
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica

On the Hidden Subgroup Problem
as a Pivot in Quantum

Complexity Theory

Relatore:
Chiar.mo Prof.
UGO DAL LAGO

Presentata da:
ANDREA COLLEDAN

Sessione I
Anno Accademico 2017-2018

Contents

Introduction 3
A Top-down Approach . 4

1 The Hidden Subgroup Problem 6
1.1 A Mathematical Approach . 6
1.2 A Computational Approach . 9

1.2.1 Group Encoding . 9
1.2.2 Function Encoding . 11
1.2.3 The HSP Functional . 13

2 The Importance of the HSP 14
2.1 Reducibility and Complexity . 14
2.2 Interesting Problems . 19

2.2.1 Simon’s Problem . 20
2.2.2 The Discrete Logarithm Problem 21

3 An Introduction to Quantum Computing 26
3.1 Quantum Systems . 26

3.1.1 The State of a System . 27
3.1.2 The Evolution of a System . 29
3.1.3 Composite Systems . 31
3.1.4 Entanglement . 35

3.2 Quantum Computing . 37
3.2.1 Quantum Gates . 38
3.2.2 Quantum Circuits . 44

4 A Quantum Solution for Abelian Groups 50
4.1 Preliminaries . 50

4.1.1 The Quantum Fourier Transform 50
4.1.2 Converting Classical Circuits . 55

4.2 Cyclic Additive Case . 58

1

4.3 Representation Theory . 62
4.4 General Abelian Case . 63

4.4.1 More Representation Theory . 64
4.4.2 The QFT on Abelian Groups . 67
4.4.3 The Algorithm . 69

Conclusions 74
Integer Factorization . 74
Non-Abelian Groups . 75

Bibliography 76

2

Introduction

It is in the mid-1990s that some of the most notorious quantum algorithms make their
first appearance in the research community. In 1995, Peter Shor presents two game-
changing quantum algorithms: one solves the integer factorization problem, the other
the discrete logarithm problem. Both do so in polynomial time, i.e. exponentially faster
than any of the best known classical algorithms [12]. One year later, Lov Kumar Grover
presents a quantum algorithm for searching databases that is quadratically faster than
any possible classical algorithm for the same purpose [6].

Shor’s work, in particular, deals effectively with two well-known intractable computa-
tional problems and hints at the possibility of using quantum computers to tackle more
of those problems that, although very valuable, cannot be reasonably solved by classical
machines. However, because quantum algorithms are significantly harder than classical
algorithms to design, breakthroughs such as Shor’s are very rare to come by. This is
where the idea of finding a single abstract problem that generalizes a larger class of com-
putationally hard problems starts being of great interest and this is where the hidden
subgroup problem comes into play.

It is not uncommon, in computer science, for a particular problem to gain impor-
tance and notoriety not thanks to its inherent practical value, but rather for being an
exceptional representative of a larger class of attractive problems. This is the case with
the hidden subgroup problem (also labeled HSP), an abstract problem of group theory
that happens to be an excellent generalization of exactly those problems that quantum
computers can solve exponentially faster than their classical counterparts.

In its purest form, the hidden subgroup problem consist in, given a group, determin-
ing which ones of its subgroups give birth to cosets according to a certain function f ,
which can be consulted like an oracle. The abstract nature of this problem allows it to
generalize numerous aspects of, among others, order finding and period finding problems
[11]. Furthermore, many cases of the HSP are already known to allow efficient quantum
solutions, a fact that makes the HSP a perfect choice of representative for many of the
intractable problems that we are interested in.

3

A Top-down Approach
Most of the literature on the hidden subgroup problem approaches the topic in a bottom-
up fashion. That is, first the principles that rule quantum mechanics and quantum
computing are introduced, then they are used to give solutions to a number of problems.
Finally, these problems are generalized to the HSP.

In this thesis, we attempt to partially reverse this approach by giving a top-down
perspective on the role of the HSP in quantum complexity theory. First we present the
problem in its pure, mathematical form. Next, we give a computational definition of
the same problem and we show how an algorithm that solves it can be used to solve
other, more interesting problems. After that, we introduce those concepts of quantum
computing that are strictly necessary to understand some of the quantum algorithms that
efficiently solve the HSP on specific group families. Lastly, we discuss these algorithms.

More in detail, this thesis is structured as follows:

• In Chapter 1 we discuss the hidden subgroup problem per se. First, we introduce
the essential group-theoretical concepts necessary to understand the problem at
hand, of which we give a formal, mathematical definition. We then shift our
attention to the computational details of the HSP, to define more rigorously what
it means to compute a solution to it. It is in this chapter that we define the concept
of HSP functional.

• In Chapter 2 we introduce some essential concepts of complexity theory and re-
ducibility. We then use these concepts to discuss the pivotal role of the HSP in the
context of quantum complexity theory. We also go out of our way to concretely
show how two significant computational problems can be reduced to the HSP.

• Those readers who are only acquainted with classical computing may perceive the
subject of quantum computation as equally fascinating and daunting. In prepara-
tion for the quantum algorithms that are shown in Chapter 4, Chapter 3 presents
a brief introduction on the principles of quantum mechanics and their application
to computer science.

• Lastly, in Chapter 4 we examine how the quantum Fourier transform can be used
to implement quantum algorithms that efficiently solve the HSP on specific types
of groups, namely Abelian groups. As a consequence, this algorithms allow us to
efficiently solve the problems that we introduced in Chapter 2.

4

The idea behind this order of exposition is that of allowing the target reader, i.e.
the computer scientist with little to no knowledge of things quantum, to get acquainted
with the hidden subgroup problem and to be convinced of the importance of its role in
complexity theory, without necessarily having to deal with the intricacies of quantum
computing. However, we do hope that this thesis will stimulate the reader into further
pursuing the study of this fascinating subject.

5

Chapter 1

The Hidden Subgroup Problem

1.1 A Mathematical Approach
The first step in our top-down approach is, of course, to provide a definition of the
problem at hand and to get acquainted with it. To do so, it is first advisable to review
a number of concepts of group theory, starting with the very definition of group.

Definition 1.1.1 (Group). Let G be a set and ◦ a binary operation on the elements of
G. The tuple (G, ◦) constitutes a group when:

• G is closed under ◦, i.e. ∀g1, g2 ∈ G : g1 ◦ g2 ∈ G.

• There exists an identity element e ∈ G such that ∀g ∈ G : g ◦ e = g = e ◦ g.

• For every element g ∈ G there exists an inverse element, i.e. an element g−1 ∈ G
such that g ◦ g−1 = e = g−1 ◦ g.

Example 1.1.1: A simple example of a group is (Z,+), the set of all integers under
addition. This is a group because the sum of any two integers is itself an integer, there
exists an identity element (0 ∈ Z) and for all n ∈ Z, there exists (−n) ∈ Z such that
n+ (−n) = n− n = 0.

Example 1.1.2: On the other hand, the tuple (Z,×), although similar, does not con-
stitute a group: Z is closed under multiplication and there exists an identity (1 ∈ Z),
but in general the inverse of an n ∈ Z (i.e. 1/n) does not belong to Z.

From now on we will often refer to a group of the form (G, ◦) as simply G, specifying
the underlying operation only when strictly necessary. Furthermore, we will work mostly
with additive and multiplicative groups (groups in which the operation is addition or
multiplication, respectively). When working with additive groups we will write g1 + g2

6

instead of g1 ◦ g2 and −g instead of g−1. Similarly, when working with multiplicative
groups, we will write g1 · g2 (or simply g1g2) and g−1.

If a subset of the elements of G exhibits itself group structure under G’s operation,
then such a subset is called a subgroup of G.

Definition 1.1.2 (Subgroup). Let H be a subset of the elements of a group (G, ◦). H
is a subgroup of G (and we write H ≤ G) when:

• H is closed under G’s operation, i.e. ∀h1, h2 ∈ H : h1 ◦ h2 ∈ H.

• The identity element of G is in H.

• For every element h ∈ H, the inverse element h−1 is also in H.

Example 1.1.3: Let us consider the group G = (Z,+) from the previous example. The
set H = {2n|n ∈ Z} of even integers is a subgroup of G, as it is closed under addition
(the sum of any two even numbers is even), contains the identity element 0 and the
inverse of an even number is even as well.

Example 1.1.4: On the other hand, the subset of odd integers K = {2n+1|n ∈ Z} does
not form a group (because 0 /∈ K) and neither does the subset Z+ of positive integers
(no positive number has a positive inverse).

Both groups and subgroups can be described in terms of a subset of their elements,
from which we can obtain all the other elements via the group operation. Such a subset
is called a generating set for the group.

Definition 1.1.3 (Generating set of a group). Let G be a group and S = {s1, s2, . . . , sn}
a subset of its elements. We denote by ⟨S⟩ the smallest subgroup of G that contains all
the elements of S. We say that S is a generating set for G when ⟨S⟩ = G.

Example 1.1.5: Consider G and H from the previous example. We have that G = ⟨1⟩,
as we can easily express any integer n with |n| sums of 1 or −1. It is also evident, by its
very definition, that H = ⟨2⟩.

By applying ◦ between elements of H and generic elements of G we obtain elements
that do not necessarily belong to H. In particular, if we apply ◦ between all the elements
of H and one element of G, we obtain what is called a coset.

Definition 1.1.4 (Coset). Let G be a group and let H ≤ G. For every g ∈ G we can
define:

7

• gH = {g ◦ h|h ∈ H}, or the left coset of H with respect to g.

• Hg = {h ◦ g|h ∈ H}, or the right coset of H with respect to g.

For h ∈ H, we have hH = H = Hh, so H is one of its own cosets. In general, however,
the left and right cosets are different. When the left and right cosets coincide for all
g ∈ G then H is said to be a normal subgroup. Of course, this is always the case when
G’s operation is commutative. In this case, G is said to be Abelian.

Definition 1.1.5 (Abelian group). A group G is an Abelian group when ∀g1, g2 ∈ G :
g1 ◦ g2 = g2 ◦ g1. That is, when ◦ is commutative.

Example 1.1.6: Consider again G and H from Example 1.1.3. First, we note that G
is Abelian, as addition is commutative. Next, we see that H only has one coset, that is
1H = H1 = {2n+ 1|n ∈ Z}, the set of odd numbers.

We now have enough background to introduce the crucial concept of coset-separating
function, which lies at the very heart of the hidden subgroup problem.

Definition 1.1.6 (Coset-separating function). Let G be a group and let H ≤ G. Let
f : G → S be a function from the elements of G to finite-length binary strings. We say
that f separates cosets for H when:

∀g1, g2 ∈ G : f(g1) = f(g2) ⇐⇒ g1H = g2H.

In other words, f separates cosets when it is constant on the individual cosets of H
and different between different cosets. Essentially, f identifies the cosets of H by labeling
them with distinct strings of bits. We are now ready to introduce the hidden subgroup
problem:

Definition 1.1.7 (Hidden Subgroup Problem). Let G be a group and H ≤ G an unknown
subgroup. Let f : G → S be a coset-separating function for H. The Hidden Subgroup
Problem (HSP) consists in finding a generating set for H by using the information
provided by f .

In practice, we will only work with finite groups. Consider a family {GN}N∈I, where
I ⊆ N is a set of indices. The members of such a family are groups with similar operations,
whose elements come from the same superset. What distinguishes them is their order.
Namely, for all GN ∈ {GN}N∈I we want |GN | to be a function of N .

Example 1.1.7: All the groups inside {ZN}N∈N have elements in the non-negative inte-
gers Z∗. Each ZN ∈ {ZN}N∈N has addition modulo N as group operation and has order
|ZN | = N .

8

We therefore define a variant of the HSP, generalized to families of groups:

Definition 1.1.8 (Parametrized HSP). Let {GN}N∈I be a family of groups. The HSP on
{GN}N∈I consists in, given N and a function fN that separates cosets for some HN ≤ GN ,
finding a generating set for HN by only using information obtained from evaluations of
fN .

1.2 A Computational Approach
Up to this point we have built a mathematical definition of the HSP. For our purposes,
however, we need a more rigorous definition of what it means to solve the HSP on a
certain input. Namely, we want to define a functional for a group family {GN}N∈I,
which takes a specific N and some representation of a coset-separating function f as
inputs and outputs some representation of a generating set for the desired subgroup.
Essentially, we want to give a computational definition of the parametrized HSP that
we defined in the previous section. To do so, we first need a way to effectively encode
groups and functions.

1.2.1 Group Encoding
Suppose we are working with a group family {GN}N∈I. Consider the total disjoint union
G of the elements of this family:

G =
⊎
N∈I

GN .

This new set G consists of ordered couples of the form (g,N), such that g ∈ GN . Consider
now a function ρ : G → S × N such that ρ is an injection from G to the pairs of finite-
length binary strings and integers. We call such ρ an encoding function for the group
family {GN}N∈I. We want ρ(g,N) = (bg, N), so that every element g of every possible
group in the group family can be represented as a binary string bg. From now on, we
will often refer to such bg as ρ(g,N) or simply ρ(g), ignoring N in the process.

Definition 1.2.1 (Polylogarithmic function). A function f : N → N is said to be
polylogarithmic if it consists of a polynomial in the logarithm of the input. That is, f is
of the form:

f(x) = a0 + a1⌊log x⌋+ a2⌊log x⌋2 + · · ·+ ak⌊log x⌋k.

Definition 1.2.2 (Length-predictable function). Let {AN}N∈I be a family of sets and let
A be their total disjoint union. A function ρ : A → S is said to be length-predictable (LP)
if there exists f : N→ N such that, for all (a,N) ∈ A, we have |ρ(a,N)| = f(N). If f is
a polylogarithmic function, then we say that ρ is polylogarithmically length-predictable
(PLP).

9

If an encoding ρ is LP for some f : N → N, then we can identify the elements of
a group GN with strings of exactly f(N) bits. We now attempt to provide encoding
functions for some of the group families we will work with.

Groups of Binary Strings Consider the group family {(BN ,⊕)}N∈N, whose groups
consist of the binary strings of length N under addition modulo 2.

Lemma 1.2.1. For all N , the set BN of binary strings of length N forms a group of
order 2N under addition modulo 2.

Proof. The set of binary strings of length N has exactly 2N elements. For all b1, b2 ∈ BN ,
b1 ⊕ b2 is also a binary string of length N . Furthermore, there exists in BN the identity
element e = 0N such that for all b ∈ BN , b⊕ 0N = b. Lastly, every element b ∈ BN is its
own inverse, as b⊕ b = 0N .

In this case our encoding function ρ is trivially the identity function, as BN is already
a subset of S (its elements are fixed-length binary strings). It is obvious that the output
of ρ grows linearly with N . As such, ρ is LP for f(N) = N .

Cyclic Additive Groups Before we say anything about the encoding of cyclic additive
groups, let us provide a definition:

Definition 1.2.3 (Cyclic group). A group G is said to be cyclic if there exists an element
g ∈ G such that ⟨g⟩ = G. That is, G can be generated by a single element, known as the
generator of the group.

Consider now {ZN}N∈N, the family of cyclic additive groups of integers modulo N .
In this case, and for all N , our ρ is the “identity” function ρ(z,N) = (binN(z), N), where
binN(x) is the zero-padded binary representation of an integer x ≤ N . Note that for all
such x, binN(x) is always a string of ⌊log2N⌋+1 bits. Being the elements of ZN exactly
the integers from 0 to N − 1, we can say that this ρ is PLP.

Finite Abelian Groups Consider {GN}N∈I, a family of generic Abelian groups. Let
us introduce the concept of direct sum of groups:

Definition 1.2.4 (Direct sum of groups). Let G1 and G2 be two groups. The direct sum
of G1 and G2 is the group G of pairs (g1, g2), where g1 ∈ G1 and g2 ∈ G2. We write
G = G1 ⊕G2.

Of course, the direct sum of any two Abelian groups is also Abelian. We have the
following result [8]:

10

Theorem 1.2.1. Every finite Abelian group GN is isomorphic to a direct sum of cyclic
additive groups. That is, there exist N1, N2, . . . , Nk such that:

GN
∼= ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk

.

As a result, we have that every element g ∈ GN can be represented by a k-tuple
(z1, z2, . . . , zk) such that zi ∈ ZNi

for every i = 1 . . . k. At this point, we can define ρ′
on ZN1 ⊕ · · · ⊕ ZNk

as the concatenation of the outputs of the cyclic additive ρ on the
elements of the tuple:

ρ′((z1, z2, . . . , zk), N) = (binN1(z1)∥ . . . ∥ binNk
(zk), N).

Of course, Ni is smaller than N for every i = 1 . . . k. Furthermore, we have an upper
bound on k as well:

Lemma 1.2.2. Let {GN}N∈I be a family of groups an let g : {GN}N∈I → N be a function
such that, for all GN ∈ {GN}N∈I, g(N) = |GN |. Then if GN

∼= ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk

we have that
k ≤ ⌈log2 g(N)⌉.

