
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia
Corso di Laurea Magistrale in Fisica

Measure of the branching ratio of the
B0 → D∗−τ+ντ decay at LHCb:
a preliminary study for RD∗

(
q2
)

in 3-prong τ decays

Relatore:

Prof. Angelo Carbone

Correlatore:

Dott. Federico Betti

Presentata da:

Daniele Manuzzi

Anno Accademico 2016/2017



Abstract

Ad oggi non sono state ancora osservate differenze significative tra i risultati sperimen-
tali e le previsioni teoriche del Modello Standard. Tuttavia esistono delle differenze che
potrebbero indicare l’esistenza di Nuova Fisica. Tre queste una delle principali riguarda:
RD∗ = B(B0 → D∗−τ+ντ )/B(B0 → D∗−µ+νµ) e RDB(B0 → D−τ+ντ )/B(B0 →
D−µ+νµ). Questi rapporti sono stati misurati dagli esperimenti BaBar [1] e Belle [2] ed
anche dall’esperimento LHCb [3]. Al momento la combinazione di tutti questi risultati [4]
si discosta di 3.9 σ dalle previsioni teoriche basate sul Modello Standard [5]. Se questa de-
viazione fosse confermata da future misure più precise, rappresenterebbe una evidenza in-
diretta dell’esistenza di una nuova dinamica. Recentemente LHCb ha realizzato la misura
di RD∗ utilizzando un ulteriore canale di decadimento del tauone: τ+ → π+π−π+(π0)ν̄τ .
Infatti la precedente misura era stata realizzata utilizzando il decadimento semi-leptonico
del tau. Il lavoro di tesi presentato in questo documento riguarda lo studio preliminare di
fattibilità della misura di RD∗ in regioni di q2 = (pB0 − pD∗−)2, mediante il decadimento
B0 → D∗−τ+(→ 3ππ0ν̄τ )ντ . Il campione di dati utilizzato corrisponde a quelli raccolti da
LHCb durante il RUN-1 e quindi pari a 3 fb−1 di luminosità integrata. Questo lavoro ha
permesso di concludere che questo tipo di analisi è fattibile, nonostante il piccolo numero
di eventi di segnale osservati. Tuttavia per rendere l’analisi pronta per la pubblicazione,
diversi studi, inclusi quelli degli effetti sistematici, sono ancora necessari.



Contents

1 Standard Model and Flavour Universality 6
1.1 Genesis of Weak Universality . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Flavour in the Electroweak Model . . . . . . . . . . . . . . . . . . . . . . 9
1.3 CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Test of LFUV: RD∗ 19
2.1 Standard Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 New Physics in b→ c`ν̄` . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The LHCb detector at LHC1 22
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The LHCb detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Particle identification systems . . . . . . . . . . . . . . . . . . . . 27
3.2.3 The Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 LHCb measurement of RD∗ 3-prong 33
4.1 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 First Backgrounds Overview . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Topological Requirements . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Isolation Requirements . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Particle identification requirements . . . . . . . . . . . . . . . . . 41
4.3.4 Selection of the normalization channel . . . . . . . . . . . . . . . 42
4.3.5 Selection efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Reconstruction of the decay kinematics . . . . . . . . . . . . . . . . . . . 42
4.5 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Determination of the signal yield: fit strategy . . . . . . . . . . . . . . . 46
4.7 Parameters estimation and Templates re-weigthing . . . . . . . . . . . . 49

4.7.1 Signal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7.2 The D+

s background . . . . . . . . . . . . . . . . . . . . . . . . . 50

1



4.7.3 The D0 and D+ backgrounds . . . . . . . . . . . . . . . . . . . . 54
4.7.4 The B → D∗−3π(X) yield . . . . . . . . . . . . . . . . . . . . . . 56
4.7.5 Yields for the combinatorial background . . . . . . . . . . . . . . 56

4.8 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Toward RD∗(q
2) 61

5.1 Fit 2D unbinned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Fit 2D binned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 A new MVA Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Fit with the new MVA Classifier . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusions 77

2



Introduction

Since the original formulation of quark mixing [6], the flavour structure of the Standard
Model (SM) has been experimentally tested and well established [4, 7]. At the same time,
the theoretical community managed to go well beyond leading order computations [8].
With the latest results, LHCb achieved an unprecedented precision in several tests of
the SM, in particular the LHCb Collaboration measured the ratio [9]

RK ≡
B(B+ → K+µ+µ−)

B(B+ → K+e+e−)
= 0.745+0.090

−0.074(stat)± 0.036(syst). (1)

This result is 2.4 σ below the SM expectation [10]. Moreover, the SM prediction for
B(B+ → K+µ+µ−) was found 45% higher than the experimental results [11]. Observ-
ables related to this kind of decay seem particularly interesting, because directly testing
FCNC, which are strongly suppressed within the SM.

The LHCb results for RK have attracted theoretical attention and many models [12]
have proposed the existence of particles, at or above 1 TeV, which may induce new
and non-universal lepton interactions. However, “any departure from lepton flavour
universality (LFUV) is necessarily associated with the violation of family lepton number
conservation. No known symmetry principle can protect the one in the absence of the
other” [12].

Currently other related hot field of research for the search of LFUV, involve the
Flavour Changing Charged Current decay b → c`ν`. In this case, several hadronisation
schemes are possible, e.g. B → Xc`ν` with Xc = D∗, D0, D+, Ds,Λc, J/Ψ and ` =
e, µ, τ . All of them share nice common features as precise SM prediction and branching
fraction much bigger than the value reported in equation (1). Furthermore, the cited
charmed states have different spin properties, which may make them sensitive to different
underlying processes. On the other hand, reconstruction and statistical analysis are make
difficult by the ν` presence; when ` = τ even two neutrinos are necessarily involved in
event reconstruction because in general the tau decays inside the detectors.
So far the ratio of the branching fractions

RD(∗) =
B(B̄0 → D(∗)+τ−ν̄τ )

B(B̄0 → D(∗)+µ−ν̄µ)
, (2)
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Figure 1: Results of RD and RD∗ measurements performed by BaBar and Belle from 2007 to
2012. The vertical bands represent the average of the measurements without the
before BaBar 2012 one (light shading) and the the SM predictions (dark shading).
The widths of the bands represents the uncertainties.

have been repeatedly measured by the BaBar and Belle collaborations (Fig. 1). Recently
also the LHCb collaboration performed a measurement of RD∗ [3] with Run-1 data. Its
combination with last results by BaBar [1] and Belle [2] is graphically displayed in Fig. 2.
The total discrepancy with the SM reaches about 4 σ, strongly requiring further inquiry.

In order to improve the experimental precision the LHCb Collaboration decided to
exploit the hadronic tau decay τ− → π−π+π−ντ , which were not included in his previous
analysis. Its main feature is a final state composed of multiple charged particles. That
permits to reconstruct the tau decay vertex. This can be used to overcome the lack
of information caused by the undetectable neutrinos. The drawback is that LHC is a
hadronic collider thus this kind of background could overwhelm the signal. To deal with
that a complex analysis was built up: many ancillary studies were required to constrain
estimations of backgrounds yields and to obtain better descriptions of their shapes. The
final result1

RD∗ = 0.285± 0.019± 0.025± 0.013, (3)

has been submitted Physical Review D [13]. This is however an integrated measurement,
i.e. it takes into account all the allowed kinematic range. The SM is able to predict the
dependence of RD∗ on the square of the transferred 4-momentum, namely q2 = (pB0 −
pD∗)

2. New Physics phenomena, suppressed in the integral, may appear as enhanced
analysing RD∗ in smaller ranges of q2. This step requires detailed studies due to the fact
that sub-ranges mean less statistic (larger uncertainties). Moreover this kind of analysis
requires to perform a study based on observables and variables not correlated with q2.

1The uncertainties reported are statistical, systematic and due to external input, respectively.
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Figure 2: Average of RD∗ vs. RD. The cyan band is the LHCb measurement, the black and
blue ellipses represent the BaBar and Belle measurements, respectively. The green
and magenta bands represent new measurements presented by BELLE in 2016. The
red ellipse is the average of all measurements, to be compared with the SM prediction
in blue-gray.

The thesis is organised as follow: Chapter 1 introduces the flavour and the lepton
universality within the SM. Chapter 2 reports the SM prediction for RD∗ and briefly
introduces the formalism of “effective theories”. Chapter 3 reported the main features of
LHCb detector. Chapter 4 describes in detail the analysis which measures the yield for
B0 → D∗−τ+ντ . Finally, 5 accounts for the preliminary studies conducted to test the
feasibility of a RD∗ measure in two different q2 sub-ranges.
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Chapter 1

Standard Model and Flavour
Universality

In particle physics, the term flavor describes several copies of the same gauge represen-
tation, namely several fields, that are assigned the same quantum charges [14]. Within
the Standard Model (SM), there are four different kind of particles, each coming in three
flavours:

• up-like quarks: u, c, t;

• down-like quark: d, s, b;

• charged leptons: e, µ, τ ;

• neutrinos: νe, νµ, ντ .

These are the rows of the fermionic part of the scheme displayed in Fig. 1.1. Columns,
instead, identify three families (or generations) of quarks and three families of leptons;
so each family includes two flavours1.

Flavour physics studies interactions that distinguish between flavours. In the SM,
interactions associated to unbroken gauge symmetries, therefore mediated by massless
gauge bosons, do not distinguish among flavours, by definition. On the contrary, weak
and yukawa interactions are the realm of flavour physics.

Flavour is mathematically encoded by parameters equipped with related indices
(flavour parameters). In the SM there are thirteen of them: nine masses of the charged
leptons and four (three angles and one phase) that rule the interactions of the charged
weak-force carriers (W±) with quark pairs.

Other remarkable definitions are:
1Some authors use different definitions of flavour [15–17]; we refer to [14, 18].
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Figure 1.1: Scheme of elementary particles.

• flavour universal (or flavour-blind), which refers to interactions with couplings
(or to parameters) that are proportional to the unit matrix in flavour spaces;

• flavour diagonal, which refers to interactions with couplings (or to parameters)
that are diagonal, but not necessarily universal, in the flavour spaces;

• flavour changing, which refers to processes where the initial and final flavour-
numbers (i.e., the number of particles of a certain flavour minus the number of
anti-particles of the same flavor) are different.

The goal of the rest of this section will be to analyse and clarify these concepts.

1.1 Genesis of Weak Universality
Leptons are coupled by the weak interaction (WI). A very first question is weather all
this coupling depends in some way on flavour or not. To answer, e−µ pair can be tested
by comparison of these decays of τ lepton:

τ− → e−ν̄eντ ; τ− → µ−ν̄µντ .

Not mentioning constants that are the same for both, the two partial widths [15] are:

Γ(τ− → e−ν̄eντ ) ∝
g2
τ

M2
W

g2
e

M2
W

m5
τ ; Γ(τ− → µ−ν̄µντ ) ∝

g2
τ

M2
W

g2
µ

M2
W

m5
τ , (1.1)
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where: MW is the mass of the W boson, ge, gµ, gτ indicate the weak charge of each
lepton.

The ratio between the two widths can be estimated, measuring the two branching
ratios:

Γ(τ− → µ−ν̄µντ )

Γ(τ− → e−ν̄eντ )
=
B(τ− → µ−ν̄µντ )

B(τ− → e−ν̄eντ )
=
g2
µ

g2
e

ρµ
ρe
, (1.2)

where the last factor is the ratio between the two phase-space terms, which is exactly
calculable from the kinematic theory. Results reported in [15] give:

B(τ− → µ−ν̄µντ )

B(τ− → e−ν̄eντ )
=

(17.36± 0.05)%

(17.84± 0.05)%
= 0.973± 0.004, (1.3)

that brings to:
gµ
ge

= 1.003± 0.002. (1.4)

The µ − τ case can be checked considering their beta decay rates. In fact, assumed in
first approximation that 100% of the muons decay in this channel, we can write:

Γ(µ− → e−ν̄eνµ)

Γ(τ− → e−ν̄eντ )
=

1

τµ

ττ
B(τ− → e−ν̄eντ )

, (1.5)

where τµ and ττ are the mean lifetimes of the leptons. Moreover, from the theoretical
point of view, we get:

Γ(µ− → e−ν̄eνµ)

Γ(τ− → e−ν̄eντ )
=
g2
eg

2
µm

5
µρµ

g2
eg

2
τm

5
τρτ

, (1.6)

and then
g2
µ

g2
τ

=
1

τµ

ττ
B(τ− → e−ν̄eντ )

m5
τρτ

m5
µρµ

, (1.7)

so it is necessary to measure two lifetimes, two masses and a branching ratio. In conclu-
sion, substituting measurements [15], we get:

gµ
gτ

= 1.001± 0.003. (1.8)

These calculation suggest the idea that the flavour of the involved leptons does not
affect the intensity of the WI. At the same time, though, these transitions act on flavour,
which changes between the initial an the final state. The same ideas, however, can
not be naively applied to other interactions and to quarks. In fact, beyond WI, no
flavour changing decays has ever been observed, yet. Moreover WI seems completely
non-universal about quarks. For example, B(Σ− → ne−ν̄e) ∼ 10−3, while B(Σ+ →
ne+νe) ∼ 10−6 [19]. Furthermore, Fermi theory properly predicts lifetimes of neutrons
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end pions, while for kaons it calculates a 20 times higher rate than the observed one [19].
Historically, the concept of strangeness (an so of flavour of the hadrons) was born,
actually, to account for particles with oddly suppressed decay rates. One of the firstly
proposed solution was, indeed, that strange particles are linked to a much more smaller
Fermi constant than the one linked to strangeless particles.
Next sections will clarify the notions of flavour and universality, showing that the latter
concept can be somehow recovered also for quarks.

