
Alma Mater Studiorum · Università di
Bologna

Scuola di Scienze

Corso di Laurea Magistrale in Informatica

HUMAN ACTIVITY
RECOGNITION IN SPORTS USING

THE APPLE WATCH

Relatore:

Marco Di Felice

Presentata da:

Ramy Al Zuhouri

Sessione I

Anno Accademico

2017/2018

Dedicated to my family

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Structure of The Document 3

2 State of The Art 5

2.1 Applications of Human Activity Recognition 5

2.1.1 Health Monitoring . 5

2.1.2 Safety . 6

2.1.3 Context-aware Behavior 8

2.1.4 Fitness Tracking . 9

2.2 Techniques . 12

2.2.1 Collectable Attributes 14

2.2.2 Window Size Impact 16

2.2.3 Feature Selection . 17

2.2.4 Learning Algorithms 19

2.3 Evaluation of a HAR system 34

2.3.1 Validation . 36

2.3.2 Evaluation Metrics . 36

2.4 HAR Systems and Studies in Literature 38

2.4.1 Wearable Sensors . 38

2.4.2 Smartphones . 41

2.4.3 Smartwatches . 44

2.4.4 Miscellaneous . 47

i

ii CONTENTS

3 System Architecture 49

3.1 Goals and Methodology . 49

3.2 Architecture Review . 50

4 System Implementation 59

4.1 Swift Frameworks . 60

4.2 Watch Application . 64

4.2.1 Training Module . 64

4.2.2 Testing Module . 68

4.3 Phone Application . 71

4.4 Machine Learning Scripts . 74

4.5 Related Issues . 77

5 Data Collection 79

5.1 Sampling and Feature Extraction 80

5.2 Dataset Population . 82

6 System Evaluation 87

6.1 Machine Learning Results . 88

6.1.1 Algorithms and Subjects 88

6.1.2 Sensors and Features 91

6.1.3 Other Experiments . 97

6.2 In-App Tests . 100

6.2.1 Recognition Performance 101

6.2.2 CPU Time . 110

7 Conclusions 113

7.0.1 Future Work . 116

List of Figures

2.1 Fitbit AltaTM . 9

2.2 Nike+ FuelBand . 10

2.3 McRoberts MoveMonitor . 11

2.4 Apple Watch Series 3 . 12

2.5 Phases of human activity recognition 13

2.6 Decision tree . 22

2.7 A multilayer perceptron . 24

3.1 Developed HAR system architecture 51

3.2 HAR App interface on the watch 53

3.3 HAR App interface on the phone 54

3.4 HAR App interface on the phone 55

3.5 HAR App interface on the phone 56

4.1 HealthKit authorizations interface 61

4.2 ActivityController class diagram 66

4.3 TestingController class diagram 69

4.4 CoreData model of the training set 72

4.5 Machine learning scripts class diagram 75

4.6 Classification scripts output 77

5.1 Instances distribution per activity 83

5.2 Instances distribution per subject. 83

5.3 Acceleration x mean distribution 84

iii

iv LIST OF FIGURES

5.4 Acceleration y mean distribution 84

5.5 Acceleration z mean distribution 85

5.6 Acceleration magnitude mean distribution 86

6.1 Classification models building time 89

6.2 Classification models accuracy 89

6.3 Accuracy of impersonal and personal models 90

6.4 Decision tree confusion matrix 91

6.5 Random forest confusion matrix 92

6.6 Sensor data accuracy (DT) . 93

6.7 Sensor data accuracy (RF) . 94

6.8 Features accuracy (DT) . 95

6.9 Features accuracy (RF) . 95

6.10 Configurations accuracy . 98

6.11 Accuracy with outlier removal 99

6.12 Accuracy varying the test set size 99

6.13 Confusion matrix without history set 102

6.14 Confusion matrix with history set size = 3 103

6.15 Confusion matrix with history set size = 5 103

6.16 Confusion matrix with history set size = 7 104

6.17 Push-ups metrics . 105

6.18 Sit-ups metrics . 105

6.19 Squats metrics . 106

6.20 Lunges metrics . 106

6.21 Jump rope metrics . 107

6.22 Resting metrics . 107

6.23 Walking metrics . 108

6.24 Running metrics . 108

6.25 Average metrics . 110

6.26 CPU time . 111

List of Tables

2.1 A dataset with labeled instances 20

2.2 Values defined for a classification 37

3.1 HAR App available options 57

5.1 Sampled data . 81

5.2 Information on the subjects that participated to the study . . 82

6.1 Configurations of sensor data and features 96

v

Abstract

With the recent spreading of Internet of Things, the availability of a wide

variety of cheap devices brought human activity recognition (HAR) to the

broad audience, thus eliminating the need of using costly and obstructive

hardware, and to constraint the users to remain in controlled environments.

Human activity recognition finds application in the field of health monitor-

ing, safety, context-aware behavior and fitness tracking; it can be applied in

order to solve problems such as preventing and diagnosing medical condi-

tions, automatic detection of dangerous events in order to trigger automatic

emergency calls, automatic customization of the user’s phone settings ac-

cording to the activity that is being performed, and keeping track of physical

activities in order to provide the user with useful metrics (e.g. calories con-

sumption or steps taken). This thesis is focused on fitness tracking, with

the aim of finding a way to perform activity recognition with a smartwatch

in order to automatize activity tracking, exempting the user from manually

interacting with the device in order to manage the workout sessions. For this

purpose, the intertial sensors of an Apple Watch, along with the GPS and

the heart rate monitor were used to train and test an activity recognition

model. 4 subjects collected data for 8 different types of aerobic activities,

populating a dataset of 4,083 instances, corresponding to about 20 minutes

of physical activity for each subject. 9 different machine learning algorithms

were evaluated using the holdout validation, trying different combinations

of sensor data and features in order to find the optimal configuration. Due

to its simplicity, it was chosen to use a decision tree for further validation

vii

viii LIST OF TABLES

on unseen data. As expected, the accuracy of the decision tree was higher

when validated on the test set, but dropped from 95.42% to 90.73% when

tested on unseen data. The use of a history set increased the recognition ac-

curacy up to 92.68%. More conclusions derived from validation: the models

were able to recognize activities independently on the wirst location of the

watch; moreover, the accelerometer and the gyroscope were enough to obtain

a good recognition model, while the GPS and the heart rate monitor did not

significantly increase the accuracy.

Chapter 1

Introduction

1.1 Overview

Human activity recognition (HAR) has became more and more popular

in recent times, due to the widespread availability of smartphones, smart-

watches and other types of wearable devices that allow to perform human

activity recognition inexpensively, without wearing costly and obstructive de-

vices, and without the need of constrainting the users to remain in controlled

environments. Human activity recognition have found practical applications

in the daily lives of people, mainly in the fields of health monitoring, safety,

context-aware behavior and fitness tracking [1]. The goal of fitness tracking

is to motivate the users to perform physical activites, counting the steps,

the distance walked, the calories burned and other metrics in order to keep

the user informed about their activities, and motivating them to reach some

goals. Normal, a modern wearable device like a smartwatch or a wristband,

needs input from the user in order to start tracking activities. Some devices

automatically track physical activities, but in a trivial form, recognizing gen-

eral activities such as “in movement” or “standing still”. More specific phys-

ical activities such as “running” or “swimming” need manual input in order

to be tracked. This study focuses on finding an application of human activity

recognition in fitness tracking, more precisely it has the aim of finding a more

1

2 1. Introduction

automatic and seamless way of tracking sport activities on smartwatches, in

order to exempt the users from manually managing the workout sessions.

For this purpose, a HAR system based on machine learning was developed

in order to train and test an activity recognition model, able to classify the

following activities: push-ups, sit-ups, squats, lunges, jump rope, resting,

walking and running. For such study, the sensors of an Apple Watch Series

2 were used, together with an iPhone 6S, which served as support for storing

training data and for implementing more complex functionalities, as well as

a MacBook Pro on which some learning algorithms were tested. Due to the

restrictive CPU, memory and bandwidth limits of the Apple Watch, which

made impossible to use more than 15% of the CPU for more than a minute, or

to send large chunks of data to the iPhone without freezing the communica-

tions, it was chosen not to store the raw sensor data, which had an excessive

size; rather, the feature extraction was carried out in the watch, and the fea-

tures were sent to the iPhone on which they were stored in a local database.

Due to these limitations, it was also chosen to extract a fixed set of sensor

data and features, excluding the most expensive ones, and using a low sam-

pling frequency of 16 HZ in order to avoid exceeding the CPU limits, which

would imply the risk for the application to crash. Moreover, a fixed window

size of 2.5 seconds with 50% overlaps was chosen. 4 subjects, all males, aged

between 23 and 46 were included in the study, collecting more than 4,000

instances, corresponding to about 20 minutes of physical activity for every

user. The subjects were free to wear the Apple watch in their favourite wrist.

The data was therefore exported and analyzed on the MacBook machine us-

ing some machine learning scripts written in Python. Nine machine learning

algorithms were evaluated using the holdout validation, with a test set in-

cluding 30% of the data. The most accurate algorithm was random forest,

which obtained an accuracy of 99.51%. Various configurations of features,

sensors and options were tried, in order to find the optimal configuration.

Due to its simplicity and understandability the decision tree model, which

obtained an accuracy of 95.42%, was preferred over the random forest for

1.2 Structure of The Document 3

testing, and it was therefore imported in the watch application. The deci-

sion tree was validated within the application, obtaining a lower accuracy of

90.73%. The use of a history set improved the recognition accuracy, up to

92.68% with a history set of 3 elements. Moreover, an analysis of the CPU

consumption of the application was performed, but it was able to capture

mostly the CPU usage due to feature extraction, because sensors usage de-

pends on system routines that cannot be analyzed in a proprietary operative

system such as watchOS.

From the validation outside and within the application, the conclusion was

that it is possible to recognize activities independently from the wirst lo-

cation of the watch, and that the best configuration uses a history set of

3 predictions, and includes only the accelerometer and the gyroscope with

automatic feature selection, which obtains a good accuracy with a reduced

CPU consumption.

1.2 Structure of The Document

Chapter 2 is a review of the current literature on human activity recog-

nition; current applications of human activity recognition are summarized

in section 2.1, while different HAR techniques and algorithms are analyzed

in section 2.2. In section 2.3, different ways and metrics to evaluate HAR

systems are described. Finally, a review of the past works and studies on

human activity recognition is presented in section 2.4.

The architecture of the proposed HAR system is presented in chapter 3,

focusing on the goals and methodology in chapter 3.1, and explaining the

high-level functioning of the architecture in section 3.2.

Chapter 4 focuses on the implementation details of the system, describing

and illustrating the most important parts of the programs through class di-

agrams and reporting some code snippets. In section 4.1, a review of the

frameworks used in the Apple Watch and iPhone application is presented.

Sections 4.2 and 4.3 and focus respectively on the watch and phone side

4 1. Introduction

of the application, while the machine learning scripts implemented on the

external machines are described in section 4.4. Finally, section 4.5 presents

a set of related issued found during the development of the system.

The data collection procedure is described in chapter 5. After a brief in-

troduction, the sampling and feature extraction techniques are presented in

section 5.1, while section 5.2 describes how the dataset was populated.

Chapter 6 discusses the evaluation of the developed HAR system, discussing

the models validation in section, 6.1, and the in-app validation of the ex-

ported model in section 6.2.

Finally, 7 presents the conclusions, along with an overview of possible future

work related to this study.

Chapter 2

State of The Art

2.1 Applications of Human Activity Recog-

nition

With the recent spreading of Internet of Things, it has become increas-

ingly common to adopt human activity recognition to recognize daily life ac-

tivities with a broad variety of low-cost devices such as smartphones, smart-

watches and other wearable devices, obtaining information from the device

sensors such as the accelerometer, the gyscoscope and the heart rate monitor.

Human activity recognition is mainly used in the following areas [1]:

2.1.1 Health Monitoring

Certain medical conditions cannot be prevented, diagnosed and treated

in a traditional way, as they require the patients to be monitored during long

periods of time, and often even during their daily routine activities. In the

case of certain diseases, it is not said that the symptoms will appear during a

medical examination, thus human activity recognition would provide doctors

a tool to diagnose medical conditions, monitoring daily activities in order to

detect abnormalities during the routine of a patient. Certain conditions such

as strokes can be prevented and treated only if a diagnosis is made in useful

5

6 2. State of The Art

time. Hence, human activity recognition plays an important role in develop-

ing early-stroke diagnosis tools [2]. Human activity recognition is also useful

in patients with Parkinson’s disease to accurately identify the symptoms and

monitor the course of the condition, as they need to be examinated during

long periods of time [3].

Moreover, human activity recognition is used to monitor the rehabili-

tation of patients in order to give a more accurate status of their health

condition and to assist them evaluating their improvements [4].

S. Patel et al. [5] illustrated a virtual reality approach to monitor the

rehabilitation of patients through human activity recognition. Patients can

be assisted in their rehabilitation program through telerehabilitation, deliv-

ering them activities in their homes, in a game-based context that enhances

engagement and motivation.

Another application of human activity recognition in the field of health

is to monitor eating habits in order to automatically mantain calories intake

records that could replace manually-written food diaries [6]. An automatic

method to detect drinking and eating activities could be used to provide

suggestions that can help the users in the course of their diet. This is a way

to tackle the hobesity problem, which is related to major health issues such

as strokes and heart attacks. Moreover, human activity recognition could

be used to detect smoking habits [7] in order to provide an individualized

risk estimation which increases awareness and can motivate the users to quit

smoking. Similary, human activity recognition can be used to automatically

detect sleeping activities [8], which could be lead to the replacement of costly

and invasive methods such as polysomnography.

2.1.2 Safety

Human activity recognition systems are able to automatically send an

alert in case that the user falls; in this case, an automatic message can be

sent to their relatives, or an automatic emergency call could be triggered

to save the patient. The most common commercial systems are available

2.1 Applications of Human Activity Recognition 7

in form of wearable sensors, but they have a set of limitations such as high

cost, limitation in terms of distance that can be traveled from the base, and

a limited number of response methods. Smartphones could be used instead

of specialised wearable systems, as they have greater flexibility because they

do not need to be tied to a receiver, and they have a vast number of response

methods such as sending a text message, an email or peforming an automatic

call. Additionally, smartphones have a lower cost and they can be afforded

by a greater audience of users. J. Dai and Z. Yang [9] proposed a pervasive

fall detection system based on mobile phones, in order to address the issue of

wearable systems, such as obstructivity and high cost. Y. He, Y. Li and S. D.

Bao [10] implemented a fall detection system based on the data acquired from

a waist-mounted smartphone in a real-time environment, using the phone

built-in accelerometer to detect falls and send an automatic MMS to a pre-

selected set of people, with information including the time, the GPS position

and the Google Maps location of the suspected fall.

In addition, applications for the Apple Watch such as FallSafety [11] are able

to perform fall detection and trigger an automatic emergency call in case

that a fall is suspected. The Apple Watch Series 2 requires the Apple Watch

to be paired to an iPhone to trigger the call, but since the Apple Watch

Series 3, this is no longer required as the watch has an integrated SIM that

can make calls autonomously.

Moreover, applications of human activity recognition can be extended to

other areas where automatic emergency calls could provide greater safety.

J. Dai et al. [12] proposed a system able to automatically detect dangerous

vehicle maneuvers related to drunk driving in order to prevent car accidents,

automatically alerting the driver or calling the police. This solution requires

a mobile phone placed in the vehicle, whose accelerometer and gyroscope are

used to collect data and compare it against typical drunk driving patterns

obtained from real driving tests.

8 2. State of The Art

2.1.3 Context-aware Behavior

Human activity recognition can be used to customize the device’s be-

havior according to the high-level activity that the user is performing, such

as “at work” or “walking home”; for instance, the system may be able to

disable incoming calls or setting the device mode to silent while the user is

working, or if the user is exercising it may play music from a pre-selected

playlist. When the user is moving, it is more difficult and also potentially

dangerous to read the screen, hence Mashita et al. [13] suggest to address

this problem recognizing the user context in order to automatically adapt

the interface and the methods of display. Also the volume of the phone may

be automatically adjusted and increased while the user is walking and it is

thus submitted to extra noise caused by motion.

A subcase of the human activity recognition problem is the transportation

mode recognition problem, which aims at detecting what kind of vehicle the

user is using. Detecting if the user is moving by train, by car or by another

kind of vehicle [14] is important in order to tune-up the context-based ser-

vices that a mobile phone can provide to the users. For instance, the ringtone

can be switched off while the user is walking, or the GPS navigator could be

turned on when the user is traveling by car.

Additionally, human activity recognition can be useful for self-managing sys-

tems, which is an application similar to context-aware behavior, except for

the fact that it does not focus on improving the user experience, but rather

on managing efficiently the resources of a sytem. For instance, it would be

efficient to turn off Bluetooth and WiFi when the user is walking or running,

in order to save power, or to disable position sensors such as the GPS or

GLONASS when the user is stationary. Another way is to reduce the fre-

quency with which the sensors are read, which can save the battery life up

to 20-50% [15].

2.1 Applications of Human Activity Recognition 9

Figure 2.1: Fitbit AltaTM.

2.1.4 Fitness Tracking

The goal of fitness tracking is to monitor metrics such as steps taken,

calories burned and heartbeat. Some advanced systems are able to monitor

much more sophisticated metrics such as floors climbed and quality of sleep.

Motivating the users to have physical activity is one more benefit of activity

tracking: the activities can be shared among users on social networks, pro-

moting challenge and competitiveness.

The Fitbit AltaTM [16] is a wristband that includes a built-in accelerometer

and it is able to automatically recognize activities such as walking, swimming

and running, and to calculate some useful statistics such as total burned calo-

ries and steps taken. Another popular device is the Nike+ FuelBand [17], a

wristband with an integrated accelerometer that is able to display a single

value such as steps, distance and time, plus a motivational feature which en-

courages the users to move, earning Nike+ points everytime that they engage

in a physical activity. A device with similar capabilities is the McRoberts

MoveMonitor [18], which comes in the form of a wearable waistband, which

can recognize physical activities and is able to measure energy expenditure

and to perform sleep analysis.

10 2. State of The Art

Figure 2.2: Nike+ FuelBand.

Modern smartphones include a built-in accelerometer, a gyroscope and a po-

sitioning system such as GPS or GLONASS, making fitness tracking available

to a broad audience. Indeed, while specialised devices such as Fitbit AltaTM

and Nike+ FuelBand are special purpose, a smartphone is rather a general

purpose device that is not specifically purchased by users who are exclusively

interessed in activity tracking. Commonly, a smartphone application is able

to perform a simplified version of human activity recognition, which consists

in detecting the steps, the distance traveled and the pace, usually with a

generic classification of activities such as “in movement” or “standing”, and

they need manual input in order to start collecting data about specific ex-

ercises like running or wimming. Another limitation of smartphones is that

they can’t be worn comfortably: users are ought to carry them in their pock-

ets, or to wire them to a special band designed to carry a smartphone, which

can be worn in the arm or in the waist. Between the most popular fitness

tracking applications for smartphones, there is Nike+ Run Club, Runastic

Running & Fitness and Human - Activity Tracker. They ara available for

iOS and Android smartphones. More specific applications can calculate ad-

vanced metrics, like for example Pacer, an application designed to count

steps, or Runastic Road Bike, an application exclusively designed to track

2.1 Applications of Human Activity Recognition 11

Figure 2.3: McRoberts MoveMonitor.

biking activities.