Proof. If GN and ZN1⊕ZN2⊕· · ·⊕ZNk
are isomorphic, then necessarily g(N) = |GN | =

|ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk
| = N1N2 · · ·Nk. Of course, k is greatest (we have the greatest

number of factors) when N1, N2, . . . , Nk are the prime factors of g(N). For every k, the
smallest number with k prime factors is 2k. Therefore, any number n cannot have more
prime factors than the smallest 2k ≥ n, i.e. 2⌈log2 n⌉, which has exactly ⌈log2 n⌉ prime
factors. It follows that g(N) has at most ⌈log2 g(N)⌉ prime factors.

As a result, our encoding ρ′ is surely LP for some f ∈ O(logN(log g(N))). Moreover,
if g is a polynomial then f ∈ O(log2N) and ρ′ is PLP.

Properties of the encoding One last property that we expect from our encoding
functions is that it must be possible to efficiently compute common group operations
on the binary representations they produce. In the case of groups of integers, these
operations are addition, multiplication and exponentiation, and we know that polytime
algorithms exist that can compute them on the binary representations produced by ρ
[7]. Furthermore, we require that ρ allow efficient inversion.

1.2.2 Function Encoding
Once we have ρ that encodes the elements of GN as finite-length binary strings, we have
all the means necessary to turn any coset-separating function as given in Definition 1.1.6
into an equivalent coset-separating function that operates on binary strings. To define
such a function, we first need to introduce the concept of boolean circuit.

11

i1

i2

NOT

NOT

AND

AND

OR

Figure 1.1: A simple example of a boolean circuit that computes addi-
tion modulo 2 (i.e. the exclusive or operation).

Definition 1.2.5 (Boolean circuit). A boolean circuit C of n inputs and m outputs is
a directed acyclic graph in which:

• There are n input nodes, labeled i1, i2, . . . , in, which have an in-degree of 0.

• The remaining nodes are labeled with either AND, OR or NOT and have in-degrees
of 2 (AND, OR) or 1 (NOT).

• Among the non-input nodes, there are m output nodes, which have an out-degree
of 0.

Definition 1.2.6 (Function of a circuit). Let C be a boolean circuit of inputs i1, i2, . . . , in
and outputs o1, o2, . . . , om. We say that C computes a function fC : Bn → Bm defined as

fC(x1, x2, . . . , xn) = (y1, y2, . . . , ym),

where y1, y2, . . . , ym are the boolean values produced by o1, o2, . . . , on when the input nodes
are assigned values x1, x2, . . . , xn.

Note that once we know how to represent a boolean circuit as a directed acyclic graph,
it is also easy to encode it as a string. All we need to do is store every node, along with
a label, and every edge as a couple of nodes. The size of such an encoding is fairly easy
to estimate. Suppose we are given a boolean circuit as a graph GC = (V,E):

• Nodes: For each each node in V we need to store an identifier and a label.
We can uniquely identify the nodes of GC using the integers from 0 to |V | − 1.
As a result, each identifier requires O(log |V |) bits to be stored. The label, on
the other hand, requires constant space. The nodes can thus be stored using
|V | ·O(log |V |) = O(|V | log |V |) bits.

12

• Edges: For each of the |E| = O(|V |2) edges, we need to store the identifiers of the
nodes involved. Each identifier requires O(log |V |) bits to be stored, so the total
number of bits required is O(|V |2) ·O(log |V |) = O(|V |2 log |V |).

Putting the two things together, we have that a a boolean circuit C with n gates can
be represented by a string of O(n2 log n) + O(n log n) = O(n2 log n) bits. We will refer
to such a string as ⌈C⌉.

Now that we have the notion of a circuit that computes a function from binary strings
to binary strings, we can bring in our ρ to define the notion of coset-separating circuit.

Definition 1.2.7 (Coset-separating circuit). Let GN be a group in a group family
{GN}N∈I and let HN ≤ GN . Also, let ρ : G → S × N be a LP encoding function
for some f : N → N. We say that a boolean circuit C separates cosets for HN with
respect to ρ if C computes a function fC : Bf(N) → Bm (for some big enough m), such
that:

∀g1, g2 ∈ GN : fC(ρ(g1, N)) = fC(ρ(g2, N)) ⇐⇒ g1HN = g2HN .

We can then encode the graph of such coset-separating circuit C as a binary string
⌈C⌉, which can serve as an effective way to pass a coset-separating function as the input
of our functional.

1.2.3 The HSP Functional
We conclude this chapter by giving a formal definition of the HSP functional, which

will serve as the foundation of our discussion on the computational importance of the
HSP.

Definition 1.2.8 (HSP functional). Let {GN}N∈I be a family of groups and let ρ : G → S
be a suitable encoding function for such family, LP for some function f : N → N. A
function F : S × S → S is said to be a HSP functional for {GN}N∈N and ρ if and
only if on inputs bin(N) and ⌈C⌉, where C is a boolean circuit that separates cosets for
some HN ≤ GN with respect to ρ, F returns ρ(h1, N)∥ρ(h2, N)∥ . . . ∥ρ(hm, N), such that
{h1, h2, . . . , hm} is a generating set for HN .

Let us try and decode this definition. In informal terms, what a HSP functional does is
solve the HSP problem on all the members of a fixed group family with a valid encoding.
For every input group GN (represented by N) and coset-separating function f on it
(represented by the description of circuit C), such a functional outputs a concatenation
of the elements that generate the subgroup HN ≤ GN identified by f .

13

Chapter 2

The Importance of the HSP

In the previous chapter we presented the hidden subgroup problem in its purest form
and we defined, through the HSP functional, what it means to compute a solution to
one of its instances. It is now time to address why the HSP is such a significant problem
from a computer science perspective.

2.1 Reducibility and Complexity
A fundamental concept in theoretical computer science is that of reduction between
problems. A problem is said to be reducible to a second problem when an algorithm that
solves the latter can be employed as a subroutine inside an algorithm that solves the
former.

On a practical level, reductions are particularly useful when some properties about
either one of the problems (usually the one that is reduced) are unknown. A typical
example of such property is computability: if we know that a certain function f can
be computed (i.e. an algorithm exists that computes it), then by reducing any other
function g to f we prove that g can be computed as well, as in the process we must have
shown that an algorithm for g can be built using the algorithm for f .

That said, the formal definition we provide is in some measure stricter than the in-
formal description of the above paragraphs, but it is particularly well-suited for our
purposes.

Definition 2.1.1 (Reducibility). Let fA and fB be two functions. We say that fA is
reducible to fB (and we write fA ≤ fB) if and only if there exist two computable functions
pushA and pullA such that:

pullA(fB(pushA(x))) = fA(x).

14

That is, if xA is an input for fA, pushA converts xA into an input for fB (“pushes”
xA into fB). This new input is such that pullA can convert fB’s output into the correct
output for fA (pullA “pulls” the desired results out of fB). Let us examine an informal
(and imaginative) case of reducibility:

Example 2.1.1: Imagine we know how to sort a list of integers, by ascending or de-
scending order. Imagine also, with a willing suspension of disbelief, that we want to find
the smallest and greatest elements of a list, but we don’t know how. Specifically, we
know how to compute

sort(list, order),

in which order can be asc or desc. This function returns a new list in which the elements
of list are sorted accordingly. We want to find a way to compute

extreme(list, which),

where which can be either min or max. This function needs to return the small-
est/greatest integer in list, depending on which. We find a way to compute extreme by
reducing it to sort. In particular, we define:

pushextreme(list, which) =

{
(list, asc) if which = min,

(list, desc) if which = max.

If we run sort(pushextreme(list, which)) we get a sorted list in which the first element is
the smallest integer if which = min, or the greatest integer if which = max. That being
said, we define:

pullextreme(sortedList) = first(sortedList).

This way, the final output of pullextreme(sort(pushextreme(list, which))) is the smallest
integer in list if which = min and the greatest one if which = max, which is exactly
the behavior we expected from the definition of extreme. By reducing extreme to sort,
we proved that the former is computable.

Reductions in complexity theory Another field in which reductions play a signifi-
cant role is that of complexity theory, as we can often provide insights on the complexity
of a function fA by reducing it to a second function fB of known complexity (or vice-
versa). In particular, if fA ≤ fB then we have proof that fA cannot be harder than fB
to compute (or conversely, that fB is at least as hard as fA).

Of course, to say so we must first impose some constraints on the complexity of pushA

and pullA. Taken as it is, Definition 2.1.1 allows us to say, for example, that any function
fA is reducible to the identity function id, as by setting pushA = fA and pullA = id we
have id(id(fA(x))) = fA(x). Although correct, this reduction is devoid of any usefulness
and it is obviously no proof that fA is as easy as id to compute.

15

Therefore, for fA ≤ fB to be a sensible reduction we impose not only that pushA ̸=
fA ̸= pullA, as that would defeat the purpose of a reduction entirely, but also that these
functions be easier, or at least no harder than fB to compute. That is, the computational
complexity of pushA and pullA must be negligible within the structure of a reduction.

Let us clarify what we mean by first providing a review of some basic concepts of
complexity theory. Let M be a deterministic Turing machine. Assume we have these
functions at our disposal:

• stepsM(x): the execution time of M on input x, i.e. the number of computational
steps required by M to accept (or reject) x.

• cellsM(x): the space required by M on input x, i.e. the number of distinct cells
visited by M ’s head during its computation on x.

We use them to define the following time and space functions:

Definition 2.1.2 (Time and space functions). Let M be a deterministic Turing machine.
We define the following functions:

• timeM(n) = max{stepsM(x) | n = |x|},

• spaceM(n) = max{cellsM(x) | n = |x|}.

Which measure the worst-case number of steps (and cells, respectively) required by M to
compute on an input of length n.

If M computes a certain function fM , then timeM and spaceM provide us with infor-
mation on the computational requirements (i.e. time and space resources needed) of fM
on inputs of a certain length.

With that in mind, we can now define precisely what we mean when we talk about
the complexity of a function. More specifically, we can define complexity classes, for time
and space both. If two different functions belong to the same complexity class, then we
can expect their computational requirements to grow similarly with respect to the size
of their inputs. In fact, what a complexity class tells us about its members is precisely
how such requirements grow. More formally:

16

Definition 2.1.3 (FTIME and FSPACE classes). Let g : N→ N be a function between
natural numbers. We define:

• FTIME(g) = {f : S→ S | ∃M : f = fM , timeM ∈ O(g)},

• FSPACE(g) = {f : S→ S | ∃M : f = fM , spaceM ∈ O(g)}.

Where M is a Turing machine. In other words, we say that f belongs to FTIME
(FSPACE) of g if a Turing machine M exists that computes f and whose timeM (spaceM)
function is O(g).

Therefore the complexity of a function is nothing more than the relationship between
the size of its inputs and the computational resources needed to process them. For some
specific choices of g, we obtain classes of particular interest. For example:

FP =
∪
c∈N

FTIME(nc).

FP constitutes the class of functions which run in polynomial time (their worst-case
running time grows like a polynomial in the size of the input). Another important
complexity class is:

FLOGSPACE = FSPACE(log).
FLOGSPACE is the class of functions whose space requirements grow logarithmically
with the size of their input.

Let us return to reductions. Previously, we said that in the case of a reduction fA ≤ fB
we wanted our pushA and pullA functions to be of negligible complexity. What we meant
was that if fB belongs to FTIME(g) for some g, we want the composition pullA ◦fB◦pushA

to still belong to FTIME(g).

In the case of fB ∈ FP, this amounts to finding pushA, pullA ∈ FP, as FP is closed
under composition. As we will see in the following chapters, this is the case that most
interests us. Because of that, we define the concept of polynomial-time reductions.

Definition 2.1.4 (Polynomial-time reducibility). Let fA and fB be two functions. We
say that fA is reducible to fB in polynomial time (and we write fA ≤p fB) if fA ≤ fB
for some functions pushA, pullA ∈ FP.

17

We conclude this small digression on complexity by formally introducing the concept
of circuit families that compute a function.

Definition 2.1.5 (Circuit family). Let g : N→ N be a function. A g-size circuit family
is a sequence {CN}N∈N of circuits in which CN has N inputs and size |CN | ≤ g(N). A
function f : S→ S is said to be in SIZE(g) if there exists a g-size circuit family {CN}N∈N
such that, for all x ∈ {0, 1}N , we have f(x) = fCN

(x).

Definition 2.1.6 (P-uniform circuit family). A circuit family {CN}N∈N is said to be
P-uniform if there exists a polynomial-time Turing machine that on input 1N outputs
CN .

We prove that there exists a strong link between functions in FP and P-uniform
circuit families. To do so, we need to introduce the concept of oblivious Turing machine,
which is a Turing machine whose head movements are fixed. More formally:

Definition 2.1.7 (Oblivious Turing machine). A Turing machine M is said to be obliv-
ious if the movements of its heads are fixed instead of being dictated by the machine’s
input. That is, M is oblivious if its transition function is of the form δ : Q×Γk → Q×Γk.

Lemma 2.1.1. Let M be a Turing machine that runs in time O(g). An oblivious Turing
machine M ′ exists that simulates M and runs in time O(g2)[1].

With these considerations in mind, we proceed to prove that every polynomial-time
function can be computed by a P-uniform circuit family. Note that this is a modified
version of a result given in [1] (Theorem 6.6):

Lemma 2.1.2. Let f : S → S be a function between binary strings. If f ∈ FP, then f
is computable by a P-uniform circuit family.

Proof. Let us show how, once we fix a generic n, we can build a circuit that computes
f on inputs of size n. If f ∈ FP, then there exists a polynomial-time Turing machine
M that computes f . By Lemma 2.1.1, there exists an oblivious Turing machine N that
simulates M with a quadratic slowdown. It follows that N also computes f in polynomial
time. Now, let x ∈ {0, 1}n be an input for N . Define the transcript of N on x to be
the sequence m1,m2, . . . ,mtimeN (n) of snapshots (current state and symbols read by each
head) of N ’s computation. We can encode each snapshot mi as a fixed-length binary
string. Furthermore, we can compute such string from:

• The input x,

• The previous snapshot mi−1,

18

• The snapshots mi1 , . . . ,mik , where mij denotes the last step in which N ’s jth head
was in the same position as it is in the ith step. Note that since N is oblivious,
these do not depend on the input.

Because these are a constant number of fixed-length strings, we can use a constant-
sized circuit to compute mi from the previous snapshots. By composing timeN(n) such
circuits, we obtain a bigger circuit C that computes from x to N ’s final state, i.e. C
computes f . Also note that since N is polytime, C is of size polynomial in n.

We now have enough material to actually start talking about the importance of the
hidden subgroup problem. Although in its simplest form the HSP may appear to be
nothing more than non-trivial, yet uninteresting problem of group theory, it is proven
that a significant number of traditionally hard computational problems can be reduced
efficiently to specific instances of the HSP. These include the simplest quantum problems
(e.g. Deutsch-Jozsa and Simon’s problem), as well as some of the hardest classical
problems, such as the integer factorization and discrete logarithm problems, or the graph
isomorphism problem.

It follows that finding an efficient solution to the HSP – and for some specific types
of groups such a solution exists – would entail having an efficient way to solve problems
that have always been deemed intractable. Even more specifically, the HSP models well
those computational problems for which quantum algorithms exist that are exponentially
faster than their classical counterparts. This is the reason why this problem plays such
a valuable role in quantum algorithmics.

For a function fA to be reducible to the HSP there must exist a group family {GN}N∈I,
an encoding function ρ and two functions pushA, pullA such that:

• pushA takes the same inputs as fA and returns an input of the form (bin(N), ⌈C⌉)
for the HSP functional on {GN}N∈I and ρ.

• pullA takes as input the output ρ(x1)∥ . . . ∥ρ(xm) of the HSP functional on {GN}N∈I
and ρ and returns the output expected from fA.

2.2 Interesting Problems
The main goal of this chapter is to show how some of these hard problems can be

reduced to the HSP. Namely, we first reduce Simon’s problem, a problem specifically
devised to showcase the superiority of quantum algorithms. After that, we reduce a
more complex and practical problem, i.e. the discrete logarithm problem.

19

A HSP

iA (bin(N), ⌈C⌉)

oA ρ(x1)∥ . . . ∥ρ(xm)

pushA

FHSP

pullA

fA

Figure 2.1: A schematic representation of the reduction of a generic
problem A to the HSP, where FHSP is the HSP functional as defined
in the previous chapter.

2.2.1 Simon’s Problem
Simon’s problem was conceived in 1994 by computer scientist Daniel R. Simon [13]. It is
a problem of little practical value, explicitly designed to be hard for a classical computer
to solve, but easy for a quantum computer to tackle.

Definition 2.2.1 (Simon’s Problem). Let f : Bn → Bn be a function such that there
exists some s ∈ Bn for which the following property is satisfied:

∀x, y ∈ Bn : f(x) = f(y) ⇐⇒ (x = y ∨ x⊕ s = y).

That is, f is the same when its arguments are the same or when they differ by summation
modulo 2 with s. Simon’s Problem (SP) consists in, given f , finding s.

