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Introduction

With the advent of Deep Learning, exploiting neural networks with a large amount of
layers, we have been able to find solutions to problems that do not have a known al-
gorithmic solution. Among these problems there are many interesting computer vision
and graphics tasks such as image recognition [14][19][10] (recognizing what a given image
contains), image captioning [21][13] (producing a textual description of what an image
contains), style transfer [6][15] (given two images, represent the first image with the
graphical style of the second image) and many more. One interesting problem that got
formulated recently is the problem of image-to-image translation, first defined in [12].
Image to image translation is a class of problems where the goal is to change the graph-
ical representation of an image such that the semantics is preserved. We can conduct an
analogy between the automated language translation task (for example a translation of
a natural language sentence from French to English) and the image-to-image translation
task, by noting that both of these tasks need to change the representation of a given
concept. The language translation task simply needs to translate a concept expressed by
words, into another sequence preserving the semantics, while the image-to-image trans-
lation task needs to translate a collection of pixels of an image into another collection of
pixels.
With the introduction of the image-to-image translation task, there were proposed two
different general-purpose techniques based on generative adversarial networks respec-
tively using different kinds of training data, labeled and unlabeled. In machine learning,
labeled training data means that for every training sample we know both its input and
output values, while unlabeled training data doesn’t contain any information about the
output. The latter kind of training data is more available nowadays than the former one.
In the context of image-to-image translation, labeled data is called paired data and unla-
beled data is called unpaired data and the difference between the two is that with paired
data we need multiple image representations of the same context, while with unpaired
data we only need two sets of images. The main technique to solve the image-to-image
translation task on paired data is called pix2pix [12], while a more interesting technique
which uses unpaired data is called CycleGAN [22].
CycleGANs are a particular kind of neural networks that learn to generate images based
on two domains (sets) of data. They include the word “Cycle” in their name due to
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the fact that in order to learn to translate in a correct way, they use two translator
networks between two domains of training data which capture the intuition that if we
perform a translation towards a domain, then a translation back to the original domain
should produce an output similar to the input data; more informally, in analogy with the
automatic language translation where if we translate an input sentence from a language
to another, and then translate it back, we should obtain a sentence which is similar to
the input.
Even though CycleGANs are a powerful instrument, their original version is bound to
be used with only two domains (or classes) of data at a time, making them unsuitable
for tasks where we have potentially infinite domains, such as continuous season transfer
or continuous version of finite class face aging [3].
This dissertation presents some attempts that were done in order to use the CycleGAN
approach to perform image translations between more than two classes at a time: the
goal was to obtain a continuous translation between two given classes.
In the first chapter we’ll describe the theoretical background which will be used subse-
quently to understand the CycleGANs (some general details are out of the scope of this
thesis, thus will be omitted).
The second chapter is about CycleGANs, we are going to describe the underlying ideas
and mechanisms which make their training possible.
Finally the third chapter shows results of some experimentations that were obtained
by modifying the existing CycleGAN’s setup with the intention to allow a continuous
translation between two given image classes using a single network for translation in-
stead of two. Even though the final goal of learning to translate images between two
domains in a continuous way wasn’t reached, we were able to find another interesting
result which allowed us to translate images with a quality close to CycleGAN using a
single translation network.



Chapter 1

Theory

In this chapter we are going to describe the main building blocks of a CycleGAN. We’ll
emphasize the most on Convolutional Neural Networks (CNNs for short) which are
networks that are nowadays used to all the image related tasks, General Adversarial
Networks (GANs) which are a kind of generative model that is trained to generate
realistic images and the problem of Image-to-Image translation. A brief part on how
to use Tensorflow for simple deep learning related tasks is included as well.

1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are Neural Networks that are used for image re-
lated tasks. They are different from the traditional fully-connected networks (also called
Multilayer Perceptrons) due to the fact that these kinds of networks use particular kind
of layers:

• Convolutional layers

• Deconvolutional layers

• Pooling layers

We omit the description of pooling layers as they are outside the scope of CycleGANs.

1.1.1 Convolutional Layers

Convolutional layers are the main component of Convolutional Neural Networks. They
intuitively apply a set of filters to an image in order to produce a feature map of the
image. The feature maps represent particular areas of interest of an image that the
network considers important in order to perform classification.

6



7 1.1. Convolutional Neural Networks

Figure 1.1: Convolution operation produces an output feature map (teal area) by “slid-
ing” a kernel matrix (blue area) over an input image matrix (light blue area).

The convolution operation itself, applied by the layers between an input image and a
learned kernel, is defined by equation

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

where I as an input image and K is a kernel, however most deep learning libraries
implement the cross-correlation operation

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

due to optimization reasons [8], with the only difference between the two being the kernel
flipping (however it is irrelevant in the context of neural networks, as the parameters are
learned in the same way). A more intuitive explanation can be visualized in figure 1.1
besides the mathematical definition. A complete guide about the convolutions which
includes better visualizations consisting of different cases can be found in [5]. All the
images in this section have been borrowed form that article.
Lastly, convolutions allow a set of parameters that determine the output image’s dimen-
sionality, which are:

• Number of filters: this parameter contributes to the depth of the resulting image
produced by the convolution. (i.e. if we apply a convolution with 32 filters, the
resulting image will have 32 channels)
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Figure 1.2: Convolution with a stride of 1× 1, kernel size of 3× 3 and no padding (also
called valid padding).

Figure 1.3: Convolution with a stride of 2× 2, kernel size of 3× 3 and no padding.

• Kernel size: determines the dimensions (only one dimension, as the kernel is
usually a square) of the kernel which is slided over the input image.

• Stride: determines the step size used by the filter when moving over the input
image. For example, in figure 1.2, unitary stride is used and we can see that the
kernel is moved by one pixel at a time over the input image, while figure 1.3 shows
a convolution with a stride of two, where the kernel is in fact moved by two pixels
at a time.

• Padding: indicates the amount of padding that is added to the input image
before performing the convolution, which changes its dimension from w × h to
(w + 2p) × (h + 2p). While the padding can be arbitrary (as seen in figure 1.4),
there are two particular kinds of padding which are interesting: half-padding (also
known as same-padding) and full-padding. The former is performed by setting
p = bk

2
c which allows the output image preserve the same dimensionality of the

input image as seen in figure 1.5. The latter is performed by setting p = k−1 which
allows the image to grow in dimension after the convolution has been performed,
as we can see in figure 1.6.
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Figure 1.4: Convolution with a stride of 1 × 1, kernel size of 4 × 4 and an arbitrary
padding of 2.