With the recent availability of more sophisticated smartwatches, equipped

with accelerometers and position sensors, fitness tracking has made a further

step ahead. The necessity of carrying a smartphone in the pocket or in a

band tied to the body has been eliminated, and activity tracking can be per-

formed directly on the smartwatch. The most popular smartwatches include

the Apple Watch Series 3, the Garmin Watch and the Ticwatch. They can be

paired to a smartphone to exchange data about fitness activities. The pre-

viously mentioned fitness applications available for Android and iOS come

in a bundle that offer its smartwatch counterpart: the application can be

used whether from the phone and from the watch, and the training data is

seamlessly exchanged between the two devices. Given that a smartwatch is

worn to the wrist, human activity recognition can be more accurate, and

it may include more activities like swimming and sleeping, that would be

difficult to track on a smartwatch. For instance, the Sleep+ application for

watchOS - the Apple Watch operative system - is able to perform a very

basilar sleep analysis: while the user sleeps, movements are tracked using

the built-in accelerometer in order to classify the sleep into three categories:

“awake”, “restless” and “restful”. The sleep data is saved and can be shared

with the iPhone for better display, in order to give the user an idea on the

sleep quality and duration.

12 2. State of The Art

Figure 2.4: Apple Watch Series 3.

2.2 Techniques

Human activity recognition can be approached in two ways [19], using:

• External sensors. In this case, the sensors are placed in predeter-

mined points of interests, and the human activity recognition process

depends on the voluntary interaction between users and sensors. It is

the case of intelligent homes [20, 21, 22, 23, 24], where wireless sensors

(e.g. RFID) are placed on key objects such as a washbawl or a TV,

in order to recognize activities of daily living (ADLs), which include

eating, watching TV, or washing dishes. Performing these activities

is a good indicator of cognitive and physical capabilities, specially for

the elderly and for people with dementia, whose health is required to

be constantly monitored. Furthermore, cameras can be used as ex-

ternal sensors in human activity recognition, using features obtained

from video sequences [25, 26, 27, 28]. This can be useful in the field of

security, surveillance, entertainment and personal archiving.

2.2 Techniques 13

Figure 2.5: Phases of human activity recognition.

• Wearable sensors. Using sensors such as accelerometers, GPS, ter-

mometers or heart beat rate monitors is generally considered a bet-

ter approach, because the techniques used in this approach are simpler

than video processing techniques. Moreover, wearable sensors overcome

more issues such as privacy and pervasiveness: indeed a permission is

required from the users to be constantly recorded by cameras, and not

everyone is willing to collaborate.

For these reasons, HAR with external sensors will not be examined, while

the following remainder of this subsection will delve into the techniques used

with wearable sensors.

14 2. State of The Art

Figure 2.5 shows the typical phases of human activity recognition. In the

first phase, data are collected from sensors every fixed time interval. This

time interval determines the sampling frequency : the number of times that

the sensors are read every second. The data is then stored in a data structure

like a queue, and every fixed or variable amount of time τ, the data is fetched

and some features are extracted. τ is also called the window size, which can

be measured in seconds or in the number of samples that are required to be

collected before extracting the features. The features are tipically labeled

with their class of activity and stored in a permanent memory. The feature

extraction process is repeated until a large dataset is obtained, containing a

statistically significant amount of data. This dataset is also called training

set, which is used in the third phase, where the training data is used to

produce a recognition model, using a machine learning algorithm.

2.2.1 Collectable Attributes

During the data collection phase of HAR, there are four types of attributes

that can be collected:

• Environmental attributes. Attributes that depend on the surround-

ing environment such as humidity, temperature, noise and light levels

can be measured. This provides contextual information that is useful

to discriminate the activity performed by the users. For instance, if the

user is operating in a noisy environment, it is more likely that they are

walking or running rather than sleeping. These parameters might be

useful to increase the accuracy of the recognition model, but alone they

are not sufficient to produce an enough accurate recognition model. A

study on human activity recognition that made use of environmental

attributes was presented by Maurer et al. [29], who used a device con-

taining a light sensor, a thermometer and a microphone, among with

a dual axis accelerometer, to build an activity recognition system.

• Motion and orientation. An accelerometer is generally considered

2.2 Techniques 15

a cheap device, which is usually integrated in most modern devices

such as smartphones and smartwatches. Used in conjunction with a

gyroscope, an accelerometer provides most of the data useful to build

an accurate and reliable recognition model [30]. Typically, triaxial ac-

celerometers are used to measure the total acceleration at every instant

of time, which requires a gyroscope to isolate the gravity from the user-

initiated acceleration. The gravity magnitude is fixed, but it can be

decomposed along three axises to produce information about the ori-

entation of the device. The user acceleration is instead given by the

instantaneous acceleration caused by the user movements. Moreover, a

gyroscope can also measure the rotation rate along the three axises of

the device, which is useful since virtually all activities include swing-

ing movements (e.g. swinging an arm during a run). For this reason,

the position of the accelerometer is an important factor. For instance,

placing an accelerometer inside the trousers pocket can be useful to

recognize activities like walking and running, but it can hardly dif-

ferentiate between activities that do not involve leg movements, like

standing still or driving a car.

• Location. GPS and GLONASS are the most widely used positioning

systems, which are integrated in most modern smartphones. There are

two ways to use position sensors in human activity recognition: the

first is to use the position to provide contextual information about the

activity [31]. For instance, if the user is at home, it is unlikely that

they could be swimming or riding a bus, but they might be eating or

resting. The second way is to use the variations in longitude, latitude

and altitude to calculate the speed and the course of the user during

an activity. This can be useful to recognize activities where speed and

course are key factors, like driving a car, running and walking. Using

position sensors comes with a set of problems: first of all they are

not suitable for indoor activities, or for activities performed in areas

where the signal is weak. Moreover, the GPS/GLONASS systems are

16 2. State of The Art

expensive in terms of CPU usage and energy consumption.

• Vital signs. Heart rate, respiration rate, skin temperature and more

signals can be used to obtain a more accurate recognition model [32].

However, Tapia et al. [33], in their proposed HAR system which used

a triaxal accelerometer and a heart rate monitor, concluded that the

heart rate is not useful in activity recognition, specially during tran-

sitions from intense to moderate activities, because the heart rate is

slow to fall down to normal levels, therefore a low-level intensity activ-

ity performed after a high-intensity activity can be mistakenly classified

as the latter.

2.2.2 Window Size Impact

Segmentation is the process of dividing data samples into smaller data

segments, also called windows. There are three groups of segmentation tech-

niques in activity recognition:

• Activity-defined windowing. The data is partitioned when an ac-

tivity transition is dectected. For instance, Sekine et al. [34] proposed

a model based on wavelet decomposition to detect frequency changes

from three groups of walking activities. Another approach is to rely on

user feedback to detect activity transitions. For instance, users may

be required to stand still for a certain amount of seconds in order to

dected activity transitions [35].

• Event-defined windowing. The event-defined approach is suitable

for activities that can be considered an ordered sequence of actions or

movements that occur sporadically, and are scattered through other

gestures or movements. In this case, it can be enough to recognize spe-

cific movements or gestures that occur at the beginning of the activity.

This means that the window size is not fixed, but it changes to fit the

activity transitions. For instance, gait analysis can be used to detect

2.2 Techniques 17

a walking activity, using a model that identifies the phases of a gait

cycle, where a heel strike event is used to partition the data [36].

• Sliding windows. This is the most broadly used windowing method,

because it is simple and it does not require any form of preprocessing,

which makes it the most suitable method for real-time applications. It

consists in simply dividing the data into a fixed set of samples, with

no inter-window gaps. Sometimes it is convenient to reuse part of the

data collected during the previous time window, allowing fixed size

overlaps. For instance, if the features are extracted every time window

of 2 seconds, it could be convenient to reuse half of the data. This

means that the most recent data collected during the previous second is

reused, while the older data is discarded. This halves the time required

to extract the features, without requiring to half the window size.

Since the sliding window approach is the most used because of its simplic-

ity and practicality, the rest of this chapter will focus on this method. With

the sliding windows approach, the window size plays an important role in the

efficacy and efficiency of a HAR system. Generally, a smaller window size

allows for faster activity detection, and has a smaller energy impact. On the

contrary, a bigger window size may come with greater energy consumption,

but allows for recognition of complex activities, with the penalty of being

slow to detect transitions. In previous studies, a window size ranging from

0.1 to 12.8 seconds or more has been used [37].

2.2.3 Feature Selection

Samples are collected at a certain sampling frequency and at the end

of every time window, some features are extracted. The features will then

serve as parameters useful to discriminate between one activity or another.

Therefore, the recognition model obtained at the end of the whole process,

will be able to recognize activities in a time window basis.

Among the most popular time domain features reported in literature [19],

18 2. State of The Art

there are central tendency measures such as the mean and the root mean

square, as reported in the equations 2.1 and 2.2, where 1 ≤ i ≤ n represent

the n samples collected during the time window:

x =
1

n

n∑
i=1

xi (2.1)

RMS =

√√√√ 1

n

n∑
i=1

xi2 (2.2)

Another measure is the median, which is, given a set of samples ordered

by value, the value that separates the lower half from the higher half.

Dispersion metrics include the standard deviation, the variance and

the mean absolute deviation, as reported in the following equations:

σx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (2.3)

σ2x =
1

n− 1

n∑
i=1

(xi − x)2 (2.4)

MAD =

√
1

n− 1

∑
i=1

n |xi − x| (2.5)

Some features used in HAR are capable of describing the shape of the

samples distribution, like the skewness [38], which measures the asymmetry

of the samples distribution about its mean (equation 2.6). Kurtosis instead,

gives an idea of the peakedness of the distrubution over the time window

(equation 2.7).

Skewness =
n

(n− 1)(n− 2)

n∑
i=1

(xi − x)3

σx3
(2.6)

Kurtosis =
n(n+ 1)

∑n
i=1(xi − x)4 − 3

(∑n
i=1(xi − σx2)

)2
(n− 1)

(n− 1)(n− 2)(n− 3)σx4
(2.7)

2.2 Techniques 19

The interquartile range is the differentce between the 75th and the 25th

percentile (Q3, Q1 in the formula):

IR = Q3 −Q1 (2.8)

The Fourier transform takes as input a time domain function such as the

distribution of the acceleration samples, and produces a frequency domain

function. This is useful to calculate the energy, which is defined as the sum

of all the components of the Fourier trasnform (F1, . . . , Fn), divided by the

total number of samples:

Energy =

∑n
i=1 F

2
i

n
(2.9)

Another feature that is based on the Fourier transform is the entropy (H

in 2.10) [39], which gives a measure of the amount of disorder in the data:

P̂ (Fi) =
|Fi|2

n

Pi =
P̂ (Fi)∑n
i=1 P̂ (Fi)

H = −
n∑

i=1

Pi lnPi

(2.10)

2.2.4 Learning Algorithms

Machine learning, in particular supervised learning, is a widely used ap-

proach in human activity recognition. The training set contains the features

collected during every time window, plus a categorical value that represents

the activity, as shown in table 2.1. Every row of data is also called an in-

stance. The goal of a supervised learning algorithm is to analize the training

set in order to infer a model able to classify unlabeled instances. A good

classification model is able to “guess” the acivity most of the times, but also

the building time of the model and more metrics are taken in consideration.

Many supervised learning algorithms have been described in literature [40].

A description of the most common algorithms will follow.

20 2. State of The Art

Instance Speed
[
m
s

]
Acceleration

[
m
s2

]
Activity

1 2.75 3.78 Running

2 3.39 4.41 Running

3 1.51 2.73 Walking

4 0.01 0.71 Resting

5 3.14 6.72 Cycling

Table 2.1: A dataset with labeled instances.

Decision trees

As shown in figure 2.6, in a decision tree, each nonterminal node rep-

resents a feature, and each branch represents a splitting point for the value

that the feature can assume (e.g. in the root node if the speed is smaller than

2.75, then the leftmost branch is followed). To assign a class to an unlabeled

instance, the classification algorithm starts from the root node, and moves

to the child node following the branch according to the value of the feature

that is being evaluated, until it reaches a leaf node, which contains the label

that should be assigned to the instance.

To build a decision tree, the first step is to sort the features in order to

choose which ones should appear first in the tree. A common criterion is to

choose the feature that best divides the training data first, such as informa-

tion gain [41] and gini index [42]. Another criterion is to choose the features

not independently, but taking into account the context of other features, like

described by Koronenko in his ReliefF algorithm [43]. However, many studies

concluded that there is no single best method to choose the attributes, since

the choice depends on the characteristics of the training set that is being

used [44]. After choosing an attribute, the training data is split according

to the chosen value, and then the procedure is repeated recursively on each

partition of the data, until all the sub-trees belong to the same class.

A common problem of decision tree algorithms is overfitting, which occurs

when the decision tree follows too closely the training set, but has a much

2.2 Techniques 21

bigger error if tested on another dataset. In general, if a decision tree is larger

than a decision tree with a similar performance in terms of accurary, then

it is preferable to choose the smaller one, because it is less probable that it

overfits the training data. To prevent overfitting in decision tree algorithms,

there are usually two methods: the algorithm is stopped earlier, to prevent

it from perfectly fitting all the training data, or the decision tree is pruned

after being built.

The most common decision tree algorithm is the C4.5 algorithm, developed

by Quinlan [45], which is based on the assumption that the training data fits

in memory, and uses the concept of information gain to select the attributes.

At each node, the C4.5 algorithm chooses the attribute that maximizes the

information gain, then recurring on the subsets of the data obtained by split-

ting the dataset on the selected attribute. During classification, the decision

tree can deal with unknown feature values by passing the instance down all

the branches of the node where the unknown feature value was found, and

using the averaged classification output of each branch as result. C4.5 is

renowned for being a simple and easily comprehensible algorithm, being a

good compromise between accuracy and efficiency. It tends to perform better

with discrete and categorical features.

Neural networks

Neural networks are based on the concept of perceptrons [46]. As shown

in figure 2.7, a multilayer perceptron [47] is a network composed of nodes

connected among them, grouped by layers. Typically, the first layer contains

a number of nodes equal to the number of features whose value should be

evaluated in order to discrminate between activities. This layer is called

input layer, because the functionality of its nodes is to send values to the

nodes in the following layer. There is an arbitrarily large number of layers

in the middle, called hidden layers, whose nodes receive an input from each

node in the preceeding layer, and send an output to the nodes in the nodes

in the following layer. Given that that m is the number of nodes in the layer

22 2. State of The Art

Figure 2.6: A decision tree that fits the dataset in table 2.1.

k + 1, which is equal to the number of nodes in the preceeding layer (this

condition is not necessarily true in all cases, because the number of nodes in

any hidden layer can be arbitrarily large), then the input of the j-th node in

the layer k + 1 is equal to:

Ikj =
m∑
i=1

xkiw
k
ij (2.11)

Where xki is the output of the i-th node in the layer k, and wk
ij is the

weight of the connection between the node i and j between the layer k and

k + 1. Each connection between any pair of nodes has its own weight that

can be tailored in order to modify the behavior of the neural network. Each

hidden node evaluates the input through an activation function, that usually

adds a bias to the input and returns a value greater than zero only if the sum

of the input and the bias is greater than a certain threshold. The behavior of

a neural network is thus similar to the behavior of a human brain, where each

neuron can fire and activate the synapses that link it to another neuron, until

2.2 Techniques 23

the signal reaches a target neuron that in the neural network corresponds to

the label that should be assigned to the instance that is being evaluated. The

output layer is the layer than contains the terminal nodes, that are similar

to the hidden nodes in the fact that they have an activation function, but

they don’t have any outbound link, and their output can be joined with the

output of the other output nodes, to form a vector [y1, y2, . . . , yn], where n

is the number of activity labels, and only one value yp among the members

of the vector is equal to one, indicating that the predicated activity is the

activity corresponding to the p-th output node of the perceptron, while all

the other members of the vector are equal to zero.

Given a neural network with a certain number of nodes, three things can

be manipulated in order to change its behavior: the network topology, the

activation functions and the weights. Assuming that the first two are fixed,

then the problem is to find the configuration of weights that gives the best

accuracy. In order to build a multilayered perceptron that fits a certain da-

taset, initially, a network with random weights is built. Afterwards, for each

instance in the dataset, the neural network is fed with its feature values, and

the output is compared with the correspoding label in the training set. If

the output is correct, then the neural network does not have to be corrected.

Otherwise, the weights are updated with a certain bias that brings the out-

put to be closer to the desired one. Usually all the instances are given in

input to the perceptron, the weights are adjusted and then the process is

repeated for a certain number of times (this is known as the propagation

algorithm). The algorithm stops with many criteria, such as: i) after a cer-

tain, fixed number of steps, ii) when the error rate is smaller than a given

threshold, iii) when no improvement on the error was experienced after a

given number of steps. One of the advantages of multilayer perceptrons, is

that when some instances are added to the training set, it is not necessary

to rebuild the neural network from scratch. The perceptron can be tuned by

adding instances, which cause the weights to be modified, without running

the propagation algorithm again for older instances. Nevertheless, building

24 2. State of The Art

Figure 2.7: A multilayer perceptron with two hidden layers and three

output nodes.

a neural network is usually a slow process, and the time complexity in the

worst case can be exponential in the number of instances. The topology of

the network also plays an important role, and can influence both the building

time and the accuracy of the perceptron. A network with too many nodes

can result in overfitting; on the contrary, a network with too few nodes can

result in poor prediction accuracy.

Statistical classifiers

The training set can be used to build a probability model, which is able

to estimate the probability that a certain instance belongs to a class. The

most common statistical classifier is the Naive Bayes classifier [48]. It can

be described as a network composed of directed, acyclic graphs with one

parent and many nodes, where the parent is the unobserved node, and the

children are the observed nodes, which are assumed to be independent. The

probability that an instance A composed of n features x1, x2, . . . , xn belongs

to the class Cj can be estimated as:

2.2 Techniques 25

P (A ∈ Cj) = P (Cj) ·
n∏

i=1

P (xi|Cj) (2.12)

Where P (xi|Cj) is the probability that an instance labeled with the class

Cj has xi as value of its i-th feature. Applying the Bayes theorem, the

following formula can be obtained:

P (A ∈ Cj) = P (Cj) ·
n∏

i=1

P (Cj |xi) · P (xi)

P (Cj)
(2.13)

P (Cj|xi), P (xi) and P (Cj) stand respectively for: i) the probability that

if an instance has xi as value of its i-th feature, then it belongs to the class

Cj, ii) the probability that the i-th feature of any instance has xi as value,

iii) the probability to find an instance labeled with the class Cj. All these

probabilities can be extrapolated from the training data. Then, to label an

instance it is enough to compute the probability P (A ∈ Cj) for every class,

and to pick the class whose probability is the highest.

The Naive Bayes classifier is simple and it requires a very short amount of

time to be built, but it has an important limitation: it is based on the as-

sumption that the child nodes are indepedent, which is rarely true. for this

reason, this classifier has usually a low accuracy compared with other classi-

fiers.

