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Abstract

Higher-derivative operators play a fundamental role in the development of effective field
theories. This thesis deals with the study of such operators in the context of the effective
low-energy theory of type II1B superstring theory. In particular, we revisit a past attempt
to find the supersymmetric form of the higher-derivatives for the D7-brane modulus in an
orbifold compactification at the level of a globally supersymmetric theory. These higher-
derivatives descend from the Dirac-Born-Infeld action of the D7-brane. Starting from the
component Lagrangian the task is to identify the supersymmetric higher-derivative op-
erator which reproduces the component terms. To this end, we develop a new systematic
approach to determine this supersymmetric form and test it for the present example.






Sommario

Gli operatori alto-derivativi giocano un ruolo fondamentale nello sviluppo delle teorie
di campo effettive. La presente tesi e volta ad affrontare lo studio di tali operatori nel
contesto della teoria effettiva a basse energie della teoria di superstringa di tipo IIB.

In particolare, questo lavoro rivisita un precedente tentativo di individuare la forma
supersimmetrica delle derivate di ordine superiore per il modulo di D7-brana in una
compattificazione di tipo orbifold al livello di una teoria supersimmetrica globale. Ta-
li derivate di ordine superiore provengono dall’azione di Dirac-Born-Infeld. Partendo
dalle componenti della Lagrangiana, il nostro proposito e identificare 'operatore su-
persimmetrico alto-derivativo che riproduca correttamente i termini delle componenti.
A tal fine sviluppiamo un nuovo approccio sistematico volto a determinare la forma
supersimmetrica della Lagrangiana e lo applichiamo al caso in esempio.
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Capitolo 1

Introduction

Despite its incredible predictive power and its many achievements, the Standard Model
is considered an incomplete theory today. One of the most annoying issues is the hie-
rarchy problem (i.e. the fact that the Higgs particle receives large corrections from loop
diagrams). It would be desirable to find a guiding principle as powerful and as predictive
as the Lorentz invariance and the gauge symmetry principle are in the construction of
the Standard Model. Such a lighthouse in the night could be supersymmetry (SUSY).
Supersymmetry solves the hierarchy problem in a very elegant way. Indeed, supersym-
metry transformations provide for the exchange of bosons and fermions into each other
through the action of fermionic operators. The invariance under supersymmetry requires
a superpartner for each existing particle: this superpartner is nothing more than a parti-
cle having the same mass and quantum numbers but with spin differing by one-half, this
means that every boson has its fermionic superpartner and vice versa. What happens
then is that the bosonic and fermionic loop corrections cancel each other exactly, giving
rise to the miraculous cancellation and solving the hierarchy problem; this solution comes
effortlessly and in a completely natural way. The simplest supersymmetric extension of
the Standard Model is known as Minimal Supersymmetric Standard Model (MSSM): it
includes the smallest number of particles and interactions necessary for an agreement
with phenomenology.

The miracle of cancellation is the most fruitful reason to guess the existence of su-
persymmetry. There are however many other reasons to consider the study of supersym-
metric theories interesting. For example, the fact that supersymmetry acts by inducing
an exchange between bosonic and fermionic particles, could lead us to think that it is
a mere internal symmetry, but it is not so. The algebra of the supersymmetry charges
shows that the supersymmetric transformations are intrinsically and intimately related
to the spacetime transformations: acting with two consecutive supersymmetric tran-
sformations one obtains the starting field but evaluated in a different spacetime point.
Thanks to this surprising property of supersymmetric transformations, passing from a
global supersymmetric theory to a local one, one obtains Einstein’s General Relativity,



in the same way, by making U(1) local, we obtain electromagnetism. This is why local
SUSY is called supergravity. The natural occurrence of supergravity is another reason
which makes the study of supersymmetry really interesting.

As we have anticipated, a theory invariant under supersymmetry requires the exi-
stence of superpartners, which unfortunately are not observed in nature. This is not
enough, however, to discourage research in this field. For instance, in the Standard Mo-
del it is necessary to resort to a spontaneous symmetry breaking, the Higgs mechanism,
in order to make the gauge bosons W¥* and Z massive. One could therefore expect
that something analogous happens with supersymmetry. This is the reason why many
scientists are interested in the study of supersymmetry breaking phenomena. A way to
break SUSY is spontaneous symmetry breaking (SSB): in this case the Lagrangian is still
symmetric but the ground state no longer is, the effects of this breaking are found in
the absence of symmetry in the spectrum of the states. Since SSB mechanisms in the
MSSM are not (yet) known, one is urged to investigate different ways to break this sym-
metry, for instance, one can break supersymmetry by hand, by adding terms which are
not invariant under supersymmetry. In these cases we talk about explicit supersymmetry
breaking. But this breaking cannot take place in a completely random way, otherwise we
would lose all the benefits given by the introduction of supersymmetry, for instance the
miraculous cancellation of quadratic divergences. We are therefore willing to introduce
some renormalizable terms which break supersymmetry softly, the so called soft-breaking
terms. In this context, auxiliary fields play a fundamental role. They are fields intro-
duced so that the number of bosonic and fermionic off-shell components (i.e. before the
equations of motion are imposed) is the same: we will see that SSB occurs when the va-
cuum expectation value of these fields is non-vanishing. One of the reasons why the soft
breaking terms are so interesting is that one of the most popular proposals considers the
assumption of the existence of a hidden sector in which the symmetry is spontaneously
broken: this breaking induces some repercussions on the observable sector (for example
MSSM) through the arising of soft-breaking terms. This interaction between the hidden
sector and the observable sector occurs through the so-called gravity mediation.

As we have anticipated, despite its numerous advantages, the introduction of su-
persymmetry makes things a bit more involved: the algebra of the generators must be
extended in order to include the fermionic generators of supersymmetry, which mix in
a non-trivial way internal and spacetime symmetries. The formal setup in which it is
most simple to develop a supersymmetric theory is the superspace formalism: thanks
to the properties of the Grassmann variables (which, as we will see in the first chap-
ter, constitute the coordinates of the superspace, together with the ordinary space-time
coordinates) the formalism of the superspace makes the formulation of supersymmetric
theories very simple, or at least simpler than it would be using a classic approach a la
Quantum Field Theory on an ordinary space-time .

Another reason why the study of supersymmetry is so exciting comes from string



theory: a string theory involving the same number of bosons and fermions naturally gives
rise to a supersymmetric theory. In particular, it is possible to understand supergravity
as a low-energy effective string theory. Within this project we are interested in type I1B
string theory, whose low-energy limit gives rise to the type IIB 10-dimensional NV = 2
supergravity, where one has four space-time dimensions and six extra dimensions. The
absence of experimental evidences for the extra dimensions leads to the introduction
of a geometric trick known as compactification: the extra dimensions are confined into
very small sizes, wrapped on some suitable compact manifolds. This panorama includes
objects inherited from string theory: the Dp-branes. These are (p + 1)-dimensional
objects whose position in the internal manifold is parametrized by scalar fields known as
position moduli. The brane world-volume is embedded in a higher dimensional spacetime
known as bulk. Then, the geometric background of the low-energy effective theory of a
string theory gives rise to the moduli, which play a fundamental role, for instance,
in inflation theories where the bulk- or the brane-modulus corresponds to the inflaton
[7,2,7,7].

Our work will focus on the study of the D7-brane dynamics on a torus orbifold
compactification. Being an 8-dimensional object in 10 dimensions, its position in the
internal manifold can be described by a single complex scalar field. We will study small
fluctuations of the branes in the normal direction, with particular attention to the higher
order corrections arising from the expansion of the Dirac-Born-Infeld Lagrangian. As we
will see these corrections are of higher-derivative type.

The study of higher-derivative operators is interesting for many reasons: integrating
out massive states generically generates higher-derivative operators in the low energy
effective action, their discussion is therefore unavoidable. In particular, this holds for
the effective supergravities of string theories, see e.g. [?].

There are also some interesting motivations to investigate higher-derivative operators
in the setup of the D-branes. In particular, it is not clear (yet) how to determine the
supersymmetric form of an effective action obtained from some string compactification
including higher-derivative operators. Some attempts have been made, but the subject
remains mostly unexplored [?, 7, 7, ?]. Our study is aimed at conceptually understan-
ding how a systematic matching can in principle be obtained. This will be clarified by
the simple D7-brane example. The D7-brane moduli have the advantage that it is easy to
include higher-derivative contributions to their action. Moreover, the multiplet structure
of the moduli is usually easy to identify and higher-derivative terms for both the real and
imaginary part of the chiral superfield corresponding for example to the D-brane posi-
tion, are available. On the contrary the bulk moduli investigated in [?, ?] combine into
multiplets in a more complicated way and their higher-derivative terms are only partially
known. Therefore, in order to develop this investigation, we start in Chapter 2 with an
overview on global and local supersymmetry. In this chapter we show how the formalism
of superspace is useful in the construction of a supersymmetric Lagrangian and we provi-



de a list of the supersymmetric higher-derivative operators. Furthermore, we introduce
the notion of supersymmetry breaking presenting first the F-terms breaking, which is
an example of spontaneous supersymmetry breaking, and then the soft supersymmetry
breaking arising in the observable sector. In Chapter 3 we provide a brief introduction on
type IIB supergravity, compactification and orientifolding. Then we present the Dirac-
Born-Infeld (DBI) and the Chern-Simons (CS) actions for the D-branes: we focus on the
scalar potential induced by the background fluxes from the Dirac-Born-Infeld action for
the D7-branes and we show that it is exactly the one obtained from the N' = 1 super-
gravity computation. In the end, we show how the DBI and CS reduction works in the
case of a single D3-brane. In Chapter 4 we discuss the role of supersymmetric higher-
derivative operators in the effective theory for the position moduli of type IIB D7-branes.
We provide the list of the four derivative terms and integration-by-part identities neces-
sary to operate the match between the higher-derivative component Lagrangian and the
supersymmetric higher-derivative operators.