Figure 1.5: Convolution with a stride of 1 × 1, kernel size of 3 × 3 and a padding of 1
(half-padding), as we can observe, the produced output has the same dimensionality as
the input.

Figure 1.6: Convolution with a stride of 1 × 1, kernel size of 3 × 3 and a padding of 2
(full-adding), thus the output image dimensionality gets increased.
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1.1.2 Deconvolutional Layers

Deconvolutional layers (also called Transposed Convolutions) allow to project a lower
dimensionality input into a higher dimensionality output (up-sampling it) in an optimal
way. We’ll use a simple example to explain how these layers work.
Let us consider the following matrices x (input) and k (kernel).

x =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 k =

[
w11 w12

w21 w22

]

Assume that we want to perform a stride 1 and no padding convolution on them, we can
do it by either using the formula defined previously or by performing a normal matrix
multiplication between a flattened version of x matrix and an expanded version of k
matrix. We expand the k matrix to produce a new k̂ matrix as follows:

k̂ =


w11 w12 0 w21 w22 0 0 0 0
0 w11 w12 0 w21 w22 0 0 0
0 0 0 w11 w12 0 w21 w22 0
0 0 0 0 w11 w12 0 w21 w22


What we did there was to “highlight” the values covered by the kernel matrix on the
input image, assigning the corresponding wij values to the items that were covered by

kernel matrix, leaving uncovered values as 0, making the i’th row of k̂ correspond to
the i’th step of convolution. If k’s dimensionality was 2× 2 and x’s dimensionality was
3× 3 then k̂’s dimensionality is 4× 9 since we can only perform 4 steps in the assumed
settings. Finally, to perform the convolution itself we multiply k̂ by the flattened version
of x. Since the multiplication is between a 4 × 9 matrix and a 9 × 1 matrix, we get a
4× 1 dimensional matrix which gets reshaped into a 2× 2 matrix, corresponding to the
output feature map.
A transposed convolution is obtained in the same way, except that the matrix multipli-
cation is performed on k̂T transposed matrix, mapping a lower dimensional matrix to a
higher dimensional one.

1.1.3 Batch Normalization

Batch normalization [11] is a technique which can be used in order to reduce the internal
covariate shift (change in the distribution of network’s activations due to changes in
network’s parameters during training). By reducing the covariate shift the training
process becomes more stable which allows to use higher learning rates and to be less
careful about initialization as the output of each layer gets normalized.
The normalization is done by adding additional layers which are responsible of collecting
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batch statistics during the training time that allow to re-normalize the batch mean and
batch variance to learned values γ (learned variance) and β (learned mean). This means
that normalization can be added as a part of the model’s architecture.
As we can see in algorithm 1, batch normalization layer normalizes the previous layer’s
output by subtracting the batch mean µB and diving by the batch standard deviation
σB, this makes so that the input data batch gets a mean of 0 and a variance of 1. After
the normalization step, the batch is subject to a re-parametrization which gives it a
mean of β and a variance of γ learned by the relative batch normalization layer. The
re-parametrization step is needed to make sure that the transformation can represent an
identity, because normalizing the input of a layer alone may change what that layer can
represent (for example if we normalize the inputs of a sigmoid we might end up into the
linear regime of the nonlinearity). In fact if β = E[B] and γ =

√
Var[B] then

yi =γx̂i + β

=
√

Var[B] · x̂i + E[B]

=
√
σ2
B · x̂i + µB

=
√
σ2
B ·

xi − µB√
σ2
B

+ µB

=xi

allowing the training process to recover the original activations if needed.
During the inference phase population statistics are used instead of mini-batch ones, this
means that the output of a batch normalization layer becomes just a linear transforma-
tion

y =
γ√

E[x] + ε
· x+ (β −

γ√
Var[x] + ε

)

with the values of E[x] and Var[x] estimated by either computing them over all the
batches or by a moving average ran during the training phase.

1.1.4 Instance Normalization

Instance normalization layers, also known as “contrast normalization” layers [20], are
normalization layers similar to batch normalization that are used in image stylization
applications due to the fact that they allow to apply style in an unique forward pass,
rather than by applying it iteratively, making the translation process faster. The main
difference between the two is that instance normalization normalizes each feature map
on its own, unlike batch normalization which uses information from the whole batch to
normalize. Being applied to the feature map only, their advantage over the latter is that
they don’t need to compute statistics and apply the normalization to the whole batch,
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Algorithm 1: Algorithm implemented by a batch normalization layer

Data: Batch of samples B = {x(1), ..., x(m)}

Learned parameters γ, β

/* Compute mini-batch mean */

µB ← 1
m

m∑
i=1

xi

/* Compute mini-batch variance */

σ2
B ← 1

m

m∑
i=1

(xi − µB)2

/* Normalize the input data */

x̂i ←
xi − µB√
σ2
B + ε

/* Perform scaling and shifting */

yi ← γx̂i + β

return yi
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which makes them more efficient than batch normalization while maintaining the same
quality. Lastly, they behave the same way during inference time and training time, as
opposed to batch normalization.
As seen in the previous paragraph, batch normalization for batch of images can be written
as equation 1.1 if we denote xtijk as tijk’th element where t is the index of image within
the batch, i is the feature channel index (i.e. color channel in case of an RGB image) and
j, k are the spatial dimensions (width and height) indexes then we can replace the batch
normalization layer’s internal computations into 1.2 to perform instance normalization.

ytijk =
xtijk − µi√
σ2
i + ε

, µi =
1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

xtilm, σ
2
i =

1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

(xtilm − µi)2

(1.1)

ytijk =
xtijk − µti√
σ2
ti + ε

, µti =
1

HW

W∑
l=1

H∑
m=1

xtilm, σ
2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm − µti)2 (1.2)

