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Sommario

Lo studio della dinamica dei sistemi quantistici fuori dall’equilibrio ha intro-
dotto delle problematiche ancora irrisolte in fisica. Negli ultimi anni si è assistito
a un enorme progesso teorico in questo campo, mosso da incredibili progressi tec-
nologici sia nell’ambito di gas atomici e molecolari a basse temperature, che hanno
reso possibile la manipolazione di sistemi quantistici con molti gradi di libertà, che
in quello di algoritmi in grado di simulare l’evoluzione temporale.

In questa lavoro rivolgiamo la nostra attenzione su di un semplice paradigma:
lo studio della dinamica fuori dall’equilibrio di sistemi quantistici isolati unidimen-
sionali a seguito della variazione di uno o più parametri del sistema (quench quan-
tistico). In particolare viene studiata la dinamica di catene di spin con simmetria
Zn e come questa venga modificata dalla rottura esplicita di tale simmetria.

La parte originale del lavoro è nello studio della propagazione dell’entanglement
nel modello di Potts con campo longitudinale nella sua fase paramagnetica, dove si
è osservato, come recentemente nel modello di Ising con campo longitudinale, un
repentino aumento nel tasso di produzione di entanglement. Questo si associa alla
comparsa di una nuova particella nello spettro dell’Hamiltoniana dopo il quench.
Il fenomeno viene spiegato come la versione fuori dall’equilibrio del noto paradosso
di Gibbs.

Tutti i risultati numerici della tesi sono stati ottenuti con l’algoritmo iTEBD
sviluppato dall’autore.
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Introduction

At the dawn of quantum theory, classical statistical mechanics was an already well-
established field of research. As the mathematical background of the new quantum
mechanics was settled, John Von Neumann spent significant efforts in order to generalize
the fundamental concept of ergodicity and to prove the tendency of a quantum state to
evolve towards the state of maximum entropy [1]. Numerous questions raised back then
are still without answer. In particular it is a fundamental assumption of classical statistical
mechanics that a closed system with many degrees of freedom samples ergodically all the
points in phase space that share the same amount of energy. To understand the limits of
this assumption, it is important to find and study systems that are not ergodic and thus
do not reach thermal equilibrium.

Within this framework, one dimensional closed quantum systems play an essential
role, in particular integrable ones. The latter enjoy an extensive number of conservation
laws that affect their dynamics preventing thermalization.

Lot of theoretical results were achieved in the last decade. This renewed interest for
the topic was certainly motivated by a series of advances in experimental techniques
which made possible to manipulate quantum systems with many degrees of freedom. A
whole new range of methods in the field of ultracold atomic and molecular gases, including
optical lattices and ion trapping [2, 3, 4], allow to engineer strongly-interacting quantum
systems with the possibility of tuning with high accuracy their parameters.

This led to a massive interest in questions concerning out of equilibrium dynamics
of such systems. In this context the so called quantum quench [5] is the most studied
protocol to drive a system out of equilibrium: an isolated quantum system composed
of many particles and ruled by a Hamiltonian H is prepared in a state that is not an
eigenstate of the latter, and it is let evolve.

Even in this simple set up it is not trivial at all to describe the system dynamics
with exact results. This is way significant efforts are also spent for the development of
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numerical methods that allow the study of the properties of many-body quantum systems.
In recent years increasing attention has been paid to algorithms that express the state of
the system as a tensor network. Among them the matrix product state (MPS) [6], the
density matrix renormalization group (DMRG) [7] algorithm to compute ground states
and the time evolving block decimation (TEBD) [8] algorithm to simulate evolution.

The present manuscript is set within this context. Its aim is to study dynamics of
spin chains with Zn symmetry after a quantum quench both with analitic methods and
numerical simulations. In particular the TEBD algorithm for infinite chains, developed by
the author, was used both to simulate unitary time evolution and to compute groundstates
of one dimensional models. The code is tested with the paradigmatic Ising model with
transverse field, with Z2 symmetry, since exact solutions for its dynamics are known
[9, 10], and used to study the 3−state quantum Potts model, a Z3 symmetric model that
is the simplest generalization of the transverse field Ising model. It is interesting to study
their similarities and their differences in the dynamics since while the Ising model is
integrable, the Potts model it is not. This might give valuable informations about the
relation between integrability and relaxation. It is then studied how the dynamics of these
models is affected by the addition of a longitudinal field, which results in the breaking of
integrability for the Ising model. The Ising and Potts models are also paradigmatic for
their simple description of the phenomenon know as spontaneous symmetry breaking:
they can describe situations where the equations of motion obey certain symmetries (Zn
in this case), but the lowest energy vacuum solutions do not exhibit that same symmetry.
Particular attention is then paid in this work to the study of symmetries after a quantum
quench. The work is structured as follows.

In chapter 1 some aspects of one dimensiona quantum system are presented. We
introduce the main experimental motivations to study such systems. The concept of
quantum integraiblity is introduced and compared with the well established classical
counterpart. The introduction of entanglement entropy follows, with a discussion on its
importance for the deduction of many quantum features. A digression about quantum
phase transitions concludes the chapter.

In chapter 2 we recollect some useful notions about out of equilibrium dynamics
in one dimensional systems. The relation between (non) integrability and equilibration
is introduced as well as the concept of quantum quench. Afterwards, a very helpful
picture is presented: the spreading of correlations throughout the system as propagation
of quasi-particle excitations after a quantum quench and how it helps in the description
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of the evolution of observables [5]. The evolution of entanglement entropy is eventually
outlined [11].

The content of chapter 3 is aimed at describing the algorithm used to simulate the
evolution of quantum systems after a quench. After introducing a useful representation
for quantum states, the matrix product state (MPS) representation, the infinite Time
Evolving Block Decimation algorithm is presented and it is explained how this can be
adapted for the computation of ground states. The chapter ends with details on the
simulations.

In chapter 4 the models under study are introduced. Their dynamics is described
along with the the results of the simulations. As far as the Ising model is concerned, the
latter are compared to exact predictions and some of them are reobtained thoughout the
chapter.

In the last chapter the reults of the dynamics of the very same models with the addition
of a longitudinal field, and the consequent explicit symmetry breaking, is reported. In
particular we focus on the ferromagnetic phase of the Ising model, reproducing the results
obtained in [12], and the paramagnetic phase of the Potts model, demonstrating that
the phenomenon of sudden increase in the entanglement production rate observed in the
Ising model in a recent work [13] is present also in its direct generalization.





Chapter 1

Quantum one dimensional systems

Many years later, as he faced the firing squad, Colonel Aureliano Buendía was to
remember that distant afternoon when his father took him to discover ice.

- Gabriel García Márquez, One Hundred Years of Solitude

In this chapter some key aspects of one dimensional quantum systems are introduced.
We start with experimental results and technological advances that motivates their
theoretical study and proceed with the definition of quantum integrability. Afterwards,
entanglement entropy is introduce, a meaningful physical quantity crucial in the whole
discussion of the present manuscript. We conclude the chapter with a digression about
quantum phase transitions.

1.1 Experimental motivations

In recent years the study of nonequilibrium dynamics of quantum many-body systems
has been increasingly motivated by a series of advances in the field of ultracold atomic
and molecular gases. These systems are nowadays crucial for the study of nonequilibrium
quantum phenomena.

First of all, quantum gases exhibit a high degree of isolation from environmental sources
of decoherence and can therefore be regarded as closed quantum systems. Furthermore
their dilute nature and the low temperatures result in relative long observation times,
that allow the study of late time relaxation.
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6 Chapter 1. Quantum one dimensional systems

Secondly, it is possible to dynamically tune the parameters of the Hamiltonian ruling
the quantum system by means of Fashenbach resonances [2, 3], that allow to change
interparticle separation by changing the external magnetic field, and optical potentials
[4].

Figure 1.1: Absorption images in the first osillation cycle of the Quantum Newton’s Cradle experiment. Figure taken from
[14].

One of the most famous experiments that motivated the recent theoretical work is the
quantum Newton’s cradle [14], which renewed the interest for issues such as the relation
between thermalization and quantum integrability.

It is indeed a fundamental assumption of statistical mechanics that a closed system
with many degrees of freedom ergodically samples all equal energy points in phase space.
To understand the limits of this assumption, it is important to study systems that are
not ergodic and thus do not reach thermal equilibrium.

In this experiment, Kinoshita, Wenger and Weiss loaded a Bose-Einstein condensate
composed by 2·105 atoms of 87Rb into the combination of a two-dimensional optical lattice
and a crossed dipole trap. The combination of light traps builds a 2D array of distinct
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parallel Bose gases. The dynamics within each tube, containing from 40 to 250 atoms,
is strictly one-dimensional since the potential is chosen so that the lowest transverse
excitation exceeds all other energies in the problem and there is negligible tunnelling
among the tubes.

After putting the atoms in a superposition of states with opposite momenta, they
are allowed to evolve for a variable time t in the crossed dipole trap and absorption
images are taken to study the atoms positions at different times (Fig. 1.1). Then the
momentum distribution is measured at subsequent times. It turns out that the system
reaches a stationary configuration but does not thermalize on the time scales available
for the experiment; more precisely, the momentum distribution eventually reached is non
Gaussian.

The system described above is in close relation with the Lieb-Liniger model, which is
integrable, plus harmonic potential. Hence the results of the experiment suggested that
the non gaussianities were caused by the integrability of the system. Note that the crossed
dipole trap breaks the integrability of the system: this also suggests a certain stability
of non-thermalization when an integrable hamiltonian is perturbed via a non-integrable
term.

1.2 One dimensional quantum systems

The object of study are isolated many-body quantum system, that are characterized by
the absence of any coupling to its environment. Consider a one dimensional lattice of
such kind with a time-independent, translationally invariant Hamiltonian H and with N
sites (Fig. 1.2). On each site we define degrees of freedom which introduce a local Hilbert
space of finite dimension.

For definiteness, let’s introduce as example the XY model with N sites, whose
Hamiltonian has the form:

H =
N∑
j=1

hj, hj = −1

2

{(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyjσ

y
j+1 + hσzj

}
(1.1)

where ~σj is the vector of Pauli matrices σxj , σ
y
j , σ

z
j and the index j indicates that the

operator acts non trivially only on site j:

~σj = 1⊗ · · · ⊗ 1⊗ ~σ ⊗ 1⊗ · · · ⊗ 1. (1.2)
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1 2 N

Figure 1.2: Graphical representation of one-dimensional lattice. On each site resides a local Hilbert space isomorphic to
Cd for some finite d model dependent.

On each site there is a local Hilbert space isomorphic to C2 spanned by the eigenstates
of the σz operator:

σz |↑〉 = |↑〉 σz |↓〉 = − |↓〉 . (1.3)

The Hilbert space of the whole system is then H = (C2)⊗N .
With this simple model in mind, key aspects of one dimensional quantum systems

will be introduced and discussed in the following paragraphs.

1.3 Integrable systems

First of all, what does integrability mean for quantum systems? And how integrability
of a certain model implies its solvability? A physical system is commonly identified as a
topological space of statesM (usually a manifold, albeit often infinite dimensional) with
a bijective evolution map

Ut :M→M (1.4)

parametrised by a real parameter t identified as time. Every state inM encodes physical
observable predictions, while the evolution map depicts how these predictions change in
time.

1.3.1 Classical integrability

For classical one dimensional systems,M is a 2n simplectic manifold described by the
coordinates (qi, pi) ∈ R2, i ∈ {1, . . . , n}, with canonical Poisson brackets

{qi, pj} = δij. (1.5)

A physical observable is then a real (smooth) function F of these coordinates. Denoting
by F the real linear space of observables, we have for any F,G ∈ F

{F,G} =
∑
k

∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk
. (1.6)
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The bijective map Ut is related to a particular function on phase space, the Hamiltonian
H = H(q, p), that gives the equations of motion of the system

dF

dt
= {F,H}. (1.7)

The operator
DHF (q,p) = {F,H}

∣∣∣
(q,p)

(1.8)

acts as infinitesimal generator of the evolution map and Ut can be expressed as Lie series

Ut =
∞∑
n=0

tn

n!
Dn
H ≡ exp{tDH}. (1.9)

The evolution equation is such, in most physical cases, that time evolution of a given
state is continuous. However the map Ut can be very complicated. In particular, although
it may be almost everywhere continuous, this continuity is almost nowhere uniform in
time. In many cases, two nearby states map to states that are very far apart, and that
become exponentially further apart as t is increased (chaos). Integrability is essentially
the opposite of chaos: the map Ut is as nice as it can be. It possesses infinitely many
invariant submanifolds that foliateM, parametrised by as many continuous parameters
as there are “degrees of freedom”, and on these submanifolds, states that start nearby
stay nearby uniformly in time. To clarify these concepts we introduce the definition of
Liouville integrability [15].

Definition 1 (First integral). A function F ∈ F is a first integral of a system with
hamiltonian function H if its Poisson bracket with H itself is identically equal to zero.

{F,H} = 0 (1.10)

Definition 2 (Involution). Two functions F1, F2 ∈ F are in involution if their Poisson
bracket is equal to zero.

{F1, F2} = 0 (1.11)

Definition 3 (Liouville integrability). A dynamical system (of 2n−dimensional phase
space) is Liouville integrable if there exists n independent first integrals Ik, with k ∈
{1, . . . , n}, in involution.

The independence of the latter means that at generic points on the symplectic manifold,
the tangent space of the surface defined by Ik = const. exists ∀k and is n−dimensional.

It is now possible to state the Liouville theorem on integrable systems.
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Theorem 1 (Liouville theorem). Consider a Liouville integrable system with a set of
first integrals {Fk}. Consider the set

Mf = {(q,p) : Fi(q,p) = fi = const., i ∈ {1, . . . , n}}. (1.12)

Then

1. Mf is a smooth manifold, invariant under the phase flow with hamiltonian function
H = F1

2. If the manifold Mf is compact and connected, then it is diffeomorphic to the
n−dimensional torus

T n = {(φ1, . . . , φn), φi ∈ [0, 2π[}

3. The evolution map with hamiltonian function H determines a conditionally periodic
motion on Mf , i.e., in angle variables{φj} and their canonical conjugate action
variables {Ij}, j = 1, . . . , n,

{φj, Ik} = δj,k

we have that action variables are purely functions of the first integrals, hence are
invariant under time evolution. This implies that angles evolve linearly with time:

{φj, H} =
∂H

∂Ij
⇒ φj(t) =

∂H

∂Ij
t+ φj(0)

4. The canonical equations with hamiltonian function H can be integrated by quadra-
tures.

1.3.2 Quantum integrability

When it comes to quantum theory, the definition of integrability it is not straightfor-
ward. One may wish to emulate the classical case following canonical quantization [16],
supplanting Poisson brackets by commutators

{F,G} → −i[F,G] (1.13)
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and ask for many integrals of motions (in involution) as there are degrees of freedom.
Having the XY model in mind, the problem is that for any finite N , the Hamiltonian (1.1)
is a finite-dimensional Hermitian matrix 2N ×2N and can be diagonalized. In the diagonal
basis, any other matrix that is diagonal will communte with the Hamiltonian. There are
2N of such matrices, all independent from each other. Hence, we have automatically a
greater number of conserved quantities then the number of degrees of freedom. Obviously
this doesn’t mean that every quantum chain is integrable: since these conserved quantities
exist for every system, they can’t have any profound meaning or impact. There is no
universally accepted definition of integrability for quantum spin chains (see for example
[17, 18]). One of the main concepts that is commonly accepted as being fundamental,
however, is that of locality. We now introduce some concepts related to this feature [19].

Definition 4 (local quantum spin chain). A quantum spin chain model is local if the
Hamiltonian H, as the thermodynamicl limit is taken, is always on the form

H =
∑
k

hk (1.14)

and there exists a r > 0 (N independent) such that ∀k the operator hk is supported on
sites lying within the interval [k − r, k + r].

Definition 5 (local operator). An operator On is local around the site n

∃r > 0 : [On, hm] = 0 ∀m : |n−m| > r. (1.15)

Two operators On,O′m are said to be local with respect to each other if they commute for
|n−m| large enough.