Capitolo 2

Supersymmetry and Supergravity

We begin this section with an overview on supersymmetry and supergravity following
the outline of [?] and [?], defining the key concepts of superspace and superfield. Focu-
sing our attention on the chiral superfields, we provide the supersymmetric Lagrangian
of these special superfields. Next we introduce the general higher-derivative supersym-
metric Lagrangian, supplying a list of the independent four-derivative operators. After
an introduction on supergravity, we briefly analyze supersymmetry breaking, first in a
global supersymmetry context and then extending the treatment to supergravity with a
particular interest in the soft breaking of supersymmetry.

2.1 Swuperfields and Superspace

In this section we provide a summary of the main features of supersymmetry. At first we
present the graded algebra, an unavoidable block in the construction of supersymmetric
theories. Supersymmetry provides an extension of the ordinary concept of symmetry
as it also accounts for fermionic variables. For this reason we need an algebra which
includes fermionic operators. We proceed with the basics on superspace and, through
the definition of the Grassmann variables, we introduce some extra coordinates which
are added to the ordinary space-time ones in order to shape the supercoordinates on the
superspace. Superfields are fields living on the superspace, in the following we present
their main proprieties. Finally we treat supersymmetry transformations as a natural
extension of the Poincaré symmetry in which the added fermionic operators are a repre-
sentation of the spinorial generators found in the graded algebra. The introduction of
the supersymmetric transformations allows us to define the chiral covariant derivative
and, as a consequence, the chiral superfields.



2.1.1 Graded Algebra

The goal of this paragraph is to extend the well-know Poincaré algebra by adding
fermionic operators. Let O, be the operators of a Lie algebra, then:

0,05 — (—1)"0,0, = iC% 0, (2.1)

where 7, are the gradings:

0 if O, is a bosonic generator
Vo = { (2.2)

1 it O, is a fermionic generator

In supersymmetry both the usual Poincare generators P*, M*” and the spinor generators
4.Q4 where A = 1,..., N must be taken into account. We will only consider the cases
in which ' = 1.
The commutation relations of the extended Poincaré algebra are found to be [?]:
i, _
Qi M = ()0 "Qas 0 = (0,0, = 0,0)

[Qas P*] = [Qa, P} = 0
(2.3)

{QQ:QB} =0

{Qa: Qs} =2(0")Pu

So we can see that two fermionic symmetry transformations have the effect of a transla-
tion. Consider a bosonic state |B) and a fermionic state |F'), then the following relations
hold

QulF) = |B), Q4lB)=|F) = QQ|B) ~ |B(translated)). (2.4)

2.1.2 Basics on Superspace and Superfields

As we have seen in the introduction, the most comfortable setup for the development of
a supersymmetric theory is the superspace formalism. Superspace is a manifold which is
provided with four fermionic coordinates in addition to the usual bosonic spacetime ones.
A point in superspace is labelled by (2#,6%, 604) where 0% and 6 are two—component
Grassmann number spinors with mass dimensions [f] = —1/2.

The main property of a single Grassmann variable is that 6 squares to zero, 2 = 0,
which implies that when expanding any function of # as a power series, only the first
two terms are non-zero:

£0) =" fib* = fo+ f10. (2.5)
k=0
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One defines the Berezin integral:

/d@% ::O:>/d9:O (2.6)

/d99 =1=5(0) =0 (2.7)

where the derivation is computed as usual. This implies that the integral over a function
f(0) corresponds to its derivative,

/ awy6) = n="4 (2.8)

So, defining the squares of Grassmann spinors as
00 .= 6%0,,, 00 := 0,,0%

(2.9)
— 0707 = —%eaﬁee, 40" = %edﬁee

the integration is now defined via:

/d20 = %/d@l/(w?, /d29 00 =1, /d%)/d?é(ee)(éé) =1 (2.10)

and one can again identify integration and differentiation.

Due to these proprieties of the fermionic coordinates of the superspace, one can ex-
press a general scalar superfield S(z,6,0) as an expansion in powers of # and § carrying
a finite numbers of non-zero terms. Its components are functions of z#:

S(x,0,0) =¢(x) + 0(z) + 0x(x) + 00M (z) + 0N (x) + (00"0)V,(z) (2.11)
+ (00)0X(x) + (00)0p(x) + 00)(90) D (). '

Note that the components of the superfield are 8 bosonic fields (¢(z), M (x), N(x), D(z),
V,.(z)) and 4 two-component fermionic fields (1, ¥, A, p) and all of them are complex
functions of x*. So the number of bosonic and fermionic degrees of freedom is exactly
the same.



2.1.3 Supersymmetry Transformation

Let us define the differential operators acting on the superfields:

0 =5 O
= —(1— my 98—
QOZ (Zaea + (J )aﬁe Gx“)
- 0 0
— i B,
Qa Zaed +9 (U )6aamﬂ

which satisfy the following commutation relations:

{Qaa Qd} = _ZQ(UM)adau

{Q4, 95} = 0={Qs, Q/g}

(2.12)

(2.13)

These operators are nothing more than a representation of the spinorial generators @,
acting on functions of 6, # and x. Then the supersymmetry transformation of a general

superfield S, parametrized by infinitesimal € and €, at the first order is given by:

6.8 =i[S,€Q +€Q] = i(eQ + €Q)S

= S(at — ot +ifo"€, 0 +¢,0 +€) — S(at,0,0),

(2.14)

this shows how supersymmetry can be viewed as a translation in superspace. One can
obtain the supersymmetry transformations of all the component fields of the superfields:

0p = e + €x
01 = 2eM + o"€(i0,0 + V)
ox = 2eN — ec"(i0,0 — V)

M = e\ — %(MJU“E

i
ON =e€p+ 560"8@2

< [
OV, = ea X+ po€+ 5(8”@00“6” — €0,0,0"X)

o\ = 2D + %(EVU“E)OMVV + io*ed, M
dp =2eD — %(O’V&ME)aMVV + i0"'€d, N

0D = %@L(ea“;\ — pote).

10
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Note that, if S is a superfield, 9,5 is a superfield too, but the same can’t be said for 0aS
because of the commutation relation [0,,€Q + €Q] # 0. One is thus induced to define
the covariant derivative as:

Do i= 8a +i(0"),40°0,

(2.16)
Dg = —04 — i0°(0") a0,
This operator satisfies the commutation relations
{D,, Dﬁ-} = Zi(a“)a[;}
{Da, Dg} = 0= {Ds, Dy} (2.17)

[Da,eQ +€Q] = 0

which implies that D,S is a superfield.
At this point it is useful to note that the operators:

/ d*0D,  and / d*0Dg (2.18)

each are a total derivative with respect to x*. It is also useful to note that the action of
three consecutive D,, operators vanishes due to the commutation relation (?7?).

Chiral Superfields

A chiral superfield is defined as a superfield ® such that Ds® = 0 (analogously we define
a antichiral superfield as a superfiels that satisfies D,® = 0). This condition imposes
some restrictions on the components of the superfields so we want to find the explicit
component form of a chiral superfield. To this aim let us define

y" = at + 00, — d = d(y,0,0), (2.19)
In this basis one can quickly verify that [?]:
Dy®=—-0,=0 (2.20)
so there is no f-dependence and the expansion of the chiral field is quite simple:
Oy, 0) = P(y") + V200 (y*) + 00F (y*). (2:21)
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Returning to the original basis one gets:

O(x,0,0) =p(x) + V20(x) + 00F () + i05"00,0(x)

1 ua 1 __ "
- E%aﬂdz(as)a 0 — 1(09)(99)@8 ()

There are 4 bosonic complex components (¢, F') and 4 fermionic complex ones 1,. Under
a supersymmetry transformation

(2.22)

5P =i(eQ +€Q)P (2.23)
the components are transformed as:
86 = V2et)

0 = iv/20"€D,p + V/2€F. (2.24)
OF = iv/2e6" 0,

It is also useful to remark that any holomorphic function f(®) of a chiral superfield ® is
chiral.

Vector Superfields

A superfield V(z, 6, 0) which satisfies the condition V = V is called vector superfield.
The most general form of a vector superfield is given by:

V(x,0,0) =C(x) + if0x(x) — ifx(z) + %GQ(M(:E) +iN(z)) — %éé(M(m) —iN(x))
+ 000 A,(z) + i000(—iX(z) + %Uuaux(m))
—i00(iX(x) — %0“8,0(@)) + %(99)(99)(D(x) — %%8“0(:17)).
(2.25)

Where C, M, N, D, A, are 8 bosonic components and x, and A, are 44-4 fermionic ones.
Under supersymmetry transformations the vector superfield’s component variations are
given by:

6A, = —ie(F"\ + 9,x) + ie(a" X + 0, X)
S\ =eD + %U“&V(aMAV —9,A,) (2.26)
6D = ea" I\ + e5" I\

12



The components of the chiral superfield S and of the vector superfield V = i(S — S) are
related by:

C=i(¢p—9)
X = V2¢
M +iN = 2F (2.27)

Vu:_au(¢+$)
A=D=0.

2.2 Two-derivative Supersymmetric Lagrangian

In this section we want to build a Lagrangian of a chiral superfield which is invariant
under supersymmetry transformations. We will now see that it is composed of D-type
and F-type terms. This means that (60) and (0008) type terms will appear in the com-
ponent Lagrangian. This fact allows to obtain the Lagrangian in the form of an integral
on superspace. In order to build a supersymmetric Lagrangian £(®) of a single chiral
superfield let us consider the last lines of equations (??) and (??). The variations of the
D and F terms are total derivatives:

0D = %@(60”/_\ — pot'e)
OF = iv/2e5" 0,1

(2.28)

This fact allows us to build a Lagrangian starting from D and F-terms in order to obtain
a null (up to a total derivative) variation under a supersymmetry transformation 6.L.

