measured at 0.1 mm increments. Capillary viscosity is used to 

define viscosity of asphalt cements at 60 and 135 °C. These traditional binder properties 

are then used as a substitute indicator for predicting the pavement performance. 

 

However, traffic flow has increased tremendously. Overloading vehicles with 12,000 kg 

single axle loads are rampant, with 8,000 kg being the maximum tolerance. The high tire 

pressure pumped by truck drivers to carry more goods is close to 1.4 MPa (200 psi). 

Climatic effects such as temperatures and precipitation directly contribute to the 

deterioration of pavement performance. These demanding changes have troubled 

highway engineers all over the world. As a result, pavements are subjected to premature 

rutting and fatigue cracking. [28] 

 

Fatigue and rutting are the two major failure distresses in flexible pavement that 

significantly affect the serviceability of pavement. The properties of bitumen have a direct 

effect on controlling the fatigue and rutting distresses. Because of the increase in 

vehicular loading and repetitions, the modification of neat bitumens becomes a 

widespread practice to improve their mechanical properties. Any improvements obtained 

from developing modified binders need to be reflected by fundamental testing parameters. 

The empirical testing methods and Superpave grading procedure that were developed 

mainly for unmodified bitumens have failed in many cases to predict the performance of 

modified bitumens. Evaluation the influence of such modifiers needs be based on 

characterizing accurately the inherent resistance of binders to fatigue and rutting damage.  

A detailed description of the main elements associated with the DSR are presented in this 

Research [4.4]. 
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4.2.  Rutting. 

4.2.1. Description 

Surface depression in the wheelpath. Pavement uplift (shearing) may occur along the 

sides of the rut. Ruts are particularly evident after a rain when they are filled with water. 

There are two basic types of rutting: mix rutting and subgrade rutting. Mix rutting occurs 

when the subgrade does not rut yet the pavement surface exhibits wheelpath depressions 

as a result of compaction/mix design problems. Subgrade rutting occurs when the 

subgrade exhibits wheelpath depressions due to loading. In this case, the pavement settles 

into the subgrade ruts causing surface depressions in the wheelpath. 

 
 

Figure 4.1 -Severe mix rutting. 

 
 

Figure 4.2 -Mix rutting. 

 
 

Figure 4.3 -Outside wheelpath 

rutting. 

 

4.2.2. Problem 

Ruts filled with water can cause vehicle hydroplaning, can be hazardous because ruts tend 

to pull a vehicle towards the rut path as it is steered across the rut. 

4.2.3. Possible Causes 

Permanent deformation in any of a pavement’s layers or subgrade usually caused by 

consolidation or lateral movement of the materials due to traffic loading. Specific causes 

of rutting can be: 

- Insufficient compaction of HMA layers during construction. If it is not compacted 

enough initially, HMA pavement may continue to densify under traffic loads. 

- Subgrade rutting (e.g., as a result of inadequate pavement structure) 

- Improper mix design or manufacture (e.g., excessively high asphalt content, excessive 

mineral filler, insufficient amount of angular aggregate particles). 

http://www.pavementinteractive.org/wp-content/uploads/2008/05/Mvc-037s.jpg
http://www.pavementinteractive.org/wp-content/uploads/2008/05/WSDOT138.jpg
http://www.pavementinteractive.org/wp-content/uploads/2008/05/Subbase_rutting.jpg
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Ruts caused by studded tire wear present the same problem as the ruts described here, but 

they are actually a result of mechanical dislodging due to wear and not pavement 

deformation. 

4.2.4. Repair 

A heavily rutted pavement should be investigated to determine the root cause of failure 

(e.g. insufficient compaction, subgrade rutting, poor mix design or studded tire wear). 

Slight ruts (< 1/3 inch deep) can generally be left untreated. Pavement with deeper ruts 

should be leveled and overlayed [5.5] 

4.2.5. Performance Tests for Rutting 

For asphalt pavements, rutting is one of the most serious forms of pavement distress, and 

severe rutting is a significant cause of pavement failure. To prevent rutting, the pavement 

structure needs to provide sufficient support for the roadway surface, while the design 

and construction of the asphalt mix must create a pavement that can resist deformation. 

Here we’ll look at some of the laboratory test devices used to evaluate asphalt mix designs 

and predict rut resistance. 

 

Rutting refers to permanent deformation of the asphalt surface that accumulates in the 

wheelpaths. It is primarily the result of repeated traffic loading cycles. Rutting may be 

accompanied by fatigue cracking and other distresses, making it a serious concern and 

potential indicator of pavement failure. The stability of the asphalt mix is an important 

element in its ability to resist rutting and thus a key factor to evaluate. At the same time, 

however, the performance of a particular mix design depends on environmental 

conditions including traffic, temperature, and humidity. Since these factors are often 

seasonal and mix designs can be exposed to a variety of environments across different 

projects, this makes it a challenge to reliably predict the rut resistance of a given mix. 

 

This is one reason the Superpave mix design method does not require a 

specific performance test for rut resistance. Earlier approaches like the Hveem 

method and the Marshall method do incorporate simple mechanical tests, such as the 

Hveem stabilometer or the Marshall stability and flow test, in which a load is applied and 

the resistance of the mix is measured, along with its displacement or deformation. Many 

agencies still use these established older methods to evaluate rut resistance during the mix 

http://www.pavementinteractive.org/rutting/studded-tire-information
http://www.pavementinteractive.org/rutting/leveled
http://www.pavementinteractive.org/rutting/overlayed
http://www.pavementinteractive.org/article/rutting/
http://www.pavementinteractive.org/article/loads/
http://www.pavementinteractive.org/article/fatigue-cracking/
http://www.pavementinteractive.org/article/design-factorsenvironment/
http://www.pavementinteractive.org/article/design-factorsenvironment/
http://www.pavementinteractive.org/article/superpave-mix-design/
http://www.pavementinteractive.org/article/hma-performance-tests/
http://www.pavementinteractive.org/article/hveem-mix-design/
http://www.pavementinteractive.org/article/hveem-mix-design/
http://www.pavementinteractive.org/article/marshall-mix-design/
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design process. However, this is often done on a pass-fail basis without attempting to 

predict performance, or attempting to factor in changes in loads or environmental 

conditions. 

Newer sophisticated test methods use accelerated loading to test mix performance by 

simulating the cumulative effect of traffic loading within a short period of time. They 

may also be able to test at different load levels or specific temperature and humidity 

conditions, thus providing a more realistic evaluation. Some of the most common devices 

used include: 

- The Asphalt Mixture Performance Tester (AMPT), formerly known as the Simple 

Performance Tester (SPT) 

- The Hamburg Wheel Tracking Device (HWTD) 

- The Asphalt Pavement Analyzer (APA), formerly known as the Georgia Loaded-

Wheel Tester 

4.2.5.1. Asphalt Mixture Performance Tester 

The Asphalt Mixture Performance Tester (AMPT) assesses the rut resistance of an sphalt 

mix based on a flow number. The test is conducted by subjecting a prepared specimen to 

repeated compressive loads at a specific test temperature. The flow number is determined 

by the point at which the specimen exhibits tertiary flow, which is shear deformation at 

constant volume (similar to the deformation that produces rutting in the field). 

 

Figure 4.4 -Asphalt Mixture Performance Tester. 

http://www.pavementinteractive.org/wp-content/uploads/2010/12/ITCmachine.jpg
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In addition to the flow number, the AMPT can also be used to help determine the dynamic 

modulus of the asphalt. This property can be useful to know if you are 

implementing mechanistic-empirical pavement design, since it is one of the inputs for 

that procedure. 

 

4.2.5.2. Hamburg Wheel Tracking Device 

The Hamburg Wheel Tracking Device (HWTD) tests rut resistance by tracking a loaded 

steel wheel back and forth across an asphalt pavement sample. By repeating this for 

thousands of cycles, it simulates the effect of traffic loading on the pavement over time. 

The device measures the rut depth in the sample continuously during the test. 

 
Figure 4.5 -Hamburg Wheel Tracking Device. 

 

HWTD testing is commonly performed on a sample while it is submerged in water. This 

allows it to be used to evaluate resistance to moisture damage as well. After the sample 

is consolidated by the initial load cycles, the rate at which rutting develops will be 

determined by the stability of the mix at first. Then, once the load cycles reach a certain 

point (which varies depending on the moisture susceptibility of the mix), rut development 

will accelerate as damage from stripping kicks in. 

 

http://www.pavementinteractive.org/article/mechanistic-empirical-pavement-design/
http://www.pavementinteractive.org/article/moisture-susceptibility/
http://www.pavementinteractive.org/article/stripping/
http://www.pavementinteractive.org/wp-content/uploads/2011/07/Hamburg.jpg
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4.2.5.3. Asphalt Pavement Analyzer 

The Asphalt Pavement Analyzer (APA) operates in a manner similar to the Hamburg 

Wheel Tracking Device but uses different equipment. The APA uses an aluminum wheel 

that is loaded onto a pressurized linear hose and tracked back and forth over the asphalt 

pavement sample. The amount of rutting is measured after the wheel has been tracked for 

a set number of cycles at a constant load and hose pressure. 

 
Figure 4.6 -Asphalt Pavement Analyzer. 

When evaluating an asphalt mix design, ideally, we want to know not just its physical 

characteristics, but how it will perform as well. Resistance to rutting is a critical part of 

performance in the field, and testing for it is an important consideration. Increased 

experience with these devices, and ongoing research to connect their test results with 

empirical pavement performance, will make it easier to adapt testing to local conditions 

so that the results have more predictive value. With asphalt pavements, the solution isn’t 

to simply get out of the rut, it involves creating mixes to prevent ruts from happening in 

the first place [6.6]. 

http://www.pavementinteractive.org/wp-content/uploads/2011/07/Apa.jpg
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4.2.6. Creep Test 

Rutting can be caused by plastic movement of the asphalt mix either in hot weather or 

from inadequate compaction during construction. Significant rutting can lead to major 

structural failures and a potential for hydroplaning and also will not only affects the 

drivers comfort but also threats the traffic safety.  

There are two basic rutting mechanisms. The first one to limit the vertical compressive 

strain on top of the subgrade, the other to limit the total accumulated permanent 

deformation on the pavement surface based on the permanent deformation properties of 

each individual layer. (Huang, 2004) 

In the Asphalt Institute and Shell design methods, the allowable number of load 

repetitions Nd to limit rutting is related to the vertical compressive strain εc on top of the 

subgrade by: 

𝑁𝑑 = 𝑓4(1
𝜀𝑐

⁄ )
𝑓5

 

Where: 

Nd = number of load repetitions. 

f4, f5 = coefficients of subgrade strain criteria. 

εc = compressive strain 

 

Most of rutting problems result from plastic deformation of the surface course. It is 

characterized by shear deformation inside the asphalt mixture. 

When asphalt mixtures have low shear strength, rutting accumulates after each vehicle 

loading during the first months or few years of the pavement service life until it becomes 

noticeable and hazardous. Rutting failure leads to poor serviceability of the pavements, 

making vehicles ride rough and unsafe. This phenomenon is more critical during the hot 

season of the earlier period of pavement life because the asphalt binder is less aged and 

softer. 

The first rutting parameter introduced for the dynamic shear rheometer (DSR) was 

G*/sinδ; rutting occurs as a consequence of a larger value of this parameter. 