Definition 6 (local conserved quantity). A local conserved quantity (or charge) is an
operator Q supported on the whole chain, such that it commutes with the hamiltonian
function

[Q,H] = 0 (1.16)

and such that Q is a sum over n of uniformly local operators around n:

Q =
∑
n

qn, ∃r > 0 : [qn, hm] = 0 ∀|n−m| > r (1.17)

Using these concepts we can define integrability as follows:
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Definition 7. (quantum integrability) A local quantum spin chain model is integrable if,
in the thermodynamical limit, there exist infinitely many local conserved quantities Q(k)

that are in involution,
[Q(k), Q(l)] = 0 ∀k, l (1.18)

and whose densities are local with respect to each other.

In integrable models the Hamiltonian H can be written as [17]

H =
∑
k

ε(k)η†kηk + E0 (1.19)

where the creation and annihilation operators η†k, ηk act on the ground state of the system
and produce quasi particle excitations with dispersion relation ε(k) and E0 is the ground
state energy. The Hamiltonian of the system can be namely decomposed into a set
of harmonic oscillators (the analogue of action-angle variables for classical dynamical
systems). In this picture the conserved charges are simply the occupation number of each
single-particle eigenmode nk = η†kηk. It is important to remark that the existence of a
quasi-particle description is not a sufficient condition to write the hamiltonian function
as (1.19). It is indeed necessary that the quasi-particles mantain their identity upon
scattering between each other. This is ensured by the complete factorization of many-body
scattering amplitudes into 2−body scattering processes [20].

1.4 Entanglement entropy

Many quantum features can be deduce by studying quantities that are non local observ-
ables. Entropy is one of these quantities and builds the basis for a statistical description
of nature. As already introduced in previous sections, an isolated quantum system evolves
unitarily and if the system is prepared in a pure state it will remain in a pure state with
zero entropy.

However we can characterize the entropy of a subsystem, that is generally in a mixed
state, computing the Von Neumann entropy of its reduced density matrix, also called
entanglement entropy.

The entanglement of a subsystem with the rest of the system measures how the
configuration of the former depends on the configuration of the latter and how far it
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is from being a pure state. To put this into formulae, we first introduce the Schmidt
decomposition.

1.4.1 Schmidt decomposition

Let us consider a bipartition of the Hilbert space of a spin chain H = HL

⊗HR of a 1D

system, where HL(HR) describes all the states defined on the left (right) of a given bond.
Any pure state |ψ〉 defined on the whole system can be written as

|ψ〉 =
∑
ij

Ψij |i〉L ⊗ |j〉R , (1.20)

where {|i〉L} and {|j〉R} are orthonormal bases of HL and HR with dimensions NL and
NR respectively. From this representation we can introduce the reduced density operator
of a part of the system tracing out the degrees of freedom of the other part

ρL/R = TrR/L |ψ〉 〈ψ| , (1.21)

which expressed with respect to the orthonormal bases take the form

ρL = ΨΨ† ρR = Ψ†Ψ (1.22)

We can now perform a singular value decomposition (SVD) of the matrix Ψ. The SVD
guarantees for an arbitrary matrixM of dimension (n×m) the existence of a decomposition

M = USV †, (1.23)

where:

• U is of dimension (n×min(n,m)) and has orthonormal columns, i.e. U †U = 1; if
n ≤ m, U is then unitary;

• S is of dimension (min(n,m)×min(n,m)) and diagonal with non negative entries
Saa ≡ Λa. These are the so-called singular values. The number r of non-zero singular
values is the (Schmidt) rank, or bond dimension, of M. Furthermore we choose to
put the singular values in descending order;

• V is of dimension (min(n,m) × m) and has orthonormal rows, i.e. V V † = 1; if
n ≥ m, V is then unitary;
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For practical importance in the following, it is useful to define a topology induced by
the inner product

〈
M,N

〉
= TrM †N . The latter defines the Frobenius norm

‖M‖2
F =

〈
M,M

〉
= TrM †M = Tr

∑
k

(M †)jiMik =
∑
ij

|Mij|2. (1.24)

In this topology the optimal approximation of the matrix M by a matrix M ′ of rank
r′ < r is given by [21]

M ′ = US ′V † S ′ = diag(s1, s2, . . . , sr′ , 0, . . . ), (1.25)

i.e. one sets all but the first r′ singular values to be zero.
The SVD is at the basis of a very compact representation of quantum states living in

a bipartite universe L/R called the Schmidt decomposition.
The pure state |ψ〉 can be expressed as

|ψ〉 =
∑
ij

Ψij |i〉L ⊗ |j〉R =
∑
ij

min(NL,NR)∑
α=1

UiαSααV
∗
jα |i〉L ⊗ |j〉R

=

min(NL,NR)∑
α=1

Λα

(∑
i

Uiα |i〉L
)
⊗
(∑

j

V ∗jα |j〉R
)

=

min(NL,NR)∑
α=1

Λα |α〉L ⊗ |α〉R

. (1.26)

Due to the orthonormality properties of U and V †, the sets {|α〉L} and {|α〉R} are also
orthonormal bases of HL and HR, i.e.,

〈α|α′〉L =
∑
ii′

L〈i|U∗iαUi′α′ |i′〉L =
∑
ii′

(U †)αiUi′α′δii′ =
∑
i

(U †)αiUiα′ = δαα′ (1.27)

Restricting the sum over the r positive nonzero values of {Λa}, we obtain the Schmidt
decomposition:

|ψ〉 =
r∑

α=1

Λα |α〉L ⊗ |α〉R (1.28)

Furthermore, if the pure state |ψ〉 is normalized:

r∑
α=1

Λ2
α = 1 (1.29)
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1.4.2 Entanglement Entropy and area law

An important aspect of the Schmidt decomposition is that it gives meaningful information
about the entanglement between the degrees of freedom in HL and HR because the values
Λα give a measure of the overlap between the states of the two subsystems. To better
understand their meaning, we analyse two extreme cases. The firs one is given by

Λα = δα,α0 |ψ〉 = |α0〉L ⊗ |α0〉R . (1.30)

This state os separable and there is no entanglement. A measure on the L subsystem will
not affect a measure on the R subsystem.

Every other state is entangled and the opposite situation to the previous one is when

Λα =
1√
N

|ψ〉 =
1√
N

N∑
α

|α〉L ⊗ |α〉R , (1.31)

where N = min(NL, NR). This is the maximally entangled state.
It is important to remark that the Schmidt basis coincides with the eigenbasis of the

reduced density matrix of the two subsystems, that share the same spectrum:

ρL =
∑
α

Λ2
α |α〉L 〈α|L

ρR =
∑
α

Λ2
α |α〉R 〈α|R

(1.32)

But what provides a good measure of entanglement? It was proved in [22] that an
entanglement measure S is fixed uniquely after imposing the following conditions:

1. S is invariant under local unitary transformations (that implies that S is a function
of the Λ2

α only);

2. S is continuos;

3. S is additive when several copies of the system are present:

S(|ψ〉 ⊗ |φ〉) = S(|ψ〉) + S(|φ〉). (1.33)

This conditions are satisfied by the von Neumann entropy of the reduced density
matrix

S(ρL) = −Tr[ρL log ρL] = −
∑
α

Λ2
α log Λ2

α = S(ρR) ≡ S, (1.34)
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which corresponds to the Shannon entropy with pα = Λ2
α.

Note that as we wanted an unentangled product state, where the pure state is describe
by only one Schmidt value, has S = 0. Conversely, S is maximum for a maximally
entangled state.

The definition of entanglement entropy is formally the same of thermal entroyp. This
similarity though is only apparent since they exhibit different behaviours when the system
size is changed. Thermal entropy ST scales indeed withe the number of microstates. These
can be approximated withe the volume of the phase space accessible to the system. Since
the latter is a direct product of the configuration space with its tangent bundle, it is
natural that ST scales with the volume accessible to the system. In d spatial dimensions

ST w ld, (1.35)

where l is a typical length of the system.
The situation is different for entanglement entropy. To see this difference let’s consider

ground states of local, short range Hamiltonians of a bipartite system in d dimensions. In
general we expect that for non degenerate ground states of gapped Hamiltonians, the
entangled degrees of freedom are the ones placed near the surface that separates the two
subsystems. This is because of the finiteness of the correlation length, suggesting that the
entanglement entropy scales with the area of the surface that divides the two subsystems
[23, 24]:

S w

(
l

ε

)(d−1)

, (1.36)

where ε is a non-universal short-distance cut-off.
For one dimensional systems the previous expression leads to bounded entanglement

entropy and the following theorem was indeed proved in [25]:

Theorem 2. Consider a short range Hamiltonian H with a unique ground state with a
gap ∆E to the first excited state. Then, for any bond chosen for the bipartition L/R,

SL ≤ Smax, (1.37)

where
Smax = c0ξ

′ log(ξ′) log(d)2ξ
′ log d (1.38)

with c0 constant and ξ′ = 6ξ = 6 max(2v/∆E, ξC).
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When the Hamiltonian is gapless there is a violation to this law since ξ diverges and
for one dimensional critical systems it has been shown [26] that

S =
c

3
log

(
l

ε

)
, (1.39)

where c is the central charge of the correspondent conformal field theory describing the
model [27]. In this sense entanglement entropy signals the emergence of quantum phase
transitions, main topic of the next section.

On the other hand, excited states are usually characterized by maximal entanglement
and actually follow a volume law. Indeed they resemble classical states, where entanglement
entropy reduces to thermodynamic entropy.

In conclusion, in the full Hilbert space of the system, among typical states, which
follow a volume law, there are untypical rare states (usually represented by ground states)
that are slightly entangled and can be described by only a relatively small number of
Schmidt values.

This provides an extremely useful approach to compress quantum states by truncating
the Schmidt decomposition. It is natural to approximate a state |ψ〉 by some |ψ′〉 spanned
over state spaces of L and R that have dimension r′ only. This problem can be related to
the SVD, because the 2-norm of |ψ〉 is identical to the Frobenius norm of the matrix Ψ.
The optimal approximation is therefore given in the 2-norm by the optimal approximation
of Ψ by Ψ′ in the Frobenius norm, where Ψ′ is a matrix of rank r′ (1.25).

When |ψ〉 follows an area law, we can therefore always truncate the Schmidt decom-
position at some finite χ. That is ∀ε > 0, ∃χ finite such that∥∥∥∥∥|ψ〉 −

χ∑
α=1

Λα |α〉L ⊗ |α〉R

∥∥∥∥∥ < ε, (1.40)

being χ non extensive.
This particular property of area law states is intimately related to the MPS represen-

tation of one dimensional quantum states.

1.5 Quantum phase transitions

Classical phase transitions manifest in thermodynamic quantities as non analicities. Very
often the transition is between an ordered and a disordered phase. In this situation an
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order parameter m can be constructed which is zero in the disordered phase and nonzero
in the ordered phase.

In the modern classification scheme, phase transitions are divided into two broad
categories: first order and second order phase transitions. First order phase transitions
are those that involve a latent heat. At the transition point, a system either absorbs
or releases a fixed amount of energy, while its temperature stays constant. First order
phase transitions are characterized by a finite value of the correlation length. In turn,
this implies the presence of a mixed-phase regime, in which some parts of the system
have completed the transition and others have not.

The second class of phase transitions consists of the continuous phase transitions, also
called second order phase transitions. These have no associated latent heat and they are
also characterized by the divergence of the correlation length at the critical point. In
second order phase transitions the order parameter vanishes continuosly at the critical
point Tc

m ∼ (Tc − T )β T → T−c (1.41)

and many other thermodynamic quantities show non analytic behavior, chracterized by
some other critical exponents like β . In particular the correlation lenght ξ diverges

ξ ∼ (Tc − T )−ν T → T±c , (1.42)

meaning that the microscopic details of the models become irrelevant and universal be-
haviours are observed : different models that enjoy the same dimensionality and simmetries
behave alike at critical points and are described by the same set of critical exponents [28].

In classical models, phase transitions are driven by thermal fluctuations. On the other
hand, quantum phase transitions deal with systems at zero temperature, i.e. with the
ground state physics of the system. As a consequence, thermal fluctuations are absent
but the system can have fluctuations due to the Heisenberg principle [29].

Consider a Hamiltonian whose degrees of freedom reside on the sites of a lattice, and
which varies as a function of a dimensionless coupling g. Let us follow the evolution
of the ground state energy of H(g) as a function of g. For the case of a finite lattice,
this ground state energy will generically be a smooth, analytic function of g. The main
possibility of an exception comes from the case when g couples only to a conserved
quantity (i.e., H(g) = H0 + gH1 where H0 and H1 commute). This means that H0 and
H1 can be simultaneously diagonalized and so the eigenfunctions are independent of g
even though the eigenvalues vary with g: then there can be a level crossing where an
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excited level becomes the ground state at g = gc creating a point of non-analyticity of
the ground state energy as a function of g. If instead we consider an infinite lattice, an
avoided level crossing between the ground state and an excited state in a finite lattice
can then become progressively sharper as the system size increases. This means that,
increasing the system’s size, the energy difference between the levels becomes smaller and
smaller so that eventually in the limit of an infinite system, the energy exhibits some non
analytic behaviour. We will call these quantum phase transitions, and in particular we
will encounter phase transitions of the second order. These are the transitions at which
the characteristic scale of the fluctuations of energy above the ground state vanishes as g
approaches gc. Let ∆ represent an energy scale, given by the gap between the ground
state and the first excitation above the ground state. Generally, in the neighbourhood of
the critical point gc, vanishes with a power law behaviour

∆ ' J |g − gc|zv, (1.43)

where J is the energy scale of a characteristic microscopic coupling.
The ratio of the exponents in (1.42) and (1.43) is z, the dynamic critical exponent :

the characteristic energy scale vanishes as the zth power of the charactertistic inverse
length scale

∆ ' ξ−z. (1.44)

The XY model, already introduced in section 1.2, despite its apparent simplicity, has
a rich two dimensional phase diagram characterized by two quantum phase transitions.
We recall its Hamiltonian:

H =
N∑
j=1

−1

2

{(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyjσ

y
j+1 + hσzj

}
(1.45)

The model has symmetris for γ → −γ and h → −h. The Hamilonian (1.45) can be
diagonalized (see [30]) and the dispersion relation of the quasi-particle excitation is given
by

ε(k) =
√

(h− cos k)2 + γ2 sin2 k, (1.46)

so that the spectrum is gapped for most values of parameters but we have gapless
excitations for γ = 0, h < 1 and for h = 1. The latter signals a transition from a doubly
degenerated ground state (for h < 1) to a single ground state system (for h > 1). This is
in analogy, with the classical two-dimensional Ising model, where it is well known that the
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critical temperature separates a region of vanishing order parameter at high temperatures
from a region of spontaneously broken Z2 symmetry at low temperatures where the order
parameter can assume two opposite finite values.

It is important to remark that spontaneous symmetry breaking at a quantum level can
happen only in the thermodynamic limit. This follows from the existence of the tunnel
effect. Let us consider a double-well potential with two ground states |+〉 and |−〉. The
tunnel effect removes degeneracy since allows the transition between these two states
and the Hamiltonian acquires a non zero matrix element between the states |+〉 and |−〉.
Denoting by H the matrix of the Hamiltonian between these two states, we get

H =

[
ε0 ε1

ε1 ε0

]
(1.47)

The energy eigenstates are now given by the symmetric and antysymmetric combina-
tions of the two ground states

|S〉 =
1√
2

(|+〉+ |−〉)

|A〉 =
1√
2

(|+〉 − |−〉),
(1.48)

with eigenvalues respectively
ES = ε0 + ε1

EA = ε0 − ε1.
(1.49)

It can be shown that ε1 < 0 so that the ground state is the symmetric one.
If we prepare the system in the state |+〉 and consider its time evolution

|+, t〉 =
1√
2
e−iESt(|S〉+ e−i∆Et |A〉), (1.50)

with ∆E = EA−ES, so that the state oscillates between |+〉 and |−〉 with a period given
by T = 2π/∆E.

The splitting of the fundamental states decreases with the height of the potential
between the two minima, that conversely increases linearly with the system’s size for
translational invariant sytems. Therefore for infinite systems we may have spontaneous
symmetry breaking.



