
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA 

   

SCUOLA DI INGEGNERIA E ARCHITETTURA 

DIPARTIMENTO DI MACCHINE 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA 

 

TESI DI LAUREA MAGISTRALE  

in 

Sperimentazione e Calibrazione di Motori a Combustione Interna 

 

TORQUE MODEL CALIBRATION OF A MOTORCYCLE INTERNAL 

COMBUSTION ENGINE 

 

CANDIDATO:  RELATORE: 

Delia Esposito  Chiar.mo Prof. Nicolò Cavina 

CORRELATORI: 

Prof. Ing. Davide Moro 

Prof. Ing. Enrico Corti 

Ing. Igor Pecoraro 

Ing. Massimiliano Tommesani 

 

Anno Accademico 2017/2018 

Sessione I 



2 

 

  



3 

 

 

 

 

 

 

 

A mia nonna Giovanna 

che avvera il sogno di avere  

una nipote “ingegnere finito” 

  



4 

 

  



5 

 

INDEX 

Introduction ............................................................................................................................ 12 

1.  The engine test room architecture and calibration instruments ................................... 13 

1.1  The dynamic brake ........................................................................................................ 14 

1.2  External sensors ............................................................................................................. 15 

1.2.1  Optical Encoder ...................................................................................................... 15 

1.2.2  Thermocouples ........................................................................................................ 15 

1.2.3  Oil temperature sensor ........................................................................................... 16 

1.2.4  Oil pressure sensor ................................................................................................. 17 

1.2.5  Combustion chamber pressure sensor .................................................................... 18 

1.2.6  Lambda Probes ....................................................................................................... 19 

1.3  ECU sensors .................................................................................................................. 20 

1.3.1  Crank wheel and signals panel ............................................................................... 20 

1.3.2  Pick-up .................................................................................................................... 21 

1.3.3  Throttle potentiometer TPS ..................................................................................... 22 

1.3.4  MAP sensor ............................................................................................................. 22 

1.3.5  Ignition System ........................................................................................................ 22 

1.3.6  Injection System ...................................................................................................... 23 

1.4  Bench management PCs and communication protocols between SWs ......................... 24 

1.4.1  AVL PUMA® .......................................................................................................... 24 

1.4.2  OBI® and AVL IndiCom® ...................................................................................... 25 



6 

 

1.4.3  ECU Management ................................................................................................... 25 

1.4.4  Development ECU .................................................................................................. 26 

1.4.5  ETAS INCA® .......................................................................................................... 27 

1.4.6  AVL CAMEO® ........................................................................................................ 28 

1.4.7  DoE ......................................................................................................................... 29 

1.4.8  ASAM ASAP3 .......................................................................................................... 31 

1.4.9  CAN Database ........................................................................................................ 32 

2.  Calibration activity and Data analysis ............................................................................ 34 

2.1  Calibration Campaign .................................................................................................... 35 

2.2  Bench preparation and system setup ............................................................................. 35 

2.3  AIS Sensivity ................................................................................................................. 36 

2.4  Pre-Calibration of Airpath and Spark Advance ............................................................. 38 

2.5  K-Points selection and stoichiometric area identification (λ = 1) ................................. 38 

2.6  RPM breakpoints determination .................................................................................... 39 

2.7  LOAD breakpoints determination ................................................................................. 39 

2.8  LAMBDA setpoint determination ................................................................................. 41 

2.9  EOI Calibration.............................................................................................................. 43 

2.10  Combustion Title Umbrella Curve (λ Efficiency) ....................................................... 44 

2.11  SA Sweep for Emission Optimization on K-Points (NxBMEP) ................................. 46 

2.12  Airpath & Basic Spark Advance Calibration (AIS OFF/ON) ..................................... 49 

2.12.1  Air Path + SA Calibration AIS OFF .................................................................... 49 

2.12.2  Air Path + SA Calibration AIS ON ....................................................................... 50 

2.13  Temperature Model ..................................................................................................... 51 

2.14  Friction Determination (HOT/COLD)......................................................................... 53 



7 

 

2.14.1  Hot Friction .......................................................................................................... 53 

2.14.2  Cold Friction ......................................................................................................... 56 

2.15  SA Dynamic Sweep ..................................................................................................... 57 

2.16  SA MIN Determination ............................................................................................... 59 

2.17  SA EXTRAMIN Determination .................................................................................. 60 

3.  SA MIN/EXTRAMIN: comparison between SA Sweep extrapolated data and 

measured data ......................................................................................................................... 62 

3.1  Data Modeling ............................................................................................................... 62 

3.2  Results and Considerations ............................................................................................ 63 

4.  Torque-Based Structure ................................................................................................... 65 

4.1  Thermodynamic Behaviour and Torque Calculation .................................................... 65 

4.2  Torque-based System .................................................................................................... 66 

4.3  Torque Coordination...................................................................................................... 67 

4.4  General example of vehicle torque chain ...................................................................... 68 

4.5  Inverse torque model for simulation .............................................................................. 69 

4.6  Model Simulation and “Cases of Study” ....................................................................... 70 

4.6.1  Case 1: SA_BAS with SA_EFF_Curve and TQFR MOTORING ............................ 71 

4.6.2  Case 2: SA_BAS with SA_EFF_Curve and TQFR FIRING ................................... 72 

4.6.3  Case 3: SA_SWEEP with SA_EFF_Curve and TQFR FIRING.............................. 73 

4.6.4  Case 4: SA_SWEEP with SA_EFF_Map and TQFR FIRING ................................ 74 

4.6.5  Case 5: SA_BAS with SA_EFF_Map and TQFR FIRING ...................................... 80 



8 

 

5.  Conclusions ........................................................................................................................ 82 

6.  Bibliography & Sitography .............................................................................................. 84 

 

  



9 

 

 

INDEX OF FIGURES 

Figure 1 - Dynamic Brake ....................................................................................................... 14 
Figure 2 - Optical Encoder ...................................................................................................... 15 

Figure 3 - Functioning of the optical encoder ......................................................................... 15 
Figure 4 - Thermocouple ......................................................................................................... 15 
Figure 5 - Example of in chamber pressure sensor ................................................................. 18 
Figure 6 - Piezoelectric functioning ........................................................................................ 18 
Figure 7 - ECU inputs and outputs in detail ............................................................................ 20 

Figure 8 - Example of engine signals panel ............................................................................ 20 
Figure 9 - Phonic wheel ........................................................................................................... 21 
Figure 10 - Pick-up sensor ....................................................................................................... 21 

Figure 11 - Example of ETB (Electronic Throttle Body) ....................................................... 22 
Figure 12 - Example of MAP sensor ....................................................................................... 22 
Figure 13 - Electric scheme of ignition ................................................................................... 22 
Figure 14 - Injector and its operating scheme ......................................................................... 23 
Figure 15 - Example of PUMA operator interface panel ........................................................ 24 

Figure 16 – OBI hardware ....................................................................................................... 25 

Figure 17 - Scheme for the management of ECU data sets..................................................... 26 
Figure 18 - Interface of the Experiment: we recognize the Calibrations from the Measurements 

because the first have a white background and the second are gray ........................................ 28 

Figure 19 - CAMEO integration with engine and other tools ................................................. 29 
Figure 20 - Types of Plan of Experiment: Grid, Cross and Space-Filling .............................. 30 

Figure 21 - Layout of ASAM ASAP3 standard with INCA ................................................... 32 
Figure 22 - AIS System ........................................................................................................... 36 

Figure 23 - AIS Sensivity Test ................................................................................................ 37 
Figure 24 - Qualitative example of K-Points selection ........................................................... 38 

Figure 25 - Example of engine speed ramp at 82° TPS, from 3000 rpm to 8500 rpm............ 39 
Figure 26 - Example of TPS ramp @ 6000 rpm ..................................................................... 40 
Figure 27 - Example of engine working point selection for lambda set point determination and 

respective stoichiometric area extension .................................................................................. 41 
Figure 28 - Example of Lambda sweep (with quite constant MFB50) ................................... 42 
Figure 29 - Example of selected operating points for EOI optimization ................................ 43 
Figure 30 - Example of EOI sweep ......................................................................................... 44 

Figure 31 - Example of operating point selection for lambda efficiency curve test ............... 45 
Figure 32 - Example of λ sweep performed (with SA constant) ............................................. 45 
Figure 33 - Engine operating parameters during SA sweep .................................................... 48 
Figure 34 - Engine-out emissions during SA sweep ............................................................... 48 

Figure 35 - Example of N/TPS area with λ target = 1 ............................................................. 50 
Figure 36 - Final airpath: MAF according to TPS .................................................................. 51 
Figure 37 - Final airpath: MAF according to N ...................................................................... 51 

Figure 39 - Final maneuver to perform at the end of the test .................................................. 53 
Figure 40 - Example of torque losses measurement according to N ....................................... 54 
Figure 41 - Example of torque losses measurement according to MAF ................................. 54 
Figure 42 - Example of test execution for the hot friction determination ............................... 55 
Figure 43 - Example of chosen operating points for warm-up evaluation .............................. 56 
Figure 44 - Cold friction test @ 5000 rpm x 17° TPS............................................................. 56 
Figure 45 - Homogeneous Torque Equation/Single ignition efficiency ................................. 59 

file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968841
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968842
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968843
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968844
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968845
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968846
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968849
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968850
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968851
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968852
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968853
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968854
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968856
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968857
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968862
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968864
file:///C:/Users/sorre/Desktop/Università/Tesi/ThesisRaw_2.docx%23_Toc515968878


10 

 

Figure 46 - Example of SA MIN Determination ..................................................................... 60 

Figure 47 - Results of comparison between SA_MIN meas and mdl on cyl 1 ....................... 63 

Figure 48 - Results of comparison between SA_MIN meas and mdl on cyl 2 ....................... 64 
Figure 49 - Results of comparison between SA_EXTRAMIN meas and mdl on cyl 1 .......... 64 
Figure 50 - Results of comparison between SA_EXTRAMIN meas and mdl on cyl 2 .......... 64 
Figure 51 - Example of vehicle torque chain .......................................................................... 69 
Figure 52 - Inverse simplified torque model ........................................................................... 70 

Figure 53 - Case 1: SA_BAS w/ SA_EFF_Curve and TQFR MOTORING .......................... 72 
Figure 54 - Case 2: SA_BAS w/ SA_EFF_Curve and TQFR FIRING .................................. 72 
Figure 55 - Case 3: SA_SWEEP w/ SA_EFF_Curve and TQFR FIRING ............................. 74 
Figure 56 - Case 4: SA_SWEEP w/ SA_EFF_Map and TQFR FIRING ............................... 75 
Figure 57 - Case 4: table of engine points analyzed in detail .................................................. 75 

Figure 58 - Curve and Map Efficiency @ 3600 rpm x 13/34/82 °TPS ................................... 76 
Figure 59 - Curve and Map Efficiency @ 5500 rpm x 13/42/82 °TPS ................................... 77 

Figure 60 - Curve and Map Efficiency @ 7500 rpm x 17/42/82 °TPS ................................... 78 