1.2 Flavour in the Electroweak Model
Generalities. Flavour is a key point of the model proposed in the 60s by Glashow,
Weinberg and Salam (GWS), to unify the description of electromagnetic and weak in-
teractions within the SM [20–22]. In order to include weak charged currents (CC), this
theory has to account for the following facts, concerning leptons:

i) CC have a V − A structure;

ii) CC couple only leptons of the same family;

Therefore, Electroweak theory disposes the left-handed projection (i) of leptonic spinors
in doublets (ii), imposing local gauge symmetry for the group SU(2)L. In some way,
the idea is to develop a sort of Yang-Mills theory for eigenstates of specified chirality
(from this the subscript L); so each chiral eigenstate is equipped with new the quantum
numbers of weak isospin (I).

Anyway, more is necessary to properly describe:

iii) electromagnetic (EM) and weak neutral currents (NS);

iv) interactions of right-handed leptons;

v) massless and always left-handed neutrinos; massless photon;

GWS model choices2 to set up right-handed spinors in singlets, imposing νR = 0. In this
regard, leptonic multiplets notation is condensed here:

Leptons

doublets
(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
LfL

singlets eR µR τR Ef
R

2In the following we will refer to [16] and [23] for notation and for not mentioned theoretical back-
ground.
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Fields I3 Y Q

νeL, νµL, ντL +1/2 −1 0
eL, µL, τL −1/2 −1 −1
eR, µR, τR 0 −2 −1

φ+ +1/2 +1 +1
φ0 −1/2 +1 0

uL, cL, tL +1/2 +1/3 +2/3
dL, sL, bL −1/2 +1/3 −1/3
uR, cR, tR 0 +4/3 +2/3
dR, sR, bR 0 −2/3 −1/3

Table 1.1: Quantum number assignation in GWS model.

where the last column economize the notation, namely f = 1, 2, 3 distinguish the various
generations. Moreover, other ingredients need to be added to account for the above
mentioned phenomenology. The first one is local gauge symmetry for the group U(1)Y ,
whose quantum numbers Y are defined by a formula similar to Gell-Mann & Nishijima’s
one:

Q = I3 +
Y

2
, (1.9)

where Q is the electric charge and I3 is the third component of weak isospin. Table 1.1
summarises quantum numbers assignation to chiral eigenstates.

These hypothesises imply the following covariant derivative:

Dµ = ∂µ + igbjµ
σ̂j

2
+ ig′Aµ

Ŷ

2
, (1.10)

where: Aµ and bjµ (j = 1, 2, 3) are the gauge fields needed to preserve SU(2)L×U(1)Y lo-
cal gauge symmetry in the interaction lagrangian, g and g′ are coupling constants, Ŷ and
σ̂j/2 are the operators, respectively, of weak hypercharge and weak isospin (essentially
Pauli’s matrices).

The total lagrangian of the electroweak theory can be written as:

L = LB + LHiggs + LF + LY uk, (1.11)

here, LB and LHiggs describe free dynamics and mutual interactions between gauge bosons
and Higgs boson. Instead LF and LY uk introduce fermions and are both sum of two
independent contributions: one from leptons, one from quarks.
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Bosons

The known configuration of weak and electromagnetic vector bosons can be straightfor-
wardly obtained, including Higgs sector and Spontaneous Symmetry Braking (SSB) [24–
27]. Specifically, the Higgs field φ is a SU(2)L doublet:

φ =

(
φ+

φ0

)
, (1.12)

with an assumed vacuum expectation value given by:

〈0|φ |0〉 =

(
0

v/
√

2

)
. (1.13)

Fluctuations about this value can be parametrized by:

φ =

(
0

1√
2
(v +H)

)
, (1.14)

where H is the physical Higgs field. The interaction lagrangian can be written as:

LHiggs + LB = (Dµφ)†(Dµφ) + µ̃2φ†φ− λ

4
(φ†φ)2 − 1

4
Bj
µνB

µν
j −

1

4
FµνFµν , (1.15)

where Bj
µν and Fµν are the field strength tensors respectively for SU(2) and U(1). Then,

substituting (1.14), the lagrangian includes3 the following terms:

LHiggs + LB ⊃1
2
∂µH∂

µH+ (1.16)

− 1

2
(∂µW

+
ν − ∂νW+

µ )(∂µW−ν − ∂νW+µ)+ (1.17)

− 1

4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ)+ (1.18)

− 1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)+ (1.19)

− µ̃2H2 + g2v
2

4
W+
µ W

−µ + (g2 + g′2)
v2

8
ZµZ

µ(+0AµA
µ). (1.20)

where gauge fields have been redefined to get the physical mass eigenstates:

W±
µ =

1√
2

(b1
µ ∓ ib2

µ); (1.21)(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
b3
µ

aµ

)
with: sin θW = g√

g2+g′2
. (1.22)

As a matter of fact, terms (1.16)-(1.19) evidently refer to the free dynamics of the bosonic
fields. On the other hand, term (1.20) shows that EW theory properly predicts massive
Higgs, W and Z fields, while photon, A, remains massless.

3For simplicity all interaction terms between gauge and Higgs fields are omitted.
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Leptons

The EW interaction lagrangian for leptons is:

LlF =
3∑

f=1

L̄fLi��DµL
f
L + Ēf

Ri��DµE
f
R, (1.23)

which can instructively be rewritten in this way:

LlF =
∑
f

L̄fLi��∂µL
f
L + Ēf

Ri��∂µE
f
R + gJfµj bjµ + g′JfµY aµ, (1.24)

being Jfµj = L̄fLγ
µ σ̂j

2
LfL and JfµY = L̄fLγ

µ Ŷ
2
LfL + Ēf

Rγ
µ Ŷ

2
Ef
R the Noether’s currents con-

served because of SU(2)L and U(1)Y global symmetries, respectively.
From there, the usual distinction between CC, NC and EM currents soon reappears

passing to mass eigenstates of gauge bosons, according to (1.21)-(1.22):

LlF ⊃ LlINT =
∑
f

gJfµj bjµ + g′JfµY aµ = LlCC + LlNeut., (1.25)

with:

• LlCC =
∑

f g(Jfµ1 b1
µ+Jfµ2 b2

µ) =
∑

f
g√
2
[Jfµ+ W−

µ +Jfµ− W+
µ ], where the charge changing

currents are defined as Jfµ± = Jfµ1 ∓J
fµ
2 ; a more explicit expression is J1µ

− = ν̄eLγ
µeL.

As a consequence, for the lagrangian we have4:

LlCC =
g√
2

[(
ν̄eγ

µ 1−γ5
2
e+ ν̄µγ

µ 1−γ5
2
µ+ ν̄τγ

µ 1−γ5
2
τ
)
W+
µ + h.c. ] (1.26)

• LlNeut. =
∑

f gJ
f3
µ b

µ
3 + g′JfµY Aµ = −

∑
f g sin θWJ

fµ
EMAµ + g

cos θW
JfµNCZ

µ. Here:

J1µ
EM = ēLγ

µeR + ēRγ
µeL;

J1µ
NC =

(
sin2 θW − 1

2

)
ēLγ

µeL + (sin2 θW )ēRγ
µeR +

(
1
2

)
ν̄eLγ

µνeL.

If q = −g sin θW , we get :

LlEM = q(ēγµe+ µ̄γµµ+ τ̄ γµτ)Aµ; (1.27)

concerning weak neutral current, instead:

LlNC =
g

cos θW

∑
`

¯̀γµ
[
cL

1−γ5
2

+ cR
1+γ5

2

]
`Zµ, (1.28)

where cL = −1/2 + sin2 θW , cR = sin2 θW and ` spans all six leptonic flavours5.
4We remind: ψ = ψLψR + ψRψL.
5Recall (1 + γ5)ν = νR = 0.
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We can now stop and highlight that: every leptonic current present in (1.26)-(1.28)
can be written as:

J = ¯̀′C1`, (1.29)

where ` and `′ are vectors containing initial and final flavour eigenstates, C is a constant
operator and 1 the unit matrix. we have thus recovered the notion of flavour universality
given above for all EW interactions of leptons, within the SM. We finally notice that for
CC: `′ 6= `; it means that initial and final flavour spaces are different: CC are so flavour
changing.

Massive leptons. However, for leptons, no mass term has appeared yet. In the SM,
indeed, leptons acquire mass as a result of the so called Yukawa Mechanism. It arises
from the term of the total lagrangian:

LlY uk =
3∑

f=1

−λf ( ¯
LfLφE

f
R + Ēf

Rφ
+LfL). (1.30)

Taking into account only the first family and imposing SSB, we get:

LeY uk = −λ
ev√
2

(ēLeR + ēReL)− λeH√
2

(ēLeR + ēReL). (1.31)

Lagrangian (1.31), apart from establishing the coupling between the electron and the
Higgs boson, permits to state: me = λev/

√
2 and mνe = 0. We have so introduced the

constant λe, called Yukawa coupling of the electron. The same can be done for the other
families.

The point now is that: nothing but experiments can say if λe, λµ and λτ are equal
or not. In the first case yukawa interactions for leptons are universal, in the second only
diagonal6. Clearly nature chose the second case: mτ : mµ : me ≈ 4000 : 200 : 1 [7]. SM
does not explain why.

Quarks

The characterization of the EW scheme for quarks must allow for:

• 6 massive and charged flavour fields;

• both chiralities for each flavour;

• in CC: favourite transitions within families and suppressed (but observed) transi-
tion between families;

6We notice that a matrix is diagonal in one base may not be in another; only 1 has this property.
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By virtue of that, GWS model formulates the following arrangement of multiplets:

Quarks

doublets
(
uL
dL

) (
cL
sL

) (
tL
bL

)
Qi
L

singlets uR dR cR sR tR bR U i
R Di

R

Quantum numbers list is one more time presented in Table 1.1. Again i = 1, 2, 3 is
related to the family.

Since all quark fields are massive, the Yukawa lagrangian is slightly more complex [16,
§22.5.2]:

LqY uk = −
√

2
3∑

i,j=1

[
Q̄i
Lφf

−
ijD

j
R + Q̄i

Lφ̃f
+
ijU

j
R + h.c.

]
(1.32)

where φ̃ = iσ2φ
∗ is the Higgs charge conjugated doublet, and the constant coefficients

f±ij form in general two matrices (F±) of couplings. Applying Brout-Englert-Higgs mech-
anism (SSB) and omitting the terms of interaction with the Higgs boson, the Yukawa
lagrangian for quarks becomes:

LqY uk ⊃ −
(
ūL c̄L t̄L

) (
vF+

)uRcR
tR

− (d̄L s̄L b̄L
) (
vF−

)dRsR
bR

 (1.33)

LquarkY uk ⊃ −
[
q̄L+F̃

+qR+ + q̄′L−F̃
−q′R−

]
(1.34)

with an evident notation introduced by the (1.34). It can be shown [28, 29] that F̃±

can both be made Hermitian, γ5-free, and, above all, diagonal by making four separate
unitary transformation on the “generation triplets”. Explicitly:

(1.34) = −

q̄L+V+︸ ︷︷ ︸
q̄~
L+

M+︷ ︸︸ ︷
V †+F̃

+U+ U
†
+qR+︸ ︷︷ ︸
q̄~
R+

+

q̄~
L−︷ ︸︸ ︷

q̄L−V− V
†
−F̃
−U−︸ ︷︷ ︸

M−

q̄~
R−︷ ︸︸ ︷

U †−qR−

 (1.35)

= muū
~u~ +mcc̄

~c~ +mtt̄
~t~ +mdd̄

~d~ +mss̄
~s~ +mbb̄

~b~ (1.36)

where as requested M+ = diag(mu, mc, mt), M− = diag(md, ms, mb); the superscript
~ has been introduced to flag the appeared eigenstates of mass. Once again, SM is
totally powerless in explaining differences between quark masses [7], which are de facto
external inputs for this theory. Ergo, Yukawa interaction is diagonal for quark flavours
too. Better, it is diagonal if we refer flavour to mass eigenstates.
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What has just been shown for the Yukawa mechanism, has paramount effects on
the observed electroweak phenomenology of the quarks. By complete analogy with the
leptonic case, the following lagrangian of interaction can be assumed:

LqINT =
3∑
i=1

gJ iµj b
j
µ + g′J iµY Aµ. (1.37)

The Noether’s currents for the global symmetries SU(2)L and U(1)Y are respectively:

J iµj = Q̄i
Lγ

µσj
2
Qi
L; (1.38)

J iµY = 1
3
Q̄i
Lγ

µQi
L + 4

3
Ū i
Rγ

µU i
R+ − 2

3
D̄i
Rγ

µDi
R. (1.39)

As in the leptonic case LINTq = LCCq + LNeut.q , with:

LCCq =
∑
i

g(J iµ1 b
1
µ + J iµ2 b

2
µ) =

∑
i

g√
2

[J iµ+ W
−
µ + J iµ−W

+
µ ], (1.40)

which this time explicitly is:

LCCq =
g√
2

[q̄L−γ
µqL+W

−
µ + h.c.]. (1.41)

Physical eigenstates can now be introduced in this way:

LCCq =
g√
2

[q̄~
L−V

†
−V+q

~
L+γ

µW−
µ + h.c.]. (1.42)

The crucial matrix V †−V+ ≡ VCKM is called CKM matrix after Cabibbo-Kobayashi-
Maskawa [6, 30]. It can be demonstrated that VCKM is unitary, while there are no
reasons which imply it to be diagonal. As a result, SM can incorporate the observed
charged transitions between quarks belonging to distinct families.