Several researchers have stated that exists a poor relationship between this parameter and 

rutting, since it is inadequate to demonstrate the rutting performance for certain binders 

specially modified binder. 
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 In 2001 Bahia et al suggest that it is better to use repeated creep loading in order to 

simulate the effect of traffic flow. 

 

4.2.6.1. Repeated Creep Test (RCR) 

The repeated creep test is proposed as a method of separating the dissipated energy and 

estimating the resistance to accumulation of permanent strain for asphalt binders. 

The Repeated creep test is performed through the dynamic shear rheometer (DSR) to 

evaluate the resistance of asphalt binders to permanent deformation, by applying shear 

stress in the range of 30Pa to 300Pa for 100 cycles where each cycle is compose by 1 

second of loading time and 9 seconds for the unloading, a parameter “Gv” which is the 

viscous component of the creep stiffness which is consider an improvement 

characterization of the resistance to rutting for asphalt binder, 

The main advantages of RCR can be summarized as follows: (Delgadillo R., 2006) 

 

• Repeated creep loading represents the actual loading on the pavement better than 

fully reversed load from dynamic testing 

 

• RCR allows an easy identification of the permanent deformation of binders when 

loaded. This is especially important in modified binders, in which delayed 

elasticity can be significant, and the binders can recover much of their deformation 

when unloaded. The parameter |G*|/sinδ does not allow direct evaluation of 

delayed elasticity. 

 

The repeated Creep test offers valuable information about the susceptibility of asphalt 

mixtures to rutting when changes in temperature occur (Centeno, 2001). However, in 

order to fully characterize the asphalt binder behavior, multiple stresses are required. 

 

4.2.6.2. Multiple Stress Creep Recovery test (MSCR)  

The Multiple Stress Creep Recovery (MSCR) test is the latest improvement to the 

Superpave Performance Graded (PG) Asphalt Binder specification. This new test and 

specification – listed as AASHTO TP70 ‘‘Standard Method of Test for Multiple Stress 

Creep and Recovery (MSCR) of Asphalt Binders using a Dynamic Shear Rheometer’’, 
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AASHTO MP19 and AASHTO M320. Provide the user with a new high temperature 

binder specification that more accurately indicates the rutting performance of the asphalt 

binder and is blind to modification. 

A major benefit of the new MSCR test is reduces the number of samples needed for each 

stress level, also eliminates the need to run tests such as elastic recovery, toughness and 

tenacity, and force ductility, procedures designed specifically to indicate polymer 

modification of asphalt binders. A single MSCR test can provide information on both 

performance and formulation of the asphalt binder. (Federal Highway Administration’s 

(FHWA’s) Asphalt, U.S. Department of Transportation, 2011). 

The MSCR test uses the well-established creep and recovery test concept to evaluate the 

binder’s potential for permanent deformation. Using the Dynamic Shear Rheometer 

(DSR), the test uses an one‐second creep load is applied to the asphalt binder sample. 

After the 1‐second load is removed, the sample is allowed to recover for 9 seconds, for 

different stress levels at 10 cycles for each stress level. 

Figure 4.7 shows typical data for a polymer modified binder. Normally two stress level 

are selected 0.1 kPa and 3.2 kPa; ten cycles for each stress for a total of 20 cycles. 

The test is started with the application of a low stress (0.1 kPa) for 10 creep/recovery 

cycles then the stress in increased to 3.2 kPa and repeated for an additional 10 cycles. 

(Federal Highway Administration’s (FHWA’s) Asphalt, U.S. Department of 

Transportation, 2011) 

 

Figure 4.7 -MSCR response curve. (Federal Highway Administration’s (FHWA’s) Asphalt, U.S. 

Department of Transportation, 2011). 
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The non-recoverable compliance (Jnr) and the percent recovery after ten cycles at 0.1 kPa 

and 3.2 kPa will be studied in following chapters. The non-recoverable creep compliance 

Jnr value is obtained by dividing the average non recoverable strain for 10 creep and 

recovery cycles, and the applied stress for those cycles. 

 

𝐽𝑛𝑟 =
𝛾10

𝜏
 

Where 

γ10 = non recoverable strain for 10 creep and recovery cycles 

σ = applied stress to those cycles 

 

Figure 4.8 -Typical Data MSCR and Jnr Definition. (Federal Highway Administration’s 

(FHWA’s) Asphalt, U.S. Department of Transportation, 2011) 

The Jnr parameter was suggested as a measure of the binder contribution to mixture 

permanent deformation (D’Angelo et al., 2006). 

The material response in the MSCR test is significantly different than the response in the 

existing PG tests. In the PG system, the high In the PG system, the high temperature 

parameter, G*/sinδ, is measured by applying an oscillating load to the binder at very low 

strain. Due to the low strain level, the PG high temperature parameter doesn't accurately 

represent the ability of polymer modified binders to resist rutting (Federal Highway 

Administration’s (FHWA’s) Asphalt, U.S. Department of Transportation, 2011). 

Under the very low levels of stress and strain present in dynamic modulus testing, the 

polymer network is never really activated. In the existing PG specification the polymer is 

really only measured as a filler that stiffens the asphalt. In the MSCR test, higher levels 
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of stress and strain are applied to the binder, better representing what occurs in an actual 

pavement. By using the higher levels of stress and strain in the MSCR test, the response 

of the asphalt binder captures not only the stiffening effects of the polymer, but also the 

delayed elastic effects (where the binder behaves like a rubber band). (Federal Highway 

Administration’s (FHWA’s) Asphalt, U.S. Department of Transportation, 2011). 

  

The compliance value Jnr from the MSCR test provides the rut resistance and the amount 

of recovered strain from the test identifies the presence of polymer and also the quality of 

the blending of the polymer in the binder as shown in figure 4.9 [2]. 

 

Figure 4.9 -Determination of % Recovery in the MSCR test. 

4.3. Fatigue Cracking in Asphalt 

4.3.1. Description 

Series of interconnected cracks caused by fatigue failure of the HMA surface (or 

stabilized base) under repeated traffic loading. In thin pavements, cracking initiates at the 

bottom of the HMA layer where the tensile stress is the highest then propagates to the 

surface as one or more longitudinal cracks. This is commonly referred to as “bottom-up” 

or “classical” fatigue cracking. In thick pavements, the cracks most likely initiate from 

the top in areas of high localized tensile stresses resulting from tire-pavement interaction 

and asphalt binder aging (top-down cracking). After repeated loading, the longitudinal 

cracks connect forming many-sided sharp-angled pieces that develop into a pattern 

resembling the back of an alligator or crocodile. 

http://www.pavementinteractive.org/fatigue-cracking/top-down-cracking
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Figure 4.10 - Fatigue cracking 

as a result of frost action 

 

 

 

Figure 4.11 -Very severely 

fatigued cracked pavement 

 

Figure 4.12 -Fatigue cracking 

from a lack of edge support 

4.3.2. Problem 

Indicator of structural failure, cracks allow moisture infiltration, roughness, may further 

deteriorate to a pothole. 

 

4.3.3. Possible Causes 

Inadequate structural support, which can be caused by a myriad of things. A few of the 

more common ones are listed here: 

- Decrease in pavement load supporting characteristics 

- Loss of base, subbase or subgrade support (e.g., poor drainage or spring thaw 

resulting in a less stiff base). 

- Stripping on the bottom of the HMA layer (the stripped portion contributes little to 

pavement strength so the effective HMA thickness decreases) 

- Increase in loading (e.g., more or heavier loads than anticipated in design) 

- Inadequate structural design 

- Poor construction (e.g., inadequate compaction) 

4.3.4. Repair 

A fatigue cracked pavement should be investigated to determine the root cause of failure. 

Any investigation should involve digging a pit or coring the pavement to determine the 

pavement’s structural makeup as well as determining whether or not subsurface moisture 

is a contributing factor. Once the characteristic alligator pattern is apparent, repair by 

crack sealing is generally ineffective. Fatigue crack repair generally falls into one of two 

categories: 

http://www.pavementinteractive.org/fatigue-cracking/roughness
http://www.pavementinteractive.org/fatigue-cracking/pothole
http://www.pavementinteractive.org/fatigue-cracking/stripping
http://www.pavementinteractive.org/wp-content/uploads/2009/04/WSDOT140.jpg
http://www.pavementinteractive.org/wp-content/uploads/2009/04/WSDOT065.jpg
http://www.pavementinteractive.org/wp-content/uploads/2009/04/Lack_of_lateral_support.jpg
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- Small, localized fatigue cracking indicative of a loss of subgrade support. Remove the 

cracked pavement area then dig out and replace the area of poor subgrade and improve 

the drainage of that area if necessary. Patch over the repaired subgrade. 

- Large fatigue cracked areas indicative of general structural failure. Place an HMA 

overlay over the entire pavement surface. This overlay must be strong enough 

structurally to carry the anticipated loading because the underlying fatigue cracked 

pavement most likely contributes little or no strength (Roberts et. al., 1996[1]) [7.7]. 

 

4.4. Fatigue Mechanisms 

There are two mechanisms of fatigue cracking in asphalt pavements: top-down and 

bottom-up (Huang, 2004) .Bottom-up cracks initiate at the bottom of an asphalt surface 

or asphaltic base layer as a result of high strains associated with flexure and propagate to 

the surface. Bottom-up cracking is the most common form of fatigue cracking. Top-down 

cracks initiate at the surface under the wheel path and propagate downward. Top-down 

cracking manifests as longitudinal cracks in the wheel path whereas bottom-up cracking 

leads to an inter-connected network of cracks, often referred to as alligator cracking. 

  

Figure 4.13 -Bottom-up cracking. 

http://www.pavementinteractive.org/fatigue-cracking/hma-patching
http://www.pavementinteractive.org/fatigue-cracking/overlay
http://www.pavementinteractive.org/fatigue-cracking/overlay
http://www.pavementinteractive.org/fatigue-cracking/#footnote-1
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Figure 4.14 -Top-Down cracking. 

Fatigue is one of the major distresses of flexible pavements and is mainly related to the 

rheological properties of the bituminous components of mixtures. (Francesca Frigio, 

2016). 

There are two types of loading modes usually controlled in the laboratory fatigue testing: 

constant stress (controlled–stress) mode and constant strain (controlled–strain) mode. In 

the constant stress loading mode, the stress is maintained constant in all the loading cycles 

and the strain increases with load cycles. In the constant strain mode of loading, the strain 

is maintained constant in all the loading cycles and the stress decreases with load cycles 

 

4.5. Approaches to Characterize Fatigue Behavior 

Four approaches are usually used in characterizing fatigue behavior of HMA: the 

traditional phenomenological approach; the continuum damage mechanics approach; the 

fracture mechanics approach; and the energy and dissipated energy approach. 

 

 

4.5.1. Traditional Phenomenological approach 

It is a combination of the phenomenological observation and the laboratory-tabulated data 

derived from designated fatigue tests. 

August Wöhler studied the fatigue characteristics under a cyclic loading which resulted 

in development of S-N fatigue curves for shear stress. 
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S-N curves are two-dimensional curves, plotting cycles of failure (N) and shear stress (S) 

on X-Y axis on a logarithmic scale. The prerequisite of plotting these curves is that the 

stress has to be cyclic in nature. Every material, when subjected to alternate or cyclic 

loads, will fail if the loading surpasses its resistance. However, if rupture occurs at a load 

less than the projected resistance of the material, then it will be termed as fatigue. Major 

factors affecting the resisting force of a material, known as the "endurance limit," include: 

• Corrosive environment 

• Temperature variations. 

