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Abstract

Nel presente elaborato di tesi, il sottoscritto D. Gregori ha sviluppato un metodo ricorsivo molto
efficiente, per calcolare gli integrali del moto locali delle teorie conformi quantistiche. Tale calcolo è

stato svolto nel contesto della corrispondenza ODE/IM, tra certe equazioni di Schrödinger e i
modelli integrabili conformi. A tal fine, è stato sfruttato il semplice comportamento ricorsivo dei

cosiddetti polinomi di Gelfand-Dikii, grazie anche a una precedente dimostrazione di D. Fioravanti,
concernente l’espansione asintotica, per grande energia, della funzione d’onda. Inoltre, il sottoscritto

D. Gregori, ha adattato tale dimostrazione alla cosiddetta espansione WKB (nota anche come
approssimazione WKB), cioè per piccola constante di Planck, ottenendo così una ricorsione efficiente
anche per questo noto metodo di soluzione delle equazioni di Schrödinger con singolarità. Questo
nuovo approccio all’approssimazione WKB ha permesso di dimostrare una congettura di W. He a Y.
Miao, nel contesto delle teorie di gauge con N = 2 supersimmetrie (SUSY). Inoltre, nel presente

elaborato, è stato parzialmente completato un lavoro, molto incompleto e pubblicato postumo, di Al.
B. Zamolodchikov, riguardo alla costruzione della corrispondenza ODE/IM per il modello di

Liouville, ovvero per carica centrale c ≥ 25. L’equazione della ODE/IM da utilizzare, in questo caso,
è l’equazione di Mathieu Generalizzata, così battezzata da Al. B. Zamolodchikov. Per il caso c = 25

"autoduale", tale equazione si riduce all’equazione di Mathieu e questo permette una diretta
connessione con le teorie di gauge N = 2 SUSY. In questo caso autoduale, il sottoscritto D. Gregori
ha dimostrato una congettura di Al. B. Zamolodchikov, secondo cui la funzione T di Baxter delle

teorie integrabili coincide con il coseno dell’indice di Floquet dell’equazione di Mathieu; dove
quest’ultimo è proporzionale alla deformazione quantistica (nel limite di Nekrasov-Shatashvili) del

ciclo classico di Seiberg-Witten, delle teorie di gauge con N = 2 SUSY.
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Introduction

An integrable system is a physical system with an infinite number of integrals of motion. In integrable
quantum field theory, since there are infinite degrees of freedom, the Liouville theorem does not
hold and an exact solution is not always possible. However, in conformal quantum field theory, as a
consequence of Virasoro symmetry, it is possible to calculate almost all quantities of physical interest
and in particular, the correlation functions. In this sense, conformal quantum field theory can be
exactly solved.[7][8] The integrals of motion can be expressed as the coefficients, for large rapidity
θ, of the asymptotic expansions of the Baxter’s Q(θ) and T (θ) functions. These functions satisfy
many functional relations, which give important characterizations of the T and Q functions for a
certain integrable model. For the Liouville model (which is very useful also in string theory), we
write, perhaps, the most important of such functional relations, the TQ relation, as

T (θ)Q(θ) = Q(θ + iπp) +Q(θ − iπp)
(
p =

b

b+ 1/b

)
(0.0.1)

where b is the characteristic Liouville parameter. The Baxter’s Q(θ) function can be also expressed
as the solution of a nonlinear integral equation (NLIE),[3] which, in certain limit,[4] reduces to a
linear integral equation. Before the discovery of the ODE/IM correspondence, such NLIE were the
most efficient technique to calculate the integrals of motion.[6][5]

However, today, an alternative way to characterize the Baxter’s Q and T functions is the so-
called ODE/IM correspondence, which means "ordinary differential equations / integrable models"
correspondence,[14].[13] In fact there exist some Schrödinger equations, whose eigenfunction is, roughly
speaking, the Baxter’s Q function of integrability. More precisely, the wronskians calculated with the
solutions of such Schrödinger equations, satisfy all functional relations and the nonlinear integral
equation of conformal integrability, at least after some "a posteriori" identification between the
parameters of the equation and the conformal parameters.[14] The ODE/IM correspondence has
been proved useful also in a wider context, for example to rigorously prove the reality of the energies
in PT -symmetric quantum mechanics.[15] In other words, thanks to the ODE/IM correspondence,
we know that there exist non-hermitian Hamiltonians Ĥ 6= Ĥ† which anyway have real eigenvalues
λ = λ∗, hence such systems are physical. Recently, C. Bender conjectured that PT symmetric
quantum field theory might have a very important role for the physics beyond the standard model.
In this thesis, I developed a very effective technique for a systematic calculation of the local integrals
of motion I2n−1 of integrability, both for the minimal models and for the Liouville model. For
my results, it has been proved equally important both the ODE/IM correspondence and a yet
unpublished result of D. Fioravanti, regarding the equivalence of Gelfand-Dikii polynomials and "large
energy" (for large rapidity θ) expansion modes for the Schrödinger eigenfunction[18][19] . Moreover, I
adapted Fioravanti’s rigorous equivalence proof to the standard, well-known, WKB expansion (for
small Planck constant }). Thus, after various modifications, I found that also the standard WKB
expansion contributions, at all orders, can be simply connected with Gelfand-Dikii polynomials. The
power of Gelfand-Dikii polynomials lies in the fact that they have very simple markovian recursive
properties. In fact, for the standard WKB expansion, the calculation of n+ 1-th mode Sn+1 requires
the knowledge of all the n preceding modes Sk, for k = −1, 0, 1, 2..., n , as is evident from the recursive
equation:

Sn+1 = − 1

2
√
q

(n−1∑
m=0

SmSn−1−m + S′n

)
S−1(x) =

√
q(x) =

√
V (x)− E (0.0.2)

8



(where E is the eigenvalue and V (x) is the potential of the Schrödinger equation). Instead, the
equivalent Gelfand Dikii recursive equation is markovian, that is, to calculate the n+ 1-th mode Tn+1,
it is sufficient the knowledge of only the precedent n-th Tn mode, as is evident from the equation I
found:

−T ′n+1 = − 1

4q
T ′′′n +

3

8

q′

q2
T ′′n +

(3

8

q′′

q2
− 9

16

q
′2

q3

)
T ′n +

(1

8

q′′′

q2
− 9

16

q′′q′

q3
+

15

32

q
′3

q4

)
Tn . (0.0.3)

Apart from the general interest of such general markovian WKB expansion for the Schrödinger
equation, I applied this result to obtain a rigorous proof to a conjecture of He and Miao[34], in
the context of N = 2 pure gauge theory. In that theory, the partition function receives both a
perturbative and a non-perturbative istantonic contribution. In R4 Minkowsky space, (because of the
infinite volume), the instantons give infinite contribution. Hence, to calculate the non-perturbative
part of the partition function, Nekrasov devised a technique which involves spacetime deformation,
through two curvature (complex) parameters ε1 and ε2. The Nekrasov partition function can be
written in the classical limit ε1, ε2 → 0, in terms of the Seiberg Witten prepotential FSW

ZNek(ε1, ε2) = exp

{
− 1

ε1ε2
FSW +O(ε1, ε2)

}
(0.0.4)

or in terms of Nekrasov-Shatashvili prepotential, in the homonimous limit ε2 → 0

ZNek(ε1, ε2) = exp

{
− 1

ε2
FNS(ε1) +O(ε2)

}
(0.0.5)

The Nekrasov-Shatashvili quantum prepotential FNS(ε1) can be obtained[33] from the knowledge of
the Floquet index ν, relative to the Mathieu Schrödinger equation

ε21
2

d2

dz2
ψ(z) + [u− cos 2z]ψ(z) = 0 (0.0.6)

with eigenvalue u and ε1 as Planck constant. W. He and Y. Miao conjectured[34] and I rigorously
proved that there exist, for the WKB expansion modes of the Floquet index ν expansion modes,
relatively simple differential operators in the eigenvalue u, which deliver the n-th mode of expansion
starting from the zero order. In other words, He and Miao operators allow to calculate the whole
ε1 contribution, FNS(ε1), to the Nekrasov partition function, in term of only the classical Seiberg
Witten potential FSW . The energy eigenvalue u can then be expressed through the instanton part of
the prepotential in terms of the Matone’s relation in the Nekrasov-Shatashvili limit ε2 → 0.

u = −∂Finst
∂ ln q

(0.0.7)

This thesis is largely based on an unfinished work of the late scholar Al. B. Zamolodhikov 1. V.
Bazhanov,[1] in september 2011, held a seminar at Bologna, about such unfinished work. In this
thesis, I partially completed Zamolodchikov’s draft, which is very sketchy and full of confusing typos.
Zamolodchikov’s intention was to set up the ODE/IM correspondence for the Liouville model (for
central charge c ≥ 25). The ODE/IM equation which he used for the ODE/IM construction is
the Generalized Mathieu equation, which reduces to the Mathieu equation (0.0.6) in the "self dual"
Liouville case (for the b = 1 value of the Liouville parameter, or for which p = 1/2). In such self
dual case, considering numerical computations,[2] Al. Zamolodchikov conjectured what I dubbed

1We thank P. Dorey for informing us of the existence of such publication.[2]
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"fundamental Zamolodchikov’s relation", between the Floquet index ν of the Mathieu equation (0.0.6)
and the Baxter’s T function

2 cos 2πν(θ) = T (θ) =
Q(θ + iπ/2)

Q(θ)
+
Q(θ − iπ/2)

Q(θ)
(b = 1) (0.0.8)

I devised: (i) an exact proof of Zamolodchikov’s relation, using the Floquet theorem for Mathieu
equation;[24] (ii) an asymptotic proof, considering the large energy expansion (large rapidity θ) at
all infinite orders, using of the aforementioned efficient method I devised for calculating the local
integrals of motion I2n−1 for b = 1. I and D. Fioravanti interpreted Zamolodchikov’s fundamental
relation (0.0.8) in terms of deformed (even in the quantum Nekrasov-Shatashvili limit ε2 → 0) Seiberg
Witten cycles, that is ε1-expansion modes of the Floquet index ν of (0.0.6), thereby finding a very
suggestive link between N = 2 SUSY gauge theory and the fundamental TQ relation (0.0.1) of
integrable conformal field theory. Moreover, a deeper interpretation is still under investigation.

Daniele Gregori
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1 Integrable structure of conformal field theory

1.1 Virasoro algebra and local integrals of motion

Conformal field theories are characterized by conformal symmetry. The generator of this symmetry
is the energy momentum tensor, whose mode expansion (Fourier series) is

T (u) = − c

24
+

∞∑
n=−∞

L−ne
inu (1.1.1)

where c stands for the central charge. The variable u is interpreted as the complex coordinate of a
two dimensional cylinder of circumference 2π. This definition is consistent with the choice of periodic
boundary conditions T (u+ 2π) = T (u).
The modes of expansion of the energy momentum tensor satisfy the Virasoro algebra V ir

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ0,n+m (1.1.2)

Let UV ir be the algebra generated by all powers and derivatives of the energy momentum tensor
T (u). It can be shown that this algebra contains[7] an infinite dimensional abelian subalgebra spanned
by the local integrals of motion I2n−1 ∈ UV ir, with n = 1, 2, ...

I2n−1 =

∫ 2π

0

du

2π
T2n(u) (1.1.3)

The first few densities T2n are

T2(u) = T (u) , T4(u) =: T 2(u) : , T6(u) =: T 3(u) : +
c+ 12

12
: (T ′(u))2 : (1.1.4)

but their general expression is not known. Nevertheless, they can be uniquely determined[7] by the
requirements of commutativity

[I2n−1, I2m−1] = 0 (1.1.5)

and spin assignment ∮
C

dw

2πi
(w − u)T (T (w)T2n(u)) = 2nT2n(u) (1.1.6)

where T denotes chronological ordering.
The physical space of states Hphys is embedded[7] into the tensor product of the left and right chiral
subspaces Hchiral ⊗ H̄phys. Each chiral space is built up from a collection of highest weight Virasoro
modules

Hchiral = ⊕aV∆a (1.1.7)

The highest weight state |∆a〉 ∈ V∆a
satisfies

L0|∆a〉 = ∆a|∆a〉 , Ln|∆a〉 = 0 , n > 0 (1.1.8)

1.2 Classical limit

The approach used by the foundational work[7] can be regarded as an instance of the Quantum
Inverse Scattering Method and can be thought as the quantum version of the Korteweg de-Vries
problem. More precisely the Korteweg de-Vries problem is obtained as ithe classical limit c→ −∞
(see (1.3.5)), through the substitution

T (u)→ − c
6
U(u) , [ , ]→ 6π

ic
{ , } for c→ −∞ (1.2.1)
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where U(u) = U(u+ 2π) is the KdV potential. Correspondingly, the Virasoro algebra (1.1.2) reduces
to the Poisson bracket algebra

{U(u), U(v)} = 2(U(u) + U(v))δ′(u− v) + δ′′′(u− v) (1.2.2)

and the classical local integrals of motion I
(cl)
2n−1, calculated by (1.2.1) commute in the Poisson

bracket sense
{I(cl)

2n−1, I
(cl)
2m−1} = 0 (1.2.3)

Many quantities and relations of conformal quantum integrability have a classical analogue.[7]

However, we stop here our exposition of this "correspondence principle", because we don’t need it so
much.