Chapter 2

Introduction to quantum quenches

Freedom is the freedom to say that two plus two makes four.
If that is granted, all else follows.

- George Orwell, 1984

In this chapter the problem of quantum many body systems out of equilibrium is
introduced together with the role played by integrability (for reviews see [31, 32, 33]). It
will be specified in what sense a one dimensional quantum system may relax and if it
can be described by some statistical ensemble in the long time limit. Among different
ways to drive a system out of equilibrium the concept of quantum quench is presented
and compared to the more familiar adiabatic evolution. Furthermore it is depicted how
correlations spread after a quantum quench and how this can be interpreted as due
to propagation of quasi-particles excitations. With the same picture, the evolution of
entanglement entropy after a quantum quench is described.

2.1 Out of equilibrium dynamics

2.1.1 Relaxation in isolated quantum systems

In statistical mechanics of classical systems, a generic isolated system in the thermody-
namic limit prepared in a generic initial state evolves towards, in the long time limit, a
well defined stationary state. The latter is the one that maximizes the entropy [34, 35]
and the whole system is described by a microcanonical ensemble with total energy equal
to the initial one.

21
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Since we are considering an isolated quantum system, it is necessary to specify in
what sense it may relax to a stationary state al late times after we have driven it out of
equilibrium. If we prepare the system in a pure state |ψ0〉 that is not an eigenstate of the
Hamiltonian of the system H, it will remain in a pure state, since evolution is unitary

|ψ(t)〉 = e−iHt |ψ0〉 (2.1)

instead of a statiscal ensemble, which is by definition a mixed state. Consider, for instance,
the following class of hermitian operators

Okl = |k〉 〈l|+ |l〉 〈k| . (2.2)

Expanding the pure state in the energy eigenstates

H |n〉 = |n〉En (2.3)

|ψ(t)〉 =
∑
n

〈n|ψ0〉 e−iEnt |n〉 , (2.4)

the expectation values in the state |ψ(t)〉 of these operators can be expressed as

〈ψ(t)| Okl |ψ(t)〉 = 〈ψ(t)|k〉 〈l|ψ(t)〉+ c.c.

= ei(Ek−El)t 〈ψ0|k〉 〈l|ψ0〉+ c.c..
(2.5)

We see that generically it exhibits periodic oscillatory behaviour in time. Hence the
observables Okl do not relax at late imes. In general the whole evolution is periodic or
quasi-periodic, that is, the system will return to its initial state or arbitrary close to it:
the whole isolated system cannot relax to a steady state.

A

Figure 2.1: Finite subsystem A and rest of the system.

Locality plays again a crucial role (note that operators like Okl are generally nonlocal
in the sense explained above). Even if the whole system cannot relax, subsystems of a
much larger system are not isolated and they may therefore thermalize due to the thermal
bath with the rest of the system. Isolated quantum many-body systems can namely relax
locally in space. Using the density matrix formalism, this is equivalent to saying that the
density matrix of the whole system is pure while the density matrix of the subsystem is
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mixed and the latter can be therefore described by a statistical ensemble [36, 37, 38, 39].
To clarify these concepts, let’s consider a quantum spin chain of N sites initially in a
pure state |ψ0〉, whose time evolution is ruled by an Hamiltonian H. We partition the
system into an arbitrary but finite subsystem A and its complement Ā (Fig. 2.1). The
density matrix of the entire system at a certain time t is given by

ρA∪Ā(t) = |ψ(t)〉 〈ψ(t)| = e−iHt |ψ0〉 〈ψ0| eiHt (2.6)

which is a pure state. The reduced density matrix of the subsystem A is obtain by tracing
out the degrees of freedom of the rest of the system:

ρA(t) = TrĀ

[
ρA∪Ā(t)

]
(2.7)

The question is if it exists a “virtual” mixed state ρSS
A∪Ā capable of describing the

stationary state of ρA(t), i.e.

lim
t→∞

lim
N→∞

ρA(t) = lim
N→∞

TrĀ

[
ρSSA∪Ā

]
. (2.8)

If such virtual mixed state exists for any finite subsystem A, then the system is said to
relax locally and ρSS

A∪Ā describes the stationary state of the system.
Any expectation value of a local observable OA having its support on A can be now

computed in the long time limit with a statistical ensamble as

lim
t→∞

Tr

[
ρ(t)OA

]
= Tr

[
ρSSA∪ĀOA

]
. (2.9)

It is important to remark that the thermodynamic limit is taken keeping the subsystem A

finite, and that it has to be done before the long time limit, otherwise quantum recurrences
are impossible to avoid.

2.1.2 Non-integrability and thermalization

An important question about the dynamics of a closed many-body quantum system is if
interactions within the system are sufficient to make the system behave ergodically,which
is at the basis of statistical mechanics.

Let us consider a classical system with N degrees of freedom in d spatial dimensions,
represented by a point in the 2dN dimensional phase space; given an initial condition
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X0 = (q0,p0), the Hamiltonian H(q,p) is ergodic if the trajectory of the system in the
phase space covers uniformly the constant energy hypersurface selected by the initial
condition, for almost every initial state. This condition allows the replacement of time
averages with phase space averages weighted with the microcanonical ensemble; hence for
any operator O:

〈O〉time ≡ lim
T→∞

1

T

∫ T

0

dtO(q(t),p(t))

=

∫
ddNqddNpO(q,p)δ[H(q,p)−H(q0,p0)] ≡ 〈O〉mc

(2.10)

Equations of motions for classical non integrable systems are not exactly solvable
and non linear equations. KAM’s theory [15] states that if the non linear amplitudes
overcome a certain threshold, chaos emerges and the ergodic hypothesis is satisfied for
these systems.

The most straightforward generalization of ergodicity to quantum system was per-
formed by von Neumann [1]. We can define a microcanonical ensemble for quantum
systems with the following procedure: given an Hamiltonian H with eigenstates |n〉 of
energy En, we can coarse grain the spectrum on energy shells of width δE, in such a way
that it remains smallon macroscopic scales but it contains many states. Denoting with
S(E) the set of eigenstates of H with energy between E and E + δE, we can define the
microcanonical distribution as

ρmc(E) =
∑

n∈S(E)

1

N(E)
|n〉 〈n| , (2.11)

where N(E) is the number of states in the shell. But given now a generic initial condition
in a microcanonical shell

|ψ0〉 =
∑

n∈S(E)

cn |n〉 , (2.12)

the long time average of the density matrix of the system is not given, in general, by
the microcanonical ensemble (2.11). Assuming the eigenstates of the system not to be
degenerate, we indeed obtain

lim
T→∞

1

T

∫ T

0

dt |ψ(t)〉 〈ψ(t)| =
∑
m,n

cmc̄n |m〉 〈n| lim
T→∞

1

T

∫ T

0

dte−i(Em−En)t

=
∑
n

|cn|2 |n〉 〈n| ≡ ρdiag,

(2.13)
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where the last step follows from a stationary phase approximation. This is the so called
diagonal ensemble [40, 41, 42]. Note that this ensemble depends on the choice of the
initial states through the overlaps cn = 〈n|ψ0〉 and the requirement ρmc = ρdiag implies
that |cn|2 = 1/N(E) for every n, which is obviously not satisfied for any initial state.
Quantum ergodicity in the sense above is therefore almost never realizable. The reason
is in the linearity of Schrödinger’s equation, hence we cannot expect an emergence of
quantum chaos.

However there are many evidences of both experimental [43, 44] and numerical nature
[40, 45] that shows that thermalization can occur. The commonly accepted explanation
for this behaviour is the ETH (Eigenstate Thermalization Hypothesis) [46, 47, 48]:
instead of explaining the ergodicity of a thermodynamic system through the mechanism
of dynamical chaos, one should instead examine the properties of matrix elements of
observable quantities Ok in individual energy eigenstates of the system. The requirement

Tr

[
ρmcOk

]
= Tr

[
ρdiagOk

]
(2.14)

implies that matrix elements of these observables are constant on the energy shell and
equal to the microcanonical average:

Tr

[
ρdiagOk

]
=
∑
n

|cn|2 〈n|Ok|n〉 = Tr

[
ρmcOk

]∑
n

|cn|2 = Tr

[
ρmcOk

]
. (2.15)

In this picture even the initial state is a thermal but the coherence between the
eigenstates initially hides it (Fig. 2.2) and time dynamics reveals it through dephasing
[41].

It is important to remark, though, it has been proof that ETH is not a necessary
condition to quantum thermalization [49] and that it does not apply to all cases, for
example to many body localized states [50, 51]

2.1.3 Integrability and equilibration

Considering now integrable quantum systems as defined in paragraph 1.3.2, expectation
values of the conserved quantities Q(k) are time independent

Tr
(
ρ(t)Q(k)

)
= Tr

(
e−iHtρ(0)eiHtQ(k)

)
= Tr

(
ρ(t)Q(k)

)
≡ E(k), (2.16)
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Figure 2.2: In classical mechanics (left), time evolution constructs the thermal state from an initial state that generally bears
no resemblance to the former. In quantum mechanics (right), according to the ETH, every eigenstate of the hamiltonian
always implicitly contains a thermal state. The coherence between the eigenstates initially hides it, but time dynamics
reveals it through dephasing. Figure taken from [41].

where the invariance of the trace under cyclic permutations and the fact that [Q(k), H] = 0

were used.
An immediate consequence is that such systems cannot thermalize because the system

retains memory of the initial expecation values of all conserved quantities at all times.
The works of Jaynes [34, 35] on the maximum entropy ensemble then suggest that the
stationary state density matrix is given by a generalized Gibbs ensemble (GGE) [40]

ρSS ≡ ρGGE =
e
∑
n λnQ

(n)

Tr
(
e
∑
n λnQ

(n)
) . (2.17)

The Lagrange multipliers λk are fixed by the initial conditions (2.16), requiring

lim
N→∞

E(k)

N
= lim

N→∞

1

N
Tr
(
ρGGEQ(k)

)
(2.18)

To distinguish this process from thermalization it has been given the name of equilibration.
This conjecture motivates the need of a clear characterization of quantum integrable
systems and it also recovers part of the analogy with the classical case: even if the
thermalization mechanism may be different, integrability is still a sufficient condition for
non-thermalization.
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Nevertheless, this definition of GGE suffers from the same ambiguities of the definition
of integrability. Instead of using local conserved quantities, GGE are often formulated
using conserved mode occupation numbers [40]. The crucial point is that conservation
laws are usually linearly related to the mode occupation number. This implies that the
GGE describing the stationary state can be constructed either from the local conservation
laws or from the mode occupation number. There are though cases in which this is
not valid. In this cases the stationary state is not always locally equivalent to a GGE
[52, 53, 54].

2.2 Definition of a quantum quench

In the previous sections we did not specify how the system is put out of equilibrium or
which are the initial conditions of the system. Indeed there can be many possible ways to
perturb a system and the outcome is expected to depend on the particular choice made.
We now introduce the concept of quantum quench [5].

First suppose we have a quantum system prepared in an eigenstate |ψn,0〉 of the
hamiltonian function H at time t = 0. For t > 0 we make H time dependent and we ask
how the initial state evolves. Since the hermiticity of the Hamiltonian is preserved, at
each t we have an instantaneous orthonormal basis of eigenvector

Ht |ψn,t〉 = |ψn,t〉En,t 〈ψn,t|ψm,t〉 = δn,m
∑
n

|ψn,t〉 〈ψn,t| = 1 ∀t (2.19)

Integrating the time dependent Schrödinger equation

i
∂

∂t
|ψn,t〉 = Ht |ψn,t〉 = En,t |ψn,t〉 , (2.20)

one finds
|ψn,t(t)〉 = eiθn(t) |ψn,t〉 , (2.21)

where θn(t) is the so called dynamical phase factor :

θn(t) =

∫ t

0

dt′En,t′ . (2.22)

Thanks to the completness relation the initial state can be expressed in terms of the
instantaneous eigenstates and evolved

|ψn,0(t)〉 =
∑
m

cm,te
iθm(t) |ψm,t〉 cm,0 = δn,m. (2.23)
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The coefficients cn,t can be found substituting the latter expression in the time dependent
Schrödinger equation:

i
∑
m

eiθm(t){ċm,t |ψm,t〉+iθm(t)cm,t |ψm,t〉+cm,t ˙|ψm,t〉} =
∑
m

eiθm(t)cm,tEm,t |ψm,t〉 , (2.24)

which implies
ċl,t = −

∑
m

e−i
∫ t
0 dt
′(Em,t′−El,t′ )cm,t

〈
ψl,t

∣∣∣ ˙ψm,t

〉
. (2.25)

An expression for
〈
ψl,t

∣∣∣ ˙ψm,t

〉
is found by differentiating the eigenvalues equation in (2.19)

and projecting on |ψl,t〉:

〈ψl,t| Ḣt |ψm,t〉+ El,t

〈
ψl,t

∣∣∣ ˙ψm,t

〉
= ˙Em,tδl.m + Em,t

〈
ψl,t

∣∣∣ ˙ψm,t

〉
. (2.26)

Equation (2.25) then becomes

ċm,t = −cm,t
〈
ψm,t

∣∣∣ψ̇m,t〉−∑
l 6=m

e−i
∫ t
0 dt
′(Em,t′−El,t′ )cl,t

〈ψm,t| Ḣt |ψl,t〉
El,t − Em,t

. (2.27)

From here it follows that if

| 〈ψm,t| Ḣt |ψl,t〉 | � |El,t − Em,t| ∀l,m (2.28)

then
cm,t = eiαm(t)cm,0, (2.29)

where αm(t) is called geometric phase:

iαm(t) = −
∫ t

0

dt′
〈
ψm,t′

∣∣∣ ˙ψm,t′
〉
. (2.30)

Note that αm(t) is real since

0 =
d

dt
〈ψm,t′|ψm,t′〉 =

〈
ψm,t′

∣∣∣ ˙ψm,t′
〉

+
〈
ψm,t′

∣∣∣ ˙ψm,t′
〉
. (2.31)

The evolution of the initial state is eventually given by

|ψn,0(t)〉 = eiαn(t)eiθn(t) |ψn,0〉 . (2.32)

This is essentially the adiabatic theorem by Max Born and Vladimir Fock [55]: if (2.28)
holds ( the Hamiltonian varies slowly with respect to the gap between the En,t and the
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rest of the energy spectrum), the initial state evolves without changing quantum numbers
and picking up phase factors. The phase factor αn(t) can also be cancelled out by an
appropriate choice of gauge (if the adiabatic evolution is not cyclic, otherwise it becomes
a gauge invariant physical quantity known as Berry phase [56]).

A quantum quench occurs when the adiabatic aproximation (2.28) is not valid. This
can happen either when the Hamiltonian variation rate is not small enough, or when
there is no gap between the energy eigenvalue of the initial state and the rest of the
spectrum. In both cases there isn’t a precise theoretical approach to the problem and
perturbation theory cannot be applied since the change in the Hamiltonian isn’t small in
general. Seminal works on quantum quenches ([57, 11, 58, 5, 59, 60]) investigated different
ways of taking the system out of equilibrium. In this thesis we concentrate on a standard
procedure which is called sudden quench.

In a sudden quench the many-body system is prepared in a pure state which is an
eigenstate of the initial Hamiltonian, the latter depending on a set of parameters {g0

i }:

H({g0
i }) |ψ0〉 = |ψ0〉E (2.33)

At t = 0 we suddenly quench the set of parameters to new values {gi} and, since the
system remains isolated, consider the unitary time evolution with the new Hamiltonian
H({gi}). At times t > 0 the state of the system is found solving the time-dependent
Schrödinger equation

|ψ(t)〉 = eiH({gi})t |ψ0〉 . (2.34)

Furthermore, the quench is said to be global if the change of the coupling constants
{g0

i } is the same in the whole chain.
Throughout this work, we consider as initial pure state |ψ0〉 the ground state of the

system, mainly for two reasons:

- they exhibit low entanglement entropy;

- they allow us to deal with quantum phase transitions.