1.2 Generative Adversarial Networks(GANs)

Generative Adversarial Networks, first proposed by [7] are a kind of generative models
(top three along with FVBN and VAE) which are used to generate images artificially.
They offer a set of advantages when compared to other generative models such as allowing
to generate samples in parallel and producing better quality samples than other models.
When compared to models that optimize an average such as mean squared error, models
with adversarial loss term perform better visually in multi-modal settings(when there
are multiple possible output images) as they generate an image which “needs to look”
more realistic rather than an image which is an average of all the possible output images,
this can be observed in figure 1.7 where the task is to predict a next video frame based
on the current input frame.
If viewed as a game between two players (explained more in detail in [9]), GAN training
process can be viewed as follows. The game is divided in two scenarios, first scenario
(training discriminator only) consists in the following steps:

1. Sample a data point x from the training data.

2. Feed the point x to the discriminator, represented by a differentiable function D.

3. Discriminator tries to make the D(x ) value close to 1.

the second scenario (training generator and discriminator) is then described by the fol-
lowing steps:

1. Sample a random input noise vector z .
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Figure 1.7: The leftmost image is the actual next frame which the model would ideally
predict. The center image a result of a model trained with MSE loss between the ground
truth frame and all the multiple predicted frames. The rightmost image is a result of a
model trained with adversarial loss, which has learned to predict a sharp and realistic
image by taking one among multiple possible outputs. (Figure borrowed from [16])

2. Apply a differentiable generator G function (which is usually a neural network) to
z , compute the value of x̂ ← G(z ).

3. Generator tries to make D(x̂ ) near 1 while the discriminator tries to make D(x̂ )
near 0.

More formally, we define D(x ; θD) as a function parametrized by θD that outputs the
probability of an input x coming from pdata, rather than from the generator’s distribu-
tion pg. We then define a mapping G(z ; θG) from pz(z ) input noise prior to the data
space, which corresponds to a new distribution pg over the data x . The discriminator is
trained to maximize the probability of assigning correct labels to the training samples
and generated samples as described by the equation:

Ex∼pdata [logD(x )] + Ez[log(1−D(G(z )))] (1.3)

while the generator is trained to minimize the probability of its output getting labeled
as fake by the discriminator:

Ez[1− logD(G(z ))] (1.4)

however, in practice, it is preferred for generator to maximize (or to minimize it after
multiplying by −1) the equation 1.5 due to weak gradients by G in the early stages of
the learning.

Ez[logD(G(z ))] (1.5)

Both of the previous equations get combined into a unique function V (G,D), defined by
equation 1.6.

min
G

max
D

V (G,D) = Ex∼pdata [logD(x )] + Ez[log(1−D(G(z )))] (1.6)
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Figure 1.8: The blue dashed line represents the discriminator function D, which assigns
a probability of samples coming from pdata data generating distribution, represented with
a black dotted line or pg generator’s distribution, represented by a continuous green line.
The lower line represents the domain from which z is samples, while the arrows indicate
the mapping from random noise distribution to generated data, x = G(z ). (a) If we
consider D and G near convergence, pg is similar to pdata and D is a partially accurate
classifier. (b) D gets trained to discriminate generated samples from data. (c) G gets
trained after being guided by D’s gradient to produce samples which are more likely
classified as data by D. (d) After enough training steps, D and G should have sufficient
capacity, which won’t allow both of them to improve anymore because pg = pdata making
D assign a probability of 1

2
to every point.

The training procedure which uses a stochastic gradient descent(SGD) as optimizer on
minibatches is illustrated in algorithm 2, while a more intuitive version is shown in figure
1.8.

1.3 Image-to-Image Translation

The image-to-image translation problem consists in capturing special characteristics of
a collection of images and finding a way to translate these characteristics into another
collection of images. The concept itself can be though as an image version of language
translation (for example translating a concept from English to French and vice-versa)
and can be seen in figure 1.9 . This task was usually approached with special-purpose
methods, even though the settings were always the same, predicting pixels from pixels.
Recently a general framework based on Generative Adversarial Networks was proposed to
approach this problem. In particular there are two different methods: Conditional GAN
and CycleGAN (described in next chapter). The main difference between the two is the
kind of training data they consume. In fact, Conditional GANs require paired training
data, while CycleGANs don’t require data to be paired, bringing a huge advantage due
to the fact that unpaired data is way easier to obtain, as we can really grab two subsets
of images of the categories we are interested in to perform the training. This difference
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Algorithm 2: Minibatch SGD algorithm for GAN training

Data: Generator G, Discriminator D

Data generating distribution pdata(x)

number of epochs nepochs, learning rate γ

for epoch ← 1 to nepochs do

Sample a minibatch of m noise samples {z (1),..., z (m)} from prior noise

distribution pg(z )

Sample a minibatch of m data samples {x (1),..., x (m)} from data generating

distribution pdata(x )

θD ← θD + γ∇θD
1
m

∑m
i=1[logD(x (i)) + log(1−D(G(z (i))))]

Sample another minibatch of m noise samples {z (1),..., z (m)} from prior noise

distribution pg(z )

θG ← θG − γ∇θG
1
m

∑m
i=1[− logD(G(z (i)))]

end

Figure 1.9: Image-to-Image translation task consists in transforming an image visually
while preserving the same concept. In this figure we can see several examples of image-
to-image translation.
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Figure 1.10: Paired image data (left) consists in pairs of data samples {xi, yi}Ni=1 where
there exists a correspondence between xi and yi. Unpaired image data (right) consists of
a source set {xi}Ni=1 and a target set {yj}Mj=1 without any additional information about
which xi matches which yj.

between paired and unpaired data can be seen in figure 1.10.

1.4 Tensorflow

Tensorflow[1] is a computational graph framework developed by Google. It is based on
the Dataflow programming paradigm, thus it allows us to define programs (Tensorflow
can be seen as a standalone language) in form of computational graphs where the nodes
represent units of computation(inputs, operations etc.) and edges represent the data
consumed or produced by the computation(the incoming edges represent input depen-
dencies and outgoing edges represent the operation’s result).