The most general supersymmetric Lagrangian for a collection of chiral superfields
Dy, ..., Py can thus be written as:

L= K(®;,®)|p+ W(®)|p+ h.c (2.29)

where the function K is the Kdhler potential which is a real function of ®; and @; and W
is a holomorphic function of ®; known as the superpotential. The notation |p p means
that we are considering D and F-terms of the corresponding superfields. This is an
example of the power of the superspace formalism: it is possible to multiply an arbitrary
number of chiral superfields and by extracting the F-term one obtains a superpotential
and then a supersymmetric theory. Within the multitude of theories that could be
obtained, we are only interested in renormalizable theories, i.e. with a Lagrangian having
mass-dimension 4. Keeping in mind that the extraction of the F-type terms requires the

use of the integral on superspace:
/ d*0 (2.30)

13



which has mass-dimension 1, one has that the maximum number of chiral superfields of
mass-dimension 1 which can be used for the construction of a renormalizable superpo-
tential is three. In the same way, the extraction of the D-term increases the dimension
by 2 through the integral on superspace:

/ d*e. (2.31)

Let us have a look at the dimensions of the objects appearing in the Lagrangian in order
to obtain the explicit form of K and W in terms of the chiral fields ®;. We know that:

3 (2.32)

@]=[6]=1, [w]=5

so we can quickly verify that [§] = —1. Now we have:

Klp=(00)(00)Kp = [Kp]=4, K]=2
(2.33)
Wip=(00)Wp = [Wp]=4, [W]=3

Then due to the form of the D and F-terms and the properties of the Grassmann varia-
bles, one can express the Lagrangian as an integral on superspace:

L= /d49 K+ /d29 W + h.c (2.34)

In terms of the superfield components this is

W

_ i=: OW .
L =—-K;0,0;0"¢; + K F'F7 + 900 Fi + aquF (2.35)
where we ignored the fermionic terms. Here K;; = W = (K%)~" is the Kdhler
YD)

metric. A Kahler manifold is a special type of complex manifold such that the metric
K; can be expressed as a second derivative of a scalar function K which is the Kahler
potential. The metric and therefore the geometry of the Kahler manifold is invariant
under the analytical transformations:

K(®,®) = K(®,®) + F(®) + F(P) (2.36)

which are called Kahler transformations.

14



We can see that F' is a non-propagating auxiliary field which can be integrated out
via the equations of motion:

_- =0W
F'=-K"—. 2.37
0; (2:81)
and substituting the result back into the Lagrangian one obtains
L= —Kg@uqﬁi@“d% — Vi (0) (2.38)
where the scalar potential is
- ~OW OW
Vie(pi, ¢5) i = KY —— 2.39
(60.65) = K950 55 (2.39)
which appears in the Lagrangian with a minus sign. In the case of N = 1 we have
1=75=1.
Then, for a renormalizable theory, K and W take the following form:
_ & _ m-o  Y9xz3

2.3 Four-derivative Supersymmetric Operators

In this section we discuss supersymmetric higher-derivative operators in superspace,
neglecting the fermionic terms for simplicity. When higher-derivative operators are in-
cluded in supersymmetric theories the Kéahler potential becomes a real function of @,
® and their higher-derivatives. The superpotential instead becomes a function of chiral
higher-derivative fields.

A general higher-derivative Lagrangian can be written as [?] :

L= /d49K(<I>,<T>,D<I>,DcI>,D2cI>,...) +/d29W(<1>,D2<1>,...)+h.c. (2.41)

Higher-derivative operators of particular interest are the supersymmetric ones, in parti-
cular we are interested in real four-derivative operators: there are a lot of combinations
which satisfy the reality requirement but they are not all independent, we can indeed
relate one to the other by partial integration.

A set of independent supersymmetric four-derivative operators with each two chi-
ral superfields ® and two anti-chiral superfields ® is composed of the following three

15



operators [?, 7, ?]:

O, = |®2D?*®D?d|
= 16|¢[*0¢0¢ + 20| F|*¢0¢ + 20| F|*¢0¢ + 16| F|* — 8| F|29,00" ¢
+ 4|¢|*FOF + 4|¢|* FOF — 8|¢|*0,F0"F + 8¢F3,¢0" F
— 8¢ F0,p0" F + 8¢ F,p0" F — 8¢ F0,¢0" I

Oy = ®D?*®DIDP|p
= 160,00"¢¢0¢ — 16| F|*¢0¢ + 16| F|*0,00"¢ — 16|F|* (2.42)
+ 160 F 0, 00" F — 169 F0,¢0" F

O3 = |®?DD®DDd|p
= 8(89,00"9)* + 8¢60,6(9,00"0" ¢ — 8,000 $)
— 8|¢[?0,00" ¢ — 8|¢|*0,FO*F — 8| F|*0,¢0" b
— 8¢ F0,pO" F — 8¢ F0,pO"F.

In principle, further operators with different numbers of ®, ® exist but we do not need
them later. In appendix ??7 we will demonstrate that these operators coincide exactly
with those reported in [?] and [7].

We will also see how the fourth operator which appears in [?] is linearly dependent
from the three operators (??) and is therefore not necessary in the constitution of a basis
of supersymmetric operators. Making use of these operators one can eventually complete
the component Lagrangian in order to obtain a manifestly supersymmetric Lagrangian.

2.4 Supergravity

Now we provide an overview on supergravity [?]. We give an interpretation of supergra-
vity as a gauge theory and we summarize the formulation of supergravity on superspace.
We analyze the supergravity Lagrangian Lgg coupled to matter and we show how, in the
limit of flat space, one obtains the SUSY Lagrangian discussed in the previous section.

Making the parameter € a function of spacetime coordinates e(z) we extend super-
symmetry to a local symmetry: the corresponding theory is called supergravity. We
begin by explaining the theory of pure supergravity without matter-coupling. The gauge
field of supergravity is the gravitino W# which is coupled to the supercurrent J*. This
supercurrent gives rise to the supersymmetric charge

Qo = / GEN A (2.43)

16



The gravitino is part of the supergravity multiplet (h,,, V") together with a graviton

linear excitation h,,,:
8w
gl/:nu_‘_"ihm R = — (244)
I 1 It \/ Mgz

U and hy,, are governed by the Rarita Schwinger and the Einstein Hilbert actions
respectively:

1 _
Srs[V] = 5 /d%e““””@u%%ﬁp\ﬂg

(2.45)
1

1
Sealh] = — / A (R — S R).

In the Rarita Schwinger action we made use of the Dirac spinor notation whereas R,
and R, appearing in the Einstein Hilbert action, are the Ricci tensor and the Ricci
scalar respectively. Promoting the parameter of the supersymmetry transformation to a
function of the spacetime coordinates, the total action becomes:

5. Shorat = 6.(Sps[¥] + Seuh]) = / 2T, c (2.46)

and in close analogy with the electromagnetic case the interaction term
Sint[W, B = —= [ d*J"w 2.47
int|V, h] = ) JH, (2.47)

can be used to restore the invariance.
The most convenient formulation of supergravity is the superspace formulation which
makes use of an extension of the superfields to the local supersymmetry.

2.4.1 N =1 Supergravity Coupled to Matter

In this section we would like to couple supergravity to chiral superfields [?]. In this
environment the definition of chiral field proposed in section (??) must adapt to cur-
ved spaces. For this reason we substitute the chiral derivative (??) with the covariant
derivative D,. Therefore the definition of chiral superfield on curved spaces is:

Dy =0 (2.48)

which reduces to Dg® = 0 in the limit of flat space. Now the components of the chiral
superfield are

(¢, Xa F) (2.49)
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The theory in curved space is described again by K, W. The form in components of the
Lagrangian is in fact given by:

1 _
— iK;5;0" D,y + €V ,6,D, U,
1 - 1 _
— 5\/§Kﬁau¢3xiaﬂa”xp,, — 5@&;@@;@5%”%
1 _ _
+ ZKﬁ[ie“l’p’\\I/MaV\Ilp + \pra’\\llp]xia,\ﬁ
1 (2.50)

- g[Kz‘ijz’ — 2R 5 XaXk XG5 X1

— exp(K/2){W V05 + W ,5% U4

+ é\/E(DiWXZUa\I/a + DgW}?gﬁa\I/a)

1
2 —

— exp(K)[KY(D;W)(D;W) — 3SWW]}

1

where the covariant derivatives are defined as:

. 1 _
Duxi = OuXi + Xiwu + U5.0,05 Xk — Z(Kjauébj — K;0,05)x:

N 1 _

Du¥y = 0,9y + Vo, + 7 (K;0u0; — K;0,97) Vs (2.51)
DW =W, + K,W

D,D;W = Wy; + KyW + K;D;W + K;D;W — K;K;W —T¥.D,W.

j
Where Ffj is the Christoffel symbol for the Kéhler manifold, and w,, is the spin connection
for spacetime. In the global limit the chiral covariant derivatives reduce to their coun-
terpart in flat space, the curvature vanishes and one obtains the flat solution presented
in the previous chapter.

Note that also the higher-derivative operators (?7) have a generalization in curved
superspace provided by [?]. It must be stressed that on curved superspace the list of
higher-derivative operators is composed of four independent operators (not three as in
flat space) and they can be traced back to the list (??) in the global limit. The presence
of a fourth independent operator is attributable to the fact that in supergravity there
exist high-derivative objects such as the Riemann tensor, which vanish in the limit of
flat space. Note that in [?] are also listed two higher-derivative operators which do not
have a rigid counterpart and which are intrinsically linked to the Riemann tensor.

18



2.5 Supersymmetry Breaking

In this section we start analyzing some generalities about SUSY breaking, including F'-
term breaking. In the following we introduce the concept of soft supersymmetry breaking
and, after a brief introduction on supersymmetry breaking in supergravity, we have a look
at the repercussions of supersymmetry breaking on the observable sector. What emerges
is that the spontaneous breaking in the hidden sector induces soft-breaking terms in the
observable one and the interaction between these two sectors occurs through the so-called
gravity mediation.

2.5.1 Generalities on Supersymmetry Breaking

When the Lagrangian is invariant under a supersymmetry transformations but the va-
cuum state is not, we speak about spontaneous supersymmetry breaking (SSB). More
generally, when the ground state |vac) satisfies

Qalvac) # 0 (2.52)

one has a broken supersymmetry.

Two important results provided by [?] are that for any state £ > 0 and that when
supersymmetry is broken the energy is strictly positive.

Taking into account the variations of the components of a chiral superfield (??7) under
a supersymmetry transformation

8¢ =V 2et)
0 = iv/20"€D, ¢ + V/2€F. (2.53)
OF = iv/2e6" 0,

we note that Lorentz invariance imposes:
(V) = (Oue) = 0. (2.54)
So the supersymmetry breaking condition (at least one of d¢, d1p, 0 F # 0) entails:
SUSY < (F) # 0, (2.55)

then we have

6 =0F =0, 6 =2e(F)+#0. (2.56)

Because of the form of the scalar potential one has:

SUSY < (V) > 0. (2.57)
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A V(d) A V()

>¢ ;

(a) SUSY and gauge symmetry preserved. (b) SUSY broken and gauge symmetry
preserved.