We shall now commit an abuse of notation, dropping superscripts~, but still referring
to mass eigenstates. After that, the CC lagrangian can be written as:

LCCq =
g√
2

(
ūL c̄L t̄L

)Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 γµ

dLsL
bL

W+
µ + h.c. (1.43)

which plainly manifests elements of VCKM as coupling constants between up-like and
down-like mass eigenstates of quarks. As a result weak charged interaction is not flavour
universal about mass eigenstates.

Nonetheless, a small step brings to a meaningful point of view:

LCCq =
g√
2

[(ūLγ
µd′µL + c̄Lγ

µs′µL + t̄Lγ
µb′µL )W+

µ + h.c.] (1.44)
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with: d′Ls′L
b′L

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

dLsL
bL

 . (1.45)

In this scheme VCKM rules the mixing between the mass eigenstates and the, so called,
“weak eigenstates”. The interaction lagrangian (1.44) is equal to the leptonic one (1.26)
and we can say that, in this representation, charged weak interaction is flavour universal
also for quarks.

1.3 CKM matrix
As said, SM requires VCKM to be unitary. Besides it can be demonstrated that VCKM
is completely defined by only four parameters: three real, one complex phase. Real
parameters can be thought as rotation angles in a 3D flavour space. With reference to
Fig. 1.2, we define: θ12 as the angle around b axis, θ13 around s axis and θ23 around d
axis. To speed up the notation we are going to use: cij = cos θij and sij = sin θij. The
real part of the CKM matrix can be written as:

Vreal =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13

0 1 0
−s13 0 c13

c12 −s12 0
s12 c12 0
0 0 1

 (1.46)

The complex phase can be introduced in this way:

V =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ13

0 1 s0
−s13e

+iδ13 0 c13

c12 −s12 0
s12 c12 0
0 0 1



=

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
+iδ13 c12c23 − s12s23s13e

+iδ13 s23c13

s12s23 − c12c23s13e
+iδ13 −c12s23 − s12c23s13e

+iδ13 c23c13


(1.47)

One can observe that (1.47) is allowed because of the unitary nature of VCKM . This latter
condition can be experimentally checked, measuring the values of flavour parameters
which compose the matrix. The results currently accepted are [7]:

θ12 = (13.0005±0.0005)◦, θ23 = (2.387±0.013)◦, θ13 = (0.202±0.006)◦, δ13 = (68±3)◦

(1.48)
and the CKM matrix becomes [7]:

V =

 974.34+0.11
−0.12 225.06± 0.50 3.57± 0.15

224.92± 0.5 973.51± 0.13 41.1± 1.3
8.75+0.32

−0.33 40.3± 1.3 999.15± 0.05

× 10−3. (1.49)
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Figure 1.2: Quark rotation

Squared modules of VCKM elements are, in fact, transitions rates from up-like states
to down-like ones, or vice versa. On the grounds of that a first test of the theoretical
hypothesises is possible: the sum of the squared module along row and column must be
one. The experimental results are [7]:

|Vud|2 + |Vus|2 + |Vub|2 = 0.9996± 0.0005 1st row

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.040± 0.0032 2nd row

|Vtc|2 + |Vts|2 + |Vtb|2 = 1.02± 0.06 3rd row

|Vud|2 + |Vcd|2 + |Vtd|2 = 0.9975± 0.0022 1st col.

|Vus|2 + |Vcs|2 + |Vts|2 = 1.042± 0.0032 2nd col.

|Vub|2 + |Vcb|2 + |Vtb|2 = 1.02± 0.06 3rd col.

By observation of the elements of the CKM matrix reported in (1.49), a clear hierarchy
can be found. As graphically displayed by Fig. 1.3 diagonal terms are close to 1, meaning
that transition within the families are favoured. Besides, the mixing between the first
and the second family is bigger than the mixing between the first one and the third one,
which is strongly suppressed.

17



Figure 1.3: Graphical representation of the relative magnitude of VCKM elements.
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Chapter 2

Test of LFUV: RD∗

2.1 Standard Model Prediction
Following [5, 31, 32], the relevant effective Hamiltonian for the semileptonic transition
b→ c`ν̄` is:

Heff =
4GFVcb√

2
Jbc,µ

∑
`=e,µ,τ

(¯̀γµPLν`) + h.c., (2.1)

where Jµbc is the charged current for b→ c, according to the SM:

Jµbc = c̄γµPLb, (2.2)

with PL = (1 − γ5)/2. Starting from (2.1), the transition rate for the process B̄0 →
D∗+`−ν̄` can be calculated as a function of the transferred 4-momentum q2 = (pµB−p

µ
D∗)

2:

dΓ`
dq2

=
G2
F |Vcb|2|p|q2

96π3m2
B

(
1− m2

`

q2

)2 [(
|H++|2 + |H−−|2 + |H00|2

)(
1 +

m2
`

2q2

)
+

3

2

m2
`

q2
|H0s|2

]
(2.3)

where |p| =
√
λ(m2

B ,m
2
D∗ ,q

2)

2mB
, with λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc), is the module

of the 3-momentum of the D∗ meson in the B0 rest frame. Terms Hmn represent the
helicity amplitudes for transitions from the initial state, whose helicity is fixed, to the
final states whose helicities are reported in the subscripts:

H±±(q2) = (mB +mD∗)A1(q2)∓ 2mB |p|
mB +mD∗

V (q2),

H00(q2) =
1

2mD∗
√
q2

[
(m2

B −m2
D∗ − q2)(mB +mD∗)A1(q2)− 4m2

B |p|
2

mB +mD∗
A2(q2)

]
,

H0s(q
2) =

2mB |p|√
q2

A0(q2);

(2.4)
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where A0(q2), A1(q2), A2(q2) and V (q2) are form factors (FF), which describe the non-
perturbative hadronic interactions in B0 → D∗−τ+ντ . One possible parametrization [1]
exploits the scalar product of the B and D∗ four-velocities:

w = vB · vD∗ =
m2
B −m2

D∗ − q2

2mBmD∗
, (2.5)

After that, it is convenient to express FF in terms of a universal FF hA1(w) and ratios
Ri(w):

A1(w) =
(w + 1)r̃

2
hA1(w); A0(w) =

R0(w)

r̃
hA1(w);

A2(w) =
R2(w)

r̃
hA1(w); V (w) =

R1(w)

r̃
hA1(w);

(2.6)

with r̃ =
√

2mBmD∗
mB+mD∗

. Using dispersion relations and analyticity constraints [5, 33], the
universal FF and the ratios can be expressed in term of just five parameters:

hA1(w) =hA1(1)[1− 8ρ2
D∗z(w) + (53ρ2

D∗ − 15)z2(w)− (231ρ2
D∗ − 91)z3(w)];

R1(w) =R1(1)− 0.12(w − 1) + 0.05(w − 1)2;

R2(w) =R2(1) + 0.11(w − 1)− 0.06(w − 1)2;

R0(w) =R0(1)− 0.11(w − 1) + 0.01(w − 1)2.

(2.7)

Here, z(w) = (
√
w + 1−

√
2)/(
√
w + 1+

√
2). Instead, the FF parameters R1(w), R2(w)

and ρ2
D∗ are measurable in analysis of B → `τ+ν` decays. According to Heavy Flavour

Averaging Group (HFAG) [4] their values are:

R1(w) = 1.401± 0.033; R2(w) = 0.854± 0.020; ρ2
D∗ = 1.207± 0.028. (2.8)

R0(w) affects the dacay rate only via the scalar hadronic amplitude H0s(q
2). The cor-

responding leptonic amplitude is helicity suppressed, i.e., its rate is proportional to the
mass of the mass of the lepton. As a result, B → `τ+ν` decays are not sensitive to this
FF, and R0(w) has not been measured. Its theoretical estimation is R0(1) = 1.14± 0.07,
based on HQET [5].

Because of the differences of mass among leptons, the last term of (2.3) is important
only if ` = τ . On the contrary, the phase space term (1−m2

l /q
2)

2 suppresses channels
with τ with respect to the others.

Uncertainties due to the form factors for the hadronic transitions can be reduced
taking into account the ratio between the the case with ` = τ and ` = e, µ. By virtue of
that a worthy observable is:

RD∗ =
B(B̄0 → D∗+τ−ν̄τ )

B(B̄0 → D∗+µ−ν̄µ)
(2.9)
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We can notice, in fact, that the factor hA1(1) only affect the overall normalization, then
it cancels in RD∗ . Explicitly we have:

RD∗(q
2) =

dΓτ/dq
2

dΓe,µ/dq2
=

(
1− m2

τ

q2

)2 [(
1 +

m2
τ

2q2

)
+

3m2
τ

2q2

|H0s|2

(|H++|2 + |H−−|2 + |H00|2)

]
(2.10)

This expression suggests that also the correlation among FFs may be reduced in the
ratio. Integrating (2.10) on q2, we finally get the SM prediction:

RSM
D∗ = 0.252± 0.003 . (2.11)

The given uncertainty is mainly dominated by the estimation of higher order perturbative
terms and by “heavy quark approximation” [34].

2.2 New Physics in b→ c`ν̄`

The presence of a τ lepton can enhance new physics (NP) contributions which remain
suppressed when lighter leptons appear [31]. Such phenomena can be describe by effective
theories by writing Jµbc as a total derivative of a scalar operator. As a consequence, the
study shown in [5] modifies (2.1) choosing to let intact the V −A structure of the leptonic
part. Specifically, the hadronic current is expanded in:

Jµbc = c̄γµPLb+ gSLi∂
µ(c̄PLb) + gSRi∂

µ(c̄PRb) (2.12)

where the first term comes from SM, while gSL and gSR are dimensionful couplings due
to NP. If NP come at a scale big enough (ΛNP � v, where v is the vacuum expectation
value of EW theory) then we expect: gSL,SR ∼ 1/ΛNP . Besides it can be shown that NP
charged current as (2.12) only affect H0s, which can be written as:

H0s = HSM
0s

[
1 + (gSR − gSL)

q2

mb +mc

]
. (2.13)

It is now possible to evaluate the impact of NP on RD∗ :

RD∗ = RSM
D∗

{
1 + 0.12Re [mτ (gSR − gSL)] + 0.05|mτ (gSR − gSL)|2

}
(2.14)

The experimental measurement ofRD∗ allow then to constrain the difference between the
new couplings: gSR − gSL. Merging this to other results1 should be possible to estimate
a energetic scale for NP.

Several theories Beyond the Standard Model (BSM) predict modification to RD∗ .
Among them we remember: models with two charged doublet of higgs bosons (2HDM)
of II or III kind, the leptoquark model, and the existence of new, tensorial or scalar,
mediators provided of colour charge.

1For example the measurement of RD ≡ BR(B̄0→D+τ−ν̄τ )
BR(B̄0→D+µ−ν̄µ)

should depend on gSR + gSL [5].
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Chapter 3

The LHCb detector at LHC1

3.1 The Large Hadron Collider
The Large Hadron Collider (LHC [35]) is the largest particle accelerator in the world.
It is located at CERN laboratories, near Geneva, in the 100 m underground tunnel that
previously hosted LEP accelerator. The main characteristics of this machine are resumed
in Tab. 3.1.
The main experiments now in operation at the LHC are:

• ALICE: designed to study the hadronic state called “quark-gluon plasma”, produced
by collisions between heavy nuclei (e.g. Pb-Pb).

• ATLAS and CMS: multi purpose-detectors, designed for direct search of new
physics (NP). In 2012 they obtained the first direct observation of the Higgs boson.

• LHCb: designed to study CP violation. The LHCb experiment searches for indirect
evidences of NP in the charm and beauty quarks sectors, and also specifically
oriented to indirect search for NP.

3.2 The LHCb detector
The first feature of LHCb experiment is the high statistic it can collect. This is due
to the large production cross section for beauty quarks pairs, σbb̄ = (283 ± 53) µb,
and charm quarks pairs, σcc̄ = (6.1 ± 0.93) mb in high energy pp collisions [7]. The
high luminosity condition results in an enhanced probability of pile-up events. They
represent on of the main problems for the LHCb experiment, since a reconstruction of
decay chains with main interaction vertices, together with good particle identification
(PID) performances is needed. For these reasons, an appropriate beam focusing system
reduces the instantaneous luminosity at LHCb interaction site (see Tab. 3.1).
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Run 1
Years 2011-12
√
s 8

Circumference 26.7 Km
Max instantaneous luminosity 1034 cm−2s−1

LHCb instantaneous luminosity 2× 1032 cm−2s−1

LHCb integrated luminosity 3 fb−1

Bunch crossing frequency 40 MHz
p− p cross section 100 mb

Bdipols ∼ 8 T
Protons per bunch ∼ 1011

Table 3.1: LHC essential parameters.

Due to the imbalance in momentum of two partons that collied during a pp interac-
tion, the bb and cc pairs are produced in the same forward (or backward) direction. As
a consequence, the LHCb experiment is designed as a single-arm forward spectometer.
Its geometrical acceptance covers the pseudorapidity1 range 2 < η < 5 in the bending
plane, which corresponds to 0◦36′ < θ < 17◦, if θ names the elevation angle from the
beam direction (yz plane)2.