1.3 Baxter’s Tj operators

1.3.1 Feigin-Fuchs free field representation of the Virasoro algebra

In this subsection we still follow.[7] According to the Feigin-Fuchs free field representation of V ir,
the energy momentum tensor can be defined as2

− β2T (u) =: ϕ′(u)2 : +(1− β2)ϕ′′(u) +
β2

24
(1.3.1)

where ϕ is a free field (chiral boson) operator

ϕ(u) = iQ+ iPu+
∑
n 6=0

a−n
n
einu (1.3.2)

and the parameter β is related to the central charge as

c = 13− 6(β2 + β−2)

β =

√
1− c

24
−
√

25− c
24

(1.3.3)

(1.3.4)

The operators P,Q, a−n are defined to satisfy the Heisenberg algebra

[Q,P ] =
i

2
β2 [an, am] =

n

2
β2δn+m,0 (1.3.5)

It is evident that the classical limit corresponds to β2 → 0 (which, by (1.3.3), is consistent with
c→ −∞). We note that the free chiral boson field ϕ is quasi periodic: ϕ(u+ 2π) = ϕ(u) + 2πiP . In
the following the vertex operators of the field ϕ will be used

V±(u) ≡: e±2ϕ(u) :≡ exp
(
±2

∞∑
n=1

a−n
n
einu

)
exp(±2i(Q+ Pu)) exp

(
∓2

∞∑
n=1

an
n
e−inu

)
(1.3.6)

The Fock space Fp corresponds to the highest weight module over the Heisenberg algebra (1.3.5)
with highest weight (or vacuum) state |p〉

P |p〉 = p|p〉 ; an|p〉 = 0 for n > 0 (1.3.7)

For any p and β, it can be shown that the Fock space Fp, thus defined, is isomorphic to the highest
weight Virasoro module V∆ with highest weight given by

∆ =
( p
β

)2

+
c− 1

24
(1.3.8)

2The Feigin-Fuchs epresentation of T (u) is just a quantum version of the Miura transform for U(u).[7]
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1.3.2 "Continuous transfer operators" Tj(λ) and local integrals of motion

Let E,F,H be the canonical generating elements of the quantum universal enveloping algebra
Uq(sl(2)), which therefore satisfy[8]

[H,E] = 2E , [H,F ] = −2F , [E,F ] =
qH − q−H

q − q−1
(1.3.9)

where the important parameter q is function of β2

q = eiπβ
2

(1.3.10)

Let πj be an irreducible 2j + 1 dimensional matrix representation of this quantum algebra. The
"quantum monodromy matrices" Lj are defined as[7]

Lj(λ) = πj

{
eiπPHP exp

[
λ

∫ 2π

0

du (V−(u)q
H
2 E + V+(u)q−

H
2 F )

]}
(1.3.11)

where V± are the vertex operators already defined (1.3.6); λ has the "role" of spectral parameter3; P
denotes path ordering, that is

Lj = πj

{
eiπPH

∞∑
k=0

λk
∫

2π≥u1≥u2≥...≥uk≥0

K(u1)K(u2) · · ·K(uk)du1du2...duk

}
(1.3.12)

with K(u) = V−(u)q
H
2 E + V+(u)q−

H
2 F (1.3.13)

For our purposes, it is important to note that the integrals (1.3.11) are convergent only for

−∞ < c < −2 , ⇐⇒ 0 < β2 <
1

2
(1.3.14)

since the operator product expansion of the vertex operators is

V+(u)V−(u′) = (u− u′)−2β2

[1 +O(u− u′)] , u− u′ → 0 (1.3.15)

This range can be extended by analytic continuation, since the functions "of interest" (see below) are
considered to be entire.[8] Bazhanov, Lukyanov and A. Zamolodchikov, in the foundational works we
are following,[7],[8],[9] did not pursue such an extension. However, this is just what Al. Zamolodchikov
began to do in his unfinished draft,[2] which we are going to partially complete 4.
The so called T operators5 are defined as[7]

Tj(λ) : V∆ → V∆ , (1.3.16)

Tj(λ) = trπj

(
Lj

)
(1.3.17)

of course j = 0, 1
2 , 1,

3
2 , ... for the representation of the quantum algebra Uq(sl(2)). The Tj(λ)

operators can be written more explicitly as

Tj(λ) = trπj

[
e2πiPHjP exp

{
λ

∫ 2π

0

[
V−(u)q

Hj
2 Ej + V+(u)q−

Hj
2 Fj

]}]
(1.3.18)

3To be precise, λ is the spectral parameter of a Schrödinger equation with KdV potential, but only in the classical
limit.[7] Moreover, in the context of ODE-IM correspondence,[14] this parameter is proportional to the spectral
parameter of the ODE-IM equation: λ ∝ E (see (2.4.3)). However, we emphasize that the ODE-IM equation is
unphysical.

4We greatly thank P. Dorey, for he informed D. Fioravanti of the existence of a posthomous publication[2] of this
unfinished work of Al. Zamolodchikov.

5The T operators are continuous version of Baxter’s transfer matrices[8]
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Most importantly, the operators Tj(λ) commute between themselves

[Tj(λ),Tj(λ
′)] = 0 (1.3.19)

The commutative property is an immediate consequence of the Quantum Yang-Baxter equation for
the Lj operators[9]

Rjj′(λµ
−1)(Lj(λ)⊗ 1)(1⊗ Lj′(µ)) = (1⊗ Lj′(µ))(Lj(λ)⊗ 1)Rj,j′(λµ

−1) (1.3.20)

where Rj,j′(λµ
−1) is a trigonometric solution of the Yang-Baxter equation which act on the space

πj ⊗ πj′
T(λ) is an entire function of λ2 with an essential singularity at λ2 → −∞. The coefficients of its
asymptotic expansion around infinity are the local integral of motion I2n−1 (with a normalization
constant Cn)

logT(λ) ' mλ
1

1−β2 I−
∞∑
n=1

Cnλ
1−2n

1−β2 I2n−1 λ2 → −∞ (1.3.21)

where the constants m and Cn are defined as[8]

Cn =

√
π

n!(1− β2)
(β2)n

Γ( 2n−1
2−2β2 )

Γ(1 + 2n−1
2β−2−2 )

(
Γ(1− β2)

)− 2n−1

1−β2 (1.3.22)

m =
2
√
πΓ( 1

2 −
ξ
2 )

Γ(1− ξ
2 )

(
Γ(1− β2)

)1+ξ

(1.3.23)

1.3.3 Non local integrals of motion and fusion relations

For the first nontrivial6 T operator, for j = 1/2, it is common use to drop the subscript

T 1
2
(λ) := T(λ) (1.3.24)

T can be calculated evaluating the traces in the definition (1.3.17). Thus one gets a power series
expansion around the point λ2 = 0

T(λ) = 2 cos (2πP ) +

∞∑
n=1

λ2nGn (1.3.25)

where the coefficients Gn the non local integrals of motion. The Gn operators commute among
themselves and with the local integrals of motion I2n−1

[Gn,Gm] = 0

[Gn, I2m−1] = 0

(1.3.26)

(1.3.27)

The higher spin operators Tj(λ) also admit a power series expansion, around λ2 = 0, with coefficients
algebraically dependent from the non local integrals of motion Gn. Such interdependence between
the Tj(λ) operators can be expressed through the fusion relations

Tj(q
1
2λ)Tj(q

− 1
2λ) = 1 + Tj− 1

2
(λ)Tj+ 1

2
(λ) (1.3.28)

These relations are identical to the functional relations obeyed by the commuting transfer-matrices
of the integrable XXZ model. For this reason, the T operators Tj are considered the continuous
field theory versions of the lattice transfer matrices.

6In fact, T0(λ) = I.
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1.4 Baxter’s Q operators

1.4.1 Construction of the A operators

In this section we shall follow.[8] The A operators, which will be shown to be strictly related to the
Q operators, are constructed similarly to the Tj operators. The main difference is the substitution
of the algebra Uq(sl(2)) with the q-oscillator algebra, which is defined by the commutation relations
of its generators E+, E−, H

qE+E− − q−1E−E+ =
1

q − q−1
, [H, E±] = ±2E± (1.4.1)

One might choose any representation ρ of Uq(sl(2)) such that the following trace exists for =p > 0.

Z(p) = trρ[e
2πipH] (1.4.2)

The A operators are then defined in analogy with the Tj operators.

A±(λ) ' 1

Z(±P )
trρ

{
e±2iπPHP exp

[
λ

∫ 2π

0

du (V−(u)q±
H
2 E± + V+(u)q∓

H
2 E∓)

]}
(1.4.3)

Still similarly with what happened for the Tj operators (1.3.25), if we were to evaluates the traces in
the definition of the A± operators, we would find power series expansion around λ2 = 0[8]

A±(λ) = 1 + λ2g1G1 + λ4
[
g2G2 + g11G

2
1

]
+ λ6

[
g3G3 + g12G1G2 + g111G

3
1

]
+ ... (1.4.4)

with coefficients which are polynomials of the non local integrals of motion Gn (the "subcoefficients"
gij.. are functions of β2 and P ). Define, for convenience, the alternative spectral parameter y as

y = β−2Γ(1− β2)λ (1.4.5)

It is also convenient to define an alternative set of nonlocal integrals of motion Hn, by the expansion
of the logarithm of A+

logA+(λ) = −
∞∑
n=1

y2nHn (1.4.6)

Such alternative nonlocal integrals of motion Hn, clearly, must be algebraically dependent with the
previously defined nonlocal integrals of motion Gn.[8]

We define also the dual integrals of motion, by letting β2 → β−2 and ϕ→ β−2ϕ. The local integrals
of motion are not affected by this transformation,

β2 → 1

β2
ϕ→ β−2ϕ (1.4.7)

I2n−1 → I2n−1 (1.4.8)

however the nonlocal integrals of motion are, so that

β2 → 1

β2
ϕ→ β−2ϕ (1.4.9)

Hn → H̃n (1.4.10)
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1.4.2 Q operators and their properties

The Q operators are defined simply as the A operators, multiplied by a certain power of the spectral
parameter

Q±(λ) :Fp → Fp (1.4.11)

Q±(λ) = λ±2P/β2

A±(λ) (1.4.12)

The Q operators enjoy the following properties (for their proof we refer to[9])

1. The Q± operators commute among themselves and with the operators Tj

[Q±(λ),Q±(λ′)] = [Q±(λ),Tj(λ
′)] = 0 (1.4.13)

2. The Q± operators satisfy the Baxter functional relation, or TQ relation

T(λ)Q±(λ) = Q±(qλ) + Q±(q−1λ) (1.4.14)

Hence, any eigenvalue Q(λ) of Q(λ) (or, equivalently any eigenvalue A(λ) of A+(λ)) satisfies
the TQ functional relation

T (λ)Q(λ) = Q(qλ) +Q(q−1λ) (1.4.15)

T (λ)A(λ) = e2πipA(qλ) + e−2πipA(q−1λ) (1.4.16)

3. The Tj operators can be expressed in terms of the Q± operators7

2i sin (2πP )Tj(λ) = Q+(qj+
1
2λ)Q−(q−j−

1
2λ)−Q+(q−j−

1
2λ)Q−(qj+

1
2λ) (1.4.17)

For the particular case of j = 0, this equation is called quantum wronskian

2i sin (2πP ) = Q+(q
1
2λ)Q−(q−

1
2λ)−Q+(q−

1
2λ)Q−(q

1
2λ) (1.4.18)

while, for j ≥ 1/2 the name "fused quantum wronskians" is sometimes used.

Actually, in their work,[8] Bazhanov, Lukyanov, Zamolodchikov made a further assumption

logA±(λ) ∼ M̄(−λ2)
1

2−2β2 , λ2 → −∞ (1.4.19)

where M̄ is the constant

M̄ =
Γ( 1

2(1−β2) −
1
2 )Γ(1− 1

2(1−β2) )
√
π

(
Γ(1− β2)

) 1
1−β2 (1.4.20)

They proved this leading asymptotic behaviour only in the case p = N/2, when N is an integer.[8]

1.5 Non-linear integral equation and generating functions for the integral
of motion

The eigenvalues A(λ) and T (λ) of the A and Tj operators, for 0 < β2 < 1
2 and =p = 0, enjoy the

following properties
7This property can be interpreted as an indication that the Q operators are more fundamental than the Tj

operators.[8]
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1. The functions A(λ) and T (λ) are entire functions of λ2 (considered as complex variable)

2. The zeros of the function A(λ) are either real or occur in complex conjugated pairs. There are
only a finite number of complex or real negative zeroes and real zeroes accumulate toward +∞.
For the vacuum eigenvalues functions Avac(λ) the zeroes are all real and if 2p > −β2 they are
all positive.