A V(d) A V(9)

(c) SUSY preserved and gauge symmetry  (d) SUSY and gauge symmetry broken
broken

Figura 2.1: In this figure we can see various symmetry breaking scenarios: as we discuss in
the present section, whenever the minimum potential energy is zero, SUSY is preserved.
Gauge symmetry breaking is instead associated to a non-zero field configuration [?].
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2.5.2 Soft Supersymmetry Breaking

In the absence of a clear theoretical mechanism for spontaneous supersymmetry brea-
king, it is interesting to investigate the ways in which SUSY can be explicitly broken.
To this end one introduces some particular terms called soft breaking terms which do
not generate quadratic divergences, these terms are the non-supersymmetric ones. The
general Lagrangian including soft terms is given by:

L= Lsusy + Lsoft (2.58)

where Lgpgy refers to equation (?7) and L is given by [?]:

Laoge = ~m6' — (3B + At 6 + hc) (2.59)

2

where the ¢'’s are quantum scalar fields, mi;

A;jr, is a trilinear coupling.

and B;; are mass matrices for the scalars,

Supersymmetry Breaking in Supergravity

As we have seen in the previous section, the spontaneous supersymmetry breaking order
parameters are the (F') v.e.v.. In the supergravity framework one needs to add another
order parameter due to the presence of the gravitino in the supergravity multiplet. The
gravitino gives rise to a fermionic component variation:

w2
6V, o< Dye(z) +ier K Wo,e(z) (2.60)

Note that in this context F? o eéKKﬁDjW. This equation restricts the vacuum
spacetime-solution, this means that also the (V) = 0 solution is possible after SU-
SY breaking in supergravity. A sufficient condition for supersymmetry breaking is given
by

(F'Y #0 . (2.61)

Nevertheless super-partners of ordinary particles have not been detected. This suggests
the presence of a ”hidden sector” in which supersymmetry is broken at energies higher
than the electroweak scale since supersymmetry breaking in the ”visible sector” would
give rise to some super-partners which would be lighter than ordinary particles [?]. That
is:

W = Wobs + Whidden (2.62)

in such a manner that , i
(F') = (€7 " K" D;Whidden) 7 0. (2.63)
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Gravity Mediation

At this point it is very interesting to identify the effects of supersymmetry breaking in
the observable sector (which could, for instance, be given by the MSSM). Making use of
the same notation of [?], we consider the observable charged matter fields Q and scalars
T? living in the hidden sector and assume (Q7) = 0. Then the superpotential takes the
form:

W(Tv Q) = Wops (Ta Q) + Whidden(T)

Woss = 3mus(TQ'Q7 + 21 (TIQ'QQR + .

In the hidden sector we take (F*) # 0 for some i, (V) = 0 and fix the v.e.v. of T%. We

write the Kihler potential as a power series in Q!:

(2.64)

K =k 2R(T,T) + Z1,(T, T)Q'Q” + (%HU(T, T)Q'Q" +ce) + OQ%)  (2.65)

Taking the limit M, — oo one finds [?] that the potential is given by:
1 _ o
4 :ZQQ(QIZMTCLQJ)2 + oWz ogw
IA T 1 K 1 (266>
+mi;Q'Q7 + (gAleQlQJQ + §BIJQIQJ +c.c.)

where the soft supersymmetry breaking terms are encoded in the second line.
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Capitolo 3

Compactification of IIB String
Theory

3.1 Type IIB Supergravity

A popular superstring theory is type IIB string theory. At low-energies this theory can

be described by ten-dimensional type 1IB supergravity.

Type IIB supergravity is an N' = 2 theory and is described by a single supermultiplet

[7]:
Gv BQa 027 Qb, COJ C'47 \II}MON \Il?\/[om )\(117 )\i (31)

where one has, in the order, the graviton, two two-forms, the dilaton, a zero-form, a

four-form, the gravitino and the dilatino.

Let us define the field-strengths of the supermultiplet components [?]:

H3 == dBQ, F3 = dCQ, F5 == dC4, F1 = dCO (32)

- 1 1
G3 —- F3—(00+i€_¢)H3 s F5 = F5—§CQ/\H3+§BQ/\F3 (33)
The type IIB low energy effective action in the 10-dimensional string-frame is given
by [?]:
1
e /e—% (53 1+ 2do A *d(b)

1 l

(3.4)
1 - 1 - ~ -~
—Z/(Fl/\*Fl—i-gGg/\*Gg—'—%Fg)/\*Fg))—§/6¢C4/\G3/\G3

where * is the Hodge-* operator and the self-duality condition on Fyis imposed by hand.
In order to bring these new objects closer to something familiar, we note the analogy
with the electromagnetic gauge field: within electromagnetism the aim of introducing
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Background Flux

Internal manifold

Space-time

Figura 3.1: Brane-world scenario on four Minkowsky space-time and compact internal
manifold: D-branes, orientifold planes and background fluxes.

the vector field A, is that of maintaining the invariance of the Lagrangian under local
phase transformations. The gauge field is then introduced into the Lagrangian through
the term: .

L= _ZLFWFW (3.5)
which is invariant under the same phase transformation. Here we have defined the
field-strength F' as:

F = dA. (3.6)

3.1.1 Compactifications of IIB Supergravity

The existence of extra dimensions which is necessary to describe type IIB supergravity
is not experimentally evident. One possible explanation for this could be that such extra
dimensions are wrapped up on themselves and confined in very small sizes (for six extra
dimensions the typical radius should not be larger than 10~ cm [?], but could be much
smaller than that). This necessity leads to the notion of compactification, which allows
to obtain a four-dimensional theory in which the extra dimensions are compactified on
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some suitable class of six-dimensional manifolds. An example of such manifolds is given
by the Calabi-Yau manifolds or by the torus orbifolds. To compactify means the metric
can be written as:

ds® = G (x)d2tdz” + R gun(y)dy™dy" (3.7)

where y denotes a point in the six dimensions, g, p,v = 0,...,3 is a Minkowski me-
tric and g, m,n = 1,...,6 is the compactified manifold metric. In the small radius
limit R — 0 the Minkowski term becomes more relevant and, as a consequence of com-
pactification, we no longer see the extra dimensions. However, the fact that the extra
dimensions are undetectable does not mean that there cannot be experimental evidence
of their existence: an example is given by the moduli which arise as massless modes of
the higher-dimensional fields on the compact manifold.

These theories give rise to N' = 2 supersymmetry in four-dimensions, but from a
phenomenological point of view we need an N' = 1 supersymmetric theory. This problem
is solved by what is known as orientifolding. Orientifolds are obtained starting from a
particular compactification and introducing a parity transformation 2 at the string-
theory level. Furthermore, we need a space-time isometry which includes an involution
o™ on the compact space. Calabi-Yau manifolds can only be subject to discrete isometries
which act on the coordinates. The orientifolding process projects out some part of the
spectrum and, furthermore, there exist fix-points with respect to ¢* which give rise to

03/07-planes.

3.2 D-brane Action

Dp-branes are non-perturbative solutions of supergravity, they are important in order
to give consistent solutions with O3/O7-planes. They are objects of particular interest
for many reasons: the open strings end on the brane, the branes give also rise to non-
abelian gauge group and to chiral matter. Moreover they can be thought of as a higher-
dimensional generalization of point-particles charged under bulk U(1)s. Dp-brane are
objects whose dynamics are governed by an action given by the sum of the Chern-Simons
(CS) and Dirac-Born-Infeld (DBI) actions [?]. They are given by [?, ?]:

St = g [ T\ et (o () + 1F) det@y,

w
(3.8)
Scs = tp9s / Tr [ @*(eMole Y C@WeP)e!" |
w g even
Where
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and [ = 2ma/. For a single D-brane F is a U(1) field strength which describes the U(1)
gauge theory of the endpoints of the open strings attached to the brane. The integration
is performed over the (p+ 1)-dimensional world-volume W, which is a submanifold of the
entire ten-dimensional manifold M and is related to the latter by the map ¢ : W — M.
1, = (27)77(/) 2D is the brane tension, E,, encodes the metric g and the B-field
via:

B = 9;/2%” + By (3.10)

©* is the pull-back: it is necessary because F,, is defined in the entire ten-dimensional
manifold M and we need to pull it back on the brane. To do this we have to take into
account the fluctuations along the normal direction of the world-volume as in [9,10] and
expand the pull-back as well. In the DBI action the field strength F' also appears, which
we will overlook both for simplicity and because it is part of a vector superfield, which
is not our focus within this project.

3.2.1 Background Fluxes

Let us focus our attention on the case of D7-branes living in a 10-dimensional space
treated with a compactification where the internal, compact manifold is an orbifold
(7, ?]. In [?] we can see how type IIB 10-dimensional theory admits imaginary self-
dual (ISD) 3-form fluxes as solutions of the equations of motion in warped Calabi-Yau
backgrounds. In this section we consider the presence of such ISD 3-form fluxes G5 acting
as a background. In type IIB compactification these fluxes are of two different types [?]
showing different tensor structures, one is a (0,3) tensor and one is a (2,1) tensor. We are
particularly interested in the first type, which induces a supersymmetry-breaking soft
term; the second one is involved in the induction of supersymmetric F-term masses to
the chiral multiplets [?, 7, 2, 7 7 7].

In the following we discuss the scalar potential induced by the fluxes and we see how
background fluxes lead to a vacuum in which supersymmetry is spontaneously broken.