In computational terms, we can assume that SP takes as inputs ⌈CSP ⌉, the represen-
tation of a circuit computing a suitable function fSP : BN → BN , and bin(N), and that
it outputs s itself. The reduction of SP to the HSP is fairly straightforward [11].

Consider the family of binary string groups {(BN ,⊕)}N∈N. It is easy to prove that a
function f : BN → BN that satisfies Simon’s property is also a coset-separating function
on BN .

Lemma 2.2.1. Let f : BN → BN be a function from binary strings to binary strings. If
f satisfies Simon’s property for some s ∈ BN , then f is a coset separating function for
the subgroup {0, s} ≤ BN .

Proof. By definition, f(x) = f(y) if and only if x = y or x⊕ s = y. For all x ∈ BN , f is
the same on {x ⊕ 0, x ⊕ s} = x{0, s}, or the left coset of {0, s} with respect to x, and
distinct for different choices of x. That is, f separates cosets for {0, s} ≤ BN .

20

It is also worth noticing that {0, s} = ⟨s⟩. With these results in mind, we choose the
identity function as both our pushSP and pullSP and prove that we have in fact built a
reduction.

Theorem 2.2.1. Simon’s problem is reducible to the hidden subgroup problem in poly-
nomial time (SP ≤p HSP).

Proof. Let bin(N) and ⌈CSP ⌉ be inputs for SP and let FHSP be the HSP functional
for the group family {(BN ,⊕)}N∈N and ρ = id. By Lemma 2.2.1 we know that CSP

is a coset-separating circuit for {0, s} ≤ BN , so FHSP (bin(N), ⌈CSP ⌉) outputs the only
element that generates {0, s}, which is s, Simon’s string.

2.2.2 The Discrete Logarithm Problem
Like the HSP, the discrete logarithm problem is a group theory problem. To understand
it, we must first define what a discrete logarithm is. Let us begin by providing some
necessary notation. Given a generic group G and a generic element g ∈ G, we define

gk = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k times

,

where k is a positive integer and ◦ is G’s operation. Essentially, gk is shorthand for
applying ◦ k times on g.

Note that this definition does not depend on the particular nature of G. Of course, for
some specific choices of group, gk can denote some well-known operations. On (R+,×),
for example, gk actually denotes exponentiation, while on (Z,+) we see that gk is simply
the product of g and k. This notation, however, can be used on any group, regardless of
the underlying operation.

We are interested in the inverse operation of gk. Namely, what we call the discrete
logarithm of a group element.

Definition 2.2.2 (Discrete logarithm). Let G be a group and let a, b ∈ G. The discrete
logarithm of a to the base b is the least positive integer k for which bk = a. We write
logb a = k.

Note that since we require k to be the least integer for which bk = a, the discrete
logarithm is well-defined on cyclic groups too. It is towards these groups that we turn
our attention, as they provide an adequate context for the definition of the Discrete
Logarithm Problem.

21

Definition 2.2.3 (Discrete Logarithm Problem). Let {GN}N∈I be a family of cyclic
groups. We assume each of its groups to be provided inside a tuple of the form (GN , oN , gN),
where |GN | = oN and GN = ⟨gN⟩. The Discrete Logarithm Problem (DLP) consists in,
given N and a ∈ GN , finding the least positive integer k such that gkN = a.

Notice how the base of the discrete logarithm is not an input, but rather part of the
problem. As usual, we need a computational definition. We can assume the DLP to take
as inputs bin(N) and bin(a) such that a ∈ GN . We expect its output to be bin(k), such
that gkN = a. Let us try and reduce this problem to the HSP.

First, we choose to work with the HSP functional on {ZN⊕ZN}N∈N. In Section 1.2.1 we
saw that a direct sum of cyclic additive groups can be encoded through a concatenation
of binary representations of integers. We hereby define our encoding function ρ as

ρ((z1, z2), N) = (binN(z1)∥ binN(z2), N).

Note that in this case ρ is PLP, as its output is the concatenation of two strings of exactly
⌊log2N⌋+ 1 bits each.

It is now time to find a suitable function on ZN ⊕ ZN . Unlike Simon’s problem, the
DLP requires us to build a coset-separating function from scratch. It is therefore helpful
to first provide a mathematical definition of this function (in doing this, we partially
follow the work of McAdam [9]), only to later prove that a circuit can always be built
that computes it on a fixed-length input. Let a ∈ G for some cyclic group G such that
G = ⟨g⟩ and |G| = N . We define fa : ZN ⊕ ZN → G as such:

fa(u, v) = augv.

The operation of G is implicit between au and gv. Note that fa is a homomorphism
between its domain and codomain groups. That is, fa preserves operations in a way that
for all (u, v), (i, j) ∈ ZN ⊕ ZN , we have fa((u, v) + (i, j)) = fa(u, v)fa(i, j):

fa((u, v) + (i, j)) = fa(u+ i, v + j)

= au+igv+j

= augvaigj = fa(u, v)fa(i, j).

22

We can now check whether fa is in fact a coset-separating function for some subgroup
of ZN ⊕ ZN . We find that this is exactly the case with fa’s own kernel.

Lemma 2.2.2. Let G = ⟨g⟩ be a cyclic group of order N and let a ∈ G. The homomor-
phism fa : ZN ⊕ ZN → G defined as fa(u, v) = augv is a coset-separating function for
the subgroup H = {(u, v) ∈ ZN ⊕ ZN | fa(u, v) = 1}, i.e. for its own kernel.

Proof. Let us start by proving that fa is constant on any coset of H. If two elements of
ZN⊕ZN belong to the same coset (z1, z2)H, then they can be written as (z1+h1, z2+h2)
and (z1 + h′1, z2 + h′2) for some (h1, h2), (h

′
1, h

′
2) ∈ H. We have

fa(z1 + h1, z2 + h2) = az1+h1gz2+h2

= az1gz2ah1gh2

= az1gz2

= az1gz2ah
′
1gh

′
2

= az1+h′
1gz2+h′

2 = fa(z1 + h′1, z2 + h′2),

as ah1gh2 = ah
′
1gh

′
2 = 1 by H’s very definition. Let us now prove that if fa(z1, z2) =

fa(z
′
1, z

′
2) then (z1, z2)H = (z′1, z

′
2)H. We start by proving that (z1, z2)H ⊆ (z′1, z

′
2)H, i.e.

that every element of the form (z1 + h1, z2 + h2) can be written as (z′1 + h′1, z
′
2 + h′2),

where (h1, h2), (h
′
1, h

′
2) ∈ H. Note that

(z1 + h1, z2 + h2) = (z′1 + (z1 − z′1 + h1), z
′
2 + (z2 − z′2 + h2)).

It is easy to show that (z1 − z′1 + h1, z2 − z′2 + h2) is, in fact, an element of H:

fa(z1 − z′1 + h1, z2 − z′2 + h2) = az1−z′1+h1gz2−z′2+h2

= az1gz2a−z′1g−z′2ah1gh2

= az1gz2(az
′
1gz

′
2)−1ah1gh2 = 1.

This is because az1gz2 = az
′
1gz

′
2 by hypothesis and ah1gh2 = 1 by definition. The opposite

inclusion is proven in the exact same way. This shows that fa is in fact a coset-separating
function.

Once we have such a function, we can define an encoding ξ : G → S that extends ρ
and such that ξ ◦ fa : ZN ⊕ ZN → S is a coset-separating function that complies with
Definition 1.1.6. For the sake of simplicity, we still call this composition fa.

23

Of course, we need this function to be computable by a circuit for any choice of
group in {ZN ⊕ ZN}N∈N. Thanks to Lemma 2.1.2, all we need to do is justify the
existence of an algorithm which computes fa and runs in time polynomial in the size
of the representations produced by ρ and ξ. In Section 1.2.1 we explicitly required our
encoding functions to allow efficient multiplication and exponentiation, so it is evident
that such an algorithm exists. Because of that, there exists a P-uniform circuit family
that efficiently computes fa, for all a.

It is time to start building the reduction of the DLP to the HSP on {ZN ⊕ ZN}N∈N.
Assume that M is a Turing machine that, given 1n and a representation of a, builds the
circuit that computes fa on inputs of size n. We define pushDLP as follows:

Algorithm 1: pushDLP
Input: bin(N) such that N identifies a cyclic group (GN , oN , gN) and ξ(a) such

that a ∈ GN .
Output: bin(N ′) and ⌈C⌉, inputs for the HSP functional on {ZN ⊕ ZN}N∈N

and ρ.
i← 12| bin(oN)|;
⌈C⌉ ← Run M on i and ξ(a) and extract the output circuit;
return (bin(oN), ⌈C⌉);

It is clear that pushDLP runs in time polynomial in the size of the input (due to M). Of
course, because it computes fa on inputs of size 2(⌊log2 oN⌋+1), C is a coset-separating
circuit on ZoN ⊕ ZoN . Before we proceed with pullDLP, let us consider what we can
actually do once we have some elements of H:

Lemma 2.2.3. Let (u, v) be an element of H = {(u, v) ∈ ZoN × ZoN | f(u, v) = 1},
where f(u, v) = augvN and gkN = a. We have that k ≡ −uv−1 mod oN .

Proof. By H’s very definition, we have that augv = 1. Since a = gk, we can write as
gku+v = 1. It follows that ku + v is the order of gN and thus is a multiple of oN . We
have ku+ v ≡ 0 mod oN and therefore k ≡ −vu−1 mod oN .

So once we have at least one element of H, we can compute k = −vu−1 mod oN . We
therefore define pullDLP as such:

24

Algorithm 2: pullDLP
Inputs : The output ρ((u1, v1), oN)∥ρ((u2, v2), oN)∥ . . . ∥ρ((um, vm), oN) of the

HSP functional on inputs bin(oN), ⌈C⌉.
Outputs: bin(k) such that gkN = a.
oN ← Extract oN from the input;
(u, v)← Extract (u1, v1) from the input;
k ← −vu−1 mod oN ;
return bin(k);

The extraction of oN and (u1, v1) from the input is trivial and can be performed
efficiently in linear time (in the size of the output of ρ, which is PLP). Furthermore, u−1

can be computed in time polynomial using Euclid’s algorithm and modular arithmetic
can be performed efficiently. We state our result:

Theorem 2.2.2. The Discrete Logarithm Problem is reducible in polynomial time to the
HSP (DLP ≤p HSP).

Proof. Let (GN , oN , gN) be a cyclic group in {GN}N∈I and let a ∈ GN be an element
such that gkN = a, for some integer k. Let bin(N) and ξ(a) be inputs for the DLP on
{GN}N∈I. Let FHSP be the HSP functional on the group family {ZN ⊕ ZN}N∈N. By
lemmata 2.2.2 and 2.1.2, we know that for all a we can build a coset-separating circuit
for H = {(u, v) ∈ ZoN ⊕ZoN |augvN = 1} ≤ ZoN ⊕ZoN in time polynomial. Let C be such
a circuit. By running FHSP on bin(oN) and ⌈C⌉, we obtain a generating set for H. By
Lemma 2.2.3, we can use (u, v) ∈ H to efficiently compute k = −vu−1 mod oN .

25

Chapter 3

An Introduction to Quantum
Computing

At this point we have given a computational definition of the HSP (Chapter 1) and we
have examined why a solution to this problem is desirable (Chapter 2). What we still
have to do is actually provide such a solution, i.e. give an implementation of the HSP
functional as defined in Section 1.2. That is exactly what we will do in the next chapter,
at least for the HSP on families of Abelian groups.

Our implementation of the HSP functional, however, will not be classical. Rather,
we will avail ourselves of the quantum circuit model to give an efficient quantum-
computational solution to the problem at hand. Because of that, it is first advisable
to introduce the principles that rule the quantum world, as well as some fundamentals
of quantum computing. This is the purpose of this chapter.

Note that this chapter cannot (and therefore does not attempt to) present an exhaus-
tive introduction to the complex and vast world of quantum mechanics and quantum
computing. Rather, it covers little more than what is strictly necessary to understand
the next chapter. For a more thorough introduction to the topic, refer to the excellent
work of Yanofsky and Mannucci [15] or to Nielsen and Chuang [11].

3.1 Quantum Systems
To try and approach the quantum world through intuition is, to say the least, coun-
terproductive. That is because the very principles that rule this world are strongly
counterintuitive and do not reflect in any way our everyday perception of reality. On
the other hand (and surprisingly enough), a formal, mathematical approach tends to
explain these concepts more clearly and is furthermore better suited to our goals.

26

3.1.1 The State of a System
A fundamental concept (regardless of the chosen approach) is that of system. A system

(quantum or classical) is any portion of reality that can exist in a number of distinct
basis states. Each of these states corresponds to a different configuration in which the
system can be found at any given moment. Conversely, every one of such configurations
is associated to a basis state. In other words, the basis states represent all the possible
configurations of a system.

Example 3.1.1: An ideal coin is a system which exhibits two basis states: “heads up”
and “tails up”.

The main difference between classical and quantum systems is that whilst classical
systems exist in one and only one basis state at a time, quantum systems can exist in
multiple basis states at once, with varying weight. More formally, quantum systems can
exist in a superposition of basis states.

Here is where mathematics really come into play. The concept of superposition is
easily captured through the state vector of a quantum system, defined as follows:

Definition 3.1.1 (State vector of a quantum system). Consider a system with n basis
states, which we label β1, β2, . . . , βn. The state vector of the system is a column vector
in Cn defined as 

c1
c2
...
cn

 ,
where 0 ≤ |cj|2 ≤ 1 for every j = 1 . . . n and where

∑n
j=1 |cj|2 = 1. Each |cj|2 corresponds

to the probability of observing the system in its basis state βj.

Essentially, each cj tells us how much the system is in the basis state βj. The use of
the word “probability” in the definition should not mislead the reader into believing that
the system is actually in a single, defined state and that we just happen not to know
which one it is. A quantum system can actually exists in a superposition of two or more
basis states at a time

Example 3.1.2: An ideal “quantum coin” is a quantum system with basis states β1 =
“heads up” and β2 = “tails up”. Such a coin can exist in a superposition of these states,
for example: [

1√
2
1√
2

]
.

27

Because |1/
√
2|2 = 1/2, this state vector corresponds to the coin being half “heads up”,

half “tails up”.

Note that classical systems are also captured by this form of representation. A column
vector in which all entries are zero except for the jth one (for which necessarily |cj|2 = 1)
corresponds to a classical system in the basis state βj. These state vectors are obviously
orthogonal and can be treated as the basis of a vector space, which we call the state
space of the system.

Example 3.1.3: An ideal “classical coin” is a classical system with the same basis states
as the previous example and whose only allowed state vectors are:[

1
0

]
,

[
0
1

]
.

These state vectors correspond to the coin being “heads up” and “tails up”, respectively.

Example 3.1.4: The state space of an ideal quantum coin is the subspace of C2 spanned
by [1, 0]T and [0, 1]T , which in this case coincides with C2.

Let us get back to the “probability” part of the last definition. When we observe, or
rather measure a system, any potential superposition collapses and the system appears
to be in a single basis state. The probability of a system with basis states β1, β2, . . . , βk
of collapsing, once measured, to any βj depends entirely on its state vector’s cj entry.
More specifically, this probability is equal to |cj|2.

It is obvious that classical systems are unaffected by measurements. A classical system
in the βj basis state will have cj = |cj|2 = 1 and will appear to be in the βj state with
100% probability. Quantum systems, on the other hand, are disrupted by measurements.
In fact, once a superposition collapses, the system persists in the new collapsed state,
even once the measurement is over. In other words, measuring a quantum system puts it
into one of its possible classical states, depending on the magnitudes of his state vector.

Example 3.1.5: Consider the ideal quantum coin of Example 3.1.2. If we try and
observe which side is up, we may find that it is “heads up” or “tails up”, with equal
probability. Note that any other subsequent measurement will have the same outcome,
as the system will have collapsed to a classical state.

From now on, when writing about states and operations on them, we will always em-
ploy the standard bra-ket notation. In this notation, a generic column vector describing
a state can be written |φ⟩ (this is called a ket) and the corresponding row vector can

28

be written ⟨φ| (which is a bra). Note that φ is just a placeholder. With this notation,
the basis states of a system can be written |β1⟩, |β2⟩ . . . and so on. Furthermore, ⟨φ|ψ⟩
denotes the inner product of vectors φ and ψ and |φ⟩⟨ψ| the outer product.
Example 3.1.6: Let us once again consider the ideal quantum coin from the previous
examples. With the bra-ket notation we can write something like

|heads⟩ =
[
1
0

]
, |tails⟩ =

[
0
1

]
.

Furthermore, we can now write the state from Example 3.1.2 as

1√
2
|heads⟩+ 1√

2
|tails⟩ =

[
1√
2
1√
2

]
.