These two features were introduced in the previous chapter.
A crucial property of a global quantum quench is that energy in conserved at all

t > 0 and the post-quench energy density is larger than the ground state energy per site.
This means that through the quantum quench we explore a region of Hilbert space that
is macroscopically different from the sector containing the ground state and low-lying
excitations [33].
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2.3 Spreading of correlations after a quantum quench

How does the system behave after a quantum quench? And hat is the theoretical picture
that allow us to compute expectation values of local operators? Let’s consider an integrable
quantum system. Suppose that the latter is mappable into a free fermion model, hence
both the pre-quench and the post-quench Hamiltonians can be put in the diagonal form
(1.19).

Pre-quench: H({g0
i }) =

∑
k

ε{g0i }(k)η̃†kη̃k + E0({g0
i })

Post-quench: H({gi}) =
∑
k

ε{gi}(k)η†kηk + E0({gi}),
(2.35)

with the corresponding vacua, satisfying

η̃k
∣∣0; {g0

i }
〉

= 0 ∀k
ηk |0; {gi}〉 = 0 ∀k

(2.36)

with fermionic commutation relations

{ηk, η†p} = δk, p. (2.37)

It is possible to put in relation the two sets of creation and annihilation operators through
a Bogoliubov transformation [61]:

η̃p =
∑
k

(Θpkηk + Ωpkη
†
k)

η̃†p =
∑
k

(Θ∗kpη
†
k + Ω∗kpηk).

(2.38)

The physical interpretation of Ω is the following: suppose one desires to compute the
number of quasi-particles excitations of the pre-quench Hamiltonian on the vacuum of
the quenched system 〈0; {gi}| η̃†pη̃p |0; {gi}〉. Taking (2.36) and (2.38) into account:

η̃p |0; {gi}〉 =
∑
k

(Θpkηk + Ωpkη
†
k) |0; {gi}〉 =

∑
k

Ωpk |1k; {gi}〉 , (2.39)

so that
〈0; {gi}| η̃†pη̃p |0; {gi}〉 =

∑
k

|Ωpk|2. (2.40)

Hence the new vacuum is filled with quasi-particle of the pre-quench Hamiltonian (and
viceversa). Indeed, since both sets of quasi-particles can be used to generate the Fock
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space, we can express the ground state of the pre-quench Hamiltonian as excited states
of the quenched system. We can define this relation by taking (2.36) into account:

η̃p
∣∣0; {g0

i }
〉

= 0 =
∑
k

(Θpkηk + Ωpkη
†
k)
∣∣0; {g0

i }
〉
. (2.41)

Multiplying this expression by
∑

p Θ−1
ip we find the equation

ηi
∣∣0; {g0

i }
〉

=
∑
k

ℵikη†k
∣∣0; {g0

i }
〉
, (2.42)

where
ℵik = −

∑
p

Θ−1
ip Ωpk. (2.43)

The solution of (2.43) is given by [62]

∣∣0; {g0
i }
〉

= exp

{
1

2

∑
ik

ℵijη†i η†k

}
|0; {gi}〉 . (2.44)

In our models, that are translational invariant, we’ll see that

ℵik = δi,−kℵi,−i ≡ δi,−kℵi, (2.45)

that give us an expression of the pre-quench ground state as boundary state [63] (more
on the matter in Appendix A):

∣∣0; {g0
i }
〉

= exp

{∑
k>0

ℵkη†kη†−k

}
|0; {gi}〉 , (2.46)

where the function ℵ is referred as kernel of the state.
This gives a precise physical interpretation for what happens after a quantum quench

in this case: when changing the set of parameters in the Hamiltonian, the state of the
system is a superposition of excited states given by pairs of quasi-particles with opposite
momenta (in such a way the total momentum is conerved). These excitations propagate
with a dispertion relation given by the post-quench Hamiltonian ε{gi}(k) and have therefore
a maximum velocity of propagation given by

vmax = max
k

∣∣∣dε{gi}(k)

dk

∣∣∣. (2.47)
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This means that even if the models are non-relativistic there exists a maximum velocity
of propagation of the information. This feature has a profound impact on time depenence
of the expectation values of local operators after a quench.

Suppose we want to calculate the connected correlation function of a local operator
O, whose support is a single site of the chain:

Gc
2(l; t) = 〈ψ(t)| OkOk+l |ψ(t)〉 − 〈ψ(t)| Ok |ψ(t)〉 〈ψ(t)| Ok+l |ψ(t)〉 . (2.48)

At t = 0, the state is characterized by a finite correlation length ξ and the correlation
function is extremely small at large spatial separations:

Gc
2(l; t) ∝ e−l/ξ. (2.49)

At times t > 0 quasi-particles start propagating throughout the system. A measure-
ment at site k will be influenced by quasi-particles within the backwards light cone
[k − vmaxt, k + vmaxt]. At time

t =
l

2vmax
(2.50)

the backwards light cones emanating from site k and site k + l touch and the the average
measurements of the two sites become correlated.

This physical interpratation was given by Calabrese and Cardy [11, 58] and light cone
effects after quantum quenches have been analyzed and observed various of models. In
Fig. 2.3 the time dependent part of the connected density-density correlator of a one
dimensional fermionic pairing model is displayed.

2.3.1 Relation to Lieb-Robinson bounds

As shown by Lieb and Robinson [64, 65], the velocity of information transfer in quantum
spin chains in effectively bounded and there exists a causal structure in commutators
of local operators at different times. Given two local operators OX and OY having their
supports on X and Y respectively that are spatially separated by distance L,

||[OX(t),OY (0)]|| ≤ cmin{µ(X), µ(Y )}‖OX‖‖OY ‖e−
L−vt
ξ′ , (2.51)

where µ(X) indicates the numbers of sites in X, ‖.‖ denotes the operator norm and c, v
and ξ′ are constants.



2.4. Entanglement entropy after a quantum quench 33

Figure 2.3: Time dependent part of the connected density-density correlator after a quantum quench. A light cone effect
is clearly visible [33].

The Lieb-Robinson bound has important consequences for quantum quenches starting
in initial states with finite correlation lengths and evolving under short-ranged Hamil-
tonians. It was shown in [66] that (2.51) implies a bound on the connected two point
functions

〈ψ(t)| OXOY |ψ(t)〉−〈ψ(t)| OX |ψ(t)〉 〈ψ(t)| OY |ψ(t)〉 ≤ c′(µ(X)+µ(Y ))e−
L−2vt
χ , (2.52)

with c′ and χ constants.

2.4 Entanglement entropy after a quantum quench

How does entanglement entropy evolve after a sudden quench? We showed with the
quasi-particle description that after a quench from the ground state, whose entanglement
entropy follows an area law, the new state for t > 0 is given by a boundary state, obtained
as superposition of excited states. Hence one should expect that in the long time limit
entanglement entropy follows a volume law.

It was actually proved in [11] that the entropy in one dimensional models between
the degrees of freedom in an interval A of length l and its complement Ā, starting
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from a pure state which is not an eigenstate of the Hamiltonian that determines time
evolution, increases linearly with time t up to t∗ = l/2v, after which it saturates at a
value proportional to l.

This result was obtained using path integral methods of quantum field theory as well
as with explicit computations for the transverse Ising spin chain, but it is believed to
hold in a wider class of systems, since it can be derived by causality arguments with the
quasi-particle description already introduced.

The initial state |ψ0〉 has an extensively high energy relative to the ground state of
the post-quenched Hamiltonian and therefore acts as a source of quasiparticle excitations,
emitted in pairs from any point of the initial state. Those quasi-particles originating from
different points (further apart than the correlation length ξ typical of the initial state)
are incoherent, but pairs of particles originating from the same point or from points
within ξ are highly entangled. Suppose that the cross section for producing such a pair of
particles of momenta p′ and p′′ from a certain point in space is σ(p′, p′′) and that since
they separate they move classically, with no interaction between them.

t
tb

ta

A

Figure 2.4: Space-time picture illustrating how oppositely moving correlated quasi-particles increase entanglement between
an interval A and the rest of the system.

The classical velocity is given by v(p) = dε/dp, where ε(p) is the dispersion relation
and we fix the maximum allowed speed to 1, that is |v(p)| ≤ 1. A quasi-particle generated
at (x, t = 0) is therefore at x + v(p)t at time t. Consider these quasi-particles as they
reach either A or Ā at time t. The entanglement between the two sets increases if a pair
of entangled particles emitted from a point x arrives simultaneously at x′ ∈ A and x′′ ∈ Ā
(Fig. 2.4). The entanglement entropy between x′ and x′′ is proportional to the length of
the interval in x for which this can be satisfied. Thus the total entanglement entropy is

SA(t) '
∫
x′∈A

dx′
∫
x′′∈Ā

dx′′
∫ ∞
−∞

dx

∫
dp′dp′′σ(p′, p′′)δ(x′ − x− v(p′)t)δ(x′′ − x− v(p′′)t) (2.53)
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Considering now that A is an interval of length l then the total entanglement is twice that
between A and the real axis to the right of A, which corresponds to taking p′ < 0, p′′ > 0

in the above. The integration over the coordinates then gives max((v(p′) + v(p′′))t, l) (see
Fig. 2.5), so that

SA(t) ' 2t

∫ 0

−∞
dp′
∫ ∞

0

dp′′σ(p′, p′′){v(−p′) + v(p′′)}θ(l − [v(−p′) + v(p′′)]t)

+ 2l

∫ 0

−∞
dp′
∫ ∞

0

dp′′σ(p′, p′′)θ([v(−p′) + v(p′′)]t− l),
(2.54)

where θ(x) is the Heaviside step function. Since |v(p)| ≤ 1, the second term cannot
contribute if t < t∗ = l/2 so that SA(t) is strictly proportional to t. On the other hand,
as t→∞, the first term is negligible and SA is asymptotically proportional to l.

l l 2t = l

2t < l

t2t 2t

A = l

Figure 2.5: Space-time picture of the entanglement entropy dynamics. For times such that 2t < l the entanglement entropy
increases linearly with time; for later times it saturates to a value proportional to the lenght l of the subsystem considered.

However, unless |v| = 1 everywhere (as in the conformal field theory case), SA is not
strictly proportional to l for t > t∗ and there is a slow increase towards the asymptotic
value. This can be understood since, on the lattice, there are quasi-particles excitations
which travel with a group velocity that is less than the maximum allowed value.





Chapter 3

The infinite Time Evolving Block
Decimation algorithm

This belief is handed down in Beersheba: that, suspended in the heavens, there exists
another Beersheba, where the city’s most elevated virtues and sentiments are poised, and
that if the terrestrial Beersheba will take the celestial one as its model the two cities will

become one.

- Italo Calvino, Invisible Cities

The content of this chapter is aimed at describing the algorithm used in the code
written to simulate the evolution of quantum systems after a quench. After introducing a
useful representation for quantum states, the matrix product state (MPS) representation,
the infinite Time Evolving Block Decimation algorithm is presented and it is explained
how this can be adapted for the computation of ground states. The chapter ends with
the parameters of the simulations run.

3.1 Matrix Product States

Suppose our quantum system is composed by a lattice of L sites with d-dimensional
Hilbert spaces Hk ' Cd, i = 1, . . . , L, spanned by the local bases |σk〉. We can express
the most general quantum state on the lattice as

|ψ〉 =
∑

σ1,...,σL

Cσ1...σL |σ1 . . . σL〉 . (3.1)

37



38 Chapter 3. The infinite Time Evolving Block Decimation algorithm

We now introduce a representation of the state, and therefore of the coefficient Cσ1...σL ,
called Matrix Product State (MPS) representation, that gives a more local notion of the
state.

By means of the SVD, we can reach this representation in different ways [21]:

Left-canonical MPS

First of all the state vector with dL components can be reshaped into a matrix of dimension
(d× dL−1), their coefficients being related as

Ψσ1,(σ1...σL) = Cσ1...σL . (3.2)

Performing now the SVD (1.23) on the matrix Ψ, we obtain

Cσ1...σL = Ψσ1,(σ1...σL) =

r1∑
α1

Uσ1,α1Sα1,α1(V
†)α1,σ1...σL ≡

r1∑
α1

Uσ1,α1Cα1σ2...σL (3.3)

Note that the index α1 takes at most d values. The matrix Uσ1,α1 can be combined in a
collection of d row vectors Aσ1 with entries Aσ1α1

= Uσ1,α1 ; we also reshape Cα1σ2...σL as a
matrix Ψ(α1σ2),(σ3...σL) of size (r1d× dL−2). The latter can be again decomposed, obtaining

Cσ1...σL =

r1∑
α1

r2∑
α2

Aσ1α1
U(α1σ2),α2Sα2,α2(V

†)α2,(σ3...σL)

=

r1∑
α1

r2∑
α2

Aσ1α1
Aσ2α1,α2

Ψ(α2σ3),(σ4...σL),

(3.4)

where we have again reorganized U(α1σ2),α2 into dmatrices of size (r1×r2), and multiplied S
and V †, to be reshaped into a matrix Ψ of dimension (r2d×dL−3) where r2 ≤ r1 ≤ d ≤ d2.
Iterating the procedure we finally obtain

Cσ1...σL =
∑

α1,...,αL−1

Aσ1α1
Aσ2α1,α2

. . . AσL−1
αL−2,αL−1

AσLαL−1
. (3.5)

The quantum state (3.1) can be then represented exactly in the form [67, 6, 68]

|ψ〉 =
∑

σ1,...,σL

Aσ1 . . . AσL |σ1 . . . σL〉 , (3.6)

where we have express the sums over the indices αk, called bond indices, as matrix
multiplications. The index σk is instead called physical index.
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The maximal dimensions of the matrices are reached when for each SVD involved in
the computation, the number of non zero singular values is equal to the upper bound.
Assuming L even, these are (1×d), (d×d2), . . . , (dL/2−1×dL/2), (dL/2×dL/2−1), . . . , (d×1).
That shows that the exact representation (3.6) is of no practical use, since the bond
dimension of the matrices increase exponentially towards the centre of the lattice, and
approximations are necessary.

Since U matrices have orthonormal colums, we have the following A-matrices relation:

δαkα′k =
∑

αk−1σk

U †αk,(αk−1σk)U(αk−1σk),α′k

=
∑

αk−1σk

(Aσk†)αk,αk−1
Aσkαk−1,α

′
k

=
∑
σk

(Aσk†Aσk)αk,α′k ,

(3.7)

or, in a more concise expression, ∑
σk

Aσk†Aσk = 1 (3.8)

Fot later purposes it is also useful to introduce the transfer matrix TL

TL,σkαα′,ββ′ =
∑
σk

Aσkαβ(Aσkα′β′)
∗. (3.9)

We can express the orthonormality condition in terms of the latter as

δα,α′T
L,σk
αα′,ββ′ = ηδβ,β′ , (3.10)

with eigenvalue η = 1.
Matrices that obey this condition are referred to as left-normalized and matrix product

states that consist only of left-normalized matrices are called left-canonical.
For MPS representation it is possible to introduce a pictorical way of representing

states, similar to the Penrose graphical notation. If a tensor has n indices, we can
representate it with some geometrical shape with n lines coming out of it. Contraction of
indices are furthermore represented by joining the index lines together. With this notation
the procedure to obtain a left-canonical MPS can be illustrated as in Fig. 3.1.
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σ1 σL

σ1 σL

σ1 σL

. . .
σ1 σL

Figure 3.1: Graphical representation of the procedure to obtain a left canonical MPS.

Right-canonical MPS

This procedure is formally identical to the previous one, but starting from site L:

Cσ1...σL = Ψ(σ1...σL−1),σL

=

rL−1∑
αL−1

U(σ1...σL−1),αL−1
SαL−1,αL−1

(V †)αL−1,σL

=

rL−1∑
αL−1

Ψ(σ1...σL−2),(σL−1αL−1)B
σL
αL−1

=
∑

α1,...,αL−1

Bσ1
α1
Bσ2
α1α2

. . . BσL−1
αL−2αL−1

BσL
αL−1

,

(3.11)

where we have reshaped (V †)αL−1,σL into d column vectors BσL
αL−1

, (V †)(αL−2σL),αL−1
into d

matrices BσL−1
αL−2,αL−1

and so on.
We then have the MPS representation:

|ψ〉 =
∑

σ1,...,σL

Bσ1 . . . BσL |σ1 . . . σL〉 , (3.12)

B-matrices have the same maximal dimensions as the A-matrices and also∑
σk

BσkBσk† = 1 (3.13)
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since every V has orthonormal rows: As in the previous case we can define a proper
transfer matrix TR

TR,σkαα′,ββ′ =
∑
σk

Aσkαβ(Aσkα′β′)
∗. (3.14)

to express the orthonormality condition as

TL,σkαα′,ββ′δβ,β′ = ηδα,α′ , (3.15)

with eigenvalue η = 1.
B-matrices are referred to as right-normalized and MPS entirely built from such

matrices are called right-canonical. In Fig. 3.2 the graphical representation of the procedure
is illustrated.