3. The leading asymptotic behaviour of A(λ) for large λ2 is

logA±(λ) ∼ M̄(−λ2)
1

2−2β2 , λ2 → −∞ (1.5.1)

If 0 < β2 < 1
2 , an entire function with asymptotic behaviour such as (1.5.1), is completely determined

by its zeroes λ2
k. In fact, it can be expressed as a convergent infinite product over its zeros.[25]

A(λ) =

∞∏
k=0

(
1− λ2

λ2
k

)
(1.5.2)

where the normalization condition
A(0) = 1 (1.5.3)

is understood.
Now, define the function a(λ) as

a(λ) = e4πip A(qλ)

A(q−1λ)
(1.5.4)

setting λ2 = λ2
k, the Baxter’s TQ relation (1.4.16) induces the following Bethe-ansatz type equations

for the positions of the zeroes

a(λk) = −1 (1.5.5)

which are an infinite set of transcendental equations of the zeroes λ2
k. However (1.5.5) can be

transformed in a non-linear integral equation[8]{
i log a(θ) = − 2πp

β2 + 2m0 cos πξ2 eθ + i
∑′
a logS(θ − θa)− 2G ∗ = log (1 + a(θ − i0))

a(θa) = −1
(1.5.6)

where the new parameters θ and ξ are defined by

β2 =
ξ

1 + ξ
, λ = e

θ
1+ξ ; (1.5.7)

while the subscript a indicates the zeros λa of A(λ) lying outside the positive real axis of λ2; the ∗
denotes the convolution and the function of the rapidity S(θ) and G(θ) are defined by

S(θ) = exp

{
−i
∫ ∞

0

dν

ν
sin (νθ)

sinh (πν (1+ξ)
2 )

cosh πν
2 sinh πνξ

2

}
(1.5.8)

G(θ) = δ(θ) +
1

2πi

d

dθ
logS(θ) (1.5.9)

In the following, we will somehow loosely use indifferently the parameters β2, ξ and the - yet to be
introduced, cf. (2.4.1) - parameter M = 1/ξ. Thus it is important to keep in mind their reciprocal
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relations, such as

1− β2 =
1

1 + ξ
(1.5.10)

ξ =
β2

1− β2
(1.5.11)

Given a solution a(λ) of the Destri-de Vega equation, the eigenvalue A(λ) can be calculated as

logA(λ) = −i
∫
Cν

dν
g(ν)

cosh πν
2 sinh πνξ

2

(−λ2)iν
1+ξ
2 (1.5.12)

wth the integration contour along the vertical line =ν = −1− ε and g(ν) defined as

g(ν) =

∫ ∞
−∞

dθ

2π
=log (1 + a(θ − i0))e−iνθ (1.5.13)

In the limit p→∞, the Destri de-Vega equation simplifies and becomes a linear equation[8]

− πp

β2
+m0 cos

πξ

2
eθ −

∫ B(p)

−∞

dθ′

2πi
∂θ logS(θ − θ′)=log

(
1 + avac(θ′)

)
= 0 (1.5.14)

at least provided one assumes

B(p) =
1 + ξ

2
log λ2

0 ∼ const log p , p→∞ (1.5.15)

λ2
0 = min

k
λ2
k (1.5.16)

In this limit p→∞, the eigenvalue Avac(λ) is given by

logA(vac)(λ)
∣∣∣
p→∞

∼ − p

2π3/2ξ

∫
Cν

dν

ν2
Γ
(

1− iν 1 + ξ

2

)
Γ
(

1 + iν
ξ

2

)
Γ
(
−1

2
+ i

ν

2

)
eiδν

(
−λ

2

λ2
0

)iν 1+ξ
2

(1.5.17)

= −
∞∑
n=1

λ2nβ−4n
(

Γ(1− β2)
)2n

Hvac
n

∣∣∣
p→∞

(1.5.18)

The second equality can be obtained by the method of residues (poles of the Gamma functions),
closing the integration contour at infinity in the lower half plane =ν < −1. From this calculation one
can also obtain the constant M̄ which characterizes the asymptotic behaviour at λ2 → −∞

M̄ =
Γ( ξ2 )Γ( 1

2 −
ξ
2 )

√
π

(
Γ(1− β2)

)1+ξ

(1.5.19)

The large λ behaviour of Avac(λ) is similarly calculated by the method of residues by closing the
integral (1.5.17) in the upper half plane =ν ≥ −1. However, in this case the contribution over the
large circle diverges; consequently, we get only an asymptotic expansion for λ2 → −∞. Note that

logA(vac)(λ) = −
∞∑
n=1

y2nHvac
n (1.5.20)

While the asymptotic expansion of A(vac) for λ2 →∞ has the form

A+(vac) ' (β2)
− 2p

β2

( 2p

β2

)2p( 1
β2
−1)

(−y2)
− p

β2 exp

{ ∞∑
n=0

Bn(−y2)
1−2n

2−2β2 Ivac
2n−1

}
×

× exp

{
−
∞∑
n=1

(−1)n(−y2)
− n
β2 H̃vac

n

}
(1.5.21)
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The normalization constants Bn are given by

Bn =
(−1)n+1

2
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)
(β2)

n+ 2n−1

β2−1 (1.5.22)

Here the dual non local (alternative) integrals of motion H̃n have appeared. The asymptotic
expansion (1.5.21) was derived in the limit p→∞, but[8] conjectured and then proved[9] that it is
always valid.
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1.6 Asymptotic expansion of the TQ relation

It is important to observe that, in our calculation, we are not going to find any H̃n coefficient. This
is a consequence of the fact that, following[14]and,[16] we will stay in the range β2 < 1/2 (or M > 1,
cf. (2.4.1)).

β2 <
1

2
(1.6.1)

Therefore, for each integer n, for y → ∞, the power 1−2n
2−2β2 of y is dominant over the power − n

β2 ;
thus, at each asymptotic order, the nonlocal contribution will be suppressed. Hence, we can list the
asymptotic expansions of A+vac and Q+vac around infinity as follows

A+vac(λ) = N (β, p)(λ)−2pβ−2

exp

{ ∞∑
n=0

Bn(−1)
1−2n

2−2β2 (β2)
− 1−2n

1−β2 Γ(1− β2)
1−2n

1−β2 λ
1−2n

1−β2 I
(vac)
2n−1

}
(1.6.2)

Q+vac(λ) = N (β, p) exp

{ ∞∑
n=0

Bn(−1)
1−2n

2−2β2 (β2)
− 1−2n

1−β2 Γ(1− β2)
1−2n

1−β2 λ
1−2n

1−β2 I
(vac)
2n−1

}
(1.6.3)

where we defined, for the "normalization function" N (β, p) (which is constant only with respect to λ)

N (β, p) =
(2p

e

)2p(1−β−2)

(−Γ(1− β2))−2pβ−2

(1.6.4)

If we define, for simplicity, the alternative normalization constants B̃n for the local integrals of the
motion

B̃n = Bn(−1)
1−2n

2−2β2 (β2)
− 1−2n

1−β2 Γ(1− β2)
1−2n

1−β2 (1.6.5)

we can write the expansion for Q more simply as

Q+vac(λ) =
(2p

e

)2p(1−β−2)

(−Γ(1− β2))−2pβ−2

exp

{ ∞∑
n=0

B̃nλ
1−2n

1−β2 I
(vac)
2n−1

}

=
(2p

e

)2p(1−β−2)

(−Γ(1− β2))−2pβ−2

exp

{ ∞∑
n=0

B̃ne
θ(1−2n)I

(vac)
2n−1

}
(1.6.6)

(1.6.7)

The usual[8] normalization constants Bn are now given, with also some manipulation to make simpler
comparison with the normalization constants Cn of the T eigenvalue expansion8

Bn =
(−1)n+1

2
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)
(β2)

nβ2+n−1

β2−1 (1.6.9)

= − (−1)n

2
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)
(β2)

n+ 2n−1

β2−1

The alternative normalization constants B̃n then are

B̃n =
(−1)n+1

2
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)
(β2)n(−1)

1−2n

2−2β2 Γ(1− β2)
1−2n

1−β2 (1.6.10)

Our aim is to write the asymptotic expansions of the Q and T eigenvalues in terms of the same
parameters in order to compare them. Define the operator Λ(λ) through the TQ relation

T(λ) = Λ(q
1
2λ) + Λ−1(q−

1
2λ) (1.6.11)

8We think that formula (3.29) of[8] for Bn has a typo, so we multiply it by β2

(β2)
n+ 2n−β2

β2−1 → (β2)
n+ 2n−1

β2−1 (1.6.8)
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which means
Λ(q

1
2λ) =

Q(qλ)

Q(λ)
(1.6.12)

In a certain Stokes sector of λ only one of the two terms of the sum will dominate

T (λ) ∼ Λ(q
1
2λ) =

Q(qλ)

Q(λ)
(1.6.13)

this simplification is what enables us to collate the asymptotic series of T and A.

log Λ(λ) ' im(−λ)
1

1−β2 − i
∞∑
n=1

(−1)nCn(−1)
1−2n

2−2β2 λ
1−2n

1−β2 I
(vac)
2n−1 (1.6.14)

' im(−λ)
1

1−β2 +

∞∑
n=1

C̃n(λ)
1−2n

1−β2 I
(vac)
2n−1 (1.6.15)

probably there is another error in (4.14) of:[8] −λ→ λ

The usual[8] normalization constants Cn are now given and suitably rewritten.

Cn =

√
π

n!(1− β2)
(β2)n

Γ( 2n−1
2−2β2 )

Γ(1 + 2n−1
2β−2−2 )

(
Γ(1− β2)

)− 2n−1

1−β2 (1.6.16)

= −
sin
(
π(n− 1

2 ) 1
M

)
√
πn!(1− β2)

(β2)nΓ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)(
Γ(1− β2)

)− 2n−1

1−β2

we specify also the leading coefficient m here, for completeness

m =
2
√
πΓ( 1

2 −
ξ
2 )

Γ(1− ξ
2 )

(
Γ(1− β2)

)1+ξ

(1.6.17)

For these calculations, it is convenient to define a new constant Dn

Dn =
(−1)n√

π (1− β2)n!
(−1)

1−2n

1−β2 β2nΓ(
2n− 1

2− 2β2
)Γ(

2n− 1

2− 2β−2
)Γ(1− β2)

1−2n

1−β2 (1.6.18)

The n-th term of the Q+(λ) expansion writes then

(−1)n+1

2
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)
(β2)nΓ(1− β2)

1−2n

1−β2 (−1)
1−2n

2−2β2 λ
1−2n

1−β2 I
(vac)
2n−1

=

∞∑
n=0

(−1)

2
Dnλ

1−2n

1−β2 I
(vac)
2n−1

while the n-th term of the Λ(λ) expansion is

i(−1)n sin
(
π(n− 1

2 ) 1
M

)
√
π(1− β2)n!

Γ
( 2n− 1

2− 2β2

)
Γ
( 2n− 1

2− 2β−2

)(
Γ(1− β2)

)− 2n−1

1−β2
(β2)n(−1)

1−2n

2−2β2 λ
1−2n

1−β2 I
(vac)
2n−1

=

∞∑
n=0

i sin
(
π(n− 1

2
)

1

M

)
Dnλ

1−2n

1−β2 I
(vac)
2n−1

The parameter q = eiπβ
2

has a key role, so we write the powers of it we need

q
1−2n

1−β2 = e
iπ(1−2n) β2

1−β2 = e−iπ(2n−1)ξ

√
q

1−2n

1−β2 = e−iπ(n−1/2)ξ
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We make the consistency check that the TQ relation (1.6.13) be identically satisfied

(−1)

2

(
e−iπ(2n−1)ξ − 1

)
Dn = ie−iπ(n−1/2)ξ sin

(
π(n− 1

2
)ξ
)
Dn

1− e−iπ(2n−1)ξ = 1− e−iπ(2n−1)ξ

We can finally find the relation between the normalization constants

Cn = (−1)n2 sin
(
π(n− 1

2
)ξ
)

Γ(1− β2)
1−2n

1−β2 (β−2)
1−2n

1−β2Bn

C̃n = 2 sin
(
π(n− 1

2
)ξ
)

(−1)
n− 1−2n

2−2β2 B̃n

(1.6.19)

(1.6.20)

We are particular interested to the β2 = −1 case

C̃n = 2 sin
(
π(
n

2
− 1

4
)
)

(−1)n−
1−2n

4 B̃n

= −i
(
e
iπn
2 −

iπ
4 − e− iπn2 + iπ

4

)
eiπne

iπ
4 (2n−1)B̃n

= i(−1)n+1[−i(−1)n − 1]B̃n

In conclusion, for β2 = −1

C̃n = [−1 + i(−1)n]B̃n (β2 = −1) (1.6.21)

a fact which will be repeately used later.
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2 "Ordinary differential equations - integrable models" corre-

spondence

2.1 The canonical Schödinger equation of ODE-IM

Consider the spectral problem associated with the Scrödinger operator on the half line x ∈ (0,∞)[14](
− d2

dx2
+ x2M +

l(l + 1)

x2

)
ψk(x) = Ekψk(x) (2.1.1)

where 2M is a real number larger than −2. This equation was the first ODE-IM equation to be
discovered: the present final form (2.1.1) is due to the foundational works of Dorey and Tateo,[12][14]

and of Bazhonov, Lukyanov, Zamolodhikov.[13] We note that the "spectrum" is discrete, because the
potential is confining.[12]

The point 0 is a regular singularity point,[27] the roots of the characteristic polynomial being l + 1

and −l. The fundamental pair of solutions can be expanded around zero, in an ordinary power series,
as

ψ+ = xl+1
∞∑
n=0

u+
nx

n ' xl+1 x→ 0 (2.1.2)

ψ− = x−l
∞∑
n=0

u−n x
n ' x−l x→ 0 (2.1.3)

with u±0 = 1. We notice that (2.1.1) is invariant under the action of the discrete symmetry Λ̂ defined
as[13]

Λ̂ : x→ x , E → E l→ −1− l (2.1.4)

the application of this symmetry to ψ+ transform it in the other solution ψ− and viceversa.
The point at infinity is a regular singularity of rank 2[M ] + 4, where [M ] denotes the integer part of
M . Hence, we cannot expand in an ordinary series around ∞, but just in an asymptotic series.[23]

Following the treatment of,[14] we now restrict to the region M > 1, but extend x to the whole
complex plane. Then equation (2.1.1) has a entire solution y(x,E, l) with asymptotic representation

y− ∼ x−M/2 exp
{
− 1

M + 1
xM+1

}
<x→ +∞ (2.1.5)

where x tends to infinity in any closed subsector of the sector

|argx| < π

2M + 2
(2.1.6)

A Stokes line? is a ray of the complex plane where the asymptotic behavior of the formal solutions
changes character, from an exponentially decreasing behaviour to an exponential increasing behaviour9.
Each fundamental pair of a second order equation such as (2.1.1), includes both an exponentially
decreasing and an exponentially increasing solution, called also subdominant and dominant solutions.
The Stokes sectors are now simply defined as the regions of the complex plane comprised between the
Stokes lines.[23] Note that the Stokes sectors are determined just by the leading order of the solution.