3.1.2 The Evolution of a System
At this point we know that measuring a quantum systems alters it irreversibly. We

are interested in other ways to modify the state of a quantum system. That is, we
are interested in the evolution of quantum systems. Because states are represented as
vectors, it is only natural to describe the evolution from one state to another through a
matrix. However, to correctly represent a quantum transformation, a matrix must obey
some constraints. Namely:

• A transformation U acting on a state vector must produce a valid state vector.
That is, if |φ⟩ is the state vector of a system and U describes a transformation of
such system, then U |φ⟩ = [c1, c2, . . . , ck]

T is such that 0 ≤ |cj|2 ≤ 1 for all j and∑k
j=1 |cj|2 = 1.

• Quantum system evolve reversibly. It follows that every possible quantum trans-
formation U must be reversible (i.e. its matrix must be invertible).

These requirements are fulfilled by unitary matrices. To give a definition of unitary
matrix, however, we first need to define the concepts of complex conjugate and conjugate
transpose.
Definition 3.1.2 (Complex conjugate). Let c ∈ C be a complex number such that
c = a+ bi. Its complex conjugate is written c̄ and is defined as

c̄ = a− bi.

Definition 3.1.3 (Conjugate transpose). Let A be a matrix in Cm×n. Its conjugate
transpose A† is the matrix in Cn×m defined as

A†
i,j = Aj,i.

That is, the elements of A† are the conjugated elements of A’s transpose.

29

Definition 3.1.4 (Unitary matrix). A complex square matrix U is said to be unitary
when its inverse exists and coincides with its conjugate transpose. That is, when

UU † = U †U = I.

Unitary matrices preserve the validity of quantum states and therefore are perfect to
describe the evolution of quantum systems. Consider a system with n basis states and
consider a unitary matrix U , defined as follows:

U =

β1 β2 . . . βn


β1 u1,1 u1,2 . . . u1,n
β2 u2,1 u2,2 . . . u2,n
...
βn un,1 un,2 . . . un,n

.

If U acts on a state |φ⟩ = [c1, c2, . . . , cn]
T to produce a new state U |φ⟩ = [c′1, c

′
2, . . . , c

′
n]

T ,
then each uj,k entry in U determines how much the magnitude ck weighs in determining
the resulting magnitude c′j. This is just a direct consequence of matrix multiplication.

Example 3.1.7: As usual, we consider the ideal quantum coin of the previous examples.
We can define the following F transformation on the system:

F =

[
0 1
1 0

]
.

It is not hard to see that F simply flips the coin. This is evident when we consider F ’s
action on the basis states:

F |heads⟩ =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |tails⟩,

F |tails⟩ =
[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |heads⟩.

Of course, since FF † = F 2 = I we have that F is unitary and thus corresponds to a
valid unitary transformation.

Example 3.1.8: We wonder whether it is also possible to define the toss transformation
on a coin. We expect such operation to resemble the following matrix:

T =
1√
2

[
1 1
1 1

]
.

30

Intuitively, T does its job. In fact, we can see that it acts on the basis states just as
intended:

T |heads⟩ = 1√
2

[
1 1
1 1

] [
1
0

]
=

[
1√
2
1√
2

]
,

T |tails⟩ = 1√
2

[
1 1
1 1

] [
0
1

]
=

[
1√
2
1√
2

]
.

In both cases we end up in a superposition that, once observed, has equal probability of
collapsing to heads up or tails up (which is exactly what we expect from a coin toss).
However, when we check if T is unitary, we find that

TT † = T 2 =
1

2

[
1 1
1 1

]
̸= I.

Therefore T is not unitary and cannot be a valid reversible transformation. This should
come as no surprise, as it is clear that if we were to pick up a coin and toss it, then ask
a third person to join us and observe the outcome, he or she would have no way to tell
whether the coin was originally heads up or tails up. However, in the next section we
will that there exists a way to circumvent this form of irreversibility.

At this point, we might wonder whether there exist transformations that are inherently
impossible to perform on quantum systems. It turns out that this is in fact the case.
For example, it is impossible to copy a quantum state exactly, a result known as the
no-cloning theorem. We will discuss this result more precisely in the next section.

3.1.3 Composite Systems
We conclude this general introduction to quantum system and their evolution with the
composition of systems.

Suppose we have two independent systems S and S ′, with basis states β1, β2, . . . , βn
and β′

1, β
′
2, . . . , β

′
m, respectively. Previously, we said that to every quantum system is

associated a state space. Consider thus V = ⟨β1, β2, . . . , βn⟩ and V′ = ⟨β′
1, β

′
2, . . . , β

′
m⟩,

i.e. the state spaces of S and S ′, respectively. The composition of S and S ′ is the
quantum system whose state space is the tensor product of V and V′. Let us approach
this concept gradually.

Definition 3.1.5 (Kronecker Product). Let A and B be two matrices of dimensions
n×m and p× q, respectively. The Kronecker product of A and B is written A⊗B and

31

is defined as the following np×mq matrix:

A⊗B =


A1,1B A1,2B . . . A1,mB
A2,1B A2,2B . . . A2,mB

...
An,1B An,2B . . . An,mB

 ,
where each Ai,jB is a submatrix of A⊗B obtained by multiplying B with the scalar Ai,j.

Example 3.1.9:
A =

[
1 3
5 7

]
, B =

[
2 4
6 8

]
,

A⊗B =

1
[
2 4
6 8

]
3

[
2 4
6 8

]
5

[
2 4
6 8

]
7

[
2 4
6 8

]
 =


2 4 6 12
6 8 18 24
10 20 14 28
30 40 42 56

 .
Intuitively, the Kronecker product of two matrices A and B is a larger matrix A⊗ B

such that for every entry in A and every entry in B there is a distinct entry in A ⊗ B.
We can also see clearly that A ⊗ B partially preserves the structure of A and B. The
Kronecker product is a form of tensor product between matrices (more on that later), so
its application is often referred to as tensoring. Of course, being defined on matrices of
arbitrary size, the Kronecker product is also defined on column and row vectors.

Example 3.1.10:
u =

[
3
5

]
, v =

[
4
6

]
,

u⊗ v =

3
[
4
6

]
5

[
4
6

]
 =


12
18
20
30

 .
Naturally, since quantum states are nothing but complex column vectors, it is also pos-

sible to tensor quantum states. The result of such operation should be self-explanatory,
as what we are performing is nothing but a multiplication of probabilities.

Example 3.1.11:

|φ⟩ =

[
1√
2
1√
2

]
, |ψ⟩ =

 1
2
1
2
1√
2

 ,
32

|φ⟩ ⊗ |ψ⟩ = |φ⟩|ψ⟩ = |φψ⟩ =


1√
2

 1
2
1
2
1√
2


1√
2

 1
2
1
2
1√
2



 =



1√
8
1√
8
1
2
1√
8
1√
8
1
2


.

It is obvious that if |φ⟩ and |ψ⟩ are valid quantum states, then so is |φ⟩ ⊗ |ψ⟩. Please
pay attention to the notation employed in the last example. In particular, note that
|φ⟩ ⊗ |ψ⟩, |φ⟩|ψ⟩ and |φψ⟩ are equivalent and all denote the tensor product of the two
vectors. That being said, we can now define the tensor product between vector spaces.

Definition 3.1.6 (Tensor product of vector spaces). Let V and V′ be two vector spaces
of dimension n and m, respectively. The tensor product of V and V′ is written V ⊗ V′

and is the vector space of dimension nm defined as follows:

V⊗ V′ = {u⊗ v | u ∈ V, v ∈ V′}.

That is, the space containing all those vectors obtained by tensoring a vector from V with
one from V′.

A brief note on ⊗: in this definition of tensor product between vector spaces we
employed the Kronecker product. However, this was a choice made purely out of conve-
nience, as the actual definition of tensor product between vector spaces does not involve
the Kronecker product at all. In fact, the only constraints that are imposed on the ⊗
operation are those of bilinearity, that is:

• For all u ∈ V and v ∈ V′ and for every scalar λ: λ(u⊗ v) = (λu)⊗ v = u⊗ (λv).

• For all u1, u2 ∈ V and v ∈ V′: (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v.

• For all u ∈ V and v1, v2 ∈ V′: u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2.

Of course, the Kronecker product exhibits all these properties, among others. In our
approach, we chose to present a particular case of tensor product (i.e. the Kronecker
product) first, in order to make the tensoring of vector spaces more tangible and easier
to comprehend. For a more abstract, yet thorough discussion on tensor products and
their applications to quantum computer science, refer to [11].

33

Let us go back to V⊗V′, which we know contains all the vectors that can be produced
by tensoring a vector from V with one from V′. Suppose that B = {β1, β2, . . . , βn} is a
basis for V and B′ = {β′

1, β
′
2, . . . , β

′
m} is a basis for V′. Then two generic vectors u ∈ V

and v ∈ V′ can be written like
u = c1β1 + c2β2 + · · ·+ cnβn,

v = c′1β
′
1 + c′2β

′
2 + · · ·+ c′mβ

′
m.

Then, by the properties we saw before, their tensor product u⊗ v can be written like:
u⊗ v = (c1β1 + c2β2 + · · ·+ cnβn)⊗ (c′1β

′
1 + c′2β

′
2 + · · ·+ c′mβ

′
m)

= c1β1 ⊗ c′1β′
1 + c1β1 ⊗ c′2β′

2 + · · ·+ c2β2 ⊗ c′1β′
1 + · · ·+ cnβn ⊗ c′mβ′

m

= c1c
′
1(β1 ⊗ β′

1) + c1c
′
2(β1 ⊗ β′

2) + · · ·+ c2c
′
1(β2 ⊗ β′

1) + · · ·+ cnc
′
m(βn ⊗ β′

m).

Because u and v are generic, we have that any vector in V⊗V′ can be written as a linear
combination of the tensor products of the elements of the two bases B and B′. That is,
B × B′ is a basis for V ⊗ V′. This result gives a second characterization of the tensor
product between vector spaces. Namely, it tells us that V⊗V′ can be defined simply as
the vector space spanned by the basis B×B′, where B is a basis for V and B′ is a basis
for V′.

At the beginning of our discussion on composite states, we said that two quantum
systems can be assembled by tensoring their respective state spaces. The meaning of
this statement should now be clearer. Nevertheless, we present an example that explains,
perhaps more intuitively, the link between the two concepts.
Example 3.1.12: Consider two ideal quantum coins. On their own, they each have
exactly two basis states: |heads⟩ and |tails⟩. Now, consider them as the two parts of
a single, larger system. We have that for each of the basis states the first coin can be
in, the second coin can be in either basis state, as the two subsystems are independent.
Formally, we find that the resulting system has four basis states:

|heads⟩|heads⟩ =
[
1
0

]
⊗
[
1
0

]
=

1
[
1
0

]
0

[
1
0

]
 =


1
0
0
0

 ,

|heads⟩|tails⟩ =


0
1
0
0

 , |tails⟩|heads⟩ =

0
0
1
0

 , |tails⟩|tails⟩ =

0
0
0
1

 .
These new basis states constitute a basis for the tensor product of the state spaces of
the two coins. In Example 3.1.4 we saw that the state space of a coin is C2. Here we
can easily see that the state space of the composite system is C4 = C2 ⊗ C2.

34

Of course, the two systems do not need to be identical. Also note that composite
systems can be further tensored with one another to give birth to quantum systems of
arbitrary complexity.

Tensoring of transformations The Kronecker product is defined on generic matrices.
This hints at the possibility of tensoring quantum transformations. In fact, if we have a
transformation U that acts on a system S with n basis states and a transformation U ′

that acts on a system S ′ with m basis states, we can define a new transformation U ⊗U ′

that acts on the composition of S and S ′. The starting transformations are represented
respectively by a n × n matrix and a m × m matrix, which means that U ⊗ U ′ is the
transformation defined by the following nm× nm matrix:

U ⊗ U ′ =


u1,1U

′ u1,2U
′ . . . u1,nU

′

u2,1U
′ u2,2U

′ . . . u2,nU
′

...
un,1U

′ un,2U
′ . . . un,nU

′

 .
The action performed by U⊗U ′ on the assembled system is straightforward and consists
in the application of U on the subsystem S and the application of U ′ on S ′. In other
words, given two generic states |φ⟩ of S and |ψ⟩ of S ′ we can write

(U ⊗ U ′)(|φ⟩ ⊗ |ψ⟩) = (U |φ⟩)⊗ (U ′|ψ⟩).

3.1.4 Entanglement
Now that we know how to assemble quantum states, we can discuss a very interest-
ing quantum phenomenon called entanglement. In the classical world, the state of a
composite system can always be described in terms of the states of its parts.

Example 3.1.13: If we have a classical system composed of two classical coins, we can
determine its state by looking at the states of the individual coins. That is, we can take
any of its states (and because the system is classical, these are only the four basis states)
and decompose it into two single-coin states. If, for example, the first coin is heads up
and the second one is tails up, we can perform the following decomposition:

heads and tails =


0
1
0
0

→ [
1
0

]
⊗
[
0
1

]
= heads⊗ tails.

This form of decomposition is not only intuitive, it is almost trivial. In fact, our
everyday comprehension of reality relies on our innate ability to describe a complex

35

situation in terms of its simpler components, to the point where the two alternative
ways of describing the two coins in the last example bear little to no difference before
our perception.

Quantum systems are a generalization of classical systems. Therefore, the following
question arises naturally: can this form of decomposition be carried out on quantum
systems as well? The answer to this question is, to say the least, surprising, as we
find that there exist quantum states that simply cannot be decomposed. Take, for
demonstration, the two-coin example from above and consider the following state:

|ε⟩ = |head⟩|head⟩ ⊗ |tails⟩|tails⟩√
2

=


1√
2

0
0
1√
2

 .
This is of course a perfectly valid quantum state that describes a situation in which,
upon observation, the two coins can be found either both heads up or both tails up, with
equal probability. Our intuition tells us that this system must by describable in terms of
the states of the individual coins. In other words, there must exist two single-coin states
|φ⟩ and |ψ⟩ such that

|ε⟩ = |φ⟩ ⊗ |ψ⟩.
Let us try and find |φ⟩ and |ψ⟩. We keep the two states as generic as possible, writing
them as

|φ⟩ = c1|heads⟩+ c2|tails⟩,
|ψ⟩ = c′1|heads⟩+ c′2|tails⟩.

We now rewrite their tensor product in terms of the basis states and attempt to calculate
the desired magnitudes:

|φ⟩ ⊗ |ψ⟩ = (c1|heads⟩+ c2|tails⟩)⊗ (c′1|heads⟩+ c′2|tails⟩)
= c1c

′
1|heads⟩|heads⟩+ c1c

′
2|head⟩|tails⟩+ c2c

′
1|tails⟩|heads⟩+ c2c

′
2|tails⟩|tails⟩.

In order for this last line to equate |ε⟩ = 1√
2
|heads⟩|heads⟩⊗ 1√

2
|tails⟩|tails⟩, the following

conditions must hold: 
c1c

′
1 =

1√
2

c1c
′
2 = 0

c2c
′
1 = 0

c2c
′
2 =

1√
2

However, one can easily see that this systems has no solutions, which implies that such
decomposition of |ε⟩ into |φ⟩ and |ψ⟩ is not possible.

36

What does this mean? It means that once we take superpositions into account, we
are bound to encounter systems whose states can only be described as a whole. These
are called entangled states, to reflect the fact that their components cannot be taken
apart and described individually. Quantum states that can be decomposed into smaller
substates, on the other hand, are called separable states.

Although entanglement may appear to be nothing more than a curiosity, arising from
the possibility of having superpositions of states, it actually lends itself to significant
practical applications. Consider the same two-coin entangled state from before. If we
measure the whole system, then we have equal chances of finding both coins heads up or
tails up. What happens if we instead measure only one of the coins? Assume, without
loss of generality, that we observe the first coin in the |heads⟩ state. The global state
collapses and only those basis states in which the first coin is |heads⟩ are left. That is,
we have

|ε⟩ = 1√
2
|heads⟩|heads⟩ ⊗ 1√

2
|tails⟩|tails⟩ measure 1st−−−−−−→ |heads⟩|heads⟩.

That is, even though we have not bothered the second coin at all, its probability of being
observed tails up vanished with the measurement of the first coin. That is because the
states of the two individual coins are intimately related (entangled, indeed), in a manner
that makes it impossible to manipulate one of them without influencing the other. This
property of entangled states will be particularly useful in the algorithm given in section
4.2.

The practical value of this mechanism is clear once we discover that the entanglement
of two or more parts of a system persists even when said parts are separated by arbitrarily
large distances. This crucial detail lies at the heart of quantum teleportation, a process
through which the state of a quantum system with two basis states (as we will soon see,
a qubit) can be transmitted instantaneously over long distances [15].

3.2 Quantum Computing
At the present time we know how to describe quantum systems in terms of their state,
we know how to describe their evolution and how to assemble them, starting from their
simplest components. We also examined the phenomenon of entanglement. It is time to
apply this knowledge to define what quantum computing is.

As we know, the smallest possible unit of classical information is the bit. Through the
concepts of system and state, we can give a formal definition of what a bit is.

37

Definition 3.2.1 (Bit). Any classical system that can exist in two distinct basis states
is called a bit.