Figure 61 - Curve and Map Efficiency @ 9000 rpm x 34/82 °TPS ........................................ 79 
Figure 62 - Case 5: SA_BAS w/ SA_EFF_Map and TQFR FIRING ..................................... 80 
Figure 63 - Example of SA_EFF_Curve and Map (ΔSA/Torque) .......................................... 81 
 

  



11 

 

Definition and abbreviations 

AFR – Air-Fuel Ratio 

AIS – Air Injection System 

AuSy – Automation System 

BMEP – Brake Mean Effective Pressure 

CA – Crank Angle  

CAN – Controller Area Network 

CCP – CAN Calibration Protocol 

DBW – Drive By Wire 

ECU – Engine Control Unit 

EGO – Exhaust Gas Oxygen 

EOI – End Of Injection 

ETB – Electronic Throttle Body 

ETK – Emulator Tast Kopf 

HEGO – Heated Exhaust Gas Oxygen 

IMEP – Indicated Mean Effective Pressure over the entire cycle, 720°CA 

IMEP COV – Indicated Mean Effective Pressure Covariance 

IMEPH – Indicated Mean Effective Pressure High pressure part 360°CA 

KP FREQ – Knock Pressure Frequency 

MAF – Mass Air Flow 

MAP – Manifold Absolute Pressure 

MBT – Maximum Brake Torque 

MFB50 – Mass Burned Fraction 50% 

OBI – On Board Indicating 

PLC – Programmable Logic Controllers 

SA – Spark Advance 

SA EFF – Spark Advance Efficiency 

SA OPT – Spark Advance Optimum 

SA REF – Spark Advance Reference 

SA REF – Spark Advance Reference 

TIA – Temperature Intake Air 

TPS – Throttle Position Sensor 

TQFR – Torque Friction 

UEGO – Universal Exhaust Gas Oxygen 
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Introduction 

Optimizing the performance of internal combustion engines increases complexity of control 

strategies and makes the calibration process long and expensive. 

As in most companies, also the DUCATI Engine Tests Room Dept. has, among its various 

tasks, to perform all tests needed to build up the base engine calibration, in cooperation with 

the ECU supplier. 

DUCATI also has the task of controlling the final work of the supplier, and the aim of this 

Thesis is properly creating a simplified Torque-based model on the data collected during the 

calibration campaign and on the strategies already known. 

In the first chapter is given an overview on systems for checking the bench, on systems for the 

control and calibration of the ECU and on the communication protocols between the cell SWs; 

the second chapter describes the calibration activities performed and the analysis of the data 

produced: the data were processed with scripts and functions written in Matlab language (using 

and sometimes modifying already existing DUCATI calibration tools, others were created ex 

novo) and elaborated with software like Excel. In the third chapter is explained the possibility 

to reduce tests on the bench extrapolating data of spark advance min and extramin from the 

spark advance dynamic sweep: it has been done a comparison between modelled and measured 

values. In the fourth and last chapter is analysed the torque structure, is shown the simplified 

Torque-based model created and are explained in details the “cases of study” and the various 

simulations realized. 
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1.  The engine test room architecture and calibration instruments 

Each engine before production must be properly developed and deliberated, by means of 

calibration, power curves and durability tests: if it passes the tests successfully it is approved. 

To do this, DUCATI has several engine test benches managed by PLC systems (Programmable 

Logic Controllers), in order to allow the determination of the mechanical characteristics of the 

engines: power, torque and consumption. 

The bench is not only used for engine characterization, but also for the development of it and 

for the calibration setup. 

The engine test room is usually divided into two rooms kept separated for safety reasons: the 

engine room, where the engine under test is allocated with the relative transducers, auxiliary 

and necessary systems, and the control room where PCs for the tests management are allocated. 

The advantage of this type of experimentation is the possibility to carry out measurements in a 

controlled manner, keeping the ambient conditions unchanged and above all using sensors with 

a much higher accuracy than those used on board. 

Fundamentally there are three systems that are necessary to carry out the calibration campaign 

of an engine:  

• systems for the calibration of the ECU (Engine Control Unit);  

• systems for checking the bench; 

• systems for the analysis of combustion inside the cylinders. 

In particular for DUCATI test rooms the software/hardware used are:  

• INCA® and ETAS® modules for ECU interfacing and management of UEGO sensors; 

• AVL PUMA® for the bench control;  

• AVL INDICOM® for combustion analysis. 
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1.1  The dynamic brake 

The test room in which the engine I worked on in these months was a “dynamic cell”, so defined 

for the presence of the dynamic brake inside it. 

The dynamic brake is an electric device that acts on the engine 

shaft and the fundamental difference respect to passive brakes 

is that this machine can act both as a brake and as a motor . 

The brake is characterized by the main components: 

• Rotor: rigidly couples to the drive shaft through a 

joint; 

• Stator: equipped with a load cell to measure the torque applied on the shaft; 

• Load regulator: component that regulates the amount of braking torque exerted by the 

brake; 

• Angular speed sensor: instrument necessary to measure the brake speed first and then 

power of the engine under test. 

The braking action allows to bring and keep the engine to a precise operating point. The action 

as a motor allows the engine to be dragged to make a run-in cycle or for the direct measurement 

of the frictions of auxiliaries, or to simulate real road gradient and vehicle inertia in the 

developing tests. 

  

Figure 1 - Dynamic Brake 
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1.2  External sensors 

1.2.1  Optical Encoder 

The Encoder is an electromechanical device that converts the 

angular position of its rotating axis into short electrical pulses that 

are processed by an analysis circuit in the form of digital numeric 

signals. Connected to the drive shaft, it provides information on the 

angular position and on the rotation speed of the engine. 

We can distinguish two parts: 

- the body, the fixed part, with inside the electric components (sensors, circuits, etc.); 

- the rotor, the rotating part, which normally ends with a shaft to be connected to the axis 

to be read. 

The electrical output signals transmit the information related to the 

position or the displacement of the rotor with respect to the body. 

In an optical encoder there is a led source that transmits the light to a 

disk that has slots: this allow the passage of light and prevents it if 

there is no opening. The presence or absence of light generates a 

corresponding electrical signal. 

1.2.2  Thermocouples 

Thermocouples are thermistors mounted on exhaust 

manifolds used to measure those high temperatures. They are 

widely used because they are cheap, easily replaceable and 

standardized. 

Figure 2 - Optical Encoder 

Figure 3 - Functioning of 

the optical encoder 

Figure 4 - Thermocouple 
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The operating principle of a thermocouple is that, in a circuit formed by two conductors of a 

different nature subjected to a temperature gradient, it establishes a difference of potential. This 

phenomenon is called Seebeck effect. The phenomenon cannot exist in a circuit formed by a 

single homogeneous conductor and for this reason a thermocouple consists of a pair of electrical 

conductors of different materials joined together at one point. This junction is conventionally 

called  “hot joint” and is the point at which the temperature to be measured is applied. The other 

end, constituted by the free ends of the two conductors, is conventionally called “cold joint”. 

When there is a temperature difference between the hot joint area and the cold joint area, an 

electrical difference of potential can be detected. 

There is a great variety of thermocouples, distinguishable according to the two electrical 

conductors that make up the junction and to the field of application (industrial, scientific, food, 

medical, etc.). The thermocouples mounted on the engine analyzed are those of type K: 

(Chromel (Ni-Cr) (+) / Alumel (Ni-Al) (-)). They are thermocouples of general use, economical 

and available in a large variety of formats. Their measuring range is from -200 ° C to 1260 ° C. 

The sensitivity is about 41 μV / ° C. 

1.2.3  Oil temperature sensor 

The oil temperature sensor is a resistance thermometer sensor that uses the variation of the 

resistivity of some materials when they are subject to temperature changes. There are several 

types of heat resistance, generally quite resistant to corrosive agents, which can measure 

temperatures in a good temperature range (even if lower than that of thermocouples) and that 

above all have excellent linearity. 

For metals there is a linear relationship that links resistivity and temperature: 

𝜌(𝑇) = 𝜌0 ∙  [1 + 𝛼(𝑇 −  𝑇0)] 
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where 𝑇 is the temperature, 𝜌(𝑇) is the resistivity of the material at the temperature 𝑇, 𝜌0 is the 

resistivity of the material at the temperature 𝑇0 and 𝛼 is a coefficient that depends on the 

material. 

Using the relationship that links resistance and resistivity (through section 𝑆 and length 𝐿 of the 

conductor): 

𝑅 =
𝜌𝐿

𝑆
 

we get: 

𝑅(𝑇) =  𝑅0 ∙ [1 + 𝛼(𝑇 − 𝑇0)] 

From this last relation, we can get the temperature by a measure of resistance. 

The temperature sensor used on the engine analyzed was a Pt100, that is thermoresistance in 

platinum (Pt), in which the resistance at the temperature of 0°C is respectively 100 Ω.  

The working range of this sensor is 200°C. 

1.2.4  Oil pressure sensor 

All the internal components of the engine are lubricated through a system of pipes and ducts, 

in which the oil is pumped at high pressure through a pump. Through the ducts and thanks to 

the centrifugal force, the oil reaches all the parts that need to be lubricated: camshafts, valves, 

bearings, rods, cylinders, pistons. The pressure sensor allows to define the oil pressure inside 

the lubrication circuit 

The sensor is piezoresistive and works on the physical principle of piezoresistance: the resistive 

element (a membrane) follows the deformations of the sensor surface to which it is fixed; these 

deformations (typically elongations and shortenings) cause a variation in the electrical 

resistivity of the resistor material, and consequently its electrical resistance. 
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By connecting to this element a measuring system capable of read variations in resistance, it is 

possible to trace the amount of the deformation, and consequently the amount of the physical 

quantity that caused them. 

The working range of this sensor is about 16 bar. 

1.2.5  Combustion chamber pressure sensor 

To detect the trend of the cylinder pressure, DUCATI uses sensors 

facing in the chamber, the installation of which requests drilling the 

engine head. 

Starting from the information of the sensor, it is possible determine 

the so called "indicated" quantities as they refer to the indicated 

cycle. The sensor is based on a piezoelectric functioning. 

The sensing element facing the chamber, being of piezoelectric material, deforms when a 

pressure is applied, and charges of opposite sign accumulate on the two faces of the sensor. 

The force that determines the deformation is proportional to the pressure acting on the sensor 

surface. 

The sensor generates a voltage equal to the ratio between the 

amount of charge accumulated and the equivalent capacity of the 

sensor itself. So that sensor becomes a current generator, and the 

current is proportional to the pressure variation that acts on it. 