3.2.2 Flux-induced Scalar Potential from DBI action

Let us now focus on torus orbifold compactifications in the presence of G3 fluxes. The
DBI action for D7-branes is given by:

Sppr = —mgsl/ dngre"z’\/—det (¢*(Euw) + LF,,)detQn,. (3.11)
w

As we can see in [?], neglecting the contribution coming from the field-strength F and
from det@)],, which gives rise to the D-term scalar potential, computing the determinant
one has

det(¢*E,,) = —gi f(B)* [1 + 2Z I*D,,¢D" 9| (3.12)
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where Z is a warp factor that depends on the internal coordinates and f(B) is a function
of the B-field given by:

1
f(B)=1+ 52—19;132. (3.13)

Then the DBI action is written as:

Sppr = —M7g;1 /dngI'\/f 1+27 Z2D#¢D”¢] (314)

Now, recalling that the three-form fluxes G3 are given by equation (?7?), one has:

ImG3

Imr

H3 =dBy =

, (3.15)

where 7 is the complex type IIB axio-dilaton 7 = Cy + ie~®. Integrating the previous
expression one obtains the B-field induced on the brane by the presence of background
fluxes G5. The result in terms of the B-field components is given by [?]:

sl - sl _ .
By = 92. (G 03)¢ Geno), Bn= _9 ~(Go,3)¢ — G(1,2)¢) (3.16)

replacing this result in equation (??) one obtains:

/A gsl2

f(@) =1+ G — SoI?, (3.17)

where G = Gia3 and § = €3;,G55;. Thus one obtains that the F-term contribution to
the scalar potential is given by:

Z72g,

vio) =1 (L5100 - o). (3.18)
So in the end we have seen that the presence of background fluxes induces a scalar
potential term.

Shape of the scalar potential induced by fluxes: We are now interested in seeing
what shape the potential takes after the orbifold projection. Following the footsteps
of [?], we consider a Z; orbifold projection which splits the brane position into two
non-vanishing components:

We can now express the scalar potential (?7) in terms of these components. It takes the
form:

2
V= ZE(1GP + |SP)(H + | Hif?) — 4Re(G"S" H,Hy)) (3.20)
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3.2.3 N =1 Supergravity Description

In this section we will see that the scalar potential (?7) obtained by the three-form fluxes
G is identical to the one derived from a N = 1 supergravity computation. The Kéhler
potential for type IIB supergravity with a stack of D7-branes is given by:

K = —log[(S + S*)(Us + U;) — %]Hu + H2?] — 3log(T + T*) (3.21)

where S = e~?+i (} is the type IIB complex dilaton (notice the slight different definition
with respect to 7 = Cy +ie?), Us is the complex structure modulus of the T? torus in
the third complex direction and 7T is a diagonal Kahler modulus field.

In the present case we consider a superpotential given by a constant term and a
p-term:

As we can also see in the component Lagrangian (?7), the scalar potential is given by:
V=eM Y KY(DW)(D;W) — 3WW], (3.23)
T,5,U,H

We can now rearrange the terms as:

V =KK™ DrWDiW —3WW + > K*° DW Dz W), (3.24)
-0 S,UH

We can see that the contribution from the first two terms cancels out, indeed one has:
DrW = 0orW + W Krp (3.25)

where 0rW = 0 because of the fact that W is T-independent. For the first two terms in
equation (?7?), this implies:

K"TW KWKy — 3WW

— (K"TKr Ky — 3)WW

(3.26)
(TR 33 N
‘( 5 (LTI 3) =0
So that _
V=e"[> KD ,WDzW] > 0. (3.27)

S,UH
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t

Figura 3.2: No-scale structure in the flat ¢-direction.

As we can see, now the scalar potential is always non-negative, and so a minimum of
the potential occurs when:

D,W =0
(3.28)
=DyW = DsW =0,
from equation (?7) one obtains:
Fo = KPE% D =
" (3.29)
=% =F"Y =0,
meanwhile for F'7 we have:
FT = X2 RTT Da iy
= MK KW (3.30)
Wo Wo

— = — 0
(T+T)/2  t to

where t = T + T is the volume of a 4-cycle. So we have that F” vanishes in the
decompactification limit and, for finite ¢ and W, # 0, one has that SUSY is broken
because of the presence of the non-vanishing F7-term:

FT' #£0= SUSY  unless W, =0. (3.31)
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Thus, because of the no-scale structure of the Kahler potential, the scalar potential
takes the simplified form:

V=el ( > K*P (DQW)(Dﬁv‘V)) (3.32)

S,UH

So one obtains that the scalar potential is given by:

V= (M + [ + [Hof?) = 2MiHHo+ he. (3.33)
where:
(3.34)
s=(S+95, t=(T+1T).
Through the redefinitions:
G = (%)_1/2 Jf—oﬁ 5= - (%)_”2 V?%ﬁ (3.35)

we have that the scalar potential (??) is exactly the one induced by the presence of ISD
three-form fluxes (?7). By comparing the expression (??) with the equation (??) we can
see that the soft-part of the scalar potential is given by the two terms:

1 .
S BLuQ'Q7 = —2MH, H, (3.36)

and

m};Q'Q7 = |MP(|H,| + |Hal). (3.37)

3.3 Single D3-Brane Effective Action at Two-Derivative
Level

In this section we compute the low energy effective action of a single D3-brane by re-
duction of the Dirac-Born-Infeld (DBI) and Chern-Simons (CS) actions. We are going
to see how the fluctuation of the brane position gives rise to a chiral superfield ¢ in the
effective action. This superfield is charged under a U(1)-gauge group. In the case of the
D3-brane we have a no-scale structure also for the field ¢, which implies that there is no
mass generation for this mode for DgW = DyW = 0.
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Dirac-Born-Infeld Action: Let us give the bosonic contributions for the DBI action
of a single D3-brane [?], in the string frame this is written as given by equation (77?)
which in the present case reduces to:

St = s [ d'6e?\[=det(E,) (3.38)
w

As we have seen in the previous section, when computing the pull-back of the metric we
have to take into account the normal fluctuations. This approach allows us to treat the
DBI action (??) as an expansion for small fluctuations of the brane. As is shown in [6]
one can start by taking into account the expansion of the square root of the determinant:

1 1 1
Videt(1+A) =1+ 5 TrA - ZT1~A2 + g(TrA)2 + .. (3.39)
For the moment we limit our discussion to the first order of this expansion. As we show
in appendix A, evaluating the pull-back one obtains:

30* (g),tw — €2A(yo)§m/ + 6_2A(y0) lgmnD#¢mDy¢n + 6214(2/0) l2§m—R T ¢n¢m (340)

n vm

where g is the position of the brane and D), is the covariant derivative which in general
also contains the connection of the normal bundle [10],in our case however this connection
vanishes due to the ansatz of the metric [6]. At the end one finds the DBI which, in the
Einstein frame, is given by [6, 11]:

E 4 3664A 2 T n _m 312 m U AT
Sppr = —Hz [ dEV—ga i (I+1°R,7,,9"0™) + K_gmnDu¢ D¥¢ (3.41)
w w w

where, as can be seen in [12], the relation between g, is given by:
Ko -
G = ?gw, K, = 6/ d®+/detgme . (3.42)
Y

Chern-Simons Action: In the abelian case with the strength field F set to zero, the
Chern-Simons action provided in [?] becomes:

1
SCS = ,u/ 90* <Z C(q)€B> = M/ gp* (04 + CQ N Bs + §B2 A Bg) (343)
w w

q even

in which we have to consider the four-form Cj; which is given by its background value
contribution plus excitations:

Cy = Cupedx” Ndz” A dz” N dx?

. T (3.44
+ Dy () Aw™ + pat )
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where C),, is related to the background value via:

1
ZCWdeM ANdx” Ndx? N\ dx®

= 00123d1‘0 N del VAN d[EQ VAN dl’3
= a(y)dz® A da* A da* A da?,

(3.45)

Computing the pull-back by making use of the formula (?7), we must keep in mind that
the only non-vanishing components of the expansion are those including C,.p0, Chvmn
and C,pnpg type terms. This yields the following contribution to the CS action in the
Einstein frame:

E 4 36e*4 5
S = ,M3/ d 5\/ —34 ( ) (1 +/ RnTngbnqu))
W K2
puzl? o _ (3.46)
= (' D¢’ — ¢ D) (wa)idat A dDfy
w

where the last term is obtained by partial integration and using a complex basis. One
notices that the first line gives the same contribution as the DBI action (??) but with
opposite sign, so their sum gives a null contribution. We also have to include small
deviations for the background value «, as the following expansion shows[6]:

a =" — h(y) (3.47)
The contribution of the pull-back is given by:

2 (h') = h(yo) + [ vn h’yo(b + §l2 Vn th|yo¢ (b = §l2hnm¢ ¢ (348>
where
h(yo) = 0, Vnhly =0, Vn Vm Plyy = o (3.49)
Now we can write the complete Chern-Simons action:
E 4 36¢*4 op r nmy 180 i g
ST =ws | A&V =ga | —m (L PR 00" 0") = o5 (hijgigs + hiy¢'d” + hec.)
w w w
psl? in 23 ) i o
+ ?fT W(¢ D¢’ — ¢ D' ) (wa)szda* A dDy,.

(3.50)

Adding the two contributions of DBI action (??) and CS action (??) we finally get
2

61 o — 18l - o
Shos = Mng/ d*¢y/~ g4 (ﬁva(u’ )i Dud' D¢’ — —=-(higd' & + hij¢'d” + h-C-)>
w w

w

pal> [ 5 T .
+ 5 | @D = D) (wa) gda” A dDG,
(3.51)
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Capitolo 4

Higher-derivative Terms in
Supersymmetric Effective Theories

In this chapter we are going to discuss the role of supersymmetric higher-derivative
operators in effective theories described in the previous chapter. In particular we are
interested in four-derivative operators involving the same number of ¢ and ¢ with mass
dimension 8 (which we can heuristically indicate as 91¢?) as we saw in section (?7?), igno-
ring those terms in which the higher-derivative orders are provided by higher-derivative
objects as the Riemann tensor. The first step is to understand where higher-derivative
operators come from: they typically arise from effective actions considering higher orders
of the expansions. The question is, are they actually supersymmetric? In this regard
we can consider two cases: in the first we have [ = 0, so we have no scalar potential
(Ve = 0), in the second case one has instead F* # 0, which implies a non-vanishing
scalar potential (Vg # 0). In the first case we have that the SUSY is preserved and the
four-derivative terms arising from higher orders of the expansions can be recast into so-
me suitable combination of superymmetric higher-derivative operators in which one can
fully represent all terms supersymmetrically. As we have seen in the previous chapter in
the second case, on the contrary, the SUSY is broken due to the presence of fluxes: soft
terms arise and one can only partially represent all terms supersymmetrically. We will
address this topic in more detail later.