The LHCb detector total length is about 20 meters. According to the forward spec-
tometer configuration several subdetectors are disposed one after the other along the
beam pipe direction. The general scheme is illustrated in Fig. 3.1. The LHCb sub-
detectors can be divided in two differen categories.

• The tracking systems: Vertex Locator (VELO), Tracker Turicensis (TT) and the
three tracking stations (T1-T3). The aim of the tracking systems is to reconstruct
the tracks from the hits in the various apparatus and to measure particle momenta
through their curvature in a magnetic field.

• The PID systems: two Ring Imaging Cherenkov detectors (RICH1 and RICH2),
the calorimeter system (PS, SPD, ECAL and HCAL) and five muon stations (M1-
M5). The goal of the PID systems is to identify particles that cross the detector
exploiting theri different behaviour when interacting with different materials.

In the following , a more detailed description of the various sub-detectors will be given.
1η = − log(tan θ/2).
2In the xz plane the acceptance is slightly smaller: 0◦36′ < θ < 14◦, where θ is the azimuthal angle.
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Figure 3.1: LHCb general scheme.

3.2.1 Tracking System

The tracking system is composed by the Vertex Locator placed around the collision
point, and Trigger-Tracking planes situated before (TT) and after (T1-T3) the dipole
magnet. The VELO and TT are completely made of silicon micro-strips. This technology
also used in the T1-T3 regions closer to the beam pipe; commonly referred to as Inner
Tracker (IT). The outer sectors of T1-T3, called Outer Tracker (OT) are made instead
of straw-tubes. The combination of TT and IT is usually named “Silicon Tracker”.

VELO. The LHC proton beams run across the entire length of the detector protected
by a beryllium pipe. The VELO is located at the point where the beams collide. Its
task consists in identifying the primary and secondary vertices. In fact, B and D mesons
have average lifetimes of ∼ 10−12 s and travel a distance of about 1 cm before decaying.
This sub-detector is made up of a series of crescent-shaped silicon modules, perpendicular
to the direction of the beam. Each module is 0.3 mm thick and consists of two types of
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Figure 3.2: (top) Top view of the VELO and (bottom) frontal view of the VELO in (left) open
and (right) closed position, respectively. The R sensors are represented in red while
the φ sensors are drawn in blue.

sensors named R and φ. The former are segmented into concentric silicon strips, whereas
the latter sensors are radially segmented. The R sensors measure radial position, while
φ sensors measure the azimuthal coordinate. Each sensor has an amplitude of 182◦

(Fig. 3.2). To improve the measurement of the primary vertex, the VELO, in addition
to covering the entire angular acceptance forward, also partially covers the backward
hemisphere.

Fig. 3.2 also displays the two possible VELO arrangements: Fully Closed and Fully
Open. The first one is the working configuration, the second one, instead, is exploited
during beam stabilization phase or during maintenance.

Trigger Tracker. The TT is positioned after the first RICH and before the entrance
to the magnet. Its inner part (IT) is composed by silicon micro-strip sensors with a
∼ 200µm step. Their efficiency exceeds 99.8%. The main purpose of this sub-detector
to provide information to the first level of trigger to estimate the momentum of tracks
with high impact parameter.
The Trigger Tracker is made up of 4 layers. The first and fourth have vertical reading
strips and measure the bending coordinate x, the second and third, instead, measure the
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Figure 3.3: VELO three-dimensional structure.

z coordinate thanks to strips rotated of +5◦ and −5◦, with respect to the previous ones.
The TT dimensions are 150× 130 cm2 and thus it covers the entire detector acceptance.

Tracking Stations. The Inner Tracker (IT) is the inner part of the Tracking Stations.
It is located after the magnet and it is divided into three equidistant stations (T1, T2,
T3), positioned at the coordinate z = 7.67, 8.36, 9.05 m. Each station is divided into
4 layers of detectors. The first two layers have vertical cells, while the second and third
are composed of circular cells, offset by a stereo angle of ±5◦. This arrangement ensures
a precise measurement of the pulse and sufficient resolution for the reconstruction of the
traces in the vertical plane. The Inner Tracker has a surface of about 120× 40 cm2, in
the shape of a cross around the beam pipe (see Fig. 3.4).

The shape of the Silicon Tracker is the result of the following considerations.

• Spatial resolution. For both TT and IT, a single hit resolution of 50 µm is
required to have a fairly accurate pulse measurement.

• Hit occupancy. The flow of particles in the Inner Tracker is about 5 × 10−2

particles per cm2. Instead in the outer region the flow is reduced by two orders of
magnitude.

• Signal formation. The signal is formed in a time of the order of the collision
frequency of LHC (25 ns) to avoid mainly the pile-up of events originating from
consecutive collisions.
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Figure 3.4: (left) first and (right) third planes composing the Inner Tracker. Both figures are
relative to the xy plane. The reported dimensions are in cm.

• Single hit efficiency. For maximum efficiency on every single hit the signal to
noise ratio S/N (Signal-to-Noise) must be greater than 10.

The Outer Tracker (OT) is essentially a drift detector and consists of 2 layers of 64
straw-tubes. Each straw tube has an inner diameter of 4.9 mm and walls 75 µm thick.
It is filled with a gaseous mixture consisting of Argon (70%) and CO2 (30%). In these
conditions the drift time is less than the time interval between two collisions at LHC,
(< 25 ns), and the resolution achieved 200 µm. Each module consists of 3 stations each
with a total active area of 5971× 4850 mm2.

3.2.2 Particle identification systems

The particle identification system consists of two Ring-Imaging Cherenkov (RICH) de-
tectors, two calorimeters and a muon detector. As shown in Fig. 3.1, the RICH1 is
located just after the VELO, while the RICH2 is immediately after the last Tracking
Station. Subsequently ECAL and HCAL are placed before the muon detector.

RICH. RICH detectors measure the emission of Cherenkov radiation. This arise when
a charged particle travels through a medium, in this case gas, with a velocity higher
than light in that medium. Through the analysis of the emitted radiation it is possible to
distinguish with precision the protons, kaons and pions candidates. The RICH apparatus
measures the Cherenkov angle θc through the formula:

cos θc =
1

nv
c

, (3.1)

where v is the velocity of the particle, n is the refraction index of the medium and c is
the light velocity in the vacuum. Fig. 3.5 displays the distribution of θc as a function of
particle impulse. For given impulse different particles emit light with different Cherenkov

27



Figure 3.5: Cherenkov angle as function of momentum of particles.

angles.
In order to identify charged particles with momentum between 1 and 100 GeV/c two
RICH detectors are needed. The RICH1 optimally identifies particles with a pulse be-
tween 10 and 60 GeV/c; RICH2 instead is accurate for particles with a pulse between 60
and 100 GeV/c. The RICH1 (Fig. 3.6) consists of two different radiator media: aerogel
and fluorobutane (C4F10). Aerogel is a colloidal form of quartz, with an extremely low
density, but with a refractive index in the range 1.01-1.10; these characteristics make it
suitable for detecting particles with a low impulse (few GeV/c). Fluorobutane has a re-
fractive index of 1.0014 and allows the identification of particles with a higher pulse. The
RICH2 (Fig. 3.6) is composed of a single radiant medium: tetrafluoromethane (CF4),
which has a refractive index of 1,00048.
The photons produced by the particles travelling in the RICH detectors are conveyed,
through a system composed by mirrors, onto a lattice of photo detectors, called Hybrid
Photon Detector (HPD). To reduce possible deflections, ultra-light spherical mirrors,
made of polymer-reinforced carbon fibers (CFRP), are used. Being placed after the
tracking system, glass can be used to construct the spherical mirrors of RICH2. Both
RICH utilize the HPD to measure the position of the emitted photons.

Calorimeters. Calorimeters are designed to measure the energy of the particles. Be-
fore ECAL two auxiliary detectors are installed: PS (Preshower Detector) and SPD
(Scintillator Pad Detector). HCAL, instead, is installed immediately after ECAL. PS
and SPD discriminate respectively the large background consisting of charged pions and
charged particles from neutral ones. SPD, PS and ECAL are segmented into 3 zones
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Figure 3.6: Scheme of RICH detectors.

composed of cells of different spatial area, as illustrated in Figure 3.7.

ECAL is composed of 2 mm thick sheets of lead interspersed by 4 mm thick scintillator
plates. HCAL has a similar structure: 4 mm thick plastic scintillator plates alternating
with 16 mm thick layers of iron. The scintillation light is transmitted to phototubes
through WaveLenght-Shifting plastic fibers. The LHCb calorimeters can distinguish e±
and pi± with a precision of 90% and a contamination of less than 1%.

Muon Detector. Muons are present in many decays of the B and D mesons, so the
identification of muons is very important for the LHCb experiment. Located at the end
of LHCb, the muon detection system consists of 5 rectangular Multi-Wire Proportional
Chambers (MWPC) of increasing size (see Fig, 3.8). Each MWPC station contains cells
filled with different gases: carbon dioxide, argon and methane tetrafluoride. There are a
total of 1380 chambers and 2.5 million wires covering an area of about 435 m2.

After the calorimeters system, the M2-M5 stations are interspersed with 80 cm thick
iron absorbers. To be able to pass all the stations, a muon must have a threshold of
about 6 GeV. The M1 station is the most important because it has to sustain a flow
of particles higher than the others (about 250 kHz/cm2) it is formed by two chambers
triple-GEM (Gas Electron Multiplier) detectors overlapped.
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Figure 3.7: (left) PS, SPD and ECAL and (right) HCAL segmentation. Only a quarter of the
total trasverse surface is shown.

The Magnet. The magnet, positioned between the TT and T1 detector (see Fig. 3.1),
It consists of two coils, each 27 tons heavy of trapezoidal shape folded to 45◦ along the
two transverse sides and mounted inside an armor of steel of 1450 tons (see Fig. 3.9);
It is 4.3 meters long horizontally and 3.6 meters vertically. Each coil is made up of 10
layers covered by about 3000 meters of cables aluminum. The magnet is a warm dipole
i.e. non superconducting. The maximum field intensity of the magnet is about 1T, while
the integral of the magnetic field is approximately 4 Tm. During data acquisition, the
polarity of the magnet is reversed several times to minimize the sysitematic effects due
to left-right asymmetries of the detector.

3.2.3 The Trigger

The LHCb experiment works at an instantaneous luminosity of 2 × 1032cm−2s−1, two
orders of magnitude less than the nominal one of LHC. This characteristic has precise
advantages: it facilitates the management of damage caused by radiation and it makes
sure that there are only single collisions during the beam crossing, thus facilitating the
reconstruction and the trigger itself. The collision frequency is of ∼ 40MHz and thanks
to this data acquisition system is reduced to about 5 kHz. The Trigger System is com-
posed of two levels: the Level-0 (L0) and the High Level Trigger (HLT). The former is
implemented in the detection electronics, while the second is software that works on a
CPU farm of thousands of nodes. The offline analysis rejects a large part of background
events based on the masses of the B and D mesons, their average lifetimes and other
stringent conditions.

L0. The objective of the Level-0 Trigger is to reduce the inflow of data from the fre-
quency of bunch crossing of 40 MHz to 1 MHz. To do this, we some operations need to
performed:

• identification of hadrons, electrons and photons with a transverse energy (ET)greater
than a given threshold by analysing the information of the calorimeters systems;
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Figure 3.8: Lateral view of the 5 muon stations.

• reconstruction of muon pairs with the high transverse momentum;

• estimation of the total energy observed;

• calculation of the number of tracks based on the information on the hits obtained
from the SPD.

HLT. The High Level Trigger is composed of two sub-levels: HLT1 and HLT2. The goal
of HLT1 s to further reduce the rate obtained from the L0 output to a more manageable
level. The request for tracks with high pT and with a large impact parameter reduces
the data rate to about 30 kHz. At this point the HLT2 refines the selection of the
candidates, writing to the storage disks at a rate of 5kHz. The collected events are
sent to the computing system present in CERN (Tier-0). Tier-0 will be responsible for
distributing the data collected in the 6 Tier-1 calculation centers in Europe almost in
real time. One of these six centers is based in Bologna (CNAF).
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Figure 3.9: Section of the magnetic diopole.
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Chapter 4

LHCb measurement of RD∗ 3-prong

This chapter describes the measurement of RD∗ performed by the LHCb Collabora-
tion [13]. The focus is reserved to the estimation of B(B0 → D∗−τ+ντ )

1, using as final
state the τ+ hadronic decay with three charged particles, τ+ → π+π−π+(π0)ν̄τ , also
called 3-prong. The employed data sample was collected by the LHCb experiment dur-
ing Run 1. The energy in the center of mass for the pp collisions was 7 TeV in 2011 and
8 TeV in 2012. The overall integrated luminosity collected was 3 fb−1.

The analysis of this 3-prong mode is complementary to the measurement of RD
∗

already performed by the LHCb collaboration, and based on τ+ leptonic decays [3].
In particular the 3-prong configuration:

• avoids the difficult task of discriminating the τ+-channel among the more abundant
prompt semileptonic decays involving lighter leptons: B0 → D∗−τ+(→ `+ν`ν̄τ )ντ
vs. B0 → D∗−`+ν`, with ` = e, µ;

• allows to reconstruct the τ decay vertex. This gives a powerful criterium to dis-
criminate between the signal and the most abundant background source due to
prompt hadronic decays of the B0 meson (§4.3);

• permits to close the kinematics of the τ+ and B0 dacays. Since a single neutrino is
present in each of their decays, the knowledge of the direction of τ+ and B0 grants
the estimation of all 4-momenta, up to a two fold ambiguity (§4.4).