• Surface finish and exposed area. 

• Notches. 

The main reason behind fatigue rupture is the development of minor cracks due to 

successive loading. With every loading, these cracks grow bigger, resulting in untimely 

failure. Wöhler curves help in the determination of upper limit of shearing stress that can 

be exerted on a material. 

 

Figure 4.15 -Wohler Curve 

 In figure 24 the region 1, rupture occurs at very small alternations and the material is 

often subjected to plastic deformations. While in the region 2 denotes the area of limited 

endurance. Region 3 is known as the security zone under low constraint. 

The mechanism of fatigue failure can be described as a three-stage process involving 

crack initiation, propagation, and final fracture failure (true failure). 
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Also, Miner’s (1945) cumulative damage concept has been widely used to predict fatigue 

cracking. It is generally agreed that the allowable number of repetition is related to the 

tensile strain at the bottom of the asphalt layer. The amount of damage is expressed as a 

damage ratio between the predicted and the allowable number of load repetitions. (Huang, 

2004) 

Results of the fatigue tests are formulated according to the mode of loading: 

 

For controlled strain 

𝑁𝑓 = 𝐴(1
𝜀⁄ )

𝐵
 

 

For controlled stress 

𝑁𝑓 = 𝐶(1
𝜎⁄ )

𝐷
 

 

Where: 

Nf = the number of load cycle to failure 

ε=tensile strain repeatedly applied 

σ= tensile stress repeatedly applied 

A, B, C, D, = Material coefficients 

 

(Pell, 1967)He introduced the approach to relate the initial strain to load repetition, even 

in controlled stress mode of testing: 

𝑁𝑓 = 𝐾1 (
1

𝜀𝑡
)

𝐾2

 

Nf = the number of load cycle to failure 

εt= initial strain 

K1, K2= fatigue coefficients.  
 

While in the Asphalt Institute and Shell design methods, the allowable number of load 

repetitions Nf to cause fatigue cracking is related to the tensile strain εt at the bottom of 

the asphalt layer and to the modulus E1 by: (Huang, 2004) 

 

𝑁𝑓 = 𝐾1 (
1

𝜀𝑡
)

𝐾2

(
1

𝐸
)

𝐾3

 

Where: 

Nf = the number of load cycle to failure 
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εt= initial strain 

E= stiffness of the material  

K1, K2 and K3= fatigue coefficients. (Laboratory regression coefficients) 

 

4.5.2. Fracture Mechanics Approach 

Majidzadeh (1971) stated that the general form of Paris’ crack growth law was applicable 

to asphalt mixtures. This fracture mechanics based approach characterizes fatigue 

cracking into three stages: crack initiation, stable crack propagation, and unstable crack 

fracture. The size of the plastic zone (crack opening and length) is critical in obtaining 

stress intensity factors at the crack tip and analyzing fatigue life during crack propagation 

stage. (Majidzadeh, 1971) 

Fracture mechanics model based on Paris Law is shown below, which is proposed for 

stage II because this stage consumes most of the fatigue life. 

𝑑𝑎

𝑑𝑁
= 𝐴(𝐾𝐼)𝑛 

Where: 

da/dN = rate of crack growth 

a= the crack length 

N= the number of load replication  

A, n= parameters according to the material and experimental conditions 

KI = Stress intensity factor in mode I 

 

 

 

4.5.3. Dissipated Energy Approach 

The dissipated energy approach has been used for fatigue analysis in pavement 

engineering over the last few decades. 

When a material is sustaining external loading, the area under the stress – strain curve 

represents the energy being input into the material. For a non-pure elastic material, a 

loading and unloading process will always associate with energy dissipation since the 

loading and unloading path does not overlap. 
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The energy dissipated during each loading cycle captures the effects not only of the 

imposed strain but also of the dynamic mixture properties, which makes it key in the 

development of surrogate models for fatigue life prediction (Shen, Airey, Carpenter, & 

Huang, 2006). 

Regarding to the pavement area, the total dissipated energy up to the number of cycles to 

failure and other cumulative dissipated energy representations were predominantly used 

as the energy parameter relating to fatigue failure. However, the relationships established 

based on these approaches were either material or loading mode dependent, or both. They 

assumed that all the dissipated energy represents damage done to the material (SHRP, 

1994; Van Dijk, 1975, Pronk et al., 1990). In reality, only a portion of the total energy is 

responsible for the micro crack extension and the structural damage of the materials. 

Although cumulative dissipated energy indirectly recognizes the fact that not all 

dissipated energy is inducing damage, it cannot directly determine the value of the 

damage being done to the material (Ghuzlan, 2001). This requires an improved energy 

parameter to describe the progression of fatigue damage. (Shen, Airey, Carpenter, & 

Huang, 2006) 

 

The total dissipated energy consist in three components: 

• The crack separation energy (the energy spent in the actual creation of new surface 

due to micro-separation processes. 

• The plastic dissipated energy 

• The residual strain energy. 

 

If crack growth occurs, it will cause, besides a change in separation energy, a change in 

the residual elastic energy. However, the plastic energy dissipation before the crack 

extends may influence the crack initiation but does not contribute to the crack extension 

(Turner and Kolednik, 1994). 

 

4.5.4. Initial Dissipated Energy Approach 

Initial dissipated energy (IDE) is the dissipated energy measured at initial loading cycles. 
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Usually in fatigue testing, the first 50 cycles are regarded as the conditioning cycles and 

the dissipated energy at the 50th loading cycle is considered as the initial dissipated 

energy 

 

Strategic Highway Research Program (SHRP-A-404, 1994) used the following surrogate 

model to relate initial dissipated energy to fatigue life: 

𝑁𝑓 = 6.72𝑒0.049𝑉𝐹𝐵(𝑤0)−2.047 

Where: 

Nf = fatigue life 

VFD= percentage of voids with bitumen 

w0 = initial dissipated energy 

 

One disadvantage of the initial dissipated energy approach is that it is not appropriate for 

the whole loading range, especially when dealing with low strain fatigue tests. 

 

4.5.5. Cumulative Dissipated Energy Approach 

The cumulative dissipated energy is the summation of the dissipated energy experienced 

by the material during the fatigue test, which relates the fatigue behavior to both initial 

and final test cycles. A relationship between the cumulative dissipated energy and the 

number of loading cycles to failure is characterized as: 

𝑊𝑁 = 𝐴(𝑁𝐹)𝑧 

Where: 

WN = Cumulative dissipated energy to failure 

A, z = experimentally derived mix coefficient 

Nf = Number of load cycle to failure 

 

Van Dijk (1975, 1977) found that there is a strong relationship between the cumulative 

dissipated energy and the number of loading cycles to failure. This relationship is not 

affected by the loading mode (controlled-stress or controlled-strain), the effects of 

frequency (between 10 Hz and 50Hz) and temperature (between 10ºC to 40ºC), and the 

occurrence of rest periods. 
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However, it is highly material dependent and has to be mix specific to be constructed and 

applied. 

In 1992 Tayebali et al. introduced two terms: the stiffness ratio which is the ratio of the 

stiffness at load cycle (i) to the initial stiffness; and the dissipated energy ratio which is 

defined as the ratio of cumulative dissipated energy up to load cycle (i) to the cumulative 

dissipated energy up to fatigue life. His work suggested there is a unique relationship 

between the stiffness ratio and the dissipated energy ratio, but not necessarily between 

cumulative dissipated energy and fatigue life, which is also verified by Strategic Highway 

Research Program (SHRP A-404,1994) and Fakhri (1997). This relation was found to be 

mix and temperature dependent. 

 

Carpenter and Jansen (1997), use the dissipated energy ratio (DER) as a parameter to 

relate to fatigue life. This approach believes not all the dissipated energy is responsible 

for material damage. For each cycle, the loss of energy due to material mechanical work 

and other environmental influence remains almost unchanged. Therefore, if the dissipated 

energy starts to change dramatically, it could be explained as the development of damage. 

The NCHRP Report 459 (Bahia et al. 2001) provided a new method to predict bitumen 

fatigue properties by performing repeated loading time sweep tests with the DSR 

(Dynamic Shear Rheometer) equipment. The corresponding evaluation criterion is not 

based on the analysis of a single parameter but on the study of the fatigue damage 

development by computing the total dissipated energy during loading cycles. In 

particular, during fatigue tests the complex modulus (G*) and the phase angle (δ) can be 

obtained as a function of loading cycles and the corresponding dissipated energy per cycle 

Wi can be written as a function of the stress σi and the strain εi amplitudes at the ith cycle, 

as follows. (Francesca Frigio, 2016) 

𝑊𝑖 = 𝜋𝜎𝑖𝜀𝑖𝑆𝑖𝑛(𝛿𝑖) 

Where δi is the phase angle at the ith cycle. 

 

In the case of test is performed in control strain or stress the Wi will be as follows: 

Control Strain  𝜎 = 𝐺𝑖 ∗ 𝜀𝑖  

𝑊𝑖 = 𝜋𝜀𝑖
2𝑆𝑖𝑛(𝛿𝑖) 

Control Stress  𝜀 =  
𝜎𝑖

𝐺𝑖
⁄   
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𝑊𝑖 =
𝜋𝜎𝑖

2𝑆𝑖𝑛(𝛿𝑖)

𝐺𝑖
 

Then, the damage accumulation can be evaluated through the change in the Dissipated 

Energy Ratio (DER) over loading cycles: 

 

𝐷𝐸𝑅 =
∑ 𝑊𝑖

𝑛
𝑖=1

𝑊𝑛
 

Where Wn is the dissipated energy at the nth cycle. 

 

In strain-controlled tests, the curve of DER versus number of cycles (Fig. 4.16) shows an 

initial linear part that is indicative of no damage as the energy dissipated per cycle is 

constant. Then, when cracks form and start to propagate, the dissipated energy per cycle 

tends to rapidly increase experiencing no recoverable fatigue damage. From this curve, 

two points can be conventionally selected as fatigue failure parameters: NP20 is defined 

as the number of cycles to achieve 20 % deviation of DER from the no damage stage 

(Bonnetti et al. 2002) and represents the crack initiation condition, whereas NP is defined 

as the number of cycles where crack propagation starts. (Francesca Frigio, 2016) 

 

 

Figure 4.16 -Typical plot DER as a function of number of cycles in strain controlled test. 