1.4.1 Graph definition

Before being able to perform a computation we need to define a computational graph of
what we want to compute. For example listing 1.1 shows an example of a computational
graph definition which computes a tanh of the sum of the two given scalar inputs x1 input
and x2 input. This however doesn’t let us compute anything, being only a definition of
the computational graph that can be seen in figure 1.11. It is also worth noting that
everytime we write an operation that uses a placeholder or a variable, a node relative
to that operation gets added to the computational graph, called “default computational
graph”, which can be reset by calling tf.reset default graph().

import t en so r f l ow as t f
x1 input = t f . p l a c eho ld e r ( t f . f l o a t32 , shape=() , name=’ x1 ’ )
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Figure 1.11: Graph created by the code defined in listing 1.1

x2 input = t f . p l a c eho ld e r ( t f . f l o a t32 , shape=() , name=’ x2 ’ )
out = t f . tanh ( x1 input + x2 input )

Listing 1.1: Sum and tanh graph definition example

1.4.2 Sessions

To perform computations we need to start a session and evaluate the desired graph nodes
after setting the values of the placeholders. In the listing 1.2 example we can see a way
of opening the session which then gets used in order to run a computation on the defined
graph. To run the computation we call the session’s method run and give it either a
list of graph nodes or a single node that we want to compute (out in this case) and a
dictionary where we insert placeholders’ values.

import t en so r f l ow as t f
# de f i n e the computat ional graph
x1 input = t f . p l a c eho ld e r ( t f . f l o a t32 , shape=() , name=’ x1 ’ )
x2 input = t f . p l a c eho ld e r ( t f . f l o a t32 , shape=() , name=’ x2 ’ )
out = t f . tanh ( x1 input + x2 input )
# s t a r t the s e s s i o n
s e s s i o n = t f . S e s s i on ( )
r e s u l t = s e s s i o n . run ( out , f e e d d i c t={x1 input : 0 . 025 , x2 input : 0 . 5} )
p r i n t ( r e s u l t ) # p r i n t s 0 .012499349
# c l o s e the s e s s i o n
s e s s i o n . c l o s e ( )

Listing 1.2: Running a session example

1.4.3 Variables

We often need variables in our computation, Tensorflow allows to declare variables with
tf.Variable (low-level) or tf.get variable (high-level, thus recommended). The first ap-
proach is explained in listing 1.3, while the second approach is used in 1.4, the main
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difference between them is that tf.Variable, always creates a new variable and requires
an initial value to be specified, while the latter approach checks if a variable already ex-
ists and reuses it in case it does. In listing 1.3 we show a computational graph that has
a variable that gets incremented by a tf.assign operation. Note that we could’ve intu-
itively (but mistakenly) used session.run([counter, increment counter]), however when
called, we aren’t guaranteed the execution order will be the same as in the list, thus it’s
recommended to make separate run calls when the variables’ state is involved.

import t en so r f l ow as t f
# dec l a r e the va r i a b l e
counter = t f . Var iab le (0 , dtype=t f . int32 , name=’ counter ’ )
# dec l a r e the increment op
increment counter = t f . a s s i gn ( counter , counter + 1)
# get the v a r i a b l e s i n i t i a l i z e r op
i n i t o p = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )
# s t a r t a s e s s i o n which w i l l c l o s e once the block ends
with t f . S e s s i on ( ) as s e s s i o n :

# i n i t i a l i z e the v a r i a b l e s
s e s s i o n . run ( i n i t o p )
p r i n t ( s e s s i o n . run ( counter ) ) # p r i n t s 0
s e s s i o n . run ( increment counter )
p r i n t ( s e s s i o n . run ( counter ) ) # p r i n t s 1

Listing 1.3: Computational graph with variables example

1.4.4 Optimization

When working with neural networks, we usually need to optimize an objective function,
Tensorflow allows us to do this by defining an optimizer operation. Tensorflow offers
implementations of all gradient descent algorithm’s variants known in literature. For
example we define GradientDescentOptimizer in listing 1.4 with its relative minimization
step operation which takes a loss function operation and a list of variables to optimize
as its arguments, this implicitly adds nodes to the graph what allow gradients to be
computed automatically (as seen in figure 1.12). We need to run the optimizer step
operation every time we want to perform a backward pass and apply the gradients, thus
optimizing the given variables list.

import t en so r f l ow as t f
import numpy as np
# Declare p l a c eho l d e r s
x = t f . p l a c eho lde r ( t f . f l o a t32 , shape=(None , 2) , name=”x” )
y = t f . p l a c eho lde r ( t f . f l o a t32 , shape=(None , 1) , name=”y” )
# Declare v a r i a b l e s
W = t f . g e t v a r i a b l e ( ”W” , [ 1 , 2 ] , dtype=t f . f l o a t 3 2 )
b = t f . g e t v a r i a b l e ( ”b” , [ 1 ] , dtype=t f . f l o a t 3 2 )
WT = t f . t ranspose (W)
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Figure 1.12: Graph created by the code defined in listing 1.4. As we can see, when
we declare the optimizer step operation, gradient computation operation gets added
implicitly to the graph on the left, producing a new graph which can be seen on the
right.

y hat = t f . matmul (W T, x ) + b
# MSE l o s s func t i on
l o s s = t f . reduce mean ( t f . s q u a r e d d i f f e r e n c e (y , y hat ) )
# SGD with 0 .0002 l e a rn i ng ra t e
opt imize r = t f . t r a i n . GradientDescentOptimizer (2 e−4)
# Optimizer s tep op
op t im i z e r s t ep = opt imize r . minimize ( l o s s , v a r l i s t=t f . t r a i n a b l e v a r i a b l e s

( ) )
# Get the v a r i a b l e s i n i t i a l i z e r op
i n i t o p = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )
# Star t a s e s s i o n which w i l l c l o s e once the block ends
with t f . S e s s i on ( ) as s e s s i o n :

# I n i t i a l i z e the v a r i a b l e s
s e s s i o n . run ( i n i t o p )
# For 1000 epochs
f o r epoch in range (1000) :

# assume we have a ” load batch ” func t i on that r e tu rn s a batch o f
data

batch x , batch y = load batch ( )
# Run the opt imize r s tep and l o s s va lue computation
, l o s s v a l u e = s e s s i o n . run ( [ op t im i z e r s t ep , l o s s ] , f e e d d i c t={x :

batch x , y : batch y })

Listing 1.4: Linear regression example
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1.4.5 Higher level API for Neural Networks