9For example, if the asymptotic representation of a function is of the form f(x)e±g(x), the Stokes line can be taken
as the set of zeros x0 of the real part of g(x): <g(x0) = 0.
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We can say that equation (2.1.6) defines a Stokes sector in which the solution y− is subdominant. In
general, equation (2.1.1) has the Stokes sectors Sk∣∣∣argx− 2kπ

2M + 2

∣∣∣ < π

2M + 2
, k ∈ Z (2.1.7)

where k is an integer. Note that y− is subdominant in S0, while it is dominant in S±1.
We can now introduce another symmetry Ω̂ of equation (2.1.1). Its action can be expressed as[14]

Ω̂ : x→ ω−1x , E → ω2E l→ l (2.1.8)

with the parameter ω suitably defined as the 2M + 2-th root of unity.

ω = e
iπ
M+1 ω2M+2 = 1 (2.1.9)

Note the similarity with the definition (1.3.10) of the q parameter in integrability.
Of course[27] these symmetries, even if they leave the equation (2.1.1) invariant, have a nontrivial
action on the solution. In particular, the Ω̂ symmetry exchange a dominant and a subdominant
solution (passively interpreted, in a fixed Stokes sector). The symmetries can thus be used to generate
other solutions. In fact, define[14]

yk = ωk/2y−(ω−kx, ω2kE, l) (2.1.10)

yk is subdominant in Sk,while it is dominant in Sk±1.
Clearly, there exists a solution y+ which, in S0, is asymptotically represented as

y+ ∼ x−M/2 exp
{ 1

M + 1
xM+1

}
<x→ +∞ (2.1.11)

and therefore forms a fundamental pair with y−. In a the Stokes sector S0, we can certainly linearly
expand any solution φ(x) in the basis of the two fundamental asymptotic solutions y− and y+. In
the other Stokes sectors Sk, "φ(x) will be represented asymptotically by a linear combination of the
two formal solutions; but the coefficients may vary from sector to sector"10. This is called Stokes
phenomenon, by the name of his discoverer.
In the following, we shall use mainly the solution y− and therefore we drop the − apex and write for
this solution just y.

2.2 Construction of C and D functions

We consider now the Stokes sector S0. Being aware of the Stokes phenomenon we expand the solution
yk−1 in the basis {yk, yk+1}

yk−1(x,E, l) = Ck(E, l)yk(x,E, l) + C̃kyk+1(x,E, l) y →∞ (2.2.1)

The coefficients of expansion Ck and C̃k are called Stokes multipliers and are different in different
Stoked sectors. To calculate the Stokes multipliers we must use the wronskian (by (2.1.1) independent
from x). The multipliers C̃k are all equal to −1

C̃k = −W [yk−1, yk]

W [yk, yk+1]
= −1 (2.2.2)

10We used exactly prof. Erdelyi’s words in his book,[23] because this apparent "violation" of the fundamental
theorems of linear algebra, might rise skepticism. We note, also, that an asymptotic representation of a function is
defined[23] as a whole equivalence class of functions, not as a uniquely determined function.
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because Wk1+1,k2+1(E, l) = Wk1,k2(ω2E, l) and W0,1(E, l) = 2i, with obvious subscript notation.
The non trivial Stokes multiplier is the other

Ck(E, l) =
W [yk−1, yk+1]

W [yk−1, yk]
(2.2.3)

In particular the C0 Stokes multiplier, from which we drop the subscript 0, is

C(E, l) =
W [y−1, y1]

2i
(2.2.4)

being W [y0, y1] = 2i.
The relation (2.2.1) becomes

C(E, l)y(x,E, l) = ω−1/2y(ωx, ω−2E, l) + ω1/2y(ω−1x, ω2E, l) x→∞ (2.2.5)

In analogy to (2.1.10) define the "shifted" solutions around zero

ψ±k (x,E, l) = ωk/2ψ±(ω−kx, ω2kE, l) (2.2.6)

We take the wronskian of both sides of (2.2.5), defining

D∓(E, l) = W [y(x,E, l), ψ±(x,E, l)] (2.2.7)

the Stokes relation (2.2.1) becomes

C(E, l)D∓(E, l) = ω∓(1/2+l)D∓(ω−2E, l) + ω±(1/2+l)D∓(ω2E, l) (2.2.8)

2.3 Analiticity properties and uniqueness

The function D−(E, l) has the following analyticity properties, the proof of which can be found in
Dorey and Tateo’s foundational work on the ODE-IM.[14]

1. C(E, l) and D−(E, l) are entire functions of E

2. if l ∈ R and l > −1/2, then the zeros of D−(E, l) all lie on the positive real axis of the complex
E-plane

3. if M > 1 then D−(E, l) has the large energy asymptotic

logD−(E, l) ∼ a0

2
(−E)

M+1
2M , |E| → ∞ , |arg (−E)| < π (2.3.1)

with leading coefficient a0

a0

2
=

∫ ∞
0

dt [(t2M + 1)1/2 − tM ] = − 1

2
√
π

Γ(−1

2
− 1

2M
)Γ(1 +

1

2M
) (2.3.2)

4. if E = 0, the normalization is

D−(0, l) =
1√
π

Γ(1 +
2l + 1

2M + 2
)(2M + 2)

2l+1
2M+2 + 1

2 (2.3.3)
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These four properties are exactly the properties (but the normalization was chosen differently (1.5.3))
of the A+ eigenvalue listed in subsection 1.5.
The other function C(E, l), on the other hand, can be determined by the Stokes relation (2.2.8) and
the following zero property[14]

• if −1−M/2 < l < M/2 then the zeros of C don’t lie on the positive real axis

Following the the Bazhanov, Lukyanov, A. Zamolodchikov[8] construction of integrable conformal
field theory (summarized in section 1), all these properties permit to characterize the functions
C(E, l) and D−(E, l) uniquely. In fact, it can be shown, in complex analysis, that if M < 1, D− can
be written as an infinite product over its zeros

D−(E, l) = D−(0, l)

∞∏
n=0

(
1− E

En

)
(2.3.4)

(if M ≤ 1 a more complicated prefactor is needed and the asymptotic density of zeros necessitates
modifications to ensure convergence). Given the zeroes, the residual ambiguity is only in the
normalization D−(0, l). D− is also called spectral determinant. Introduce the function (cf. (1.5.4))

d(E, l) = ω2l+1 D−(ω2E, l)

D−(ω−2E, l)
(2.3.5)

It is evident, from (2.2.8), that the points at which d = −1 correspond to the zeros of C and D−.
The function

f(θ, l) = log d(ν−2eθ/µ, l) (2.3.6)

thus solves the Destri de Vega equation[14]

f(θ, l) = iπ
(
l +

1

2

)
− i cos (

π

2M
)a0ν

−2µeθ +

∫ ∞−iε
−∞−iε

dθ′ ϕ(θ − θ′) log (1 + ef(θ′,l))

−
∫ ∞+iε

−∞+iε

dθ′ ϕ(θ − θ′) log (1 + e−f(θ′,l)) (2.3.7)

with

ϕ(θ) =

∫ ∞
−∞

dk

2π

eikθ sinh
(
π
2 (ξ − 1)k

)
2 cosh

(
π
2 k
)

sinh
(
π
2 ξk

) , ξ =
1

M
(2.3.8)

Dorey and Tateo assumed[14] that the solution to this equation is unique.
Given the solution f of the Destri de Vega equation, the zeroes of C and D− are determined uniquely
and the spectral determinant D− is fixed up to an overall constant, which is given by property (2.3.3).
Since C was already given by (2.2.4), D− and C has been determined.

2.4 ODE/IM correspondence

We now make explicit the relation between integrable conformal field theory and the quantities
introduced in relation to the Scrödinger equation (2.1.1). We list on the left side of the equalities the
integrable CFT parameters and on the right side the Scrödinger equation quantities

β2 =
1

M + 1

p =
1

2

(l + 1
2 )

M + 1

λ = νE1/2 , ν =
(2β2)1−β2

Γ(1− β2)

(2.4.1)

(2.4.2)

(2.4.3)
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remember that 1
1−β2 = M+1

M . As a consequence of uniqueness, we can also identify

A±(λ, p)
∣∣∣
β2

= α∓D∓
((λ

ν

)2

,
2p

β2
− 1

2

)∣∣∣
M=β−2−1

Q±(λ) = λ±2P/β2

α∓D∓
((λ

ν

)2

,
2p

β2
− 1

2

)
|M=β−2−1

T (λ, p)
∣∣∣
β2

= C
((λ

ν

)2

,
2p

β2
− 1

2

)∣∣∣
M=β−2−1

(2.4.4)

(2.4.5)

(2.4.6)

where α∓ =
(
D∓(0, 2p

β2− 1
2 )
)−1

.With these identifications, the Stokes relation becomes exactly the TQ
relation (ql+1/2 = e2πip = ωl+1/2 ), the asymptotics of A+ ≡ D− match and the normalization (2.3.3)
of D− correctly induces normalization to unity (1.5.3) of A+. We note that using

√
E in the place of

λ = eθ(1−β
2) amounts just to a shift on θ as

λ→
√
E ⇐⇒ θ → θ − ln (2β2) +

1

(1− β2)
ln Γ(1− β2) (2.4.7)

Consider the expansion of y in the basis of the shifted of {ψ+, ψ−} (see subsection 2.6 for further
comments)

(2l + 1)y(x,E, l) = D−(E, l)ψ−(x,E, l)−D+(ωE, l)ψ+(x,E, l) (2.4.8)

f we consider the limit x → 0 for this equation, we see that the contribution of D+ is suppressed
because ψ+ → 0; while the contribution of D− is dominant, because is multiplied by the divergent
function ψ− ∼ x−l. Thus, because the wronskian D−(E, l) = W [y(x,E, l), ψ+(x,E, l)] is an entire
function, it can be calculated just by multiplying this expression by xl

D−(E, l) = lim
x→0

[
(2l + 1)xly(x,E, l)

]
(2.4.9)

All our calculations will be based upon this or similar identifications between the Baxter’s Q func-
tion (2.4.5) and the solution of the ODE-IM Schrödinger equation calculated at some point.

2.5 Fusion relations

The "fused" T operators Tj (j = 0, 1/2, 1, 3/2, ...) were introduced in integrable conformal field
theory from the fusion relation (1.3.28), which we report here

Tj(q
1
2λ)Tj(q

− 1
2λ) = 1 + Tj− 1

2
(λ)Tj+ 1

2
(λ) (2.5.1)

The Tj operators also satisfy relations of the TQ form

T(λ)Tj(q
j+1/2λ) = Tj−1/2(qj+1λ) + Tj+1/2(qjλ) (2.5.2)

We now want to establish the analogues of these relations for the ordinary differential equation (2.1.1),
through suitable definition of the Tj eigenvalues of the Tj operators.
We already obtained the j = 1/2 case, i.e. the TQ relation, by considering the Stokes relation (2.2.1)
for adjacent Stokes sectors. It seems reasonable to find a general Stokes relation for the general
Stokes sectors, namely

yk−1 = C
(m)
k yk+m−1 + C̃

(m)
k yk+m (2.5.3)
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where we introduced generalized Stokes multipliers

C
(m)
k =

1

2i
Wk−1,k+m , C̃

(m)
k = − 1

2i
Wk−1,k+m−1 (2.5.4)

Considering now a fundamental pair of solutions, the four Stokes multipliers can be collected in a
matrix C

(m)
k (

yk−1

yk

)
= C

(m)
k

(
yk+m−1

yk+m

)
, C

(m)
k =

(
C

(m)
k C̃

(m)
k

C
(m−1)
k+1 C̃

(m−1)
k+1

)
(2.5.5)

It is easily proved that
C

(m)
k (E, l) = C

(m)
k−1(ω2E, l) (2.5.6)

The matrices C(m)
k satisfy a sort of "transitivity" property

C
(m)
k C

(n)
k+m = C

(m+n)
k (2.5.7)

which corresponds to the requirement that the change from the basis {yk+m+n−1, yk+m+n} to the basis
{yk+m−1, yk+m}, followed by the change from {yk+m−1, yk+m} to {yk−1, yk}, should be equivalent to
the unique change from {yk+m+n−1, yk+m+n} to {yk−1, yk}. For the particular case of m = 1, we get

CkC
(n)
k+1 − C

(n−1)
k+2 = C

(n+1)
k (2.5.8)

and another similar equation for the tilted multipliers C̃k.
Now we define the candidate for the Tn/2 eigenvalues

C(n)(E) = C
(n)
0 (ω−n+1E) (2.5.9)

then, considering property (2.5.6), the transitivity relation (2.5.8) can be written as

C(E)C(n)(ωn+1E) = C(n−1)(ωn+2E) + C(n+1)(ωnE) (2.5.10)

which matches precisely the fusion relation (2.5.2), provided the Tn/2 eigenvalues is defined as