A more general class of statistical classifiers are bayesian networks, which

are a superset of Naive Bayes classifiers. A bayesian network can be repre-

sented as a directed acyclic graph, where nodes represent the features, and

arcs represent a relationship of dependence between two features. If there is

no link between two nodes that correspond to the features x1 and x2, it means

that the two features are independent. Statistically speaking, it means that

given another feature x3, then: P (x1|x2, x3) = P (x1|x3), for all the possible

values for x1, x2, x3. If instead there is an arc directed from x2 to x1, then it

means that the value of x1 is dependent on the value of x2, and it is possi-

ble, given a third feature x3 which has an outbound node adjacent to x1, to

calculate the conditional probability of the value x1 for every configuration

26 2. State of The Art

of x2, x3. A bayesian network that fits a dataset of independent features is

equivalent to a Naive Bayesian network, where the children of a node are not

connected among them.

To build a bayesian network the first step is to determine its topology, in case

that it is not already known. The number of possible network topologies is

exponential in the number of features, therefore it is necessary to adopt an al-

gorithm that tries to estimate the best topology, which is a good compromise

between accuracy and time. Some approaches have been adopted: i) a scor-

ing function is used to evaluate the “fitness” of a given network topology over

the training data, then a local search can be used to find the best topology

according to this score [49, 50], ii) using statistical tests such as chi-squared

and mutual information test, the conditional independence between features

can be inferred, thus obtaining a set of constraints that can be used to build

the network [49]. Once a network has been built, the second step is to

determine the conditional probability parameters
(
e.g. P (x1|x2, x3)

)
, which

should be inferred from the dataset; they are usually stored in a table, called

conditional probability table (CPT). The resulting bayesian network is able to

return a label Cj, such that maximizes the probability P (Cj|x1, x2, . . . , xn).

The advantage of bayesian networks is that it is possible to take into account

domain-related information about a classification problem, in terms of de-

pendencies between features (e.g. asserting that two features are correlated,

or that a node is a leaf node, etc . . .). But this comes with some limitations:

first of all, a bayesian network is rarely fit for a training set with contin-

uous variables, which are often needed to be discretized. Moreover, since

the building time and the required space of a bayesian network is exponen-

tial, such model is unsuitable for training sets with a large number of features.

Instance-based learning

Lazy-learning algorithms delay the computation required to generalize

the dataset until the classification is performed. They have the advantage

2.2 Techniques 27

of requiring less time during the training phase, but they are slower during

classification. The most popular instance-based learning algorithm is the k-

nearest neighbors algorithm (kNN), which is based on the assumption

that instances that belong to the same class have similar underlying proper-

ties [51]. If this assumption is true, then to classify an unlabeled instance,

a similarity measure that takes as input the features of two instances can

be used to find the k instances that are closer to the instance that is being

classified. The output is the most frequent class among these k instances.

Many measures can be adopted, such as i) the Manhattan distance, ii) the

euclidean distance, iii) the Minkowsky distance, iv) the Chebychev dis-

tance, v) the Canberra distance, vi) Kendall’s rank correlation. Usually,

a weighting scheme is adopted to alter the influence of each instance, which

has to be tuned for the dataset that is being used [52]. Since the instances

need to be mantained in memory in order to run the kNN algorithm, mem-

ory is clearly one of its most important limitations. This problem can be

mitigated by using instance-filtering algorithms able to reduce the dataset

while not significantly affecting the accuracy [53, 54]. Since the required time

for classification is proportional to the number of instances, instance-based

filtering has also a beneficial impact on the classification time. Another prob-

lem of the kNN algorithm is its dependence on the choice of k parameter,

which can lead to different classification results of the same instance. The

choice of the k parameter is even more crucial when the instance that is being

classified is in a location affected by heavy noise (the location of the instance

can be seen as its position in an n-dimensional space defined by the value

of its features). In this case, the highest the k parameter, the lowest is the

chance that noisy instances win the majority vote, leading to an incorrect

classification. On the contrary, in the case that the instances belonging to a

class are overnumbered by the instances of another class which are located

in the surrounding region, the latter class can mistakenly win the majority

vote if the value of k is too high. Wettschereck et al. [52] concluded that in

case of noisy instances, the accuracy of the kNN algorithm is not sensitive to

28 2. State of The Art

the choice of k when k is large. Moreover, they found that the performance

of kNN with k = 1 (1NN) is superior compared with higher choices of k for

small datasets (with less than 100 instances). On the contrary, for medium

and big datasets, 1NN is outperformed by kNN algorithms with higher val-

ues of k. Another factor that affects the performance of kNN is the choice

of the distance measure, which usually affects the performance in different

ways, according to the underlying properties of the training set. To sum-

marize, the main problems of the kNN classifier are the large computational

and space requirements for classification, and its sensitivity to the choice of

the distance measure and the k parameter. Another disadvantage is the due

to the possibility that a particular configuration of the kNN algorithm is

“unstable”, in the sense that a small change in the training set can lead to a

very significant change in the resulting classifier. Nevertheless, delaying the

efforts until the classification process makes instance-based learning a very

flexible approach, since instances can be added without requiring to rebuild

the model, which can be time costly in the case of other classifiers such as

multilayer perceptrons and decision trees.

Support vector machines (SVMs)

This is the most recent machine learning approach [55, 56, 57], and it is

based on the concept of “margin”, which is, given the Rn space where every

axis represents a feature (n is the total number of features), the separation

gap between two linearly separable classes C1, C2 in a dataset with m in-

stances x1, x2, . . . , xm and m labels y1, y2, . . . , ym. It has been demonstrated

that the classification error can be minimized by maximizing the distance

between the hyperplane and the instances on either side of the hyperplane.

The problem consists in finding a pair
(
w, b
)

such that:

wT · xi + b ≥ 1, ∀i | xi ∈ C1

wT · xi + b ≤ 1, ∀i | xi ∈ C2

(2.14)

Where w is the weight vector and b is the bias. Then, the class is given

2.2 Techniques 29

by the sign of wT + b, which is positive if the instance belongs to C1, and

negative if the instance belongs to C2.

When the two classes are linearly separable, it is possible to find an optimum

hyperplane which maximizes the distance between the instances of the two

classes and the hyperplane, by minimizing the squared norm of the separating

hyperplane:

minimize
w,b

Φ(w) =
1

2
‖w‖2

subject to yi(w
T · xi + b) ≥ 1, i = 1, . . . ,m

(2.15)

Given the optimum hyperplane, points that lie on the margin are called

support vectors. The solution is represented by a linear combination of these

vectors, while all the other vectors can be ignored. Since the number of sup-

port vector points are usually small, at classification time the SVM model

complexity is unaffected by the number of features encountered in the train-

ing set. This makes SVMs suitable for problems where the number of features

is large if compared with the number of instances in the training set.

In most of the problems, the training set is usually affected by a certain

number of misclassified instances (e.g. due to noise); in such case, the SVM

could not be able to find any separating hyperplane. Veropoulos et al. [58]

addressed this problem through the use of a soft margin, which accepts some

misclassifications of the training instances. A soft margin can be adopted by

introducing slack ariables, in order to tolerate an error ξ, which would turn

the inequalities in 2.14 to:

wT · xi + b ≥ 1− ξ, ∀i | xi ∈ C1

wT · xi + b ≤ 1 + ξ, ∀i | xi ∈ C2

ξ ≥ 0

(2.16)

For a misclassification to occur, the error should be greater than 1. This

means that
∑

i ξi is the maximum number of training errors that can be tol-

erated.

Nevertheless, the SVM algorithm can only be applied to linearly separable

30 2. State of The Art

problems. In real-world problems such as human activity recognition, the

training data is rarely linearly separable. This problem can be solved by

mapping the data into a higher-dimensional space where the data is lin-

early separable. Then, the problem is solved by finding a separating hy-

perplane in this space (also called the transformed feature space), and any

instance has to be mapped there before being classified. If the data can be

mapped to a Hilbert space H throught a mapping function Φ, then to build

an SVM it is necessary to calculate dot products on the mapped features of

every instance in the training set. If there is a kernel function K, such that

K(xi, xj) = Φ(xi)•Φ(xj), then the kernel function can be used in the training

algorithm, thus eliminating the need of determining Φ and calculating inner

products directly in feature space, as described in [56]. To determine the

most appropriate kernel function, it is common practice to try the algorithm

on different classes of kernel functions, and then using cross-validation to

determine which function is the most suitable. For this reason, one of the

most serious limitations of SVMs is the low speed during the training phase.

The training phase can be reduced to a quadratic programming (QP) prob-

lem, whose complexity depends on the number of instances in the training set.

Solving a QP problem requires to perform mathematical operations on large

matrices, and it can be very slow for large datasets. Sequential minimal

optimization (SMO) is a simple algorithm that requires less computation

than traditional SVM algorithms, which decomposes the QP problem into a

set of QP sub-problems, and requires a relatively low amount of time and

space.

To summarize, SVMs have the advantage of being very fast during classi-

fication, and they are suitable for datasets with a large amount of features

compared to the number of instances. Nevertheless, they are slow during the

training phase. There is a workaround to adapt SVMs to non-linearly sep-

arable datasets, but they still can solve only binary classification problems.

To adapt SVMs to multi-class problems, it is necessary to use a set of SVMs,

one for every pair of classes. Unlike neural netoworks, SVM clasifiers are not

2.2 Techniques 31

subject to the problem of local minima, as it is guaranteed that they will

always find a global minimum.

Ensemble classifiers

An ensemble of classifiers, which is either composed by many versions

of the same classifiers built in different ways (on different partitions of the

training data, or varying the model parameters), or a collection of different

classifiers, can be used to obtain more accurate prediction results. Every

classifier makes its contribution by producing an output, and then a voting

algorithm, either weighted or not, is run to choose the final output. The first

category of ensemble methods will be described.

Bagging [59] is a an esemble method that relies on a single classification

algorithm, called inducer, which is trained on many boostrap samples of the

training set. A boostrap sample [60] is generated by uniformly sampling m

instances from the training set with replacement. The sampling is repeated

T times, and for each time an instance of the inducer classifier is generated.

At the end of the process, a set of T classifiers is obtained, which is used to

classify unlabeled instances through an unweighted voting algorithm. This

technique relies on the instability of the inducer classifier, which produces

different results if it is trained on a perturbated version of the original da-

taset. neural networks are a good example of unstable classifiers, and they

generally produce good results if used as inducers of a bagging classifier. On

the contrary, the performance of bagging classifiers is degraded if stable al-

gorithms (e.g. kNN) are chosen as inducers.

Another similar ensemble method is boosting [59], which similary to bag-

ging, relies on the concept of bootstrap sampling, with the difference that

the classifiers are generated sequentially rather than in pararrel, and that

the instances in the samples are weighted. Among the most popular boost-

ing methods, there is the AdaBoost algorithm (adaptive boosting), which

requires an inducer algorithm that supports weighted instances. For this

purpose, the Naive Bayes and the multilayer perceptron algorithms may be

32 2. State of The Art

used, since they support weighted instances. In [59], a modified version of a

decision tree algorithm is adopted, which supports weighting. Initially, the

AdaBoost algorithm sets all the weights to 1, and a variable S ′ is used, which

is initially equal to the whole training set. At each step, a classifier is gen-

erated using S ′ as input. The process of building the classifier might need

to be repeated on a random boostrap sample of the training set in case that

the classifier weighted error on the training set is is greater than 50%, up to

a maximum number of 25 times. When a classifier with an error rate smaller

than 50% is obtained, the correctly classified instances in S ′ are reweighted

with a factor inversely proportional to the error rate on the training set, let

is be βi, which is always smaller than 1. Then the weights are normalized,

and both the generated classifier and the value βi are recorded. This means

that correctly classified instances will have a smaller weight at the next it-

eration, while misclassified instances will have a greater weight, thus having

more influence on the learning algorithm. When T steps are over, T classi-

fiers C1, C2, . . . , CT are obtained, the output of the resulting classifier C? is

obtained with a logarithmic weighted majority vote, dependent on the value

βi obtained at each step:

C?(x) = arg max
y∈Y

∑
i:Ci(x)=y

log
1

βi
(2.17)

This produces a more accurate classifier, whose performance is generally

better than the performance of a single classifier. Despite this, due to the fact

that misclassified instances are assigned a greater weight at every iteration,

unlike bagging, boosting is very sensitive to noisy instances.

Another ensemble method is the random forest algorithm [61], which is

based on decision trees. The underlying principle of the random forest al-

gorithm is that an ensemble of smaller decision trees build on a subspace

of the feature space, may generalize better than a single decision tree built

on the whole feature space. Random forests are built using oblique decision

trees, which are trees built choosing more than a feature at every nonter-

minal node. Since the decision trees must be smaller than a single decision

2.2 Techniques 33

tree that fits all the feature space, usually a loose stopping rule is adopted.

Criteria such as central axis projection and perceptron training (as described

in [61]) are used to select the set of features that best divide the data at

each nonterminal node. A certain fixed number of decision trees is built,

using a randomly chosen subspace for each tree. Given a feature space of n

features, there are 2n possible combinations of features. If n is large enough,

then it is not necessary to build a tree for every possible combination of the

features, but a smaller number (e.g. 20) was demonstrated to be enough for

most of the problems. A discriminant function combines the output of all

the decision trees in the forest, and produces a final output. Random forests

are usually more accurate than single decision tree, and their accuracy is

proportional to the size of the forest. Another advantage of this algorithm

is that it eliminates the problem of overfitting to which single decision trees

are subject.

As for the question of finding the best machine learning algorithm, there

is no general answer. It depends on what criterion is chosen to evaluate

the learning algorithm such as accuracy, classification speed, learning speed,

sensitivity to overfitting, etc. . . and many of these parameters depend on the

nature of the data that is used to train the algorithm. For example, the

Naive Bayes methods fits well will small datasets, and it is insensitive to

noisy and missing data. On the contrary, given its nature, kNN is very sen-

sitive to noisy and missing data. Neural networks, decision trees and SVMs

are subject to the problem of overfitting, which in the case of decision trees

is solved by using the random forest method. The Naive Bayes and the kNN

algorithms are the fastest to train. Indeed, the required training time of a

kNN algorithm is zero: it is enough to store the training set, and the work

is deferred at classification time. This comes at the price of increasing the

classification time and the required memory storage, which is exactly the

storage required to keep the whole training set in memory. This problem

does not affect the Naive Bayes algorithm, which requires low memory stor-

age but it is usually less accurate than other algorithms due to the fact that

34 2. State of The Art

it is based on the assumption that the features are independent, which is

usually false for real-world problems. Ensemble methods tend to be more

accurate than their inducer algorithms, and they solve some of their issues,

but they are generally more expensive. Moreover, in certain cases some

ensemble methods may perform worse than their inducer algorithms. For

instance, the AdaBoost algorithm, since it gives more weight to misclassified

instances, tends to perform worse if trained with noisy datasets. For this

reason, there is no single best training method, and the choice should be

done case-by-case, considering the performance requirements and the nature

of the training data.

2.3 Evaluation of a HAR system

Many aspects should be considered in order to evaluate a human activity

recognition system [19]. Among the most important ones, there are:

• Obtrusiveness. Requiring the users to wear obtrusive sensors that

limitate or condition their movements, or requiring too much user in-

teraction, has a negative impact on the system. Discomfort is not the

only consequence of an obtrusive recognition system; indeed, limiting

user movements or requiring the user to interact too often with the

system affects the quality of the collected data, which should be as

close as possible to real data, collected in an environment where the

users practice their activities naturally and spontaneously, without be-

ing influenced by the HAR system. Moreover, obtrusiveness is directly

linked with pervasiveness : the capacity to persuade users to participate

to the data collection process. The more users participate, the more

data is collected, and the more the training data will be valuable.

• Flexibility. The recognition system should adapt to different users

who perform activities in different ways (e.g. an elderly would not

run as fast as a young person). A recognition model is said to be

subject-dependent or personal if the training phase is executed for every

2.3 Evaluation of a HAR system 35

user; this is not always feasible because not every user is willing to

cooperate in the trainign process, and because in certain cases repeating

the training phase is not desirable (e.g. in a fall detection system). For

this reason, an alternative is to build a unique model able to recognize

the activities of every user, which is also called an impersonal model.

This last approach comes with a price in terms of accuracy, because

such system wouldn not keep account of the difference in which the

activities are carried out by different users. An alternate approach

that takes all the above mentioned problems into account, is to build

per-group models.

• Energy consumption. Most of the hardware used to implement HAR

systems is energy-constrainted. Extending the battery duration is de-

sirable for devices such as mobile phones and wearable sensors; for this

reason, it is preferable to turn on sensors such as the GPS only when

it is strictly necessary (e.g. when the user is not resting). Moreover,

communications have a great impact on energy consumption, and it

is preferable to use low energy communication protocols. Also the ar-

chitecture of the system, the number of sensors sampled, the number

of features included - in case that the feature extraction is carried out

directly in the device - and parameters such as sampling frequency and

window length play an important role. The best scheme is usually a

compromise between energy needs and other requirements.

• Recognition performance. The accuracy of the activity recognition

model, together with other metrics that will be elaborated in detail

afterwards, depend on many factors, such as the type of problem (e.g.

a binary classification problem that should discriminate between rest-

ing and moving is much simpler that a complex problem that involves

dozens of different activities), the quantity of data collected, the learn-

ing algorithm and the feature selection.

36 2. State of The Art

2.3.1 Validation

Validation is the procedure of verifying the performance of a human ac-

tivity recognition model, according to some metrics that will be explored

later in detail. Since the model is ought to make good predictions on unseen

data, testing the performance on the same dataset used in the training phase

is not an option. For this reason, many techniques may be used to validate

a recognition model:

• Holdout method. The dataset is divided into a training set and a

test set. The training set is used to build the model, while the test

set is used for validation. The problem of this method is that it has a

high variance, because the evaluation depends on which instances are

included in the training set and which in the test set.

• K-fold cross validation. The data is partitioned into k subsets, and

the validation is repeated k times, using the i-th subset of the data

at the i-th iteration for validation, and the other subsets to train the

model. The overall performance is averaged over the k iterations. This

overcomes the problem of the holdout method of having a high variance,

but since it requires k iterations it is slower than the holdout method.

In multi-user HAR datasets, it is often convenient to use the leave-one-

subject-out cross validation: a k-fold validation technique where k is

equal to the number of users, and every subset includes the data of a

single user.

• Leave-one-out cross validation. This is a k-fold validation method

carried to the extreme where k is equal to the number of instances in

the dataset. It is significantly slower than the holdout method and a

cross validation method with smaller values of k.

2.3.2 Evaluation Metrics

Given a binary classifier, with reference to the values defined in table 2.2,

the following metrics can be used to evaluate its performance:

2.3 Evaluation of a HAR system 37

True positives (TP) The number of correctly classified positive instances

True negatives (TN) The number of correctly classified negative instances

False positives (FP) The number of misclassified negative instances

False negatives (FP) The number of misclassified positive instances

Table 2.2: Values defined for a classification

• True positive rate (recall). The true positive rate is the number of

true positives divided by the total number of positive instances:

Recall =
TP

TP + FN
(2.18)

• True negative rate. The true negative rate is the number of true

negatives, divided by the total number of negative instances:

TNR =
TN

TN + FP
(2.19)

• Accuracy. The most standard metric used for evaluation. It is defined

as the ratio of correctly classified instances to the total number of

instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.20)

• Precision. Precision is the ratio of true positives to the total number

of instances classified as positive:

Precision =
TP

TP + FP
(2.21)

• F-measure (or F1 score). This metric combines precision and recall

in a single value:

F1 = 2 · Precision ·Recall
Precision+Recall

(2.22)

Although these metrics are defined for binary classification problems, they

can be generalized for a problem with n classes, where an instance is positive

38 2. State of The Art

if it belongs to a certain class i, and negative if it does not belong to i . In this

case, the classification results can be summarized in a confusion matrix,

which is a matrix M of n × n elements, where n is the number of activities

that can be recognized, and Mij is the number of instances that belong to

the class i that were classified as belonging to the class j.