Nevertheless, the signal extraction remains an onerous effort. To suppress at a very
large extent the other background sources, novel partial reconstruction techniques and
isolation tools (based on charged but also neutral particles) were developed by the LHCb
Collaboration (§4.3.2). Another efficient tool to isolate the signal is the different 3π
dynamics observed in τ+ and D+

s decays; it led to the implementation of a multivariate
analysis (BDT), whose output was exploited, on one hand to enhance signal purity, and on

1The inclusion of the charged-conjugated modes is always implied in this study.
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(a) Signal (b) Normalization

Figure 4.1: Graphic representation of signal and normalization channels [36].

the other hand as input variable for the final fit (§4.5). Anyway, after all cleaning cuts,
the signal to noise ratio amounts to ∼ 1/100. In order to overcome this, is necessary to
demonstrate that each background source can be precisely controlled and described by
Monte Carlo templates (§4.7).

The first aim of this work of thesis is to understand the analysis steps and replicate
the main ones (templates production and final fit). This was done to identify the key
points, that need to be taken care of, in furtherance of a RD∗ analysis, as a function of
q2 ≡ (pB − pD∗)2 = (pτ + pντ )

2.
Relating to this, preliminary tests have been done. They include:

• a fit on all data, excluding q2 observable;

• fits in two different q2 regions;

• training of a new Multivariate analysis and fit to all data.

These feasibility studies are topics of § 5.

4.1 Analysis Method
In order to measure the quantity:

RD∗ =
B(B0 → D∗−τ+ντ )

B(B0 → D∗−µ+νµ)
, (4.1)
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we make use of the following decay topology for B0 → D∗−τ+ντ :

B0 →D∗−τ+ντ

↪→ π+π−π+(π0)ν̄τ

↪→ D̄0π−

↪→ K+π−.

(4.2)

so the visible final state consists of six tracks: two pions plus a kaon originating from
the D∗− decay chain (which is fully reconstructed), and three charged pion pions (3π ≡
π+π−π+) decaying from the τ+. In addition, events compatible with τ+ → 3ππ0ν̄τ are in-
cluded too, even if the calorimetric information are not sufficient to properly reconstruct
the neutral pion, which de facto is undetected as well as the two neutrinos.

From an experimental point of view is more convenient to measure:

KD∗ ≡
B(B0 → D∗−τ+ντ )

B(B0 → D∗−3π)
, (4.3)

because here the numerator (called signal hereafter) and the denominator (called nor-
malization hereafter) have the same visible final signature (Fig. 4.1), so many systematic
uncertainties cancel in the ratio. RD∗ can be written as:

RD∗ = KD∗ ×
B(B0 → D∗−3π)

B(B0 → D∗−µ+νµ)
, (4.4)

where the last fraction is actually an external input for this analysis. Other external
inputs are the branching ratios B(τ+ → 3πν̄τ ) and B(τ+ → 3ππ0ν̄τ ). All these values
are reported in Tab. 4.1. Finally KD∗ can be determined, according to:

KD∗ =

(
Nsig

εsigB(τ+ → 3πν̄τ )
+

Nsig0

εsig0B(τ+ → 3ππ0ν̄τ )

)
εnorm
Nnorm

, (4.5)

where Nsig, Nsig0 and Nnorm are the yields extracted from data of the two signal chan-
nels and of the normalization mode; εsig, εsig0 and εnorm are their respective selection
efficiencies, evaluated on Monte Carlo (MC) samples.

The measurement of the signal yield will be realized with a three dimensional fit
to data. The three considered observables are: q2, the τ+ lifetime, together with the
already cited output variable of a Multivariate Analysis. The fit model will be based on
MC templates, validated and corrected by suitable control samples. The latter will be
also exploited to estimate several background parameters, which will reduce the degrees
of freedom in the final fit.
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Channel B(%) Ref.

B0 → D∗−τ+(→ 3π(π0)ν̄τ )ντ 0.173± 0.005 [13]

τ+ → 3πν̄τ 9.31± 0.05
τ+ → 3ππ0ν̄τ 4.62± 0.05

B0 → D∗−µ+νµ 4.88± 0.10 [4]
B0 → D∗−3π 0.721± 0.029

B0 → D∗−3π(π0) 2.5± 0.3
B0 → D∗−D+

s /D
∗+
s /D+

s (2317)/D+
s (2457)(→ 3π) 0.040± 0.004

B0 → D∗−D+
s /D

∗+
s /D+

s (2317)/D+
s (2457)(→ 3π)N 0.56± 0.06

B0 → D∗−K0D∗+(→ D+(→ 3π(π0))γ/π0) 0.0050± 0.0005
B0 → D∗−K0D+(→ 3π(N)) 0.0123± 0.0011
B0 → D∗−D+(→ 3π(N)) 0.0012± 0.0001
B0 → D∗−K0D∗+(→ D0(→ K−3π(π0))π+) 0.067± 0.006
B0 → D∗−K+D∗0(→ D0(→ K−3π(π0))γ/π0) 0.130± 0.012
B0 → D∗−K+D0(→ K−3π(π0)) 0.030± 0.003

Table 4.1: Branching fractions for the relevant channels of this analysis. Where not differently
specified, PDG is assumed as reference [7]. In the first row, B for the signal channel
is a Standard Model prevision.
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4.2 First Backgrounds Overview
Several sources of background are considered. Each one is composed of many categories,
which are here introduced and named.

The main channels, which produce the physical background, are listed in Tab. 4.1
with their branching fraction2. The table suggests that the more relevant component of
the physical background will be due to B0 → D∗−3π(N), called “prompt background”
hereafter (N stands for a possible undetected neutral system). This component can
be heavily suppressed, requiring that the decay vertex of the candidate τ+ lepton is
sufficiently downstream with respect to the decay vertex of the candidate B0; we will
refer to this as “detached-vertex cut”. Furthermore, the latter can be upturned, thus
producing a prompt-background control sample, which can be used to obtain Nnorm.

After this selection, the physical background is due to candidates where the three
pions originate from a particle of detectable lifetime. We will call it “double-charm”
background. Specifically: B0 → D∗−XD(X) with XD → 3π(N); here XD stands for
D+
s , D+, D0, while (X) specifies that the inclusive modes are also considered. The

main contribution is given by the D+
s -mode. This background category has complicated

possible resonance intermediate states, such as: D+∗
s , D+∗

s0 (2317), D+
s1(2460). Other

similar and relevant, double-charm background channels are3: B0,+ → D∗∗D+
s X and

B0
s → D∗−D+

s X.
The others background categories are combinatorial. First of all, a wrong association

may occur between a D∗-originated and a τ+-originated decay chain: each of them can
be correctly reconstructed, even if they are not daughters of the same b hadron4. The
3π system, in fact can stem from: a different B0 mesons of the event (B1B2 category),
the decay of charm hadrons produced at the PV (charm category), another PV , an
interaction in the beam pipe or in the detector material; after cleaning cuts the B1B2
category is the more relevant. Moreover, a wrong tracks association may affect the
single D∗-originated decay chain, even if the invariant mass distribution of these fully
reconstructed decays should suppresses it (notD∗ category). Concerning instead the 3π
candidate system, the combinatorial background regards essentially two pions, which
originate from the same vertex, while the third one come from the primary vertex (PV),
from a different vertex in the decay chain of the same b hadron, from a different b hadron
or from a different PV.

2 Three body decays such as B → D∗DK also exist: with exited kaons states (mostly K∗(890)), with
excitations of the second D, or both. Anyway, these components involve, at least, two missing kaons
plus several other neutral particles, coming from resonances de-excitation. As a result, the visible mass
is smaller than the one expected for signal and so these modes do not represent a serious background
for this analysis.

3With D∗∗ we refer to all the already cited charmed resonances; as usual X indicates the inclusive
modes.

4The low momentum of the pion emitted in the decay D∗− → D̄0π− decreases precision in the
determination of D∗− and B0 decay vertex.
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Variable Cut Targeted Background

m(K+π−) ∈ [1845, 1885] GeV/c2 combinatorial
pT (π−s ) > 0.11 GeV/c combinatorial

m(D∗−)−m(D̄0) ∈ [143, 148] MeV/c2 combinatorial

[z(3π)− z(B0)]/σz(3π)−z(B0) > 4 prompt
pT (π) > 0.25 GeV/c combinatorial
m(3π) < 1.6 GeV/c2 double-charm
r3π ∈ [0.2, 0.5] mm spurious 3π

χ2
IP (D̄0) > 10 charm

χ2
IP (π), π from 3π > 15 combinatorial

PV (D̄0) = PV (3π) charm/combinatorial
number of B0 candidates = 1 all

3π vertex χ2 < 10 combinatorial

BDT output > −0.075 double-charm
Table 4.2: Selection cuts for signal sample. The table is subdivided according to text reference

sections. Isolation requirements are not reported for brevity.

Finally, other possible sources of background may come from particle identification
(PID); in particular K−π or e, µ−π misidentification. LHCb PID performances manage
to make negligible the second one.

4.3 Selection Criteria
This section describes the cuts applied to increase the signal purity. Tab. 4.2 and text
summarise and explain the main requirements.

D∗ reconstruction. The criteria are applied to the full D∗− decay chains. D̄0 candi-
dates are reconstructed, requiring an invariant mass of theK+π− pair to be between 1845
and 1885 MeV/c2. These are combined with soft pions (π−s ) of transverse momentum
larger than 0.11 GeV/c, such that the difference between the D∗− and the D̄0 masses
lies between 143 and 148 MeV/c2.

4.3.1 Topological Requirements

The detached-vertex cut. According to MC, the mean longitudinal momentum of
τ+ leptons, created by B0 → D∗−τ+ντ decays, is ∼ 70 GeV in the laboratory frame. So
their relativistic factor is γ ≈ 55 and they fly on average for 5 mm in the beam pipe

38



Figure 4.2: MC Distribution of the distance between the B0 decay vertex and the 3π vertex
along the beam direction, divided by its uncertainty. The gray area indicates the
prompt background; the cyan area indicates the double-charm background; the red
area indicates the signal. Histograms are not stacked. The vertical line shows the
4 σ cut used in the analysis.

before decaying5. This allow to select signal candidates with flight distance four times
grater than its uncertainty, in the beam direction. Studies on inclusive MC simulations
show that this detched-vertex requirement reduces the prompt background of more than
three order of magnitude. On the other side, only 10% of the signal events survives after
this cut. Fig. 4.2 graphically displays the effectiveness of the requirement. Basically,
the drawback on signal is fully compensated by a strong improvement in the sample
purity. From the same figure we can also deduce the dominance of the double-charmed
background over signal after this topological cut. Fig. 4.3 presents the invariant mass
distribution of the 3π system after the vertex-detached cut; peaking structures due to
D+
s → 3π and to D+ → 3π are clearly visible.

Other topological cuts. In order to suppress combinatorial and charm backgrounds,
in addition to the detached-vertex criterion, other cuts are implemented and reported
in Tab. 4.2. These include a good track quality and a minimum transverse momentum
of 250 MeV/c for each π. For 3π system a good vertex reconstruction quality and a
large χ2

IP with respect to any PV, are required; here χ2
IP is defined as the difference

in the vertex-fit χ2 of a given PV reconstructed with and without the particle under
consideration. The 3π invariant mass is required to be lower than 1.6 GeV/c2 to reduce

5The lifetime of the tau lepton is (290.3± 0.5)× 10−15s [7].
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Figure 4.3: 3π invariant mass after detached-vertex requirement. D+ and D+
s signal are visible

in the spectrum [13].

double-charm background (see Fig. 4.3). Moreover, it is necessary to check that other
protons interactions or secondary interactions with the beam pipe material do not gener-
ate the 3π system. To do that, the distance, r3π, from the beam center and the 3π vertex
must guarantee that the latter is neither inside the the beam envelope, nor outside the
beam pipe.

4.3.2 Isolation Requirements

Charged isolation. In order to ensure that no extra charged tracks are compatible
with B0 or 3π decay vertices, a specific algorithm has been implemented. It counts the
overall number of charged tracks having pT larger than 250 MeV/c, χ2

IP > 4 with respect
to the PV and χ2

IP smaller than 25 with respect to the 3π and the B0 vertex. If any
such track is found, the candidate D∗−3π is rejected.
The present strategy is particularly useful for discriminating double-charm physical back-
ground where a flying D0 decays to K−3π(X).

Neutral isolation. Many background channels contains neutral particles in their de-
cay chain. By virtue of that, they can be suppressed profiting by the energy deposited
in the electromagnetic calorimeter. A pseudocone in ∆η − ∆φ of 0.3 units around the
direction of the 3π system is taken as region of interest. Candidates are rejected if here
the energy deposition exceeds 8 GeV.
This algorithm is indicated to discriminate against inclusive D+

s decays to 3πX, which
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Figure 4.4: Spectrum of the K−π+π+ invariant mass for candidates passing the signal selec-
tion, where the negative pion has been identified as a kaon and assigned the kaon
mass [13].

contain photons or π0 in addition to the three pions; photons are also produced when
the D+

s excited states decay to their ground state. The drawback is that this strategy
affects signal too. In fact, it vetoes τ+ → 3ππ0ν̄τ decays; their efficiency is roughly a
half with respect to the 3π mode.