Tn/2(νE1/2) = C(n)(E) =
1

2i
W−1,n(ω−n+1E) (2.5.11)

Taking instead n = −m in the transitivity relation (2.5.7) and noting that C(0)
k = I we obtain also

the fusion relations

C(m−1)(ω−1E)C(m−1)(ωE) = 1 + C(m)(E)C(m−2)(E) (2.5.12)

2.6 Fused quantum wronskians

The pair of functions {ψ−, ψ+}, defined as the solutions around zero, can be used as basis "almost
everywhere in l".11 Consider in particular the expansion of yk in the basis of the shifted versions of
this solutions (2.2.6)

(2l + 1)yk(x,E, l) = D−(ω2kE, l)ψ−k (x,E, l)−D+(ω2kE, l)ψ+
k (x,E, l) (2.6.1)

11For example, this is not true at l = −1/2, when the two functions coincide. More generally, since ψ− was defined
making the analytic continuation l → −l − 1 on ψ+, there may be points at which poles are encountered. At such
points a regularization is needed which may spoil the functional independence.
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Taking the wronskian of y−1 and yn expressed though the previous equation and taking into account
the properties

W [ψ+
k , ψ

+
p ] = W [ψ−k , ψ

−
p ] = 0 (2.6.2)

W [ψ−p , ψ
+
k ] = (2l + 1)ω(k−p)(l+1/2) (2.6.3)

we find an expression for C(n)(E) which turns out to be the fused quantum wronskians relation of
integrability (1.4.17)

(4l + 2)iC(n)(E) = ω(n+1)(l+1/2)D−(ωn+1E, l)D+(ω−n−1E, l)

− ω−(n+1)(l+1/2)D−(ω−n−1E, l)D+(ωn+1E, l)

(2.6.4)

(2.6.5)

2.7 Singular potentials and duality

Consider the usual ODE (2.1.1)[
− d2

dx2
+ x2M +

l(l + 1)

x2
− E

]
y(x) = 0 (2.7.1)

and apply to it a sequence of transformations, the first of which is the Langer transform

x = ez y(x) = ez/2ψ(z) (2.7.2)[
− d2

dz2
+ e2z(M+1) + (l +

1

2
)2 − Ee2z

]
ψ(z) = 0 (2.7.3)

then apply a dilation and translation to z

z =
1

M + 1
z′ + log

M + 1√
E

(2.7.4)

x = e
z′
M+1

M + 1√
E

(2.7.5)[
− d2

dz′2
− e

2z′
M+1 − Ẽe2z′ + (l̃ +

1

2
)2

]
ψ(z′) = 0 (2.7.6)

where we define new energy Ẽ and quantum number l̃

Ẽ = − (M + 1)2M

EM+1
(2.7.7)

l̃ =
l − M

2

M + 1
or l +

1

2
= (l̃ +

1

2
)(M + 1) (2.7.8)

Now we apply an inverse Langer transfom

v = ez
′

ψ(z′) = v−1/2ỹ(v) (2.7.9)

x =
M + 1√

E
v

1
M+1 (2.7.10)

ψ(z′) =

√
M + 1
4
√
E

v−
1

2(M+1) y(
M + 1√

E
v

1
M+1 ) (2.7.11)

ỹ(v) =
4
√
E√

M + 1
v

M
2(M+1) y(

M + 1√
E

v
1

M+1 ) (2.7.12)

After this last transformation the equation becomes[
− d2

dv2
− v2M̃ − Ẽ +

l̃(l̃ + 1)

v2

]
ỹ(v) = 0 (2.7.13)
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where we defined a new parameter

M̃ = − M

M + 1
(2.7.14)

In terms of β2

β̃2 =
1

β2
(2.7.15)

the old range M > 0, 0 < β2 < 1 is mapped into

−1 < M̃ < 0 , β̃2 > 1 (2.7.16)

but note the sign of the "M-term" is reversed (minus).
In particular, the harmonic oscillator Schrödinger equation - M = 1 is mapped into the Coloumb
potential Schrödinger equation M̃ = −1/2 by the transformation (2.7.10) (2.7.12)

2.7.1 Developments for the Liouville model

We make a comment concerning Dorey and Tateo’s duality consideration of section 2.7.
Note that if, as it indeed happens, the solution y(x,E) of the original problem (2.1.1) is analytic in
the whole complex plane of E but not at infinity, the solution of the dual problem y(w, Ẽ) (2.7.12)
cannot be such, because the map between E and Ẽ (2.7.7) is not analytic for E = 0. Nevertheless, Ẽ
is analytic for E →∞. Thus the entireness problem can be solved simply considering the zero energy
of the original problem as the infinite energy of the dual problem and viceversa.
One can now consider a new range for M̃ in (2.7.14)

− 2 < M̃ < −1 (2.7.17)

which is inversely mapped in the range
M < −1 (2.7.18)

which corresponds to the Liouville model.
However, in the range M < −1 both energies, for the original and the dual problem are analytic in
the whole complex plane, because zero is not anymore a singularity. In the corresponding M < −1

there are two irregular singularities in y.

2.8 Y system and TBA

The fusion relations permit a purely algebraic derivation of the TBA equations.[16] For generic
β2 > 0, the TBA leads to an infinite system of coupled integral equations, the Takahashi-Suzuki
system, which is somewhat complicated. However, at rational values of β2, it truncates to a finite
system of integral equations.
For example, at

β2 =
1

N
, or β2 =

2

N
N = 1, 2, 3, ... (2.8.1)

(which correspond respectively toM integer or half integerM = −1/2, 0, 1/2, 1, ...) the fused quantum
wronskian expression (1.4.17) induces an additional relation12

TN
2

(θ) = 2 cos (π(l +
1

2
)) + TN

2 −1(θ) (2.8.2)

12Remember that λ = exp Mθ
1+M
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which closes the fusion relations (1.3.28)

T 1
2
(θ)Tj(θ +

iπ(2j + 1)

2M
) = Tj− 1

2
(θ +

iπ(2j + 2)

2M
) + Tj(θ +

iπ(2j)

2M
) (2.8.3)

within a finite number of functions Tj(θ) with j = 1
2 , 1,

3
2 , ...,

N
2 − 1.

For this purpose, introduce the functions

Yj(θ) = Tj− 1
2
(θ)Tj+ 1

2
(θ) j =

1

2
, 1,

3

2
, ...,

N

2
− 1

Y0(θ) = 0

Ȳ (θ) = TN
2 −1(θ)

(2.8.4)

(2.8.5)

(2.8.6)

then associated to the fusion relations and the truncations (2.8.2) there is a closed system of functional
equations, known as Y-system

Yj(θ +
iπ

2M
)Yj(θ −

iπ

2M
) = (1 + Yj− 1

2
(θ))(1 + Yj+ 1

2
(θ)) , j =

1

2
, 1, ...,

N

2
− 3

2
(2.8.7)

YN
2 −1(θ +

iπ

2M
)YN

2 −1(θ − iπ

2M
) = (1 + YN−3

2
(θ))(1 + eπi(l+

1
2 Ȳ (θ))(1 + e−πi(l+

1
2 )Ȳ (θ)) (2.8.8)

Ȳ (θ +
iπ

2M
)Ȳ (θ − iπ

2M
) = 1 + YN

2 −1(θ) (2.8.9)

This Y-system is of the DN type in the TBA framework,[21] that is, they refer to Sine-Gordon
scattering theory at the reflection-less points θ2 = 8π/n. Thus, the Y-system can be transformed in
the TBA integral equations.
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3 Thermodynamic Bethe ansatz for Sinh-Gordon model

3.1 Generalities on Sinh-Gordon model

The two dimensional Sinh-Gordon model is defined via the euclidean action[20]

AShg =

∫
d2x

[
1

4π
(∂aφ)2 + 2µ cosh (2bφ)

]
(3.1.1)

where b is a dimensionless parameter and µ is a coupling constant (assumed real positive). For the
Sinh-Gordon and Liouville models, the following parameters are usually defined

Q = b+
1

b

p =
b

Q
=

b2

b2 + 1

a = 1− 2p =
b2 − 1

b2 + 1

(3.1.2)

(3.1.3)

(3.1.4)

The coupling constant µ determines the scale of the model and it is related to the mass precisely as

πµ
Γ(b2)

Γ(1− b2)
= [mZ(p)]2+2b2 (3.1.5)

where Z(p) is defined as

Z(p) =
1

8
√
π
pp(1− p)1−pΓ

(1− p
2

)
Γ
(p

2

)
(3.1.6)

The Sinh-Gordon model is integrable, even if, by (3.1.5) it is not conformal. The spectrum consists
of only one neutral particle subjected to factorized scattering with two particle amplitude, which, as
function of the rapidity θ, is expressed by

S(θ) =
sinh θ − i sinπp

sinh θ + i sinπp
(3.1.7)

Evidently, scattering theory is invariant under the symmetry p→ 1−p, which corresponds to b→ 1/b

and a → −a. Thanks to this symmetry it is sufficient to restrict to the region 0 < b2 ≤ 1 (i.e.
0 < p ≤ 1/2, 0 ≤ a < 1). However, in order for the whole theory to be invariant, it is also necessary
that the scale µ also transforms to a scale µ̃, defined implicitly by(

πµ
Γ(b2)

Γ(1− b2)

)1/b

=

(
πµ̃

Γ(1/b2)

Γ(1− 1/b2)

)b
(3.1.8)

3.2 Thermodynamic Bethe ansatz

3.2.1 TBA integral equation for the Sinh-Gordon model

Consider now the Sinh-Gordon model placed on a circle of finite circumference R. We can study the
finite size Sinh-Gordon model through a non-linear integral equation[20] known as thermodynamic
Bethe ansatz (TBA), whose solution is the so-called pseudoenergy ε(θ)

ε = mR cosh θ − ϕ ∗ log (1 + e−ε) (3.2.1)

where ∗ denotes convolution on the whole real axis of θ and the kernel ϕ(θ) is related to the scattering
amplitude (3.1.7) as

ϕ(θ) = − i

2π

d

dθ
logS(θ) (3.2.2)

=
1

2π

4 sinπp cosh θ

cosh 2θ − cos 2πp
(3.2.3)
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which, by use of simple hyperbolic trigonometric identities, can be reduced to

ϕ(θ) =
1

2π

(
1

cosh (θ + iπa/2)
+

1

cosh (θ − iπa/2)

)
(3.2.4)

From this latter expression, we conclude that the function ε(θ) is even and analytic in the strip
|=θ| < −πa/2 + π/2.

3.2.2 Formal link between Sinh-Gordon and Liouville TBA and leading asymptotics

Consider the right hand side of the TBA equation (3.2.1). Given Euler formula for cosh θ, asymptoti-
cally for <θ → +∞ we can write

mR cosh θ ∼ mR

2
eθ <θ → +∞ (3.2.5)

Now, we define a shifted rapidity θ′ and include the divergence only in the shift parameter Λ

θ′ = θ − Λ , Λ ∼ <θ → +∞ (3.2.6)

Thus, the new rapidity θ′ is finite and we can define a new mass by

M = meΛ Λ→ +∞ , m→ 0 (3.2.7)

which can actually be set equal to an arbitrary constant, because for the Liouville conformal model
the mass can be considered infinitesimal

m→ 0 (3.2.8)

In particular, Zamolodchikov[2] defined

MR = 2π (3.2.9)

In conclusion, we can say that, the Liouville TBA and other <θ → +∞ asymptotic relations, are
formally obtained from the corresponding Sinh-Gordon relations by discarding one of the exponentials
of hyperbolic function in the asymptotic terms and by setting, formally, mR → 2π. In particular,
Liouville TBA is written as[2]

ε = πeθ − ϕ ∗ log (1 + e−ε) (3.2.10)

Note that ϕ is the very same kernel (3.2.4) as in the Sinh-Gordon model, because the only term of
the TBA dominant in the limit <θ → +∞ is the forcing term, not the convolution.