2.4 HAR Systems and Studies in Literature

Similar studies have shown that it is possible to detect human activities

using the previously mentioned techniques with good prediction results. For

this study it is convenient to divide them into four categories, according to

the hardware that was used to detect the activities, namely i) wearable sen-

sors, ii) smartphones, iii) smartwatches, iv) miscellaneous.

Some studies are based on the PAMAP2 dataset [62, 63], which contains

data collected from 9 subjects, using three wireless accelerometers with a

sampling frequency of 100 HZ, placed on the dominant wirst and ankle, as

well on the chest. The activities included in this dataset are: lying, sitting,

standing, walking, running, cycling, Nordic walking, watching TV, computer

work, car driving, ascending stairs, descending stairs, vacuum cleaning, iron-

ing, folding laundry, house cleaning, playing soccer and rope jumping. The

age of the subjects was 27.22±3.31 years, with a BMI of 25.11±2.62 kgm−2.

The dataset contains ten hours of data altogether, of which 8 hours were

labeled.

2.4.1 Wearable Sensors

Lara and Labrador [19] presented a survey on human activity recogni-

tion using wearable sensors, illustrating its practical uses and reviewing the

current techniques, architectures and the limitations of HAR systems. The

article explores in detail general aspects and implementation choices of HAR

systems, such as sensors and feature selection, common machine learning al-

gorithms, performance metrics and evaluation aspects of HAR systems.

2.4 HAR Systems and Studies in Literature 39

Bao and Intille [30] built a human activity recognition system, collecting data

from 20 subjects for 20 different daily-life activities, in a semi-naturalistic

environment. The activities included in the study are: walking, sitting and

relaxing, standing still, watching TV, running, stretching, scrubbing, fold-

ing laundry, brushing teeth, riding elevator, walking carrying items, working

on computer, eating or drinking, reading, bicycling, strenght-training, vacu-

uming, lying down and relaxing, climbing stairs and riding escalator. Five

biaxial acceperometers were mounted on different body locations, and data

was collected at a sampling frequency of 76.25 HZ, extracting the follow-

ing features: mean, energy, frequency-domain entropy and correlation, using

windows of 256 samples (6.7 seconds). Different meachine learning techniques

were used: decision table, instance-based learning, decision tree and naive

Bayes. The decision tree algorithm resulted the most accurate, obtaining an

accuracy of 84% with the leave-one-subject-out cross validation. Using only

two accelerometers caused the accuracy to drop slighly, decreasing of just

3.27% ± 1.062 with an accelerometer placed on the thigh and one on the

wrist. This was the first study that proved the feasibility of using accelerom-

eters to recognize household activities for context-aware computing.

A study based on the PAMAP2 dataset was conducted by Arif and Kattan

[64], who extracted features from the dataset with 5 seconds windows with

1-second overlaps, obtaining a dataset of 18,664 instances. The dataset was

partitioned into three feature sets, containing the features of the accelerom-

eters placed in the wrist, in the chest and the ankle (FS1, FS2 and FS3

respectively). Three prediction models were build using the kNN algorithm,

the rotation forest algorithm (a variant of the random forest algorithm), and

neural networks. The models were then validated using the holdout method,

with a training set containing 70% of the instances, and a test set containing

the remaining 30% of the instances. Three metrics were used for the eval-

uation: precision, recall and F-measure. Then, the models were built again

using all the feature sets, merging FS1, FS2 and FS3 in a unique feature set.

The study showed that the models built on a single-accelerometer feature set,

40 2. State of The Art

had a great performance variance among different activities, due to the fact

that some activities can be confused if only one accelerometer is used (e.g.

standing, ironing and vacuum cleaning were confused if the accelerometer

was placed on the ankle, while not if the accelerometer was placed on the

wrist). Moreover, the kNN algorithm resulted in a great discrepancy between

precision and recall, and between precision and F-measure. This is due to the

fact that some activities had a high ratio of true positives, but also a large

number of false negatives, resulting in low values of recall and F-measure,

and higher values of precision. Tested on FS1, FS2 and FS3, kNN was the

worst method, which obtained a precision of over 86.5%, but a recall rang-

ing from 52.5% to 77.1%. The best method was the rotation forest, which

obtained a precision and a recall in between 92.1 and 94.1%. The results of

the models built on the merged fearture sets, show that the high variability

between the performance of different activities, and the discrepancy between

precision and recall of the kNN algorithm, were both eliminated, obtaining

an average recall of 98.2% with the kNN and the rotation forest method.

Gyllensten and Bonomi [65] demonstrated the lack of accuracy of laboratory-

trained recognition models if tested on free-living data. Data from 20 subjects

was collected using a single waist-mounted accelerometer, during a labora-

tory trial. Three recognition models were trained on the laboratory data:

an SVM, a neural network and a decision tree. The models were tested us-

ing the leave-one-subject-out cross validation, obtaining an accuracy of 95.1

± 4.5%, 91.4 ± 6.7% and 92.2 ± 6.6% respectively. The same algorithms

were tested on free-living data, showing a significantly decreased prediction

accuracy. The algorithms obtained an accuracy of 75.6 ± 10.4%, 74.8 ±
9.7% and 72.2 ± 10.3%, validating the assumption that algorithms trained

on laboratory data underperform if used on daily-activities data.

Another study conducted by Ellis et al. [66] further confirms this assumption,

showing the poor performance of algorithms trained on data collected in a

controlled environment, if tested against free-living data. Two datasets were

used for this study: a controlled dataset, and a free-living dataset containing

2.4 HAR Systems and Studies in Literature 41

data collected by 40 cyclists in their daily activities during 3-4 days, using an

accelerometer, a GPS and a SenseCam device, with 60 seconds windows and

30-seconds overlaps. A random forest trained and tested on the controlled

dataset with the leave-one-day-out validation obtained an accuracy of 94%,

whereas the same algorithm tested on the free-living dataset scored an ac-

curacy of just 70.9%. A random forest algorithm trained and tested on the

free-living dataset obtained an accuracy of 89.2%, showing that classification

of free-living activities is more complex due to high data variability, other

than reinforcing the previously stated conclusion.

2.4.2 Smartphones

An overview of the state of the art of physical activity recognition through

smartphones was presented by Morales and Akopian [67], surveying the rele-

vant signals used in physical activity recognition, techniques of data acquisi-

tion and preprocessing, and methods to deal with the unknown location and

orientation of the phone. Moreover, the article covers the topics of feature

selection, activity models and classifiers, and reviews metrics for quantifying

activity execution, along with ways to evaluate the usability of a HAR sys-

tem.

Miao et al. [38] proposed a system to identify physical activities with a

smartphone, regardless to the phone position and orientation. Seven subjects

collected data for five physical activities: static, walking, running, walking

upstairs and downstairs, carrying the phone in six possible positions, and

varying the orienation. Orientation-independent signals like the acceleration

and rotation rate magnitude were chosen, along with the magnetic orienta-

tion components on the three axises. The signals were sampled at 25 HZ, with

1.6 seconds windows and 50% overlaps. A proximity and a light sensor were

used to determine whether the phone was on the pocket or not, in order to

trigger the data collection automatically. The collected data was elaborated

using the WEKA machine learning toolkit [68], testing three algorithms us-

ing the k-fold cross validation: decision tree, naive Bayes and SMO, scoring

42 2. State of The Art

an accuracy of 89.6%, 75.3% and 81.1% respectively. J48, the decision tree

algorithm implementation of the WEKA toolkit, was the most accurate. The

study demonstrated the possibility of building accurate, efficient and robust

HAR systems, able to recognize physical activities regardless of the phone

position and orientation.

Mitchell et al. [69] proposed a framework for automatic recognition of sport

activities using smartphones. A phone was placed on the upper cervice of

the users’ back to collect data in order to recognize different activities in

five-a-side soccer and field hockey. The included activities were: stationary,

walking, jogging, spriting, hitting the ball, standing a tackle and dribbling

the ball. The features were extracted using the discrete wavelet transform

(DWT), and different configurations of DWT decomposition level, mother

wavelet, window length and classifier were tested. The included classifiers

were: SMO, kNN, bayesian networks, decision tree and multilayer percep-

tron. No classifier was shown to be more accurate than the others in a

relevant way, except for the SMO that performed poorly for the soccer ac-

tivities. Similar activities such as hitting the ball, standing a tackle and

dribbing the ball were confused with each other, due to the fact that they

involve similar movements. Finally, a fusion of classifiers was tested, using a

different classifier for each activity. With this method, the highest accuracy

was achieved: 86.3% for soccer and 88.8% for field soccer.

Bedogni, Di Felice and Bononi [14] developed a system to train and run a

transportation mode recognition model, in order to enrich context-based ser-

vices, switching on and off different sensors according to the motion type.

The system relied on an Android application, WAID (What Am I Doing),

which was able to collect accelerometer and gyroscope data, and to perform

an online training in order to build a transportation mode classifier, with

three different activities: walking, moving by train and moving by car. The

classifier was then used in the WAID application to detect motion types, au-

tomatically switching the phone configuration, allowing to associate a profile

with each type of motion, in order to turn off or on cellular data, Bluetooth,

2.4 HAR Systems and Studies in Literature 43

WiFi and other sensors automatically, to provide an enhanced experience.

72,000 samples for each activity were collected, corresponding to 2 hours of

data collection, without any restriction on the phone position and orientation.

Three classifiers were trained: an SVM, a naive Bayes model and a random

forest. The models were tested with different configurations, switching the

window length and the sampling frequency. The window length resulted to

be unrelated to the accuracy, while an important finding was reported about

the sampling frequency: at the condition that the sampling frequency dur-

ing the training phase and the predicting phase are the same, the sampling

frequency is unrelated to the prediction accuracy of the trained classifier,

opening thus the possibility of using lower sampling frequencies in order to

minimize energy consumption. The random forest method was found to be

the best, scoring a prediction accuracy of 97.71%. Also the use of a history

set was investigated, which allowed to save the last n predictions in order to

increase the overall accuracy, outputing the most frequent prediction inside

the history set during each classification. The history set was found to in-

crease the overall recognition accuracy in normal conditions, at the cost of

reducing the accuracy during transitions.

A similar and more recent study was carried out by Testoni and Di Felice

[70], who implemented a generic human activity recognition system for An-

droid devices, taking into account energy constraints by limiting the amount

of features and sensors included, and by delegating the most CPU-intensive

tasks to an external machine. The proposed system automatized the full

learning process, allowing the users to select the activity labels and the sen-

sors to include in data collection. In training mode, the system was able to

automatically extract features and send them to the external machine, ready

to be stored in a MongoDB NOSQL database, and to be analyzed with the

WEKA machine learning library. The system was able to train a random

forest model on the stored data, and send it to the mobile client application.

In detection mode, the installed model was run on the client application,

and activity transitions were detected. It was possible to use a history set

44 2. State of The Art

to render activity transitions smoother. The system was afterwards used to

collect data and train classifiers for two use cases: i) for transportation mode

detection, discriminating between walking, traveling by train, by bus, by car

or performing another activity. The achieved accuracy was around 92% with

the random forest method, ii) for walking mode detection, discriminating

between standing still, walking, and climbing/descending stairs. The random

forest method achieved an accuracy of 96%. In both studies, the use of a

history set allowed to score a higher accuracy, going up to 100% when the

history set size was large anough.

2.4.3 Smartwatches

A comparative study between smartwatch and smartphone-based activity

recognition was presented by Weiss et al. [71], which suggests that smart-

watches are more accurate at recognizing some hand-based activities, and

that similarly to smartphones, personal models outperform impersonal mod-

els. 18 activities were included in the study, which were grouped into three

categories: 1) Not hand-oriented general activities : walking, jogging, climb-

ing stairs, sitting, standing, kicking soccer ball, 2) Hand-oriented general

activities : dribbling basketball, playing catch with tennis ball, typing, hand-

writing, clapping, brushing teeth, folding clothes, 3) Eating activities : eat-

ing pasta, eating soup, eating sandwich, eating chips, drinking from a cup.

17 subjects collected data for a duration of 2 minutes for each activity, us-

ing the accelerometer and the gyroscope of a LG G Watch and a Samsung

Galaxy S4. Issues with the phone gyroscope prevented sufficient data from

being collected, therefore the phone gyroscope data was not included in the

study. The sensors were sampled at 20 HZ, extracting features every time

window of 10 seconds, without overlaps. The data was then imported in the

WEKA machine learning toolkit, studying each sensor for each device sep-

aratedly, testing several classification models: random forest, decision tree,

IB3 (instance-based learning), naive Bayes and a multilayer perceptron. The

2.4 HAR Systems and Studies in Literature 45

personal models were validated using the 10-fold cross validation, while the

impersonal models were validated with the leave-one-subject-out validation.

The radom forest method resulted the most accurate, scoring an accuracy

above the average of the other classifiers for most of the activities. Consid-

ering only the models built using accelerometer data, the accuracy obtained

with the personal random forest models was 75.5% for the phone and 93.3%

for the watch, while the impersonal models obtained respectively 35.1% and

70.3%. This confirmed the hypothesis that personal models outperform im-

personal models. Moreover, since the study included many hand-oriented

activities, the watch models obtained a better accuracy, specially for activ-

ities in the second and third category. Indeed, the most confused activities

with the phone model were eating activities, more precisely “eating a soup”

was often confused with “drinking”, because the acceleration caused to the

phone in the pocket is similar. Another important finding was that personal

models particularly increase the performance of eating activities, suggesting

that there is a wide variance in how people eat.

Ahmad et al. [72] published an analysis of various feature and classification

methods in order to find the optimum settings of physical activity recogni-

tion, with both personal and impersonal models. 6 healthy subjects collected

data for more than a month, performing the following activities: walking,

walking upstrairs, walking downstairs, running and jogging. The following

classification models were tested: SVM, kNN (k = 10), bagging, decision

tree, and naive Bayes. Two studies were carried out: in the first study, fixed-

sized windows of 75 samples were used, and the performance of two different

feature banks was tested, comparing the performance obtained with random

permutation and normalization of the features, opposed to the case where

no random permutation/normalization was applied. In the second study, the

performance of the models built with different window sizes were compared,

ranging from 25 to 300 samples. The study showed that feature random per-

mutation and normalization increased the overall performance of the classi-

fiers, and it was determined that the same features used in a previous study

46 2. State of The Art

on smartphones could be used in the case of physical activity recognition

with smartwatches. The most performant models were SVM and decision

tree, scoring an accuracy up to 98%. Moreover, personal models were found

to be more accurate than impersonal models. The window size did not affect

the performance of the SVM and decision tree classifiers, while it was found

that increasing the window size decreased the performance of the kNN clas-

sifier. This was due to the fact that the kNN classifier has an accuracy that

depends on the number of instances in the dataset, and increasing the win-

dow size using the same dataset causes the number of instances to decrease.

A different approach was followed by Garcia et al., who used a GENEActiv

wristwatch to recognize long-term activities using hidden Markov models and

conditional random fields. Two subjects collected data from the watch triax-

ial accelerometer for 11 and 10 days respectively. The activity labels of the

first subject were: shopping, showering, dinner, working, commuting, brush

teeth, and they had many ways of being performed: commuting could be

performed by walking or using a vehicle, the “dinner” label included having

lunch or breakfast, “showering” included dressing up, etc. . . the labels of the

second subject were: commuting, lunch, working time, exercise, and another

not tagged activity. Various features were extracted sampling the accelerom-

eter at 20 HZ, using 3 seconds window with 33% overlaps. The activities were

decomposed into strings of more primitives, which represented simple activ-

ities that composed a long-term activity. This study made use of clustering

in order to produce a certain number of groups, such that instances that are

similar belong to the same group. Various configurations were tested, using

hidden Markov models and conditional random fields, adding prior knowl-

edge regarding the duration of the activities and using clustering to further

subclass fragmented activities in order to get more precise labels (e.g. com-

muting was a fragmented activitity because it was possible to commute by

walking or using a vehcile), obtaining accuracy scores up to 77.1% using the

leave-one-day-out cross validation. The study puts light on the possibility

of using a different approach in order to classify long-term activities which

2.4 HAR Systems and Studies in Literature 47

are composed by a sequence of simpler activities, obtaining an acceptable

recognition performance.

2.4.4 Miscellaneous

A combined approach was followed by Ramos et al. [73], in order to

demonstrate that using a smartwatch in combination with a smartphone

increased the activity recognition performance. Accelerometer data was col-

lected from 13 subjects using a Sony SmartWatch 2 SW2 and a Sony Smart-

phone Xperia Z1, for four types of activities: walking, sitting, standing and

driving. Three features vectors were tried: standard deviation (STD), arith-

metic mean (AM), and both (SA). For each activity, each subject collected

one minute of data, which was afterwards analyzed and processed using R

and the WEKA machine learning toolkit. Three machine learning algorithms

were used: naives Bayes, SVM and decision tree, with the 10-fold cross val-

idation computing the average accuracy over 30 runs. The accuracy of the

recognition model that relied only on the smartphone was compared with the

accuracy obtained using both the smartwatch and the smartphone; a t-test

and a Wilcoxon test were performed in order to determine if there was an

increase in the accuracy performance with 95% of confidence, in the case

where both devices were used instead of using only the smartphone. For the

decision tree model, it was determined that the smartwatch increased the

recognition accuracy only for STD, but not for AM and SA. For the SVM

classifier, it was determined that there was an increase in recognition accu-

racy for AM and STD, while for naive Bayes model the dependency was true

for all the types of feature vectors. Therefore, for 6 configurations by 9 the

recognition accuracy was increased using the smartwatch with 95% of confi-

dence. The recognition accuracy of the combined approach for SA reached

the value of 88.47% with the SVM algorithm, and 87.33% with decision tree.

Al-Naffakh et al. [74] proposed an architecture for performing human activity

recognition in the context of transparent authentication systems (TAS), in

which the accelerometer, gyroscope and GPS sensors are used to distinguish

48 2. State of The Art

the true device user from imposters, relying on the fact that different subjects

tend to perform activities in different ways. 10 subjects collected data wear-

ing a Microsoft Band 2 (a wristband with smartwatch features), walking in

two five-minutes sessions on a flat floor, on two different days. Accelerometer

and gyroscope data was sent to a smartphone via Bluetooth, and 88 features

were extracted for every 10-seconds window, with no overlaps. Afterwards,

the average euclidean distance from other subjects and from self was mea-

sured, separatedly for the accelerometer and the gyroscope. Two scenarios

were considered: same-day and cross-day. The first finding was that, as ex-

pected, for every subject the average euclidean distance from other subjects

was greater than the average distance from self. The gyroscope resulted less

reliable than the accelerometer because it resulted in a higher intra-subject

variance of the euclidean distance. Moreover, the study showed that the av-

erage euclidean distance from the same subject and from others is greater in

the cross-day scenario. The study suggests an approach to perform activity

recognition, proposing an architecture based on a multi classifier approach,

in which activities are recognized with the aid of other smartwatch sensors

(e.g. GPS), for the use within a TAS.