  

Figure 6 - Piezoelectric 

functioning 

Figure 5 - Example of in 

chamber pressure sensor 
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1.2.6  Lambda Probes 

The lambda probe is necessary to detect the presence of oxygen in the exhaust gases, to ensure 

the stoichiometry of the mixture and to perform engine control. It is able to generate an electrical 

signal according to the concentration of oxygen. The correlation between oxygen concentration 

and electrical signal depends on the type of probe, therefore three types are distinguished: 

• The EGO (Exhaust Gas Oxygen sensor) is a hysterical type sensor: the generated 

electrical signal (output) is a step one, characterized by a signal transition at λ = 1, at 

the corresponding voltage of rich mixtures, approximately 0.9 V, and that relating to 

lean mixtures, approximately equal to 0.09 V; 

• The HEGO (Heated Exhaust Gas Oxygen sensor), has the same operating principle 

described for the EGO with the only difference of being pre-heated by an internal 

resistance; 

• The UEGO (Universal Exhaust Gas Oxygen sensor) is linear: the electric signal 

generated has a linear trend as a function of the partial pressure of oxygen in the exhaust 

gases, for which, based on the voltage value, it is possible to trace the actual value of 

AFR (Air - Fuel Ratio). 

For the engine analyzed we have an HEGO probe per cylinder as ECU sensors and a UEGO 

probe per cylinder as external sensor. 
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1.3  ECU sensors 

To calibrate the ECU it is necessary to know its sensors and the actuators that allow the control. 

 

Figure 7 - ECU inputs and outputs in detail 

1.3.1  Crank wheel and signals panel 

The signals panel of a propulsor describes the behavior of the four-stroke engine, relating the 

four phases of each cylinder in relation to each other: intake, compression, ignition and exhaust, 

with angle position reference to the teeth of the phonic wheel put on the drive shaft 

 

Figure 8 - Example of engine signals panel 
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The crank wheel is a gear with 28 teeth and a cave, i.e. two missing 

teeth, which allows the ECU to identify the rotation speed and the 

engine position. Electronic ignition/injection and all engine 

management are scheduled by the signal received from the wheel 

sensor. 

1.3.2  Pick-up 

The pick-up is a sensor with variable reluctance, positioned 

perpendicular to the teeth of the crank wheel and has the 

task of measuring the rotations of the shaft in order to 

synchronize the actuations that have to be phased with the 

angular position of the engine ( ignition and injection). 

The sensor consists of a coil wound around a permanent magnet and connected to the angular 

velocity detection terminal. The passage of the teeth of the phonic wheel causes a variation in 

the flow of the magnetic field which is transformed by the pick-up into a voltage signal from 

which it is possible to detect every tooth position and then determine the angular speed of the 

engine. 

To be more precise, the passage of a tooth increases the relative magnetic permeability of the 

magnetic circuit, with consequent decrease of the magnetic reluctance. Then the magnetic flux 

increases again. 

These sensors provide a very precise, repeatable and fast voltage signal, of the order of 

microseconds, adapt to be used for this type of application. The characteristics of the sensor, 

the gap (distance that separates the sensor from the phonic wheel) and the dimensions of the 

teeth of the crank wheel, determine the amplitude of the signal to be sent to the ECU. 

Figure 9 - Phonic wheel 

Figure 10 - Pick-up sensor 
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1.3.3  Throttle potentiometer TPS 

The DUCATI engine analyzed presents the ride-by-

wire system (electronic accelerator), in which the 

throttle control and a linear potentiometer read by the 

ECU, gives the throttle position feedback to the 

control system. The opening angle is the result of a 

calculation chain that evaluates the torque request by 

the driver and the engine operating point. The features 

of this system allow engine management through torque requests, improving vehicle 

driveability, consumption and performance. 

1.3.4  MAP sensor 

The MAP sensor is a transducer that measures the absolute 

pressure under the throttle, thus allowing the correction of the 

fueling by atmospheric pressure (and therefore altitude), in 

addition to identifying which cylinder is in intake at the passage 

of the phonic wheel cave and the volumetric efficiency of the 

specific cylinder. 

1.3.5  Ignition System 

Coils and spark plugs form the ignition system: in particular, the 

coils are controlled by the ECU with a voltage pulse for a charge 

time that depends on their characteristics and on the supply voltage 

(battery charge level). The stored charge allows the spark plug 

electrodes to ignite the spark in the combustion chamber. In the 
Figure 13 - Electric scheme 

of ignition 

Figure 11 - Example of ETB (Electronic 

Throttle Body) 

Figure 12 - Example of MAP 

sensor 
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analyzed engine are used stick-coils, that are modern coils inserted directly into appropriate 

seats in the engine heads and connected directly to the spark plugs. 

 The voltage of thousands of volts generated by the coil is transmitted to the spark plug, 

consequently between the electrodes the difference in voltage increases until it exceeds the 

insulating capacity of the mixture air/fuel which ionizes. A ionized gas becomes conductor, 

generating a short but very intense discharge. 

The spark causes a local heating of the spark plug with temperatures ranging from 700 to 1000 

° C. The choice of the component is dictated by this feature, since a spark plug with an incorrect 

heat range1 can bring pre-ignitions and then detonations. 

1.3.6  Injection System 

The fuel system consists of three basic 

elements: fuel pump, pressure regulator 

and injectors. 

The fuel pump is an electropump located 

inside the tank that brings the system to 

a pressure of about 3 bar; it is activated by the ECU and is always powered during engine 

functioning. 

The injector is a solenoid valve whose opening is controlled by an electrical impulse in tension 

sent by the ECU. The basic characteristics of the injector are: 

- flow rate 

                                                 
1 Depending on its heat range, a spark plug is called "hot" if it has a low ability to disperse heat; instead it is called 

"cold" if it has a good ability to disperse heat. The right heat dissipation capacity is very important because with a 

spark plug that is too hot, the resulting overheating would lead to a decline in performance and or self-ignition 

phenomena that could damage the piston. Vice versa, spark plugs with too low temperatures have more difficult 

starts with a cold engine and formations of deposits on the electrodes, capable of electrically isolating the two 

poles preventing the spark. 

Figure 14 - Injector and its operating scheme 
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- number of holes 

- angle of the spray cone 

1.4  Bench management PCs and communication protocols between SWs  

1.4.1  AVL PUMA® 

PUMA is a commercial HW-SW architecture of AVL that allows total control of the bench in 

both manual and automatic mode. It is one of the most used applications in the industrial field, 

in modern engine testing rooms. Inside the tool all the information for the interaction and 

control of the brake, the cell equipment and the engine actuators are provided. In fact, the 

PUMA, by controlling the resistant torque exerted by the brake and acting on the handle 

actuator, regulates the engine rotation speed and the torque resultant.  

Through the PLC (system that allows the management of the room and the alarm limits), the 

system regulates the temperatures of the coolant water, oil and air drawn in by the engine. 

 

Figure 15 - Example of PUMA operator interface panel 
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The operator can select which parameters visualize, by means of digital indicators or with a 

virtual analogical instrumentation, arranging the various indicators as he wants. Furthermore, 

the graphic nature is an easy control of the test execution point.  

All the acquired quantities can be saved for data monitoring and analysis. 

1.4.2  OBI® and AVL IndiCom® 

OBI (On Board Indicating), is a tool that allows to make an 

indicating analysis in real time. With “indicating analysis” we 

mean the determination of the parameters characterizing the 

combustion inherent to a given cycle. All the analysis is based on 

the pressure signal in the combustion chamber, which is detected 

on the basis of the engine phase, amplified and analyzed by the OBI hardware. From these two 

information it is possible to calculate quantities related to the indicated cycle: IMEP, IMEPH, 

MFB50 and KP_FREQ. Since the OBI is connected directly to the PC in real time, the hardware 

inputs (amplified cylinder pressure, phase sensor and eventually inputs for konocking analysis) 

can be seen on the screen using dedicated software. 

The software used in the test room where I worked is IndiCom of AVL. The software allows 

the display of the pressure value in the cylinders and the analysis of the combustion itself. 

1.4.3  ECU Management 

The management of the engine actuators, on the bench as well as in the vehicle, is demanded 

to the ECU, a real control system equipped with a processor with its inputs, outputs and control 

parameters. The inputs correspond to signals acquired by the ECU from the numerous sensors 

present on the engine (crank wheel signal, intake pressure, etc.), while the outputs represent the 

values of the control levers available on the engine (ignition timing, injection timing, valve 

Figure 16 – OBI hardware 
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opening, etc.). The control parameters are the variables that allow the calibrator to decide which 

reaction (output) the ECU must have under certain operating conditions (input). These variables 

can be modified during the calibration phase (when development ECU is available) and, once 

optimized, are deliberated to be implemented in the standard ECUs and installed on production 

vehicles. 

1.4.4  Development ECU 

Typically, an additional electronic component is inserted in a development ECU, which takes 

the name of ETK (Emulator TastKopf), but in the case of the engine analyzed, we 

communicated and written to the ECU's memory by CCP (CAN Calibration Protocol). The 

CCP is, as the name indicates, a protocol for calibration and data acquisition from electronic 

control units. 

The protocol is defined by ASAM (formerly known as ASAP (Arbeitskreis zur 

Standardisierung von Applikationssystemen). This is an international organization consisting 

of a number of significant vehicle manufacturers i.e. Audi, BMW, VW etc. Until now different 

technical solutions have been used for developing, calibration, production and servicing of ECU 

hardware and software. The aim of ASAM is to create a common tool for all levels of 

development of the computer hardware and software. 

CCP supports the following functions: 

• Reads and writes to ECU memory. 

• Simultaneous calibration and data 

acquisition. 

• Flash programming. 

• Protection of resources. 

Figure 17 - Scheme for the management of ECU 

data sets 
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In a development ECU, two sets of data are stored: 

1. Working Page (WP): is the data set in which are made the changes of the operating 

parameters during the calibration procedure. 

2. Reference Page (RP): is a write-protected data set.   

1.4.5  ETAS INCA® 

INCA is the commercial software of ETAS, which allows the calibrator to read the values of 

the inputs and outputs, defined Measurements, and act on the control parameters, defined 

Calibrations, in order to identify the values that allow the best functioning of the engine. 

Through it, is possible to manage both RPs and WPs locally (on the ECU management PC) and 

it is possible to download inside ECU new software that needs to be tested/validated (ECU 

flashing operation). Without going too much into the operation of the SW, an example of 

Experiment is shown in the figure below, that is the interface of INCA from which it is possible 

to check Measurements and Calibrations. From the same figure we can see how the Calibrations 

can be of different shape and size; in fact, there are boolean (1), scalar (2), vector (3) and matrix 

(4) calibrations, while the Measurements (5) are generally scalars. 
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Figure 18 - Interface of the Experiment: we recognize the Calibrations from the Measurements because the first 

have a white background and the second are gray 

 

1.4.6  AVL CAMEO® 

CAMEO is an automatic and iterative calibration software. It is used to minimize bench 

measurement efforts, with the variation of different inputs at the same time and has rapid 

intervention on the exceeding limit thresholds imposed by the calibrator. 
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Figure 19 - CAMEO integration with engine and other tools 

 

This software supports the entire calibration process, from the generation of DoE (Design of 

Experiment), to the production of the results and the creation of maps. 

1.4.7  DoE 

One of the most common approaches to the study of a complex system composed of many 

variables is to change one factor at time while keeping all the other fixed ones. The results often 

provide a limited amount of information with excessive working time.  

With an appropriate application of the DoE we can drastically reduce the costs of the tests, 

obtaining a lot of useful information from the results.  

The plans of experiment can be very different and dependent on the complexity of the model. 