In previous paragraph we described a low-level approach to define computational graphs,
however when working with Neural Networks don’t want to get into low-level operations,
we want to build networks from more abstract building blocks used in neural networks’
literature (dense layers, convolutional layers, known activation functions, etc.). Tensor-
flow offers two different kind of APIs, the first one tf.nn which is a lower level API (yet
higher than doing all the operations by hand) and tf.layers, which is a higher level API.
The tf.nn API offers almost the same functionality as the tf.layers, however it doesn’t
handle biases, requires weights to be declared and initialized manually, uses activation
functions as external layers and doesn’t handle regularizers. As shown in the listing 1.5,
we can define a convolutional neural network that recognizes digits from images (trained
on MNIST dataset) with a few lines of code. The listing shows the whole process of
defining a model’s computational graph, in cnn model function, loading a predefined
dataset (MNIST), defining an optimizer, creating a session and training the model.

import t en so r f l ow as t f
import numpy as np
# Dataset
mnist = t f . c on t r i b . l e a rn . da ta s e t s . l o ad da ta s e t ( ’ mnist ’ )
X tra in = mnist . t r a i n . images
y t r a i n = mnist . t r a i n . l a b e l s
# Preproces s data
X tra in = X tra in . reshape ( ( X tra in . shape [ 0 ] , 28 , 28 , 1) )
# Declare p l a c eho l d e r s
de f cnn model ( x input ) :

with t f . v a r i a b l e s c op e ( ’model ’ ) :
# conv 1
out = t f . l a y e r s . conv2d ( x input , 32 , 5 , 1)
out = t f . nn . r e l u ( out )
out = t f . l a y e r s . max pooling2d ( out , 2 , 2)
# conv 2
out = t f . l a y e r s . conv2d ( out , 64 , 5 , 1)
out = t f . nn . r e l u ( out )
out = t f . l a y e r s . max pooling2d ( out , 2 , 2)
# f l a t t e n
out = t f . l a y e r s . f l a t t e n ( out )
# dense 1
out = t f . l a y e r s . dense ( out , 1024)
out = t f . nn . r e l u ( out )
# dense 2
out = t f . l a y e r s . dense ( out , 10)
out = t f . nn . softmax ( out )

re turn out

x = t f . p l a c eho lde r ( t f . f l o a t32 , shape=(None , 28 , 28 , 1) )
y = t f . p l a c eho lde r ( t f . f l o a t32 , shape=(None ) )
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# convert the t a r g e t l a b e l s i n to one−hot l a b e l s
one hot y = t f . one hot ( i n d i c e s=t f . c a s t (y , t f . i n t32 ) , depth=10)
# model ’ s p r e d i c t i o n s op
y hat = cnn model ( x )
# l o s s func t i on
l o s s = t f . reduce mean ( t f . ke ras . l o s s e s . c a t e g o r i c a l c r o s s e n t r o py ( y t rue=

one hot y , y pred=y hat ) )
# RMSProp with 0 .0002 l e a rn i ng ra t e
opt imize r = t f . t r a i n . RMSPropOptimizer (1 e−4)
# Optimizer s tep op
op t im i z e r s t ep = opt imize r . minimize ( l o s s , v a r l i s t=t f . t r a i n a b l e v a r i a b l e s

( ) )
# Get the v a r i a b l e s i n i t i a l i z e r op
i n i t o p = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )
# Star t a s e s s i o n which w i l l c l o s e once the block ends
ba t ch s i z e = 64
d a t a s e t s i z e = X tra in . shape [ 0 ]
with t f . S e s s i on ( ) as s e s s i o n :

# I n i t i a l i z e the v a r i a b l e s
s e s s i o n . run ( i n i t o p )
# For 30 epochs
f o r epoch in range (30) :

# f o r each batch
f o r index , ba t ch s t a r t in enumerate ( range (0 , d a t a s e t s i z e ,

b a t ch s i z e ) ) :
s t a r t = ba t ch s t a r t
end = ba t ch s t a r t+ba t ch s i z e
i f end < d a t a s e t s i z e :

# Run the opt imize r s tep and l o s s va lue
computation

, l = s e s s . run ( [ op t im i z e r s t ep , l o s s ] , f e e d d i c t={
x : X tra in [ s t a r t : end ] / 2 55 . 0 , y : y t r a i n [ s t a r t : end ]

})

Listing 1.5: MNIST CNN example

1.4.6 Saving the graph

Once the model was trained, we might be interested into persisting it and using it in
order to make predictions. In praticular we can save the session associated with the
computational graph by using tf.train.Saver class as shown in listing 1.6.

import t en so r f l ow as t f
. . .
saver = t f . t r a i n . Saver ( )
with t f . S e s s i on ( ) as s e s s i o n :

. . .
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saver . save ( s e s s i on , ’ checkpoint−name ’ )

Listing 1.6: Saving a session example

When calling save method of tf.train.Saver the computational graph’s state gets saved
to secondary memory as a collection of four files listed below:

• .meta: contains the structure of saved graph.

• .data: contains the values of variables.

• .index: checkpoint’s identification.

• checkpoint: a list of recent checkpoints.

We are usually interested in restoring the session as well, this can be done by calling the
restore method of tf.train.Saver. We assume (in listing 1.7) that we’ve already defined
the computational graph previously before restoring the session, as it would cause an
exception to be thrown otherwise.

import t en so r f l ow as t f
. . .
saver = t f . t r a i n . Saver ( )
with t f . S e s s i on ( ) as s e s s i o n :

. . .
saver . r e s t o r e ( s e s s i on , ’ checkpoint−name ’ )

Listing 1.7: Restoring a session example

There is however a way to restore the session without declaring the graph before, this can
be done by calling the tf.train.import meta graph with .meta file path method, which
returns a tf.train.Saver instance that can then be used to restore the session as previously
explained.



Chapter 2

CycleGAN

2.1 Introduction

We are given two domains of images X and Y with their respective training samples
{xi}Ni=1 and {yj}Mj=1 such that xi ∈ X and yj ∈ Y and their data generating distributions
pdata(x) and pdata(y). The goal here is to learn a mapping G : X → Y , such that
the distribution of images from G(X) becomes indistinguishable from the distribution Y
using an adversarial loss.
We’ll use a different notation from the original paper [22], to emphasize the translation
part better, thus we rewrite G : X → Y as GXY : X → Y and F : Y → X as
GY X : Y → X. Additionally we introduce two adversarial discriminators DX and DY to
distinguish between {x} and {GY X(y)} in case of DX and similarly in case of DY .

2.2 Loss function

2.2.1 Adversarial loss term

There are two usual (as defined in [7]) adversarial loss terms shown in equations 2.1 and
2.2 which are applied to both GXY and GY X respectively.