Chapter 3

System Architecture

3.1 Goals and Methodology

The goal of this study is to demonstrate that it is possible to build a sys-

tem capable of recognizing sport activities automatically, in order to facilitate

physical activity tracking, exempting the user from manually managing sport

sessions, in a non-invasive and user-friendly fashion. Since the goal of fitness

tracking is to motivate the users to perform physical activity, and to promote

competitiveness, a totally automatic tracking system that does not require

user input would drive closer to such goals.

For a similar study, it is necessary to build an activity recognition system,

able to collect data from sensors such as the accelerometer, gyroscope, etc. . .

in order to build a dataset and train a sport activity recognition model

through the use of supervised machine learning. Such model can to be in-

tegrated in a fitness tracking application. The steps involved in the process

are the following:

• Choosing the data collection parameters.

• Collecting and storing data in a dataset.

• Selecting the window length and the features.

• Training different classifiers on the dataset.

49

50 3. System Architecture

• Evaluating and choosing a classifier.

• Testing the classifier in a demo fitness application.

The process can be repeated many times in order to select the best configura-

tion of features, window lenght, sensors included and many machine learning

parameters, which would give the best compromise between recognition ac-

curacy, power saving and simplicity. A human activity recognition system

should allow to perform such steps, providing an interface to drive its users

during the realization of the study.

To carry out the study, a distributed application was developed, capable

of collecting and storing data it in a local dataset, along with an activity

recognition module which was fed with the model obtained after the training

phase. Due to a certain number of issues that were encountered during the

development phase, which will be explained later in section 4.5, it was chosen

to store the extracted features in the dataset, instead of storing the raw sensor

data.

The devices used for this study were:

• An Apple Watch Series 2

• An Apple iPhone 6s

The two devices are able to communicate through Wi-Fi or Bluetooth,

automatically switching between the two technologies as needed. In order to

save power, if the phone is nearby the watch, the Bluetooth is used. If the

two devices are out of range and there is an available Wi-Fi network, then

the wireless network is used.

3.2 Architecture Review

Figure 3.1 shows the architecture of the developed HAR system, which

relies on a distributed application and on external scripts hosted on a third

machine.

3.2 Architecture Review 51

Figure 3.1: Architecture of the developed HAR system.

HAR App

The distributed application, Human Activity Recognition (or its abbrevi-

ated name HAR App), was developed both for the Apple Watch and for the

iPhone side. The application on the watch is able to communicate with the

application on the phone and viceversa when the two devices are paired. The

watch application is responsible for the data collection and feature extraction

phases, and for running the recognition algorithm obtained after the training

phase. The phone application receives instances from the watch application,

and stores them is a local dataset, which can be visualized and edited by

the user; the dataset can also be exported to a CSV format. Another func-

52 3. System Architecture

tionality of the phone application is settings management, which allows the

user to modify settings related to the data collection and feature extraction

phases, such as which sampling frequency to use, etc . . . the settings are regu-

larly synchronized with the watch application. The phone application is also

able to send commands to control the activity recording, such as pausing,

resuming or stopping the activity.

Scikit-learn

Scikit-learn [75] is a machine learning library for the Python programming

language. It includes many of the classification algorithms needed for human

activity recognition, and it is able to interoperate with the Python numerical

library NumPy [76].

The learning phase was carried out in Python, with the use of Scikit-learn

and NumPy to elaborate the dataset exported by HAR App, and produce

a classification model. The learning phase is not automatic, and requires

manual input and actions to export the dataset, build the model and import

it to the application.

Figure 3.2 shows the HAR App interface on the Apple Watch. In the

main menu the user can choice between training and testing. In the training

interface, the user can choose between a list of activities, and then the data

recording starts, as shown in subfigure 3.2c. Subfigure 3.2d shows the testing

interface.

Workouts

As stated, the goal beyond this study is to automatically recognize sport

activities in order to exempt the user from manually starting, pausing or

stopping workouts, to facilitate activity tracking with capabilities such as

3.2 Architecture Review 53

(a) Main menu. (b) Activities menu.

(c) Activity recording interface. (d) Activity recognition interface.

Figure 3.2: HAR App interface on the watch.

54 3. System Architecture

(a) Pairing interface. (b) Settings interface.

Figure 3.3: HAR App interface on the phone.

calories counting and other advanced features. HAR App automatically saves

the workouts during the testing phase. When an activity beyond resting is

dectected for more than 30 seconds, the application saves the workout at the

end of the session, including the type, duration of the workout and the active

calories burned. The workout is saved in a centralized repository made avail-

able by the iOS and watchOS operative systems, which can store health and

fitness data. Applications can write or read data from this repository, such

as workouts, heart rate, energy burned, weight, height and other user data.

When an application writes in this database, all the information become

3.2 Architecture Review 55

(a) Dataset visualization. (b) Training information.

Figure 3.4: HAR App interface on the phone.

available for other applications to be read. All the data can be visualized

using Health app, an application natively included in iOS.

The phone interface is shown in figures 3.3, 3.4 and 3.5: in the pairing

interface, the user receives information about the data received from the

watch, and they can control the session sending a pause, resume and stop

command; in the settings interface, the user can choose i) activity recording

options such as window size, sampling frequency, etc . . . , ii) which features

56 3. System Architecture

(a) Import/export interface. (b) Export success message.

Figure 3.5: HAR App interface on the phone.

to extract, iii) which sensors to include, iv) the history set size for activity

recognition. Indeed, to render activity transitions smoother, a history set

can be used. The classification algorithm is a decision tree obtained from the

external machine and imported in the application. The history set contains

the last n decision tree classifications, and the final prediction is the most

frequent activity in the history set. The full list of all the included options

is shown in table 3.1.

The data can be visualized and edited, deleting specific instances. Moreover,

it is possible to save and restore a dataset backup on iCloud, and to export

3.2 Architecture Review 57

Option Values

Window size 1s, 2s, 2.5s, 4s, 5s, 8s, 10s

Sampling frequency 16, 24, 32, 40, 50

Countdown time1 None, 2s, 5s, 10s, 15s, 20s

Trim last two instances2 True, false

Maximum, minimum, median, mean, standard

Features deviation, variance, skewness, kurtosis

IQR, energy, cross-domain entropy

1D: heart rate, latitude, longitude, altitude,

Sensor data course, speed. 4D: user acceleration, gravity,

orientation, rotation rate.

History set size 1, 3, 5, 7

Table 3.1: Available options for data collection, feature extraction and

classifcation in HAR App.

the dataset to a CSV format and send it via email, or save it to the iCloud

folder, as shown in figure 3.5.

The classification model was manually imported from the external scripts

that rely on scikit-learn. The learning phase of the system is not automatic

and requires manual actions, like:

• Importing the training set to the external machine.

• Possibily elaborating the dataset, removing features and/or outliers.

• Running the scripts and exporting a decision tree in a textual format.

• Importing the model back to the application.

1The countdown time before starting the activity, has the purpose of giving time to

the user to prepare before that the activity recording starts.
2The last two instances might be deleted, taking into account the time needed to

interact with interface in order to stop the activity recording.

Chapter 4

System Implementation

As stated in chapter 3, the system relies on three main components:

a watch application, a phone application and some scripts located in an

external machine. The watch and its phone counterpart application were

developed using the Swift programming language [77], through the Xcode

IDE [78]. The scripts were written in Python, using the scikit-learn machine

learning library [75] and the NumPy numerical library [76].

Applications that target both the iOS and watchOS operative systems, can be

developed in a unique project, developing an iPhone application, a WatchKit

app that is responsible for storing static resources such as images and graphics

elements of the watch interface, and a WatchKit extension that is responsible

for implementing the dynamic behavior of the watch application, such as

responding to notifications, events and for performing continuous tasks. After

presenting a list of the frameworks included in the Swift project in section 4.1,

in order to follow a modular approach the watch and the phone applications

will be presented separatedly, respectively in sections 4.2 and 4.3. Section

4.4 will describe the machine learning scripts.

59

60 4. System Implementation

4.1 Swift Frameworks

The following is a list of the frameworks that were included in the HAR

App project, either in the phone, the watch application or both.

HealthKit

HealthKit is a framework provided by Apple, available in the Swift pro-

gramming language, which allows applications to access and share health and

fitness data such as physical activities, calories intake, sleep, etc. . . providing

a centralized database accessible by applications. HealthKit manages all the

privacy aspects of the users, requiring an explicit authorization by the user in

order to allow applications to read or write specific health and fitness data.

In the HAR App, the HealthKit framework was used in the watch application

in order to:

• Collect user information such as age, height, weight and gender.

• Record the heart rate.

• Keep track of the resting heart rate, which is a metric useful to calculate

the calories consumption of physical activities.

• Save workouts and the active energy burned.

The application needs first to be authorized by the user in order to per-

form the above operations; the authorization is asked on the phone applica-

tion, where the user is presented with the interface shown in figure 4.1. Once

given the authorizations, the watch application can start functioning.

CoreMotion

CoreMotion is a framework that allows to access accelerometer, gyroscope

and magnetometer data. Since the magnetometer is unavailable on the Apple

Watch, it has not be included in the study. When the application wants to

read motion data, it can requests updates at a fixed rate, in order to read:

4.1 Swift Frameworks 61

Figure 4.1: HealthKit authorizations interface.

62 4. System Implementation

• Attitude

• Rotation rate

• Gravity

• User-initiated acceleration

CoreLocation

CoreLocation provides services for determining the device geographic lo-

cation, using all the available onboard hardware, including WiFi, GPS, Blue-

tooth, magnetometer, barometer, and cellular hardware. If the location is

requested in a watch application, it is possible for CoreLocation to return the

location obtained from its paired iPhone, in order to save the watch battery

power. CoreLocation seamlessly switches between available technologies in

order to calculate the position, using beacons, WiFi fingerprinting or satellite

signals according to the situation and the environment, in order to get the

most accurate information. Since determining the user position involves pri-

vacy concerns, it is necessary to authorize location services for applications

that request them. The authorization is requested on the phone and once

obtained, the watch application is free to use CoreLocation services.

Watch Connectivity

The WatchConnectivity framework implements two-way communications

between a watch application and its paired phone application counterpart.

There are many ways to communicate between paired applications, but since

in this application WatchConnectivity was required to perform real-time syn-

chronous operations, it was chosen to use the interactive messaging mode,

which allows to send messages between the iOS application and the watchOS

applications immediately, awakening the application that received the mes-

sage in case that it is not active, and executing a completion callback in

case that the message is delivered successfully. The communications were

required in order to perform the following operations:

4.1 Swift Frameworks 63

• Transfering instances from the watch application to the paired phone

application.

• Transfering data collection, feature extraction and prediction options

(e.g. sampling frequency) from the phone application to the watch

application.

• Sending interactive commands from the phone application to the watch

application, in order to start, pause, resume and stop the session.

• Sending feedback from the watch application to the phone application.

Surge

Surge [79] is a Swift library that relies on the Accelerate framework, which

provides high-performance functions matrix math, digital signal processing,

and image manipulation. Accelerate is able to improve the performance of

certain math calculations, using the SIMD instructions implemented in the

most modern CPUs. Surge is built on top of the Accelerate framework in

order to provide a simplified, user-friendly API.

This framework was used in HAR App in order to execute efficiently opera-

tions on vectors, such as the sum, the fast Fourier transform and many more

operations useful in the feature extraction phase, which was carried out in

the Apple Watch application.

Core Data

The CoreData framework allows to manage model layer objects and pro-

vides automated solutions to persistence and other tasks associated with

object life cycle and object graph management. CoreData simplifies and

speeds up the development effort required to mantain a relational database.

A CoreData database was used to locally save the training data received from

the watch application.

64 4. System Implementation

Other Frameworks

Other standard frameworks were used in the development phase: UIKit

and WatchKit provide the user interface functionalities on iOS and watchOS

respectively, and they both rely on Foundation, a framework that provides

a base layer of functionalities for applications, which implements the most

commonly used data types. These three frameworks are generally used in

any iOS and watchOS application developed with Xcode.

Moreover, ClockKit was used on the Apple Watch to handle watch complica-

tions, which are elements of the watch face that display small, immediately

relevant bits of information. A complication of the application was added

in order to have a prompt way to launch the application from the watch

face, and to check for relevant information (e.g. the number of instances

sent). Another framework used in this project is the MessageUI framework,

which was used in the iPhone application project in order to send the dataset

via email; exporting the dataset was necessary to run the machine learning

scripts on an external machine.

4.2 Watch Application

The watch application is divided in two modules: a training module,

responsible for the data collection and the feature extraction phases, and a

training module responsible for running activity recognition.

4.2.1 Training Module

Figure 4.2 shows the class diagram for the TrainingController class,

which manages the data collection and feature extraction phases, and up-

dates the relevant UI in order to give feedback and interact with the user,

allowing to control the session. ActivityController implements the func-

tionalities of a WKInterfaceController, a WatchKit MVC controller. Ac-

tivityController relies on the SensorsRecorder class, which is a service

4.2 Watch Application 65

that was developed in order to automatically collect data, querying the user

preferences to detect data collection parameters, and which sensors and fea-

tures to include; at each window frame, features are extracted and the dele-

gate object of the SensorsRecorder is notified. In order to be notified, an

object should register itself as delegate and implement the delegate meth-

ods, which will be invoked by the SensorsRecorder object. The classes

HealthKitService, CoreMotionService and CoreLocationService man-

age the HealthKit, CoreMotion and CoreLocation operations respectively,

querying the sensors and providing data, which is made available to the

SensorsRecorder object. Moreover, the SensorsRecorder class manages

the authorizations, querying the authorization status and prompting a vi-

sual alert in case that the user did not grant the necessary authorizations

(e.g. location services are not enabled). The following code snippet shows

the necessary steps to instantiate and use a SensorsRecorder object:

let recorder = SensorsRecorder(activity:activity)!

recorder.delegate = self

recorder.startSession ()

recorder.start ()

The startSession() method is required to activate a workout, which

is handled by the HealthKitService class. Once a workout is active, the

application is allowed to stay in foreground and it is not killed until the

workout is finished. Otherwise, during data collection the application would

be deactivated and killed in a short amount of time. The start() method

causes the data collection and feature extraction process to start, and the

client object is notified by the SensorsRecorder through this method:

func sensorsRecorder(_ recorder: SensorsRecorder ,

didExtractFeatures features: [String : Any])

Which receives a dictionary as argument, containing the extracted fea-

tures for each sensor. The recording can then be paused, resumed and

stopped calling the corresponding methods.

66 4. System Implementation

Figure 4.2: Class diagram for the ActivityController class and its

related classes.

4.2 Watch Application 67

The Preferences class automatically manages the user preferences, which

are synchronized with the iOS application preferences using the pull()

method, which asynchronously sends a message to the iPhone application,

requesting to update the preferences, to which the iOS application responds

sending a dictionary containing the preferences. The watchOS application

can receive this dictionary not exclusively after requesting a pull, but also at

the initiative of the iOS application, which can decide to send the preferences

dictionary after noticing that the user has recently changed some settings.

Most of the communications are handled using the MessageQueue class,

which manages a queue of messages, allowing to send FIFO messages with

a simplified mechanism of congestion and flow control, receiving notifica-

tions when the messages are successfully delivered, or when there is an error.

Nominally, the WatchConnectivity framework guarantees that when a mes-

sage is sent, either a success or failure callback is called. But in practice,

it may happen than no callback is actually called, and that sometimes the

communications freeze, without giving any notification. The MessageQueue

class was built on top of the WatchConnectivity framework to overcome these

flaws. The following code snippet shows how to instantiate a MessageQueue

object and send a dictionary containing the extracted features:

self.queue = MessageQueue(timeout: 5.0)

self.queue.delegate = self

let message = [

"type":"info",

"state":state ,

"activity":self.recorder.activity ,

"time":Date(),

"instance":features

]

self.queue.enqueue(message)

After enqueueing the message, the delegate is asynchronously notified

through any of these two methods:

68 4. System Implementation

func messageQueue(_ queue: MessageQueue ,

didDeliverMessage message: [String : Any],

withReply: [String : Any])

func messageQueue(_ queue: MessageQueue ,

didFailToDeliverMessage: [String : Any], retry:

UnsafeMutablePointer <Bool >)

If the message fails to deliver, either because there is a timeout or because

there is a network error, the queue will retry to send the message in case that

the retry parameter is set to true.

ActivityController sets itself as delegate of its SensorsRecorder and Mes-

sageQueue objects. When a new set of features is extracted, they are en-

queued, and the controller is notified when a message is delivered with success

or when there is a delivery error. Moreover, the controller sends feedback

to the phone application and receives commands (e.g. to pause the session

remotely).

4.2.2 Testing Module

Like the training module, the testing module relies on the SensorsRe-

corder class in order to carry out the features extraction from the sensor

data, with the difference that it does not need to send any data beyond con-

trol information to notify the phone application. Figure 4.3 shows the class

diagram for TestingController and its related classes. The Decision-

Tree class implements a classifier using the output of the machine learning

scripts, in a textual format that is parsed and converted into a decision tree.

The HistorySet class stores the last n predictions in a queue, which can

be inserted calling the insert() method, and outputs the most frequently

predicted activity and the accuracy, which are stored respectively in the ac-

tivity and accuracy properties. The accuracy is given by the number of

predictions in the queue that are equal to the most frequent prediction, di-

4.2 Watch Application 69

Figure 4.3: Class diagram for TestingController and its related classes.

70 4. System Implementation

vided by the length of the queue. When TestingController is notified by

the SensorsRecorder, because a new set of features was extracted, it exe-

cutes the decision tree classification algorithm and inserts the classification

result inside the history set. The final output is the activity predicted by the

history set.

Another functionality implemented by TestingController is calories count-

ing: when an activity different than resting is predicted for more than 30

seconds, the workout is saved. The workout is managed by the WorkoutData

class, which implements calories estimating using two methods:

• In case that the resting heart rate value of the user is not available in

the HealthKit database, a metabolic equivalent table [80] is used, which

contains a calories consumption estimate for every type of physical

activity.

• In case that the resting heart rate of the user is available in the HealthKit

database, the calories burned are estimated using the average heart rate

and the resting heart rate, estimating the VO2 and the VO2 max in

order to calculate the total calories burned over the activity duration.

The second method is more precise, and it takes account of the heart rate

and the age, other than the weight. Either methods take account only of the

active calories burned : the energy consumption due only to physical exercise,

obtained by subtracting the calories burned in resting conditions from the

total calories burned.

Another functionality implemented by TestingController is logging: the

predicted activities can be logged in the documents folder of the application,

and the logs can be retrieved in order to have a window per window report

of the predicted activities.

Similarly to TrainingController, also TestingController inherits from

WKInterfaceController and it is thus responsible for managing the user

interface. The key difference is that instead of enqueueing the extracted

features, TestingController use them for classification and the message

queue is used for control information only.

4.3 Phone Application 71

4.3 Phone Application

The phone application is mainly responsible for receiving the instances

from the watch application, and storing them into a database, allowing the

user to visualize, edit and export the dataset.

CoreData was used to define a relational data model, with the following

entities, as shown in figure 4.4:

• Training. This entity contains the overall information of the activ-

ity: the parameters used for data collection, the body measurements,

the age and the gender of the user, the location and orientation of the

watch, the start and end time of the activity, and the name of the phys-

ical activity. It has a one-to-many relationship with the FeatureSet

entity.