 

4.5.6.   Work Ratio Approach 

This approach was first introduced by Van Dijk and Visser (1977) and further developed 

by Rowe (1993). The work ratio, ψN1, is defined as the ratio between the product of the 
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initial dissipated energy in cycle 1 and N1 divided by the cumulative dissipated energy, 

as shown: 

𝜓𝑁1 =
𝑤0𝑁1

𝑊𝑁1
 

Where: 

w0 = initial dissipated energy 

N1= number of load cycles to crack initiation and 

WN1 = Cumulative dissipated energy at cycle N1 

 

Rowe (1993) found that the work ratio can be used effectively to predict the fatigue life 

to crack initiation. The crack initiation is assumed to occur at 60% reduction of original 

extensional complex modulus according to the following equation: 

 

𝑁1 = 205 ∗ V𝑏
6.44 ∗ 𝑤0

−2.01 ∗ 𝜓𝑁1
1.64 

Where: 

Vb = volume of binder (%) 

4.5.7. Improved Use of Dissipated Energy: Ratio of Dissipate Energy 

Change (RDEC) approach 

One big disadvantage of these dissipated energy approaches is that the energy fatigue life 

relationship is either material dependent, or loading mode dependent, or both. For 

different mixture types or different loading modes, the relationship must be generated 

individually since the relationship in itself does not include the material and load 

information. These dissipated energy approaches assume that all the dissipated energy 

represents damage done to the material. In fact, a crack will only grow when there is a 

difference in energy dissipation from one cycle to another. Such change can be considered 

as the amount of damage done to the sample. (Shen, Airey, Carpenter, & Huang, 2006) 

 

From this point the dissipated energy ratio (DER) approach was improved in the 

subsequent years leading to the Ratio of Dissipated Energy Change (RDEC) which is 

based on a change in DE between load cycles, provides a true indication of the damage 

being done to the mixture from one cycle to another as a function of how much dissipated 

energy was involved in the previous cycle, thus presenting a fundamental mechanistic 
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picture of how damage accumulates in the material during fatigue tests. The energy 

parameter, Plateau Value (PV), which is obtained using this approach represents a 

comprehensive material and load related parameter that can be uniquely related to the 

number of loading cycles to failure, regardless of material type, loading mode, test 

condition, etc. (Shen, Airey, Carpenter, & Huang, 2006). 

 

In conclusion the energy dissipated in a cycle depends on the energy dissipated in the 

previous cycles. The Ratio of Dissipated Energy Change (RDEC) can be: 

 

𝑅𝐷𝐸𝐶 =
𝐷𝐸𝑛+1 − 𝐷𝐸𝑛

𝐷𝐸𝑛
 

 

Where: 

RDEC = the ratio of dissipated energy change per load cycle. 

DEn = the dissipated energy produced in load cycle n 

DEn+1 = the dissipated energy produced in a load cycle n+1 

RDEC eliminates the dissipated energy that does not produce crack extension damage. 

This provides a true indication of the damage being done to the mixture from one cycle 

to another by comparing the previous cycle’s energy level and determining how much of 

it caused damage. 

 

As introduced by (Carpenter et al., 2000, 2003), the RDEC develops a plateau after the 

initial unstable period which then increases dramatically giving a sign of true fatigue 

failure. 

 

The damage curve given by de RDEC can be divided in three stages; such damage curve 

develops a plateau after the initial period. This plateau stage (stage II), an indication of a 

period where there is a relatively constant percentage of input energy being turned into 

damage, will extend throughout the main service life until a dramatic increase in RDEC, 

which gives a sign of true fatigue failure (stage III). The RDEC curve is representative 

for fatigue behavior. RDEC curves with similar trend: a rapid decrease, followed by a 
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plateau region for the majority of the fatigue cycles. (Shen, Airey, Carpenter, & Huang, 

2006) 

 

Figure 4.17 -RDEC curve with 3 behavior zone (Carpenter et al.2003) 

 

In the plateau stage (stage II), the RDEC value is almost constant, characterizing period 

where there is a constant percentage of input energy being turned into damage. 

A plateau value, PV, is defined as the RDEC value corresponding to the 50% stiffness 

reduction load cycle (Nf50). This typical value is selected because at this load cycle (Nf50), 

the RDEC is always in the plateau stage and the Nf50 is the defined failure point. It has 

been found that the plateau value (PV) is mixture and load/strain input related. For any 

one mixture the PV is a function of the load inputs, and for similar load inputs, the PV 

varies with mixture types (Ghuzlan, 2001). The PV value is significant because it provides 

a unique relationship with fatigue life for different mixtures, loading modes and loading 

levels (Ghuzlan et al., 2000 and 2001). 

 

In summary, the main advantages of the RDEC approach are: 

• It provides a new means of defining a true fatigue failure point which is directly 

related to the increase in damage. 

• The unique fatigue relationship (PV-Nf) that it presents is independent of mixture 

type (bitumen grade, aggregate type, gradation, etc.), mode of loading (controlled 
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strain or stress) and loading (test) conditions. It is therefore a fundamental 

relationship. 

• The uniqueness of the PV-Nf relationship provides a way to study both fatigue 

endurance limit and healing, both of which have a great influence on asphalt 

material fatigue behavior. (Shen, Airey, Carpenter, & Huang, 2006) 

 

4.5.8. Healing phenomenon 

In different literature over the years has considered the healing phenomenon as the 

capability of self-recovery of the material. 

In 1990 Kim et al propose two mechanics of healing for asphalt materials that occurs 

during rest period: 

1) Relaxation of the stresses in the system due to the viscoelastic nature of asphalt 

concrete. 

2) The chemical healing across micro crack and macro crack faces (Shen & 

Carpenter, 2007). 

It was proposed that the healing mechanism is related to the flow properties of the asphalt, 

which are influenced by molecular interactions within the asphalt. (Shen & Carpenter, 

2007). 

Phillips (1998) proposed that the healing of binders is a three step process consisting of:  

1) The closure of micro cracks due to wetting (adhesion of two crack surfaces 

together driven by surface energy), this step occurs faster resulting as a recovery 

of the stiffness. 

2) The closure of macro cracks due to consolidating stresses and binder flow, and  

3) The complete recovery of mechanical properties due to diffusion of asphaltene 

structures. This step along with the step 2 occurs much slower but results in an 

improvement of the stiffness and the material strength. 

 

Healing can be measured by intermittent loading plus inserting rest periods and measuring 

the increase in fatigue life; or by storage recuperation and the recovery of mechanical 

properties over a period of time when the sample is not subject to loading. (Shen & 

Carpenter, 2007). 
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Jacobs in 1995 found that the introduction of rest period has a beneficial effect on the 

fatigue life [2]. 

 

4.6. Bitumen Fatigue 

4.6.1. Introduction 

Bitumen plays an important role in asphalt pavement fatigue. For normal paving grade 

bitumen fatigue performance generally improves with increasing penetration. However, 

this general rule does not hold for special binders like high stiffness binders, polymer 

modified bitumen and Multigrade bitumen [34]. 

 

Concerns have been raised with the fatigue analysis of a bituminous binder. Attempts 

have been made to include a binder parameter in the fatigue prediction of asphalt mixtures 

with the current Superpave fatigue criterion, G_ sin δ. However, G_ sin δ is determined 

as the binder property performs in linear viscoelastic range at low-strain/stress levels 

within a few cyclic loadings. This Superpave criterion generally is not in good agreement 

with establishing a comprehensive correlation with the fatigue life of an asphalt mixture 

[34]. In addition, because bituminous binders exist as thin film in asphalt mixtures, the 

strains of the binders could be performing in the nonlinear range owing to the significant 

difference between the stiffness of the mixtures and that of the binders. To overcome the 

fact that G_ sin δ does not take account of nonlinearity behavior of bituminous binders, 

direct testing in fatigue has become common, with generation of fatigue characteristics 

under larger strains/stresses for the binders by means of time sweeps using a dynamic 

shear rheometer (DSR). A number of research groups have successfully generated load-

associated fatigue properties for plain and modified bitumen [34]. 

 

4.6.2. Bitumen Fatigue Criteria 

Fatigue behavior is one of the least understood phenomena in binders, especially defining 

a criterion that can satisfactorily explain a fatigue failure. In Superpave binder 

specification AASHTO M320 G*sin(δ) (< 5MPa) an intermediate temperature was 

selected to establish fatigue criterion (AASHTO M320-10). Several studies have been 

conducted to better understand the fatigue behavior of binders. In a study by Johnson et 
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al. 2007, the fatigue life of asphalt mixes was compared to the fatigue life of the binders 

as defined by G*sin(δ). The results from the study show that alternate methods seem to 

be more accurate based on field studies (Johnson et al. 2007) [35]. The method Johnson 

investigated involved the decrease in the G* value for a strain controlled DSR test. 

Another method that has become the interest of researchers takes into account the 

dissipated energy of binders undergoing fatigue tests. Dissipated energy describes the 

amount of energy that escapes with each cycle during the test. The dissipated energy ratio 

(DER), which is the value of the cumulative dissipated energy over the dissipated energy 

at a particular cycle n, has been suggested as a criterion for fatigue failure. The 50% drop 

in G* value and the DER from sweep-test using the dynamic shear rheometer (DSR) have 

been used to determine the number of cycles to failure. The ways in which failure is 

described are: 

         1. The number of cycles it takes to cause the initial G* value to drop 50%, and 

         2. The number of cycles before the DER diverges from a linear trend (Anderson et 

al. 2001, Bonnetti et al. 2001, Johnson et al. 2007, and Planche et al, 2004) [35]. Though 

neither method has been defined as the most accurate measure of the fatigue life of 

binders, both have proven to be more accurate than traditional methods. 

 

4.6.3. Stiffness of Binder in Fatigue Testing 

In order to measure the fatigue life of an asphalt binder, a specific initial modulus (G*) 

value must be attained. Instability flow is a type of failure which can occur during sweep 

tests in the DSR. It is a condition in which the binder begins to flow, causing the surface 

area of the sample in the DSR to decrease. This type of failure is not true fatigue failure 

and is avoided by making the binder sufficiently stiff at the beginning of testing. Anderson 

et al. 2001 recommended testing at temperatures so that the initial G* value at least 15 

MPa. In order to achieve the proper stiffness, the temperature of the binder has to be low 

in comparison to typical fatigue tests (Anderson et al. 2001). This was confirmed in a 

study by Planche et al. 2004., noting that under repeated shear, the initial complex 

modulus can significantly affect the behavior of the binder [35]. 

 

4.6.4. Impact of Modified Binders 
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Several studies (Bonnetti et al. 2001 and Buisson et al. 2010) have shown that modified 

binders experience longer fatigue lives than neat binders. In a study by Bonnetti et al. 

2001 in which the impact of modified binders on fatigue life was analyzed, it was 

determined that these binders have improved fatigue life. This was also confirmed by 

Anderson et al. 2001 and Planche et al. 2004 [35]. 

 

4.6.5. Strain Amplitude 

The strain amplitude in the DSR testing procedure is a measure of the amount of 

deformation the binder undergoes and can be related to load intensity of the traffic, 

especially for thin overlays. As the strain amplitude increases, it leads to lower fatigue 

life of the binder. Over several loading cycles, this deformation weakens the binder and 

eventually it will break down, or crack (Masad et al. 2001) found that the strain within 

the binder comprises about 90 times the average throughout the hot mix asphalt sample 

[35]. 

4.6.6. Impact of Steric Hardening and Temperature 

An asphalt binder which has been heated to a fluid consistency will stiffen at ambient 

temperatures (around 20°C). This reversible phenomenon is called steric hardening and 

can occur even during testing. Evidence of steric hardening can be observed by an 

increase in modulus usually during the beginning of the test (Anderson et al. 2001 and 

Bonnetti et al. 2001) [35]. Steric hardening can most simply be described as thixotropy 

(molecular structuring) which can be reversed by working the material mechanically or 

by applying heat. Increased levels of steric hardening occur in samples which are cooled 

slowly and can affect the stiffness of the binder (Bell). While steric hardening is 

occurring, the temperature of the binder does not change [35]. 