σ1 σL

σ1 σL

σ1 σL

. . .
σ1 σL

Figure 3.2: Graphical representation of the procedure to obtain a right canonical MPS.

Mixed-canonical MPS

Of course it is also possible to mix the two decompositions. Let us assume we’ve performed
a left decomposition from site 1 to l, such that

Cσ1...σL =
∑
αl

(Aσ1 . . . Aσl)αlSαl,αl(V
†)αl,(σl+1...σL). (3.16)

Now we can carry out the successive SVDs from the right, reshaping V † as in the
right-canonical procedure, obtaining

(V †)αl,(σl+1...σL) =
∑

αl+1,...,αL−1

Bσl+1
αl,αl+1

. . . BσL
αL−1

. (3.17)
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We end therefore with the representation

Cσ1...σL = Aσ1 . . . AσlSBσl+1 . . . BσL . (3.18)

σ1 Λα
σL

Figure 3.3: Graphical representation of the mixed-canonical MPS (3.18).

This representation is particularly useful to for obtaining the Schmidt decomposition
(1.28). Identifying site {1, . . . , l} as the L system and sites {l+ 1, . . . , L} as the R system,
and introducing the vectors

|αl〉L =
∑

σ1,...,σl

(Aσ1 . . . Aσl)αl |σ1 . . . σl〉

|αl〉R =
∑

σl+1,...,σL

(Bσl+1 . . . BσL)αl |σl+1 . . . σL〉 ,
(3.19)

setting again Λα = Sα,α the state take the form

|ψ〉 =
∑
αl

Λαl |αl〉L ⊗ |αl〉R , (3.20)

which is the Schmidt decomposition provided the states on L and R are orthonormal
respectively (Fig. 3.3). But this is indeed the case thanks to the left and right normalization
of A adn B matrices respectively. As an example:

〈α|α′〉L =
∑

σ1,...,σl

(Aσ1 . . . Aσl)∗αl(A
σ1 . . . Aσl)α′l

=
∑

σ1,...,σl

(Aσ1 . . . Aσl)†αl(A
σ1 . . . Aσl)α′l

=
∑

σ1,...,σl

(Aσl† . . . Aσ1†Aσ1 . . . Aσl)αl,α′l

= δαl,α′l

(3.21)

Vidal decomposition and canonical MPS

In the previous paragraphs we have introduce different ways to represent the same state
through an MPS. However the degree of non-uniqueness of the representation is much
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higher: MPS are not unique in the sense that a gauge degree of freedom exists. Once that
a representation

|Ψ〉 =
∑

σ1,...,σL

Mσ1 . . .MσL |σ1 . . . σL〉 (3.22)

is chosen, where Mσi is a matrix of dimension (χi−1 × χi) we can perform the following
transformation

Mσi →MσiX

Mσi+1 → X−1Mσi+1 ,
(3.23)

with X invertible matrix of dimension (χi × χi), obtaining another representation for the
same state.

M

=
Γ Λ

Figure 3.4: MPS representation in Vidal decomposition.

The freedom of choosing the MPS can be used to define a canonical form of the MPS,
introduced by Vidal [69, 8, 70] and for this reason also known as Vidal decomposition.
Without loss of generality we can write every matrix Mσi as a product of a matrix Γ[i]σi

of dimension (χi−1 × χi) and positive, real, square diagonal matrices Λ[i] (see Fig. 3.4),

|ψ〉 =
∑

σ1,...,σL

Γ[1]σ1Λ[1]Γ[2]σ2Λ[2] . . .Λ[L−1]Γ[L]σ1 |σ1 . . . σL〉 . (3.24)

With this particular choice, any bond l defines a bipartition of the system into sites
L = 1, . . . , l and R = l + 1, . . . , L to the left and right of the bond, for which we have a
mixed-canonical MPS (3.20).

The MPS representation {Γ[1],Λ[1], . . . ,Γ[N ]} is said to be in canonical form if for
every bond, the set of Schmidt states along with Λ[l] form a Schmidt decomposition of Ψ.

3.1.1 Overlaps and expectation values

MPS representation is also an efficient way of having our states for computing overlaps
and observables.

Suppose one aims to compute the overlap of two pure states |ψ〉 and |φ〉, whose MPS
representation is identified by {M} and {M̃} respectively. Taking the adjoint of |φ〉, the
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overlap reads
〈φ|ψ〉 =

∑
{σ}

M̃σ1∗ . . . M̃σL∗Mσ1 . . .MσL

=
∑
{σ}

(M̃σ1∗ . . . M̃σL∗)TMσ1 . . .MσL

=
∑
{σ}

M̃σL† . . . M̃σ1†Mσ1 . . .MσL

(3.25)

Evaluating this expression (see Fig. 3.5 for the graphical representation) in detail
shows the importance of finding the right (optimal) order of contractions in matrix or
more generally tensor networks [21]. We have contractions over the matrix indices implicit
in the matrix multiplications, and over the physical indices. If one decides to contract first
the matrix indices and then the physical indices, it is necessary to sum over dL strings of
matrix multiplications, which is ex ponentially expensive. But the contractions can be
reorganized as follows:

〈φ|ψ〉 =
∑
σL

(
M̃σL† . . .

(∑
σ1

M̃σ1†Mσ1
)
. . .MσL

)
(3.26)

In the first step the column and row vectors M̃σ1† and Mσ1 are multiplied to form
a matrix and sum over the (first) physical index. In the next step, a three-matrix
multiplication over the second physical index is performed, and so forth. Note that from
the second step the complexity does not grow anymore: computation improves from
exponential to weak polynomial complexity, with total operation count O(Lχ3d).

|ψ〉

〈φ|

Figure 3.5: Graphical representation of the overlap (3.25).

.

What is also immediate is that for a norm calculation having a state in left or
right-normalized form immediately implies that it has unitary norm.

For physical purpuses one’s goal is to calculate general matrix elements 〈φ| Ô[i]Ô[j] . . . |ψ〉,
where Ô[i] is some local operator acting on the local Hilbert space Cd of site i.

Local operators can be expressed as

Ô[i] =
∑
σi,σ′i

Oσi,σ
′
i |σi〉 〈σ′i| (3.27)
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and they can be extended to non local operators acting on the whole chainOσ1,σ′1 . . . OσL,σ
′
L

whose action is non trivial only on the support of the initial local operators. In the ana-
lytical expression, we again transpose and distribute the sum over local states.

As an example

〈φ| Ô[i]Ô[j] |ψ〉 = 〈φ| Ô[1] . . . Ô[L] |ψ〉
=
∑
σL,σ

′
L

(
OσL,σ

′
LM̃σL† . . .

(∑
σ1

Oσ1,σ′1M̃σ1†Mσ1
)
. . .MσL

)
, (3.28)

with Ô[k] = 1 for k 6= i, j. See Fig. 3.6 for graphical representation.

O O

|ψ〉

〈φ|

Figure 3.6: Graphical representation of (3.28).

This is the same amount of calculation as for the overlap, with the exception that
formally the single sum over the physical index turns into a double sum. For typical
correlators the double sum will trivially reduce to a single sum on most sites as in the
example, as for most sites only the identity acts. On the few non-trivial sites, of the up
to d2 matrix elements, most will be zero for conventional operators, strongly restricting
the number of terms, so essentially the operational count is O(Lχ3d) again.

O

Figure 3.7: Expectation value of a local operator with single site support.

It is now straighforward to see that expectation values 〈ψ|Ô[l]|ψ〉 can be extremely
semplified if we have a canonical MPS, or more in general a mixed-canonical MPS with
bipartition on site l. After tensor contractions that exploit orthonormalization conditions
(3.8) and (3.13), we are left with (see Fig. 3.7):

〈ψ|Ô[l]|ψ〉 =
∑
σl,σ

′
l

Oσl,σ
′
l Tr
(
Mσl†Mσ′l

)
, (3.29)
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an operation of order O(χ2d2), saving one order of χ in calculation time.

3.1.2 Infinite MPS and translational invariance

We now restrict our discussion to the case of canonical MPS, since this representation is
mainly used in the sequel.

For infinite and translationally invariant systems, the set of matrices on any given
site becomes the same:

Γ[j]σj ≡ Γσj

Λ[j] ≡ Λ,
(3.30)

for every integer j. The infinite MPS representation in the canonical form has a number
of important advantages. Firs, using the properties of the transfer matrices it is very
convenient to evaluate local expectation values as well as correlation functions. Second,
with the help of efficient algorithms suche as the infinite Time Evolving Block Decimation,
time evolution, as well as ground states of a given Hamiltonian can be found in the
thermodynamic limit. This is an essential property since very important features of the
models considered in this work, like sponteneous symmetry breaking, can be observed
only in this limit, as discussed in section 1.5.

3.2 iTEBD algorithm

Now that an efficient representation of that states was introduced, we are interested in
evaluating time evolution

|ψ(t)〉 = e−iHt |ψ0〉 ≡ U(t) |ψ0〉 . (3.31)

To achieve this, the infinite Time Evolving Block Decimation (iTEBD) algorithm is
introduced [70]. Let H be a Hamiltonian with nearest neighbor interactions

H =
∑
r

h[r,r+1] (3.32)

and let |ψ0〉 and H be invariant under shifts by one lattice site.
To achive time evolution, onemakes use of the Trotter-Suzuki decomposition, which

apporoximates the exponent of a sum of operators with a product of exponents of the
same operators. At first order the expansion reads

e(V+W )δ = eV δeWδ +O(δ2). (3.33)



3.2. iTEBD algorithm 47

We can decompose the Hamiltonian as a sum

H = Hodd +Heven

=
∑
r odd

h[r,r+1] +
∑
r even

h[r,r+1].
(3.34)

In this way each term consistes of a sum of commuting operators.

ΓA ΛA ΓB ΛB ΓA ΛA ΓB ΛB ΓA ΛA

t

U U U

U U

Figure 3.8: In iTEBD eash time step δt of a time evolution is approximated using a Trotter-Suzuki decomposition. The
evolved state is obtained by subsequent applications of U gates.

We now divide the time into small time slices δt� 1 and expand the U(t) operator
as a sequence of small two-site gates

U [r,r+1](δt) = exp
(
−ih[r,r+1]δt

)
, (3.35)

which we arrange into gates UAB and UBA,

UAB(δt) =
⊗
r∈Z

U [2r,2r+1](δt), UBA(δt) =
⊗
r∈Z

U [2r−1,2r](δt). (3.36)

At first order U(δt) is given by

U(δt) = UAB(δt)UAB(δt). (3.37)

Because the initial state is transtaltional invariant, it could be represented with a
MPS indipendent of the lattice index r as in (3.30). However we will partially break
translational symmetry to simulate the action of gates (3.36) on |ψ0〉:

Γ[2r] = ΓA Λ[2r] = ΛA

Γ[2r+1] = ΓB Λ[2r+1] = ΛB.
(3.38)

The decomposition of the time evolution operator is shown pictorially in Fig. 3.8. The
simulation of the time evolution is achieved by updating the MPS by repated application
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of gates UAB and UBA. The update procedure for two-site transformation action on two
neighboring sites n and n+ 1 is shown in Fig. 3.9. We focus on an update with a UAB

gate. The inequivalent BA bonds are updated similarly by exchanging A and B.

(i)
ΛB ΓA ΛA ΓB ΛB Θ

(ii)
Θ

U

Θ̃

(iii)
Θ̃

SV D

X Λ̃A Y

(iv)
ΛB

(ΛB)−1

X Λ̃A Y

(ΛB)−1

ΛB ΛB Γ̃A Λ̃A Γ̃B ΛB

Figure 3.9: The iTEBD update scheme for unitary two-site transformation of a two-site unit cell MPS in canonical form.
See section 3.2 for the description.

The wave function of a generic state |ψ〉 can be expressed in the basis spanned by the
left Schmidt states on bond n− 1 : n, the local Hilbert space of sites n and n+ 1, and
the right Schmidt states on bond n+ 1 : n+ 2:

|ψ〉 =
∑
α,j,k,γ

Θj,k
αγ |αn−1〉L |jn〉 |kn+1〉 |γn+1〉R , (3.39)

where the wave function coefficients Θ are given by (step (i) in Fig. 3.9)

Θj,k
αγ =

∑
β

ΛB
αΓA,jαβ ΛA

βΓB,kβγ ΛB
γ . (3.40)

Recall that the physical indices j, k can take d values while bond indices α, γ have ξ
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values. The local unitary update of the algorithm is given by (step (ii) in Fig. 3.9) :

Θ̃j,k
αγ =

∑
j′k′

U jk
j′k′Θ

j′,k′

αγ . (3.41)

Next we have to extract the updated tensor Γ̃A, Γ̃B and Λ̃A from the transformed tensor
Θ̃. We also want to preserve the canonical form for subsequent applications of the gate.
We first reshape the tensor Θ̃ by combining indices to obtain a dχ × dχ dimensional
matrix Θ̃jα;kγ . Because the basis |αn−1〉L |jn〉 is orthonormal, as for the right, it is natural
to decompose the matrix using a SVD into

Θ̃jα;kγ =
∑
β

Xjα;βDββYβ;kγ (3.42)

(step (iii) in Fig. 3.9).The matrix X relates to the new Schmidt states |βn〉L to the
combined bases |αn−1〉L |jn〉. The Schmidt states for the right site are obtained from the
matrix Y in the same way. Thus the diagonal matrix D contains the Schmidt values of
the updated state:

Λ̃A = D. (3.43)

The new tensors Γ̃A and Γ̃B can be obtained extracting the old matrices Λβ (see step
(iv) in Fig. 3.9):

Γ̃A,jαβ = (ΛB)−1
α Xjα;β

Γ̃B,jβγ = Yβ;kγ(Λ
B)−1

γ

(3.44)

After the update the new MPS is still in the canonical form.
The entanglement at the bond n : n + 1 has changed in the update and the bond

dimension increases to dχ. Thus the amount of information in the wave function grows
exponentially after successively updates. To overcome this problem it is possible to fix
the maximal number of Schmidt values to χ (see (1.40)).

Note that for the update of n sites the TEBD algorithm requires O(ndχ2) space to
store an MPS and O(nd3χ3) time to simulate a small evolution exp(−iHδt), but for an
infinite chain the action of the gates preserves the invariance ofthe evolved state under
shift by two sites. In other words for n =∞ the iTEBD requires computational space
and time that scale hust as O(dχ2) and O(d3χ3). Key to such dramatic cost reduction is
the MPS based on the Schmidt decomposition, allowing a parallelized local update of
tensors Γ,Λ.
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3.2.1 Finding the ground state and computing observables

The iTEBD algorithm can be slightly modified to compute ground states. It is indeed
sufficient to perform the Wick rotation

t→ −iτ (3.45)

ΓA

ΓA∗

(ΛA)2(ΛB)2
O[r]

Figure 3.10: Site expectation value of the σz operator on a site of type A.

Then we perform the imaginary time evolution of a random state |ψrand〉 through the
operator U(−iτ) = exp{−τH(h0)} and find the ground state as

|ψGS〉 = lim
τ→∞

exp{−τH(h0)} |ψrand〉
‖exp{−τH(h0)} |ψrand〉‖

≡ lim
τ→∞

|ψτ 〉
‖|ψτ 〉‖

(3.46)

(the state needs to be normalized as the operator U(−iτ) is not unitary).
Fort finite lattice with N sites with a Hamiltonian with gap ∆ > 0, simulating

imaginary time evolution for large τ yields to a good approximation of the ground state
since one can show that

| 〈ψτ |ψGS〉 | > O(
e−2∆τ

δ2
), δ = | 〈ψrand|ψGS〉 |. (3.47)

Non unitary operators do not preserve the canonical form. It turns out, however, that
the successive Schmidt decompositions assure a good approximation as long as the time
steps are chosen small enough [71].