4.3.3 Particle identification requirements

The kaon identification probability of the soft pions was chosen to be less than 50%,
in order to ensure a high efficiency in D∗− reconstruction. On the contrary more se-
lective criteria was applied on the tracks forming the 3π candidate: kaon identification
probability less than 17% for each positive candidate. Concerning the π−, instead, the
double-charm background B0 → D∗−D+X must be considered, in order to get better
performances. In fact, the channels D+ → K−π+π+ and D+ → K−π+π+π0 have large
branching fraction, so this background contribution becomes important when the K− is
mis-identified as a π−. Fig. 4.4 shows the K−π+π+ invariant mass spectrum for can-
didates that have passed all analysis requirements, except that the π− candidate must
have a kaon identification probability above 88%. A clear D+ peak can be seen, with
little combinatorial background. As a result, the requirement on π− candidates is a kaon
identification probability below 12%.

41



Figure 4.5: D∗−3π invariant mass for the normalization sample [13].

4.3.4 Selection of the normalization channel

The B0 → D∗−3π normalization channel is selected requiring the D̄0 decay vertex to be
located at least 4 σ downstream of the 3π vertex along the beam direction. Moreover
the D∗−3π invariant mass distribution is cut around B0 mass, namely between 5150 and
5400 MeV/c2. The latter distribution is displayed in Fig. 4.5.

4.3.5 Selection efficiencies

This set of topological, isolation and PID criteria compose the analysis selection. To-
gether with the BDT cut, which will be explained in the following, they produce the
final samples, when applied on data, and the final templates, when applied on MC sim-
ulations. No BDT cut is applied to the normalization sample.
LHCb collaboration has tested the impact of each cut using MC simulations validated
on specific data sample [13]. The results are listed in Tab. 4.3

4.4 Reconstruction of the decay kinematics
Reconstruction of signal. The presence of two undetectable neutrinos in the signal
decay chain does not allow the proper and complete reconstruction of the events. Nev-
ertheless, getting sufficiently precise estimations is still possible. In fact, the missing
information can be recovered employing the known masses of B0 and τ+, together with
their lines of flight, i.e. unit vectors joining the B0 vertex to the PV and the 3π vertex
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Category Absolute efficiencies Relative efficiencies
D∗−3π D∗−τ+ντ D∗−3π D∗−τ+ντ

3πν̄τ 3ππ0ν̄τ 3πν̄τ 3ππ0ν̄τ

Geometrical acceptance: 14.65 15.47 14.64

After:
initial selection 1.382 0.826 0.729

spurious 3π removal 0.561 0.308 0.238 40.6 37.3 32.6
trigger requirements 0.484 0.200 0.143 86.3 65.1 59.9

vertex selection 0.270 0.0796 0.0539 55.8 39.8 37.8
charged isolation 0.219 0.0613 0.0412 81.2 77.0 76.3

BDT cut - 0.0541 0.0292 - 94.1 74.8
PID requirements 0.136 0.0392 0.0216 65.8 72.4 74.1

Table 4.3: Summary of the selection efficiencies (in %).

to the B0 vertex, respectively. In these terms the τ+ momentum in the laboratory frame
is:

|~pτ | =
(m2

3π +m2
τ )|~p3π| cos θτ,3π ± E3π

√
(m2

τ −m2
3π)2 − 4m2

τ |~p3π|2 sin2 θτ,3π
2(E2

3π − |~p3π|2 cos2 θτ,3π)
, (4.6)

where θτ,3π is the angle between the 3π system three-momentum and the τ line of flight
(Fig. 4.6); m3π, |~p|3π and E3π are the invariant mass, three-momentum and energy of the
3π system, respectively; mτ is the known τ+ mass. In principle, θτ,3π can be extracted
from data, like the other parameters. However, equation (4.6) shows a two fold ambiguity.
In order to overcome it, a good choice is to consider θτ,3π maximum value:

θmax
τ,3π = arcsin

(
m2
τ −m2

3π

2mτ |~p3π|

)
; (4.7)

if we assume the approximation |~pτ | = |~pτ (θmax
τ,3π)|, the ambiguity disappears. The same

leads to the estimation of the B0 momentum:

|~pB0| =
(m2

Y +m2
B0)|~pY | cos θB0,Y ± EY

√
(m2

B0 −m2
Y )2 − 4m2

B0|~pY |2 sin2 θB0,Y

2(E2
Y − |~pY |2 cos2 θB0,Y )

, (4.8)

and:
θmax
B0,Y = arcsin

(
m2
B0 −m2

Y

2mB0 |~pY |

)
. (4.9)

Here Y stands for the D∗−τ+ system: its momentum, energy and mass can be calculated
using the previous estimation of ~pτ :

~pY = ~pD∗ + ~pτ , EY = ED∗ + Eτ , mY =
√
E2
Y − |~pY |2. (4.10)
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Figure 4.6: Proper definition of θτ,3π. In the analysis its maximum value, allowed by kinemat-
ics, is used instead.

The uncertainty caused by these approximations can be tested using MC simulations.
Fig. 4.7 shows the difference between the reconstructed and the true square of the 4-
momentum transferred, i.e. q2 ≡ (pB0−pD∗)2 = (pτ +pντ )

2. A resolution of 1.2 GeV2/c4

is obtained, while no significant bias is observed.

Reconstruction of double-charm candidates. After the detached-vertex require-
ment, the main source of background is originated by decays of the form: B → D∗−D+

s (X),
with D+

s → 3πN ; here N is a system of unreconstructed neutral particles, which cause
a lack of information in the event description. However, the measure of the B0 and D+

s

lines of flight, together with the known B0 mass are sufficient to obtain an estimation of
the kinematics of these decays.

Adopting the notation of Fig. 4.8, a possible strategy basically works as follow. First
of all, momentum conservation and vectorial algebra tell us that the momenta ~pB and
~pD+

s
can be estimated measuring: the D∗ momentum (~pD∗) which is fully reconstructed,

and mesons lines of flight (ûB, ûD+
s
,). As first approximation ûD+

s
can be estimated with

the flight direction of the 3π system, namely ignoring other possible neutral particle in
D+
s decay. Nevertheless, to get a better precision, one must consider that the B0 decay

vertex is not so well reconstructed because of the low momentum of the soft pion coming
from D∗− → D̄0π−s decay. Corrections to the B0 vertex location can be applied, using
its correlation with the 3π invariant mass, namely MC extracted information. Further
calculus details are not indispensable here and can be found in [13]; in latter reference is
also shown that the above introduced corrections essentially do not affect the B0 vertex
location resolution, but slightly reduce its bias.

In conclusion, the observables reconstructed in the double-charm hypothesis will be
included among the input variables of the Multivariate Analysis (MVA) illustrated in
section 4.5.
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Figure 4.7: Difference between the reconstructed and the true q2, obtained by MC simulation
of the signal channel [13].

Figure 4.8: Scheme of the decay topology in the double-charm hypothesis.
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4.5 Multivariate Analysis
In order to reject the double-charm background, three features can be used:

• the different resonant structures of τ → 3πν̄τ and Ds → 3πX decays;

• the neutral isolation;

• the different kinematic properties of signal and background candidates.

Thus a Multivariate Analysis, based on Boosted Decision Trees (BDT), was imple-
mented6. It combines 18 variables; among them: the output variables of the neutral
isolation algorithm; momenta, invariant masses and quality of the reconstruction of the
decay chain under the signal and background hypotheses; the invariant masses of oppo-
sitely charged pions, the energy and the flight distance in the transverse plane of the 3π
system; the invariant mass of the six charged tracks.

The BDT was trained using MC samples of signal and double-charm background
decays. Signal events with τ+ → 3ππ0ν̄τ were actually excluded from training. In fact,
they decrease BDT discrimination performances, because the neutral isolation variables
for this kind of signal are very similar to the background ones.

Fig. 4.9 shows the normalized distributions of the four input variables having the
largest discriminating power, namely: the minimum and maximum of the invariant
masses of oppositely-charged pions, (min[m(π+π−)] and max[m(π+π−)]); the neutrino
energy, approximated as |~pB0| − (|~pD∗| + |~pτ |) in the signal hypothesis; and the D∗−3π
invariant mass. The BDT response for signal and background test samples is illustrated
in Fig. 4.10.

In order to enhance purity, the value −0.075 of the BDT output variable was chosen
as threshold for data: events with a lower output were cut from the analysis sample and
reused to create a Ds-enriched control sample.

4.6 Determination of the signal yield: fit strategy
The yield of B0 → D∗−τ+ντ decays is determined from a three-dimensional binned
maximum likelihood fit to the distributions of q2, τ+ decay time (tτ or TauCTAU) and BDT
output (BDT); the number of bins are 8, 8, 4 respectively. The probability density function
(pdf ) for each component of signal and background was deduced from the relative MC
simulation. The value of each pdf, in each bin, is the number of corresponding MC events,
in the corresponding bin, normalized to the total events number of the same simulation
for the various component, signal and background included in the fit. This technique is

6It was done exploiting the methods of TMVA4 [37]
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Figure 4.9: Normalized distribution of the best discriminating input variables of the BDT [13].
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Figure 4.10: BDT response to signal and background test samples [13].

usually called “production of templates”, where a template corresponds to an histogram
of a certain component (signal or background). The fit model can be written as:

P(q2, tτ , BDT; ~θ) =
∑
i

Nihi(q
2, tτ , BDT), (4.11)

where the sum covers all templates, hi, and their normalization factors Ni. The asso-
ciation between the ith template and the corresponding physical channel is reported in
Tab. 4.4. The same table shows the structure of the normalization factors, as functions
of the final fit parameters, some of them free to vary in the likelihood minimization,
other fixed from external inputs. The fit procedure includes: free parameters, fixed pa-
rameters, but also parameters with a Gaussian constraint. The free parameters are: the
yield of signal candidates Nsig; the yields of event involving a D+

s , NDs ; the yield of event
involving a D+, ND+ ; the fraction of D0 combinatorial event, f v1v2

D0 (see §4.7.3). The fol-
lowing sections will introduce the fixed and the constrained parameter, explaining their
physical meaning. Auxiliary studies are required to get and set all these values; they
exploit theory notions, MC predictions and comparisons with control samples obtained
from data. Other ancillary, but crucial, studies regard the validation and correction of
template shapes. These latter parts of the main analysis were not directly replicated
in this work of thesis, for which they are, in fact, external inputs (coming from [13]);
however, they are important steps, that need to be understood in order to consciously
implement the rest, so we report them here anyway. The final results of the fit procedure
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i Physical Channel Normalization (Ni)

1 B0 → D∗−τ+(→ 3πν̄τ )ντ Nsig × fτ→3πν

2 B0 → D∗−τ+(→ 3ππ0ν̄τ )ντ Nsig × (1− fτ→3πν)
3 B → D∗∗τ+ντ Nsig × fD∗∗τν
4 B0 → D∗−D+

s NDs × f 1
Ds
/k

5 B0 → D∗−D∗s0(2317)+ NDs × f 2
Ds
/k

6 B0 → D∗−Ds1(2460)+ NDs × f 3
Ds
/k

7 B0,+ → D∗∗D+
s X NDs × f 4

Ds
/k

8 B0
s → D∗−D+

s X NDs × f 5
Ds
/k

9 B0 → D∗−D∗+s NDs × 1/k

10 B → D∗−D0X same vertex ND0

11 B → D∗−D0X different vertices ND0 × f v1v2
D0

12 B → D∗−D+X ND+

13 B → D∗−3πX NB→D∗−3πX

14 B1B2 combinatorics NB1B2

15 Combinatoric D∗− NnotD∗

Table 4.4: Summary of fit components with their normalization parameters. k ≡
∑

j f
j
Ds

will be presented in §4.8.

4.7 Parameters estimation and Templates re-weigthing

4.7.1 Signal parameters

The signal is composed by two components. We call fτ→3πντ the fraction of τ → 3πντ
signal candidates with respect to the sum of the τ → 3πντ and τ → 3ππ0ντ components.
This parameter is fixed to 0.78 in the final fit, according to the different branching
fractions (see Tab. 4.1) and efficiencies of the two modes (εsig, εsig0 see Tab. 4.3).

fτ→3πντ =
εsigB(τ → 3πντ )

εsigB(τ → 3πντ ) + εsig0B(τ → 3ππ0ντ )
= 0.78. (4.12)

Furthermore we introduce here fD∗∗τν , which is the ratio of the yield of B → D∗∗τντ
decay candidates to the signal decays. Its value is fixed in the final fit: fD∗∗τν = 0.11.
This result is essentially a theory prediction [38], corrected by the selection efficiency of
this channel extracted using the relative MC simulation.
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4.7.2 The D+
s background

As already explained, the main physical background arise because of real D+
s mesons

exchanged for τ+ leptons. As introduced in section 4.2, many modes contribute to this
category:

1) B0 → D∗−D+
s ; 2) B0 → D∗−D∗s0(2317)+; 3) B0 → D∗−Ds1(2460)+;

4) B0,+ → D∗−D+
s X; 5) B0

s → D∗−D+
s X; 6) B0 → D∗−D∗+s .

(4.13)

Moreover, studies on MC indicatesthat this double-charm background will overwhelm
signal by two order of magnitude. Therefore, it is of primary importance not only to
control the MC predictions about the relative decay rate of the modes in (4.13), but also
to check the simulated decay model for D+

s → 3π(X); 7 The next two paragraphs show
that deviations from simulations were found in both cases. In order to correct them: (i)
an appropriate weight, deduced in the first test, will be applied to each MC event, thus
producing a re-shaping of the templates, (ii) fractions f jDs are straightforwardly assumed
from the second test.