 

Most tests conducted to research fatigue life were done on RTFO-aged binders (neat, 

polymer, and chemically modified). Successful studies have evaluated the fatigue lives 

of neat and polymer-modified asphalt binders. It is accepted that polymer modified 

samples have a longer fatigue life than neat samples. This was proven in tests by Bonnetti 

et al. 2001 using the DER analysis method on RTFO-aged binders [35]. 
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Studies performed in recent years typically use either the 50% drop in G* method or the 

DER method to define fatigue. By providing a comparison of these two methods, 

previously executed tests can be analyzed more effectively by researchers using the other 

method. Comparisons could be made from study to study and a more accurate definition 

of fatigue can be determined. 
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5. CHAPTER 05: Experimental Program. 
 

5.1. Introduction 

          The purpose of this research is to investigate how bitumen properties change as a 

result of ageing. In particular, the rheological properties of five samples of bitumen, 

produced by an oil company, and to determine the influence of strain amplitude and 

recycled rubber powder on short and long term-aged polymer modified bitumen. This 

research will compare the fatigue life of the modified short and long-aged bitumen, and 

determine the influence of strain amplitude, and recycled rubber powder on fatigue life. 

The lesser the strain amplitude, the longer is the fatigue life.  

 

The materials under study were subjected to laboratory tests in the oscillatory regime, 

made with the Dynamic Shear Rheometer. The oscillatory regime used by the equipment 

DSR is of harmonic sinusoidal type and, given the variability in continuous of tensions 

and deformations, the tests in these conditions are commonly defined dynamic analysis 

(Dynamic Mechanical Analysis, DMA).  

 

In this chapter will be presented in detail the rotational rheometer DSR used in 

experimentation and test procedures performed. It will be analyzed, finally, the results 

obtained in terms of the complex modulus G* and phase angle δ. It is emphasized that the 

experimental phase concerning the implementation of the specimens and the rheological 

characterization and performance of the materials under study was conducted at the 

School of Engineering and Architecture of Bologna, in the laboratory of DICAM 

(Department of Civil Engineering, Chemistry, Environmental and materials). 

  

5.2. Materials 

        The materials were provided by an oil company, The table below shows the 

composition and the identification code of the tested bitumens. 
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Bitumen Modifier Recycled 

rubber 

powder 

ID 

PMB 45/80-70 Hard + Viscous Reducer. (4-5) % SBS 10% VR 

PMB 45/80-70 Hard (4-5) % SBS 10% Hard_pfu 

PMB 45/80-70 Hard (4-5) % SBS - Hard 

PMB 45/80-55 Soft (2-3) % SBS 10% Soft_pfu 

PMB 45/80-55 Soft (2-3) % SBS - Soft 

Table 5.1 - bitumen types used in this study 

 

5.3.  Overview of experimental research program 

Five polymer modified bitumen were used, all samples were tested without ageing 

conditioning in DSR to establish the deformation (γLVE) where the specimen is kept in 

LVE range from Amplitude Sweep Test, and to obtain the master-curves from Frequency 

Sweep Test. After that, In order to simulate the short-term ageing of bitumen which 

occurs especially during mixing in asphalt plan, the five sample were aged by using the 

Rolling Thin Film Oven Test (RTFOT). Then, Amplitude and Frequency sweep test were 

done by DSR. After that, in order to simulate the long-term aging during in-service, the 

samples were aged by using also the RTFOT (3-cycles) instead of Pressure Aging Vessel 

(PAV), then Amplitude and Frequency sweep test were done for the long aged samples. 

 

After that, for the short term aged bitumen, to be able to develop the relation between 

shear strain amplitude (γ) and fatigue life (N) each bitumen is tested at minimum three 

different strain amplitude levels (Fatigue Test). Then, Time sweep test with rest period 

one hour was established in order to define the material recovery for the introduction of 

the rest period plus the increasing in the fatigue life. Then, to make a comparison of the 

BITUMEN

Soft Soft_pfu Hard Hard_pfu VR
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material recovery and the fatigue life between the five short aged bitumen when we have 

the same initial stiffness G*, time sweep test were done at different temperatures and at 

one stain level (4%). 

After that, for the long aged bitumen, the fatigue tests and Time sweep tests were done at 

just one strain level (4%).  

 

 

Figure 5.1 -Experimental research program flow chart  

 

 

Bitumen 

Soft,Soft_pfu,Hard,Hard_pfu,and VR

Without aging process

Unaged Bitumen

DSR

Amplitude Sweep Test

Frequency Sweep Test

RTFOT

Short-Aged Bitumen

DSR

Amplitude Sweep Test

Frequency Sweep Test

RTFOT (3-Cycles)

Long-Aged Bitumen

DSR

Amplitude Sweep Test

Frequency Swep Test

Bitumen Maser Curves were established

Short-Aged Bitumen

DSR

Fatigue Test

2%,3%&4% Strain 
@25°C

Time Sweep 
Test

2%,3%&4% Strain 
@25°C

Time Sweep 
Test

4% Strain  @ 
different 

Temperatures

Long-Aged Bitumen

DSR

Fatigue Test

4% Strain      
@ 25°C

Time Sweep 
Test

4% Strain      
@ 25°C

Fatigue life and Healing was found for each Bitumen @ different strain levels
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5.4. Preparation of modified binders 

The preparation of the modified binders includes a series of operations necessary to 

provide a representative sample of the material under examination. The correct execution 

of sampling is necessary condition to obtain reliable results from laboratory tests to which 

the samples will be subjected. As the bitumen is a thermally sensitive material, therefore 

the packaging temperature greatly influences the characteristics of the modification; in 

particular, in order to homogenize the polymer-binding mixture, it will be necessary to 

operate at a temperature of 180 ° C. This problem does not exist in the case of additives 

due to the chemical-physical characteristics of the waxes which have low melting points. 

In addition to the thermal requirements, it is appropriate to ensure the correct mixing 

conditions in the sampling phase, in order to avoid phase separations. In particular, the 

samples were mixed with a Silverson L4R mixer (figure 5.2) which has the particularity 

of having a static component (working head) and a dynamic bladed component (rotor), 

thanks to which it is possible to generate a high shearing action. Due to this feature, the 

L4R model lends itself to a wide variety of applications such as mixing, emulsions and 

dissolutions. The rotation speed of the impeller creates a suction action of material, liquid 

and solid, from the bottom of the vessel inside the working head (Figure 5.3). For the 

centrifugal effect, the mixture is pushed towards the outside of the impeller and conducted 

through the working head. The constructive precision between the inner surface of the 

stator and the rotor blades, in addition to stator geometry itself, is responsible for a high 

shearing action, also capable of shredding solid elements such as SBS granules. The 

mixture created is then expelled radially with a forced passage through the working head 

frame. The combination between the outgoing current and incoming current from the 

impeller creates a recirculation motion thanks to which the air supply from the external 

surface is minimized [30]. 
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Figure 5.2 -Silverson L4R High Shear Mixer. 

The efficiency of the motions and the ability to involve the whole mass enclosed by the 

vessel, depends both on the vessel itself and the characteristics of the mixture. in the case 

of PMB, it is necessary to vary the height of the impeller to also involve that the surface 

mass, because of the cooling or the same type of circulatory motion created, it may not 

be incorporated and then processed. The motor develops a power of 250 W and has a 

nominal maximum speed of 8000 rpm; at full load it is possible to reach a maximum 

speed of 6000 rpm [30]. 

 

Several accessories are supplied with the mixer, which can be interchanged depending 

on what mixing conditions are required [see below]. 
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5.5. Methods of laboratory ageing 

The binder properties of asphalt mixtures change over time during mixing, compaction and service. 

In these phases chemical and physical characteristics of bitumen change, in particular oxidation 

occurs involving the increase of material stiffness. This phenomenon is known as aging and it is one 

of the key factors affecting the lifetime of an asphalt pavement. Several methods of laboratory ageing 

can be divided in two main categories, that is tests able to simulate the short-term ageing and 

methodologies for simulating the long-term effects of oxidation process. The most common European 

method, which simulates the ageing during the storage, mixing with aggregates, transportation and 

laying, is the Rolling Thin Film Oven Test (RTFOT). Other tests, like Rotating Cylindrical Ageing 

Tests (RCAT), are performed following the American standards. On the other hand, Pressure Ageing 

Vessel (PAV) is the most widely used laboratory test for the simulation of long-term ageing. 

 

All of them are based on the variation of three main factors: temperature, pressure and time. 

Temperature is strongly related to the oxygen diffusion coefficient. The raising of pressure and the 

extension of ageing time can surely apply greater ageing, speed up the process of oxidation, and 

consequently, results in major deterioration.  

 

5.5.1. RTFOT ageing 

The Rolling Thin Film Oven Test (RTFOT) was developed during the SHRP [29] in order to simulate 

the short-term ageing of bitumen which occurs especially during mixing in asphalt plan. Bitumen 

suffers high temperature, 163°C, combined with a constant and specific supply of air, following the 

standard procedure described in standard EN 12607-1:2014. The apparatus consists of an oven which 

inside is equipped with an aluminum carriage. It has eight opening and springs clips for firmly holding 

the corresponding eight glass containers in a horizontal position. Moreover, an air jet is placed in a 

specific location. Figure 5.3 shows the outside and inside of the device. 
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Figure 5.3 -Rolling Thin Film Oven Test equipment. 

During the test, the carriage rotates about the horizontal axis with a certain speed, which allows the 

air jet to enter in each glass. In detail, the air shall blow along the main axis of each glass container. 

In the same time, high temperatures lead the material to liquefy. The rotation together with the applied 

temperatures lead bitumen to cover the entire surface of each container forming a thin film, which 

also rotates following the carriage movement. 

Temperature is continuously monitored with a thermometer positioned inside the device. Figure 5.4 

shows pictures of bitumen containers before and after the test. 

 

 

Figure 5.4 -Samples pre- and post- RTFOT 
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The glass containers should be filled with 35,0±0,5 g of bitumen, a specific amount that ensure that 

the material does not leak from the containers during rotation. The number of necessary glass depends 

on the planned characterization tests of the operator. 

 

In order to simulate the short-term ageing of bitumen which occurs especially during mixing in 

asphalt plan, we used the Rolling Thin Film Oven Test (RTFOT): 

 

- 35 g of bitumen 

- Temperature: 163 °C 

- Air flow: 4000 ml/min. 

- Time: 75 minutes 

 

Since the fatigue cracking generally occurs late in the life of the pavement, and therefore the bitumen 

needs to be tested after appropriate long-term ageing, so in order to simulate the long-term aging 

during in-service, we used also the RTFOT instead of Pressure Aging Vessel (PAV): 

 

- 35 g of bitumen 

- Temperature: 163 °C 

- Air flow: 4000 ml/min. 

- Time: 3cycles (one cycle=75 minutes). 
 
 
The preparation of the modified and additioned binders includes a series of operations necessary to 
provide a representative sample of the material under examination. 
 