The three main ones are: 

1. Grid, in which tests are carried out with every possible combination of the parameters 

to be optimized (the number of tests can be very high); 
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2. Cross, in which a base point is set and one input is changed at time, but it is not suitable 

for complex physical systems; 

3. Space-filling, is the method with which the entire space under test is uniformly covered, 

with a limited number of tests. 

 

Figure 20 - Types of Plan of Experiment: Grid, Cross and Space-Filling 

 

Statistical methods cover an important role in the planning, execution and analysis of the results 

of a complex system. 

It is important to note that not all factors have the same weight on performance of the model: 

some may have high influences, other medium influences, or no influence. So an experiment 

needs to be carefully planned to understand what factors and how much weight have they. 

For each DoE a series of specific parameters are defined: 

• Factors: parameters on which we intend to act and object of study (controllable); 
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• Range: minimum and maximum variation value within which the factors will be 

changed. The range can be complete for a given factor or limited to a specific range of 

values if are already aware of its partial effect on the measurements; 

• Measurements: measurements made on the system during the variation of the factors 

and object of optimization (not controllable). 

• Experiment matrix: has in column the factors taken into account, and in each row the 

different values to analyze (the single line will be defined as point DoE). 

• Test conditions: they represent the conditions in which the tests will be performed 

(speed, load, engine water temperature, acquisition time, acquisition frequency, etc.). 

The execution of the DoE involves the simultaneous modification of the factors, in order to 

observe the corresponding changes. 

The main advantages are: 

• greater reliability of results; 

• reduction of working time; 

• reduction of costs; 

• reduction of development times; 

• stronger link between factors and measures. 

1.4.8  ASAM ASAP3 

In this paragraph I want to give the basic information on the integration of the engine with 

electronic systems in a test bench system (AuSy - Automation System) through an electronic 

calibration system (MC System - Measurement Calibration). The current integration takes place 

via a data connection of two types: 

1. RS232 serial; 
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2. Ethernet with TCP/IP protocol. 

The figure below shows the basic hardware structure of this integration. It shows that the MC 

system is used as a repeater between the AuSy and the control unit parameter management 

system. The communication is essentially based on a flow of requests by the AuSy of the 

parameter name and the size and its dimension in physical units (for example, air flow and 

m3/h). All names or labels used in the AuSy and MC system are defined in the data description 

file .a21 which conforms to the ASAP2 ECU standard. When the INCA ASAP3 interface is 

started, we start writing commands and detailed responses to all parameters and can monitor 

the communication between the bench and INCA. 

 

Figure 21 - Layout of ASAM ASAP3 standard with INCA 

 

1.4.9  CAN Database 

The Controller Area Network, also known as CAN-bus, is a serial standard bus introduced in 

the 1980s by Robert Bosch GmbH to connect several electronic control units. The CAN has 

been expressly designed to work without problems in areas strongly disturbed by the presence 

of electromagnetic waves. Noise immunity can be further increased by using twisted pair 
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cables. The bit rate can reach 1 Mbit/s for networks less than 40 m long. Lower speeds allow 

to reach greater distances (e.g. 125 Kbit/s for 500 m). 

To translate the data frame, a CAN device must be provided with a database that describes the 

signals contained in the message. The CAN Database File (CANdb file) is a text file containing 

this information. It allows to find data in a frame and convert it to engineering units. The data 

field can range from 0 to 8 bytes and can contain multiple CAN signals. The characteristics of 

the frame and of the signal when creating a .dbc file must be inserted correctly analyzing both 

the type of signal and the management of the signal itself from the source taken into 

consideration. For example, if the source is the PUMA, the names of the signals inside the file 

will represent the PUMA Input and Output variables. 
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2.  Calibration activity and Data analysis 

The data acquisition phase in the test room generates a lot of information on the functioning of 

the engine; therefore these tests serve not only for calibration but also for identifying any 

hardware or software anomalies. 

The procedure for preparing and carrying out a test is defined in the Calibration Standard, an 

instructions document referred to a particular control unit.  

Almost every map that needs to be calibrated requires a series of personalized instructions. The 

instructions sent to the test room technicians is common and consists of the following sections: 

- Hardware set up: possible modifications to engine components, special sensors to be 

used, additional measuring instruments; 

- Disabling: control functions that must be deactivated in order not to influence the 

measurement; 

- Definition of points: engine points (rpm, load) in which it is necessary to carry out the 

tests2;  

- Procedure: sequence of operations to be followed for the test. 

Once the tests on the bench have been performed, the data produced are analyzed. In the case 

of this Thesis activity, as mentioned before, MATLAB scripts were used. 

From the files containing the data recorded by the cell operator, Excel files are created in which 

each row represents a different engine point, while each column contains the information of a 

                                                 
2 These points are called K-points (barycentric points for engine optimization) depends on the stability of the 

output in that particular area of the map: the more the value tends to vary irregularly, the density of measurement 

points will be high. 
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certain signal. These documents can be easily read from MATLAB scripts thanks to functions 

for importing spreadsheets (for example xlsread). 

2.1  Calibration Campaign 

 

2.2  Bench preparation and system setup 

Before starting the calibration campaign, a check-up of the pressure and temperature sensors is 

performed. 
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• Intake pressure sensor (MAP sensor); 

• Average Pressure (hole in airbox) and temperature before the throttle: pressure and 

temperature sensors in the air box (between air filter and throttle); 

• Average pressure and temperature exhaust gas cylinder 1 & 2; 

MAP sensors were installed with pressure sample pipes equivalent to vehicle in terms of length 

and diameter, respecting the expected mounting layout approved by the engine control system 

supplier. 

Checks are made on the optical encoder, ignition coils signals and injection signals; the whole 

communication system between the bench management PCs; it is verified that the components 

in the engine are in frozen configuration: in particular air-box, exhaust system, camshafts and 

pistons; finally during bench preparation, also wiring harness is prepared and checked later on. 

2.3  AIS Sensivity 

In some areas of the engine cycle, in 

particular those at low rpm and low 

loads, to improve the stability of 

combustion it is used to enrich the 

mixture (λ < 1). Enriching the mixture 

means producing more carbon 

monoxide and unburned hydrocarbons 

at the exhaust. To reduce the emission of 

pollutants, fresh air ("secondary air") is 

blown into the exhaust gas manifold for 

post-oxidation the HC. 

1 ECU - 2 Air Filter - 3 Combined valve - 4 Lamellar valve 

Figure 22 - AIS System 
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Furthermore, the heat generated by the post-combustion of the HC heats the catalyst in the cold 

start phase and allows to reduce the waiting time for the regulation of the λ. 

The Secondary Air System consists of a line that comes out from the airbox and is connected 

to a combined valve (in the figure the line leading to the other cylinder is not indicated). This 

valve, when opened, introduces fresh air into the exhaust manifold, blocking the exhaust fumes 

rising towards the airbox with lamellar valve. The lamellar valve opens when a depression wave 

is created in the exhaust manifold, allowing the passage of fresh air. 

For the AIS sensivity test, engine runs in idle condition with clutch disengaged and deactivated 

secondary air. Deactivated all λ correction in order to not have any correction factor active and 

avoid mixture enrichment. Then activated secondary air and did not adjust λ; kept secondary 

air active, adjusted air path in order to have measured λ=λ target; deactivated one more time 

secondary air and didn’t adjust λ (kept λ=λ target, then measured differences to λ=1: mixture 

revealed to be rich, λ<1). 

10% of measured λ variation has been considered the best compromise for secondary air. 

 

 

Figure 23 - AIS Sensivity Test 
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2.4  Pre-Calibration of Airpath and Spark Advance 

Before starting the calibration campaign of the engine under investigation, it was needed to 

perform a pre-calibration of both air path (MAF) and spark advance (SA), considering the 

system as α - n one. 

In this case, the calibration isn’t the optimal one, but such a pre-calibration will allow to perform 

the entire campaign with a safer starting calibration. Moreover, it will also allow to run the 

engine in safer condition, by having already an overview of engine behavior over the entire 

engine working area. 

In order to complete this step, it was necessary to start from a carry-over calibration, coming 

from a previous similar application. A carry-over is important in order to have at least a basic 

definition of lambda and EOI (End Of Injection) setpoint, that could be helpful to manage 

properly both air path and SA. 

2.5  K-Points selection and stoichiometric area identification (λ = 1) 

The most representative engine working points are called K-Points. The K-Points were chosen 

in order to represent in the best way each engine working area, depending on the main requests 

the engine has to fulfill on the selected areas like emission, performance and drivability.  

K-Points are application dependent and their number 

may vary. 

All K-Points within the emission area were provided by 

means of a tailored homologation cycle simulation of the 

application under investigation. 
Figure 24 - Qualitative example of K-

Points selection 
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K-Points were provided in terms of engine speed and brake mean effective pressure (NxBMEP). 

On these points a tailored setpoint optimization was performed, in accordance with the main 

requests depending on the involved area. 

2.6  RPM breakpoints determination 

An upward ramp of 90 sec was performed, keeping the engine on the chosen working point for 

10 sec, then performed a downward ramp of 90 sec. The working points went from NMIN to 

NMAX for different values of throttle. 

 

Figure 25 - Example of engine speed ramp at 82° TPS, from 3000 rpm to 8500 rpm 

 

The purpose of the test was to evaluate real MAF behavior and select RPM breakpoints 

accordingly, in order to not loose accuracy due to possible non-linearity.  

2.7  LOAD breakpoints determination 

Like for RPM BREAKPOINTS DETERMINATION, upwards and downwards TPS ramps 

have been performed. These ramps were performed on 4 different engine speed:  
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• Minimum reachable engine speed  

• Max torque point 

• Max power point 

• High engine speed 

Per each engine speed, the TPS ramp was made from minimum possible angular position in 

steady state conditions to full load (WOT).  

The ramp was continuous and slow (50/60 sec). 

 

Figure 26 - Example of TPS ramp @ 6000 rpm 

 

This test has been performed using last updated calibration in terms of Air Path and Spark 

Advance. 

Like the test described before, also this test had the purpose of evaluate real MAF behavior and 

select TPS/MAF breakpoints accordingly, in order to not loose accuracy due to possible non-

linearity. 
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2.8  LAMBDA setpoint determination 

A lambda sweep between 0.7 and 1.1 was done on 4 engine working points:  

• Max Power point 

• Max Torque point (or all points where a torque peak was present) 

• Minimum engine speed (i.e. 3000rpm) at which WOT was possible 

• Maximum engine speed (close to physical speed limiter) and minimum throttle position 

(Blow-By ≈ 50 l/min) 

The SA has been adjusted for each lambda value in order to have maximum Torque and Power 

(at the best/safe possible MFB50, 8-12° CA). 

 
 

Figure 27 - Example of engine working point selection for lambda set point determination and respective 

stoichiometric area extension 
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Figure 28 - Example of Lambda sweep (with quite constant MFB50) 

 

For slightly rich mixture (λ = 0.8 ÷ 0.9) the optimum SA angle is lower than that calibrated at 

λ = 1.1, because he combustion speed is higher and, to maintain the MFB50 angle centered 

around values of 8-12°CA after the TDC, the combustion must start a few moments later. 