In the next section we show a practical example of this method applied at the D7-
Brane effective action.

4.1 Higher-derivative Operators for a D7-Brane

In this section we consider the issue of higher-derivative operators for the effective action
for the position moduli of the Type IIB D7-branes. As proposed in [?] we consider the
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Lagrangian at the two-derivative level in the form:

£ =~ [1+aV(9)0,60"0 — V(9) (4.1
where the factor a is given by:
Z
= 4.2
“ T uVags (4.2)

where Z denotes the warp factor e24®)  Vj is the volume wrapped by the brane. We
have only used one complex scalar field because D7-branes are 8-dimensional objects
living in 10-dimensions. This Lagrangian arises from the reduction of the DBI action.
In those terms, using the same ansatz for the metric (??) which we have used in the
D3-brane example, as shown in appendix (?7?), the root expansion (?7?) gives:

\/—det(gi/QZ*1/277W + g3 P2V 120, 0mpm) =
G271+ 22 1°0,¢:0"d’

1 o — _ (4.3)
- §Z2 11(0.0'0"¢7)(0,0:0" ;) + (0,0'0"¢)(0,0;0" )
- (a/ﬂszau&z)(augbjayggj)]}
In case of a single complex scalar field, the previous expansion reduces to:
\/—det(g;/22*1/277,w + g2 ZV2 120, 0mpy) = (4.4)
4.4

G771+ 27 PO00G — 57 1[(0,60"6)(0,60°0)])
Then, as we can see in [?],the Lagrangian (77) at the four-derivative level becomes:
- a
L= —[1+aV(9)|0,60"6 + 5|0,60" 6" =V (6). (4.5)

At this point our goal is to provide a supersymmetric operator which yields the same
four-derivative contribution |9,¢d"¢|* appearing in the Lagrangian (??). We show the
explicit calculation for the coefficient a/2 of the four-derivative term in the appendix
(??). At this point our purpose is to find a suitable higher-derivative supersymmetric
operator that reproduces the four-derivative term appearing in the previous Lagran-
gian. The higher-order terms which will appear in this operator together with the four-
derivative term will constitute the supersymmetric high-derivative Lagrangian £Z2, .
This Lagrangian, together with the two-derivavive supersymmetric Lagrangian Lgpgy is
the supersymmetric rappresentaion of the Lagrangian (?7?) but, as we will see later, this
representation cannot be complete.
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4.2 Supersymmetric Match of Higher-Derivative Ac-
tions

As we have seen in section 77, at the two-derivative level the presence of fluxes induces
soft SUSY breaking and one can only partially write the Lagrangian supersymmetrically:

L= L:SUSY -+ £soft (46)

These soft terms occur when background fluxes lead to a vacuum in which supersymmetry
is spontaneously broken, therefore leading to soft terms for the D7-brane modulus in the
effective theory which is obtained after the bulk-moduli are made massive and gravity is
neglected thus allowing to describe the theory through a global supersymmetric model.

When one looks at the higher-derivative terms something similar happens. Once again
we cannot fully represent all terms of the Lagrangian supersymmetrically. This time,
however, higher-derivative and higher-order terms concur both in the supersymmetric
part and in the broken SUSY part.

L= Lsusy + Egé)syl—i- Loopt + LiTsy (4.7)
SUSY SUsY

where the Egyogy terms are soft-type terms which are of mass-dimensions > 4.

In the present case, from the reduction of the DBI action we got a component Lagran-
gian given by the sum of the scalar potential, the four-derivative and the two-derivative
contributions:

L= LA 4+ L) LV (4.8)
where:
o LU il
o LE D) C Lovsy + Lafsy + Lo5sy (4.9)

L4 ‘/comp - ESUSY + Esoft + Eg[?SY + EgLODS“ .

As we can see, the non-supersymmetric Lagrangians Lg,7; and Eg]ggy also contribute to
the potential terms and Egj%(y contributes to the two-derivative terms of the component
Lagrangian (where the superscript ” HO” stands for "higher order”), in addition to the
two-derivative and the higher-derivative supersymmetric Lagrangians. This is the reason
why we can only partially represent all terms supersymmetrically via the Lagrangian
(??7). In the next sections we will follow this philosophy in order to investigate the
terms induced by the comparison between the higher-derivative terms of the component
Lagrangian with the higher-derivative SUSY Lagrangian.
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4.2.1 List of Four-Derivative Operators

When one obtains (9*¢?)-type terms by expanding an effective action, it would be useful
to be able to compare them with the ones appearing in the supersymmetric higher-
derivative operators (??) or, eventually, in some other basis. The arbitrariness in the
choice of the basis is due to the fact that the number of independent higher-derivative
operators is higher than the number of the independent supersymmetric ones. This, as
we see in the following, generates a difficulty in comparing the higher-derivative terms
with their supersymmetric completion. In order to remedy this comparison problem,
we draft a list of all possible (9*¢*)-type operators limiting our discussion to a single
complex scalar field ¢. The complete list is given by:

Ay = ¢¢ 929
Ay = 6 9P
Az = ¢ (4.10)
Ay = 6o0¢0¢
As = ¢pU¢0e
Ag = ¢¢8,0,00"0" ¢
A7 = ¢$0,0,00"0" ¢ (4.11)

A8 = (bqgau au (bauang

Ag = $¢0,0000"¢
AlO = ééau(bmau(b

An = 660,6000"6 (4.12)
Ay = 660,600"5
Az = gz;auqz_ﬁa“quqg
Ars = 60,60"6006 iy

Ay = ¢9,00" 0
Alﬁ = qbauqbaququg
Az = 00,00,60"0" &
Aig = ¢0,00,00"9" ¢ (4.14)

Ay = ¢0,00,00" D" ¢
Ay = $0,60,00"0"
Ay = 8H<b8“¢6’,,q58”q_5 (4.15)
A22 = 8N¢8V¢8“Q§ayé
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Then we have 22 operators but they are not all independent: one can relate them by
partial integration. The integration-by-part identities and complex conjugate identities
are given by:

Agy = —(Ans + 2Ax)

Agy = —(Asg + Ags + Ag)

A = —(2A11 + Ay)

An = — (A5 + Asz + Asg)

A = —(As + A7 + Ag)

Ajo = —(A7 + 24A19)

Az = —(Ag + 2A46)

Ay = Ay

A, = A, (4.16)
Ar = Ag

Ap = Ay

A = Ap

Az = Ay

Ay = Ag

Ais = Asg

Arg = Ay

To make sure that we have considered all integration-by-part-identities and that we have
not forgotten any of them, one can perform the following consistency check: the number
of integration-by-part identities in which each operator must be involved is equal to the
number of the non-equivalent integration-by-parts that can be performed on it, keeping
in mind that for each real operator, this number doubles. For instance, the first operator

Ar = ¢¢ o9 (4.17)

can be integrated by parts in a single way, taking into account one of the partial de-
rivatives appearing in (12, so that there is only one integration-by-part identity which
involves it:

Al - —(21411 + Ag) (418)
On the contrary, for example, the operator
Ass = 00,000 (4.19)
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can be integrated by parts in three different ways, so that we find the three identities:

Ay = —(Ass + Arg + Aso)
All - —(A5 + A13 + AlG) (420)
A3 = —(Ag -+ 2A16)

and so on. Also note that the real operators appear in the previously listed identity and
in its complex conjugate. For instance the operator

Agy = 0,00,00"$0" ¢ (4.21)
is involved in the identity
Agy = —(Ass + Ass + Azo) (4.22)
and in its conjugate complex:
Ay = —(Ay7 + A5 + Avo) (4.23)

obtained by making use of the complex conjugate identities, satisfies the requirement of
being involved in two identities due to the its possibility of being integrated by parts
in two different ways. Also note that, taking into account the complex conjugate of
equations (?7) we do not obtain more identities for A, which is not real. In the end
we have a set of six independent four-derivative operators. For example, operators (77)
can be written as:

Ozll_der(Ag)) = 16145
ngder(Alg) = 16A13 (424)
Og_der(z‘lm, Aug, Ago, A1) = 8(Agg + A1g — Agg — Ann).

We note that in the previous expressions we used more than three operators from the list,

this means that they can be further simplified by choosing a basis of three independent
operators: we can choose, for instance, the operator basis (As, A1z, Agg) given by:

As = g0
Az = ¢0,00" ¢ (4.25)
Asg = $0,00,00" D" .
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Now the four-derivative parts of the operators (?7) are written as:

O %" = 1645
O57%" = 16 A3 (4.26)
O37%" = 8(As + A1z — 2A4%)

As we have seen in section 7?7, the supersymmetric four-derivative operators are only
three: this means that, choosing a basis of three higher-derivative operators from the
set of six independent ones and expressing the supersymmetric operators (?7) in such
a basis, the three remaining higher-derivative operators cannot be expressed in some
supersymmetric way (but this feature is basis-dependent).

Therefore assuming that we have a non-supersymmetric Lagrangian including higher-
derivative terms, we can now identify (making use of the identities (?7?)) the exact linear
combination of the supersymmetric higher-derivative operators (??) which gives rise to
the four-derivative term appearing in the Lagrangian.

4.2.2 Operator Matching for the D7-brane Model

We note that the four-derivative term in the Lagrangian (??) corresponds exactly to the
four-derivative operator Ay; in the list (??). Thanks to the identities (??), in particular
making use of the first one and its complex conjugated:

Ag = —(A1g + 2Ay)

4.27
Aoy = —(Ayz + 2A19) ( )

one can quickly find the relation:
1
Ay = —3—2((911-*’“ + 20579 — 2057%" 4 h.c.). (4.28)

Including all the terms of the operators O; in the last linear combination and making use
of the integration-by-part method for those terms including the F' and F' summarized in
appendix 7?7, one obtains

Az = |0,00"¢|* C (O +205 — 205 + h.c.)