LGAN(GXY , DY , X, Y ) = Ey∼pdata(y) [log(DY (y))]

+ Ex∼pdata(x) [log(1−DY (GXY (x)))]
(2.1)

LGAN(GY X , DX , Y,X) = Ex∼pdata(x) [log(DX(x))]

+ Ey∼pdata(y) [log(1−DX(GY X(y)))]
(2.2)

It is however preferable to use the LSGAN [17] objective for a more stable training
(according to the authors of CycleGAN [22]), so instead of optimizing the objective

min
GXY

max
DY

LGAN(GXY , DY , X, Y )

24
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from 2.1, we optimize the objective which is described in equation 2.3 for GXY and DY .

min
GXY

Ex∼pdata(x) [(DY (GXY (x))− 1)2]

min
DY

Ey∼pdata(y) [(DY (y)− 1)2] + Ex∼pdata(x) [DY (GXY (x))2]
(2.3)

The equations for GY X and DX are described in a similar way thus are left out. Intu-
itively GXY attempts to translate images from X to Y , generating GXY (x), while the
discriminator DY distinguishes between translated GXY (x) and real samples y. The
same reasoning is applied to GY X and DX for a symmetrical translation from Y to X.

2.2.2 Cycle Consistency loss term

Lcyc(GXY , GY X) = Ex∼pdata(x) [|GY X(GXY (x))− x|]
+ Ey∼pdata(y) [|GXY (GY X(y))− y|]

(2.4)

The term from equation 2.4 is introduced because the adversarial loss alone can’t guar-
antee(in practice) that the learned mapping effectively maps the input image xi to a
correct image yi. What can happen is that all of the images of X get mapped to an
unique image of Y . The paper’s authors argue that the learned translation functions
should be cycle-consistent in order to further reduce the space of possible translation
functions. Intuitively this term represents the forward cycle consistency constraint (as
shown in figure 2.1 (b))

∀x ∈ X. GY X(GXY (x)) ≈ x

and the backward cycle consistency constraint (as shown in figure 2.1 (c))

∀y ∈ Y. GXY (GY X(y)) ≈ y

2.2.3 Full objective

We train to minimize a more stable version of the LGAN(GXY , DY , X, Y ) by using equa-
tion 2.3 instead of adversarial loss terms. The full objective thus is defined in the following
way:

L(GXY , GY X , DX , DY ) = LGAN(GXY , DY , X, Y )

+ LGAN(GY X , DX , Y,X)

+ λLcyc(GXY , GY X)

(2.5)

where λ indicates the importance of the cycle term and the optimal solution is:

G∗
XY , G

∗
Y X = arg min

GXY ,GY X

max
DX ,DY

L(GXY , GY X , DX , DY ) (2.6)
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Figure 2.1: (a) The model consists of two translation functions GXY : X → Y and
GY X : Y → X, and their respective discriminators DX and DY . The discriminators
encourage their respective generators to produce outputs of the translated inputs indis-
tinguishable from the opposite category (i.e. GXY should translate X inputs into images
indistinguishable from the domain Y ). The translation is further regularized by adding
two additional cycle consistency loss terms that capture the intuition that a translation
performed from one domain to the other and back again should produce an almost iden-
tical result to the initial input image. (b) Forward cycle-consistency loss represents the
loss term between an input image of domain X and its translation towards Y and back-
wards. (c) Backward cycle-consistency loss represents the loss term between an input
image of domain Y and its translation towards X and backwards.

2.3 Implementation and training

2.3.1 Network Architectures

The generator network architecture is usually defined as either an U-Net (this approach
is better described in [12]) or as a six-block residual network defined by

c7s1-32,d64,d128,R128,R128,R128,R128,R128,R128,u64,u32,c7s1-3

for 128× 128 resolution images and a nine-block residual network defined by

c7s1-32,d64,d128,R128,R128,R128,R128,R128,R128,R128,R128,R128,u64,u32,c7s1-3

in case of 256× 256 resolution images, where:

• c7s1-k denotes a 7×7 Convolution-InstanceNormalization-ReLU layer with k filters
and a stride of 1.

• dk denotes a 3 × 3 Convolution-InstanceNormalization-ReLU layer with k filters,
and a stride of 2.
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• Rk denotes a residual block that contains two 3× 3 convolutional layers with the
same number of filters on both layers.

• uk denotes a 3×3 fractional-strided-Convolution-InstanceNormalization-ReLU layer
with k filters, and a stride of 1

2
.

The discriminator network architecture is usually implemented by a 70× 70 PatchGAN
(based on [12]), which is a discriminator network that works on variable dimension images
and outputs a matrix of labels (8 × 8 in case of 128 × 128 images and 16 × 16 in case
of 256 × 256 images) rather than a single scalar, indicating the probability of a smaller
image zone being real or fake.
The discriminator network is thus defined in the following way:

C64,C128,C256,C512

where Ck denotes a 4 × 4 Convolution-InstanceNormalization-LeakyReLU layer with
k filters and a stride of 2 and a convolution is used in last layer to produce a one-
dimensional output. The first layer doesn’t use InstanceNormalization and α = 0.2 for
all the LeakyReLU layers.

2.3.2 Training

During the training phase CycleGAN’s authors used a strategy to reduce model’s oscilla-
tion by updating the discriminators using a history of previously generated images rather
than the currently generated ones (this allows to improve discriminator). The previously
generated images buffer size was set to 50. The training phase was performed with λ set
to 10, Adam optimizer with a batch size of 1 and an initial learning rate of 0.0002. The
learning rate was kept 0.0002 for the first 100 epochs, and was linearly decayed to 0 over
the next 100 epochs, as defined by the following function

lr(i) =

0.0002 ∗
200− i

100
if i > 100

0.0002 otherwise

2.3.3 Implementation

We propose an implementation of the CycleGAN model which is based on [22]. The
main difference between this implementation and the original one that we always resize
images to a dimension of 128× 128, thus we use the architecture containing six residual
blocks. Despite training being done with a smaller network (original implementation
used nine residual blocks and 256× 256 images), the results are worth experimentations
that will be described in the next chapter. The results over the maps dataset can be
seen in figure 2.2, while the results for horse2zebra dataset are available in 2.3.
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Input image x (left), generated
GXY (x) (right)

Input image y (left), generated
GY X(y) (right)

Figure 2.2: CycleGAN trained on maps dataset. The first two columns represent the
forward translation with the original aerial view image on the left and a translated
GoogleMaps image on the right. The last two columns represent the backward translation
from GoogleMaps image to aerial view.
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Input image x (left), generated
GXY (x) (right)

Input image y (left), generated
GY X(y) (right)

Figure 2.3: CycleGAN trained on horse2zebra dataset. The first two columns represent
the forward translation with original horse image on left and translated zebra image on
right. The last two columns represent the backward translation with the original image
being a zebra and translated image being a horse.