Continuing to enrich the mixture, the combustion speed is slowed down again due to poor 

mixture quality. 

The SA must be instead increased for lean mixtures, whose combustion speed is lower. 

At high load a rich mixture is needed to prevent knock effect and contain exhaust gas 

temperature, in order to increase the performances. 
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2.9  EOI Calibration 

After completed lambda set point determination, it has been calibrated the injection phase, 

performing EOI sweep (EOI: End Of Injection) from TDC overlap cycle i to TDC overlap cycle 

i+1, with step of 30°CA, in all K-Points chosen as above.  

On all K-Points within emission cycle area, the EOI sweep has been performed with both AIS 

ON and OFF. 

 

Figure 29 - Example of selected operating points for EOI optimization 

 

The engine was run in λ closed loop (where λ_target=1) and setted SA corresponding to 

MFB50=10°/12°CA on the first EOI, investigating the whole range keeping MFB50 constant.  

EOI optimization is a compromise among Torque/Emission/IMEP CoV/Fuel Consumption. 

Obviously more attention has been given to the low rpm – low load points where the injection 

window is very small and it is important to know how to control it (at full load the injection 

window is almost as big as all the indicated cycle). 

As results of the test it was obtained that for EMISSION area an optimal EOI value should lie 

during intake valve closure phase (about 130° ÷ 180°CA), while for PERFORMANCE area a 

better comprise should be given injecting with intake valve opened (close to 400° ÷ 500°CA). 

So generally, the EOI window is +130°CA/+500°CA, depending on the area under 

investigation. 
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Figure 30 - Example of EOI sweep 

 

2.10  Combustion Title Umbrella Curve (λ Efficiency) 

Parameter λ is of fundamental importance for operation and for engine control. It is defined as 

the ratio between the mass of air and the fuel mass in the combustion chamber λ=(𝐴/𝐹): the 

stoichiometric value is identified by the chemical reaction of combustion and depends on the 

type of fuel. For "rich" mixtures it is λ <1, for "lean" mixtures it is λ> 1. 

Lambda sweeps with SA = cost are executed to measure torque behavior depending on lambda 

variation. They were executed on 6 points:  

• Idle running (dyno clutched) 

• Max Power point 

• Max Torque point 

• High RPM - Low Load 
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• Low RPM - High Load 

• Low RPM - Low load 

 

Figure 31 - Example of operating point selection for lambda efficiency curve test 

 

λ has been changed from 0.7 to 1.1, with step of 0.02 and kept on the point for 10 sec. 

Exhaust temperature and knock were kept under control (if knock limit was reached in lean 

condition with a given SA, we reduced SA until killing knock effect and perform the whole 

sweep with that SA value). These data were acquired in order to build lambda efficiency curves. 

 

Figure 32 - Example of λ sweep performed (with SA constant) 
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The variation of lambda has an effect on the amount of torque transferred and on the ignition 

advance angle. The highest torque is normally obtained for lightly rich mixtures (λ = 0.9) while 

with lean mixtures the performances decrease even if, thanks to the possibility of completely 

burn the injected fuel, benefits are obtained in terms of consumption. The torque is maximum 

for rich mixture values because more oxygen molecules are present thanks to the dissociation 

of the combustion products and it is therefore possible to burn more fuel than the quantity 

established from the chemical reaction of combustion. 

The effect on the spark advance is seen because according to the air/fuel ratio the combustion 

rate changes (in particular with λ close to 0.9 the higher speeds occur). The optimum ignition 

angle must then be moved to maintain the MFB50 (angle where half of the fuel injected was 

burned) in a window between 8°CA and 12°CA after the top dead center; in this way the torque 

efficiency will be maximum. 

2.11  SA Sweep for Emission Optimization on K-Points (NxBMEP) 

SA sweep for emission optimization purpose has been performed on all K-Points defined as in 

paragraph 2.5. 

As already mentioned, K-Points are established in terms of NxBMEP coordinates and they are 

the most representative points of the homologation cycle performed for emission 

measurements, such as for mid load area and full power. 

So SA sweep has been performed on all K-Points related to the following areas: 

• Emission 

• Driveability 

• Idle 
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In this case SA sweep has been done keeping BMEP (Torque) constant and the throttle has been 

changed in order to compensate SA effect. 

If all K-Points chosen for SA sweep belong to the emission area (λ target = 1), it was worth to 

make it mainly with AIS ON. 

After completed spark advance sweep for emission optimization, SA_OPT (or MFB50_OPT) 

has been determined in the low load area by means of tailored analysis based on a trade-off 

among Emission / IMEP CoV / Fuel consumption. On the other hand, moving towards the high 

load area, the SA_OPT (MFB50_OPT) has been chosen mainly basing the selection criteria on 

Performances. 

The results obtained and the considerations made for the low load area are summarized in the 

next page: 

 

Since MFB50 is an operating engine parameter, it shall be easier to establish the MFB50 trend 

on the entire engine working area.  

Therefore, the creation of such a map made possible an easier calibration of SA_OPT during 

the test “AIR PATH & SA_BAS CALIBRATION AIS OFF/ON”, because of the presence 

of an MFB50 target to be reached in each engine running point. 
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Figure 33 - Engine operating parameters during SA sweep 

 

 

Figure 34 - Engine-out emissions during SA sweep 
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2.12  Airpath & Basic Spark Advance Calibration (AIS OFF/ON) 

With the air model it was calculated the intake air mass value according to the rotation speed, 

throttle position and the intake manifold pressure. 

In this part of the campaign, the calibration methodology is explained with both AIS OFF and 

AIS ON. 

Therefore, MAF and SA adjustments have been done on all the RPM-TPS breakpoints.  

2.12.1  Air Path + SA Calibration AIS OFF 

• MAF ADJUSTMENT 

In order to adjust MAF, it has been used the lambda defined in paragraph 2.4 and adjusted the 

MAF_OPT maps on the tested point to reach the lambda target. 

Based on those data, both air path tables (Speed-Density/Speed-Throttle) have been built for 

each cylinder. 

• SA ADJUSTMENT 

The ignition was adjusted in the N-TPS tables, and reconverted in the N-MAF tables after post-

treatment. If full load ignition retardation was needed in order to avoid knock (in the area where 

the MAF is flat), it has been put in the N-TPS table. 

The nominal crank angle for the optimal MFB50 (corresponding to the MBT condition or 

emission / fuel consumption / IMEP CoV optimum) has been defined in paragraph 2.2.5, and it 

is so defined per each running point, by interpolating the map of Optimal MFB50 in N-TPS. 

Therefore, SA has been adjusted in order to guarantee such value.  

The test has been performed with:  
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- AIS OFF over the whole engine working area  

- AIS ON only where lambda set-point is 1  

2.12.2  Air Path + SA Calibration AIS ON 

The same test above has been repeated with AIS ON, only where λ target = 1 

 

Figure 35 - Example of N/TPS area with λ target = 1 

 

To create the Airpath map, it has been used a script that reads the values of some signals 

recorded at the bench from an Excel sheet, and in a few calculations generates the required 

calibration.  

The steps are as follows: 

1. First of all, it is indicated the document from which read the test data; 

2. The breakpoints of the maps to be generated have been chosen a priori; 

3. Defined some Boundary Conditions; 

4. At this point the script is able to generate the map; 

5. As a last step, is possible to save the calibration in an Excel worksheet. 
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Figure 36 - Final airpath: MAF according to TPS 

 

Figure 37 - Final airpath: MAF according to N 

 

The graph on the right shows the effect of the throttle on the volumetric efficiency (cyl 1 is 

taken in consideration but the observations are also valid for the cyl 2): where the curves present 

a knee are the typical air flows at low rpm where sonic block occurs, i.e. even continuing to 

increase the opening the MAF does not increase. What makes the flow chock is not the throttle 

but the critical area defined by the valve. 

The graph on the left shows the effect of the rpm: the inflection point indicates the resonance 

zones characteristic of the acoustic phenomena that occur in the intake manifold. 

2.13  Temperature Model 

This model was needed to evaluate and adjust air model (MAF) in hot and cold condition. 

A correlation between real MAF and air temperature has been evidenced in different operating 

points, in terms of NxTPS and also N-MAP_RATIO (MAP_RATIO = ratio between MAP and 

Environmental Pressure).  

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.50 1.00

M
A

F/
M

A
Fm

ax

TPS/TPSmax

MAF_Cyl_1 (TPS-MAF)

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.50 1.00

M
A

F/
M

A
Fm

ax

N/Nmax

MAF_Cyl_1 (N-MAF)

N 

N TPS 



52 

 

 

The test has been performed in different operating points like those reported below: 

• 1350rpm  @Idle position 

• 1350rpm @2% 

• 2500rpm @4% 

• 2500rpm  @10% 

• 2500rpm @25% 

• 4000rpm @7% 

• 7500rpm @20% 

• Max rpm @30% 

• 4000rpm @82% 

• Max rpm @82% 

Starting with TIA = 25°C (as reference condition) (TIA : Intake Air Temperature), we made a 

record for each point reported above in terms of N-TPS and for each of them recorded the 

respective value of MAP_RATIO for each cylinder. In this way, a corresponding list of N- 

MAP_RATIO points has been created. 

Once the test at TIA=25°C has been completed, we performed the same test also at 

TIA=Minimum°C and TIA=Maximum°C on each N-TPS point. If the new MAP_RATIO value 

registered with new TIA level differed from that measured at 25°C in the same operating point 

(N-TPS), then, after completed the measurement on the given N-TPS point, the TPS has been 



53 

 

adjusted in order to obtain the 

corresponding N- MAP_RATIO point 

and made other measurements. 

After completed all measurements for 

each TIA level, we performed the 

following 2 specific tests, with 

continuous recorder: 

1. at middle rpm (4000-5000rpm) run the engine with very low throttle opening for 1 

minute, then opened quickly the throttle to wide open and waited 1 minute  

2. at middle rpm (4000-5000rpm) run the engine with wide opened throttle for 10s, then 

close quickly the throttle and waited 1 minute. 

2.14  Friction Determination (HOT/COLD) 

2.14.1  Hot Friction 

Frictions represent the amount of energy transferred to the piston that is not available to the 

shaft for transmission to the wheels. 

Hot frictions are generated by two different contributions: 

1) Pumping losses: these are visible in the graph p - V in the area between the intake line 

(pressure lower than the atmospheric one) and the exhaust line. This type of frictions is 

bigger when the engine operates at low loads, i.e. when the throttle is almost closed, and 

offers a strong resistance to the air flow; 

2) Mechanical losses: it is the amount of energy spent to win the dissipations that arise 

from the relative movements of the components. They included the friction between the 

piston rings and the cylinder walls, the friction in the bearings of the rotating shafts, the 

Figure 38 - Final maneuver to perform at the end of the test 
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friction of the mechanisms of the intake and exhaust valves, the frictions of gears and 

belts and auxiliaries such as oil and water pumps. 