1
2 - ) (4.29)
= s DODODEDP = 10,00"9|* — 2|F|?0,00") + |F|*.
This operator has appeared in several papers including [?, 7, ?, 7, 7]. As pointed out
in [?] the operator D®DP®DPDP has some interesting properties: in this operator no
kinetic terms for F appear, this means that F’ remains an auxiliary field; moreover it is
Kéhler-invariant and the bosonic part (??) of the operator D@ D®D®D® only contains
D-type terms and all the lower components in 6 and 6 vanish.
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The above operator represents the unique supersymmetric completion of the four-
derivative terms. As we have seen any other operator would not give the proper four-
derivative contribution and would, thus, be incorrect.

It would be desirable to understand the complete form of the action as a sum of
supersymmetric and soft-like terms. However, a full answer cannot be given here. We
can at best present a result for all supersymmetric terms. Therefore, the contribution
to the 2-derivative part of the Lagrangian and the scalar potential as induced by (77?)
are incomplete. To give the full answer regarding the supersymmetric terms we also
have to consider possible corrections to the Kahler potential and superpotential as well
as to the correct chiral variables ®. Now, since we cannot say anything about the
non-supersymmetric contributions to the Lagrangian, it may in principle be that several
cancellations between supersymmetric and non-supersymmetric terms arise so that many
possible terms do not appear in the final component Lagrangian in eq. (?7?7). We are
not going to consider this possibility here, but merely focus on the terms induced by
the operator D®DPDPDP as well as the terms we know must be present in eq. (?7).
Concerning this, let us have a look at the supersymmetric higher-derivative Lagrangian:

L= Lsysy + EI;UDSY = /d49K((I), (I)) + /dQQW(@) + % Z ()\ZOZ + ,0161)
i=1,2,3
_ /d49K(<1>, B) + /dQHW(CD) -2 {312(01 120, — 205 + hec.)
7 a
= —Ky500° — K*|F|* + 5 (log]" = 2|F*|00 ) + | F|*)

(4.30)

where the coefficient a/2 has been fixed by looking at the four-derivative term of the
Lagrangian (?7?). As we can see, in the previous Lagrangian an |F|*-type term arises,
which would give rise to a correction to V' which seems not present in the component
Lagrangian (?7). In the above Lagrangian the chiral superfield ® could be corrected as:

inf
O =Dy+ 00 =0+ » 120, I=2rd, I, =21V
i=1 (4.31)
| U | 1
ls  2mved  V2rl 2mm?2’

where ®; has mass-dimension i+ 1. The corresponding variation of the scalar component
¢ is of the type:

mg =

¢=¢o+ o1+ ... (4.32)

where ¢q is the scalar component of the chiral superfield involved in the two-derivative
theory and ¢ is a holomorphic function of ¢y (because of the absence of terms of the
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form: (0¢)? and (9¢)?). Since this function is holomorphic it would merely correspond
to a different choice of coordinates and not actually to a correction of the geometry and,
therefore, without loss of generality we set ¢; = 0. One can expect a correction to the
Kihler potential Ky = ®¢®, of the two-derivative theory as:

K = Ky+ 0K, (4.33)
so that
Kyg = (Ko)ps + (0K ) g (4.34)

and

K% = (Ky5) " = [(Ko)gg + (0K ) 45"
~ (Ko)*(1 — (Ko)* (0K ) 43) + O(1%) (4.35)
=1 5K¢q§

Making use of the equation of motion (??) for the leading order auxiliary field

F= —KW%—M_/ = —W;
ag (4.36)
F=—K"2_ —_W,
¢ @
and of the scalar potential definition (?7?)
oW |? ’
Vi(¢) == K% B0 | = K% |Wy|* (4.37)
one obtains: )
Vi = K%|F % (4.38)

Thus, taking into account equations (?7) and (??) the Lagrangian (??) can be written
as:

- a

L= —Ky5|00" = KP|Wy|* + 5 (106]* = 2|FP|og] + F])
5V
2 2 2 2 O 4 4 (4.39)
= —(1+0K45)[00]" = (1 = 0Kyq)|Wo|” —al0d " |We|” + S (10¢]" + [ F]%)
a
= —(1+aVr(9) + 0Ky5)|00° — (Vir(¢) +6V) + §(|3¢\4 +|F|")

where 0V is the correction to the scalar potential induced by the correction to the

Kéhler potential K. Comparing this to eq. (?7) we find that 0K = 0, since the two-
derivative correction coming from the operator D®DP®DP D already gives the correct
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(supersymmetric) dimension-8 two-derivative correction in eq. (??). In principle, one
may wonder whether 0V can be chosen in such a way that it cancels the contribution
from the |F|*term. To this end, the correction to the Kéhler potential has to be:

5K = —%WW +ee (4.40)
which gives
a
0K y5 = —5 Wl (4.41)
in such a manner that B a
K =Ko+ 6K = &y — 5|Wy2 (4.42)

so that the correction to the scalar potential is:
2 _ @ 4_ 4 mn
BV = ~SK Wl = SIW,|' = S|F|" (4.43)
Now, substituting these results back into the Lagrangian (?7?), one has:
a - a
1+ SVR(@)]0u00"6 + 510,60" 6 ~ Vi(). (4.44)
Again we find that the respective two-derivative terms would not match with the ones
in eq. (??) implying that §K' = 0. This means that there is no full match between the

component form Lagrangian and the supersymmetric Lagrangian which is not surprising
since we did not determine the non-supersymmetric contributions in eq. (?7).
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Capitolo 5

Conclusions

Higher-derivative operators are a fundamental part of the study of effective field theories:
they arise naturally by integrating out massive states in the low energy effective action.
In this work we were interested in clarifying how to determine the supersymmetric form
of an effective action obtained from string compactification with the inclusion of higher-
derivative operators. During this analysis we realized that we have to make an essential
assumption in order to say something about the partial or full supersymmetric represen-
tation of the effective action: we assume that no cancellations between supersymmetric
and non-supersymmetric terms arise. Under this hypothesis we started the analysis of
the effective Lagrangian (?7) for the scalar fields position moduli of type IIB D7-branes
in torus orbifolds provided by [?]. We have chosen the simple D7-brane example in order
to understand how a systematic matching can in principle be obtained. Looking at the
four-derivative term in the Lagrangian (77), we have identified the only higher-derivative
supersymmetric operator which reproduces the same four-derivative term:

% / A'9DODDDBDD — |9,60" 6> — 2| F20,60"¢ + | F|*. (5.1)

In order to identify this operator and to determine its uniqueness, we performed a sy-
stematic analysis of the higher-derivative supersymmetric operators each with two chi-
ral superfields ® and two anti-chiral superfields ®. Starting from the four-derivative
terms and making use of integration-by-part identities, we have identified the combina-
tion of supersymmetric higher-derivative operators (supersymmetric by construction as
well) which gives rise to the four-derivative term appearing in the Lagrangian (??): this
combination coincides exactly with the well-known operator (77?).

The presence of the |F|*-type term in operator (??) leads us to conclude that a full
supersymmetric representation of the Lagrangian (?7) is not possible, especially since
the |F|*-type term cannot be reabsorbed via corrections to the Kahler potential without
inducing corrections also to the (|0¢|*V(¢))-type term. This is why we can at best
present a result for all supersymmetric terms, provided by (?7).
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There is however another possibility we must take into account: The Lagrangian (?7)
which was obtained assuming several approximations (such as neglecting the CS-terms
and the effect of bulk-terms on the brane-reduction and vice versa) which might turn
out to be unjustified if one wants to fully match a Lagrangian including all dimension-
8 operators. For instance, as we can see in [?], the DBI and the CS give the same
contribution to the scalar potential so, in principle we cannot neglect the contribution
from the CS action. Furthermore, one might think that the bulk terms must also be
included. Another possibility we must consider is that out of the probe-limit the back-
reaction of the supergravity background is no longer negligible [?].

A desirable goal to reach in the future would be to study the previous corrections
in order to obtain a more complete description of the effective action including higher-
derivative terms.
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Appendice A

Consistency Checks for
Supersymmetric Higher-Derivative
Operators

In this appendix we will see how the supersymmetric higher-derivative operators provided
by equation (??) are consistent with those provided by [?] and [?]. In listing these
operators we have chosen the same basis of [?], who lists four supersymmetric higher-
derivative operators. In addition, we will see that the fourth operator in [?] can be
recast in terms of the other three. Furthermore, as one can see, the O3 operator in (77)
written in its supersymmetric form O3 = |®|?DD®DD® is manifestly self-adjoint but
we cannot say the same for its D-terms. This is the reason which motivates us to express
this operator in a basis where self-adjointness is manifest. In this regard we make use of
the method shown in section (??7). We begin by expressing the operators given in (77)
using the four-derivative operators listed in (?7) as is done in (?7?):

O]~ %" = 16]¢[’0¢0¢

= O%ider(Ag)) = 16145 (Al)
Oy~ %" = 160,00"¢¢0¢ — 16| F|*¢0¢
— 4—der (AQ)
= 02 (A13) == 161413
O37%" = 8(0,00"9)* + 800,p(0," 0" ¢ — 0,0" 0" P) (A3)

= Ogider(Am, Asg, Ago, A11) = 8(Agg + A1g — Agg — Ayy)

In the following we will use the notation Q4 to indicate the operators in [?] and the
notation Oy, for those in [?]. The operators of interest in terms of the four-derivative
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operators listed in (??) are the ones given by [?]:

O %" = 1645
034—der = 16A13 (A4)
Ot %" = 8(As + Arg + Ays + Ag)

The first ones coincide explicitly while the last one has to be recast through integration
by parts, for instance, into O der.

(213) -

O = 8(¢pg0¢0¢ + ¢, 00" ¢ + ¢au¢5“¢5€5 + 0,00" 90,0 ¢ (A.5)

= Oc* %" (A5, Arg, Ars, Agy) = 8(As + Ay + Ags + Agy) .
Ol = —4(60,60"$06 + 260,60,60"0" 6 + ¢¢0,60"0d + h.c.)