3.3 Y system

3.3.1 Y system and universality

Define the important function Y (θ)

Y (θ) = e−ε(θ) (3.3.1)

which is called simply Y function. The Y function is even and, for <θ → +∞ is asymptotically
represented as

Y (θ) ∼ exp
(
−mR

2
eθ
)

<θ → +∞ (3.3.2)

The Y system for this function is the following functional equation (to be proven below)

Y (θ + iπ/2)Y (θ − iπ/2) =
(

1 + Y (θ + iaπ/2)
)(

1 + Y (θ − iaπ/2)
)

(3.3.3)
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Physically, Liouville theory is very different from Sinh-Gordon theory. First of all, Sinh-Gordon
theory is massive (the mass is given in (3.1.5)), while Liouville theory is massless and therefore
conformal. As a consequence, for instance, Liouville three-point correlation functions are known
exactly (by the so-called DOZZ formula[30]), while their determination is much more difficult in
Sinh-Gordon theory.
However, the Y-systems for these two theories are the very same. In fact, it is a general feature of
integrable models that, even if the massive and massless cases have actually different TBA equations,
the Y system is always the same. In particular, the driving term is the only formal difference between
Sinh-Gordon and Liouville TBA equations. However, given some Y system, all the related TBA
equations not only differ for the forcing term, but also for the physical states to which they are
referred to. We always consider the void but, In fact, the excited states have different TBA equations
which correspond to the one and the same Y system[21]

3.3.2 The TBA equation corresponds to a unique Y system

We now show that the TBA equation (3.2.1) entails the validity of the Y-system, given the definition
of the Y function in terms of the TBA solution ε(θ). In fact, we shift the argument of ε(θ) by ±iπ/2

ε(θ + iπ/2) = imR sinh θ −
∫ ∞
−∞

dθ′ ϕ(θ + iπ/2− θ′) log (1 + e−ε(θ
′))

ε(θ − iπ/2) = −imR sinh θ −
∫ ∞
−∞

dθ′ ϕ(θ − iπ/2− θ′) log (1 + e−ε(θ
′))

then sum the two equations, using the definition of Y

log [Y (θ + iπ/2)Y (θ − iπ/2)] =

∫ ∞
−∞

dθ′

2πi

(
1

sinh (θ + iπa/2− θ′)
+

1

sinh (θ − iπa/2− θ′)

)
log (1 + Y (θ′))

+

∫ ∞
−∞

dθ′

2πi

(
−1

sinh (θ + iπa/2− θ′)
+

−1

sinh (θ − iπa/2− θ′)

)
log (1 + Y (θ′))

Note that the result is not zero, because the integrals are singular in θ = θ′ ∓ iπa/2. The Y function
is, on the real axis, also real and positive. By continuity, we expect an infinitesimal strip =θ < ε

where 1 + Y (θ) is analytic. In such a strip, the whole integrand is analytic, except at θ = θ′ ∓ iπa/2,
where the pole is simple. We can the encircle this singularity from above, for the first integral and
from below, for the second integral. Therefore, we have to calculate∮

Cε

dθ′

2πi

log (1 + Y (θ′))

θ − θ′ ± iπa/2
= 1 + Y (θ ∓ iπa/2)

directly by Cauchy integral formula, with Cε a rectangular contour, horizontally infinitesimal (where
the sinh(θ − θ′ ± iaπ/2) function can be linearly approximated). Exponentiating, we obtains finally
the Y-system (3.3.3)

Y (θ + iπ/2)Y (θ − iπ/2) =
[
1 + Y (θ + iaπ/2)

][
1 + Y (θ − iaπ/2)

]
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3.4 X system

3.4.1 From the X function to the X system

Al. Zamolodchikov[20] defined the X function as

X(θ) = exp

{
− mR

2 sinπp
cosh θ +

∫ +∞

−∞

dθ′

2π

log (1 + Y (θ′))

cosh (θ − θ′)

}
(3.4.1)

The X function is analytic in the strip |=θ| < π/2 and in this strip is asymptotically represented as

X(θ) ∼ exp

(
− mR

4 sinπp
eθ
)

<θ → +∞ (3.4.2)

Now we prove that this definition implies the relation

X(θ + iπ/2)X(θ − iπ/2) = 1 + Y (θ) (3.4.3)

In fact, by the definition (3.4.1)

X(θ + iπ/2)X(θ − iπ/2) = exp

{∫ +∞

−∞

dθ′

2π
log (1 + Y (θ′))

[
1

cosh (θ + iπ/2− θ′)
+

1

cosh (θ − iπ/2− θ′)

]}
= exp

{∫ +∞

−∞

dθ′

2πi

log (1 + Y (θ′))

sinh (θ − θ′)
+

∫ +∞

−∞

dθ′

2πi

log (1 + Y (θ′))

− sinh (θ − θ′)

}
Note that the result is not zero, because the integrals are singular in θ = θ′. The Y function is, on
the real axis, also real and positive. By continuity, we expect an infinitesimal strip =θ < ε where
1 + Y (θ) is analytic. In such a strip, the whole integrand is analytic, except at θ = θ′, where the pole
is simple. We can the encircle this singularity from above, for the first integral and from below, for
the second integral. Therefore, we have to calculate

X(θ + iπ/2)X(θ − iπ/2) = exp

{∮
Cε

dθ′

2πi

log (1 + Y (θ′))

θ − θ′

}
= 1 + Y (θ)

directly by Cauchy integral formula, with Cε a rectangular infinitesimal contour around θ = θ′ (where
the sinh(θ − θ′) function can be linearly approximated).
Consider an equivalent definition of the Y function

Y (θ) = X(θ + iaπ/2)X(θ − iaπ/2) (3.4.4)

In fact, assume the validity of the TBA equation (3.2.1), then, given the definition (3.4.1) of X, take
the logarithm of this relation. Set also c0 = −mR/2 sinπp. We get:

log Y (θ) =

[
c0 cosh (θ + iaπ/2) +

∫ ∞
−∞

dθ′

2π

log (1 + e−ε(θ
′))

cosh (θ + iaπ/2− θ′)

]
+

[
c0 cosh (θ − iaπ/2)

+

∫ ∞
−∞

dθ′

2π

log (1 + e−ε(θ
′))

cosh (θ − iaπ/2− θ′)

]
= 2c0 cosh θ cos (aπ/2) +

∫ ∞
−∞

dθ′ ϕ(θ − θ′) log (1 + e−ε(θ
′))

Now because c0 = −mR/2 sinπp and a = 1− 2p

2c0 cosh θ cos (aπ/2) = −mR/2 sinπp cos (1− 2p)π/2 = −mR
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we obtain the right hand side of the Sinh-Gordon TBA equation (3.2.1)

log Y (θ) = mR cosh θ −
∫ ∞
−∞

dθ′ ϕ(θ − θ′) log (1 + e−ε(θ
′))

We conclude that, given the TBA and the X function, the definition (3.4.4) for the Y function is
equivalent to(3.3.1).
It is immediate that, from the combination of (3.4.4) and (3.4.3), the so called X system holds

X(θ + iπ/2)X(θ − iπ/2) = 1 +X(θ + iaπ/2)X(θ − iaπ/2) (3.4.5)

which is a functional equation for X.
It is commonly assumed that the X system is equivalent to the Y -system (3.3.3). To be precisely, the
Y system is obtained by combining the above X system with the same X system with the rapidity θ
shifted by −π (using also the relations (3.4.3) and (3.4.4))13.[

X(θ + iaπ/2)X(θ − iaπ/2)
][
X(θ + iaπ/2− iπ)X(θ − iaπ/2− iπ)

]
=
[
X(θ + iπ/2)X(θ − iπ/2)− 1

][
X(θ − iπ/2)X(θ − 3iπ/2)− 1

]
However, given the Y system, the validity of the X system is not rigourously necessary, even if it is
always assumed that there is an equivalence between the X system and the Y system.

3.4.2 Inverse procedure

Given the X or Y system,14 assuming only the knowledge of (3.4.3) and (3.4.4), it is possible to
obtain Al. Zamolodchikov’s definition (3.4.1). However, by this inverse procedure X is not uniquely
determined, that is, the boundary conditions must also be fixed.
We use a theorem of,[22] which we report here

Theorem 1. Let ξ be a function such that its Fourier transform ξ̂ belongs to L1. Define another
function χ by

χ(θ) =
1

2π

∫ ∞
−∞

ξ(θ′)

cosh (θ − θ′)
dθ′ (3.4.6)

then χ is bounded and analytic in the strip |=θ| < π
2 and its boundary functions satisfy

χ(θ + iπ/2) + χ(θ − iπ/2) = ξ(θ) (3.4.7)

for real θ. Conversely if ξ is bounded and analytic in the strip |=θ| < π
2 and if (3.4.6) then so does

(3.4.7)

For both the Sinh-Gordon and Liouville model, set ξ(θ) = log (1 + Y (θ)). Then by (??)

X̂(θ) = exp

∫ +∞

−∞

dθ′

2π

log (1 + Y (θ′))

cosh (θ − θ′)
(3.4.8)

(the hat over X means that this is a temporary definition).
We observe that there is freedom to add to ξ a so called "zero-mode function" φ, defined as a solution
of the homogeneous equation

φ(θ + iπ/2) + φ(θ − iπ/2) = 0 (3.4.9)

13To get the shifts as in (3.3.3), a final shift of +π/2 is needed
14Concerning the equivalence of the X and Y system, see the comments above
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which implies (
χ(θ + iπ/2)− φ(θ + iπ/2)

)
+
(
χ(θ − iπ/2)− φ(θ − iπ/2)

)
= ξ(θ)

A possible zero mode function is cosh θ or exp θ. Thus, the most general expression for ξ is

χ(θ) = φ(θ) +
1

2π

∫ ∞
−∞

ξ(θ′)

cosh (θ − θ′)
dθ′ (3.4.10)

Now, for the Sinh-Gordon model, we fix the zero mode of (3.4.9), following the conventions of.[20]

φ(θ) = − mR

2 sinπp
cosh θ (SINH-GORDON) (3.4.11)

so that the X function matches the previous definition (3.4.1)

X(θ) = exp

{
− mR

2 sinπp
cosh θ +

∫ +∞

−∞

dθ′

2π

log (1 + Y (θ′))

cosh (θ − θ′)

}
(3.4.12)

Instead, for the Liouville model we we fix the zero mode of (3.4.9), following the conventions of[2]

φ(θ) = − π

2 sinπp
eθ (LIOUVILLE) (3.4.13)

so that the X function matches the definition of[2]

X(θ) = exp

{
− π

2 sinπp
eθ +

∫ +∞

−∞

dθ′

2π

log (1 + Y (θ′))

cosh (θ − θ′)

}
(3.4.14)

Thus, we have proven that the direct and inverse procedure of Al. Zamolodchikov are only if we
fix the boundary conditions, i.e. the zero modes of (3.4.9), which corresponds to the <θ → +∞
asymptotics for the X function.
For the <θ → −∞ asymptotics, for the Sinh-Gordon model there is no difference, as all functions
constructed from the TBA solution ε(θ) are even. However ε(θ) is not even for the Liouville model.
Accordingly, numerical calculations of Zamolodchikov[2] were consistent with the boundary condition

X(θ) ' exp
{

2PQθ + const.
}

θ → −∞ (LIOUVILLE) (3.4.15)

3.5 Integrability

Lukyanov[29] found the same expression (3.4.1) for X(θ) in a rather different context. He argued that
the Baxter’s Q function for the Sinh-Gordon model has an asymptotic expansion without non-local
integrals of motion

logQ(θ) = −B0e
θ −

∞∑
n=1

BnI2n−1e
−(2n−1)θ (3.5.1)

because, differently from the Sine-Gordon model, in the Sinh-Gordon model there is no soliton sector.
Lukyanov then gave numerical evidence that the coefficient of this expansion, which therefore are
only the local integrals of motion, can be expressed in terms of the pseudoenergy ε(θ), that is the
solution of the TBA equation (3.2.1). More precisely,

BnI2n−1 = (−1)n
∫ ∞
−∞

dθ

π
e(2n−1)θ log(1 + e−ε(θ))

Bn =
Γ
( (2n−1)b

2Q

)
Γ
(

2n−1
2bQ

)
2
√
πn!Q

[
mΓ
(
b

2Q

)
Γ
(

1
2Qb

)
8Q
√
π

]1−2n

(3.5.2)

(3.5.3)
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In fact, this entails the same expression (3.4.1) for X(θ).

logX(θ) = logQ(θ) = − mR

4 sin πb
Q

eθ +

∫ ∞
−∞

dθ′

2π

log(1 + e−ε(θ))

cosh(θ − θ′)
(3.5.4)

Al. Zamolodchikov[20] defined15 the T function T (θ) and its dual T̃ (θ) via the TQ relations

T (θ) =
X(θ + iπp) +X(θ − iπp)

X(θ)

T̃ (θ) =
X(θ + iπ(1− p)) +X(θ − iπ(1− p))

X(θ)

(3.5.5)

(3.5.6)

he proved them also to be periodic

T (θ + iπ(1− p)) = T (θ) (3.5.7)

T̃ (θ + iπp) = T̃ (θ) (3.5.8)

we note also that p = b/Q and 1− p = 1/bQ.
We discuss asymptotic behavior for X(θ) and T (θ) at <θ → +∞. As in,[20] consider the leading
behaviour of X(θ) in the strip |=θ| < π/2

X(θ) ∼ e−B0e
θ

B0 =
mR

4 sinπp
(3.5.9)

To get, from the TQ relations, the asymptotic behaviour of T , assume θ and p are such that we can
also write

X(θ ± iπp) ∼ e−B0e
±iπp

then

X(θ ± iπp)
X(θ)

∼ eB0e
θ−B0e

θ±iπp
= exp

{ mR

4 sinπp
eθ(1− cosπp∓ i sinπp)

}
= exp

{
mR

8 sin πp
2 cos πp2

eθ
(

1− 2 cos2 πp

2
+ 1∓ 2i sin

πp

2
cos

πp

2

)}
= exp

{
mR

4 sin πp
2 cos πp2

eθ
(

sin2 πp

2
∓ i sin

πp

2
cos

πp

2

)}
= exp

{
mR

4 cos πp2
eθ
(

sin
πp

2
∓ i cos

πp

2

)}
= exp

{mR
4

tan
πp

2
eθ ∓ imR

4
eθ
}

From the TQ relation, we can now calculate the asymptotic behaviour of T (θ), at least on the Stokes
line =θ = 0, where neither of the exponentials of the sum prevails

T (θ) ∼ 2 exp
(mR

4
tan(πp/2)eθ

)
cos
(mR

4
eθ
)

<θ → +∞ =θ = 0 (3.5.10)

Now, if we are not on the real axis, only one of the two addenda of the TQ relation will prevail,
depending on the θ-Stokes sector we are considering. For simplicity, consider the self-case b = 1

15Actually he proved the subsequent relations for X considering this quantity as the continuum limit of the solution
of the Hirota difference equation[20]

40



(p = 1
2 )

T (θ) ∼ exp
(mR

4
(1 + i)eθ

)
+ exp

(mR
4

(1− i)eθ
)

= exp
(mR

4

√
2eθ+iπ/4

)
+ exp

(mR
4

√
2eθ−iπ/4

)
∼

exp
(
mR

4

√
2eθ−iπ/4

)
0 < =θ < π

2

exp
(
mR

4

√
2eθ+iπ/4

)
− π

2 < =θ < 0

When b is not 1, by a similar argument delivers the result[20]

T (θ) ∼ exp

{
mR exp(θ − iπ(1− p)/2)

4 cos (πp/2)

}
0 < =θ < π(1 + a)/2

T̃ (θ) ∼ exp

{
mR exp(θ − iπp/2)

4 sin (πp/2)

}
0 < =θ < π(1− a)/2

(3.5.11)

(3.5.12)
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Part II

Gelfand-Dikii differential polynomials
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4 General markovian large energy expansion

4.1 Modified Schrödinger equation

Consider the following differential equation, which is sometimes called in physics modified Schrödinger
equation [

− d2

dz2
+ u(z) + Λp(z)

]
ψ(z; Λ) = 0 (4.1.1)

where Λ is a complex spectral parameter and p(z) and u(s) are "sufficiently smooth" functions.
Historically, Liouville[23] discussed the asymptotic behaviour of its solutions as Λ → ∞. To our
purposes the importance of the modified Schrödinger equation (4.1.1) is that permits a better set up
for the ODE/IM correspondence.