From the data acquired on the bench, it is not possible to distinguish between frictions coming 

from pumping losses and mechanical losses, but from the trend of the curves we see that at high 

rpm and high MAF relative speed between moving parts increases, so mechanical losses 

increase; at low rpm, an increase in the MAF implies a wider throttle opening and a reduction 

in pumping losses. 

 

Figure 39 - Example of torque losses measurement 

according to N 

 

Figure 40 - Example of torque losses measurement 

according to MAF 

 

To acquire bench data and calculate engine friction, it is possible to proceed in various ways. 

In our case the engine was brought to the desired point (N,TPS), performing ramps in the hot 

engine condition (TCO≈85°C) (TCO: engine coolant temperature) from 1350 rpm to max 

engine speed in 60 sec and turning off the cylinders to enter in the cut-off condition (injection 

time set to 0), imposing on the brake (which is able to carry the engine) to continue to rotate 

the shaft at the same rotation speed of the instants before the cut-off. In this way, by reading 

the torque value necessary to the brake to guarantee the constant motion of the engine, it gets 

exactly the job to win the frictions and allow the entry of air into the cylinder. Then we kept the 

engine at max rpm for 10 sec with injection active, then went down from max rpm to 1350 rpm 

in 60 sec again without injection. 

MAF 

MAF 

N 
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Once the air-path has been fulfilled, TPS has been converted in MAF and the table of the Torque 

Friction been calibrated. 

 

Figure 41 - Example of test execution for the hot friction determination 

 

The engine points analyzed were: 

• Min TPS (tuned TPS in order to keep the engine in low idle) 

• 4 % 

• 10% 

• 30% 

• 50% 

• WOT 

The study of hot frictions is necessary in order to identify the correct amount of torque that the 

engine must get to satisfy the driver’s request. 
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2.14.2  Cold Friction 

Cold friction test has a double goal: 

1. Measure torque losses in cold condition 

2. Measure the enrichment needed during warm-up phase 

The test has been performed as follows. 

After selected a given engine working point (N,TPS), a warmup ramp was performed, from 

TCO=25°C up to fully warmed up engine (TCO≈90°C) with an injection cut-off of 10 sec every 

5°/10° of TCO, in three or four different engine operating points. 

 

Figure 42 - Example of chosen operating points for warm-up evaluation 

 

The figure below shows how the test has been performed. 

 

Figure 43 - Cold friction test @ 5000 rpm x 17° TPS 

TPS / N IDLE 3000 5000 7000

Min TPS X

10° X

20° X X

WOT

TCO cold

=> fuel cut off for 

some seconds 

during WUP every 

5°/10° of TCO
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2.15  SA Dynamic Sweep 

Among the last tests followed at the bench there is the SA dynamic sweep, an activity certainly 

longer than the others, useful to determine the effect that different angles of ignition have on 

combustion and therefore on the torque.  

This test was needed for the definition of the following parameters: 

- SA EFFICIENCY: map representing the torque variation (with the same intake air and 

injected fuel) based on the variation of SA. The SA variation as a function of efficiency 

is necessary in torque control because the system calculates SA degradation to be 

applied to satisfy the driver's request, ensuring the other torque requests. 

- SA REF: corresponding to the spark advance that provides the maximum engine torque, 

also called Maximum Brake Torque (MBT), for each engine operating point. Even if in 

some points SA REF cannot be physically reached because of knocking, it is computed 

by looking at the torque shape as function of the SA SWEEP performed in that specific 

point. 

- TQI REF: maximum torque values (obtained by implementing the reference spark 

advance) for each engine point. From this, by multiplying the value of a given engine 

point with the efficiency obtained by implementing the SA_BAS, the basic torque is 

obtained. 

- SA EXTRA MIN (only at low load): minimum spark advance to have a break torque 

equal to 0 ± 5 Nm. It can be physically reached only in those engine working points 

where maximum exhaust temperature (880 °C ÷ 900 °C) is not exceeded. By means of 

this test, SA EXTRA MIN cannot be reached everywhere because of the presence of the 

catalyst, but only at low speed - low load working points, where zero torque is obtained 
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without exceeding the maximum temperature indicated. On other points, it can be 

reached only if an exhaust system is used, as indicated in chapter 2.17. 

Dynamic sweeps of spark advance have been performed, starting from the maximum allowed 

spark advance on cylinders, limited by knock (KP_FREQ ≤ 1÷2 %), until the minimum allowed 

one, limited by maximum exhaust temperature (T_GAS≤ 880÷900 °C) or zero torque (BRAKE 

TORQUE = 0 ± 5 Nm). 

The test has been done keeping measured λ=λ target, adjusting λ by means of MAF maps on 

the tested point. 

Torque, exhaust temperature, knock limit and measured λ has been acquired by means of 

continuous recording. 

SA SWEEP data acquisition requires a particularly high computational effort. The tool used to 

perform this test was AVL CAMEO (referred paragraph 1.4.6 for further information on this 

software). 

As said, one of the objectives of the test is to identify the efficiency curve that will be inserted 

in the control unit and will be used for all engine points. For this reason it is essential that this 

calibration correctly approximates as many of the curves obtained to the various point (N/TPS) 

as possible and it is for this reason that the tool performs more calculation iterations. 

Once the SA value, at which the maximum torque corresponds, is determined for each engine 

point, the torque trends are considered in relation to ΔSA applied, with respect to that at 

maximum torque. 

Therefore, the same torque efficiency trend is considered, but normalizing the torque with 

respect to its maximum value in each point in relation to ΔSA as mentioned above. 
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Figure 44 - Homogeneous Torque Equation/Single ignition efficiency 

 

𝑆𝐴 𝐸𝐹𝐹 𝐴𝑉 =  
𝑇𝑄𝐼 (𝑆𝐴)

𝑇𝑄𝐼 𝑅𝐸𝐹 (𝑆𝐴 𝑅𝐸𝐹)
 

The equation above represents the combustion efficiency with respect to the application of the 

SA optimum (SA_REF). This information is properly the curve that is typically stored in the 

ECU to know the effects of the spark advance implemented (compared to the optimum) on the 

torque produced. 

2.16  SA MIN Determination 

This test identifies minimum spark advance that would make the engine running with constant 

exhaust temperature close to 880 °C ÷ 900 °C and can be used for longer time without incurring 

in catalyst damaging. This value of spark advance is called SA MIN. These tables limit the 

minimum spark advance that the algorithm of the torque structure could ask during normal 

working condition, in order to guarantee exhaust components protection.  

The test has been performed making a sweep of spark advance of 5°CA/10°CA, moving 

together the spark advance of the two cylinders. 
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When the exhaust temperature of one cylinder reached 880°C÷900°C, the test was stopped 

retarding SA on that cylinder, but kept going on the other cylinder until the same exhaust 

temperature is reached. In this way, SA MIN is well defined for both cylinders with the final 

SA step. See the example shown below. 

 

Figure 45 - Example of SA MIN Determination 

 

2.17  SA EXTRAMIN Determination 

SA EXTRA MIN test has been performed as final one, because of the high probability of 

damaging the engine. 

SA EXTRA MIN represents the minimum spark advance that provide a null brake torque 

(Engine Torque = 0). It can be obtained retarding a lot the spark advance in a given N/TPS 

operating point. Such a spark advance degradation will strongly increase exhaust temperature 

close to 1200°C or more. 

SA EXTRA MIN is applied during normal driving condition when a sudden request of zero 

torque is needed, and it can be applied only for very short time interval.  

For example, zero torque could be requested by “Quick Shift” strategies, which has the aim to 

allow gear change without using the clutch. 
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Such a test can only be performed with a dedicated exhaust system, without catalyst, in order 

to avoid catalyst melting. During the test, per each running point, the measurement could last 

more than 3/5s, which is much longer than the time interval during which SA EXTRA MIN is 

being applied on vehicle. For this reason, it is better to make the test without catalysts. 

The test was performed as quickly as possible in order to not stress the cylinder head close to 

the exhaust valve side, too.  
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3.  SA MIN/EXTRAMIN: comparison between SA Sweep extrapolated data 

and measured data 

After completing the calibration campaign and going to the data analysis at the desk, we realized 

the possibility of avoiding the tests of SA MIN and EXTRAMIN determination and extrapolate 

these values from the SA continuous sweep, obtaining the trend of IMEPH = f (SA) and TGAS 

= f (SA). 

3.1  Data Modeling 

What we did was to develop a MATLAB code that could read from a .xlsx file some parameters 

produced by the dynamic spark advance sweep: 

Input_Names = {'n' 'tps' 'SA_cyl_[1]' 'SA_cyl_[2]'}; 

  
Output_Names = {'IMEP_H_1' 'IMEP_H_2' 'T_GAS_1' 'T_GAS_2'}; 

 

 

The code requires input definition of N and TPS breakpoints (specifying a tolerance on these, 

that in our case has been fixed to toll_bkp = 0.01) and obviously a temperature target, being 

SA MIN one of the result to be achieved, mainly dependent on a maximum discharge 

temperature. A TGAS_tgt = 890 [°C] has been chosen3.             

We used the function [P, S] = polyfit (X, Y, n) which determines the polynomial of 

order n that better fit the couple of points X,Y.  

[P_IMEPH,S_IMEPH] = polyfit(SA,IMEPH,3); 

             
[P_TGAS,S_TGAS] = polyfit(SA,TGAS,2); 

                                                 
3 Actually, considering that at the bench, in the high-speed and high-load area, we’ve maintained lower 

temperatures (obtaining higher SA), in the model we set that up to 50 TPS the TGAS_tgt was equal to 890 ° C; 

from 50 TPS onwards TGAS_tgt = 880 ° C 

 
if  TPS_bkp > 50 

 

    TGAS_tgt = 880; %[°C] 

else 

    TGAS_tgt = 890; %[°C] 

end 
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With the function roots (P) were found the polynomials roots; the command polyval 

determines the result deriving from the application of the polynomial. 

% Calculation of polynomial roots 

 

roots_dIMEPH = roots([P_IMEPH(1)*3 P_IMEPH(2)*2 P_IMEPH(3)]); 
            roots_TGAS = roots([P_TGAS(1:2) P_TGAS(2+1)-TGAS_tgt]); 

            
% Calculation SA MIN @ T_GAS = 890 °C 

 
            pos_SA_MIN=find(roots_TGAS<90 & roots_TGAS>-30); 
            SA_MIN=min(roots_TGAS(pos_SA_MIN)); 

IMEPH_MIN = polyval(P_IMEPH,SA_MIN); 

 

% Calculation SA_EXTRAMIN 
 

            TQI = (-1)*interp2(TQFR_X_axis,TQFR_Y_axis,TQFR_map,N,maf)/2;     
            IMEPH_EXTRAMIN = (TQI*4*pi*10/Vd); 
            SA_EXTRAMIN = fzero(@(x) polyval([P_IMEPH(1:3) P_IMEPH(3+1)+ 

                                                   - IMEPH_EXTRAMIN],x),0); 
 

 

The values of SA MIN and SA EXTRAMIN thus obtained were compared with the bench 

values. The comparison was made simply by making the difference: 

SA MEASURED - SA MODELED 

If the difference is negative it means that the model is more conservative, i.e. the value of 

modeled SA is higher than the one measured; if the difference is positive it means a lower SA 

has been modeled. 