= Oé—'g)er(Alﬁ, Ago, AH) = _4(1416 + 2A20 + AH + hC)

(A.6)

We can quickly derive (??7) from (?77) making use of the first and the fourth identities of
the usual list:

Aoy + Ay = —2Ay

A7
As + Az = — (A + Anr) (A7)
Oc* %" = 8(As + Arz + Arg + Az)
= 4[—(As + A1) + A1+ As + hoc (A.8)
= —4(A16 + 2A20 + A11 + hC) = Oé—'g)er.
In the same way, we can bring the operator of the present paper:
037" = 8(0ud0"9)* + 860,0(0,00"0" ¢ — 9,60"0" ) (A9)
= O37%"(Ag, Ass, Asg, A11) = 8(Asa + Ass — Ao — A1) .
to 0?2"%” using the second equation from the list (?7):
A+ A1g = —(Ass + Ago) (A.10)
which allow to write:
O3 %" = 8( A + Aig — Agy — An1)
= 4[— (A + Agg) — Ayg — Ay1 + h.c!] (A.11)
= _4(A16 + 2A20 + All + hC) = 0?21%67“.
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So we have shown that, despite the hidden self-adjointness of the operator O3 in (?7),
it coincides exactly with those provided by [?] and [?]. The fact that self-adjointness is
hidden is because the operator terms Az and A,y are not self-adjoint themselves but
their difference cancels out the inconvenient contributions. Moreover we have seen how
the method of tracing back the integration-by-part identities to simple linear systems
can greatly simplify the problem of comparing higher-derivative operators.

Moreover, using the same method we can see that the combination:

1
Z_“E(Oéllfder + ngder o Zngder)

1
= 11645 + 16415 — 16(A5 + Ass — 24%)) (A.12)

= 84y
gives rise to the operator:

O %" = ®*DDODDD|p
= —4(|0,00"¢|* + ¢0¢0, 00" ¢ + ¢°0,0,¢ + $*0" 0" ¢ + 2¢0,$0,$0"d" b + ¢*0,00" )
= —4(Ag + Ars + As + 2450 + Ag) =
= —4(—2A90 + Agy + Ag + Ay)
— 84y
(A.13)

listed in [?]. Then, in the end, one has:

4—der __
0}

1
— Z(Oéllfder 4 O;lfder o 20§fder). <A14)
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Appendice B

Pull-back expansion along the
normal direction

As we have seen in section (??), when expanding the pull-back we have to take into
account the fluctuations in the normal direction of the world-volume [9,10]. As we can
see in [6], these displacements in the normal direction are captured as section £ of the
world-volume normal bundle AW and we can now parametrize the normal direction &
with a parameter t. This allows to naturally define the map:

pWXT—M
v : (B.1)
(z,1) — ¢,
Where 7 is a tubular neighborhood of W. This map is defined in such a way that
. d .
p(x,0) = p(z) and  —¢(x,0) =&, (B.2)

We can finally expand the pull-back of a general tensor 7" along the normal direction &
parametrized by t:

(BT lp@n = ¢ (€V4T)|p(w,0)
» . 1, ., (B.3)
= & (Dleo) + 10" (VieD)lown + 5170 (Ve VieDlpan + -

Considering the vanishing Lie-Bracket [0, 0;], from the expression of the torsion:
T(X,Y)=VxY - VyX — [X,Y] =0 (B.4)

one obtains

Ved, = Va,L. (B.5)

48



Furthermore, from the expression of the Riemann tensor
R(X,Y)Z =VxVyZ —VyVxZ —=VixyZ (B.6)
and taking into account the fact that V¢ £ = 0 one gets:
R(€,0.)§ = VeV, & = VeVe0,. (B.7)
Then the equation (?77?) for the metric gives:

(890> O o) =87 9(Opr D)l (0)
+t[¢" Q(Vaﬁ 0)|o o) + 2" 9(0u, V0,8l @0)] (B.8)
+ t2 [ (Vaué VQl,f) *(z,0) + 90 g( (57 au)§7 au)|@*(x,0)} .

Setting ¢t = 1 and introducing a dimensional factor [ one has:

0 (9w =9 + 19unDud" + 19 D"
+ ngmnDu¢nDV¢m + ZQQMT n ym¢n¢m
where the position modulus ¢ is involved via & = ¢"0,. In our case, the mixed terms

9un are all vanishing due to the ansatz of the metric. In close analogy, one obtains the
expansion of a g-form pull-back as:

(B.9)

1 l
>N L, — [ n _ D. o"C®
(90 ¢ ) o* (,t) [p' Cul up ¢ a ( V.. l/p) (p _ 1), V1¢ Cnug...up
12 12
+_¢na (¢ma ( vi.. l/p))_ (p_ ) V1¢n¢ma ( ’I’LVQ I/p)
. (B.10)
- D, nl)l/2 me
+ 2( _ 2) 1¢ ¢ nmug Vp
+ —lanTylmgzﬁ mCw) L lda A A dat
2p! »
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Appendice C

Four-Derivative Term from the
Square Root Expansion

In this appendix we summarize the computation of the four-derivative terms arising from
the expansion of the square root (??). In order to have a lighter notation, let us ignore
all coefficients for the moment. Moreover, as we are interested in the (9¢)*-type terms,
let us also neglect the terms involving the Riemann tensor. Therefore, in order to obtain
the four-derivative terms, the terms of interest in the following expansion:

dau+A):1+%ﬂA—iﬂAW+gﬂAf+“. (C.1)

are the last two. First we consider the term —iTrAQ, then we have:

TrA? DTr(gmnﬁugomﬁl,(p"f
=Tr (9™ b Pm)’ (C.2)
=(0up™ Oppm) (0" 0" )
where ™ are real fields. In order to rearrange them in a complex basis, let us split the
index m in two set of consecutive indices as:

n n

m = 1,...,§,§—|—1,...,n:(A,oz) (C.3)
T —

where we use uppercase Latin characters to indicate the first set of n/2 indices and Greek
characters to indicate the second set of indices, where n is the number of real fields in
the theory, in such a manner that the implicit sum d¢™0dyp,, can be written as

0" 0p,, = 3g0A8g0A + 0p*0p, (C4)
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We can now rearrange the real fields in a complex basis defined via:

¢ =t Hipt, ¢t =gt —ip (C.5)
so that )
A 1 a 1a e Lia 1a
=50 0", et =—g(e" =9, (C.6)
Now we can expand the four-derivative term (??) in this complex basis as follows:
(0™ Do) (0" pp0" ")

= (09" 0vpa + 040”000 ) (000" 0" + 050" ")
= 110,(0" + 90060 + ) — 00" — 30, (00 — 3]
X Z0M(8 + 80 (60 + &) — 04(6" — 39 (60 — &)
= 00+ 00 Duha+ 00D+ D0 (©7)
— (D000 — D" Duha — 0,000+ 0,5°0L5°)] X (a6 1), (0, < 0*)
= L0008, P Gy + 0,6 0,6, DO
F 0,0 0,0,0°0° 0y + 0,6°0,6,0' P )
=:%(8u¢“ VGa" ' G, + 00" 0, a0 D ).
Therefore we have:

—im2 ») —%(@qﬁ“&,%@’%b@%b + 0,00y Pa 0" 9" 0" Bp). (C.8)

Regarding the third term of the expansion (77?) we have:

(TrA)? =(0,0™ 0" om)?

C.9
=0, 0" 00,970 ), (©9)

Note that in this case, unlike the first, the sum on the indices which take into account
the real fields takes place under partial derivatives carrying the same space-time index.
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Now considering the same change of basis, one obtains:

(8" 0" o)
= (00" pa + 0,p° 0" 00)?

(006" + 8,606 + 06.)
1
i

(00" — 0,8°) (00 — 6,)]

1

4

(D060 + 0,806, + 20,603,
(D5 b+ 596, — 20,0075.)]
= (0,6"9" 6,

— 0,0"0" 3u0,6"0" By,

So in the end we get:
1 1 - <
S (TrA)? D 2 (0,0°0" 60,60 &),

In such a way that the total four-derivative contribution is:

_é<au¢aauggaa#¢bangb + augba I/Q_ﬁaa#(gbay(éb - a#(éaauq_ﬁaallgbbayéb)‘
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Appendice D

Two-derivative terms including F
and F

Supersymmetric higher-derivative operators also contain terms including the auxiliary
field F'. In order to obtain a supersymmetric match the explicit knowledge of these
kinds of terms and their integration-by-part identities could be useful. In the following
we draft a list in close analogy with the one provided for the four-derivative terms.
B, = FF0,¢0"¢
By, = FF¢Ogp
By = FF¢O¢p
By = F¢d,Fo"¢
Bs = F30,Foé

R D.1
Bs = Fp0,F0"¢ (D-1)
By = F¢d,Fo"¢
Bg = FopOF
By = FooOF
BlO = ¢$8MF3HF
provided with the following integration-by-parts identities:

By =B;

B5 :B_4

B7 :BG

By —B, (D.2)

By = — (By + By + By)
By =— (Bg + Bs + Bip).
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Appendice E

Computation of the four-derivative
term coeflicient

Observing the Lagrangian (??) we note that the multiplicative factor concerning the
four-derivative term is different from that reported in [?] (eq. (3.1)):

L= —[1+aV(¢)|0,00"¢ +10.00"6|* — V(¢) (E.1)

We report the explicit calculation which led us to the introduction of this factor for
completeness. We start from eq. (2.7) in [?]:

s —#pvpz_sgs (1+aV(9)) |1+ Z1%0¢]* - %ZQ 1110,00" 3 | . (E.2)

comparing the potential term with what appears in the Lagrangian (?7), one obtains:

,upVZDfZSgs _ o Z
PRV () = ~V(9) = a= (E:3)

Now imposing the match between the two-derivative terms, one finds that:
Va2 s (1 + V() Z 21002 = (1 + aV ()6 (E4)

where ¢ is defined as 3

¢ =/ 1pVp-39s 9. (E.5)
Then, looking at the four-derivative term we finally get the four-derivative term coeffi-
cient:

V., 34, 1 P a -~
Bt 220V (9) 522 08I = (nyVy-09.) " 1001 = S100]" (E.6)

The identification of this coefficient is important because the purpose of section (?7)
is precisely to find a correspondence between the higher-derivative operator which sup-
plies the term |0¢|* and the Lagrangian (??7). As we have seen in section (?7?), the

o4



evidence of the matching failure between the Lagrangian and its supersymmetric com-
pletion is actually given by the fact that the two-derivative term V' (¢)|0¢|* has a different
proportionality to the coefficient a compared to the [0¢[* term.
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