It is important to remark that the state of the system for a generic t is now specified
by two set of tensors {ΓA,ΛA} and {ΓB,ΛB}, while the physical state should by invariant
when shifting by one site. However we can restore the original symmetry through observ-
ables. For instance, for an operator O[r] acting on site r, orthogonality of the Schmidt
bases implies that its expactation value on a certain state |Ψ〉, identified by {Γ, λ}, is
simply:

〈ψ|O[r] |ψ〉 =
∑
αiβ

(λα)2ΓiαβO
[r]
ij (Γjαβ)∗(λα)2 (3.48)
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ΓA∗

ΓA

ΛA∗

ΛA

ΓB∗

ΓB

ΛB∗

ΛB

ΓA∗

ΓA

ΛA∗

ΛA

ΓB∗

ΓB

O[r](ΛB)2
O′[s] (ΛB)2

Figure 3.11: Correlation function for two sites distant 3 lattice spaces.

In our case we have a different expectation value for odd and even sites and can
be computed as in Fig. 3.10. The translational invariance of the initial system is then
restored taking their mean value.

Mµν ≡ O[r]

ν

µ

(a)

Siµ′ν ≡ O[r]

ν

µ′

i

(b)

M ′
µ′ν′ ≡ O[r]

µ′

ν ′

(c)

O′[s]Nµ′ν′ ≡

ν ′

µ′

(d)

Figure 3.12: Graphical representation of the contractions needed for a two-point correlation function.

Similarly, the expression for a two-point correlator of operators O[r] and O′[s] involves
only tensors of order of (s− r), as illustrated in Fig. 3.11.

As [21] reports, the best way to perform this contraction is as follows (see Fig. 3.12):

(i) Create the matrix Mµν =
∑

αµν

∑
ij(Λ

B
α )2ΓA,jαν ΓA,i∗αµ O

[r]
ij ΛA

µΛA
ν ;
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(ii) Contract Siµ′ν = MµνΓ
B,i
µµ′Λ

B
µ′ ;

(iii) Contract M ′
µ′ν′ = Siµ′νΓ

B,i∗
νν′ ΛB

ν′ ;

(iv) Repeat (ii), (iii) with M = M ′, alternating on A and B bonds for (r − 1) times;

(v) Contract M ′ with the matrix Nµν =
∑

α

∑
ij(Λα)2Γjν′αΓj∗µ′αO

′
ij

[s] ( {Γ,Λ} are of the
A(B) kind if r is even(odd) ).

3.3 Numerical details of the simulations

The iTEBD algorithm code written is composed of two different parts: the first obtains
an accurate MPS description of the initial state (in our case ground states of the Ising
and the three-state Potts Hamiltonian) and the second deals with the time evolution. The
imaginary time evolution was implemented using a first order Suzuki-Trotter decomposi-
tion with imaginary time-step τ = 0.001. We control the convergence of the imaginary
time algorithm by keeping track of the energy density E0 and waiting for it to become
stationary.

Using this MPS as our initial state, we can address the real time evolution. We again
use a second order Suzuki-Trotter decomposition of the evolution operator U(δt) with
time step δt = 0.005.

We adapt the number of states used to describe the reduced Hilbert space by retaining,
at each time step, all Schmidt vectors corresponding to singular values larger than
λmin = 10−12. Once the maximum value of the bond dimension is reached, this condition
is relaxed. For the Ising model the maximum bond dimension was fixed to χmax = [256, 512],
while for the Potts model χmax = 243. Because of the upper bound χmax , the truncation
procedure is the main source of error of the algorithm and puts limitations on the
maximum time accessible by the simulation.



Chapter 4

Quench dynamics in Zn symmetric
models

All animals are equal, but some animals are more equal than others.

- George Orwell, Animal Farm

In this chapter the quantum Ising model and the 3-state quantum Potts model
are introduced. Their dynamics after a quantum quench is described along with the
presentation of the simulations results. As far as the Ising model is concerned, the latter
are compared to the exact predictions. Some of them are reobtained throughout the
chapter. The focus will be on one point functions of local observables, correlation functions
and entanglement entropy.

4.1 Ising chain with transverse field

Let’s start with a paradigmatic model, the quantum Ising model with transverse field,
whose Hamiltonian is given by

H(h) = −J
N∑
j=1

[σzjσ
z
j + hσxj ], (4.1)

where σαj are the Pauli matrices at site j, J is a dimensionless, positive constant and we
impose periodic boundary conditions:

σαN+1 = σα1 . (4.2)

53
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The Hamiltonian of the Ising model exhibits a Z2 symmetry by rotations around the
x-axis in spin space by 180 degrees:

σy,zj → −σy,zj , σxj → σxj (4.3)

The Ising model is a crucial paradigm of quantum critical behaviour and quantum
phase transitions. At zero temperature and in the thermodynamic limit it exhibits
ferromagnetic (h < 1) and paramagnetic (h > 1) phases, separated by a quantum critical
point at hc = 1. For h < 1 and L→∞ there are two degenerate ground states related
by the Z2 symmetry. Spontaneous symmetry breaking selects a unique ground state, in
which spins align along the z-direction (ordered phase). On the other hand, for magnetic
fields h > 1 the ground state is non-degenerate and as the magnetic field h is increased
spins align more and more along the x-direction (disordered phase). The order parameter
for the quantum phase transition is the ground state expectation value

〈
σzj
〉
.

The Ising model is integrable and its spectrum can be computed explicitly together
with its eigenstates. The diagonalization of the Hamiltonian follows.

The frist step is to perform a Jordan-Wigner transformation, that maps the spin
operators into a set of Majorana fermions

aj =

j−1∏
l=1

σxl σ
z
j bj = iajσ

x
j , (4.4)

with commutation relations given by

{aj, al} = {bj, bl} = 2δj,l {aj, bl} = 0. (4.5)

The inverse transformation is given by

σxj = −iajbj σzj =

j−1∏
l=1

(−ialbl)aj. (4.6)

Note that this transformations are non local. We can combine Majorana fermions into
a Dirac fermion

cj =
aj + ibj

2
, (4.7)

with the usual fermionic coomutation relations

{cj, c†l} = δj,l {cj, cl} = {c†j, c†l} = 0. (4.8)
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The Hamiltonian (4.1) in terms of the spinless fermions reads

H(h) = −J
N−1∑
j=1

[c†j−cj][c†j+1 +cj+1]−Jh
N∑
j=1

(cjc
†
j−c†jcj)−JeiπN̂(cN−c†N)(c1 +c†1), (4.9)

where

N̂ =
N∑
j=1

c†jcj (4.10)

is the fermionic number operator. Since [H, eiπN̂ ] = 0 it is possible to diagonalize the two
operatros simultaneously and the Hamiltonian is block diagonal H = He ⊕Ho, where
He/o acts on the subspaces of the Fock space with even/odd number of fermions.

Even Fermion Number

In this sector we have eiπN = 1 and

He(h) = −J
N∑
j=1

[c†j − cj][c†j+1 + cj+1]− Jh
N∑
j=1

(cjc
†
j − c†jcj). (4.11)

Note that the periodic boundary conditions (4.2) in spin language implies antiperiodic
boundary conditions (ABC) in this sector for the fermionic operators:

cN+1 = −c1. (4.12)

The Hamiltonian He can be diagonalized by going to Fourier space

c(kn) =
1√
N

N∑
j=1

cje
iknj, (4.13)

where the momenta kn are quantized according to ABC:

kn =
2π(n+ 1/2)

N
, −N

2
, . . . ,

N

2
− 1. (4.14)

The antiperiodic sector is referred to as Neveu-Schwarz (NS) sector. We can now
perform a rotation in momentum space introducing the Bogoliubov fermions

c(kn) = cos(θkn/2)αkn + i sin(θkn/2)α†−kn

c†(−kn) = i sin(θkn/2)αkn + cos(θkn/2)α†−kn ,
(4.15)
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where the Bogoliubov angle satisfies

eiθkn =
h− eikn√

1 + h2 − 2h cos kn
. (4.16)

In this basis He is diagonal:

He =

N/2−1∑
n=−N/2

ε(kn)[α†knαkn − 1/2], (4.17)

where ε(k) is the dispersion relation of the excitations given by

ε(k) = 2J
√

1 + h2 − 2h cos k. (4.18)

We indicate in this sector the fermion vacuum as |0;h〉NS, defined by

αk |0;h〉NS = 0 ∀k ∈ NS. (4.19)

Odd Fermion Number

The diagonalization in this sector is performed in the same way. Here eiπN = 1 and the
odd Hamiltonian has the same form

Ho(h) = −J
N∑
j=1

[c†j − cj][c†j+1 + cj+1]− Jh
N∑
j=1

(cjc
†
j − c†jcj), (4.20)

but now periodic boundary conditions (PBC) have to be imposed:

cN+1 = c1. (4.21)

we go again into Fourier space

c(pn) =
1√
N

N∑
j=1

cje
ipnj, (4.22)

where the momenta pn are quantized according to PBC:

pn =
2πn

N
, −N

2
, . . . ,

N

2
− 1. (4.23)

The periodic sector is known as Ramond (R) sector. Defining the Bogoliubov fermions
by

c(pn) = cos(θpn/2)αpn + i sin(θpn/2)α†−pn

c†(−pn) = i sin(θpn/2)αpn + cos(θpn/2)α†−pn ,
(4.24)



4.1. Ising chain with transverse field 57

the Hamltonian Ho becomes diagonal:

Ho =

N/2−1∑
n=−N/2,n 6=0

ε(pn)[α†knαkn − 1/2]− 2J(1− h)[α†k0αk0 − 1/2]. (4.25)

We indicate in this sector the fermion vacuum as |0;h〉R, defined by

αp |0;h〉R = 0 ∀p ∈ R. (4.26)

In the paramagnetic phase, where h < 1 we can write both Hamiltonians as

He/o =
∑
q∈a

ε(q)α†qαq + Ea
0 (h), a = NS,R. (4.27)

where Ea
0 = −1/2

∑
q∈a ε(q). This expression of the Hamiltonians holds also in the

ferromagnetic phase, where h > 1, after a particle-hole transformation for the zero-mode
(that has negative energy),

α0 → α†0. (4.28)

The ground state is |0;h〉NS in both phases. In the ferromagnetic one, for large N we
have ENS

0 (h)− ER
0 (h) = O(L−1) so that in the thermodynamic limit the states |0;h〉NS

and |0;h〉R become degenerate and by spontaneous symmetry breaking one of the two
combinations

1√
2

[|0;h〉NS ± |0;h〉R] (4.29)

is selected as the ground state.

4.1.1 Quench protocol

We perform a sudden global quench of the transverse magnetic field. We assume that the
system is prepared in the ground state |Ψ0

〉
of the Hamiltonian with coupling constant

h0. To reach the ground state with the iTEBD we perform imaginary time evolution as
described in section 3.2.1. The infinite chain is prepared in a simple ferromagnetic state,
where all the spins are aligned along the positive direction of the the z axis:

|ΨF 〉 = |. . . ↑↑↑ . . .〉 . (4.30)

This state has a trivial MPS representation of bond dimension χ = 1

ΓA,↑ = 1 = ΓB,↑

ΓA,↓ = 0 = ΓB,↓

ΛA = 1 = ΛB.

(4.31)
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Then the ground state is given by

|Ψ0〉 = lim
τ→∞

e−H(h0)τ |ΨF 〉
‖e−H(h0)τ |ΨF 〉‖

(4.32)

At t = 0 the value of the transverse magnetic field is switched to a new value h. To find
the state of the system for t > 0 we have to consider the unitary time evolution of the
ground state |Ψ0

〉
charachterized by the new Hamiltonian H(h):

|Ψ0(t)〉 = e−iH(h)t|Ψ0

〉
. (4.33)

As proved in the previous section, the Ising Hamiltonian can be diagonalized. For
H(h0) we have Bogoliubov operators α̃k with Bogoliubov angle θ0

k; for H(h) we have αk
and θk. The corresponding Bogoliubov fermions are related by a linear transformation
characterized by the difference of the angles ∆k:

α̃k = cos

(
θk − θ0

k

2

)
αk + i sin

(
θk − θ0

k

2

)
α†−k, (4.34)

which satisfies
cos ∆k =

hh0 − (h+ h0) cos k + 1√
1 + h2 − 2h cos k

√
1 + h2

0 − 2h0 cos k
. (4.35)

Then it is possible to express the initial state of time evolution as boundary state
(2.46).

|Ψ0〉 ≡ |0;h0〉 =
1

N exp

{
i
∑
k

K(k)α†kα
†
−k

}
|0;h〉 , (4.36)

with
K(k) = tan

(
∆k

2

)
. (4.37)

The quasi-particles propagate with dispersion relation εh(k) given by (4.18) and maximum
velocity

vmax = max
k

∣∣∣∣dεh(k)

dk

∣∣∣∣ = 2J min{1, h} (4.38)

Since the operators αk evolve according to

αk(t) = eitεh(k)αk(0), (4.39)

the initial state evolves in a simple way:

|Ψ0(t)〉 = e−iH(h)t |0;h0〉 =
1

N exp

{
i
∑
k

K(k)e−i2εh(k)α†kα
†
−k

}
|0;h〉 . (4.40)



4.1. Ising chain with transverse field 59

We proceed studying the time evolution of the many-body system through the
dynamics of the following observables and quantities:

i. Magnetization
m(t) = 〈Ψ0(t)|σzi |Ψ0(t)〉 (4.41)

ii. Transverse field
M(t) = 〈Ψ0(t)|σxi |Ψ0(t)〉 (4.42)

iii. Entanglement entropy (EE)

S = −
∑
α

Λ2
α ln Λ2

α (4.43)

iv. Loschmidt Echo (LE)
L(t) = | 〈Ψ0|Ψ0(t)〉 |2 (4.44)

v. Two-points Green function

G(r; t) = 〈Ψ0(t)|σzi σzi+r|Ψ0(t)〉 (4.45)

4.1.2 Magnetization

For quenches starting in the disordered phase, i.e. h0 > 1, the order parameter expectation
value is zero for all times because the Z2 symmetry remains unbroken. For quenches that
start and end in the ordered phase, i.e. h0, h < 1 we can foresee two different scenarios:

i. As the final value of the coupling constant lays below the critical value,
〈
m(t)

〉
remains non vanishing in the limit t→∞;

ii. As the quench process has injected a certain amount of energy into the system, this
will lead to disorder and symmetry restoration.

As proved in [9] the latter is what happens in the quantum Ising chain, and the order
parameter decays exponentially according to:

m(t) ' (CFF )
1
2 exp

{[
t

∫ π

0

dk

π
ε
′

h(k) ln | cos ∆k|
]}
, (4.46)

where
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Figure 4.1: Time evolution of the magnetization.

CFF =
1− hh0 +

√
(1− h2)(1− h2

0)

2
√

1− hh0(1− h2
0)

1
4

. (4.47)

This result was obtained by cluster decomposition of the order parameter two point
function, which can be expressed as the determinant of a particular matrix, the former
being computable in the thermodynamic limit.

Within the ferromagnetic phase two different quenches where considered (from h0 =

1/3 to h = 2/3 and from h0 = 2/3 to h = 1/3). The results are illustrated in Fig. 4.1 and
compared to the analytic expression (4.46) valid for late times.

The results show also that the short-time behaviour after the quench is sensitive to
whether the transverse field is increased or decreased. If h0 < h < 1 then the magnetization
decreases for short times, while it initially increases if 1 < h < h0.

A drawback of the algorithm is that only short times can be simulated since the bond
dimension increases and always more Schmidt values that are no longer negligible are
left out by the truncation. This is evident when the quench leads the system towards the
critical point (where the mass gap vanishes), as seen in Fig. 4.2, where the evolution with
two different maximum values of the bond dimension is considered. However the times
available is sufficient to appreciate some key features of the dynamics, such as in this
case the exponential decay of the magnetisation.
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Figure 4.2: Comparison of bond dimensions near the critical value.
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Figure 4.3: Time evolution of the order parameter for quenches crossing the critical value.