This is a rather abstract definition of what a bit is. However, if we think about it, we
realize that the concrete implementation of a bit can be ignored entirely once it complies
with the “interface” given in this definition. The basis states of a bit are usually referred
to as 0 and 1.

Example 3.2.1: With the definition above, we find that a lot of systems can implement
a bit. Of course, a wire, in which current can be flowing or not, is a bit. Any form of
switch is also a bit, with off and on basis states. A door can also be considered a bit,
with closed and open basis states.

Of course, it goes without saying that a qubit, the smallest unit of quantum infor-
mation, is nothing but the quantum counterpart of a classical system implementing a
bit.

Definition 3.2.2 (Qubit). Any quantum system that can exist in a superposition of two
distinct basis states is called a qubit.

Just like quantum systems were a generalization of classical ones, qubits are a gener-
alization of bits. The basis states of a qubit are usually referred to as |0⟩ and |1⟩.

Example 3.2.2: The ideal quantum coin that we saw in the previous section is in fact
a qubit implementation, with basis states |heads⟩ = |0⟩ and |tails⟩ = |1⟩.

Of course, in our discussion we will not concern ourselves with the actual implemen-
tation of bits and qubits. Note that just like bits can be assembled together to form
classical registers, qubits can be assembled to form quantum registers.

Example 3.2.3: Eight qubits can be combined to form a qubyte, which is a larger
quantum system with 28 = 256 basis states:

|00000000⟩, |00000001⟩, |00000010⟩, . . . , |11111110⟩, |11111111⟩.

3.2.1 Quantum Gates
In classical computers, bits can be acted on by logic gates, which represent the smallest

units of computation. It is easy to show that any logic gate with n inputs and m outputs
can be represented as a 2m × 2n matrix. However, for the sake of simplicity, we only
show the matrix representation of some of the most common logic gates. We label the
rows and columns of the matrices in order to better convey their meaning:

38

NOT =

0 1[]
0 0 1
1 1 0

.

Intuitively, this matrix “takes as input” a single-bit system and “outputs” a new
single-bit system in the basis state 1, if the input system is in the basis state 0, or 0, if
the input system is in the basis state 1. This is exactly what we expect from the NOT
gate. Let us see some more examples:

AND =

00 01 10 11[]
0 1 1 1 0
1 0 0 0 1

,

OR =

00 01 10 11[]
0 1 0 0 0
1 0 1 1 1

.

These examples are slightly more complicated, but they should be easy to understand
nonetheless. Take the AND gate. The AND matrix “takes as input” a system with two
bits and “outputs” a single-bit system, which is in the basis state 1 if and only if the
input bits are in a basis state that verifies the logical conjunction. Therefore, the given
matrix performs the same operation as the AND logic gate.

Note that in the previous examples we assumed the input bits and the output bits to
be two distinct systems. This is not at all necessary. We can easily examine the case
of a system that includes the input and output bits (which might be disjoint or not),
on which the previous operations can be defined as transformations. Consider again the
AND gate. We incorporate its inputs and outputs in a single 3-bit system and we define
a transformation as follows:

AND′ =

000 001 010 011 100 101 110 111



000 1 1 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 1 1 0 0 0 0
011 0 0 0 0 0 0 0 0
100 0 0 0 0 1 1 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 1

39

This transformation takes the first two bits of the state, performs the AND operation
between them and “puts” the result in the third bit of the system.

Here is where we encounter the first great divide between classical and quantum com-
puting. In the previous section, we required transformations on quantum systems to be
reversible. However, most logic gates are not reversible. Namely, all gates that have
fewer outputs than inputs are not injective and cannot therefore be reversible. Take for
example the AND operation. If we only know that x∧ y = 0, we have no way of finding
out whether x = 0 and y = 0, or x = 0 and y = 1, or x = 1 and y = 0.

On the other hand, the NOT gate is reversible, as ¬x = 0 implies x = 1, and vice-
versa. Incidentally, we have that AND′ is reversible as well. This is because we carry the
(otherwise unknown) inputs into the output, and that allows us to reconstruct the original
state. In fact, this technique is commonly employed to obtain reversible transformations
from irreversible gates.

If, in the general case, classical gates are irreversible, then what are the basic building
blocks of quantum computing? In other words, what are the reversible quantum gates
that we need in order to perform quantum computations? We already know that the
NOT gate is reversible. In quantum computing, the gate that performs negation is called
the Pauli-X gate and is defined as

X =

|0⟩ |1⟩[]
|0⟩ 0 1
|1⟩ 1 0

.

Naturally, the X gate acts on a single qubit. From now on, we will omit the basis state
labels when defining single-qubit gates. There are two more Pauli gates. Specifically,
the Pauli-Y and Pauli-Z gates, defined as

Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

The operations performed by these two gates are much less intuitive than the one per-
formed by X. In particular, it is the first time that we encounter complex entries in
a transformation. To better visualize the effects of Y and Z, we introduce a graphical
representation of qubits called the Bloch sphere.

The Bloch sphere We know that a generic quantum state |ψ⟩ can be written as a
linear combination of its basis states. In particular, if |ψ⟩ is the state of a qubit, it can
be written as

|ψ⟩ = α|0⟩+ β|1⟩,

40

where α, β ∈ C. Because they are the magnitudes of a quantum state vector, it must be
that |α|2 + |β|2 = 1. We can therefore write

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
,

for some γ, θ, φ ∈ R. The factor of eiγ has no observable effects on the state [11] and
thus can be done away with. That leaves us with

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩.

If interpreted as radial coordinates, φ and θ determine a point on the three-dimensional
unit sphere. We fix |0⟩ and |1⟩ at the poles. This representation of a quantum state
vector is what we call the Bloch sphere representation.

Figure 3.1: The Bloch sphere can be used to intuitively represent the
state |ψ⟩ of a single qubit.

It is now much easier to explain the effects of the Pauli gates. The X gate “flips”
(rotates by π) a vector on the sphere around the x axis. It is clear that a vector at
|0⟩ is sent to |1⟩ and vice-versa. The Y gate performs a similar operation, only this
time around the y axis. Finally, the Z gate performs a π-degree rotation around the z
(vertical) axis.

The Z gate can be generalized to the rotation gate Rφ, which will be fundamental
when, in the next chapter, we discuss the quantum Fourier transform. The Rφ gate is

41

defined as follows:
Rφ =

[
1 0
0 eiφ

]
.

If we set φ = π, we have indeed eiπ = −1 and thus Rπ = Z. Intuitively, the Rφ gate
performs a φ-degree rotation around the z axis of a vector on the Bloch sphere.

Another fundamental single-qubit gate is the Hadamard gate, which is defined as

H =
1√
2

[
1 1
1 −1

]
.

The Hadamard gate is perhaps the most widely used single-qubit gate. The reason
behind this is that the Hadamard gate is excellent for creating superpositions of states,
as shown by its action on the basis states:

|0⟩ H−→ 1√
2
|0⟩+ 1√

2
|1⟩,

|1⟩ H−→ 1√
2
|0⟩ − 1√

2
|1⟩.

Both ending states are balanced superpositions which have equal probability of being
observed in either basis state. The only difference between them is that they have dif-
ferent phase, i.e. they are rotated differently around the Bloch sphere’s z axis. However,
because phase does not affect probabilities, we will not concern ourselves with these
details.

Note that the Hadamard gate closely resembles the coin toss operation that we tried
to define in Example 3.1.8. In fact, if we apply H to the state of a quantum coin (and
since a quantum coin is a qubit, we can, at least in principle), we find that it behaves
exactly like a coin toss. Why is H a valid transformation, if T was not? The reason lies
exactly in the phase shift operated by H, which does not affect probabilities, but allows
the reconstruction of the original state.

So far we have only seen single-qubit gates. We start discussing two-qubit transforma-
tions with a quantum gate that allows us to introduce another fundamental concept of
quantum computation. This gate is the controlled NOT gate, which is defined as follows:

CNOT =

|00⟩ |01⟩ |10⟩ |11⟩


|00⟩ 1 0 0 0
|01⟩ 0 1 0 0
|10⟩ 0 0 0 1
|11⟩ 0 0 1 0

.

42

Let us try and decode this matrix. If the first qubit is 0, then CNOT does nothing (note
that the upper-left 2× 2 submatrix coincides with the I2 identity matrix). On the other
hand, if the first qubit is 1, then the second qubit is negated (the bottom-right 2 × 2
submatrix is exactly X). We can describe the action of CNOT on a generic two-qubit
state |x⟩|y⟩ as

|x⟩|y⟩ CNOT−−−→ |x⟩|x⊕ y⟩.

In other words, CNOT performs the NOT operation on a target qubit, conditionally
on the state of a control qubit. The notion of control is general and can be applied to
any reversible gate. For example, we can have a controlled Rφ gate:

CRφ =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 eiφ

 .
In general, a n-qubit reversible gate U can be added a control qubit by defining a new
(n+ 1)-qubit gate as the transformation performed by the matrix

CU =

[
I2n 02n
02n U

]
,

where I2n is the 2n × 2n identity matrix and 02n is the 2n × 2n null matrix. U is the
2n × 2n matrix that describes gate U . This new gate acts on generic states as follows:

|0⟩|φn⟩ CU−−→ |0⟩|φn⟩,

|1⟩|φn⟩ CU−−→ |1⟩ ⊗ U |φn⟩.

That is, CU performs U on the n qubits denoted by φn only if the first qubit is 1. By
adding further control qubits to a controlled gate, we can make the final result depend
on the state of an arbitrarily large number of controls.

In fact, the next gate we are going to examine is the doubly-controlled NOT gate, also
known as Toffoli gate. It is defined as follows:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

43

This gate behaves just like CNOT, with the only difference that both the first and second
qubits must be 1 in order for the third qubit to be negated. Simply put, the Toffoli gate
acts on a generic state as follows:

|xy⟩|z⟩ Toffoli−−−→ |xy⟩|(x ∧ y)⊕ z⟩.

The Toffoli gate is particularly significant in that it is universal for classical compu-
tation. That is, every possible classical gate can be described in terms of Toffoli gates.
We will avail ourselves of this property in the next chapter, when we try and translate
classical circuits to their quantum counterparts.

The last gate we see is the swap gate. As one might expect, this gate acts on two
qubits, swapping their states. A matrix representation is given as follows:

SWAP =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
The action of SWAP on the basis states is straightforward:

|00⟩ SWAP−−−→ |00⟩, |01⟩ SWAP−−−→ |10⟩,

|10⟩ SWAP−−−→ |01⟩, |11⟩ SWAP−−−→ |11⟩.

3.2.2 Quantum Circuits
It is now time to start assembling reversible quantum gates to obtain the quantum
counterpart of boolean circuits, i.e. quantum circuits. In Section 1.2 we saw that classical
circuits are nothing more than directed acyclic graphs. Their nodes can be labeled with
NOT, AND or OR gates and their output depends on these labels.

Can this model also be used to represent quantum circuits? The short answer is no.
The reason behind this is that classical circuits allow the fan-in and the fan-out of wires.
That is, respectively, the merging of two distinct wires into a single wire through a gate
and the duplication of a wire along with the value it carries. It is fairly easy to show
that these two operations go against the fundamental nature of quantum systems.

44

First of all, the fan-in of wires is clearly not an injective operation and as such cannot
be a reversible transformation on the system. Furthermore, as we anticipated in Section
3.1.2, it is impossible to copy a generic quantum state exactly, so the fan-out of wires
is also impossible in quantum circuits. Let us examine the no-cloning theorem in more
detail:

Theorem 3.2.1 (No-cloning theorem). No reversible quantum gate exists that, given a
qubit in a generic state and a blank qubit, copies the first qubit to the second.

Proof. Suppose such gate exists. We call it C. A generic single-qubit state |φ⟩ can be
written as |φ⟩ = α|0⟩ + β|1⟩, for some adequate α, β ∈ C. Because C can copy any
quantum state, it must act on |φ⟩ and |0⟩ as follows:

(α|0⟩+ β|1⟩)⊗ |0⟩ C−→ (α|0⟩+ β|1⟩)⊗ (α|0⟩+ β|1⟩) = α|00⟩+ β|11⟩.

Furthermore, if C is a valid quantum gate, then it is also linear. A transformation U is
linear if and only if

U(|φ⟩+ |ψ⟩) = U |φ⟩+ U |ψ⟩,

U(λ|φ⟩) = λU |φ⟩.

However, consider the state |φ⟩ = |0⟩+|1⟩√
2

and apply C to it. Thanks to the linear
properties of C we must have

C

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
=

1√
2
C((|0⟩+ |1⟩)⊗ |0⟩)

=
1√
2
C(|0⟩|0⟩+ |1⟩|0⟩)

=
1√
2
(C(|0⟩|0⟩) + C(|1⟩|0⟩))

=
|00⟩+ |11⟩√

2
̸= |0⟩+ |1⟩√

2
⊗ |0⟩+ |1⟩√

2
.

This contradicts the very definition of C, which therefore cannot be a valid reversible
quantum gate.

Because wires in quantum circuits cannot be merged nor split, we have that a one-to-
one correspondence exists between qubits and wires (whereas in classical circuits this is
not always the case). In abstract terms, a quantum wire ends up representing a single
qubit which evolves in time.

45

We can therefore apply reversible quantum gates to wires, which amounts to perform-
ing unitary transformations on the corresponding qubits. We can now give a formal
definition of quantum circuit.

Definition 3.2.3 (Quantum circuit). A quantum circuit Q is an ordered list of instruc-
tions, which can include:

• Input(ij), i.e. the introduction of a new input wire ij.

• Init0(q) and Init1(q), i.e. the introduction of a new wire q, in the |0⟩ or |1⟩ basis
state, respectively.

• [Gate](q1, q2, . . . , qn)(c1, c2, . . . , cm), i.e. the application of the n-qubit gate [Gate] to
n wires q1, q2, . . . , qn, with control qubits c1, c2, . . . , cm. In the case of uncontrolled
gates, the second pair of parentheses is omitted.

• Measure(q1, q2, . . . , qn), i.e. the measurement of one or more wires q1, q2, . . . , qn.

• Output(q), i.e. the designation of a wire q as an output wire.

Gates, measurements and output designations can only be applied to wires that have
already been introduced, either as inputs or via initialization.

Because quantum gates are transformations on qubits, we need not specify where their
outputs must go. This way, a circuit ceases to be a graph and can be represented as a
sequence of operations. It is also clear, from this definition, that a quantum circuit is not
necessarily reversible (inputs and outputs can be defined freely and without constraints).
This is not a problem if the circuit is self-contained. However, if the circuit is to be used
as a subroutine in a larger circuit, then it must be reversible.

One last note, on the Init instruction. The initial states of the wires introduced by
this instruction only depend on the definition of the individual circuit, and not on the
circuit’s input. They are usually employed as an aid to computation and seldom figure in
the circuit’s output. Because of that, they are called ancillary wires or simply ancillae.

Although quantum circuits are just lists, we display them through a slightly more
sophisticated graphical representation. Namely, each wire (it does not matter whether
it is an input or an ancilla) is represented by a horizontal line. The following is the
graphical representation of the Q = (Input(i1), Init0(q),Output(i1),Output(q)) circuit:

46

Gates are represented as boxes and are identified by their symbol. As one might
expect, they are placed directly on top of the wires they act upon. We add Hadamard
and Pauli-X gates to the previous example, to obtain

Q = (Input(i1), Init0(q), H(i1), X(i1), X(q),Output(i1),Output(q)),

We know that quantum gates can have controls. A control is usually denoted by
a small circle, connected by a vertical line to its gate. Take as an example the circuit
Q = (Input(i1), Init0(q), H(i1)(q), X(q)(i1),Output(i1),Output(q)):

Because they are the most commonly employed controlled gates, CNOT and Toffoli
have special, ad-hoc notation:

Even though both gates are just controlled negations (and therefore could be written
as controlledX gates), we will refer to their application as CNOT(y)(x) and Toffoli(z)(x, y),
for the sake of clarity. The SWAP gate also has a symbol of its own:

47

Lastly, measurements are represented by the following symbol:

Consider, for example, the circuit Q = (Init0(q), H(q),Measure(q),Output(q)). Q
can be represented as follows:

This circuit has no inputs, and it outputs one of the basis states, with equal proba-
bility (it outputs exactly one of the basis states, not a balanced superposition). Note the
double line at the end, which is commonly employed to denote the collapse of a wire to
a classical state. We conclude this section with some examples.

Example 3.2.4: Consider the following circuit Q:

On input |0⟩|1⟩, Q produces the following output:

|0⊕ (1⊕ 0)⟩ ⊗ |(1⊕ 0)⊕ (0⊕ (1⊕ 0))⟩ = |1⟩|0⟩.

In other words, the circuit swapped the two inputs. If we test Q on the remaining basis
states, we find that it acts exactly like the SWAP gate. In fact, swap operations are
usually implemented this way, using three CNOT gates.

Example 3.2.5: Consider the following circuit:

Q = (Input(i1), Input(i2), H(i1),CNOT(i2)(i1),Output(i1),Output(i2)),

48

On input |00⟩, Q outputs the following superposition:

|00⟩+ |11⟩√
2

.