• FeatureSet. This entity represents an instance, which is directly as-

sociated with a Training entity, and it has a one-to-many relationship

with the FeatureGroup entity. For each sensor data (see table 3.1) it

has a relationship with a FeatureGroup, and four relationships in the

case of four-dimensional data such as acceleration, gravity, orientation

and rotation rate.

• FeatureGroup. This entity is directly associated with a FeatureSet

entity, and it has one value for each feature, and a data property that

describes the sensor data whose features were extracted (e.g. “attitude-

roll”).

There might be not available values in case that some sensors or features were

not included in the settings, or in case that the computed feature returned

NaN, e.g. in the case of the skewness, which can’t be calculated if all the

samples have the same value.

A TrainingController class controls the insertion, deletion and edit-

ing of the training data, allowing to insert records simply by providing a

72 4. System Implementation

Figure 4.4: CoreData model of the training set.

4.3 Phone Application 73

dictionary of features and some other user information. When the phone

application receives a message which notifies that the recording session has

started, it is enough to call the insertTraining() method, and then provide

other information such as the end time (which is constantly updated as the

recording session goes on) and other user data, and the Training entity is

created and inserted in the database automatically, as shown in the following

code snippet:

/* This dictionary contains training information

like start time , wrist location , etc... */

guard let trainingInfo = message["userInfo"] as? [

String:Any] else { break }

self.training = self.controller.insertTraining(

dictionary: trainingInfo)

self.training ?. endTime = time

self.controller.saveContext ()

To add an instance, it is enough to call the insertFeatureSet() method,

possibly update the end time, and then save the context again:

let _ = self.controller.insertFeatureSet(instance ,

inTraining: training)

self.training ?. endTime = time

/* Saving the CoreData context causes the data to be

actually inserted into the database */

self.controller.saveContext ()

The instances are received using the WatchConnectivity framework, with-

out the need to use a queue of messages because the phone application does

not need to send a considerable amount of data, but only feedback and control

information (e.g. the user wants to remotely pause the activity recording).

One or more Training entities can be converted to a CSV file, containing

a row for every instance. The data can be exported from a dedicated con-

troller, which can send the dataset via email, or save it to the iCloud folder.

74 4. System Implementation

The following code shows how to convert an array of Training entities into

a CSV string:

self.controller.context.perform { [weak self] in

/* The code is executed in a background

thread , safe from race conditions */

let trainings = self?. controller.trainings

let csv = trainings ?. csvString ()

}

The phone application is also responsible for presenting the data to the

user, but this section will not dig into the details of how the UI was imple-

mented.

The last aspect that needs to be mentioned is the management of the user

preferences. Like stated in the previous section, the watch application man-

tains its own copy of the settings, which is periodically synchronized with

the settings of the phone application, due to the impossibility, or at least the

difficulty for the user to enter the settings from the apple watch. For this

purpose, the phone application might receive a message requesting for an

updated version of the settings, to which is simply responds calling a reply

handler that contains a dictionary representation of the settings, as allowed

by the WatchConnectivity framework. Moreover, the phone application con-

stantly monitors the user settings, and it receives a notification when the user

has made some changes. In this case, the preferences are pushed: a message

is proactively sent to the watch application, which proceeds to update the

settings.

4.4 Machine Learning Scripts

After transfering the dataset in a CSV format, it needs to be elaborated

in order to produce a classification model, which can be manually imported

in HAR App. The elaboration can be divided in two steps:

4.4 Machine Learning Scripts 75

Figure 4.5: Class diagram of the machine learning scripts.

• The dataset needs to be imported and converted into a bidimensional

array. Operations like feature selection, outlier detection and removal

of specific instances or users from the dataset need to be supported.

• Many classification algorithms are evaluated, comparing their perfor-

mance metrics. Finally, a classification model in a textual format is

exported.

Two Python scripts were developed: i) Dataset.py for the dataset elab-

oration, which relies on NumPy, ii) Classification.py for the machine

learning step. Figure 4.5 shows the class diagram of the classification scripts.

The Classification class automatically uses the methods defined in Da-

taset.py, loading the exported CSV dataset and calling the appropriate

methods in case that it is necessary to modify the dataset (e.g. removing

outliers). The below script shows how to execute the holdout validation

(which is by default implemented using 70% of the training data and the

rest for validation) using a decision tree algorithm, and then exporting the

76 4. System Implementation

classification model:

import Classification

Classification.holdoutValidation(algorithm = Classification.

Algorithm.NaiveBayes ,

select_features = True ,

remove_outliers = False ,

remove_subjects = [0])

Classification.export_model ()

An algorithm for automatic feature selection is executed, and the subjects

corresponding to the indexes contained in the remove subjects list, are

removed; in this case, the first user is removed. Afterwards, the decision tree

is exported in a textual format, which will be parsed by the watch application.

The following is the list of all the supported algorithms:

1. Naive Bayes

2. Decision tree

3. Linear SVC (support vector clustering)

4. Multilayer perceptron

5. kNN (k = 5)

6. Gradient boosting

7. Random forest

8. Bagging

9. Voting (majority voting of classifiers 1 to 5)

The holdout validation by default is run 10 times, and an average of the

following metrics is computed:

• Accuracy

• Precision

• Recall

4.5 Related Issues 77

• F1 score

• Confusion matrix

• Model building time

Figure 4.6 shows a possible output of the classification scripts.

Figure 4.6: Output of the classification scripts.

4.5 Related Issues

A certain number of issues were encountered during the development

phase, which have posed constraints on some choices, particularly on those

described in section 5.1. Most of the development efforts were employed to

solve the following issues:

• CPU limits. There is an implicit, non-official CPU limit for Apple

Watch applications, which was discovered during the development phase.

This limit was discovered to be 15% during a workout. If an application

uses more than 15% of the CPU for 60 seconds, it might be killed by the

watchOS watchdog. For this reason, the number of included features

78 4. System Implementation

was reduced, excluding the most expensive features. Moreover, a low

sampling frequency was chosen to avoid having the application killed.

• Memory limits. RAM and disk memory are also important factors. An

option was to store the raw sensor data directly on the Apple Watch,

and export it later to the iPhone, but this was impossible due to RAM

and disk usage limitations. For this reason, it was chosen to directly

extract the features on the watch application, and send them to its

phone application counterpart in real-time.

• Communication problems. Communications from the Apple Watch to

the iPhone are unstable, and they can often be frozen, making im-

possible to send instances to the phone application. Sometimes it is

necessary to restart the Apple Watch in order to restore the commu-

nications. Some complicated mechanisms were implemented to ensure

that the messages were enqueued and resent later in case that the de-

livery failed, along with some congestion control techniques. For this

reason, sending large chunks of data to the phone application was im-

possible, and this contributed to the decision of sending the extracted

features to the phone, instead of sending the raw data, which has a

larger size than the features.

For these reasons, parts of the steps mentioned in section 3.1 were skipped,

and a configuration of sampling frequency, window length, sensors and fea-

tures was chosen beforehand, instead of varying the configurations, due to

the impossibility of including those configurations that involved a high CPU,

memory and bandwidth usage (e.g. choosing a higher sampling frequency, or

adding more features). Moreover, these issues were not encountered during

the debug phase, because the CPU and memory limits are absent during de-

bug, and the communication issues are not reproducible during debug, which

requires the Apple Watch to be connected to the iPhone. Crash logs were

often unavailable, and this made the discover of the issues more difficult,

slowing down significantly the development phase.

Chapter 5

Data Collection

This chapter focuses on the methodoloy adopted for data collection, which

includes technical details about sampling and feature extraction in section

5.1, and a review of the subjects and the activity recording methodology in

section 5.2, with details on the statistical features of the constructed dataset.

The activities included in this study are: push-ups, sit-ups, squats, lunges,

jump rope, resting, walking and running. The activities could be performed

in any way by the subjects, and they were free to choose their own variant

of the exercise in case that it could be executed in multiple ways (e.g. curtsy

lunges over regular lunges, or for the sit-ups, the bycicle instead of crunches).

For the resting activity, the subjects were instructed to rest in any position

that they found comfortable and that they would choose naturally to rest

between activity sessions.

For this study, the subjects were required to wear the watch on their favourite

wrist, with the watch crown oriented as they wished, and they were monitored

with an iPhone during the activities, which was placed at a reasonably close

distance in order to communicate with the watch and record the activity

data.

79

80 5. Data Collection

5.1 Sampling and Feature Extraction

For the data collection process, it was chosen to store the features in the

dataset instead of storing the raw data 1. During the data collection process,

the following sensors were sampled:

• Accelerometer. The Apple Watch Series 2 includes a triaxial ac-

celerometer able to distinguish between user-initiated movements and

gravity. Since gravity is dependent on the orientation of the watch,

which is measured by the gyroscope, the gravity components were con-

sidered redundant and they were not included.

• Gyrscope. The components of the watch orientation, and the rotation

rate were sampled.

• GPS. Built-in GPS capabilities are included in the Apple Watch. How-

ever, often the watch uses its paired iPhone GPS capabilities in order

to save battery and to gain accuracy. Since the low-level functioning

of the GPS is not transparent in WatchOS, it is not possible to know

if the watch is using its own GPS or if it is receiving GPS information

from the paired phone. However, since the phone was always placed at

close distance from the watch, it is plausible that the phone GPS was

used during most of the time.

• Heart rate monitor. A photoplethysmography-based heart rate moni-

tor is included in the watch, which exploits the fact that blood adsorbs

green light to record the heart rate using two light sensors and two

green LEDs, in the range of 30-120 beats per minute. The heart rate

was asynchronously sampled and included in the sensor data.

1As stated in section 4.5, some choices were dictated by the strict CPU, memory and

bandwidth limits on the Apple Watch, such as: i) storing the features in the dataset

instead of the raw data, ii) choosing a low sampling frequency, iii) choosing a low,

fixed window length, iv) choosing a fixed subset of features, v) choosing not to include

all the sensor data.

5.1 Sampling and Feature Extraction 81

Sensor Components

X

Accelerometer - Y

user acceleration Z

Magnitude

Roll

Gyroscope - Pitch

attitude Yaw

Magnitude

Sensor Components

X

Gyroscope - Y

rotation rate Z

Magnitude

Course

GPS Altitude

Speed

Heart rate monitor Beats per minute

Table 5.1: Sampled data.

As shown in table 5.1, in total, 16 components were extracted at every

sampling.

A sampling frequency of 16 HZ was chosen, with a window length of 2.5

seconds and 1.25 overlaps, for a total of 40 samples for every window. The

following features were extracted from each component:

• Maximum

• Minimum

• Mean

• Median

• Standard deviation

• Skewness

• Kurtosis

• Inter-quartile range

Every instance was labeled, and the following user information were

added:

• Weight

82 5. Data Collection

• Height

• Age

• Gender

• Wrist location

• Watch crown orientation

For a total of 134 features for each instance.

5.2 Dataset Population

Four subjects participated to the study. Their information is reported in

the below table:

User Weight Height Age Gender Wrist location Crown orientation

#1 69 1.75 23 Male Left Right

#2 76 1.79 28 Male Left Right

#3 75 1.78 29 Male Right Right

#4 58 1.66 46 Male Right Right

Table 5.2: Information on the subjects that participated to the study. The

weight is reported in kilograms and the height in meters.

The environments in which the data was collected were a boxing gym, a

service area and a park. The subjects were asked to perform the activities

in any order, possibly taking breaks between one activity and another, and

breaking the activity recording along multiple days if necessary. No limita-

tions or instructions about how to perform the exercises were given. Each

user collected data for about 20 minutes for all the activities altogether, for

a total of 4083 instances collected.

Figure 5.1 and figure 5.2 show how the instances are distributed among the

activities and the subjects, respectively.

5.2 Dataset Population 83

Figure 5.1: Instances distribution per activity.

Figure 5.2: Instances distribution per subject.

84 5. Data Collection

Figure 5.3: Distribution of instances for the user acceleration x mean

feature.

Figure 5.4: Distribution of instances for the user acceleration y mean

feature.

5.2 Dataset Population 85

Figure 5.5: Distribution of instances for the user acceleration z mean

feature.

Figures 5.3, 5.4 and 5.5 show the distribution of instances for every in-

terval of the user acceleration mean value on the x, y and z axis respectively.

As the figures show, the acceleration mean on the three axises show the

characteristics of a long tail distribution. The higher the acceleration in-

terval, the lesser the probability of finding an instance whose acceleration

mean value falls within such range. As for the magnitude of the user accel-

eration mean, whose distribution is shown in figure 5.6, it still resembles a

long tail distribution, but with a much less regular shape. Every distribu-

tion of the user acceleration mean along the three exises is not completely

regular, and shows some points where the frequency increases instead of de-

creasing (e.g. between 0.2 and 0.3 in figure 5.3). The less regular shape of

the distribution of magnitude values of the acceleration could explained with

the fact that the acceleration magnitude is itself given by the squared sum

of three acceleration components, thus inheriting the irregular shape of the

three distributions, obtaining an irregularity that is the sum of more irregular

86 5. Data Collection

Figure 5.6: Distribution of instances for the user acceleration magnitude

mean feature.

distributions.

Chapter 6

System Evaluation

As explained in chapter 5, the dataset was populated with 4083 instances,

and as shown in figures 5.1 and 5.2, the data is well balanced among activ-

ities and subjects. For validation, the holdout method was used, employing

70% of the data for training the model, and the remaining 30% for vali-

dation. Each test was repeated 10 times, and the metrics were averaged

over all the runs. The HAR system was evaluated considering many met-

rics, which summarise the performance of the system, in terms of time and

recognition performance. The system was first evaluated using the machine

learning scripts described in section 4.4, varying different configurations of

algorithms 1, subjects, sensors, features and other options such as outlier

removal and varying the dimension of the test set size. In the second place,

the system was tested using the testing module of HAR App, the developed

application, exploiting the logging capabilities described in subsection 4.2.2

in order to obtain a report of the predicted activities and calculate various

metrics, which were compared with the metrics obtained from the machine

learning scripts. Moreover, the CPU consumption of the testing module of

the application was evaluated, varying different configurations of sensors.

1Details about the employed machine learning algorithms can be found in section 4.4

87

88 6. System Evaluation

6.1 Machine Learning Results

6.1.1 Algorithms and Subjects

The first test compared different machine learning algorihtms, considering

the model building time, which is shown in figure 6.1, and the recognition

performance, shown in figure 6.2. As expected, the naive Bayes and kNN

algorithms were the fastest, the former because it is based on simple prob-

ability computations, and the latter because it is based on lazy learning,

which means that the learning process simply consists in copying the train-

ing set in memory, and all the computation is deferred at classification time.

The slowest algorithm was multilayer perceptron, because it requires com-

plex computations in order to taylor the neural network, finding the optimal

configuration of connection weights; as expected, since the voting algorithm

is a majority vote between five models, including multilayer perceptron, it

inherits its slowness from the multilayer perceptron method, and obtained a

building time of 3.89 seconds, which is close to the sum of the building time

of the first five algorithms shown in figure 6.1. The most accurate recognition

model was random forest, which scored an accuracy of 99.51%, followed by

voting, which obtained an accuracy of 98.66%, and the SVC method, with

a score of 97.79%. The decision tree method obtained a good combination

of building time and accuracy, respectively 95.42% and 0.259 seconds; also

because it is a simple and understandable model, it can be considered a good

compromise, and for this reason the following metrics in this chapter will be

reported using the random forest and the decision tree methods.

The so far reported results considered impersonal models, obtained using

the whole dataset. A personal model includes only one subject, and it is

generally more accurate than an impersonal model. Figure 6.3 shows the

accuracy scores obtained with impersonal and personal models; the latter in-

cluded one subject at time, whose information can be found in table 5.2. As

expected, personal models outperformed the impersonal model; moreover,

the performance discrepancy between the random forest and decision tree

6.1 Machine Learning Results 89

Figure 6.1: Model building time for different machine learning algorithms.

The building time is reported in logarithmic scale.

Figure 6.2: Accuracy obtained for different machine learning algorithms.

90 6. System Evaluation

Figure 6.3: Accuracy of impersonal and personal models.

methods is higher for the impersonal model, with an accuracy difference of

4.09%, while the average gap of the personal models is 1.3%. This can be

explained with the fact that impersonal models are more prone to overfitting,

whose problem is eliminated by the random forest method.

The decision tree confusion matrix is shown in 6.4. As can be seen, resting

was sometimes confused with sit-ups and viceversa, and this was due to the

fact that the subjects were free to rest in the position that they found more

comfortable, and sometimes they were laid in the same position used for

performing sit-ups. Moreover, some instances of squats were confused with

sit-ups and viceversa despite the fact that the two exercises are performed in

completely different positions, but this can be explained with the fact that

both squats and sit-ups are often performed crossing the arms. Sit-ups and

resting were the least accurately predicted activities, because of their high

variability. Indeed, the subjects rested in various positions, standing up, sit-

ting down or lying down; as for the sit-ups activity, it has many variants and

it has thus a higher inter-subject and intra-subject variability compared with

other exercises. The random forest confusion matrix is shown in 6.5; as can

be seen, the number of misclassified instances is highly reduced.

6.1 Machine Learning Results 91

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 144 2 2 0 0 2 0 0

Sit-ups 1 133 4 2 1 5 2 0

Squats 1 4 144 2 0 2 0 0

Lunges 0 1 3 147 0 1 1 0

Jump Rope 0 0 0 0 152 0 0 0

Resting 2 6 4 1 0 140 1 0

Walking 0 1 0 1 1 1 157 0

Running 0 0 0 0 1 0 0 152

Figure 6.4: Decision tree confusion matrix.

6.1.2 Sensors and Features

Various sensors and features configurations were tested with the same

methodology, using the decision tree and random forest methods. The fol-

lowing data was considered 2:

• Heart rate

• Acceleration

• Rotation rate

• GPS data

• Subject information

Subject information included weight, height, age, gender, wrist location

and crown orientation. A set of configurations containing only some of the

above data was tested, and the experiment was repeated for both the deci-

sion tree and random forest methods, as shown in figures 6.6 and 6.7, where

2More details can be found in table 5.1

92 6. System Evaluation

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 149 0 0 0 0 0 0 0

Sit-ups 0 144 0 0 0 2 0 0

Squats 0 0 153 0 0 0 0 0

Lunges 0 0 0 153 0 0 0 0

Jump Rope 0 0 0 0 154 0 0 0

Resting 0 1 0 0 0 152 1 0

Walking 0 0 0 0 0 0 162 0

Running 0 0 0 0 0 0 0 153

Figure 6.5: Random forest confusion matrix.

a checkmark under a sensor data label indicates that the data was included,

while a ballot mark indicates that the data was discarded. At a first glance,

it can be noticed that the heart rate monitor alone is not sufficient to ob-

tain accurate results. Indeed, the accuracy was 71.5% and 71.23% for the

decision tree and random forest algorithms. Also GPS data was not suffi-

cient to obtain an accurate model, which obtained accuracy scores of 63.12%

and 62.99% with decision tree and random forest. The sensor that obtained

the greatest accuracy score alone was the gyroscope, more specifically the

orientation alone scored 91.28% and 97.14%, while a combination of orienta-

tion and rotation scored scored 92.6% and 98.66%. The accelerometer alone

scored an accuracy of 89.92% and 95.82%, which is enough to recognize ac-

tivities with the sole sensor. Each sensor data positively contribued to the

accuracy scores: the heart rate, even if it not enough if used alone, increased

the accuracy from 63.12% to 91.81% if added to GPS data with the decision

tree method, and from 62.99% to 92.37% with the random forest method.