 
 
 

5.6. Test Methods. 

5.6.1. Dynamic Shear Rheometer (DSR) 

The DSR apply a torque on the sample, correspondingly is measured the angular rotation on the 

sample. The determination of the properties of the material (|G*|, G', G", δ) is done using a 

relationship between the torque to the relative angular velocity or rotation and going by these tensions 

and deformations tangential τ and γ.  
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Figure 5.5 -Dynamic shear 

rheometer (DSR). 

One of the advantages that offer these tools is the great 

versatility, which is the possibility to vary, on a same machine, 

the measuring system according to the type of investigation to be 

performed. It is possible in fact the use of the systems coaxial 

cylinders, couplings plate-plate and plate-cone, each of which is 

available in different sizes that may be standard or less (custom 

made). Other important prerogatives are commonly most of these 

devices have the ability to perform the tests in continuous regime 

and in oscillatory regime and the possibility to operate both in the 

control of stress (stress control) that strain (strain control). In 

stress control, apply a certain desired tension and measure the 

resulting deformation to them, while in the control strain, the 

torque applied to the sample is adjusted to a value that allows to 

obtain certain velocities and amplitudes of deformation. 

5.6.2.   Plate-plate system DSR 

The measuring system is formed by a lower plate, usually fixed to the machine, while the 

upper plate is attached to the motor shaft where the rotation or oscillation is applied. 

 

The geometric quantities that define the system are the radius R and the so-called gap 

which is the distance between the plates, upper and lower measurement position. In 

general, two geometries (plates) are commonly used with the DSR. An 8 mm diameter 

spindle with a 2 mm testing gap and a 25mm diameter spindle with a 1 mm testing gap. 

The selection of testing geometry depends on the operational conditions; with the 8 mm 

plate generally used for low temperatures and the 25 mm plate for high temperature. 

 

The DSR employs the following equation to obtain the torque T, the rotation angle ϴ and 

the angular frequency ω. 

𝜏 =
2𝑇

𝜋𝑟3
 

𝛾 =
𝜃𝑟

ℎ
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Where: 

τ= applied stress  

γ= applied strain 

T=torque 

h= specimen height  

r = specimen radius 

 

Then the complex modulus G* and the phase angle δ can be determined. 

Figure 5.6 shows in oscillating test plate-plate systems how the shear stress and strain in 

determinate. 

 

Figure 5.6 -Scheme of oscillatory test one cycle 

5.6.3. Amplitude Sweep Test 

The purpose for this test is to establish the deformation (γLVE) where the specimen is kept 

in LVE range. Generally, the deformation γLVE is defined at the strain where the complex 

modulus G* is 90% of the initial value. 

A configuration of parallel plates with a diameter of 8 mm with 2 mm gap (measurement 

system) for the DSR (Anton Paar MCR 302). The strain γ ranges from 0.01% - 100% and 

ω= 10 rad/s in accordance with the AASHTO T315-10. 

Firstly, the DSR must be initialize then the measurement system is attached to the 

machine (8mm spindle). Afterwards the temperature is set, in this case the test will be 

done at low temperature which is 10°C, and later through the option Set Zero Gap the 

testing gap of 2mm for an 8 mm plate is set. (Fig. 5.7) 
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Figure 5.7 -Set up of temperature and Zero Gap DSR 

Normally the specimen is place in the lower plate, but for this test the specimen will be 

place in the upper plate for this procedure the temperature is increase to 90°C for modified 

bitumen. For putting the specimen in the upper place, the option Lift position is used; 

once the specimen is placed with the command Measurement Position the 2mm gap is 

reached, during this point the specimen is trimmed in order to remove the excess of the 

material and avoid that this excess will react during the test. (Fig. 5.8). Subsequently the 

temperature is set again to the original 10°C which is the one select to realize the test. 

 

Figure 5.8 -Example of trimmed specimen 
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Once the specimen is ready the range for the strain is introduce 0.01% as initial strain and 

100% as final strain until the specimen is damaged, since it is a strain-controlled test the 

shear stress will increase gradually, and the frequency will be constant at 10 rad/s 

(1.59Hz); plus six values will be taken as measurement points of the complex modulus 

for each unit in logarithmic deformation. 

 

Figure 5.9 -Set up of the strain for Amplitude Sweep 

 

Finally, a diagram with complex modulus G* and the strain is generated. Fig 8 

illustrate the G* plotted for the the short term aged sample (PMB 45/80-70 Hard+ 

Recycled Tires Powder.) 

Set up of strain 

range 
Constant 

Frequency 
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Figure 5.10 -DSR Diagram Amplitude Sweep Test for the short term aged sample (Hard_pfu.) 

For this test the value that correspond to the limit of the LVE range (90% of the initial 

G*) will be determined as the 90% of the average of the firsts values of the complex 

modulus G*. In the table below the γLVE values obtained are shown for each specimen. 

Item Specimen type γLVE % 

1. VR 1.80 

2. Hard_pfu 2.00 

3. Hard 2.50 

4. Soft_pfu 2.30 

5. Soft 3.00 

Table 5.2 -Results of γLVE from Amplitude Sweep on tested materials. (Unaged Bitumen). 

Item Specimen type γLVE % 

1. VR 1,25 

2. Hard_pfu 0.90 

3. Hard 2.30 

4. Soft_pfu 1.65 

5. Soft 2.20 

Table 5.3 -Results of γLVE from Amplitude Sweep on tested materials. (Short Term Aging). 

 

90%G
* 
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Item Specimen type γLVE % 

1. VR 1.30 

2. Hard_pfu 1.20 

3. Hard 2.60 

4. Soft_pfu 1.85 

5. Soft 2.50 

Table 5.4 -Results of γLVE from Amplitude Sweep on tested materials. (Long Term Aging). 

 

5.6.4. Frequency Sweep Test 

Since the value at which the material behave within the LVE range is obtained by the 

amplitude sweep test, a frequency sweep test is subsequently perform to our five samples, 

with this test is possible to obtain the master-curves of the tested material using the 

principle of Time-Temperature Superposition (TTS).  

Like the amplitude sweep is necessary to set the zero gap and place the specimen on the 

upper plate and be trimmed in the DSR. An 8mm plate with a 2 mm gap is selected as a 

measurement system. The test is made under strain-controlled conditions, the temperature 

were set from 0°C, 10°C, 20°C, 30°C, 40°C, 50°C and 60°C this means that 7 loops are 

necessary for the test with an increase of 10°C between them. 

 

 

Figure 5.11 -Setting up Temperature DSR 



CHAPTER 05: Experimental Program. 

141 
 

The G* and the δ are plotted in six points for each unit (6 points/decade), in total 19 points 

will be display. The test is made in a strain controlled, where the maximum amplitude is 

fixed to the limit of the linear viscoelastic range (LVE) determined by the amplitude 

sweep test. (Fig.10) 

 

Figure 5.12 -DSR screen setting up limit LVE range 

 

The final output from the DSR software is a diagram where the G* modulus and the phase 

angle δ is plotted for the 7 loops corresponding to each tested temperature. 

Strain at the limit 

of LVE range 
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Figure 5.13 -DSR software output Frequency Sweep Test for the short term aged (Hard_pfu). 

 

The rheological parameter obtained from the frequency sweep test (G*, δ, G’, G”) it is 

possible to generate the master curves by imposing the Time Temperature Superposition 

(TTS) principle.  

Thanks to the master curves it can be studied the performance of each of the five samples 

in terms of rheological parameter (G*, δ, G’, G”) and frequency. The construction of the 

master curve was achieved by transferring the obtained data at the different temperatures 

horizontally by using the shift factor aT. 

In order to find the shift factor aT, for each test temperature (0°C-60°C) is plot the trend 

of the complex modulus G* at the different frequency range (for this research 0.01-10Hz) 

(Fig.12) 
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Figure 5.14 -G*-f Curve for the short term aged sample (Hard_pfu) 

 

 Subsequently the trend of each curve is compared to a general trend “y=axb” and the 

parameter “a” and “b” is defined for each curve. Later the generic equation “y=axb” is 

inverse at this point the value of “x” is obtained and explaining the generic “y” set at a 

minimum complex modulus capture by the DSR. Finally, the shift factors are calculated 

for each curve. 

After the reduced frequencies are obtained by multiplied the normal frequencies and the 

shifts factors, afterwards the curves are moved according to its shift factor and finally the 

master curve is obtained. (Fig.13) 

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02

G
* 

[M
p

a
]

Frequency fT [Hz]

CURVE G* - f

0°C

10°C

20°C

30°C

40°C

50°C

60°C



CHAPTER 05: Experimental Program. 

144 
 

 

Figure 5.15 -Master Curve for the short term aged sample (Hard_pfu.) 

 

5.6.5. Fatigue Test 

The test is performed at 25°C with an 8 mm plate 2 mm gap in strain controlled with a 

frequency of 10 Hz; the level of strain choose for this test is 4%, 3%, 2%.  

Sample Short Aged Long Aged 

Strain Level % Strain Level % 

4% 3% 2% 4% 3% 2% 

VR X X X X     

Hard_pfu X X X X     

Hard X X X X     

Soft_Pfu X X X X     

Soft_Pfu X X X X     

Table 5.5 -Experimental plan for Fatigue Test 

Once the parameters are chosen, the test is carry out through the DSR instrumentation by 

first setting the zero gap, next the temperature is increase to 100°C and the specimen is 

place in on the upper plate, once the specimen is placed the trimming of the sample will 

take place. Then, the temperature was maintained at 25 °C for all tests. Afterwards the 
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level of strain is determined in the DSR software. The test is an oscillatory with constant 

frequency (10 Hz). 

 

Figure 5.16 -DSR screen setting up of Fatigue test. 

 

From this test we can obtain the the complex modulus G*, the phase angle δ, the angular 

frequency ω, the fatigue parameter G*sinδ and the dissipated energy during the test. 

The 50% drop in G* value and the DER from sweep-test using the dynamic shear 

rheometer (DSR) have been used to determine the number of cycles to failure. The ways 

in which failure is described are: 

1. The number of cycles it takes to cause the initial G* value to drop 50%, and 

2. The number of cycles before the DER diverges from a linear trend. 
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Fatigue Criteria 1: A 50% Drop in Modulus Method 

This method requires the simple calculation which involves the initial G* value (Gi* ) 

and the G* value at the nth cycle (Gn*), as shown in the following equation: 

 

When the percent drop has reached 50%, the sample is considered to have failed. 

Fatigue Criteria 2: The Dissipated Energy Ratio Method 

This method calculates the amount of energy dissipated per cycle. The cumulative 

dissipated energy (WΣn)  over the dissipated energy at each cycle (Wi) is called the 

dissipated energy ratio (DER). Where  εi is strain, δi is phase angle in radians, and σi 

is stress, the dissipated energy at a given cycle is as shown in the following equation: 

 

Cumulative energy and DER are calculated using the following equations: 

 

 

This value, when plotted against the number of cycles produces a graph which moves 

linearly upward, then undergoes a nonlinear region which moves into a second linear 

region, more steep than the first. 
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Figure 5.17 -Schematic of Dissipated Energy Ratio versus Number of Cycles 

 

 

Figure 5.18 -Graph from fatigue test Soft_pfu at 2% strain DSR software. 
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5.6.6. Time Sweep Test for Fatigue and Healing. 

Healing is defined as the extension in fatigue life resulting from rest, which includes 

contributions from viscoelasticity, thixotropy, and crack closure [31]. 