3.2  Results and Considerations 

The results obtained are shown below: 

 

Figure 46 - Results of comparison between SA_MIN meas and mdl on cyl 1 

SA_MIN_1_Measured - SA_MIN_1_Modeled

3300 3600 4000 4250 4500 4750 5000 5250 5500 5800 6200 6500 6750 7100 7500 8000 8500 8750 9000 9500 9750 10000

10 3,75 3,84 7,45 7,51 10,26 3,40 6,35 8,25

13 6,61 4,59 4,76 5,85 3,39 4,09 2,71 2,87 4,54 8,49 7,34 6,55 4,31 7,52 2,53

17 5,14 5,53 4,72 4,16 3,81 3,25 4,05 3,18 1,43 2,39 2,28 3,92 2,95 4,60 5,92 1,45

21 6,00 6,35 6,32 4,34 5,03 3,37 3,25 2,75 4,36 3,32 2,68 4,36 5,49 3,04 2,54 3,51 2,60

27 5,35 7,91 8,33 5,58 4,58 4,07 3,43 4,95 4,34 4,14 4,24 4,48 4,50 3,92 3,56 3,95 5,37 3,99 3,83

34 5,69 8,41 6,06 3,39 4,48 2,84 3,80 4,06 4,51 3,13 2,06 3,51 2,93 3,20 3,70 4,37 3,00 3,00 2,20 1,01 0,43

42 6,65 7,46 10,44 5,36 3,95 3,02 4,26 4,88 4,09 1,70 1,89 3,20 3,54 1,36 3,17 2,16 2,92 2,53 1,63 0,11

52 7,40 7,70 8,81 5,44 3,10 2,51 4,50 2,68 3,44 4,36 4,78 3,53 3,02 2,81 2,64 4,44 4,31 2,67 2,61 4,92 1,68 0,52

65 7,39 7,14 7,42 4,59 2,76 2,05 3,31 3,00 2,54 4,18 4,61 3,54 0,98 4,25 5,80 3,13 4,10 2,13 2,84

82 9,21 8,03 9,10 5,41 3,21 1,92 3,85 2,83 2,99 2,90 4,16 4,19 3,85 2,38 1,42 1,98 3,91 2,73 2,80 3,76 1,81 0,56
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Figure 47 - Results of comparison between SA_MIN meas and mdl on cyl 2 

 

 

Figure 48 - Results of comparison between SA_EXTRAMIN meas and mdl on cyl 1 

 

 

Figure 49 - Results of comparison between SA_EXTRAMIN meas and mdl on cyl 2 

 

As can notice, the values resulting from the operation of difference are low, which means that 

the model is acceptable and that extrapolation works. 

As described in paragraphs 2.16 and 2.17, the execution of the tests for the determination of 

SA_MIN and SA_EXTRAMIN subjects the engine to high stress. The result we have arrived 

puts in the hypothesis of avoiding these two tests at the bench, saving hours of work and 

avoiding the problems that usually occur in the execution of these activities and reinvest rather 

on experimenting new functionalities. 

SA_MIN_2_Measured - SA_MIN_2_Modeled

3300 3600 4000 4250 4500 4750 5000 5250 5500 5800 6200 6500 6750 7100 7500 8000 8500 8750 9000 9500 9750 10000

10 4,38 5,66 5,34 5,49 9,45 6,71 6,71 7,93

13 5,97 4,28 4,99 5,44 3,58 5,32 4,15 6,95 6,79 6,42 5,59 4,97 2,87 3,51 8,42

17 5,96 6,40 5,15 5,43 4,74 3,90 4,77 3,67 4,20 5,26 5,29 6,64 6,27 3,35 2,95 5,53

21 5,43 6,63 7,74 5,16 5,21 4,97 3,25 3,60 2,92 3,91 5,45 5,55 7,11 6,88 4,57 5,26 4,43

27 6,98 7,34 8,96 5,68 4,74 5,97 3,72 2,65 2,66 3,79 4,75 5,50 5,20 6,57 4,50 1,89 3,11 3,83 2,79

34 6,21 6,63 5,31 6,19 3,78 2,84 2,53 2,43 2,94 4,40 4,95 4,32 3,96 3,47 2,01 3,86 2,84 2,79 3,32 2,80 1,87

42 7,00 5,57 9,84 7,08 6,75 3,29 3,43 5,15 5,71 4,10 4,54 3,98 2,37 2,28 2,35 2,09 1,44 4,93 1,81 1,94

52 7,29 7,82 9,03 6,37 6,99 3,90 4,41 3,96 4,60 5,71 6,95 3,88 4,40 3,87 2,98 3,47 3,20 2,28 3,06 3,32 4,35 3,14

65 7,76 6,53 7,16 6,12 5,19 4,22 2,99 4,10 3,73 6,35 3,34 5,22 3,59 5,62 5,84 3,15 3,33 4,04 4,55

82 7,80 6,18 6,57 5,64 6,08 4,10 3,43 2,42 3,76 3,73 4,64 2,14 3,42 3,36 3,17 3,89 3,45 2,56 2,00 2,63 3,28 1,90

SA_EXTRAMIN_1_Measured - SA_EXTRAMIN_1_Modeled

3300 3600 4000 4250 4500 4750 5000 5250 5500 5800 6200 6500 6750 7100 7500 8000 8500 8750 9000 9500 9750 10000

10 0,80 3,56 5,66 -0,62

13 2,75 2,37 1,05 1,34 0,39 3,87 4,33 4,27 4,68 7,23 4,95 4,45 0,06 -1,39 -4,96 -5,63

17 -0,78 4,19 1,40 -0,34 2,03 2,29 3,95 6,36 4,79 4,88 5,92 4,53 1,61 0,99 0,36 -3,16 -3,20

21 -0,13 0,23 5,18 1,14 0,74 1,34 -1,40 3,21 3,68 4,90 4,69 4,55 3,88 3,64 2,20 1,25 0,07 0,43

27 -1,24 0,52 2,48 0,93 0,55 -0,10 -0,48 -0,32 1,02 3,64 2,79 2,72 2,72 4,78 1,77 1,26 1,12 1,92 -1,20

34 -2,23 2,63 -1,46 2,20 -0,48 0,14 -1,15 0,59 0,68 1,81 1,37 1,95 3,90 0,94 1,14 2,68 0,50 0,12 0,09 -0,13 -1,05

42 -2,52 -3,12 2,67 -1,55 -2,49 -1,79 0,63 1,44 1,14 2,35 0,79 1,33 3,12 0,43 1,04 1,71 0,41 1,47 -0,87 -1,24

52 -2,26 -3,40 -1,21 0,17 -0,34 -0,39 -2,23 -2,38 -2,24 -1,52 1,50 2,42 -0,22 3,19 0,26 3,18 0,41 1,85 1,62 2,12 0,56 -1,83

65 -1,63 -3,14 -1,32 -2,28 0,48 -1,62 -0,48 -2,85 -5,93 2,58 2,65 1,00 -0,48 1,04 2,84 0,95 2,26 -0,11 -0,48

82 -3,06 -1,87 -1,79 -1,68 -2,53 -0,91 -3,38 -2,85 -1,92 0,83 0,92 2,40 1,20 1,38 1,22 3,34 1,03 3,04 -2,95 -0,39

SA_EXTRAMIN_2_Measured - SA_EXTRAMIN_2_Modeled

3300 3600 4000 4250 4500 4750 5000 5250 5500 5800 6200 6500 6750 7100 7500 8000 8500 8750 9000 9500 9750 10000

10 -2,18 0,76 -0,33 -0,27 2,67 6,63 6,40 8,49

13 2,08 1,40 0,76 -0,18 -0,57 0,93 -1,25 1,11 -0,92 1,79 2,46 5,98 8,46 11,14 12,63

17 0,83 3,11 0,29 0,57 0,41 -2,33 -1,00 -0,55 -0,48 0,20 4,79 5,84 7,99 5,75 9,63 13,26 12,98

21 0,37 1,43 4,44 -0,53 0,19 0,90 -2,93 0,25 -1,19 -0,63 1,69 2,92 4,87 6,08 3,47 6,42 6,31 7,21

27 0,04 2,44 3,23 0,73 0,89 -0,07 -1,25 -1,34 -0,41 1,99 2,78 3,00 2,76 5,44 5,11 4,69 5,19 6,09 3,86

34 0,03 1,45 3,47 1,61 1,75 -0,10 0,26 -1,08 0,04 0,89 2,79 2,42 1,84 4,91 1,96 3,45 4,50 4,63 4,26 4,92 4,24 2,43

42 1,08 -0,08 5,34 1,52 1,24 -1,10 2,35 2,70 3,16 4,05 3,04 2,17 3,71 2,16 1,99 3,36 3,68 3,95 2,97 1,89

52 1,37 0,32 3,59 2,41 1,04 0,59 1,98 0,48 2,12 1,75 3,45 3,56 1,78 2,78 1,51 2,31 1,10 2,82 2,76 3,89 3,58 1,64

65 1,18 0,36 3,31 -0,46 1,97 0,35 0,76 -1,05 -2,22 1,79 3,33 2,23 0,80 2,50 3,46 2,48 2,60 1,93 3,42

82 0,15 0,45 0,71 0,06 0,15 0,19 -0,26 0,55 -0,74 1,75 1,52 3,67 1,69 2,40 2,94 3,46 1,25 1,90 2,98 1,85
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4.  Torque-Based Structure 

4.1  Thermodynamic Behaviour and Torque Calculation 

The purpose of an internal combustion engine is to develop a certain power, determined by the 

torque available at the clutch and by the rotation speed. The clutch torque is that developed by 

the engine during the combustion phase, except for frictions due to pumping losses, mechanical 

losses and auxiliaries. Then the torque available to the wheels is clutch torque multiplied by the 

transmission ratio. 

 

In the next page is shown an indicated diagram of which is considered unnecessary give a 

detailed description: just the IMEP is expressed, which is the work of the thermodynamic 

indicated cycle for unit of displacement. 

Notice that: 

 𝑉𝑐𝑦𝑙 [𝑑𝑚3] is the displacement of the engine; 

𝑝 [𝑘𝑃𝑎] is the pressure in the combustion chamber, point by point, during the working cycle; 
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𝑑𝑣 [𝑑𝑚3] is the infinitesimal volume swept by the cylinder between the BDC and TDC.  

 

4.2  Torque-based System 

The original control strategy was based on the direct relationship between the throttle body and 

the driver action on the handle. The other interventions (warmup, traction control, speed limiter, 

etc.) contributed to the definitive calculation of the actuations in the form of throttle opening 

offset; the ignition angle was chosen with the aim of guarantee the maximum efficiencies during 

the combustion phase. This did not ensure a precise and immediate control of torque. 

With the need to control the engine in a precise manner, it was essential to implement the 

Torque-based system and introduce the electronically controlled throttle (DBW, drive-by-wire). 