For a quench from the ferromagnetic phase to the paramagnetic one, it is conjectured
in [9] that the expectation value of the magnetization is given by

m(t) ' (CFP )
1
2 [1 + cos(2εh(k0)t+ α)]

1
2 exp

{[
t

∫ π

0

dk

π
ε
′

h(k) ln | cos ∆k|
]}
, (4.48)

where k0 is the solution of the equation cos ∆k0 = 0, α(h, h0) is an unknown constant,
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and

CFP =

[
h
√

(1− h2
0)

h+ h0

] 1
2

. (4.49)

In the limit h → 1, k0 vanishes so that the crossover between (4.46) and (4.48) is
smooth.

In Fig. 4.3 is shown the evolution of the magnetization where the final values of the
external field are h = 1.05 and h = 5/3 with initial value of h0 = 0.5 and h0 = 0.6

respectively. The results are also compared with the analytic result (4.48).

4.1.3 Transverse field

In the Ising chain the time dependent average of the transverse field σx can also be
evaluated exactly in the thermodynamic limit. Expressing the inverse Jordan-Wigner
transformations (4.6) in terms of the Dirac fermions one has

1

N

N∑
j=1

σxj =
1

N

N∑
j=1

(1− 2c†jcj). (4.50)

Since the aim is to evaluate this expression in the evolved state (4.40), we turn to Fourier
space and substitute the expression (4.15), obtaining

1

N

N∑
j=1

σxj =
1

N

∑
k

[1− 2
(

cos
θk
2
α†k − i sin

θk
2
α−k

)(
cos

θk
2
αk + i sin

θk
2
α†−k

)
] (4.51)

Evaluating its mean value in the boundary state (4.40), we obtain

1

N

〈
N∑
j=1

σxj

〉
=

1

N

∑
k

[
cos θk − 2(cos2 θk

2
〈nk〉)− sin2 θk

2
〈n−k〉

+
i

2
sin θk

〈
(α†kα

†
−k − α−kαk)(t)

〉]
,

(4.52)

using now (A.11) and (A.14) for the mean values of the number and strings of creation
(or annihilation) operators,

1

N

〈
N∑
j=1

σxj

〉
=

1

N

∑
k

[
cos θk(1−

2K2
k

1 +K2
k

) + 2 sin θk
Im(Kke

−2iεh(k)t)

1 +K2
k

]
, (4.53)
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and taking eventually the thermodynamic limit we obtain

M(t) =
4

π

∫ 2π

0

dp
(hh0 + 1− (h+ h0) cos p)(h− cos p)− (h− h0) sin

2 p cos(2εh(p)t)

ε2h(p)εh0
(p)

. (4.54)

The evolution of the transverse field for quenches both within the ferromagnetic phase
and crossing the critical point are shown in Fig. 4.4 .
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Figure 4.4: Time evolution of the transverse field for four different quenches. Relatively short times are sufficient to reach
the equilibrium expectation value. Note that if the value of the transverse field is increased, the expectation value of the
transverse magnetization for late times increases; conversely if h < h0, M(∞) < M(0).

We can obtain the equilibrium expectation value of the transverse magnetization. Since
the time dependent part cancels out in the infinite time limit due to the Riemann-Lebesgue
lemma, one has

lim
t→∞

M(t) =
1

2π

∫ 2π

0

dp
(hh0 + 1− (h+ h0) cos p)(h− cos p)

(1 + h2 − 2h cos p)
√

1 + h2
0 − 2h0 cos p

. (4.55)
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Note that this value depends on the coupling constant of the pre-quench Hamiltonian.
This means that the transverse field is a non ergodic operator since its equilibrium value
after a quench strongly depends on the initial state. This result it is not surprising at all,
since as discussed in section 2.1.3 the dynamics is constrained by the infinite conserved
quantities due to the integrability of the model.

4.1.4 Entanglement Entropy

As discussed in section 2.4, for finite subsystems of length l the entanglement entropy
with the rest of the system increases linearly with time up to t = l/2vmax, after which it
saturates at a value proportional to l. If we consider the entanglement of half chain with
the rest of the system in the thermodynamic limit, the entanglement entropy growth is
linear for arbitrary times.
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Figure 4.5: Time evolution of the entanglement entropy.

This behaviour was observed in every quench considered (examples in Fig. 4.5), up
to a time tc. At t = tc the truncation error becomes considerable and the algorithm is
not reliable anymore. The value of tc can be increased increasing the bond dimension as
illustrated in Fig. 4.6.

4.1.5 Loschmidt echo

Loschmidt echo gives meaningful information about the probability that the system at
time t comes back to the initial state. We can express the Loschmidt echo as
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Figure 4.6: Time evolution of the entanglement entropy. Comparison between different values of the bond dimension:
failure of the iTEBD algorithm.

L(t) = e−LGh0,h(t), (4.56)

where L is the length of the part of the chain for which we are considering the overlap.
We are interested in the quantity

Gh0,h(t) = − 1

L
log(L(t)), (4.57)

called logarithmic Loschmidt echo (LLE). For the Ising chain, using the expressions of
boundary state and its evolved (4.40) and the result (A.10)

L(t) = exp

[∑
p>0

log

(
1 + e−2iεh(p)tK2

p

1 +K2
p

)]2

(4.58)

that in the thermodynamic limit becomes

L(t) = exp

L
π

∫ π

0

log

(
1 + e−2iεh(p)tK2

p

1 +K2
p

)2
, (4.59)

which implies that the logarithmic Loshcmidt echo reads

Gh0,h(t) = −
1

2π

∫ π

0

dp log

(
1− sin2 εh(p)t

(h− h0)
2 sin2 p

(1 + h2
0 − 2h0 cos p)(1 + h2 − 2h cos p)

)
(4.60)

The quantity for fixed L was calculated with the iTEBD algorithm as indicated in
Fig. 4.7. Transfer-like matrices obtain from two subsequent sites (an odd and an even
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Figure 4.7: Overlap for L = 4 between the ground state of H(h0) and the state of the system at a certain time t after the
sudden quench.

one) are contracted for L/2 times. The final tensor Tαα′,ββ′ can be regarded as a two
indices tensor M(αα′),(ββ′) whose indeces spaces have dimensions equal to the product of
the bond dimensions of the ground state and the state at a certain time t. The overlap is
then given by the dominant eigenvalue η of such matrix, and the LLE is given by

Gh0,h(t) = − 2

L
log η(t) (4.61)

In Fig. 4.8 is shown, for the quench h0 = 0.6 → h = 0.3, the Loschmidt echo for
different lengths and the LLE. The latter is compared with the result (4.60).

The long time limit for the LLE is not as simple as the transverse magnetization one.
First we expan the logarithm in the LLE

Gh0,h(t) = − 1

2π

∫ π

0

log
(
1− α(p) sin2(εh(p)t)

)
=

1

2π

∞∑
k=1

1

k

∫ π

0

dp(α(p))k sin2k(εh(p)t) := fα(t).
(4.62)

The next step is to write sin2k(εht) in its binomial expansion:

sin2k(εht) =

(
eiεh(p)t − e−iεh(p)t

2i

)2k

=
1

4k

2k∑
n=0

(−1)k+n

(
2k

n

)
e−2i(k−n)εh(p)t. (4.63)

When considering the infinite time limit we use the Riemann-Lebesgue lemma on all the
terms, obtaining from the binomial expansion that only the term with k = n survives and

lim
t→∞

fα(t) =
1

2π

∞∑
k=1

1

4kk

(
2k

k

)∫ π

0

dp(α(p))k (4.64)

When |α(t)| < 1 we can use the series convergence
∞∑
k=1

xk

4kk

(
2k

k

)
= log 4− 2 log

(
1 +

√
(1− x)

)
, |x| < 1 (4.65)
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Figure 4.8: Time evolution of the Loschmidt Echo (a) and of LLE (b).

That fact that the limit for t→∞ exists once the thermodynamic limit is taken is
non trivial and it shows that an infinite-size system may equilibrate to a steady state
after a quench.

and obtain

lim
t→∞

Gh0,h(t) = − 1

π

∫ π

0

dp log
[1
2

(1 +
1 + hh0 − (h+ h0) cos p√

1 + h2 − 2h cos p
√

1 + h2
0 − 2h0 cos p

)
]
. (4.66)

4.1.6 Two-point Green function

For a quench within the ordered phase the two-point function was calculated in [9] and
has the following form:

ρFF (r, t) ' CFF exp
[
r

∫ π

0

dk

π
log | cos ∆k|θH(2ε′h(k)t− l)

]
× exp

[
2t

∫ π

0

dk

π
ε′h(k) log | cos ∆k|θH(l − 2ε′h(k)t)

]
,

(4.67)

where θH(x) is the Heaviside step function and CFF is fixed by matching (4.67) to the
corresponding result at infinite time [10].

The two-points correlator with the iTEBD algorithm was calculated as indicated in
Fig. 3.11.

In Fig. 4.9 is shown the two-point function and the connected Green function

Gc(r, t) = G(r, t)−m(t)2 (4.68)
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Figure 4.9: Two-point correlation function and connected correlation function for a quench within the ferromagnetic phase.

for a quench within the ferromagnetic phase. It is clear that due to the maximum speed of
propagation, as a consequence of the Lieb-Robinson bound [64], all connected correlations
at distance r vanish for times such that 2vmaxt < r as shown clearly in Fig. 4.10.
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4.2 3-state quantum Potts model

A straightforward generalization of the quantum Ising model is the quantum q-state
Potts model. It consists of a chain of generalized spins having internal quantum states
|µ〉i, with i labeling the lattice sites and µ = 1, . . . , q the possible internal states of the
spins. The Hamiltonian of the model reads:

H = −J
(∑

i

q∑
µ=1

P µ
i P

µ
i+1 + h

∑
i

Pi

)
. (4.69)

The first term of the Hamiltonian contains the traceless projector P µ
i = |µ〉i 〈µ|i which

tend to align the spin at site i along the direction µ. This term promotes a ferromagnetic
groundstate with a spontaneous magnetization pointing at one of the q directions. The
second term, conversely, represents a transverse field, like in the Ising case, that perturbes
the ferromagnetic regime. The traceless operator Pi = |λ0〉 〈λ0| − 1/q tends to project
the spin along the direction |λ0〉 ≡

∑
µ
|µ〉√
q
. The relative strenght of these two terms

is regulated by the dimensionless coupling costant h: for large values of h one finds a
paramagnetic phase with a unique ground state, while for small h a ferromagnetic phase
appears with q degenerate ground states, spontaneously breaking the global Sq symmetry
(the latter can be decomposed into Z2 ⊗ Z3). This competition leads to a quantum phase
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transition for a critical value of the coupling costant hc.
From now on, we focus on the 3−Potts model. The transition occurs at a coupling

hc = 1, and it is of second order: quasiparticles are gapped on both sides of the transition,
but the quasiparticle gap ∆ vanishes continuously at the transition as ∆ ∼ J |h− 1|5/6
[72]. This second-order phase transition belongs to a different universality class from the
Ising case [27].

Below the critical value the ground state is a 3−fold degenerate ferromagnet corre-
sponding to the three different ferromagnetic alignments of the generalized spins. The
elementary excitations are domain walls that move along the chain with dispersion relation

εµ,µ
′

k = ε(k), (4.70)

where the two indices µ and µ′ denote the orientations of the ferromagnetic order
parameters. These quasi-particles are gapped and their energy can be approximated for
smal h as

ε(k) ' J(1− 2h

3
cos k). (4.71)

Conversely, for h > hc the ground state is a non degenerate paramagnet which
corresponds to orienting all spins along the |λ0〉 direction. Elementary excitations of this
state consist of λ = 1, . . . , q − 1 possible local spin flips which propagate along the chain
with dispertion relation

ελk = ε̃(k). (4.72)

Also this excitations are gapped and for very large values of the coupling constant h one
finds [72]

ε̃(k) ' 3J(1− 2

3h
cos k). (4.73)

4.2.1 Quench protocol

Unlike the Ising case, we now have three different magnetizations. We can name them
red, green and blue. As initial state for the imaginary time evolution we can choose a
ferromagnetic state where all the spins are aligned with one of the three directions, say
red :

ΓA,r = 1 = ΓB,r

ΓA,g = 0 = ΓB,g

ΓA,b = 0 = ΓB,b

. (4.74)
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Since the quantum Potts model is non integrable, we have no predictions of the time
evolution of any of its observables. However, being a straightforward generalization of the
Ising case, we might expect its behaviour to be qualitatively tha same.

4.2.2 Magnetizations and transverse field

We analyze the dynamics of the main local observables, that is the (red) magnetization
< P1 >, order parameter of the phase transition, and the transverse field < P >.
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Figure 4.11: Time evolution of the three magnetizattions and of the transverse field for a quench within the ferromagnetic
phase.

In Fig. 4.11 we show the time evolution of the three magnetization for a quench within
the ferromagnetic phase, as well as the time evolution of the transverse field.

When both h and h0 are below the critical value, the relaxation process is very slow.
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Anyway the behaviour of < P1 > is exactly the same observed in the Ising case for very
short times:

. If h < h0 the equilibration process is slower. < P1 > initially increases for very
short times and then starts decreasing oscillating;

. Conversely when h < h0 the opposite occurs (Fig. 4.12).
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Figure 4.12: Time evolution of red magnetization and transverse field for quenches within the ferromagnetic phase.

Due to the slow process of equilibration, the times available with the simulation are
not sufficient to observe the value at which the magnetization relaxes but the similarities
with the Ising model suggest that it may relax to zero, leading to symmetry restoration,
as proved in [9].

It is observed that the equilibration value of the order parameter is zero when
quanching from the ferromagnetic to the paramagnetic phase. Moreover, its amplitude
is exponentially suppressed as in the Ising case. This suggest a greater stability of the
magnetization while approaching equilibrium (Fig. 4.13).

As far as the transverse field is concerned, an important remark has to be made. We
showed that the infinite time limit of the transverse field expectation value (4.55) depends
both on h and h0 and if h > h0, we also had M(∞) > M(0). The opposite happens if
the final coupling constant is smaller then the one in the pre quench Hamiltonian. As
shown in Fig. 4.14 as well as in Fig. 4.12 and Fig. 4.13, the same behaviour is observed in
the Potts model for the quench considered. This features is believed to hold for general
quenches.
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Figure 4.13: Time evolution of red magnetization and transverse field for quenches to the paramagnetic phase.
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Figure 4.14: Time evolution of transverse field for quenches within the ferromagnetic phase.

We remark that this similarities can be interpreted with a semiclassical picture. This
approach is based on the observation that at very low temperatures only quasi-particles
with energy close to the quasi-particle cap are present, ε(k) ' ∆. The energy of these
quasi-particles can be approximated as [73]

ε(k) = ∆ +
k2

2∆
+ o(k4). (4.75)

This means that as long as they don’t interact, they behave like free classical particles.
For low temperatures, the distribution of quasi-particles is described by Boltzmann
statistics and correspondingly their density is exponentially small. This behaviour breaks
when excitations get closer than the de Broglie wavelenght. In one dimensional systmes
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this is bond to happen since collisions are unavoidable. However, due to the dilute nature
of quasi-particles, we have only two-particle scatterings, that is what we have for integrable
systems.



Chapter 5

Explicit Zn symmetry breaking with
longitudinal field

I may not have gone where I intended to go, but I think I have ended up where I needed
to be.

- Douglas Adams, The Long Dark Tea-Time of the Soul

In this final chapter it is reported how the dynamics of the models is affected by the
addition of a longitudinal field. For the Ising model, whose integrability gets broken, it
is studied the ferromagnetic phase, reproducing the results obtained in [12]. The Potts
model is analyzed in its paramagnetic phase, with focus on the entanglement entropy
behaviour.

5.1 Quantum Ising model with longitudinal field: fer-
romagnetic phase

In the previous chapter we presented results that highlighted the validity of the quasi-
particle description of quantum quenches: the initial state is a highly exited configuration
in terms of the post.quench Hamiltonian, whisch acs as a source of quasi-particles
excitations propagating through the system. But what happens if a confinement potential
is introduced in the system? Pairs of quasi-particles move in opposite directions, but due
to the confining potential the farther they go apart the stronger is the attractive force

75
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they feel, which eventually turns the particles back leading to an oscillatory behaviour,
as depicted in Fig. 5.1.