Chapter 3

Single Translation Function
CycleGANs

The goal of this dissertation was to perform experimentations on a modified version the
existing CycleGAN architecture in order to make it able to translate images in a gradual
way. We call gradual translation an image translation process that doesn’t necessarily
fully translate from one class to another, it includes the intermediate classes as well. For
example let us consider horse2zebra dataset and assume that the domain of images of
horses corresponds to a certain class0, let’s say being labeled by a value of 0, and the
images zebras corresponding to a class1 labeled by 1, a CycleGAN as defined in previous
chapter can only perform translations between two classes 0 and 1, we instead want to
perform translations between classes in [0, 1] interval.

3.1 Introduction

We define a CycleGAN with a single translation function as a mapping G : Image ×
Class → ImageClass where the output image’s class is conditioned by an input class
label that we consider to be in [0, 1] interval for simplicity sake. We ideally would like
the network to learn a mapping which allows to translate images towards any given class,
from any given class of the [0, 1] interval.
There are two main problems which seem to occur during the training of such networks.
The first problem comes from the fact that we have an unique translation function, the
network doesn’t have any information about the input image’s class due to this, so it
has to learn it somehow. The second problem comes from the fact that class information
needs to be embedded into a network architecture which doesn’t have a latent space,
forcing us to either concatenate it to an intermediate layer or to the input image as an
additional channel. Another thing that can be done is to sum the class information to

30
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an intermediate representation of the image.

3.2 Attempts and Results

In our attempts we used a modified generator architecture similar to the one used by
CycleGANs with the main difference being class information embeddings that needed
to be added to the generator. First attempt used only a concatenation of 3 channels
containing the class label to the original image. Attempts 2-4 had the class information
pixel-wise summed to the processed image before being passed to each residual block.
Attempts 5-8 has class information concatenated as an additional channel to the first
residual block’s input. Besides this each attempt had a different loss function (for dis-
criminator, generator or both) which will be described in details successfully. Lastly,
during the training we fixed the values of c0 and c1 to 0 and 1 respectively, and used
horse2zebra dataset.

3.2.1 First

In our first attempt we used one parametrized discriminator only which had the job to
detect whether an image was of the right class or not. The generator’s loss term was
defined as follows, with Lcyc and λ as seen in CycleGAN:

LG0 = Ex0∼pdata(x0) [(D(G(x0, c1), c1)− 1)2]

LG1 = Ex1∼pdata(x1) [(D(G(x1, c0), c0)− 1)2]

LG = λLcyc + LG0 + LG1

What we do there is apply the usual CycleGAN’s loss term, except that we have two
categories which have to be labeled as true by the discriminator. The discriminator’s
loss term was defined as a sum of two discriminator terms, one for each class, combined
into one as follows:

LD0 = Ex0∼pdata(x0) [(D(x0, c0)− 1)2] + Ex1∼pdata(x1) [(D(G(x1, c0), c0))
2]

LD1 = Ex1∼pdata(x1) [(D(x1, c1)− 1)2] + Ex0∼pdata(x0) [(D(G(x0, c1), c1))
2]

LD = LD0 + LD1

The results of this can be seen in figure 3.1. As we can notice, the class information
seems to be ignored by the generator when translating the images.

3.2.2 Second

In the second attempt we used two distinct discriminators for each class, instead of one,
as the problem might have been a low capacity of a single discriminator. We changed
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(a) Translation from an original image x0 (horse) towards categories 0 (identity), 0.2, 0.5, 1
(opposite).

(b) Translation from an original image x1 (zebra) towards categories 1 (identity), 0.5, 0.2, 0
(opposite).

Figure 3.1: Results of the first attempt.
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the generator’s loss term into the following:

LG0 = Ex0∼pdata(x0) [(Dc1(G(x0, c1))− 1)2]

LG1 = Ex1∼pdata(x1) [(Dc0(G(x1, c0))− 1)2]

LG = λLcyc + LG0 + LG1

in order to do so, and defined two discriminator loss terms for each discriminator to
minimize:

LD0 = Ex0∼pdata(x0) [(Dc0(x0)− 1)2] + Ex1∼pdata(x1) [(Dc0(G(x1, c0)))
2]

LD1 = Ex1∼pdata(x1) [(Dc1(x1)− 1)2] + Ex0∼pdata(x0) [(Dc1(G(x0, c1)))
2]

This did not bring any improvement, as can be seen in figure 3.2.

3.2.3 Third

In the third attempt we included an identity term in the generator, as we though that
it would it help to make use of class information. The generator thus included an
additional term (Lidentity) which was intended to minimize the distance between the
translated images into the same class and the original image as can be seen in equation
3.1.

Lidentity = Ex0∼pdata(x0) [|G(x0, c0))− x0|] + Ex1∼pdata(x1) [|G(x1, c1))− x1|]
LG0 = Ex0∼pdata(x0) [(Dc1(G(x0, c1))− 1)2]

LG1 = Ex1∼pdata(x1) [(Dc0(G(x1, c0))− 1)2]

LG = λcycLcyc + λidentityLidentity + LG0 + LG1

(3.1)

The results can be seen in figure 3.3. It is worth noting that the added term caused
majority of the translated images to become the same as the input (learning the identity
mapping).

3.2.4 Forth

Forth attempt was similar to the third with λidentity set to 1, this was done with the
idea that the generator wouldn’t try to learn only the identity function by lowering the
identity term’s weight. The results however didn’t match the expectations and can be
observed in figure 3.4.

3.2.5 Fifth

In the fifth attempt we added an identity term to the discriminator as well and a dis-
criminator term for identity images in the generator. The generator’s LG0 and LG1 terms
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(a) Translation from an original image x0 (horse) towards categories 0 (identity), 0.2, 0.5, 1
(opposite).