In this way it was possible to separate the driver's torque request from the actuation itself. The 

driver request, while remaining the main target of the control strategy, is only one of the 

numerous torque request that reach the engine at each cycle; other functions contribute to the 

best choice of actuations cycle by cycle. 
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So the control system is a “Torque Coordinator” and its control levers are ignition and throttle 

position. 

4.3  Torque Coordination 

An instantaneous adjustment of the torque (so-called "fast path”) is represented by the variation 

of  SA (the torque regulation through variation of the intake air mass is considered "slow path” 

as the dynamics of filling and emptying the intake manifolds are not instantaneous.). The value 

of the SA can be changed from one combustion cycle to the other and heavily affects the torque. 

In the ECU there is the SA_EFF_Curve, which allows the system to establish the ignition angle 

necessary to guarantee a certain efficiency. This term refers to the ratio between the maximum 

producible torque, obtained by applying the optimum spark advance, and the produced torque, 

by implementing an advance different from the optimal one. 

It is clear that the management of the actuations necessary for the correct functioning of the 

engine is assigned to the ECU. The tasks of the ECU, or better, of the control system, are to 

guarantee that the driver request is transformed into commands to the engine actuators, to 

monitor the operation of the various sensors and to intervene in the event of preserving the 
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driver safety or engine integrity. It regulates all the engine functions in order to control 

emissions and consumption, too. 

 

 So at the base of the functioning of the ECU there are the principles of automation, automatic 

controls and computer programming. 

4.4  General example of vehicle torque chain 

The supplier of control units and control software for the DUCATI engine analyzed is one of 

the leading companies in the electronics industry. 

The control unit uses data from the sensors to monitor the state of the engine in all its parts with 

very short time intervals (in millisecond) to allow real-time operation of the control. 

The first step towards defining the requests that the ECU needs to transfer to the engine is to 

establish what the driver is asking. The software receives the information from the 

potentiometers placed on the throttle handle and converts it into a torque request through a 

calibration that depends on the engine revolutions, the pedal map. 
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Figure 50 - Example of vehicle torque chain 

 

To the driver request are submitted other external torque requests to be coordinated (idle 

control, traction control, cat-heating, etc.) from which the torque at the clutch is obtained. 

Frictions are added to this value and the internal torque is obtained. The internal torque is 

managed by two control levers: the relative load of air that demand a fuel setpoint (slow path), 

and a SA  value is calculated starting from the value of reference spark advance degraded to 

obtain the desired torque and limited by the one coming from the base maps (fast path). 

4.5  Inverse torque model for simulation 

The model realized in this Thesis was developed by doing reverse engineering. In fact, as 

reported in the diagram below, we are gone backwards the model described before. 

We started from air-path, SA maps and the λ set-point, whit given rpm and load values. Once 

the efficiency data of SA and λ have been obtained, these have been multiplied to the reference 

internal torque value to obtain a gross internal torque. Once this value has been reduced by 

friction (in the diagram shown as added but notice that they are negative values), the actual 

external torque (effective torque at clutch) is obtained. 
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Figure 51 - Inverse simplified torque model 

 

4.6  Model Simulation and “Cases of Study” 

The simulation of the model was carried out by writing and executing MATLAB codes: it has 

been an extremely important tool for the development of the project. In fact, it was possible to 

evaluate the model's response to the inputs given, such as the data collected during the bench 

activity and final calibration maps. 

To make the model "universal", that is to make it valid for other engines different from the one 

analyzed, some of the parts of the script are represented by modifiable parameters. 

By developing such a model it could be possible to control the work of the supplier who, based 

on data provided by DUCATI during the calibration campaign, realizes the final calibration to 

be enabled on vehicle. 
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Obviously, a good simulation requires the model validation. We must be sure that the virtual 

outputs are the same as the physical we will have. To do this, the coefficient of determination 

R2 was used4. 

4.6.1  Case 1: SA_BAS with SA_EFF_Curve and TQFR MOTORING 

The first simulation was made by launching the torque model with the values of SA_BAS which 

is the best spark advance in terms of engine functionality (consumption, emissions, etc.) not to 

be confused with SA_REF (MBT) and SA_OPT which is, in a certain manner, the compromise 

between functionality and maximum torque. 

What is obtained are macroscopic errors on friction with unacceptable values of R2: 

                                                 
4 The coefficient of determination R2 is a proportion between the variability of the measured data and the 

correctness of the statistical model used: 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
   where: 

𝐸𝑆𝑆 =  ∑ (𝑦̂𝑖 − 𝑦̅)2𝑛
𝑖=1    is the deviance explained by the model (Explained Sum of Squares) 

𝑇𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1     is the total deviance (Total Sum of Squares) 

𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1   is the residual deviance (Residual Sum of Squares) 

• 𝑦𝑖  are the data observed 

• 𝑦̅ are their average 

• 𝑦̂𝑖 are the data estimated from the model obtained from regression 

R2 varies between 0 and 1: when 0 the model does not explain the data at all; when it is 1 the model explains the 

data perfectly. 
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Figure 52 - Case 1: SA_BAS w/ SA_EFF_Curve and TQFR MOTORING 

 

4.6.2  Case 2: SA_BAS with SA_EFF_Curve and TQFR FIRING 

In the second simulation, having ascertained that the problem was on friction, the model is 

relaunched using the friction map in FIRING. The results obtained are much better: 

 

Figure 53 - Case 2: SA_BAS w/ SA_EFF_Curve and TQFR FIRING 
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What happened? Friction represents the amount of energy transferred to the piston that is not 

available on the shaft for transmission to the wheels. They are divided into pumping losses and 

mechanical losses. 

 

 

 

 

 

Since on the bench the measure of friction is done by bringing the engine into cut-off condition, 

i.e. removing for a certain time the injection to the cylinders, there is no combustion 

(MOTORING condition) and then sensitivity on the mechanical friction is lost. 

In FIRING condition (with combustion) the peak pressures in the chamber are greater and 

therefore the friction between piston segments and cylinder is much higher:  

 

 

 

 

4.6.3  Case 3: SA_SWEEP with SA_EFF_Curve and TQFR FIRING 

For this simulation, the model was launched with the values deriving from the test of the 

dynamic SA sweep. 

FRICTION 

PUMPING 
LOSSES 

MECHANICAL 
LOSSES 

They represent the net work of the piston on the gas 

present in the cylinder during the intake and discharge 

phases. 

 Amount of energy spent to overcome the dissipations 

that arise from the relative movements of the 

components. 

Friction MOTORING << Friction FIRING 
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NOTE: The graphic did not show the contour plot used to display the model errors on the quoted 

plane as done for the SA_BAS data: it would not have sense as the dots are no longer precisely 

engine operating points but are continuous sweep. 

 

Figure 54 - Case 3: SA_SWEEP w/ SA_EFF_Curve and TQFR FIRING 

 

We found, particularly looking at the results on the external torque TQE, a more or less 

considerable dispersion of the data produced by the model respect the linear regression. 

4.6.4  Case 4: SA_SWEEP with SA_EFF_Map and TQFR FIRING 

To avoid the problem, we took into consideration the SA efficiency map instead of the curve 

with a discreet improvement of the data produced by the model: always looking at the results 

of the TQE, the coefficient R2 has in fact passed from 0.94 to 0.96: 
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Figure 55 - Case 4: SA_SWEEP w/ SA_EFF_Map and TQFR FIRING 

 

Some engine operating points are analyzed in detail. In particular, for the comparison between 

the results produced using the SA_EFF_Curve and those produced using the SA_EFF_Map. 

The points under investigation are summarized in the following table: 

 

Figure 56 - Case 4: table of engine points analyzed in detail 

 

Comparing the TQE Error produced by implementing the curve or the map of SA_EFF, it is 

clear that the map has a better potential than the curve in representing the engine behaviour. 
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Below are the graphs showing the results obtained and, after these, again the summary table of 

the analysis considerations reached. 

 

Figure 57 - Curve and Map Efficiency @ 3600 rpm x 13/34/82 °TPS 
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Figure 58 - Curve and Map Efficiency @ 5500 rpm x 13/42/82 °TPS 
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Figure 59 - Curve and Map Efficiency @ 7500 rpm x 17/42/82 °TPS 
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Figure 60 - Curve and Map Efficiency @ 9000 rpm x 34/82 °TPS 

  



80 

 

4.6.5  Case 5: SA_BAS with SA_EFF_Map and TQFR FIRING 

The last case analyzed was the one that takes the data coming from the SA_BAS file but we 

tried in this case to implement the SA_EFF map instead of the curve. The simulation was made 

to see if there could be any improvement on resultant TQE. 

 

Figure 61 - Case 5: SA_BAS w/ SA_EFF_Map and TQFR FIRING 

 

Unlike what happened for SA_SWEEP, in this case no significant improvements are noted. The 

explanation for this is in the fact that, during the continuous sweep test, a whole range of spark 

advances is covered, working with very degraded SA and almost zero torque; the area of 

SA_BAS is instead limited to a high-torque zone in which using the curve or the map of 

SA_EFF makes no great difference. 
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Figure 62 - Example of SA_EFF_Curve and Map (ΔSA/Torque) 

  

For the simulations in which 

SA_BAS was used, both the 

map and the SA_EFF curve are 

acceptable 

 

For the simulations with SA_SWEEP 

they were reached SA also in this area 

where the SA_EFF curve is not very 

accurate → Major error on modeled 

torque 
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5.  Conclusions 

The work carried out in these months of internship in DUCATI gave me the opportunity to 

deepen my knowledge on the calibration of internal combustion engines, on the sensors of a 

tests room, on the PCs that interface and control the cell, but above all they taught me how to 

deal with the technical problems that arise when an engine is on the bench. 

The part of post-processing data through specific tools allowed me to learn how to produce 

reports adequately, to understand how torque structure works, and to improve my judgment and 

analysis data skills. 

At the end of the collaboration the established objectives have been reached. 

The project puts under the hypothesis of avoiding some tests on the bench, tests that currently 

subject the engine to strong thermal stress with all the problems that result and that require 

many hours of activity. The possibility of saving on working hours and costs allows solving 

data acquisition “vacuums” and problems that sometimes prevented completion of the tests 

themselves. 

The Torque-based model realized was undoubtedly the core of the work of these months.  

Based on a MATLAB code that reads .xls files in input and gives the external torque in output, 

it’s easy to use. The greatest result is the model ability to determine the behavior and the 

response of the engine control unit and the added value is to have editable parameters that make 

the model universal and applicable to different cases of study. The calculation of the coefficient 

of determination R2 allows an immediate evaluation of the error produced by the model and the 

graphs help to make the model "user friendly". This offers the possibility of a quick check and 

a validation of the work that comes back from the supplier of the control unit that will be 

implemented on the vehicle. 
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There could be margins for improvement on the accuracy of the results provided by the model, 

and these are to be found in the setting up of some maps on which the model develops (SA_REF, 

SA_EFF and TQFR determination), but overall the result of an R2 = 0.98 affirmed that it is a 

robust model. 

Definitively this Thesis project is proposed to support the calibration and analysis of data 

produced during the bench activity.  
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