Figure 5.1: Pictorial semiclassical picture of a meson state in the Ising model: two counter-propagating domain walls
bounce back and forth because of a confining interaction [12].

Confinement is known to take place in the Ising model with both transverse and
longitudinal fields. This case was investigated in [12] and here some key results are
reproduced. The Ising Hamiltonian with the addition of longitudinal field becomes

H(h) = −J
N∑
j=1

[σzjσ
z
j + hxσ

x
j + hzσ

z
j ]. (5.1)

In the ferromagnetic phase, switching on a non-zero field hz induces a linear attractive
potential between pairs of domain walls which enclose a domain of length d and of
magnetisation opposite to hz. For small fields the potential can be approximated as
V (d) = χd, with χ = 2Jhzσ̄ [74], where σ̄ = (1− h2

x)
1/8. . As a result, the domain walls

are confined into bound states called mesonic states in analogy to the phenomenon in
particle physics of bound states of strong interactions. The model for hz 6= 0 is no longer
integrable and the spectrum can’t be computed exactly.

We analyze the changes in the chain’s dynamics with time evolution of the magnetiza-
tion, the entanglement entropy and the two point correlation function.
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Figure 5.2: Time evolution of the longitudinal magnetization after quenching from hx = 0.5, hz = 0 to hx = 0.25 and
hz = 0.1, 0.2. Below, their power spectrum is shown. The vertical lines are the values for the meson masses predicted by
[12].

5.1.1 Magnetization

The simulation for the magnetization m(t) = 〈σz(t)〉 dynamics with longitudinal field is
displayed in Fig. 5.2. It is clear that a small longitudinal field radically alters the dynamics,
turning the exponential relaxation expressed by (4.46) into an oscillatory behaviour with
numerous different frequencies. The qualitative change of the dynamics is the consequence
of confinement [12]. This can be demonstrated by extracting the oscillation frequencies
with a discrete Fourier transform of the time series, which are also reported in Fig. 5.2.
The vertical lines are the values for the meson masses predicted (see [12] for details of
the calculation).
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Figure 5.3: Time evolution of the connected correlation function as function of time and distance.

5.1.2 Two-point function

The two-point function is the quantity that shows the strongest effects of confinement.
Indeed, when the interaction of the longitudinal field is turned on, the propagating
particles are the heavy massive mesons and not the light domain walls. The former
propagate with a maximal velocity which is smaller than that of the latter. By increasing
hz the region where there is light cone propagation shrinks to an almost invisible portion
of the space-time. What happens is that due to the heavy masses of the mesons, the
quench only provides sufficient energy to produce them at rest (see Fig. 5.3).

5.1.3 Entanglement entropy

We consider now the time evolution of the entanglement entropy of half chain. By
turning on the longitudinal interaction, the linear growth of the entanglement entropy
described in section 2.4 is considerably slowed down and saturates for quenches within the
ferromagnetic phase with a sufficiently large longitudinal field. The latter correspond to
cases in which the light-cone of the two-point function is strongly suppressed. As explained
above, this is a consequence of the fact that mesons are predominantly produced at rest
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Figure 5.4: Time evolution of entanglement entropy after quenching from hx = 0.5, hz = 0 to hx = 0.25 and hz = 0.1, 0.2.

and then the entanglement just oscillates around a saturation value. An example of this
behaviour is shown in Fig. 5.4. Actually the small fraction of mesons with non-negligible
ve- locities should produce a very slow increase of the entangle- ment which however is
likely too small to be observed.

5.2 3-state quantum Potts model with longitudinal field:
paramagnetic phase

In the same paper where the results of the Ising model with longitudinal field were
reported [12], it was also spotted a peculiar behaviour of the entanglement entropy also
in the paramagnetic phase: tuning the parameters of the system, a sudden increase
in the entanglement production rate was observed This gave motivation to study the
paramagnetic phase also in the Potts model, which is the main topic of the section.

In a recent paper [13], prelude to this work, the phenomenon was explained for the
Ising case as a dynamical manifestation of Gibbs paradox. We explain this result with
the 3-state Potts model.

The Hamiltonian (4.69) is modified by the addition of a longitudinal field in the red
direction, whose intensity is determined by the dimensionless coupling costant h1:
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H = −J
(∑

i

3∑
µ=1

P µ
i P

µ
i+1 + h

∑
i

Pi + h1

∑
i

P 1
i

)
(5.2)

We now analyze the entanglement entropy dynamics.

5.2.1 Entanglement entropy

When the longitudinal field is absent we expect a linear growth. This behaviour is shown
in Fig. 5.5. When the difference between the value of the coupling constant pre-quench
and its value post quench increases, so does the energy available to the creation and
the propagation of quasi-particle excitations and the slope of the entanglement growth
increases consequently. But what happens when a longitudinal field is introduced?
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Figure 5.5: Time evolution of entanglement entropy after quenching from h0 = 0.3 to h = 0.6 in absence of a longitudinal
field.

In the following, we will consider quenches from a value h > 1 and a vanishing
longitudinal field, to the very same value h and a non vanishing h1, so that the longitudinal
field is the only source of energy.

From Fig. 5.6 we can see that the averall linear growth remains and the average late
time behaviour of the entranglement entropy can be fit with a linear behaviour apart from
periodic fluctuations. It is not easy to extrapolate the frequencies of those fluctuations
due to the constant shift, but we should supposedly find the same frequencies on the time
evolution of both magnetizations and transverse field.
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Figure 5.6: Time evolution of entanglement entropy after quenching from h = 1.5, h1 = 0 to h = 1.5, h1 =

0.1, 0.2, 0.3, 0.4, 0.5.

Another surprising result is that if we look at the mean entanglement production rate
∂tS that can be obtained from the slope of the linear part of the entropy, it does not
increase monotonically with h1. It is indeed evident from Fig. 5.7 that for every value of
transverse field h considered, the mean entanglement production rate reaches a maximum
value, than it has a minimum and finally rapidly increases with the longitudinal field.

This behaviour can be understood by looking at the frequencies that determines time
evolution. In Fig. 5.8 and Fig. 5.9 time evolution of the magnetization and transverse
field for two different values of the longidutdinal field are displayed. In the first figure only
one frequency appears in the spectrum, corresponding to the free fermionic excitation,
while in the second figure a new particle appears. We find that for a fixed value of h there
exists a cirtical value of the longitudinal field at which a new quasi-particle appears in
the spectrum.

5.2.2 Relation to the Gibbs paradox

In section 1.4.2 it was highlighted the difference between entanglement entropy and
thermal entropy: as far as special states like ground states is concerned, while the former
exhibits an area law, the latter increases according to a volume law. However, excited
states resemble classical states and entanglement entropy reduces to thermodynamic
entropy. Since the post quench state is given by a superposition of excited states, at
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Figure 5.7: Entanglement rapidity as a function of the longitudinal field h1 for values of the coupling costant h =

1.25, 1.50, 1.75, 2.00. Values of the local minima are displayed on the left.

late times the asymptotic entanglement of a large subsystem can be interpreted as the
thermodynamic entropy [75].

The quasi-particle description, which is expected to be valid for sufficiently small
quenches even in the non-integrable case, leads to the formula (2.54). When different
quasi-particle species propagate throud the system, the formula is modified as follows:

S(t) ' 2t
∑
n

∫ 0

−∞
dp′
∫ ∞

0

dp′′σn(p′, p′′){vn(−p′) + vn(p′′)}θ(l − [vn(−p′) + vn(p′′)]t)

+ 2l
∑
n

∫ 0

−∞
dp′
∫ ∞

0

dp′′σn(p′, p′′)θ([vn(−p′) + vn(p′′)]t− l),

(5.3)
where n enumerates the different quasi-particle species. For half the system in the
thermodynamic limit, the semi-classical prediction simplifies to

S(t) ' 2t
∑
n

∫
dpσn(p)vn(p), (5.4)

considering σn(p′, p′′) = δ(p′,−p′′)σ(p′).
This formula suggests that the entanglement production rate is a slowly varying
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Figure 5.8: Time evolution of the three magnetizattions and of the transverse field for a quench with g = 1.25 and
h1 ≤ h(min)1 .

function of the quench parameter h1, since the new quasi-particle’s appearance would
simply add a new species contribution, which is expected to be smaller than the term
already present due to the larger mass of the bound state. However, Fig. 5.7 shows
that the entanglement production rate increases by order of magnitude after passing the
threshold. The flaw in the naive argument is that it neglects the contribution of species
mixing, which is at the basis of the classical Gibbs paradox.

Besides the validity of the quasi-particle picture, the Fourier spectra also help explain
the initial decrease of the entropy production rate (Fig. 5.8 and Fig. 5.9). The spectra
show that the particle masses (excitation gaps) increase with the longitudinal field. Albeit
the post-quench energy density also increases with h1, the rising gaps prevent the particle
production rate from increasing already for quite small values of h1. As a result, the rate
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Figure 5.9: Time evolution of the three magnetizattions and of the transverse field for a quench with g = 1.25 and
h1 ≥ h(min)1 .

functions σn(p) (which are not directly accessible) are also expected to stop growing with
h1.

For higher values of the transverse field reported in Fig. 5.8 and Fig. 5.9, it was
observed that the increasing trend of the mean entanglement production rate is delayed
with respect to the threshold value at which the new quasi-particle originates. This can
be explained as follows. The trend change in ∂tS, although rapid, it is not a discontinuous
jump, as also stated in [13], due to two effects. Firstly, the heavier second excitation is
produced with a density that depends smoothly on the quench parameter h1. Secondly,
also the distinguishability of the second quasi particle peak increases gradually with h1.
As known in the case of the equilibrium Gibbs paradox, distinguishability is a key feature
governing the effective number of species contributing to thermodynamic quantities. For
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these reasons, instead of a discontinuous jump there is a smooth but fast transition to a
substantially higher level of entropy production.





Chapter 6

Conclusive remarks and perspectives

This work was devoted to the study and understanding of several aspects of quench
dynamics in one dimensional lattice spin chains. We started reviewing some fundamental
problems hidden in the construction of quantum statistical mechanics itself, like the
extension to the quantum world of essential concepts such as ergodicity and thermalization.

We then introduced the simplest protocol that allows to deepen the knowledge
of this relations: the quantum quench. A valuable picture for the description of the
dynamics after a quantum quench was introduced: the quasi-particle description. This
quasi-classical picture describes the initial state as a source of entangled quasi-particles
pairs which propagate to different parts of the system, resulting in the build-up of light
cone spreading of correlations and entanglement growth. This picture was formalized for
integrable systems with the concept of boundary states and explicitly applied for integrable
quenches in the Ising spin chain. However, this semiclassical approach is expected to
be valid also for sufficiently small post-quench density even in the non-integrable case,
such as the 3−state Potts model. The simulations carried out throughout the manuscript
validated this statement, showing Potts dynamics to be very similar in many aspects to
the Ising case.

When the longitudinal field was added, the semi-classical picture of quasi-particles
excitations was still the main guide in the analysis, and was capable to explained
all phenomena observed. In the Ising ferromagnetic phase a mechanism that, through
confinement of the elementary excitations, strongly suppresses the light-cone spreading
was described; in the Potts paramagnetic phase a sudden increase in the entanglement
production rate was observed and the relation with the appearance of a new quasi-particle
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excitation was outlined. The phenomenon was depicted as the non-equilibrium version
of the Gibbs paradox related to mixing entropy, recently observed in [13] for the Ising
model with lingitudinal field.

It was explained the gradual change of the effective number of quasi-particle species
characterizing the post quench state. A description of the phenomenon requires a more
complete theory of entropy production with multiple quasi-particles species after a
non-integrable quench, which is left open for the future.

The study of the ferromagnetic phase of the Potts models with longitudinal field it
is also left for the future, where we expect a much more colourful scenario than that
observed in the Ising case, due to the presence of three different magnetizations.



Appendix A

Boundary states

Consider the state with kernel ℵ

|Bℵ〉 = exp

{∑
k>0

ℵkη†kη†−k

}
|0〉 =

∏
k>0

eℵkη
†
kη
†
−k |0〉 (A.1)

where the operators ηk and η†k follow the usual fermionic commutation relations:

{ηk, η†l } = δk,l {ηk, ηl} = {η†k, η†l } = 0 (A.2)

and the vacuum is defined by

ηk |0〉 = 0 ∀k. (A.3)

Due to (A.2) one has

eℵkη
†
kη
†
−k = 1 + ℵkη†kη†−k, (A.4)

expression that allows to evaluate the inner product between boundary states:

〈Bℵ|Bℵ′〉 = 〈0|
∏
k>0

eℵ̄kηkη−k
∏
q>0

eℵ
′
qη
†
qη
†
−q |0〉

=
∏
k>0

〈0|(1 + ℵ̄kηkη−k)(1 + ℵ′kη†kη†−k)|0〉 =
∏
k>0

(1 + ℵ̄kℵ′k 〈ηkη−k〉 η†−kη†k0)

=
∏
k>0

(1 + ℵ̄kℵ′k) = exp

[∑
k>0

log
(
1 + ℵ̄kℵ′k

)]
.

(A.5)
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It follows that the boundary state’s norm for fermions is easly evaluated as

〈Bℵ|Bℵ〉 = exp

[∑
k>0

log
(
1 + |ℵk|2

)]
. (A.6)

To the aim of calculating the expextation values of the momenta of the number
operator nk = η†kηk, let’s introduce the generating function

Fℵ(λq) =
〈Bℵ|exp

(∑
q>0 λqnq

)
|Bℵ〉

〈Bℵ|Bℵ〉
:=

〈
exp

(∑
q>0

λqnq

)〉
ℵ

, (A.7)

so thet the momenta are obtain as derivatives with respect to λ:

〈np1 . . . npl〉ℵ =
∂l

∂λp1 . . . ∂λpl
Fℵ(λq)

∣∣∣∣
λp=0

(A.8)

The first step to compute Fℵ(λq) is to understand that the exponential function
exp
(∑

q>0 λqnq

)
acts on a boundary state modifying its kernel ℵ to ℵeλ. Indeed, taking

the boundary state definition (A.1) and the commutation relations (A.2) into account
one has:

exp

(∑
q>0

λqnq

)
|Bℵ〉 = exp

(∑
q>0

λqnq

)
exp

{∑
k>0

ℵkη†kη†−k

}
|0〉

= exp

{∑
k>0

ℵkeλkη†kη†−k

}
exp

(∑
q>0

λqnq

)
|0〉

= |Bℵeλ〉 .

(A.9)

It follows from the inner product calculation (A.5) that

Fℵ(λq) =
〈Bℵ|Bℵeλ〉
〈Bℵ|Bℵ〉

= exp

[∑
q>0

log

(
1 + eλq |ℵ|2

1 + |ℵ|2
)]

. (A.10)

Taking the derivatives with respect to the λp and putting them to zero we finally obtain

〈np1 . . . npl〉ℵ =
l∏

j=1

|ℵpj |2
1 + |ℵpj |2

. (A.11)

Conversely if one aim is to calculate the mean value of a sequence of η†−kη
†
k or their

adjoint, it can be obtained in the same way with the generating funtion

Gℵ(λq) =
〈Bℵ|exp

(∑
q>0 λqη

†
−qη

†
q

)
|Bℵ〉

〈Bℵ|Bℵ〉
. (A.12)
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Following the same steps it is easy to see that exp
(∑

q>0 λqη
†
−qη

†
q

)
acts on a boundary

state as a translation in the kernel by λ and

Gℵ(λq) =
〈Bℵ|Bℵ+λ〉
〈Bℵ|Bℵ〉

= exp

[∑
q>0

log

(
1 + ℵ̄q(ℵq + λq)

1 + |ℵq|2
)]

. (A.13)

We eventually obtain

〈
η†−k1η

†
k1
. . . η†−klη

†
kl

〉
ℵ

=
∂l

∂λk1 . . . ∂λkl
Gℵ(λq)

∣∣∣∣
λk=0

=
l∏

kj=1

ℵ̄kj
1 + |ℵkj |2

(A.14)
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