For the tested five bitumen, the healing can be defined as the material recovery due to the 

introduction of the rest period plus the increasing in the fatigue life. There are several 

interpretations for the introduction of rest period while some researcher introduces short 

loading time alongside with short rest periods and other introduce long loading time with 

a single rest period or very few of them. 

For the evaluation of healing on this research a strain controlled time sweep test is carried 

out with the introduction of a single rest period of one hour (1h). The measurement system 

selected is an 8mm plate diameter with 2 mm gap. The temperature was maintained at 25 

°C for all tests. The time sweep test method uses the DSR to apply repeated cyclic loading 

at a fixed load amplitude to a specimen. 

For introducing the rest period that allow the healing of the tested samples,it will be fixed 

at the number of cycles where the Complex Modulus  G* reach a reduction of the 35% of 

the initial value. This value is obtained with the previous fatigue test without a rest period 

from section. 

The time sweep test is carried out in the same strain level as previous fatigue test 4%, 3% 

and 2% and with a constant frequency of 10Hz. 

Sample Short Aged Long Aged 

Strain Level % Strain Level % 

4% 3% 2% 4% 3% 2% 

VR X X X X     

Hard_pfu X X X X     

Hard X X X X     

Soft_Pfu X X X X     

Soft_Pfu X X X X     

Table 5.6 -Experimental plan for Time Sweep Test. 
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Figure 5.19 -DSR screen for time sweep test. 

5.6.7. Time Sweep Test with Fixed Initial Complex Modulus 

In order to make a comparison of the material recovery and the fatigue life between the 

five short aged bitumen when we have the same initial stiffness G*, time sweep test were 

done at different temperatures and at one stain level (4%). 

An initial complex modulus ranges between (6.13-6.86) MPa, temperatures adopted for 

measurements are reported in Table 5.7.  

Sample (Short Aged) G* Initial - MPa Test 
Temperature 

Starin Level % 

VR 6,39 25°C 4% 

Hard_pfu 6,80 24°C 4% 

Hard 6,13 20°C 4% 

Soft_pfu 6,33 24°C 4% 

Soft 6,76 22°C 4% 
Table 5.7 -Temperatures adopted for Time Sweep Test with fixed initial G*. 
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6. CHAPTER 06: Results Analysis. 
 

6.1. Amplitude Sweep Results 

The purpose for this test is to establish the deformation (γLVE) where the specimen is kept 

in LVE range. Table 6.1 shows the deformation γLVE defined at the strain where the 

complex modulus G* is 90% of the initial value. 

 

Specimen 
type 

γLVE % 
Unaged Short aged Long aged 

VR 1.80 1,25 1.30 

Hard_pfu 2.00 0.90 1.20 

Hard 2.50 2.30 2.60 

Soft_pfu 2.30 1.65 1.85 

Soft 3.00 2.20 2.50 

Table 6.1 -Results of γLVE from Amplitude Sweep on tested materials. 

The results shown in Table 6.2 shows that the linear visco-elasticity limit of the bitumen 

tested in AS configuration at 10 ° C decreases as the bitumen strength increases in the 

case of unaged bitumen  When moving from unaged to short aged γLVE % decreases, 

while when moving from short to long aged γLVE % increases. In particular, it can be 

observed that the presence of the rubber powder increases the bitumen stiffness and 

consequently reduces the linear viscoleasticity range. 

 

6.2. Frequency Sweep Test Results. 

6.2.1. Master Curve 

Through the rheological parameters obtained as output of the tests performed with the 

DSR, the curves for each bitumen were generated. In particular, thanks to the application 

of the time-temperature superposition principle (TTS), it was possible to study the trend 

of the complex modulus | G * | and phase angle δ as a function of frequency. The curves 

were carried out by translating the data obtained from tests at different temperatures, 

using the shift factor previously described in section 5.6.4.  

 



CHAPTER 06: Results Analysis. 

154 
 

6.2.1.1. Study and comparison of the bitumen master-curves before 

and after aging. 

 

Fig. 6.1 shows the master curves for VR bitumen before aging, short and long aged. At 

low frequencies, high temperatures, the long aged bitumen reaches values of complex 

modulus greater than the short aged and unaged sample. For the phase angle δ at high 

temperature is almost 60° for the long aged and that indicates less elastic behavior (more 

viscous behavior) for the long aged with respect to short aged and the unaged (50° and 

40° respectively), at the other part for low temperature the δ equals to 25° for both long 

aged and short aged, whereas δ equals to 30 for the unaged. In-between at intermediate 

temperatures δ changes to be around 60° for the unaged, 50° for the short aged and 40° 

for the long aged (the long aged has more elastic behavior at intermediate temperatures). 

It can be observed also that at high and intermediate temperatures G* increases when 

moving from the unaged to short to long aged. The phase angle δ at high temperature 

60°C increase when we move from unaged to the long term aged, which means that the 

bitumen becomes less elastic.  

 

Figure 6.1 -Master Curve VR (Unaged, Short and long aged). 
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Fig. 6.2 shows the master curves for Hard_pfu bitumen before aging, short and long aged. 

At low frequencies, high temperatures, the long aged bitumen reaches values of complex 

modulus greater than the short aged and unaged sample. For the phase angle δ at high 

temperature is almost 55° for the long aged and 60° for the short aged and that indicates 

less elastic behavior (more viscous behavior) for the short aged with respect to long aged, 

the unaged at high temperature has a phase angle δ similar to the long aged. At the other 

part for low temperature the δ equals to 25° for both short and long aged, whereas δ equals 

to 35 for the unaged. In-between at intermediate temperatures δ changes to be around 60° 

for the unaged, 50° for the short aged and 40° for the long aged (the long aged has more 

elastic behavior at intermediate temperatures). It can be observed also that at high and 

intermediate temperatures G* increases when moving from the unaged to short to long 

aged. The phase angle δ at high temperature 60°C increase when we move from unaged 

to the short aged, but it is the lowest for long aged. 

 

Figure 6.2 - Master Curve Hard_pfu (Unaged, Short and long aged) 

Fig. 6.3 shows the master curve for Hard bitumen, it can be observed that there is no 

significant difference between the unaged and the aged bitumen, and it is almost the same 

G* at high temperatures between short and long aged; which means that ageing leads to 
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less stiffening in the case of hard bitumen without rubber. The phase angle of the bitumen 

after aging has higher values at high temperatures especially for the long aged, and it is 

almost the same at low temperatures. 

Fig. 6.4 shows the master curves for Soft_pfu bitumen before aging, short and long aged. 

At low frequencies, high temperatures, the long aged bitumen reaches values of complex 

modulus greater than the short aged and unaged sample. For the phase angle δ at high 

temperature is almost 70° for the long aged and 75° for the short aged and that indicates 

less elastic behavior (more viscous behavior) for the short aged with respect to long aged, 

the unaged at high temperature has a phase angle δ similar to the long aged. At the other 

part for low temperature the δ equals to 25° for both short and long aged, whereas δ equals 

to 35° for the unaged. In-between at intermediate temperatures δ changes to be around 

70° for the unaged, 60° for the short aged and 50° for the long aged (the long aged has 

more elastic behavior at intermediate temperatures). It can be observed also that at high 

and intermediate temperatures G* increases when moving from the unaged to short to 

long aged. The phase angle δ at high temperature 60°C increase when we move from 

unaged to the short aged, but it is the lowest for long aged. 

 

Figure 6.3 -Master Curve Hard (Unaged, Short and long aged) 

0

10

20

30

40

50

60

70

80

90

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E-07 1,0E-05 1,0E-03 1,0E-01 1,0E+01 1,0E+03

δ
 [

°]

G
* 

[M
P

a]

Frequency fT [Hz]

MASTER_CURVE_ Hard_ Unaged,Short and Long aging

G*Hard_Short
G*Hard
G*Hard_Long
δ Hard_Short
δ Hard



CHAPTER 06: Results Analysis. 

157 
 

 

Figure 6.4 -Master Curve Soft_pfu (Unaged, Short and long aged). 

Fig. 6.5 shows the master curve for Soft bitumen, it can be observed that the increasing 

of G* at high temperatures moving from unaged to aged bitumen is lower than the soft 

bitumen with rubber. which means that ageing leads to less stiffening in the case of Soft 

bitumen without rubber. The phase angle of the bitumen after aging has higher values at 

high temperatures especially for the short aged, and it is almost the same at low 

temperatures for short and long aged, while it is higher for the unaged. 
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Figure 6.5 -Master Curve Soft (Unaged, Short and long aged). 

 

6.2.1.2. Study and comparison of the master-curves according to 

the presence of the additives before aging. 

 

The Master curves for the all unaged bitumen are shown in the following figure 6.6 in 

order to campare the rheolegical parameter for all of them. Bitumen with the highest 

complex module values at high temperatures is the bitumen called VR (hard bitumen 

contains rubber and visco-reducer) and Hard_pfu bitumen (hard bitumen contains 

rubber). These bitumen are the least thermosensitive among the five studied and, at 

increased stiffness at high temperatures, there is a significant reduction in the phase angle 

relative to the other bitumen. Especially for these two bitumen at high temperatures, the 

elastic response increases by detecting phase angle values around 45 ° (perfectly visco-

elastic response). Hard bitumen, when compared Hard_pfu bitumen contains rubber 

powder, has lower G * complex module values and higher phase angles at high 

temperatures. It can be stated that Hard bitumen with the presence of rubber increases the 

elastic range of the bitumen by increasing its resistance to cutting efforts and consequently 
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to the bulging phenomena. In the case of Soft bitumen there is no significant increasing 

in G* at high temperatures, and the presence of  rubber powder decreases the elastic 

response at high temperatures. 

 

Figure 6.6 -Master Curve (All tested bitumen - unaged). 

6.2.1.3. Study and comparison of the master-curves according to 

the presence of the additives after short aging. 

 

The Master curves for the all short aged bitumen are shown in the following figure 6.7. 

Bitumen with the highest complex module values at high temperatures is VR and 

Hard_pfu. These bitumen are the least thermosensitive among the five studied and, at 

increased stiffness at high temperatures, there is a significant reduction in the phase angle 

relative to the Soft and Soft_pfu bitumen. Here it can be observed also that the Hard 

bitumen has almost the same elastic behavior as VR and Hard_pfu at high temperatures, 

but it becomes significantly less elastic at intermediate and low temperatures. Hard 

bitumen, when compared with Hard_pfu bitumen; has lower G * complex module values 

at high temperatures. It can be stated that Hard bitumen with the presence of rubber 

increases the elastic range of the bitumen by increasing its resistance to cutting efforts 
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and consequently to the bulging phenomena. In case of Soft bitumen, the presence of 

rubber increases G* more significantly and increases the elastic response also.  

  

Figure 6.7 -Master Curve (All tested bitumen – short term aged). 

6.2.1.4. Study and comparison of the master-curves according to 

the presence of the additives after long aging. 

 

Master curves for the all long aged bitumen are shown in the following figure 6.8. 

Bitumen with the highest complex module values at high temperatures is VR and 
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with respect to the short aged bitumen. There are no differences between the master 
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increases the elastic range of the bitumen by increasing its resistance to cutting efforts 
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rubber increases G* more significantly and increases the elastic response also. It shows 

how for the VR bitumen there is a discontinuous phase angle trend due to the presence of 

the visco-reducer. 