Here we can recognize an abstraction in terms of qubits of the entangled state presented
in Section 3.1.4. This is one of the four states known as Bell states, named after physicist
John S. Bell. These are the following maximally entangled states:

|Φ+⟩ = |00⟩+ |11⟩√
2

, |Φ−⟩ = |00⟩ − |11⟩√
2

,

|Ψ+⟩ = |01⟩+ |10⟩√
2

, |Ψ−⟩ = |01⟩ − |10⟩√
2

.

Note that by varying the inputs of Q we can obtain the first three states and −|Ψ−⟩.

49

Chapter 4

A Quantum Solution for Abelian
Groups

Now that we have an essential, but solid foundation of quantum computing, it is time
to dwell into some of the quantum algorithms for solving the HSP. In Chapter 2 we
announced that efficient quantum solutions exists for the HSP on specific kinds of groups.
This is the case with Abelian groups. We remind the reader of Definition 1.1.5, in which
we say that a group is Abelian when its operation is commutative.

In this section, we first present an algorithm that solves the HSP on the cyclic additive
groups of integers modulo N . Later, we generalize this case to obtain an algorithm for
generic Abelian groups.

4.1 Preliminaries
Before we start, however, there are two important matters that need to be discussed.
The first one is the quantum Fourier transform, a quantum transformation which will
be essential in both algorithms. The second one is the conversion of classical circuits to
quantum circuits, a process that allows us to keep using coset-separating circuits as a
means to pass a coset-separating function to an HSP functional.

4.1.1 The Quantum Fourier Transform
The quantum Fourier transform (QFT) is a transformation whose role is paramount in
quantum algorithmics. As a matter of fact, the QFT lies at the heart of quantum algo-
rithms such as Shor’s factoring algorithm [12], the quantum phase estimation algorithm
and, as one might imagine, the forthcoming algorithms for the Abelian HSP.

50

Starting, as usual, from a purely mathematical standpoint, we give the definition
of discrete Fourier transform (DFT). What the DFT does is, given a complex vector
[x0, x1, . . . , xN−1]

T of length N , return a complex vector [y0, y1, . . . , yN−1]
T such that:

yk =
1√
N

N−1∑
j=0

xje
2πijk
N . (4.1)

What does the DFT compute? Intuitively, if we take the various x0, x1, . . . , xN−1 to
be equally spaced samples of a wave-like function of time f : R→ C, then the elements
y0, y1, . . . , yN−1 represent the amplitudes with which equally spaced frequencies appear
in f . To more easily grasp this idea, consider the following example:

Example 4.1.1: Let f(t) = sin(2π2t)+2 sin(2π3t) be a wave-like function of time. One
can already tell, by looking at this definition, that f ’s main frequencies are 2Hz and
3Hz. Suppose we sample f every 0.1 s for 5 s. We obtain 50 values, which we can plot
as follows:

We now apply the DFT on [f(0.1), f(0.2), . . . , f(4.9)]T to obtain a vector of 50 complex
values. We plot the magnitudes of these values and we obtain the following plot (which
we scale and clip to make the results more comprehensible):

51

Note how all values but the ones corresponding to 2Hz and 3Hz are negligible and
do not show in the results. This is exactly the outcome we anticipated. Also note that
the magnitude corresponding to 3Hz is (correctly) twice the magnitude of 2Hz.

Now, the quantum Fourier transform computes the exact same transformation as
the DFT, the only difference being that the QFT is applied on quantum state vectors,
whereas the DFT is applied to generic complex vectors. Given an orthonormal basis
|0⟩, |1⟩, . . . , |N − 1⟩, the QFT is a linear operator that performs the following action on
each of the basis states:

|j⟩ −→ 1√
N

N−1∑
k=0

e
2πijk
N |k⟩. (4.2)

Alternatively, given an arbitrary state |γ⟩ in the orthonormal basis, we have:

|γ⟩ =
N−1∑
j=0

xj|j⟩ −→
1√
N

N−1∑
k=0

yk|k⟩,

where the yk are the results of the application of the DFT on the amplitudes of |γ⟩, as
described in Equation 4.1. Of course, we need a computational definition of the QFT.
Namely, we need to prove that for a generic group family {GN}N∈N encoded through
a suitable ρ, there exists a quantum circuit family {QN}N∈N such that QN efficiently
computes the QFT on the encoded elements of GN .

Here efficiently means that if ρ is LP for some function f , then the number of gates
required to build QN is polynomial in f(N), i.e. polynomial in the size of the input. We
proceed to show how to build such circuit family for groups of order |GN | = 2n for some
n (in this case, ρ can be surjective), leaving the more general case for later.

52

Let |0⟩, |1⟩, . . . , |2n− 1⟩ be the computational basis of the n-qubit quantum computer
on which we wish to implement QN . For any basis state |j⟩, let j1j2 . . . jn denote the
binary representation of j according to ρ and let 0.jljl+1 . . . jm denote the binary fraction
jl/2 + jl+1/4 + · · ·+ jm/2

m−l+1. We can expand Equation 4.2 as follows:

|j⟩ −→ 1

2n/2

2n−1∑
k=0

e
2πijk
2n |k⟩

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

e2πij(
∑n

l=1 kl2
−l)|k1 . . . kn⟩

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl⟩

=
1

2n/2

n⊗
l=1

(
1∑

kl=0

e2πijkl2
−l |kl⟩

)

=
1

2n/2

n⊗
l=1

(
|0⟩+ e2πij2

−l |1⟩
)

=
(|0⟩+ e2πi0.jn|1⟩)(|0⟩+ e2πi0.jn−1jn|1⟩) . . . (|0⟩+ e2πi0.j1j2...jn|1⟩)

2n/2
.

The last line of this expansion is known as the product representation of the QFT.
This form of the QFT is particularly useful in that a definition of the QN circuit we seek
follows naturally from it. Let us begin the construction of QN . Consider the Hadamard
gate H and the Rk gate (a more specific form of the rotation gate). These gates are
defined as

H =
1√
2

[
1 1
1 −1

]
, Rk =

[
1 0

0 e2πi/2
k

]
.

Let us apply H to the first qubit of a state |j⟩ = |j1j2 . . . jn⟩. The Hadamard gate
sends |j⟩ to the state

1√
2

(
|0⟩+ e2πi0.j1|1⟩

)
|j2 . . . jn⟩.

This is true because if j1 = 1, then 0.j1 = 1/2 and eπi = −1, whereas if j1 = 0 we
have e0 = 1. It is clear that this result coincides with the definition of H. Let us apply
the R2 gate on |j1⟩, using |j2⟩ as control. We have a resulting state of

1√
2

(
|0⟩+ e2πi0.j1j2|1⟩

)
|j2 . . . jn⟩.

53

Figure 4.1: The quantum circuit that computes the QFT on n qubits.
The outputs are exactly the factors of the product representation.

Note that the controlled-R2 added j2 to the binary fraction. We repeat this operation,
applying Ri on |j1⟩ with |ji⟩ as control for all the remaining i. We end up in the state

1√
2

(
|0⟩+ e2πi0.j1j2...jn|1⟩

)
|j2 . . . jn⟩.

In this state we recognize (|0⟩+e2πi0.j1j2...jn|1⟩), the last factor of the product representa-
tion. Now we operate similarly on |j2⟩. We first we apply H, followed by Ri−1 controlled
by |ji⟩ for all 2 < i ≤ n. We end up in the state

1√
2

(
|0⟩+ e2πi0.j1j2...jn|1⟩

) 1√
2

(
|0⟩+ e2πi0.j2j3...jn|1⟩

)
|j3 . . . jn⟩,

where we recognize yet another factor of the product representation. By operating
similarly with H and Rk on each of the remaining qubits, we obtain the final state

(|0⟩+ e2πi0.j1j2...jn|1⟩) (|0⟩+ e2πi0.j2j3...jn|1⟩) . . . (|0⟩+ e2πi0.jn|1⟩)√
2n

.

This is exactly the product representation of the QFT acting on |j⟩, up to the order of
the factors. We can easily reorder the resulting state by applying swap gates between
the first and last elements, the second and second-to-last elements and so on. Note that
we have in fact built QN for N = 2n using only unitary quantum gates. As such, QN is
a valid unitary transformation.

It is time to address the efficiency of this construction of QN . For each qubit |ji⟩,
we employed one Hadamard gate and (n− i) controlled-Rk gates. Thus the main body
of the computation requires n(n + 1)/2 gates. We also employed n/2 swap gates, each
implemented using three CNOT gates. The total amount of gates required adds up to
n(n + 1)/2 + 3n/2, which is Θ(n2). In other words, QN is efficient, as it provides a
polytime algorithm for computing the QFT on groups of order |GN | = 2n.

54

Of course, not all the groups we have handled so far have order 2n for some n ∈ N (in
fact, only the group family {Bn,⊕}n∈N from Simon’s problem does, for all n). We need
to find a way to build QN for generic values N . The following result [8] tells us that this
can be done for all odd N :

Theorem 4.1.1. Given an odd integer N ≥ 13, and any 0 < ϵ ≤
√
2, we can compute

QN with error bounded by ϵ, using at most ⌈12.53 + 3 log
√
N
ϵ
⌉ qubits. The algorithm has

an operation complexity of

O

(
log

√
N

ϵ

(
log log

√
N

ϵ
+ log

1

ϵ

))
.

Furthermore, the induced probability distributions Dv from the output and D from
QN |φ⟩|ψ⟩ satisfy

|Dv −D| ≤ 2ϵ+ ϵ2.

That is, we can approximate the QFT very well with an efficient circuit. Furthermore,
for odd values of N < 13, ad-hoc circuits can be built. Now that we have an efficient
QN for N = 2n and odd N , we can build QN for any N . Consider a composite N . There
exist A and B that are either a power of 2 or odd and for which N = AB. We have [10]
that computing QN amounts to applying the following transformation:

QN = (UB ⊗ UA)(QA ⊗QB),

where UB : |x mod A⟩ → |xB mod A⟩ and UA : |x mod B⟩ → |xA mod B⟩. QA and
QB are covered by the previous results, so it follows that we can efficiently compute the
QFT on any group of any order, with arbitrary precision.

4.1.2 Converting Classical Circuits
Another obstacle we need to overcome is the discrepancy between classical and quantum
circuits. A significant part of the input to the HSP functional is the representation of a
(classical) coset-separating circuit C. Therefore, if we wish to use and evaluate C in the
context of a quantum solution to the HSP, we need it to comply with the requirements
of the quantum circuit model.

In Section 1.2.2 we defined a boolean circuit as a labeled directed acyclic graph,
whereas in Section 3.2.2 we saw that quantum circuits are essentially lists of operations
on qubits, which must obey much stricter constraints. Namely:

• Reversibility: The gates employed in a quantum circuit must be reversible. How-
ever, this is not the case with the AND and OR gates in classical circuits.

55

• Fan-out: Due to the no-cloning theorem, the output of a quantum gate cannot
be duplicated to be used as the input of multiple subsequent gates. However, in
classical circuits, this technique (fan-out) is allowed and commonly employed.

We address these two problems in order. As for reversibility, we already know that
the NOT operation is reversible and that it corresponds to the X gate. For convenience,
however, we decide to express it through a CNOT gate. We remind the reader that the
CNOT gate performs the following operation:

|x⟩|y⟩ CNOT−−−→ |x⟩|x⊕ y⟩

By setting y = 1, we obtain as output |x⟩|x ⊕ 1⟩ = |x⟩|¬x⟩, which corresponds to a
copy of the input, plus the output expected from the NOT gate.

What we need to do now is express AND and OR in terms of reversible operations.
We are helped in this task by the Toffoli gate. We remind the reader that the Toffoli
gate performs the following operation:

|xy⟩|z⟩ Toffoli−−−→ |xy⟩|(x ∧ y)⊕ z⟩

By setting z = 0, we obtain as output |xy⟩|x ∧ y⟩, i.e. we can implement the AND
gate at the cost of one Toffoli gate and one ancilla. The construction of a subcircuit that
computes the OR gate follows naturally once we apply De Morgan’s laws:

|x〉 X • X

|y〉 X • X

|z〉 = |1〉 ⊕

With z = 1, we obtain an output of |xy⟩|1⊕(¬x∧¬y)⟩ = |xy⟩|¬(¬x∧¬y)⟩ = |xy⟩|x∨y⟩.
This means that we can implement the OR gate by using one Toffoli gate, four Pauli-X
(uncontrolled NOT) gates and one ancilla.

It might seem unnecessary to express NOT gates through CNOT gates, just like it
might seem unnecessary to negate the first two outputs in the conversion of an OR gate.
These two choices are justified when we consider gates with fan-out. The reversible
versions of NOT, AND and OR preserve the state they act upon, as the result is output
to a new ancilla every time. This way, the output of a gate can be acted upon multiple
times by subsequent gates, without the need to copy any information.

56

|i1〉 • •

|i2〉 • •

|a1〉 = |1〉 ⊕ •

|a2〉 = |1〉 ⊕ •

|a3〉 = |0〉 ⊕ X • X

|a4〉 = |0〉 ⊕ X • X

|o1〉 = |0〉 ⊕ X

Figure 4.2: The circuit from Figure 1.1 once converted to its quantum
counterpart. The inputs are qubits i1 and i2, the output is qubit o1.

Let us explain this idea through an example. Consider, without loss of generality, an
AND gate on x and y with a fan-out of m. The no-cloning theorem forbids us from
copying its output, so what we do is:

1. Apply Toffoli on |xy⟩|0⟩ to obtain |xy⟩|x ∧ y⟩.

2. Apply U0 on |x ∧ y⟩, saving the result to a new ancilla a0 and leaving |x ∧ y⟩
unaltered.

3. Apply the remaining gates U1, U2, . . . , Um−1 to |x∧ y⟩, each time saving the result
to a new ancilla a1, a2, . . . , am−1 and leaving |x ∧ y⟩ unaltered.

This way, n generic classical gates can be replaced by O(n) reversible gates (X,
CNOT and Toffoli) using O(n) ancillae. Before we can present an actual algorithm,
however, we need to address one last detail. Specifically, given a circuit C, we need to
decide in which order to replace C’s gates. A classical circuit is nothing more than a
directed acyclic graph. As such, it can be topologically sorted.

Definition 4.1.1 (Topological sorting). Let G = (V,E) be a directed acyclic graph such
that |V | = n. A topological sorting of G consists of an ordering S = vs0 , vs1 , . . . , vsn−1

(where 0 ≤ si < n for all i) of all the vertices in V such that if (vsi , vsj) ∈ E, then vsi
occurs before vsj in S.

It is clear that once C is topologically sorted, we can convert its gates in an orderly
fashion, without the risk of disrupting the correct flow of computation. More specifically,
we proceed as follows:

57

Algorithm 3: Conversion of classical circuits
Input: A classical circuit C, given as a labeled DAG.
Output: A reversible circuit UC that computes the same function as C.
Compute L, a topological sorting of C;
Initialize UC as an empty list;
for v ∈ L do

switch v’s label do
case ik do

Append Input(ik) to UC ;
case NOT do

Let a be the input node;
Append (Init1(v),CNOT(v)(a)) to UC ;

case AND do
Let a and b be the input nodes;
Append (Init0(v),Toffoli(v)(a, b)) to UC ;

case OR do
Let a and b be the input nodes;
Append (Init1(v), X(a), X(b),Toffoli(v)(a, b), X(a), X(b)) to UC ;

if v is an output node then
Append Output(v) to UC ;

return UC ;

Note that a directed acyclic graph G = (V,E) can be sorted in O(|V |2) time [4].
Therefore, the algorithm converts a circuit C of n classical gates into a quantum circuit
UC of O(n) gates in O(n2) time.

Now that we have quantum circuits that compute the quantum Fourier transform and
a way to convert coset-separating circuits, we can move on to the next section, where we
put these results to use.

4.2 Cyclic Additive Case
We start to examine some of the quantum algorithms that make use of the QFT to
efficiently implement the HSP functional. We start with the simplest of cases, that is,
the HSP functional on the family {ZN}N∈N of additive groups of integers modulo N .

58

In Section 1.2.1, we saw that we can easily build a PLP function ρ that encodes this
group family using simple binary representations of integers. Let bin(N), ⌈Cf⌉ be the
inputs to an instance of the HSP functional on {ZN}N∈N, where Cf is a coset-separating
circuit for some HN = ⟨d⟩ ≤ ZN with respect to ρ. Let |HN | =M .

We know, from the previous section, that we can convert Cf to an equivalent quantum
circuit Uf of size linear in the number of gates of Cf . In particular, in the following
discussion we will assume that we already have Uf at our disposal and that it performs
the following transformation:

|x⟩|y⟩
Uf−→ |x⟩|y ⊕ f(x)⟩,

where |x⟩ and |y⟩ are two n-qubit registers such that n ≥ log2N . Note that this kind
of transformation can be easily obtained by slightly modifying Algorithm 3, without
affecting its complexity.