Similarly, removing GPS data from this configuration caused the accuracy to

6.1 Machine Learning Results 93

Figure 6.6: Accuracy scores of various sensor data configurations for

decision tree. A checkmark indicates that the sensor data was included.

drop to 71.23% and 71.5%, as stated previously. Another important finding

was that subject information did not significantly improve the recognition

accuracy, which dropped only by 0.05% and 0.13% with decision tree and

random forest. Information such as age, weight and height did not signifi-

cantly contributed to the accuracy, but more importantly, the wirst location

did not have a significant contribute, in spite of the fact the feature set in-

cluded wrist location-dependent data. This suggests that the data used in

this study is fit to build a wrist location-independent model. Indeed, the

chosen features and data were similar to those included in [38], with the

exception that the gyroscope and accelerometer data included all the four

components, instead of using the magnitude only.

94 6. System Evaluation

Figure 6.7: Accuracy scores of various sensor data configurations for

random forest. A checkmark indicates that the sensor data was included.

Another experiment was carried out measuring the accuracy score of mod-

els trained using only one feature in isolation, comparing them with the ac-

curacy obtained using all the features. For the decision tree method using

some features in isolation did not significantly degrade recognition accuracy.

Like shown in figure 6.8, all the features except skewness and kurtosis were

enough, if used alone, to obtain more than 92% of accuracy; the mean and

the median obtained even a greater accuracy than the model built including

all the features. This is probably due to the tendency of decision trees to

go in overfitting when a too large number of features is used. To prove this

hypothesis, the results of the same experiment carried out with the random

6.1 Machine Learning Results 95

Figure 6.8: Accuracy of each feature used in isolation, compared with the

accuracy obtained using all the features (decision tree).

Figure 6.9: Accuracy of each feature used in isolation, compared with the

accuracy obtained using all the features (random forest).

96 6. System Evaluation

forest algorithm are shown in figure 6.9; while it is still true that some fea-

tures used alone have a performance that is comparable with the accuracy

score of all the features, no fearture alone obtained a greater accuracy than

the all-features configuration. Also for the random forest method skewness

and kurtosis resulted the least accurate features if used alone. This suggests

that the shape and the irregularity of the samples distribution is not much

relevant to recognize this kind of physical activities with the watch.

Finally, an experiment that tested various configurations of sensor data and

features was performed. The configurations are shown in the below table:

Configuration Sensor data Features

1 Gyroscope - attitude Mean

2 Gyroscope - attitude Mean

and rotation rate

3 Gyroscope - attitude Median

and rotation rate

4 Automatic sensor data and feature selection3

5 Gyroscope - attitude Automatic feature selection4

and rotation rate

6 All All

Table 6.1: Configurations of sensor data and features.

3Selected Features: attitude-roll-max, attitude-yaw-deviation, attitude-pitch-

median, attitude-pitch-mean, attitude-pitch-deviation, attitude-magnitude-max,

rotationRate-x-IQR, rotationRate-y-min, rotationRate-z-IQR, rotationRate-magnitude-

median, userAcceleration-x-IQR, userAcceleration-y-max, userAcceleration-y-deviation,

userAcceleration-z-deviation, userAcceleration-magnitude-median, userAcceleration-

magnitude-mean, altitude-max.
4Selected features: attitude-roll-median, attitude-pitch-max, attitude-pitch-min,

attitude-pitch-median, attitude-pitch-mean, attitude-pitch-deviation, attitude-magnitude-

max, attitude-magnitude-median, attitude-magnitude-mean, rotationRate-x-deviation,

rotationRate-x-IQR, rotationRate-z-deviation, rotationRate-z-kurtosis, rotationRate-

magnitude-median, rotationRate-magnitude-mean, age.

6.1 Machine Learning Results 97

An algorithm of automatic feature selection based on decision trees was

used to automatically select features in configuration 4. In configuration 5,

the same algorithm was applied after discarding all the sensors except the

gyroscope. In all the configurations, subject information were kept and in

the case of automatic feature selection, they were among the other candidate

features.

Figure 6.10 show the accuracy results of activity recognition performed with

the configurations of table 6.1. Again, the decision tree algorithm improved

its accuracy with automatic feature selection (configuration 4), increasing

from 95.42% to 96.08%, due to its tendency to overfit the training data if

the number of features is too high. On the contrary, for the random forest

method no configuration resulted in higher accuracy than the configuration

with all sensor data and features. Both for decision tree and random forest,

the best configuration was the one with automatic feature selection on all the

features. Considering that only 17 features were included in configuration

4, and that 134 were included in configuration 6, automatic feature selec-

tion with random forest can still be considered a good compromise between

accuracy and efficiency.

6.1.3 Other Experiments

The first test was about outlier removal, which relied on an outlier de-

tection algorithm which received a contamination parameter as input, the

greater its value, the greater the number of detected outliers. The outlier

detection algorithm was run on the training set only, and it was used to train

a recognition model to be tested on the test set, which contained all the data,

without applying the outlier removal. Figure 6.11 shows the results for both

the decision tree and random forest methods. The contamination parameter

is on the x axis, and between 0 and 1% there are some apparently random

fluctuations, with the accuracy that goes up and down but without showing

any significative improvement or deterioration. After 2%, the accuracy starts

decreasing slowly, losing about the 1%. The conclusion of this experiment is

98 6. System Evaluation

Figure 6.10: Accuracy of various configurations of sensor data and features

with decision tree and random forest. The configurations are shown in table

6.1

that outlier removal did not bring any benefit to activity recognition.

The second experiment reported in this subsection is about the accuracy

variation with different values of the test set size. As shown in figure 6.12,

as the test set size is increased, the accuracy went down, because a smaller

test set size means that there is more data available to train the recognition

model, which is therefore more accurate. For the random forest algorithm,

the accuracy starts from 99.75% with a size of 1%, and goes slightly down

until it reaches the value of 99.51% with the nominal size of 30%, and it

starts abruptly decreasing around 80%. The decision tree algorithm shows a

similar behavior, except for the fact that the accuracy starts with a value of

95.36% with a test set size of 1%, and it increases up to 96.29% with a size

of 5%, and then starts decreasing.

6.1 Machine Learning Results 99

Figure 6.11: Accuracy of outlier removal varying the contamination

parameter.

Figure 6.12: Accuracy varying the test set size.

100 6. System Evaluation

6.2 In-App Tests

To further validate the HAR system, two more tests were performed from

within the application, in order to measure: i) recognition performance,

ii) CPU consumption. The recognition performance test was expected to

score different results from the test carried out on the test set, because there

is always some dependency between training set and test set data; indeed,

since it was chosen to use windows with 50% overlaps, instances calculated

in contiguous window were partly calculated on the same data, and if the

criterion is simply to randomly select 30% of the data for testing, then some

couples of instances with similar features were split between the training set

and the test set. Moreover, even instances that were not calculated in con-

tiguous time windows may have some dependency if they were calculated

during the same activity in a close lapse of time.

As there is no way to measure the battery consumption of the watch appli-

cation, the CPU test should give an approximate idea of the battery con-

sumption. Nevertheless, there are some problems that should be taken into

account:

• The CPU usage does not take in consideration other hardware that

consume battery power, such as the watch green LEDs, the light sensors

and the accelerometer-gyroscope.

• Services that allow to read the accelerometer, the gryscope, the GPS

position rely on external libraries and routines that are not run within

the application. It is not possible to know if a certain algorithm (e.g.

the GPS triangulation algorithm) is run within the application or in

another program.

• When available, the apple watch uses the GPS position obtained from

its paired iPhone instead of locally querying its GPS. In this case, the

CPU usage of the watch application does not take into account the

CPU time spent on the iPhone to calculate the position.

6.2 In-App Tests 101

• During a workout, the heart rate monitor is always active, even if the

heart rate is not being queried. This means that if the heart rate

monitor is excluded from the sensors used for HAR, it is still active

and it consumes its amount of CPU (either within the application or

outside).

For these reasons, the CPU usage of the watch application is not directly

linked with the total power consumption needed in order to recognize ac-

tivities. The CPU usage should only give an idea of what the application

consumes in order to run classify activities, considering that some variables

may be taken outside of the equation.

6.2.1 Recognition Performance

As mentioned in subsection 4.2.2, the testing module of HAR App relies

on a history set, which stored the last n classifications inside a queue, and

returns the most frequent activity inside the queue as the final prediciton.

The size of the history set is configurable with a value of 1, 3, 5 or 7. A

decision tree 5 was validated within the application by the user number 2 in

table 5.2, classifying a total of 1442 instances, which corresponds to 35% of

the dataset, slightly more than the test set size. Every activity was included

in the test, collecting 173 ± 27 instances for every activity. Figure 6.13 shows

the confusion matrix with no history set applied. 27 instances of squats were

misclassified as resting, and 10 as walking. Moreover, 50 instances of jump

rope were misclassified as walking, and the sit-ups activity was misclassified

21 times as squats and 13 times as resting. The interesting fact about this

confusion matrix is that the misclassifications are not symmetrical: despite a

large number of instances of jump rope were misclassified as walking, no in-

stances of walking were misclassified as jump rope; similarly, no instances of

resting and walking were misclassified as squats, and no instances of squats

5The decision tree was trained on the whole dataset, using all the features and the

sensor data available.

102 6. System Evaluation

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 143 0 3 0 0 0 0 0

Sit-ups 3 163 21 13 0 0 0 0

Squats 0 0 132 0 0 27 10 0

Lunges 0 0 0 192 0 0 0 0

Jump Rope 0 0 1 0 129 0 50 0

Resting 1 3 0 0 0 151 0 0

Walking 0 6 0 0 0 2 192 0

Running 0 0 0 0 2 0 0 198

Figure 6.13: Confusion matrix without history set.

or lunges were misclassified as sit-ups. While there is some similarity be-

tween some of these activities (e.g. between sit-ups and squats if they are

performed crossing the hands, or between jump rope and walking because of

the similar positions), the misclassifications seem to be mostly due to over-

fitting more than because there are confusing patterns in activities than can

be performed similarly.

Figures 6.14, 6.15 and 6.16 show the confusion matrices for history set

sizes of 3, 5 and 7. Interestingly, as the history set size is increased, as the

number of misclassified instances of some pairs of activities either increase

of decrease. For example, increasing the history set size from 1 to 7, de-

creases the number of squats instances misclassified as resting from 27 to 10.

On the contrary, increasing the history set size from 1 to 7, increases the

number of sit-ups instances misclassified as squats from 21 to 31. There is

an explanation for this behavior; for instance, let’s consider this sequence of

classifications of the jump rope activity: “walking, jump rope, jump rope,

walking, walking, walking, jump rope, jump rope, walking”, which was taken

6.2 In-App Tests 103

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 143 0 3 0 0 0 0 0

Sit-ups 4 164 21 11 0 0 0 0

Squats 0 0 154 0 0 15 0 0

Lunges 0 0 0 192 0 0 0 0

Jump Rope 0 0 0 0 130 0 50 0

Resting 0 2 0 0 0 153 0 0

Walking 0 4 0 0 0 1 195 0

Running 0 0 0 0 0 0 0 200

Figure 6.14: Confusion matrix with history set size = 3.

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 143 0 3 0 0 0 0 0

Sit-ups 1 162 27 10 0 0 0 0

Squats 0 0 158 0 0 11 0 0

Lunges 0 0 0 192 0 0 0 0

Jump Rope 0 0 0 0 123 0 57 0

Resting 0 0 0 0 0 155 0 0

Walking 0 4 0 0 0 0 196 0

Running 0 0 0 0 0 0 0 200

Figure 6.15: Confusion matrix with history set size = 5.

104 6. System Evaluation

Activity P
u
sh

-u
p
s

S
it

-u
p
s

S
q
u
at

s

L
u
n
ge

s

J
u
m

p
R

op
e

R
es

ti
n
g

W
al

k
in

g

R
u
n
n
in

g

Push-ups 146 0 0 0 0 0 0 1

Sit-ups 0 158 31 10 0 0 0 0

Squats 0 0 159 0 0 10 0 0

Lunges 0 0 0 192 0 0 0 0

Jump Rope 0 0 0 0 121 0 59 0

Resting 0 0 0 0 0 155 0 0

Walking 0 4 0 0 0 0 196 0

Running 0 0 0 0 0 0 0 200

Figure 6.16: Confusion matrix with history set size = 7.

from real classification data. If the classifications start from the fifth entry

in order to allow a history set sized 5 to classify as many activities as in

the case where no history set is used, then the recognition accuracy with no

history set is 50% (2 of last 4 activities are correctly classified), which is the

same accuracy obtained with a history set large 3. But if the history set size

is increased to 5, the accuracy drops to 0%. The conclusion is that a history

set allows for a greater recognition accuracy only when the recognition is

enough accurate, while in case that the misclassified instances outnumber

the correctly classified instances, a larger history set size only decreases the

accuracy. Analyzing the classification data, it was found that this kind of

incorrect behavior occurred only during certain classifications, while in other

situations the prediction accuracy was high (e.g. during certain tests, no

jump rope instances were misclassified as walking).

Figures 6.17 to 6.24 show the accuracy, recall, precision and F1 scores for

all the activities. The most well recognized activities were: push-ups, lunges,

resting and running. Jump rope was the most problematic, due to the fact

6.2 In-App Tests 105

Figure 6.17: Push-ups metrics.

Figure 6.18: Sit-ups metrics.

106 6. System Evaluation

Figure 6.19: Squats metrics.

Figure 6.20: Lunges metrics.

6.2 In-App Tests 107

Figure 6.21: Jump Rope metrics.

Figure 6.22: Resting metrics.

108 6. System Evaluation

Figure 6.23: Walking metrics.

Figure 6.24: Running metrics.

6.2 In-App Tests 109

that it was often confused with walking. There is an interesting thing to

notice about these metrics: some activities have balanced values of recall

and precision, while some show a great discrepancy, having a recall value sig-

nificantly greather than precision or viceversa. Like explained in subsection

2.3.1, the recall inversely depends on the number of false negatives: if the

activity is often misclassified as another activity, then the recall is low. Pre-

cision instead inversely depends on the false positive rate: given an activity

Cj, if other activities are often misclassified as Cj, then the precision score

of Cj will be low. The F1 score takes both the recall and precision into ac-

count. For this reason, an activity like jump rope has a great precision score

(up to 100% for a history set size greater of equal than 3), but a very low

recall. Moreover, because of the previously mentioned behavior of increasing

misclassifications between some activities as the history set size grows, also

the recall of jump rope decreases as the history set size grows. The F1 score

is a balanced metric which takes into account of both precision and recall,

and it shows the highest value for the jump rope activity with a history set

size of 3. For the opposite reason, walking has a high recall score but a low

precision score, because most of the instances of the walking activity were

correctly classified, but many instances of jump rope were misclassified as

walking. For the walking activity, the recall increases as the history set size

grows, while the precision first increases up to 79.59% with a history set size

of 3, and then decreases. From 3 to 5 there is an inverse tendency between

recall and precision: the recall increases, while the precision decreases. An-

other activity that show an inverse tendency between precision and recall in

some points of the bar chart are resting and sit-ups.

Figure 6.25 show the average metrics for all the activities. If the F1 score is

chosen to evaluate the recognition performance due to the fact that it takes

into account both recall and precision, then the best history set size is 3, with

an F1 score of 92.27%. If the history set size is further increased, the F1 score

slighly goes down and the same is true for the accuracy, which reaches the

value of 92.68% and then slighly decreases. A history set of 7 activities is

110 6. System Evaluation

Figure 6.25: Average metrics (all ativities).

almost as accurate as a history set of 3 activities, but since a greater history

set decreases the recognition accuracy during transitions, it is preferable to

use a history set of 3 elements, which can be considered the best size for this

kind of activities in this study.

6.2.2 CPU Time

The last in-app test regarded the CPU consumption for each configu-

ration of sensors, which is shown in figure 6.26. Because of the previously

mentioned problem, the CPU time is not directly linked with battery con-

sumption, and it is unbalanced, taking into account mostly the overhead due

to feature extraction rathern than the overhead due to the use of sensors,

such as the CPU needed to run the GPS triangulation algorithm, which most

likely runs in a watchOS system routine or in the iPhone. The CPU time was

measured over 60 seconds of use of the application, which gives an idea of

how much CPU the application needs to allocate in order to perform activity

6.2 In-App Tests 111

Figure 6.26: CPU time for different configurations of sensors, measured

over 60 seconds.

recognition. As expected, the results are highly dependent on the number

of features included. The number of features associated with each sensor

are: i) gyroscope: 64, ii) accelerometer: 32, iii) GPS: 24, iv) heart rate

monitor: 8. With the exception of the GPS which consumed 1.34 seconds,

less than the heart rate monitor which consumed 1.87 seconds, the results

seem to be ordered by the number of features included. Considering that

the configuration that included all the sensors consumed 3.2 seconds versus

2.78 seconds consumed with only the acceleromter and the gyroscope, and

that the accuracy obtained using only the acceleration and the attitude was

greater than the accuracy of all the sensor data (see figure 6.6), then the

conclusion is that the GPS and the heart rate monitor can be considered

redundant in this study, and they did not significantly increase the accuracy.

This reinforces the findings in [33], where it was concluded that the heart

rate monitor was not useful in HAR, because the heart rate is slow to change

and it is therefore sensible to the activities performed in the past minutes.

The best configuration would use only the accelerometer and the gyroscope,

and to further save energy it would make use of feature selection, which also

112 6. System Evaluation

reduces overfitting with decision trees.

Chapter 7

Conclusions

A human activity recognition system based on the Apple Watch was de-

veloped, using an iPhone and an external machine, in order to recognize the

following activities: push-ups, sit-ups, squats, lunges, jump rope, resting,

walking and running. The system is able to collect data in order to train

and test an activity classifier. The data is stored in the phone, while the

machine learning scripts are located in a third machine, and they need man-

ual actions in order to build and export a recognition model, which can be

manually imported in the watch. The data collection phase involved four

subjects, all males, aged between 23 and 46. Due to the strict CPU, memory

and bandwidth limits on the Apple Watch, it was chosen to directly extract

the features on the watch and send them in real-time to the iPhone, instead

of sending the raw sensor data. The choice of the sampling frequency and

which features and sensor data to use was also dictated by these problems,

therefore a low sampling frequency of 16 HZ was chosen in order to reduce

the CPU consumption of the application, and a fixed subset of computation-

ally efficient features and sensor data was chosen, with a window length of

2.5 seconds with 50% overlaps. 4,083 instances were collected, correspond-

ing to about 20 minutes of physical activity for every subject. 9 different

recognition algorithms were trained and evaluated on the external machine,

using the holdout validation with a test set of 30%, obtaining an accuracy

113

114 7. Conclusions

of 95.42% with decision tree, and 99.51% with the random forest method,

which resulted the most accurate. Various configurations of sensor data and

features were tried, coming to the conclusion that the heart rate monitor and

the GPS did not significantly increase the recognition accuracy when the gy-

roscope and accelerometer are used, but they are useful when there is not

enough sensor data from the accelerometer and the gyroscope (e.g. adding

the heart rate monitor to the GPS increases the accuracy from 62.99% to

92.37% with the random forest method). The accelerometer and the gyro-

scope alone were able to achieve an accuracy of 99.36% with random forest

and 95.05% with decision tree. Another important finding derived from vali-

dation: despite each subject wore the watch in a different location during the

study (two on the left wrist, two on the right), the wrist location information

did not significantly increase the recognition accuracy, demonstrating that

the recognition model is independent from the wrist location. A similar con-

clusion was made in a study on smartwatches that included similar features

[38]. Moreover, activities that involve similar gestures or that are performed

in similar positions were confused more often with each other: sit-ups were

confused with squats due to the fact that they are both often performed

crossing the hands, while resting was often confused with sit-ups due to the

fact that both activities can be perfomed while lying down. Automatic fea-

ture selection showed an increase in recognition accuracy for the decision

tree learning method, because it is more prone to overfitting when too many

features are included, while it did not increase the accuracy of the random

forest model. Another finding from the validation was that outlier detection

and removal did not significantly increase the recognition accuracy.