The D+
s decay model

The branching fraction B(D+
s → 3π) is 15 times smaller than the exclusive one B(D+

s →
3πX) [13]. This is due to large contributions from intermediate states, R, such as
K0
s , η, η

′, φ, ω. The branching fraction for processes of the type D+
s → Rπ+ are

well known, while large uncertainties are still present for channels such as D+
s → R(→

π+π−X)π+π0 or D+
s → R3π [7]. This lack of knowledge affects the MC simulations.

Thus a parallel analysis was conducted by LCHb collaboration. In brief: the B →
D∗−D+

s (X) control sample, obtained from data requiring a low BDT output, was used
for a simultaneous fit on four observables: min[m(π+π−)], max[m(π+π−)], the invariant
mass of the same-charge pions, m(π+π+), and the invariant mass of the 3π system,
m(3π). The fit model was composed of templates, whose shape was taken from MC
simulation; basically four main categories were considered:

• D+
s decays where at least one pion originates from the decay of a η meson;

• D+
s decays similar to the precedent ones, but with a η′;

• D+
s decays where at least one pion originates from an intermediate state different

from η and η′ (mainly ω and φ);

• other D+
s decay, where none of the three pions originates from an intermediate

resonance.
7Basically, we have to study the resonance intermediate states which originate not only at the D+

s

production vertex, but also at his decay vertex.
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D+
s decay Relative Correction

contribution to simulation

ηρ+ 0.109± 0.016 0.88± 0.13
ηπ+ 0.047± 0.014 0.75± 0.23

η′ρ+ 0.179± 0.016 0.710± 0.063
η′π+ 0.135± 0.015 0.808± 0.088

φρ+ 0.043± 0.021 0.28± 0.14
φπ+ 0.163± 0.021 1.588± 0.208

η3π 0.104± 0.021 1.81± 0.36
η′3π 0.0835± 0.0102 5.39± 0.66
ω3π 0.0415± 0.0122 5.19± 1.53
K03π 0.0204± 0.0139 1.0± 0.7
φ3π 0.141± 0.021 0.97

τ+(→ 3π(N)ν̄τ )ντ 0.0135 0.97
3π non-resonant 0.038± 0.005 6.69± 0.94

Table 4.5: Results of the fit to the D+
s decay model. For each channel the relative contribution

together with its correction to the simulation yield are reported.

Any category actually contained several subcategories; the fit procedure managed to
estimate the relative contribution of each one. Fig. 4.11 shows the plots with the final
model superimposed on the fitted data. Tab. 4.5 lists the relative contribution of eachD+

s

decay mode. These results, corrected for the different efficiency in the high BDT region,
are exploited to upgrade the shape of the templates used in the final fit. Basically, in MC
we know for each event the true, i.e. simulated, resonance decay scheme that produced
it; so in order to get better relative fractions between modes, each event enters in the
histogram that produce the relative templates with a weight; the weight brought by
each event is the ratio of its fitted relative contribution (Tab. 4.5, second column) to the
original relative contribution, corrected for efficiency8. For this analysis is particularly
significant the η′ contribution. This because among τ+ hadronic decays is relevant τ+ →
a1(1260)+ντ (see [7]) and then a1 resonance produces ρ0π+ final states. Concerning D+

s

decays, the first source of ρ0 is actually: η′ → ρ0γ.
8The option "re-do all the simulations with better decay fractions" was not at hand for questions of

calculus time.
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Figure 4.11: Fit for the D+
s decay model. Data from the B→D∗−D+

s (X) enriched control
sample and model are superimposed. Legend links the four shown components to
the ones described in the text [13].

Estimation of f iDs
In order to check the relative contribution of each mode in B → D∗−D+

s (X) a control
sample, obtained requiring exclusiveD+

s → 3π decays9, can be used. A fit to the invariant
mass spectrum of the D∗−3π system is then performed through the model:

P = fWSPWS + (1− fWS)
6∑
i=1

f iDsPi∑6
j=1 f

j
Ds

, (4.14)

where: f iDs is the fraction of events of the ith mode in (4.13) with respect to the 6th mode
(of course f 6

Ds
= 1); Pi is the template for the mode i: its shape is taken from simulation;

PWS is the template for the combinatorial background: its shape is taken from another
control sample, called “Wrong Sign”, where the D∗+ meson and the 3π system have
the same charge; fWS is the relative fraction of the combinatorial background. The fit
results are shown in Fig. 4.12 and reported in Tab. 4.6, where a comparison with the
corresponding values in the simulation is also given, along with their ratios. Fractions
f iDs , together with their uncertainties and correlations (Tab. 4.7), are used to constrain
D+
s contributions in the final fit.
9Essentially the difference with respect to the analysis selection is that now m(3π) ∈

[1939, 1999] GeV/c2. Of course the BDT cut is inverted too. Is is also assumed that these cuts do
not affect the relative fractions of the B → D∗−D+

s (X) components [13].
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i Parameter Simulation Fit Ratio

fWS 0.014
1 fD+

s
0.54 0.585± 0.041 1.08± 0.07

2 fD∗+s0 0.08 0.000± 0.019 0.00± 0.24

3 fD+
s1

0.39 0.364± 0.052 0.93± 0.13

4 fDsX 0.22 0.399± 0.069 1.81± 0.31
5 fDsX,s 0.23 0.095± 0.028 0.41± 0.12

Table 4.6: Relative fractions for the components of B → D∗−D+
s (X). The values used in the

simulation, the fit results and the ratio of the two are reported. The table introduces
a more explicit notation for the fractions.

fD+
s

fD∗+s0 fD+
s1

fDsX fDsX,s

fD+
s

1 0.001 0.159 −0.184 0.071
fD∗+s0 0.001 1 −0.002 0.000 0.001

fD+
s1

0.159 −0.002 1 0.600 0.424

fDsX −0.184 0.000 0.600 1 0.552
fDsX,s 0.071 0.001 0.424 0.552 1

Table 4.7: Correlation between the components of the B → D∗−D+
s (X) control sample. The

used notation is introduced in Tab. 4.6.
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Figure 4.12: Data and final model for the fit to the B → D∗−D+
s (X) control sample. The

distributions for the final fit variables are also shown as cross check.

4.7.3 The D0 and D+ backgrounds

The main channels for D0 and D+ decays into final states with three pions can synthet-
ically be written as: D0,+ → K−,03π(π0). Their subresonant structure are known quite
well, however a slight disagreement between data and simulation was found for both
cases.

Concerning the D0 case, a control sample was built, using the charged isolation tool
to select a candidate K− compatible with an origin from the 3π vertex and such as the
invariant mass of the K−3π system is consistent with the known D0 mass. A detailed
study proposed in [13] reports difference between data and simulation relatively to the
distribution of q2 and m(D∗−D0); by virtue of that, MC events were re-weighted, to get
better spectra.

As already proposed in section 4.3.3, a control sample for B → D∗−D+(X) decays
can be obtained inverting the PID requirement for the negative pion in the 3π system
and selecting events in the D+ peak. The limited size of the obtained control sample
did not allow to determine specific correction to MC distribution, even if disagreement
with data was found. In first approximation it has been chosen to apply to the template
of this background component the same re-weighting deduced from the B → D−∗D0(X)
control sample. This can be justified noticing that the dominant decay has the structure
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Figure 4.13: Distribution of m(K−3π) for candidates were a charged kaon is associable to the
3π vertex.

B → D∗−DK for both cases (D = D0, D+).

Estimation of ND0. The B → D−∗D0(X) control sample permits to estimate the
expected yield of the corresponding background component in the data sample. In
particular, it was done getting a statistical estimation of the number of events which
compose the D0 peak in K−3π invariant mass distribution (Fig. 4.13).
After a proper correction for the different selection efficiencies between data sample and
control sample, it was found:

ND0 = 444± 22, (4.15)

where the 5% relative uncertainty essentially accounts for the efficiency in finding the
additional kaon. This result was used to introduce a Gaussian constraint in the final fit.

Introduction of f v1v2
D0 . A sort of combinatorial background for the B → D∗−D0(X)

channel exists. It is in fact possible to reconstruct events where at least one pion origi-
nates from the D0 vertex and the other pion(s) from a different vertex. This is the case
when the soft pion from a D∗− decay is reconstructed as it were produced at the 3π
vertex. This circumstance is encoded in the final fit with an adequate template and a
floating parameter f v1v2

D0 , namely the ratio between the yield for this kind of events and
ND0 .
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4.7.4 The B → D∗−3π(X) yield

The yield of the prompt background component (B → D∗−3π(X)) can be predicted
basically using the normalization sample as pure control sample of exclusive B → D∗−3π
decays; if Nnorm

exc is the number of events which compose it, an estimation of the inclusive
prompt yield is given by:

Ninc = Nnorm
exc

NMC
inc

NMC
exc

ε, (4.16)

where NMC
inc /N

MC
exc is the ratio between the inclusive and exclusive prompt yields taken

from simulations, while ε accounts for the different selection efficiency between signal
and normalization samples. The final result is:

NB→D∗3πX ≡ Ninc = 443± 21. (4.17)

This numbers will rule a Gaussian constraint in the final fit.

4.7.5 Yields for the combinatorial background

The templates for two kind of combinatorial background are included in the final fit.
The first one is the B1B2 category. Even if the WS control sample is available, its shape
is deduced from the inclusive D∗3πX Monte Carlo. In fact, B → D∗(Ds → 5π)X decays
contaminate WS control sample in the low region of m(D∗3π). Vice versa, comparing
the WS control sample to data, we can see that combinatorial background dominates
when m(D∗3π) > 5.1 Gev/c2 (Fig. 4.14). Thus the number of event in this region was
used to rescale and fix the normalization of the B1B2 template:

NB1B2 =
NMC
B1B2

NMC
B1B2(m(D∗3π) > 5.1)

Ndata(m(D∗3π) > 5.1) = 197. (4.18)

The second combinatorial category included in the fit is the notD∗ one. Its yield can
be fixed using the number of event in the D̄0 mass sidebands from the D∗− → D̄0π−s
decay. The result is:

NnotD∗ = 243. (4.19)

4.8 Fit Results
The fit results produced by this work of thesis are consistent with data and with the
preliminary result found by LHCb collaboration [13]; they are compared in Tab. 4.8. In
Fig. 4.15 and Fig. 4.16 the data are superimposed on the final model. In conclusion the
signal yield found by this work of thesis is:

Nsig = 1326± 95. (4.20)
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Figure 4.14: m(D∗3π) distribution form data (black) and WS control sample (red); the his-
tograms are not re-normalized [39].

The aim of this analysis is to reproduce the published results in order to deeply
understand the complicated fitting model. This step is essential in order to further
develop the model towards the measurement of RD∗ as function of q2, as described in
the following sections.
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Figure 4.15: Projections of the three-dimensional fit on the (top) q2 , (middle) τ+ decay time
and (bottom) BDT output distributions. Legend identifies the various compo-
nents.
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Figure 4.16: Projections on the (left) τ+ decay time and (right) q2 distributions for the four
BDT bins. The highest BDT bin is associated to the two lower plots.
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Parameter This Thesis Results Constraints Reference Results[13]

Nsig 1326± 95 1313± 95
fτ→3πν 0.78 0.78 (fixed) 0.78
fD∗∗τν 0.11 0.11 (fixed) 0.11

ND+ 1688± 115 1624± 152
NSV
D0 445± 22 445± 22 444± 22

f v1v2
D0 0.42± 0.22 0.28± 0.23
NDs 6829± 174 6972± 187
fD+

s
0.474± 0.033 0.460± 0.032 0.474± 0.032

fD∗+s0 −0.019± 0.018 0.000± 0.019 0± 0.008

fD+
s1

0.454± 0.036 0.437± 0.062 0.444± 0.039

fDsX 0.739± 0.045 0.635± 0.110 0.792± 0.057
fDsX,s 0.196± 0.023 0.144± 0.042 0.224± 0.031
NB→D∗−3πX 425± 21 443± 22 424± 21
NB1B2 197 197 (fixed) 197
NnotD∗ 243 243 (fixed) 243

Table 4.8: Fit result for the three-dimensional fit.
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Chapter 5

Toward RD∗(q2)

As shown by equation (2.10), the Standard Model is able to calculate RD∗ as a function
of the 4-momentum transferred to the leptonic part of the decay. However, any experi-
mental measurement has finite q2 resolution and it is done in a finite q2 range. Therefore,
our results are actually compared to:

RSM
D∗ =

∫ q2max
q2min

dΓτ
dq2

dq2∫ q2max
q2min

dΓ`
dq2

dq2
(with: ` = e, µ), (5.1)

where dΓτ,`/dq
2 come from (2.3). The prediction (2.11) is actually obtained in this way,

namely integrating on all q2 range allowed by kinematic: q2
min = m2

τ ≈ 3 GeV2/c4,
q2
min = (mB0 −mD∗−)2 ≈ 11 GeV2/c4. This is in fact the range were signal was found.
New Physics may provoke deviations from RSM

D∗ that cancel themselves in the integral,
i.e. deviations may be enhanced if we analyse many smaller q2 ranges. We will call them
“q2 bins”. In principle, the smaller the q2 bins are, the better test on (2.10) we do.

From a statistical point of view, these ideas throw in two problems:

a) we may have not collected yet enough data, in each q2 bin, to produce statistically
significant measurements;

b) we must avoid hypothesises related with SM prediction of q2 distribution, at least
for signal.