4.1.1 Bäcklund’s Schrödinger form

Following Bäcklund,[11] we change variable as

dw =
√
p(z)dz w(z) =

∫ z

dz′
√
p(z′) (4.1.2)

(4.1.3)

This change for the variable z → w has the effect of "separating" the spectral parameter Λ from p(z)

− d2

dw2
ψ − 1

2

p′

p3/2

d

dw
ψ +

[u
p

+ Λ
]
ψ = 0 (4.1.4)

where we use the prime for the derivative in z: ′ = dp
dz .

If we now eliminate the first derivative, by the usual Abel transformation[27] on the wave function
solution,

ψ(w(z)) = exp

{
−1

2

∫ z

(dz′
√
p(z′))

1

2

p′

p3/2

}
χ(w(z)) (4.1.5)

so that the two solutions are related as

ψ(z) =
1

4
√
p(z)

χ(w(z)) (4.1.6)

We finally arrive to the equation apt for the Λ→∞ asymptotic expansion,[
− d2

dw2
+ U(w)

]
χ = −Λχ (4.1.7)

even if the new Bäcklund potential is rather involved

U(z) = U(w(z)) =
1

p

(
u+

4pp
′′ − 5p

′2

16p2

)
=
u

p
+

1

4

p′′

p2
− 5

16

p
′2

p3
(4.1.8)

4.1.2 Application to ODE-IM equations

Our goal, now, is to put both our ODE-IM equations in this form, with

Λ = e2θ K = eθ (4.1.9)
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where θ is the TBA rapidity.
In order to put in this form the ODE-IM minimal models Schrödinger equation (2.1.1)[

− d2

dx2
+
l(l + 1)

x2
+ x2M − E

]
ψ(x;E) = 0 (4.1.10)

it is convenient to define[16] a new independent variable z and a fictitious gauge parameter s as
follows

x = Cz = K
1

M+1 z (4.1.11)

E = C2Ms2M = K
2M

1+M s2M (4.1.12)

with C = e
θ

M+1 . We observe that if we take the limit Λ→∞, in order for the initial (2.1.1) energy
E to be finite, it is necessary also that s→ 0.
In any case, the initial (2.1.1) ODE-IM equation, forβ2 > 0, gets transformed into the Lukyanov-
Zamolodchikov equation[16][

− d2

dz2
+
l(l + 1)

z2
+ Λ(z2M − s2M )

]
ψ(z) = 0 (4.1.13)

We observe16 that, whether previously (2.1.8) the action of the Ω symmetry was

Ω : x→ ωx , E → ω−2E , l→ l ,

in these new variables, it would act as (at least, under the assumption that the spectral parameter Λ

were fixed)
Ω : z → ωz , s→ ω−1/Ms , l→ l (4.1.14)

If we define the "Bäcklund coefficients" as[16]17

p(z) = z2M − s2M

u(z) =
l(l + 1)

z2
=

2|k|
z2

2|k| = l +
1

2

(4.1.15)

(4.1.16)

we see that Lukyanov-Zamolodchikov equation (4.1.13) is in the Liouville’s form (4.1.1).
Hence, for the minimal models the Bäcklund potential U is

U(z) =
4|k|2 − 1

4

z2(z2M − s2M )
+

1

4

z2M

z2(z2M − s2M )2
− 5

16

z4M

z2(z2M − s2M )3
(4.1.17)

We anticipate that, below (8.5.4), we are going to consider also the Al. Zamolodchikov’s Generalized
Mathieu equation [

− d2

dy2
+ e2θ(ey/b + e−yb) + P 2

]
ψ(y; θ) = 0 (4.1.18)

Actually, this form is dued to D. Fioravanti, and has the advantage that the correspondence with
Liouville equation (4.1.1) is immediate, setting

p(y) = ey/b + e−yb

u(y) = P 2 = const.

(4.1.19)

(4.1.20)

16This observation may be useful for further generalizations.
17Using 2|k| = l+ 1

2
is not the most convenient choice for the following calculations. A more convenient notation

λD = l + 1
2
would had been that of,[17] but, lest confusion with the totally other large energy expansion parameter λ,

we chosed to follow[16] notation.
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where the real positive parameters b and P 2 are the standard homonimous parameter of the Liouville
integrable model,[30] as we are going to explain below.
Hence, for the general (b > 0) Liouville case, the Bäcklund potential is

U(y) =
P 2

ey/b + e−yb
+

1

4

1
b2 e

y/b + b2e−yb

(ey/b + e−yb)2
− 5

16

1
b2 e

2y/b − 2ey/b−yb + b2e−2yb

(ey/b + e−yb)3
(4.1.21)

An important special case is for the self dual Liouville model, for which b = 1. In fact, now we get
the standard modified Mathieu equation [26]

− d2

dy2
ψ + (2e2θ cosh y + P 2)ψ = 0 (4.1.22)

Instead, if we consider this equation on the imaginary axis of y, setting z = −iy, we obtain the
standard Mathieu equation [26]18

d2

dz2
ψ + (2e2θ cos z + P 2)ψ = 0 (4.1.23)

In particular, for the modified Mathieu case (real axis of y)

p(y) = 2 cosh y (4.1.24)

U(y) =
P 2

2 cosh y
+

1

4

1

2 cosh y
− 5

16

sinh2 y

cosh3 y

=
(P 2

2
− 1

32

) 1

cosh y
+

5

32

1

cosh3 y
(4.1.25)

and for the Mathieu equation (imaginary axis of y)

p(z) = −2 cos z u(z) = −P 2 (4.1.26)

U(z) =
1

2 cos z

(
P 2 +

1

4
+

5

16
tan2 z

)
=
(
P 2 − 1

16

) 1

2 cos z
+

5

4

1

(2 cos z)3
(4.1.27)

We observe that all the functional relations of the ODE-IM correspondence are constructed (see
section 2) through wronskians among some solutions ψ1 and ψ2 of the modified Schrödinger equa-
tion (4.1.1). Instead, after the Bäcklund transformation, we don’t consider ψ1 and ψ2 anymore, but
just their Bäcklund transformed χ1 and χ2: it seems that calculating wronskians among χ1 and χ2

is not correct for constructing the ODE-IM functional relations. Nevertheless, it is an elementary
property of wronskians, that if the relation between any solution ψ and its transformed χ is through
a unique function c, for every solution, as in (4.1.6)

ψi(z) = c(z)χi(z) i = 1, 2 c(z) = p−1/4(z) (4.1.28)

then also all wronskians differ by the the same multiplicative function cc′. In fact

W [χ1, χ2] = χ1χ
′
2 − χ′1χ2 = p1/4(

1

4

p′

p3/4
)
[
ψ1ψ

′
2 − ψ′1ψ2

]
=

1

4

p′
√
p
W [ψ1, ψ2] (4.1.29)

Therefore, the ODE-IM functional relations are "form invariant" under Bäcklund transformation, as
they can be modified at most by a fixed function. In this sense, the ODE-IM construction can be
considered "Bäcklund invariant".

18It is clear that this correspondence suggested to Zamolodchikov[2] the name Generalized Mathieu equation for his
original equation (9.2.1). However, we permit to point out that, in order to respect the standard nomenclature,[26] the
most correct name would had been "Generalized Modified Mathieu equation", even if it is perhaps too lenghty.
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4.2 Riccati equation for the eikonal representation

The eigenfunction solution χ of the Bäcklund equation (4.1.7) can be written in the eikonal integral
representation as

χ(w; Λ) = exp

{∫ w0

w

dw′S(w′; Λ)

}
= exp

{∫ ∞
z

dz′
√
p(z′)S(z′; Λ)

}
S(w; Λ) =

d

dw
logχ(w)

(4.2.1)

(4.2.2)

Note the choice of z0 = +∞ (w0 = w(z0)). Considering that the spectral parameter of (4.1.7) is
−Λ (therefore in −e2θ, from (4.1.9); note the minus sign), the logarithmic derivative S(w) can be
asymptotically expanded, for |Λ| → ∞ as[23]

S(z; Λ) '
√
−Λ +

∞∑
n=1

Sn(z)
√
−Λ

n (S0 = 0) Λ→∞ (4.2.3)

For the large energy limit θ → +∞ it may be also convenient to define the small parameter

ε =
1√
−Λ

ε→ 0 (4.2.4)

so that the expansion of S(w) reads

S(z; Λ) ∼ 1

ε
+

∞∑
n=1

Sn(z)εn (S0 = 0) ε→ 0 (4.2.5)

Whatever total derivative appears in the integrand S(z), we will discard it, because we intend to
integrate it over the entire "space" or period. In particular, the space we will consider is:

• the real positive line of x (0 < x < +∞) for equation (2.1.1)

• the entire real line of y (−∞ < y <∞) for the Generalized Mathieu equation (8.5.4)

• the interval s < z <∞ for the Lukyanov Zamolodhickov equation (4.1.13)

Explanations of this choices will be given below.
As is known,[27] a solution φ(x) of the general second order linear equation

L(φ) = φ′′ + a1(x)φ′ + a2(x)φ = 0 (4.2.6)

can be expressed in "eikonal integral form" as

φ(x) = exp

∫ x

dt p(t) (4.2.7)

It can be shown that, φ is a solution of L(φ) = 0, if and only if, p satisfies the first order non-linear
equation

p′ = −p2 − a1(x)p− a2(x) (4.2.8)

which is called a Riccati equation.
With our variables the Riccati equation reads

d

dw
S(w) = −S2(w) + U(w) + Λ (4.2.9)

46



Of course, the Riccati equation has two functional independent dominant and subdominant solutions
S+, S−, with corresponding Bäcklund solutions χ+ and χ−

S+(x′) '
√
−Λ +

∞∑
n=1

S+
n√
−Λ

n Λ→∞ (4.2.10)

S−(x′) ' −
√
−Λ +

∞∑
n=1

S−n√
−Λ

n Λ→∞ (4.2.11)

which we expanded in terms of their modes S±n . Substituting these expansions in the Riccati
equation (4.2.9) we get the standard recursion relation for the large energy expansion [23] 19

S±n+1 = ∓1

2

(
S′±n +

n−1∑
m=1

S±mS
±
n−m

)
(4.2.12)

with initial condition established by the leading asymptotic form of the Riccati equation (4.2.9)

S±−1 = ±1 (4.2.13)

We write here the first examples and refer to appendix A for further examples

S±1 = ±1

2
U (4.2.14)

S±2 = ∓1

2
S′±1 = −1

4
U ′ (4.2.15)

S±3 = ∓1

2

(
S
′ ±
2 + S±2

1

)
= ±1

8
(U ′′ − U2) (4.2.16)

In appendix A, we also (trivially) prove that, comparing the dominant S+ and subdominant S−

solution, the even modes have the same sign, while the odd modes have the opposite sign

S+
2n = S−2n n ∈ N

S+
2n+1 = −S−2n+1 (4.2.17)

4.3 Gelfand-Dikii recursion relation

In this subsection we shall follow mainly the, yet unpublished, Fioravanti’s and Fachechi’s article.[18]

Let us split the generic eikonal in an even and an odd part

S(w) = Seven(w) + Sodd(w) (4.3.1)

Sodd(w) =
√
−ΛS−1 +

∞∑
n=1

S2n−1(w)
√
−Λ

2n−1 (4.3.2)

Seven(w) =

∞∑
n=1

S2n(w)
√
−Λ

2n (4.3.3)

with the understanding that S−1 = 1 and S0 = 0.
The correspondence to the previous split in the dominant and subdominant fundamental pair S+, S−

is established by (4.2.17) and is confirmed by[36]

Seven =
1

2
(S+ + S−) Sodd =

1

2
(S+ − S−) (4.3.4)

19The Riccati equation (4.2.9) is just one; the two recursions appearing here correspond to the fact that, after
substitution of the modes expansion, we divided the Riccati equation by S±

−1 = ±1.
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The Riccati equation can also be splitted in two equation for the even and odd part in
√

Λ
−1

. For
the odd part this equation is nothing but (4.3.6)