  

Figure 6.8 -Master Curve (All tested bitumen – Long term aged). 

 

6.2.2. Cross-over temperature method. 

In order to better show the binder rheological properties, the oscillatory tests were 
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When this temperature is reached, the elastic component (storage modulus G’) of the 

complex modulus is equal to the viscous component (loss modulus G’’), whereas for 
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The test results (Fig. 6.9) shows that the presence of rubber increases the cross-over 

temperature values. (Fig. 6.10) confirms that the rubber has preserved the elastic 

component of the modified bitumen also after the short aging process. (Fig. 6.11) shows 

that SBS increases the cross-over temperature values after long aging process. 
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Figure 6.9 - Tan δ vs temperature for Unaged Bitumen. 

 

 

Figure 6.10  -Tan δ vs temperature for short aged Bitumen. 
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Figure 6.11 - Tan δ vs temperature for Long aged Bitumen. 

6.2.3. Performance Grade 

6.2.3.1. Performance grade at 60°C (PG max) (Results from 

unaged bitumen). 

 

 

Figure 6.12 -Performance grade of bitumen at 60° C – Unaged bitumen. 
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6.2.3.2. Performance grade at 60°C (PG max) (Results from short 

aged bitumen). 

 

 

Figure 6.13 -Performance grade of bitumen at 60° C – Short aged bitumen. 

 

6.2.3.3. Performance grade at 10 C ( PG min) (Results from long 

aged bitumen) 

 

 

Figure 6.14 -Performance grade of bitumen at 10° C – Long aged bitumen. 
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6.3. Fatigue Test. 

6.3.1. Fatigue Tests for Short Aged Bitumen 

Firstly, the five short aged bitumen were tested without a rest period, at different strain 

levels 4%, 3% and 2%. From these tests it was obtained the Nf (number of cycles to 

failure) at each stain level for each bitumen except Hard bitumen which tested at strain 

levels 4%,5% and 6%, because the test  takes a long time for it at low strain levels. Figure 

6.14 shows the average initial complex modulus G* for each tested bitumen. It can be 

seen that the presence of the rubber gives higher initial stiffness G*, and the same 

consideration for the the viscous reducer. 

 

Figure 6.15 -Average initial G* for each short aged bitumen. 

Then in order to obtain the same initial G*; the five short aged bitumen were tested at 4% 

strain level at different temperatures.  Table 5.7 from the previous chapter shows that as 

the temperature decrases, the initial stiffness G* increases.  

The 50% drop in G* value and the DER from sweep-test using the dynamic shear 

rheometer (DSR) have been used to determine the number of cycles to failure. 
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6.3.1.1. Considered fatigue life criteria 

 

Fatigue behaviour is classically characterised by a correlation between applied amplitudes 

and number of cycles at failure (Wöhler curve). “Ftaigue life” is the number of cycles that 

the sample can resist before rupture. It is a key point to find a correct criterion for fatigue 

life. Two criteria (i.e. Two definition of rupture) are considered in this study. 

• Classical criterion (N50) 

 

This criterion is widely used. N50 corresponds to a 50% decrease of the equivalent 

complex modulus. A representation of the classical criterion is given Figure 6.15. 

 

Figure 6.16 -Failure Curve N50  -  Short aged bitumen (VR) @2% strain level. 

 

• Dissipated energy ratio (N-DER) 

 

This criterion corresponds to change in the slope of the Wc /Wi versus N curve , as 

illustrated in Figure 6.16. 
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Figure 6.17 -Failure Curve DER Approach. 

6.3.1.2. Wöhler curves for short aged bitumen. 

 

A Wohler curve is a graphical representation of the power relation between fatigue life 

and the applied load amplitude. The Wohler Curve from each bitumen tested without a 

rest period and using the classical approach is obtained through N50  at each stain level. 

(Figure 6.17). 

 
 

Figure 6.18 -Comparison Wohler from N50 approach - without rest period  (short aged 

bitumen). 
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Fatigue life of Hard bitumen is the best (Figure 6.17). The presence of rubber increases 

the stiffness but decreases the fatigue performance as it can be seen in Figure 6.17. This 

observation is not valid for the soft bitumen as the presence of rubber increases the fatigue 

life. As the Hard, Hard_pfu and VR have the same percentage of SBS, it can be observed 

that the presence of SBS alone without rubber improves the fatigue life, but SBS with the 

presence of rubber gives negative effect. 

Indeed the 50% decreased is arbitrary and failure could happen far after this limit. The 

criterion does not take into account phenomena occurring in phase I ((adaptation phase) 

This phase is characterised by a rapid decrease in stiffness ratio (or stiffness) due to 

repetitive excitation of the test specimen) , such as heating and thixotropy [38] that can 

cause a significant modulus drop, especially at high strain amplitude.  

The Wohler curve generated from DER approach is shown in the following figure 6.18. 

It can be seen also here that Hard Bitumen has the best fatigue life,whereas Soft and VR 

bitumen have worst fatigue life at high strain levels. Also by DER approah can be seen 

that in the case of soft bitumen, the presence of rubber increases the fatigue life, whereas 

in the case of hard bitumen the opposite is correct. 

 

Figure 6.19  -Comparison Wohler from DER approach - without rest period  (short aged 

bitumen). 
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6.3.2. Fatigue Tests at different temperature. 

Then in order to obtain the same initial G*; the five short aged bitumen were tested at 4% 

strain level at different temperatures. Figure 6.19 shows a fatigue life comparison between 

different bitumen types obtained by N50 and DER approches. 

 

Figure 6.20 -Fatigue life at different temperatures – 4% stain level. 
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Figure 6.21-Comparison Fatigue life between short and long aged bitumen at 4% strain level 

 

6.4. Time Sweep Test (Healing Test). 

6.4.1. Healing Properties. 
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modulus reaching the value obtained before loading removal (GF) as a result of the loss 

of both healing and steric hardening effects. Once such a value is attained, the modulus 

curve exhibits a shape which appears to be coherent with the evolution of stiffness 

recorded in the first phase of loading, thus revealing that the material has memory of its 

past damage path. 

 

Figure 6.22 -Complex modulus as a function of loading cycles obtained from a healing test. 
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presence of rubber decreases the fatigue performance for both soft and hard bitumen. 

Figure (6.22-c) shows that for a test temperature less than 25°C; the fatigue performance 

decreses except Soft bitumen without rubber which has a better fatigue performance at 

test temperature equals 22°C.  

 

Figure 6.23 - Variation of NR. 

Figure (6.23-a) shows the healing results for the short aged bitumen, it can be seen that 

the presence of rubber increases the material recovery, a higher percentage of SBS with 

the presence of rubber gives a better material recovery as it can be seen for Hard_pfu and 

VR, whereas a higher percentage of SBS gives a healing negative effect as it can be seen 

in the case of Hard bitumen. The same healing considerations can be seen after long aging 

process (figure 6.23-b). Figure (6.23-c) shows that as the test temperature decrease the 

healing gets better. Figure (6.23-d) shows that after long aging process the healing gets 

better for the five bitumen. 
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Figure 6.24 -Variation of Healing. 

6.4.2. Fatigue life with rest period for short aged bitumen. 

Two Wohler curve is generated by the results obtained from time sweep tests were carried 

out at different strain levels for short aged bitumen, one by using N50 approach (figure 

6.24) and the other by DER approach (figure 6.25).  

It can be seen that the fatigue life of Hard bitumen is the best, The presence of rubber 

increases the stiffness but decreases the fatigue performance as it can be seen in Figure 

6.24. This observation is not valid for the soft bitumen as the presence of rubber increases 

the fatigue life. As the Hard, Hard_pfu and VR have the same percentage of SBS, it can 

be observed that the presence of SBS alone without rubber improves the fatigue life, but 

SBS with the presence of rubber gives a negative effect for the fatigue life. Same results 

obtained also from fatigue test without rest period (N50 approach). 

By using DER approach figure 6.25, it can be seen that Hard bitumen has the best fatigue 

life. The presence of rubber in soft btumen decrease the fatigue life at high strain levels 

(3% and 4%). Hard_pfu has a better fatigue life than VR, in particular at low strain level. 

DER approach results from time sweep test with a rest period are more accurate than both 

the results from N50 approch and DER appproach results from fatigue test without rest 

period, because the slope changes as it can be seen from figure 6.26.   
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Figure 6.25 - Wohler curve - with rest period – N50 approach. 

 

Figure 6.26 -Wohler curve - with rest period – DER approach. 
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Figure 6.27 - Comparison DER approach – with and without rest period. 

 

6.4.3. Fatigue life with rest period at different temperatures. 

Time sweep tests were carried our at 4% strain level and at different temperature than 

25°C, in order to make a fatigue life comparison between the five bitumen when we have 

the same initial G*. Fatigue life obtained by using both N50 and DER approaches for 

each bitumen as shown in figure 6.27. It can be seen that always Hard bitumen has the 
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best fatigue life, DER approache shows confirms that the presence of rubber decreae the 

fatigue life. 

 

Figure 6.28 -Fatigue life at different temperatures – 4% strain level. 

6.4.4. Fatigue life with rest period for Long aged bitumen. 

Time sweep test were carried out for the long aged bitumen at one strain level (4%). By 

applying N50 and DER approach, it is obtained the fatigue life for the five bitumen, It 

can be seen in figure 6.28 that Hard bitumen has the best fatigue life also after long aging 

process. The presence of rubber decreases fatigue life as it can be seen by DER approach. 

 

Figure 6.29 -Fatigue life for long aged bitumen at 4% strain level.
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7. CHAPTER 07. CONCLUSIONS. 

 

The main objectives of this study was to investigate the bitumen aging in short term and 

long term. In particular, it was studied how this phenomenon affects the rheological 

properties of bitumen. DSR oscillatory testing were used to determine the fatigue 

properties of five modified bitumen with SBS and with or without crumb rubber at a 

temperature of 25°C. 

The SBS increases the values of complex modulus throughout the frequency range and 

reduces the values of phase angle at high temperatures. The master curves have the s-

shape typical of asphalt, showing how the presence of SBS gives greater shear stress 

resistance at the high temperatures. 

The presence of rubber increases the elastic response of the bitumen at high temperatures 

even after aging. 

VR bitumen is the best which can resist rutting and thermal cracking. 

Ageing effects were discussed by comparing the results obtained from a single bitumen 

tested in the unaged state with those obtained after short and long aging treatments. It was 

observed that ageing produces an increment of rutting and thermal cracking resistance 

with the presence of rubber. 

The higher percentage of SBS in Hard bitumen proved to be the material exhibiting the 

highest fatigue resistance with respect to the other bitumen. Healing properties are 

enhanced by the presence of the rubber. The introducton of a rest period decreases fatigue 

life. 

The presence of rubber decrease the fatigue life, as evident from the comparison between 

all five bitumen. The presence of rubber with a higher percentage of SBS decrease the 

fatigue resistance, as evident from the comparison between soft and hard bitumen. This 

would indicate that there is some form of chemical reaction occurring between the SBS 

and rubber. 
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The fatigue life based on the DER method consistently under-predicted the fatigue life 

based on the 50% drop in modulus method. Overall life duration of the different criteria 

are similar indicates coherence between the two approaches. 
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