The recognition model was afterwards validated within the application with

a decision tree, obtaining different results: the average recognition accuracy

dropped to 90.73%, and there was a significative discrepancy between the

accuracy of different activities, as well as a discrepancy between the recall

and precision of certain activities, for the reason that some activities were

confused with other activities but not viceversa. While there is some similar-

115

ity between some of the activities that scored a low precision or recall, this

seems to be more related to decision tree overfitting.

Using a history set capable of storing the last n classification, outputing the

most frequent predicted activity in the sequence, showed an improvement in

the recognition accuracy, which went up to the value of 92.68% with a history

set of 3 predictions, and then slightly decreased as the history set size was

increased. A history set of 3 elements gives the best accuracy for this kind

of problem, and also allows for recognizing transitions fast, in a time window

of maximum 3.75 seconds.

An analysis of the CPU consumption of the application with different config-

urations of sensors was not able to truly capture the total CPU consumption

caused by the application, because the services that allow to read the GPS,

the heart rate monitor, the accelerometer and the gyroscope are centralized,

and there is no way to know if a given computation (e.g. GPS triangulation)

is taking place within the application or outside (e.g. in a system routine).

The results were mostly dependent on the feature extraction, which was im-

plemented in the application and it can be considered a bottleneck. The only

conclusion from this test is that discarding the heart rate monitor and the

GPS slightly drops the CPU consumption of the application. Therefore using

only the accelerometer and the gyroscope with automatic feature selection

would achieve a good accuracy and a lower CPU consumption.

To summarize, considering the accuracy result of 92.68% with a history

set of 3 elements, the conclusion is that automatic recognition of sports ac-

tivities is feasible on the Apple Watch, independently on the watch location.

The best configuration includes only the accelerometer and the gyroscope,

with automatic feature selection using a history set of 3 elements. The most

accurate algorithm is random forest.

116 7. Conclusions

7.0.1 Future Work

The first problem of this study was the impossibility of storing raw sensor

data instead of the features, due to CPU and memory limits, as well as

bandwidth limits that would cause the communications between the Apple

Watch and the iPhone to freeze if large chunks of data are transmitted. Given

the recent technology developments, it would be possible in future to use a

watch with less limitations, that would allow to store all the raw data locally

or by communicating with the phone. Storing the raw data instead of storing

the features would give some advantages in the following choices:

• Choice of the features.

• Choice of the window length.

• Choice of the sampling frequency.

• Possibility of filtering the data.

Moreover, more possible future improvements of the system would in-

clude:

• Automatic energy monitoring of the application, included the energy

consumed by the sensors.

• Duty cycles in order to save batter power and use the sensors only when

movement is detected.

• Automatic recognition model installation, using more methods (e.g.

random forest).

The last option requires an external server, which should allow to send

sensor data. The server would elaborate the sensor data with the parameters

chosen by the user, and it would reply by sending an encoded recognition

model, and, if requested, some statistics (e.g. accuracy score on the test set).

The system should be more automatic, it should not require any manual step

during the training and testing phase, and it should be more customizable

117

(e.g. allowing to choose the activity labels).

Finally, the training/testing phases should be integrated into a fintess ap-

plication, which would provide an impersonal recognition model with the

possibility of manually training the activity classifier, in order to track phys-

ical activities automatically, without requiring any input.

Bibliography

[1] J. W. Lockhart, T. Pulickal, and G. M. Weiss, “Applications of mobile

activity recognition,” in Proceedings of the 2012 ACM Conference on

Ubiquitous Computing, UbiComp ’12, (New York, NY, USA), pp. 1054–

1058, ACM, 2012.

[2] J. Villar, S. González, J. Sedano, C. Chira, and J. Trejo, “Improving

human activity recognition and its application in early stroke diagnosis,”

vol. 25, pp. 1–20, 11 2014.

[3] V. Loseu, H. Ghasemzadeh, S. Ostadabbas, N. Raveendranathan,

J. Malan, and R. Jafari, “Applications of sensing platforms with wear-

able computers,” in Proceedings of the 3rd International Conference on

PErvasive Technologies Related to Assistive Environments, PETRA ’10,

(New York, NY, USA), pp. 53:1–53:5, ACM, 2010.

[4] S. L. Lau, I. König, K. David, B. Parandian, C. Carius-Düssel, and

M. Schultz, “Supporting patient monitoring using activity recognition

with a smartphone,” in 2010 7th International Symposium on Wireless

Communication Systems, pp. 810–814, Sept 2010.

[5] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of

wearable sensors and systems with application in rehabilitation,” Jour-

nal of NeuroEngineering and Rehabilitation, vol. 9, p. 21, Apr 2012.

[6] R. I. Ramos-Garcia and A. W. Hoover, “A study of temporal action

sequencing during consumption of a meal,” in Proceedings of the In-

119

120 BIBLIOGRAPHY

ternational Conference on Bioinformatics, Computational Biology and

Biomedical Informatics, BCB’13, (New York, NY, USA), pp. 68:68–

68:75, ACM, 2013.

[7] P. M. Scholl and K. van Laerhoven, “A feasibility study of wrist-worn

accelerometer based detection of smoking habits,” in 2012 Sixth In-

ternational Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, pp. 886–891, July 2012.

[8] G. Jean-Louis, D. F. Kripke, R. J. Cole, J. D. Assmus, and R. D. Langer,

“Sleep detection with an accelerometer actigraph: comparisons with

polysomnography,” Physiology % Behavior, vol. 72, no. 1, pp. 21 – 28,

2001.

[9] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, “Perfalld: A pervasive fall

detection system using mobile phones,” in 2010 8th IEEE International

Conference on Pervasive Computing and Communications Workshops

(PERCOM Workshops), pp. 292–297, March 2010.

[10] Y. He, Y. Li, and S. D. Bao, “Fall detection by built-in tri-accelerometer

of smartphone,” in Proceedings of 2012 IEEE-EMBS International Con-

ference on Biomedical and Health Informatics, pp. 184–187, Jan 2012.

[11] https://www.fallsafetyapp.com/blog/

apple-watch-fall-detection.

[12] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, “Mobile phone based

drunk driving detection,” in 2010 4th International Conference on Per-

vasive Computing Technologies for Healthcare, pp. 1–8, March 2010.

[13] T. Mashita, K. Shimatani, M. Iwata, H. Miyamoto, D. Komaki, T. Hara,

K. Kiyokawa, H. Takemura, and S. Nishio, “Human activity recognition

for a content search system considering situations of smartphone users,”

in 2012 IEEE Virtual Reality Workshops (VRW), pp. 1–2, March 2012.

BIBLIOGRAPHY 121

[14] L. Bedogni, M. D. Felice, and L. Bononi, “By train or by car? detecting

the user’s motion type through smartphone sensors data,” in 2012 IFIP

Wireless Days, pp. 1–6, Nov 2012.

[15] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer,

“Energy-efficient continuous activity recognition on mobile phones: An

activity-adaptive approach,” in 2012 16th International Symposium on

Wearable Computers, pp. 17–24, June 2012.

[16] https://www.fitbit.com/it/alta.

[17] https://www.nike.com/fuelband.

[18] http://www.mcroberts.nl/products/movemonitor/.

[19] O. D. Lara and M. A. Labrador, “A survey on human activity recogni-

tion using wearable sensors,” IEEE Communications Surveys Tutorials,

vol. 15, pp. 1192–1209, Third 2013.

[20] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse, “An activity

monitoring system for elderly care using generative and discriminative

models,” Personal and Ubiquitous Computing, vol. 14, pp. 489–498, Sep

2010.

[21] A. Tolstikov, X. Hong, J. Biswas, C. Nugent, L. Chen, and G. Parente,

“Comparison of fusion methods based on dst and dbn in human activity

recognition,” Journal of Control Theory and Applications, vol. 9, pp. 18–

27, Feb 2011.

[22] J. Yang, J. Lee, and J. Choi, “Activity recognition based on rfid ob-

ject usage for smart mobile devices,” Journal of Computer Science and

Technology, vol. 26, pp. 239–246, Mar 2011.

[23] J. Sarkar, L. T. Vinh, Y.-K. Lee, and S. Lee, “Gpars: a general-purpose

activity recognition system,” Applied Intelligence, vol. 35, pp. 242–259,

Oct 2011.

122 BIBLIOGRAPHY

[24] J. Hong and T. Ohtsuki, “A state classification method based on space-

time signal processing using svm for wireless monitoring systems,” in

2011 IEEE 22nd International Symposium on Personal, Indoor and Mo-

bile Radio Communications, pp. 2229–2233, Sept 2011.

[25] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine

recognition of human activities: A survey,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 18, pp. 1473–1488, Nov

2008.

[26] J. Candamo, M. Shreve, D. B. Goldgof, D. B. Sapper, and R. Kasturi,

“Understanding transit scenes: A survey on human behavior-recognition

algorithms,” IEEE Transactions on Intelligent Transportation Systems,

vol. 11, pp. 206–224, March 2010.

[27] C. N. Joseph, S. Kokulakumaran, K. Srijeyanthan, A. Thusyanthan,

C. Gunasekara, and C. D. Gamage, “A framework for whole-body ges-

ture recognition from video feeds,” in 2010 5th International Conference

on Industrial and Information Systems, pp. 430–435, July 2010.

[28] M. A. R. Ahad, J. K. Tan, H. S. Kim, and S. Ishikawa, “Human activity

recognition: Various paradigms,” in 2008 International Conference on

Control, Automation and Systems, pp. 1896–1901, Oct 2008.

[29] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity

recognition and monitoring using multiple sensors on different body po-

sitions,” in International Workshop on Wearable and Implantable Body

Sensor Networks (BSN’06), pp. 4 pp.–116, April 2006.

[30] L. Bao and S. S. Intille, “Activity recognition from user-annotated ac-

celeration data,” in Pervasive Computing (A. Ferscha and F. Mattern,

eds.), (Berlin, Heidelberg), pp. 1–17, Springer Berlin Heidelberg, 2004.

BIBLIOGRAPHY 123

[31] D. Riboni and C. Bettini, “Cosar: hybrid reasoning for context-aware

activity recognition,” Personal and Ubiquitous Computing, vol. 15,

pp. 271–289, Mar 2011.

[32] ı. D. Lara, A. J. PéRez, M. A. Labrador, and J. D. Posada, “Centinela:

A human activity recognition system based on acceleration and vital

sign data,” Pervasive Mob. Comput., vol. 8, pp. 717–729, Oct. 2012.

[33] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and

R. Friedman, “Real-time recognition of physical activities and their in-

tensities using wireless accelerometers and a heart rate monitor,” in 2007

11th IEEE International Symposium on Wearable Computers, pp. 37–

40, Oct 2007.

[34] M. Sekine, T. Tamura, M. Ogawa, T. Togawa, and Y. Fukui, “Clas-

sification of acceleration waveform in a continuous walking record,” in

Proceedings of the 20th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society. Vol.20 Biomedical En-

gineering Towards the Year 2000 and Beyond (Cat. No.98CH36286),

vol. 3, pp. 1523–1526 vol.3, Oct 1998.

[35] Z. He and L. Jin, “Activity recognition from acceleration data based

on discrete consine transform and svm,” in 2009 IEEE International

Conference on Systems, Man and Cybernetics, pp. 5041–5044, Oct 2009.

[36] M. Benocci, M. Bächlin, E. Farella, D. Roggen, L. Benini, and

G. Tröster, “Wearable assistant for load monitoring: recognition of on-

body load placement from gait alterations,” in 2010 4th International

Conference on Pervasive Computing Technologies for Healthcare, pp. 1–

8, March 2010.

[37] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, “Win-

dow size impact in human activity recognition,” Sensors, vol. 14, no. 4,

pp. 6474–6499, 2014.

124 BIBLIOGRAPHY

[38] F. Miao, Y. He, J. Liu, Y. Li, and I. Ayoola, “Identifying typical phys-

ical activity on smartphone with varying positions and orientations,”

Biomedical engineering online, vol. 14, no. 1, p. 32, 2015.

[39] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhel-

lou, and Y. Amirat, “Physical human activity recognition using wearable

sensors,” Sensors, vol. 15, no. 12, pp. 31314–31338, 2015.

[40] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine

learning: A review of classification techniques,” Emerging artificial in-

telligence applications in computer engineering, vol. 160, pp. 3–24, 2007.

[41] E. Hunt and J. S. Martin, “P.(1966), experiments in induction.”

[42] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and

regression trees. monterey, calif., usa: Wadsworth,” 1984.

[43] I. Kononenko, “Estimating attributes: analysis and extensions of relief,”

in European conference on machine learning, pp. 171–182, Springer,

1994.

[44] S. K. Murthy, “Automatic construction of decision trees from data: A

multi-disciplinary survey,” Data mining and knowledge discovery, vol. 2,

no. 4, pp. 345–389, 1998.

[45] J. Quinlan, “C4. 5: Programs for machine learning. morgan kaufmann,

san francisco.,” C4. 5: Programs for machine learning. Morgan Kauf-

mann, San Francisco., 1993.

[46] F. Rosenblatt, Principles of Neurodynamics. Spartan Books, 1962.

[47] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 30, no. 4, pp. 451–462, 2000.

[48] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

BIBLIOGRAPHY 125

[49] D. Heckerman, C. Meek, and G. Cooper, “A bayesian approach to causal

discovery, chapter 4, camputation, causation, and discovery,” 1999.

[50] S. Acid and L. M. de Campos, “Searching for bayesian network struc-

tures in the space of restricted acyclic partially directed graphs,” Journal

of Artificial Intelligence Research, vol. 18, pp. 445–490, 2003.

[51] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[52] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical

evaluation of feature weighting methods for a class of lazy learning al-

gorithms,” Artificial Intelligence Review, vol. 11, no. 1-5, pp. 273–314,

1997.

[53] M. Kubat and M. Cooperson Jr, “A reduction technique for nearest-

neighbor classification: Small groups of examples,” Intelligent Data

Analysis, vol. 5, no. 6, pp. 463–476, 2001.

[54] H. Brighton and C. Mellish, “Advances in instance selection for instance-

based learning algorithms,” Data mining and knowledge discovery,

vol. 6, no. 2, pp. 153–172, 2002.

[55] V. Vapnik, The nature of statistical learning theory. Springer science &

business media, 2013.

[56] B. Schölkopf, C. J. Burges, and A. J. Smola, Advances in kernel methods:

support vector learning. MIT press, 1999.

[57] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines: And Other Kernel-based Learning Methods. New York, NY,

USA: Cambridge University Press, 2000.

[58] K. Veropoulos, C. Campbell, N. Cristianini, et al., “Controlling the sen-

sitivity of support vector machines,” in Proceedings of the international

joint conference on AI, vol. 55, p. 60, 1999.

126 BIBLIOGRAPHY

[59] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-

cation algorithms: Bagging, boosting, and variants,” Machine learning,

vol. 36, no. 1-2, pp. 105–139, 1999.

[60] B. Effron and R. J. Tibshirani, “An introduction to the bootstrap,”

Monographs on statistics and applied probability, vol. 57, p. 436, 1993.

[61] T. K. Ho, “Random decision forests,” in Document analysis and recogni-

tion, 1995., proceedings of the third international conference on, vol. 1,

pp. 278–282, IEEE, 1995.

[62] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for

activity monitoring,” in Wearable Computers (ISWC), 2012 16th Inter-

national Symposium on, pp. 108–109, IEEE, 2012.

[63] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset

for physical activity monitoring,” in Proceedings of the 5th Interna-

tional Conference on PErvasive Technologies Related to Assistive En-

vironments, p. 40, ACM, 2012.

[64] M. Arif and A. Kattan, “Physical activities monitoring using wearable

acceleration sensors attached to the body,” PloS one, vol. 10, no. 7,

p. e0130851, 2015.

[65] I. C. Gyllensten and A. G. Bonomi, “Identifying types of physical activ-

ity with a single accelerometer: evaluating laboratory-trained algorithms

in daily life,” IEEE transactions on biomedical engineering, vol. 58,

no. 9, pp. 2656–2663, 2011.

[66] K. Ellis, S. Godbole, J. Chen, S. Marshall, G. Lanckriet, and J. Kerr,

“Physical activity recognition in free-living from body-worn sensors,”

in Proceedings of the 4th International SenseCam & Pervasive Imaging

Conference, pp. 88–89, ACM, 2013.

BIBLIOGRAPHY 127

[67] J. Morales and D. Akopian, “Physical activity recognition by smart-

phones, a survey,” Biocybernetics and Biomedical Engineering, vol. 37,

no. 3, pp. 388–400, 2017.

[68] https://www.cs.waikato.ac.nz/~ml/weka/.

[69] E. Mitchell, D. Monaghan, and N. E. O’Connor, “Classification of sport-

ing activities using smartphone accelerometers,” Sensors, vol. 13.

[70] A. Testoni and M. Di Felice, “A software architecture for generic human

activity recognition from smartphone sensor data,” in Measurement and

Networking (M&N), 2017 IEEE International Workshop on, pp. 1–6,

IEEE, 2017.

[71] G. M. Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J.

Schreiber, “Smartwatch-based activity recognition: A machine learning

approach,” in Biomedical and Health Informatics (BHI), 2016 IEEE-

EMBS International Conference on, pp. 426–429, IEEE, 2016.

[72] M. Ahmad and A. M. Khan, “Seeking optimum system settings

for physical activity recognition on smartwatches,” arXiv preprint

arXiv:1706.01720, 2017.

[73] F. B. A. Ramos, A. Lorayne, A. A. M. Costa, R. R. de Sousa, H. O.

Almeida, and A. Perkusich, “Combining smartphone and smartwatch

sensor data in activity recognition approaches: an experimental evalua-

tion.,” in SEKE, pp. 267–272, 2016.

[74] N. Al-Naffakh, N. Clarke, P. Dowland, and F. Li, “Activity recognition

using wearable computing,” in Internet Technology and Secured Trans-

actions (ICITST), 2016 11th International Conference for, pp. 189–195,

IEEE, 2016.

[75] http://scikit-learn.org/stable/.

[76] http://www.numpy.org.

128 BIBLIOGRAPHY

[77] https://developer.apple.com/swift/.

[78] https://developer.apple.com/xcode/ide/.

[79] https://github.com/mattt/Surge.

[80] B. E. Ainsworth, W. L. Haskell, A. S. Leon, D. R. Jacobs, H. J. Montoye,

J. F. Sallis, and R. S. Paffenbarger, “Compendium of physical activi-

ties,” Medicine & Science in Sports & Exercise, vol. 25, no. 1, pp. 71–80,

1993.