Observation (b) implies that is necessary to avoid use the q2 variable from simulated MC
events and that all q2-dependent signal variables should be not used, especially to build
the BDT observable.

In order to upgrade what learned by the analysis of the precedent chapter, we realized
the task of “RD∗ in q2 bins” through subsequent tests:

1) fit in all q2 range, using tτ and BDT observables (§5.1);
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2) fit in two q2 ranges (q2 ≷ 5.5 GeV2/c4), using just tτ and BDT observables (§5.2);

3) training of a new MVA classifier with input variable independent from the q2 and
fit in the full q2 range, using the distributions of q2, tτ and the output variable of
the new classifier, BDTG (§5.3).

Even if this is not the final fit, which foresees to fit data with ttau and BDTG in bins
of q2, it is an essential step in order to reproduce the published results. The following
sections will illustrate in detail each step, together with results.

5.1 Fit 2D unbinned
Since we are no more allowed to exploit the q2 distribution, the very first preliminary
test consists in verifying whether the fit model, implemented in the previous chapter, is
able to discriminate signal and background, just without using this variable. Technically
this means to create two-dimensional templates, i.e. translating in pdf two-dimensional
histograms with just tτ and BDT as inputs. All other features of the fit model are left
untouched, so we can still refer to (4.11) and Tab. 4.4; the only change is hi(q2, tτ , BDT)→
hi(tτ , BDT).

The fit results are listed in the third column of Tab. 5.1. Fig. 5.1 and Fig. 5.2 display
data and the model fitted to them. The signal yield now found is:

N
(2D)
sig = 1227± 141, (5.2)

to be compared to N3D
sig = 1326± 95. As expected we obtain larger statistical uncertain-

ties, but the results are compatible even if to conclude this a toy MC study is necessary,
due to the different models adopted. The same is true also for all other fit results. No
relevant discrepancies are observed between the plots (Fig.s 4.15-4.16 vs. Fig. 5.1-5.2).
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Figure 5.1: Projections of the two-dimensional fit on the (top) τ+ decay time and (bottom)
BDT output distributions. Legend identifies the various components.
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Figure 5.2: Projections of the two-dimensional fit on the τ+ decay time for the four BDT bins.
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5.2 Fit 2D binned
The second test consists in re-doing twice what shown in the previous section: above
and below the threshold q2 = 5.5 GeV2/c4. Thus, the fit model can be written in the
synthetic form (4.11), for each q2 bin. Event with q2 < 5.5 GeV2/c4 form the dataset of
the first q2 bin, the others fill the dataset of the second q2 bin. By analogy, the simulated
events with q2 ≷ 5.5 GeV2/c4 are used to produce the templates that are going to fit the
correspondent dataset1.

The main change, introduced in this test, concerns the unfitted values of fixed and
constrained parameters: the introduced q2 requirement is supposed to modify them. We
faced this question exploiting the MC predictions. Each fixed or constrained parameter
is related to the yield of the correspondent signal or background component. We can
use MC to estimate the selection efficiency of each q2 bin and then get all the needed
corrections. The same reasoning can be also exploited to estimate reference values of
the free parameters in each q2 bin; now the starting values are the results of the three-
dimensional fit (Tab. 4.8). In this way we get reference values for each parameter of each
bin. Tab. 5.2 lists the used formulas. In the table εni is the ratio between number of sim-
ulated events in the q2 bin and the total number of simulated event,for each component
i.

The fit results are listed in Tab. 5.3 for both q2 bins. Fig. 5.3 and Fig. 5.4 display
data and the model fitted to them for the first q2 bin; Fig. 5.5 and Fig. 5.6 do the same
for the second one. The signal yields found are:

N
(1)
sig = 370± 60 if: 0 < q2 < 5.5 GeV2/c4;

N
(2)
sig = 930± 100 if: 5.5 < q2 < 11 GeV2/c4.

(5.3)

to be compared to N (1)
sig = 272± 20 and N (2)

sig = 1041± 74, as explained above.

1 For the moment, we skip any consideration about correlations with q2. They will be topic of next
section. Now we just want to preliminary check, whether each q2 bin has enough statistic to go ahead.
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i Physical Channel Correction Formula

1 B0 → D∗−τ+(→ 3πν̄τ )ντ f
(n)
τ→3πν =

εn1 fτ→3πν

εn1 fτ→3πν+εn2 (1−fτ→3πν)

2 B0 → D∗−τ+(→ 3ππ0ν̄τ )ντ N
(n)
sig = N

(3D)
sig (εn1fτ→3πν + εn2 (1− fτ→3πν))

3 B → D∗∗τ+ντ f
(n)
D∗∗τν =

εn3 fD∗∗τν
εn1 fτ→3πν+εn2 (1−fτ→3πν)

4 B0 → D∗−D+
s f

1(n)
Ds

= εn4f
1
Ds
/εn9

5 B0 → D∗−D∗s0(2317)+ f
2(n)
Ds

= εn5f
2
Ds
/εn9

6 B0 → D∗−Ds1(2460)+ f
3(n)
Ds

= εn6f
3
Ds
/εn9

7 B0,+ → D∗∗D+
s X f

4(n)
Ds

= εn7f
4
Ds
/εn9

8 B0
s → D∗−D+

s X f
5(n)
Ds

= εn8f
5
Ds
/εn9

9 B0 → D∗−D∗+s (f
6(n)
Ds

= 1)

N
(n)

D+
s

= ND+
s

(
∑6

j=1 εj+3f
j
Ds

)/(
∑6

j=1 f
j
Ds

)

10 B → D∗−D0X same vertex N
(n)

D0 = εn10ND0

11 B → D∗−D0X different vertices f
v1v2(n)

D0 = ε
(n)
11 f

v1v2
D0 /ε

(n)
10

12 B → D∗−D+X N
(n)

D+ = εn12ND+

13 B → D∗−3πX Nn
B→D∗−3πX = εn13NB→D∗−3πX

14 B1B2 combinatorics N
(n)
B1B2 = εn14NB1B2

15 Combinatoric D∗− N
(n)
notD∗ = εn15NnotD∗

Table 5.2: Fraction efficiency correction for each q2 bin.
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Parameter q2 bin: 1 (0 < q2 < 5.5 GeV2/c4) q2 bin: 2 (5.5 < q2 < 11 GeV2/c4)
Expec. Value Fit Result Expec. Value Fit Result

fτ→3πν 0.81 0.81 0.77 0.77
fD∗∗τν 0.06 0.06 0.12 0.12
NB1B2 75 75 197 197
NnotD∗ 46 46 122 122

fD+
s1

0.130± 0.018 0.139± 0.018 1.7± 0.2 1.6± 0.2

fD+
s

0.491± 0.034 0.49± 0.03 0.33± 0.02 0.326± 0.003
fD∗+s0 0.000± 0.013 −0.002± 0.013 0.00± 0.04 0.00± 0.04

fDsX 0.107± 0.019 0.108± 0.019 2.7± 0.5 2.9± 0.4
fDsX,s 0.012± 0.004 0.012± 0.003 0.6± 0.2 0.81± 0.19
NSV
D0 83± 4 83± 4 362± 18 365± 18

NB→D∗−3πX 127± 6 126± 6 316± 15 312± 16

f v1v2
D0 0.15± 0.08 0.2± 0.7 0.311± 0.02 0.31± 0.06
ND+ 266± 20 157± 52 1357± 102 1500± 140
NDs 3645± 96 3402± 110 3327± 87 3500± 300
Nsig 272± 20 370± 60 1041± 74 930± 100

Table 5.3: Fit results in the two q2 bins
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Figure 5.3: Projections of the two-dimensional fit on the (top) τ+ decay time and (bottom)
BDT output distributions n the q2 bin: 0 < q2 < 5.5 GeV2/c4. Legend identifies
the various components.
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Figure 5.4: Projections of the two-dimensional model on the τ+ decay time for the four BDT
bins in the q2 bin: 0 < q2 < 5.5 GeV2/c4. The highest BDT bin is associated to
the lower-right plot.
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Figure 5.5: Projections of the two-dimensional fit on the (top) τ+ decay time and (bottom)
BDT output distributions n the q2 bin: 5.5 < q2 < 11 GeV2/c4. Legend identifies
the various components.
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Figure 5.6: Projections of the two-dimensional model on the τ+ decay time for the four BDT
bins in the q2 bin: 5.5 < q2 < 11 GeV2/c4. The highest BDT bin is associated to
the lower-right plot.
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q2 tτ BDT BDTG

q2 1
tτ −0.06 1

BDT 0.44 0.012 1
BDTG −0.07 −0.03 0.52 1

Table 5.4: Correlations between variables.

5.3 A new MVA Classifier.
As a consequence of observation (b), we are allowed to construct the templates in the
way proposed in the previous section, only if we assume negligible correlations between
q2 and the fit observables, tτ and BDT. The linear correlation coefficients for this variables
can be estimated using signal MC; the results are reported in Tab. 5.4. The table tells us
that the BDT distribution used so far is not suitable for a analysis in q2 bins. Therefore,
we trained a new MVA classifier: a Gradient-BDT, or BDTG [40]. Its input variables
are just four:

• the minimum of the invariant mass of oppositely-charged pions, min[m(π+π−)],

• the maximum of the invariant mass of oppositely-charged pions, max[m(π+π−)]

• the invariant mass of the 3π system, m(3π)

• tau_PT

tau_PT+tau_0.40_nc_vPT
, where: tau_PT is the transverse momentum of the 3π system

and tau_0.40_nc_vPT is the sum of the neutral energy contained in a pseudocone
of 0.4 units in ∆η −∆φ, centred around the 3π vector.

FThis new classifier was trained with the same MC samples used to create the templates
of signal and Ds

+ double-charm background. The complete final selection was applied.
Once more, the τ+ → 3ππ0ν̄τ signal component was not exploited, for the same reasons
as before. Fig. 5.7 presents the normalized and superimposed distributions of training
and overtraining-test samples. The correlation coefficients between the new MVA output
variable (BDTG) and the three variables, already used to fit the data, are reported in the
last line of Tab. 5.4 (again signal MC was used). As wanted we get now low correlation
with q2.

5.4 Fit with the new MVA Classifier
3D Fit. We can now try to fit the data using the distributions of q2, tτ and BDTG. First
of all, in fact, we want to check whether the new input variable permits to replicate the
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Figure 5.7: Overtraining check for the BDTG. Normalized training and test samples are su-
perimposed both for signal and background.

published one. In order to get results directly comparable, we are going to fit data with no
change in their selection. Besides, it will avoid to change the mean values of constrained
and fixed parameters, which depend on the selection efficiencies. We underline that the
final selection still contains the requirement on the “old” MVA classifier: BDT > −0.075.
This is only necessary to have exactly the same input number of events as in the published
analysis.

Concerning the fit model, nothing changes with respect to §4.6, except that the
variable BDT is substituted by BDTG. Fit results are listed in the last column of Tab. 5.1,
which compares them with the previous ones. Fig. 5.8 and Fig. 5.9 show the model fitted
to data. The signal yield results is:

NBDTG
sig = 1560± 92, (5.4)

to be compared to published result, N3D
sig = 1326± 95.
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Figure 5.8: Projections of the three-dimensional fit on the (top) q2 , (middle) τ+ decay time and
(bottom) BDTG output distributions. Legend identifies the various components.

75



Figure 5.9: Projections on the (left) τ+ decay time and (right) q2 distributions for the four
BDTG bins. The highest BDTG bin is associated to the two lower plots.
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Chapter 6

Conclusions

The main aim of this thesis was to perform a feasibility study for the measurement of
the observable RD∗ as function of q2. This is performed in several steps. The first one
consists to replicate the measurement of the signal yield for B0 → D∗−τ+(→ 3ππ0ν̄τ )ντ
decays, produced by the LHCb Collaboration [13], using Run 1 data. This steps was
necessary in order to understand deeply the complexity of the fitting model to achieve
the final goal of this thesis work.

The subsequent step was to demonstrate that the implemented fit model is able
to discriminate signal from background, even after a q2 marginalization. The results
presented in section 5.1 confirm this hypothesis, despite an slightly enhancement of
uncertainties.

After that, an extraction of the signal yield in two q2 bins, using the two-dimensional
fit model introduced in the previous step has been performed. Results consistent with
the previous ones were obtained in this way.

The last step aimed to reduce what could be a main source of systematic error,
i.e. the correlation between the BDT output distribution and q2. In order to overcome
this, a new multivariate analysis (BDTG) was implemented. Among its main features an
almost uniform distribution for the sum of signal and background, which is important
to reduce number of bin with low statistic in the final fit, was observed. The latter was
implemented with the observables q2, tτ and BDTG in order to get results comparable to
what obtained in the first test. Even if toy MC studies are necessary to conclude that the
two results are not compatible, it seems that there is a discrepancy. Various hypothesis
are under investigation within the LHCb working group which carry on this analysis.

Next developments for this analysis will certainly cover further tests on the BDTG
distribution. First of all the enlarging of the BDTG training sample removing the se-
lection based on the old BDT. This may reduce possible over-training problems and the
observed discrepancies. A further necessary step will be to remove the selection based
on the old BDT for the data sample, not only for training. To take account for this a
new analysis of all selection efficiencies will be required. Finally the introduction of Run
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2 data is expected to reduce by a factor 2 the statistical uncertainties. In conclusion,
this work represents a fundamental step to achieve the challenging measurement of RD∗

as a function of q2. Further studies will be necessary and will be carry on within the
LHCb Bologna Group in collaboration with the LHCb CERN Group towards the final
publication.
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