Now, before we present the actual algorithm, let us provide a specialization of the
QFT on cyclic groups:

Definition 4.2.1 (Cyclic QFT). The Cyclic QFT (CQFT) is the unitary operator QN

on a register with n ≥ log2N qubits defined as

QN =
1√
N

N−1∑
j,k=0

e
2πijk
N |k⟩⟨j|.

As one can see from this definition, we are describing our computation in terms of
the G = {|0⟩, |1⟩, . . . , |N − 1⟩} basis. Note that the elements of H can also be described
through the H = {|0⟩, |d⟩, |2d⟩, . . . , |(M − 1)d⟩} basis. Consider a quantum computer
with two n-qubit registers, both initialized to |0⟩. We start with the application of QN

to the first register:

|0⟩|0⟩ QN on 1st−−−−−−→ 1√
N

N−1∑
j=0

|j⟩|0⟩. (4.3)

The state we obtain follows from the definition of the QFT on a basis state (see
expression 4.2). We now apply Uf on the two registers. Note that because the second
register is |0⟩, this amounts to computing f on the superposition generated by QN and
storing the result in the second register. We obtain the following entangled state:

1√
N

N−1∑
j=0

|j⟩|0⟩
Uf−→ 1√

N

N−1∑
j=0

|j⟩|f(j)⟩. (4.4)

59

Next, we measure the second register, collapsing the state. The measured register
is left with f(x), for some x ∈ {0, 1, . . . , N − 1}, while the first register is left with a
superposition of only those values j for which f(j) = f(x). That is, the first register
contains a superposition of all the values in the coset x + H. We no longer need the
second register, so we do away with it. We end up in the state

1√
M

∑
h∈H

|x+ h⟩ = 1√
M

M−1∑
s=0

|x+ sd⟩. (4.5)

This follows from H = ⟨d⟩. We apply QN one more time to obtain:

1√
M

M−1∑
s=0

|x+ sd⟩ QN−−→ 1√
M

M−1∑
s=0

1√
N

N−1∑
k=0

e
2πi(x+sd)k

N |k⟩ (4.6)

=
1√
MN

N−1∑
k=0

e
2πixk

N |k⟩
M−1∑
s=0

e
2πisdk

N (4.7)

=
1√
MN

N−1∑
k=0

e
2πixk

N |k⟩
M−1∑
s=0

(
e

2πik
M

)s
. (4.8)

This last step is true because |GN |/|HN | = N/M = d and thus d/N = 1/M . The last
sum constitutes a geometric series, which evaluates to

M−1∑
s=0

(
e

2πik
M

)s
=

{
0 if M ̸ | k,
M if M |k.

Which means that in expression 4.8 we can ignore all the k that are not multiples of M .
We obtain the following simplified final state:

1√
d

d−1∑
t=0

e
2πixtM

N |tM⟩.

We proceed to measure the one remaining register. What we get is a multiple of M ,
i.e. an integer in {0,M, . . . , (d − 1)M}, with uniform probability. It is clear that if we
were to obtain M , we could easily output a generator d = N/M for H. We therefore run
the previous procedure multiple times, each time obtaining a (not necessarily different)
multiple of M . We then compute the gcd of these multiples, in the hope of finding exactly
M . Let us estimate how many trials we need to have a high probability of success.

60

Assume we already have k multiples t1M, t2M, . . . , tkM , where ti ∈ {0, 1, . . . , d − 1}
for all i. If gcd(t1, . . . , tk) = 1, then gcd(t1M, . . . , tkM) =M and we can find a generator
for H. It can be proven [8] that:

Lemma 4.2.1. Let d ≥ 2 and k ≥ 2. Let t1, t2, . . . , tk be a number of randomly
distributed integers such that ti ∈ {0, 1, . . . , d− 1}, for all i. We have

P (gcd(t1, t2, . . . , tk) = 1) ≥ 1−
(
1

2

)k/2

.

So few iterations are enough to obtain M with high probability. We now have all the
pieces we need to implement the HSP functional on the {ZN}N∈N group family:

Algorithm 4: FHSP – Cyclic Abelian Case
Input: A binary representation bin(N) and ⌈Cf⌉ such that Cf separates cosets

for HN = ⟨d⟩ ≤ ZN , for some d ∈ ZN , with respect to ρ.
Output: The representation ρ(d,N), with probability at least 3/4.
Use ⌈Cf⌉ to build Uf , a reversible quantum circuit that computes Cf ;
Initialize a list L;
for 8 times do

Initialize |φ⟩|ψ⟩ to |0⟩|0⟩;
Apply QN to |φ⟩ with an approximation error of at most ϵ = 0.01;
Apply Uf to |φ⟩|ψ⟩;
Apply QN to |φ⟩ with an approximation error of at most ϵ = 0.01;
Measure |φ⟩ to obtain tM , for some t ∈ {0, 1, . . . , d− 1};
Add tM to L;

M ← gcd(L);
d← N/M ;
return ρ(d,N);

The probability of each of the eight iterations of returning a valid tM is at least
1− (2ϵ + ϵ2), by Theorem 4.1.1. Now, assume we have eight valid samples. By Lemma
4.2.1, the probability of getting the actual M from computing the GCD on the elements
of L is 1 − (1/2)4 = 15/16. Therefore, the overall success probability of the previous
algorithm is (1− 0.0201)8(15/16) ≈ 0.796 > 3/4.

Let us consider the complexity of the algorithm. We consider N = |ZN | as the size
of the problem. Let n = O(logN) be the size of the elements of ZN , according to ρ.
Thanks to Algorithm 3 from the previous section, we know that building Uf from Cf

61

requires time polynomial in the number of gates in Cf . Therefore, if Cf has an operation
complexity of p(n) for some polynomial p, then we can build Uf with O(p(n)) gates in
O(p2) time. This entails that Uf has operation complexity (and can be built in time)
O(polylog(N)).

After that, the for loop is iterated a constant number of times. Inside the loop, the
most expensive operations are the applications of QN and Uf . As for Uf , we know
already that its complexity is polynomial in n. Thanks to Theorem 4.1.1, we also know
that QN has polynomial complexity (in n) as well. Lastly, the gcd can be computed with
O(logN) divisions, each taking O(logN) time [2].

Putting these three pieces together, we can clearly see that the overall time complexity
of the algorithm is O(polylog(N)), which is efficient.

4.3 Representation Theory
When, in Section 1.2, we discussed the encoding of group families, we saw that we could
interpret generic Abelian groups as a direct sum of simple cyclic groups of the form ZN

(Theorem 1.2.1). It is therefore sensible, at this point, to wonder whether a solution to
the HSP on families of generic Abelian groups can be obtained from the solution to the
ZN case.

Luckily, the answer to this question is yes. However, such construction of an imple-
mentation of the Abelian HSP functional is not as straightforward as one may imagine
and requires some non-trivial concepts of representation theory, which we present in this
section. We start with a couple of definitions.

Definition 4.3.1 (Automorphism). Let V be a vector space over a field F. An auto-
morphism on V is a bijective linear transformation of the form φ : V → V .

Definition 4.3.2 (General linear group). Let V be a vector space over a field F. We write
GL(V) to denote the general linear group of V , i.e. the group of all the automorphisms
on V under composition.

With these definitions in mind, we can define the very concept of representation:

Definition 4.3.3 (Representation). Let G be a group. A representation of G consists
of a vector space V (over a field F) along with an homomorphism ϱ : G→ GL(V).

62

For our purposes, F will be the field of complex numbers C and V will be finite-
dimensional of dimension d. A representation allows us to represent the elements of G
as square matrices. In fact, once we fix a basis for V , we have that for every g ∈ G, ϱ(g)
corresponds to a unitary d× d matrix.

Notice that we employed ϱ, instead of the traditional ρ, to denote a representation.
This is to distinguish a representation function from an encoding function as defined in
Section 1.2.1. Although the two concepts may appear to be related (they both produce
some kind of representation of group elements), they have nothing to do with each other.
Specifically, a representation ϱ is a purely mathematical concept and has nothing to do
with how group elements can be encoded to be processed by a computer.

Once we have a representation ϱ, we can associate a character to it.

Definition 4.3.4 (Character). Let ϱ be a representation for a group G. The character
associated to ϱ is referred to as χϱ and is defined as χϱ(g) = Tr(ϱ(g)) for all g ∈ G.

Where Tr(A) is the trace of matrix A. An equivalent definition exists, which charac-
terizes a character χ on a group G as a homomorphism of the form χ : G → C∗, where
C∗ is the group of complex numbers of unit length under multiplication. Although the
two definitions are equivalent, it is the second one that will be of particular help in the
next section.

Soon we will prove more results regarding characters and general representation theory.
However, since these are results specific to a certain group family, we cover them in the
next section, where such family is also introduced.

4.4 General Abelian Case
Our main goal in this first part of the section is to use representation theory to generalize
the CQFT given in Definition 4.2.1 to a QFT that acts on generic Abelian groups. As
we said earlier, Theorem 1.2.1 guarantees that for every Abelian group G there exist
N1, N2, . . . , Nk such that

G ∼= ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk
.

Although this theorem proves the existence of such decomposition, it does not tell us
how to compute it. Actually, the problem of finding N1, N2, . . . , Nk given G is known to
be classically hard. Fortunately, a quantum algorithm exists [3] that can compute this
decomposition efficiently:

63

Theorem 4.4.1 (Cheung and Mosca). Given a finite Abelian black-box group G with
unique encoding, the decomposition of G into a direct sum of cyclic groups of prime power
order can be computed in time polynomial in the input size by a quantum computer.

4.4.1 More Representation Theory
Let us now see some representation theory results specific to this kind of group. We
assume to be already working with a group of the form G = ZN1 ⊕ · · · ⊕ ZNk

. The
elements of G are the k-tuples of the form (g1, g2, . . . , gk), where gj ∈ ZNj

for all j. Let
β1 = (1, 0, . . . , 0), β2 = (0, 1, . . . , 0), . . . , βk(0, 0, . . . , 1) be elements of a basis for G. For
a generic character χ on G, we find that for all g ∈ G

χ(g) = χ

(
k∑

j=1

gjβj

)
=

k∏
j=1

χ(βj)
gj . (4.9)

This is because χ is by definition a homomorphism between G and C∗, and as such
χ(ng) = χ(g)n for all g ∈ G. As a result, χ is determined entirely by its values on the
basis elements.

Since every βj is zero in every position but the jth one (in which it is unitary), every
βj has order exactly Nj. It follows that χ(βj) must have order dividing Nj, for every j.
Let us employ the following notation:

ωN = e
2πi
N .

Then, for every χ(βj), an integer hj must exist for which

χ(βj) = ω
hj

Nj
,

as every ωN is a primitive Nth root of unity. Furthermore, hj can be chosen in the
restricted range {0, 1, . . . , Nj − 1}, since the values of ωhj

Nj
are periodic. Therefore, every

distinct character on G can be identified by a k-tuple (h1, h2, . . . , hk), which is also an
element h ∈ G. Every h ∈ G determines a character χh as follows:

χh(g) =
k∏

j=1

ω
hjgj
Nj

.

From this definition it is also evident, for all h, g ∈ G, that χh(g) = χg(h) and χh(−g) =
χh(g)

−1. By χ(G) we denote the set of all homomorphisms χg such that g ∈ G. Note
that χ(G) is a group under χg1χg2 = χg1+g2 , with identity χe. We have the following
theorem:

64

Theorem 4.4.2. Let G be a finite Abelian group and let χ(G) be a group as defined
above. We have G ∼= χ(G).

Proof. Consider α : G → χ(G) such that α(g) = χg. The identity element e ∈ G is
sent to the identity element χe ∈ χ(G). Furthermore, given g1 + g2 we find α(g1 + g2) =
χg1+g2 = χg1χg2 = α(g1)α(g2). Being an homomorphism and a set bijection, α is an
isomorphism between G and χ(G).

Now we can introduce the concept of orthogonal subgroup. This form of subgroup
is significant because whereas the algorithm for the cyclic HSP gave as output elements
uniformly distributed in H, the algorithm we are going to define for Abelian groups will
output elements uniformly distributed in H’s orthogonal subgroup.

Definition 4.4.1 (Orthogonal subgroup). Let G be a finite Abelian group and let H ≤ G.
The orthogonal subgroup of H is written H⊥ and is defined as

H⊥ = {g ∈ G | ∀h ∈ H : χg(h) = 1}.

Lemma 4.4.1. For every subgroup H of G, H⊥ is a subgroup of G.

Proof. Since χe(g) = 1 for all g ∈ G (and therefore for all g ∈ H), the identity element
is in H⊥. Furthermore, if h′1, h′2 ∈ H⊥, then χh′

1
(h) = χh′

2
(h) = 1 for all h ∈ H. It follows

that χh′
1+h′

2
(h) = χh′

1
(h)χh′

2
(h) = 1 for all h ∈ H and h′1+h′2 is in H⊥. Finally, if h′ ∈ H⊥,

we have χ−h′(h) = χh(−h′) = χh(h
′)−1 = χh′(h)−1 = 1 and −h′ ∈ H⊥.

We will also use the following result:

Lemma 4.4.2. Let G be a finite Abelian group and let χ ∈ χ(G) be one of its characters.
We have ∑

g∈G

χ(g) =

{
|G| if χ = χe,

0 otherwise.

Proof. We avail ourselves of Theorem 4.4.2 and we choose h ∈ G such that χ = χh.
With G ∼= ZN1 ⊕ · · · ⊕ ZNk

, we have

∑
g∈G

χh(g) =
∑

g1∈ZN1

∑
g2∈ZN2

· · ·
∑

gk∈ZNk

k∏
j=1

ω
hjgj
Nj

=

 ∑
g1∈ZN1

ωh1g1
N1

 ∑
g2∈ZN2

ωh2g2
N2

 . . .

 ∑
gk∈ZNk

ωhkgk
Nk

 .

65

If χh ̸= χe, then there is at least one ω
hj

Nj
̸= 1, which causes the geometric series∑

gj∈ZNj

(
ω
hj

Nj

)gj
, and therefore the entire product, to amount to 0. On the other hand,

if χh = χe, the result is |G|.

Finally, we need two more results, the first of which requires us to define the concept
of quotient group.

Definition 4.4.2 (Quotient group). Let G be a group and let H ≤ G be a normal
subgroup. The quotient group of G and H is written G/H and is defined as

G/H = {gH | g ∈ G}.

In other words, the quotient group is the group of cosets of H under g1Hg2H = (g1g2)H.

Lemma 4.4.3. Let G be a finite Abelian group and let H ≤ G. We have

H⊥ ∼= G/H.

Proof. Thanks to Theorem 4.4.2 it is sufficient to show that χ(H⊥) ∼= χ(G/H). Let ḡ
denote the image of a generic g ∈ G through the projection map π : G → G/H. Define
a map of the form α : χ(H⊥)→ χ(G/H) such that

(αχ)(ḡ) = χh′(g),

where h′ ∈ H⊥ and ḡ = g +H ∈ G/H for some coset representative g. We show that α
is a group isomorphism in three steps:

1. α is well-defined: if g1 and g2 are different representatives of the same coset ḡ1 = ḡ2,
then there exists h ∈ H such that h = g1 − g2 and (αχh′)(ḡ1) = χh′(g1) = χh′(g1 +
h) = χh′(g2) = (αχh′)(ḡ2). Furthermore, for the identity χe ∈ χ(H⊥) and any
ḡ ∈ G/H, we have (αχe)(ḡ) = χe(g) = 1, so αχe is the identity in χ(G/H). Finally,
for g ∈ G we have (α(χh1χh2))(ḡ) = (αχh1+h2)(ḡ) = χh1+h2(g) = χh1(g)χh2(g) =
((αχh1)(αχh2))(ḡ), so α is a homomorphism.

2. α is injective: suppose for h′ ∈ H⊥ that χh′ is the identity element in χ(G/H).
Then, for every g ∈ G, (αχh′)(ḡ) = 1 implies χh′(g) = 1. It follows that χh′ = χe

and, since G ∼= χ(G), that h′ = e, so α is injective.

3. α is surjective: let χ̄ ∈ χ(G/H) and remember π. The composite map χ = χ̄ ◦ π :
G→ C∗ is a homomorphism and therefore a character χt for some t ∈ G. If h ∈ H,
then χt(h) = χ̄(ē) = 1, so t ∈ H⊥ and χt ∈ χ(H⊥). Now, let ḡ ∈ G/H. We have
(αχt)(ḡ) = χt(g) = χ̄π(g) = χ̄(ḡ). Thus α is surjective and a group isomorphism.

66

Lemma 4.4.4. With the same premises of the previous lemma, we have

H⊥⊥ = H.