(b) Translation from an original image x1 (zebra) towards categories 1 (identity), 0.5, 0.2, 0
(opposite).

Figure 3.2: Results of the second attempt.

got changed into:

Lidentity = Ex0∼pdata(x0) [|G(x0, c0))− x0|] + Ex1∼pdata(x1) [|G(x1, c1))− x1|]
LG0 = Ex0∼pdata(x0) [(Dc1(G(x0, c1))− 1)2] + Ex0∼pdata(x0) [(Dc0(G(x0, c0))− 1)2]

LG1 = Ex1∼pdata(x1) [(Dc0(G(x1, c0))− 1)2] + Ex1∼pdata(x1) [(Dc1(G(x1, c1))− 1)2]

LG = λcycLcyc + λidentityLidentity + LG0 + LG1

(3.2)

Discriminators’ terms got changed to include the identity translation case, thus they now
had to take into account that an identity translation would be a fake image (in order to
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(a) Translation from an original image x0 (horse) towards categories 0 (identity), 0.2, 0.5, 1
(opposite).

(b) Translation from an original image x1 (zebra) towards categories 1 (identity), 0.5, 0.2, 0
(opposite).

Figure 3.3: Results of the third attempt.



36 3.2. Attempts and Results

Figure 3.4: Results of the forth attempt. The upper image shows a translation from
category 0 towards the four categories defined previously. The lower image shows the
same but from category 1.

avoid learning the identity mapping):

LD0 =Ex0∼pdata(x0) [(Dc0(x0)− 1)2]+

Ex1∼pdata(x1) [(Dc0(G(x1, c0)))
2] + Ex0∼pdata(x0) [(Dc0(G(x0, c0)))

2]

2
LD1 =Ex1∼pdata(x1) [(Dc1(x1)− 1)2]+

Ex0∼pdata(x0) [(Dc1(G(x0, c1)))
2] + Ex1∼pdata(x1) [(Dc1(G(x1, c1)))

2]

2

(3.3)

The results are shown in figure 3.5. We can observe that the identity mapping was indeed
not learned, however, the translation quality did not improve as it started producing
images with colors not related to the dataset.

3.2.6 Sixth

In the sixth attempt we added another multiplication constant λdisc to the generator’s
LGi

loss terms with it’s value set to 5. The constant was added only to the opposite
class translation term in order to make the translation towards the opposite class a higher
priority than the identity. The generator’s loss can be seen in equation 3.4, while the
results are shown in 3.6. To our surprise, even though the network did seem to ignore
the class information, the translation towards the opposite class was performed pretty



37 3.2. Attempts and Results

(a) Translation from an original image x0 (horse) towards categories 0 (identity), 0.2, 0.5, 1
(opposite).

(b) Translation from an original image x1 (zebra) towards categories 1 (identity), 0.5, 0.2, 0
(opposite).

Figure 3.5: Results of the fifth attempt.
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(a) Translation from an original image x0 (horse) towards categories 0 (identity), 0.2, 0.5, 1
(opposite).

(b) Translation from an original image x1 (zebra) towards categories 1 (identity), 0.5, 0.2, 0
(opposite).

Figure 3.6: Results of the sixth attempt.

much correctly with only one generator network.

Lidentity = Ex0∼pdata(x0) [|G(x0, c0))− x0|] + Ex1∼pdata(x1) [|G(x1, c1))− x1|]
LG0 = λdisc Ex0∼pdata(x0) [(Dc1(G(x0, c1))− 1)2] + Ex0∼pdata(x0) [(Dc0(G(x0, c0))− 1)2]

LG1 = λdisc Ex1∼pdata(x1) [(Dc0(G(x1, c0))− 1)2] + Ex1∼pdata(x1) [(Dc1(G(x1, c1))− 1)2]

LG = λcycLcyc + λidentityLidentity + LG0 + LG1

(3.4)
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Figure 3.7: Results of the seventh attempt. The upper image shows a translation from
category 0 towards the four categories defined previously. The lower image shows the
same but from category 1.

3.2.7 Seventh

Encouraged by the previous results, we decided to multiply the whole LGi
terms by

λdisc with the same value as used in previous attempt, however it did not bring any
satisfactory results, which can be seen in figure 3.7. The generator’s loss term became

LG = λcycLcyc + λidentityLidentity + λdiscLG0 + λdiscLG1

3.2.8 Eighth

In this last attempt we set the weight term for discriminated identity images λdiscidentity

to 5 and the weight term λdisc for discriminated opposite class images in generator to 2
with the expectation to improve results of sixth attempt. The generator’s loss function
became a general case of 3.4, and was defined as follows:

Lidentity = Ex0∼pdata(x0) [|G(x0, c0))− x0|] + Ex1∼pdata(x1) [|G(x1, c1))− x1|]
LG0 = λdisc Ex0∼pdata(x0) [(Dc1(G(x0, c1))− 1)2] + λdiscidentity

Ex0∼pdata(x0) [(Dc0(G(x0, c0))− 1)2]

LG1 = λdisc Ex1∼pdata(x1) [(Dc0(G(x1, c0))− 1)2] + λdiscidentity
Ex1∼pdata(x1) [(Dc1(G(x1, c1))− 1)2]

LG = λcycLcyc + λidentityLidentity + LG0 + LG1

The results didn’t match our expectations and can be seen in figure 3.8
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Figure 3.8: Results of the eighth attempt. The upper image shows a translation from
category 0 towards the four categories defined previously. The lower image shows the
same but from category 1.



Chapter 4

Conclusions

Our goal for this dissertation was to use the CycleGAN framework in order to allow a
continuous translation between two given classes by using a single translator network
parametrized by class information.
Even though the initial problem of translating the images towards any class of the [0, 1]
interval wasn’t solved, the results of sixth attempt were interesting due to the fact that
we were able to obtain a translation between two opposite classes by using a single gen-
erator network instead of two. What can be done next is to use that same loss term
with a higher capacity network (for example with nine residual blocks and images with
a resolution of 256× 256).
Another thing that can be attempted to parametrize the network is to follow the Aug-
mented CycleGAN’s [2] approach to embed conditional information (class information in
our case) by using Conditional Normalization [18][4] for all normalization layers instead
of channel concatenation, as the authors claim that they found it more effective in similar
settings as ours.
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