Proof. From the previous lemma, we know that G/H ∼= H⊥. It follows that |G/H| = |H⊥|
and therefore |G/H⊥| = |H|, but also |G/H⊥| = |H⊥⊥|, so |H| = |H⊥⊥|. Take h ∈ H. By
definition, H⊥⊥ = {g ∈ G | ∀h′ ∈ H⊥ : χg(h

′) = 1}. In particular, χh(h
′) = χh′(h) = 1

for all h′ ∈ H⊥, by the definition of H⊥. It follows that h ∈ H⊥⊥ and therefore H ⊆ H⊥⊥.
This, together with |H| = |H⊥⊥|, implies H = H⊥⊥.

4.4.2 The QFT on Abelian Groups
We can now start to actually move towards a solution for the problem at hand. We do
so by defining three operations called the G-operators, since their definitions depend on
a finite Abelian group G. The first one is the the QFT over G.

Definition 4.4.3 (Abelian QFT). The Abelian QFT (AQFT) over a finite Abelian
group G is the quantum operator defined as

QG =
1√
|G|

∑
g,h∈G

χg(h)|g⟩⟨h|.

We can immediately se that if G is of the form ZN for some N ∈ N (a cyclic additive
group as seen in Section 4.2), then χg(h) = ωgh

N = e
2πigh

N and QG coincides with QN , the
cyclic QFT as given in Definition 4.2.1. In fact, if G = Z1 ⊕ Z2 ⊕ · · · ⊕ Zk, then

QG =
k⊗

j=1

QNj
,

where each QNj
is the CQFT on ZNj

, as described in the previous section. This means
that the AQFT can easily be built once we have the CQFT at our disposal.

The other two operators are the translation operator and the phase-change operator.
They are defined as follows:

Definition 4.4.4 (Translation operator). Let G be a finite Abelian group. For t ∈ G,
the translation operator τt over G is the quantum operator defined as

τt =
∑
g∈G

|t+ g⟩⟨g|.

67

Definition 4.4.5 (Phase-change operator). Let G be a finite Abelian group. For h ∈ G,
the phase-change operator φh over G is the quantum operator defined as

φh =
∑
g∈G

χg(h)|g⟩⟨g|.

The three G-operators exhibit interesting relationships with one another. We are
interested in two specific properties, which we state and prove:

Lemma 4.4.5. Let G be a finite Abelian group and let H ≤ G. We have

QG|H⟩ = |H⊥⟩,

where
|H⟩ = 1√

|H|

∑
h∈H

|h⟩.

Proof.

QG|H⟩ =
1√
|G|

∑
u,v∈G

χu(v)|u⟩⟨v|
1√
|H|

∑
h∈H

|h⟩

=
1√
|G||H|

∑
u,v∈G
h∈H

χu(v)|u⟩⟨v|h⟩

=
1√
|G||H|

∑
u∈G
h∈H

χu(h)|u⟩

=
1√
|G||H|

∑
u∈G

(∑
h∈H

χu(h)

)
|u⟩.

By Lemma 4.4.2,
∑

h∈H χu(h) is non-zero only if χu = χe, in which case the sum is equal
to |H|. Furthermore, if χu is the identity, then u ∈ H⊥, as χu(h) = 1 for all h ∈ H. Our
equation thus becomes

1√
|G||H|

∑
u∈H⊥

|H||u⟩ =

√
|H|
|G|

∑
u∈H⊥

|u⟩ = |H⊥⟩,

as by Lemma 4.4.3, |H|/|G| = |H⊥|−1.

Lemma 4.4.6. Let G be a finite Abelian group and let t ∈ G. We have

QGτt = φtQG.

68

Proof.

QGτt =

(
1√
|G|

∑
u,v∈G

χu(v)|u⟩⟨v|

)(∑
g∈G

|t+ g⟩⟨g|

)

=
1√
|G|

∑
u,v,g∈G

χu(v)|u⟩⟨v|t+ g⟩⟨g|

=
1√
|G|

∑
u,g∈G

χu(t+ g)|u⟩⟨g|

=
1√
|G|

∑
u,g∈G

χu(t)χu(g)|u⟩⟨g|.

At this point, we insert the identity transformation I =
∑

a∈G |a⟩⟨a| into the equation,
obtaining

1√
|G|

∑
u,g,a∈G

χu(t)χu(g)|a⟩⟨a|u⟩⟨g|

=
1√
|G|

∑
u,g,a∈G

χa(t)χu(g)|a⟩⟨a|u⟩⟨g|

=

(∑
a∈G

χa(t)|a⟩⟨a|

)(
1√
|G|

∑
u,g∈G

χu(g)|u⟩⟨g|

)
= φtQG.

4.4.3 The Algorithm
Now we have a sound foundation of representation theory and we have the AQFT that
works on generic Abelian groups. We will now try and mimic the flow of computation
that we followed in Section 4.2, to see where we end up.

This time, we are working with a family {GN}N∈N of Abelian groups. We assume, as
we did in the case of the DLP, that each group GN comes with its order, |GN |. Each
GN can be efficiently decomposed, by Theorem 4.4.1, into a direct sum of cyclic additive
groups ZN1⊕ZN2⊕· · ·⊕ZNk

. Every g ∈ GN is thus encoded as a k-tuple (g1, g2, . . . , gk),
which, from now on, we refer to as simply g. We also have Uf , which is a quantum circuit
that computes

|x⟩|y⟩
Uf−→ |x⟩|y ⊕ f(x)⟩,

such that f separates cosets for some HN ≤ GN .

69

So, once again we consider a quantum computer with two n-qubit registers (for a big
enough n), both initialized to |0⟩, and we once again start by applying the AQFT on the
first register:

|0⟩|0⟩
QGN

on 1st
−−−−−−→ 1√

|GN |

∑
g∈GN

|g⟩|0⟩. (4.10)

We then proceed to apply Uf on both registers, obtaining

1√
|GN |

∑
g∈GN

|g⟩|0⟩
Uf−→ 1√

|GN |

∑
g∈GN

|g⟩|f(g)⟩. (4.11)

This time, the simplification process is slightly less trivial. Consider T = {t1, t2, . . . , tm},
a set of coset representatives for the HN ≤ GN separated by f (T is called a transversal
for HN). Our equation becomes

1√
|T |

∑
t∈T

|t+HN⟩|f(t)⟩ =
1√
|T |

∑
t∈T

τt|HN⟩|f(t)⟩ (4.12)

At this point, in the algorithm for the cyclic additive case, we measured the second
register to collapse the state. However, thanks to a principle known as principle of
deferred measurement, we can skip this step and measure only once at the end. We
apply the AQFT once more on the first register, to obtain the following state:

1√
|T |

∑
t∈T

QGτt|HN⟩|f(t)⟩ (4.13)

=
1√
|T |

∑
t∈T

φtQG|HN⟩|f(t)⟩ (4.14)

=
1√
|H⊥

N |

∑
t∈T

φt|H⊥
N⟩|f(t)⟩. (4.15)

In this simplification we used lemmata 4.4.6 and 4.4.5, in this order, as well as the fact
that |T | = |GN |/|HN | = |H⊥

N |. The last step consists in measuring the first register to
obtain a random element of H⊥

N , with uniform probability (being a phase operator, φt

does not affect amplitudes).

At this point, two questions must be asked. The first one is: how many of these
elements do we need before we can be sufficiently confident that we have a generating
set for H⊥

N? The answer is provided by the following theorem [8]:

70

Theorem 4.4.3. Let G be a finite group. For an integer k ≥ 0, the probability that
k + ⌈log |G|⌉ elements chosen uniformly at random from G will generate the group is
bounded by

P (⟨g1, g2, . . . , gk+⌈log |G|⌉⟩ = G) ≥ 1−
(
1

2

)k

.

This result is similar to the one expressed by Lemma 4.2.1, so once again relatively
few samples are needed to obtain a generating set for H⊥

N with high probability. The
second question is: how do we obtain a generating set for HN (which is the output we
seek) from a generating set for H⊥

N? Of course, since (H⊥
N)

⊥ = HN , we have that H⊥
N

uniquely determines HN , but the actual process of finding a generating set for HN is
non-trivial.

Suppose we already have the g1, g2, . . . , gt that generate H⊥
N . Since (H⊥

N)
⊥ = HN ,

it must be, for all h ∈ HN , h′ ∈ H⊥
N and j ∈ {1, 2, . . . , t}, that χh(h

′
j) = 1. Next, let

d = lcm(N1, . . . , Nk), where the Nj come from the decomposition of the original group. If
we set αl = d/Nl, then ωNl

= ωαl
d . At this point we have that χh(gj) =

∏k
l=1 ω

αl(gj)lhl

d = 1

if and only if
∑k

l=1 αl(gj)lhl ≡ 0 mod d. So all we need to do to compute elements of
HN is find random solutions to the following linear system of t equations:

α1(g1)1x1 + α2(g1)2x2 + · · ·+ αk(g1)kxk ≡ 0 mod d

α1(g2)1x1 + α2(g2)2x2 + · · ·+ αk(g2)kxk ≡ 0 mod d

. . .

α1(gt)1x1 + α2(gt)2x2 + · · ·+ αk(gt)kxk ≡ 0 mod d

To do so, consider the system in matrix form: Ax ≡ 0 mod d. Compute the Smith
normal form of A, that is,

D = UAV,

where D is diagonal and U and V are integer-valued. Computing the normal form for a
t×k matrix such as A requires O(k2t) time [14]. At this point, finding random solutions
to Dy ≡ 0 mod d amounts to solving simple linear congruences. Once we have a y, we
compute x = V y, thus yielding an element x ∈ HN . Note that recovering V from D
requires time O(k2t logc(k2t))[14], for some constant c.

At this point, assume we have run the above procedure t = t1 + ⌈log |GN |⌉ to obtain
g1, g2, . . . , gt ∈ H⊥

N , which generate H⊥
N with probability p1 ≥ 1 − 1/2t1 . We find s =

t2 + ⌈log |GN |⌉ samples in HN using the procedure described above. We have that the s
samples generate HN with probability p ≥ (1− 1/2t1)(1− 1/2t2).

71

That being said, we can now give the full definition of the algorithm that solves the
HSP on Abelian groups:

Algorithm 5: FHSP – Abelian Case
Input: A binary representation bin(N) and ⌈Cf⌉ such that Cf separates cosets

for HN ≤ GN with respect to ρ.
Output: The representations ρ(h1, N), ρ(h2, N), . . . , ρ(hs, N) of the elements of

a generating set for HN , with probability at least 1− 1
|GN | .

Compute N1, N2, . . . , Nk such that GN
∼= ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk

;
Use N1, . . . , Nk to build QGN

=
⊗k

j=1QNj
;

Use ⌈Cf⌉ to build Uf , a reversible quantum circuit that computes Cf ;
t← 2⌈log |GN |⌉+ 1;
Initialize an array g of size t;
for j = 1 to t do

Initialize |φ⟩|ψ⟩ to |0⟩|0⟩;
Apply QGN

to |φ⟩;
Apply Uf on |φ⟩|ψ⟩;
Apply QGN

to |φ⟩;
Measure |φ⟩ to obtain a random h′ ∈ H⊥

N ;
gj ← h′

d← lcm(N1, . . . , Nk);
Initialize an array α of size k;
for j = 1 to k do

αj ← d/Nj;
Construct the t× k matrix A such that Ai,j = αj(gi)j;
Compute A’s Smith normal form D = UAV ;
Retrieve V from D;
Initialize a set S;
for t times do

Compute a random solution y of Dy ≡ 0 mod d;
x← V y;
Add x to S;

Map ρ over S;
return S;

Here we chose t1 = t2 = ⌈log |GN |⌉ + 1, so the probability that S is a generating set
for HN is at least (1−2−⌈log |GN |⌉+1)2 ≥ 1− 1

|GN | and the claim of our algorithm is correct.

72

Complexity-wise, we take n = |GN | to be the size of the problem. We furthermore
assume that ρ represents the elements of each GN in O(log n) space. We already know
(Theorems 4.4.1 and 4.1.1 and Algorithm 3) that the first three steps can be carried out
in O(polylog(n)) time. Furthermore, the first for loop requires O(log n) iterations, each
with complexity dominated by QGN

and Uf , which we know run in polylog time.

From Lemma 1.2.2, we know that k is O(log n), so the second loop requires O(log n)
time. At this point, we build matrix A, whose dimensions are both O(log n). Next,
computing D and V requires O(polylog(n)) time, as both t and k are O(log n). Lastly,
the fourth loop iterates O(log n) times. Finding y and x is efficient, thus the entire loop
requires O(polylog(n)) time.

It is fairly evident that the resulting time complexity of the algorithm is O(polylog(n))
in the size n = |GN | of the input, which is efficient.

Application to concrete problems We conclude this chapter with a brief remark
on the problems that we discussed in Section 2.2. In particular, we want to point out
that both {BN ,⊕}N∈N, the group family employed in the reduction of Simon’s problem,
and {ZN ⊕ZN}N∈N, the one used in the reduction of the discrete logarithm problem, are
families of Abelian groups. It follows that both SP and the DLP are reduced to instances
of the HSP that can be solved by Algorithm 5.

73

Conclusions

In our discussion on the hidden subgroup problem, we examined its importance as the
generalization of those problems for which quantum algorithms exist that are exponen-
tially faster than the classical ones. We also presented the actual reduction of two of
these problems to the HSP, namely Simon’s problem and the discrete logarithm problem.
Lastly, we showed that efficient solutions to some instances of the HSP already exist,
and that they can therefore be used to solve the very problems we reduced.

We also hope that our work succeeded in convincing the reader of the flexibility and
generality of the HSP, two properties that make it a prime candidate for the discovery
of new and improved results in quantum complexity theory.

We conclude this thesis with a quick review of some of the topics that we did not
cover, either because of a willful choice of scope or due to time and space constraints.

Integer Factorization
In multiple occasions we anticipated that integer factorization could be reduced to the
hidden subgroup problem. However, when we actually showed some of the reductions,
we omitted such key problem entirely.

The reason behind this choice is that integer factorization is reducible to an instance
of the HSP that eludes our definition of HSP functional. Namely, factorization can be
reduced to a problem of order finding, which can be further reduced to an instance of the
HSP on (Z,+), the additive group of integers [11]. Despite being Abelian and finitely
generated, this group is not finite. Our definition of the HSP functional, on the other
hand, is limited by construction to finite groups and is therefore inadequate to handle
this case. Note, however, that solutions to the HSP on finitely generated Abelian groups
exist.

74

A second approach exists, which reduces the factorization of an integer n to an instance
of the HSP on the additive group Zφ(n), where φ is Euler’s totient function [9]. However,
finding φ(n) given n is just as hard as factoring n. Therefore, either solutions to a weaker
version of the HSP (in which the actual G is unknown) are found, or this approach turns
out to be of very little use.

Non-Abelian Groups
It is also worth mentioning the current state of the art with regard to solutions to the HSP
on finite non-Abelian groups, since this is the kind of HSP which many heterogeneous
problems are reducible to. The graph isomorphism problem, for example, is reducible
to the HSP on the family {SN}N∈N of simmetric groups of N symbols, which are not
generally Abelian [8].

On this front, we have the results of Ettinger, Høyer and Knill [5], who proved that the
HSP on generic groups of finite order can be solved with polynomial query complexity,
i.e. with a number of calls to Uf polynomial in the size of the input. Formally:

Theorem. There exists a quantum algorithm that, given a finite group G and an oracle
f on G promised to be strictly H-periodic for some subgroup H ≤ G, calls the oracle
O(log4 |G|) times and outputs a generating set for H. The algorithm fails with probability
exponentially small in log |G|. The algorithm can be made exact in any model allowing
arbitrary one-qubit gates.

This solution, however, requires some form of classical preprocessing, as an adequate
quantum network must be built from a specification of G. Unfortunately, the prepro-
cessing routines and the quantum networks they produce are inefficient. As a result,
in spite of the polynomial query complexity, the whole algorithm has time complexity
exponential in the size of the input.

75

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[2] Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for
division and related problems. In Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, 1984.

[3] Kevin K. H. Cheung and Michele Mosca. Decomposing finite abelian groups. J.
Quantum Inf. Comp., 2001.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, third edition edition, 2009.

[5] Mark Ettinger, Peter Høyer, and Emanuel Knill. The quantum query complexity of
the hidden subgroup problem is polynomial. Information Processing Letters, July
2004.

[6] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC),
May 1996.

[7] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC
Press, 2015.

[8] Chris Lomont. The hidden subgroup problem – review and open problems, Novem-
ber 2004.

[9] Stephen McAdam. The abelian hidden subgroup problem, 2013.

[10] Michele Mosca. Quantum Computer Algorithms. Ph.d. thesis, Wolfson College,
University of Oxford, 1999.

[11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2004.

76

[12] Peter Williston Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings of 35th Annual Symposium on Foundations of Computer
Science. IEEE Press, 1994.

[13] Daniel R. Simon. On the power of quantum computation. SIAM Journal on Com-
puting, 26(5), October 1997.

[14] Arne Storjohann. Near optimal algorithms for computing smith normal forms of
integer matrices. In Proceedings of the 1996 international symposium on Symbolic
and algebraic computation. ACM Press, 1996.

[15] Noson S. Yanofsky and Mirco A. Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, 2008.

77