S′odd + 2SoddSeven = 0 (4.3.5)

which entails that the even part Seven is a total derivative

Seven = −1

2

S′odd
Sodd

= −1

2

d

dw
(logSodd) (4.3.6)

As a consequence, we can neglect it if we are to integrate over a period or over the entire space. For
the even part, instead we get

S′even + S2
odd + S2

even = U + Λ (4.3.7)

which becomes, eliminating Sodd

−2SoddS
′′
odd + 3S

′2
odd + 4S4

odd = 4(U + Λ)S2
odd

We now can define the Gelfand Dikii function

R =
1

2Sodd
(4.3.8)

It is clear that R admits an asymptotic expansion in terms
√
−Λ with certain modes R̄n

R(w; Λ) =

∞∑
n=0

Rn(w)
√
−Λ

2n+1 =
1√
−Λ

∞∑
n=0

Rn(w)

(−Λ)n
(4.3.9)

with initial condition R0 = 1/2. In order to match the conventions of[16] (but not of the original[19]),
for which the initial condition is 1, we define the alternative modes R̄n = 2Rn, such that R̄0 = 120.
However, the recursive equations for the modes we are going to find are the very same. Since the only
difference is only the initial condition, in the following treatment, we shall drop the bar and use Rn
for what should be R̄n. In general when we will expand at large energy we will use this convention,
to match our calculations with the article of Lukyanov and A. Zamolodhikov.
The equivalent equation for R is then

2R′′R−R
′2 − 4(U + Λ)R2 + 1 = 0

However, it is more convenient to consider the derivative equation

R′′′ − 4(U + Λ)R′ − 2U ′R = 0 (4.3.10)

which, however, when integrated, introduce an inconvenient arbitrary constant. We will follow
the physical prescription that the resulting function R(w) must tends to zero when the independent
variable tends to infinity., which is also consistent with the limit of U(w).

lim
w→∞

Rn(w) = 0 ⇐⇒ lim
w→∞

U(w) = 0 (4.3.11)

Expanding equation (4.3.10) in the modes Rn and integrating we finally get the Gelfand-Dikii
recursion equation[18]

Rn+1(w) = −1

4

d2

dw2
Rn + U(w)Rn(w)− 1

2

∫ w

dw′
dU

dw′
Rn(w′) (4.3.12)

20This different convention explains the extra divisor 2 in formula (3.49) of,[16] with respect to (4.4.1)
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with the initial condition R0 = 1 In derivative form[16]

dRn+1

dw
= −1

4

d3

dw3
Rn + U

dRn
dw

+
1

2

dU

dw
Rn (4.3.13)

Instead of the differential equation (4.3.12) we can equivalently obtain the Gelfand Dikii polynomials
recursively by the operator Λ̂ defined in[16] as follows

Rn = Λ̂n · 1̂ Λ̂ = −1

4
∂2 + Û − 1

2
∂−1Û ′ (4.3.14)

The first Gelfand-Dikii polynomial are[19]

R0[U ] = 1 (4.3.15)

R1[U ] =
1

2
U (4.3.16)

R2[U ] =
3

8
U2 − 1

8
U ′′ (4.3.17)

R3[U ] =
5

16
U3 − 5

32
U ′2 − 5

16
U ′′U +

1

32
U iv (4.3.18)

R4[U ] =
35

128
U4 − 35

64
UU

′2 − 35

64
U2U ′′ +

21

128
U
′′2 +

14

64
U ′U ′′′ +

7

64
UU (4)

− 1

128
U (6) (4.3.19)

...

(4.3.20)

where the prime indicates the derivative with respect to w. The Gellfand-Dikii polynomials are
differential polynomials in the functional argument U , that is, they are polynomials in the function U
and in its derivatives, in all possible combinations21.[19]

The leading term in U is[16]

Rn[U ] =
Γ(n+ 1

2 )
√
πn!

Un +O(Un−1) |U | → +∞ (4.3.21)

(4.3.22)

as we prove in appendix A
For later developments, it is important to observe that the Gelfand-Dikii recursion equation, written
in the variables z of the Liouville equation (4.1.1) is

dRn+1

dz
= −1

4

1

p

d3

dz3
Rn +

3

8

p′

p2

d2

dz2
Rn +

[u
p

+
3

8

p′′

p2
− 9

16

p
′2

p3

] d
dz
Rn

+
[1

2

u′

p
− 1

2

up′

p2
+

1

8

p′′′

p2
− 9

16

p′′p′

p3
+

15

32

p
′3

p4

]
Rn (4.3.23)

Beware that here, and only here, the prime indicates the derivative with respect to z, not to w. This
equation in the variable z will be far more useful for us.

4.4 Local integrals of motion by Gelfand Dikii polynomials

While the even terms S2n, being total derivatives, give null contribution; the odd terms S2n−1 give
nontrivial contribution. However, it turns out that[18] they differ from the Rn by a total derivative

21We use "combination" in its proper mathematical sense, i.e. not "dispositions", because U is a simple commutative
function.
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and a simple numerical factor. Therefore, under integration they can be sobstituted by the Rn as

S2n−1 = − 1

2n− 1
R̄n + ∂z (local fields) n ≥ 1 (4.4.1)

This equation appears indirectly in;[16] however, until the unpublished[18] there was no proof of it.
Fioravanti gave a rigorous proof of (4.4.1) in;[18] we write a strict analogue of Fioravanti’s proof for
the WKB case in subsection 6.3. This equivalence is perhaps interesting in itself, from a mathematical
an computational point of view. However, from the integrability perspective, (4.4.1) implies the
actual claim of Lukyanov and Zamolodchikov,[16] that is, that the local integrals of motions can be
calculated as

B̃nI2n−1 = − 1

2n− 1

∫ ∞
0

dz
√
p(z)R̄n[U(z)] (4.4.2)

The proof of this important relation relies on the identification (2.4.9) between the wronskian (which
is Q) and the solution of the ODE-IM equation calculated at a certain point. This point was x→ 0

in (2.4.9) for the equation (2.1.1); however, now it must be z → s[16] for the equation (4.1.13). We are
going to partially justify this choice "a priori" in subsection 5.2; while its best justification remains
the check of the correct outcome (4.4.2) in subsection 5.3, "a posteriori". For now, we limit to follow
a slight suggestion of.[16] 22

Q(E, l) ∝ lim
z→s

χ(z) = exp

{∫ ∞
s

dz′
√
p(z′)S(z′)

}
(4.4.3)

Thus, apart a normalization constant, from (1.6.7) and (2.4.7)

Q(E, l) ∝ exp

{ ∞∑
n=0

eθ(1−2n)B̃nI
(vac)
2n−1

}

= exp

{ ∞∑
n=0

√
E

1−2n

1−β2
∫ ∞
s

dz
√
p(z)S2n−1

}

= exp

{ ∞∑
n=0

√
E

1−2n

1−β2 −1

2n− 1

∫ ∞
s

dz
√
p(z)Rn

}
(4.4.4)

where the last equality is a consequence of Fiovavanti’s theorem (4.4.1);

4.5 The markovian property

If one compares the recursion (4.2.12) for the standard large-energy expansion modes Sn and the
recursion (4.3.13) for the equivalent Gelfand Dikii polynomials Rn, one can immediately note the vast
convenience of using the latter, rather than the former. In fact, the Gelfand Dikii recursion (4.3.13)
is markovian, that is, the next n+ 1-th step depends only on the preceding n-th step; in particular,
it is evident that, in order to calculate Rn+1 from it suffices to know only Rn. Instead, in (4.2.12),
to calculate the usual mode Sn+1 it is necessary to know all the preceding Sk, for k = 0, 1, ..., n.
However, we remind that Fioravanti’s equivalence proof,[18] shows that the equivalence (4.4.1) holds
only "modulo" total derivatives, that must be cancelled, for example through integration interval
over a period or over the entire space.

22Lukyanov and Zamolodchikov, in,[16] indicated as integration contour the standard Mellin transform contour,
taking (s,∞) as the cut for the non integer powers. Namely, the contour starts from s and goes toward +∞ just above
the real positive axis; then around a "big circle" in clockwise direction around infinity: then from +∞ backward to s.
This can be justified as (i) in the physical conformal limit s→ 0 this interval is approximately equal to 0 < z <∞; (ii)
s is a singularity for the potential U(z) (4.1.17) which must be avoided.
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5 Local integrals of motion for the minimal models

5.1 Gelfand Dikii recursion relation for coefficients

We want to solve the Gelfand Dikii recursion equation

dRn+1

dz
= −1

4

1

p

d3Rn
dz3

+
3

8

p′

p2

d2Rn
dz2

+
(4|k|2 − 1

4

z2p
+

3

8

p′′

p2
− 9

16

p
′2

p3

)dRn
dz

+
[
−1

2
(4|k|2 − 1

4
)
( 1

z3p
+

p′

z2p2

)
+

1

8

p′′′

p2
− 9

16

p′′p′

p3
+

15

32

p
′3

p4

]
Rn (5.1.1)

By direct inspection of R1, R2, R3 we conjecture the following form for Rn

Rn(z) =
1

z2n

3n∑
m=n

anm
1

p(z)m
(5.1.2)

In other words, for each n we have expanded the polynomial Rn in the function basis z−2np−m, for
m = n, n+ 1, ..., 3n.

Rn(z) =

3n∑
m=n

anmz
−2np−m =

3n∑
m=n

anmfn(z)gm(z) (5.1.3)

To make things simple to control, we proceed following the generalized Leibniz rule

R(k)
n =

3n∑
m=n

anm

k∑
l=0

(
k

l

)
f (k−l)
n g(l)

m

We list the derivatives of fn

fn(z) = z−2n

f ′n(z) = −2nz−2nz−1

f ′′n (z) = 2n(2n+ 1)z−2nz−2

f ′′′n (z) = −(2n)(2n+ 1)(2n+ 2)z−2nz−3

It is convenient to define a varible ρ as

z
p′

p
= ρ = 2M

(
1 +

s2M

p

)
(5.1.4)

z2 p
′′

p
= (2M − 1)z

p′

p
(5.1.5)

z2 p
′′

p
= (2M − 1)ρ (5.1.6)

d

dz
ρ =

p′

p
+ z

p′′

p
− z p

′2

p2

= z−1[ρ+ (2M − 1)ρ− ρ2]

= z−1[(2M)ρ− ρ2]
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After this definition, we can list the derivatives of gn

gm(z) = p−m

g′m(z) = −z−1mρp−m

g′′m(z) = z−2[m(m+ 1)ρ2 −m(2M − 1)ρ]p−m

g′′′m(z) = z−3
[
−m(m+ 1)(m+ 2)ρ3 + 3m(m+ 1)(2M − 1)ρ2 −m(2M − 1)(2M − 2)ρ

]
p−m

With in mind the Leibniz rule, we compute the derivatives of Rn

dRn
dz

= z−2n−1
3n∑
m=n

anm[−2n−mρ]p−m (5.1.7)

d2Rn
dz2

= z−2n−2
3n∑
m=n

anm[2n(2n+ 1) + 4nmρ+m(m+ 1)ρ2 −m(2M − 1)ρ]p−m

= z−2n−2
3n∑
m=n

anm[2n(2n+ 1) + (4n+ 1− 2M)mρ+m(m+ 1)ρ2]p−m (5.1.8)

d3Rn
dz3

= z−2n−3
3n∑
m=n

anm{−2n(2n+ 1)(2n+ 2)− 6n(2n+ 1)mρ− 6n[m(m+ 1)ρ2 −m(2M − 1)ρ]

−m(m+ 1)(m+ 2)ρ3 + 3m(m+ 1)(2M − 1)ρ2 −m(2M − 1)(2M − 2)ρ
}
p−m (5.1.9)

= z−2n−3
3n∑
m=n

anm

{
−2n(2n+ 1)(2n+ 2)−

[
6nm(2n+ 2− 2M) +m(2M − 1)(2M − 2)

]
ρ

−
[
6nm(m+ 1)− 3m(m+ 1)(2M − 1)

]
ρ2 −m(m+ 1)(m+ 2)ρ3

}
p−m (5.1.10)

We express also the potential U and its derivatives in terms of the new variable ρ.

U(z) =
1

z2p

[(
4|k|2 − 1

4

)
+

1

4
(2M − 1)ρ− 5

16
ρ2

]
U ′(z) =

1

z3p

[(
−8|k|2 +

1

2

)
− 1

2
(2M − 1)ρ+

5

8
ρ2 −

(
4|k|2 − 1

4

)
ρ− 1

4
(2M − 1)ρ2 +

5

16
ρ3

+
2M(2M − 1)

4
ρ− 2M − 1

4
ρ2 − 5

8
(2M)ρ2 +

5

8
ρ3

]
=

1

z3p

[(
−8|k|2 +

1

2

)
+
(
−4|k|2 +

3

4
− 3

2
M +M2

)
ρ+

(9

8
− 9

4
M
)
ρ2 +

15

16
ρ3

]
The Gelfand-Dikii equation in terms can now be written as

z2pz
dRn+1

dz
= −1

4
z3 d

3Rn
dz3

+
3

8
ρz2 d

2Rn
dz2

+
(

4|k|2 − 1

4
+

3

8
(2M − 1)ρ− 9

16
ρ2
)
z
dRn
dz

+

[(
−4|k|2 +

1

4

)
+
(
−2|k|2 +

3

8
− 3

4
M +

1

2
M2
)
ρ+

( 9

16
− 9

8
M
)
ρ2 +

15

32
ρ3

]
Rn

(5.1.11)

The Geldand-Dikii recursion from the polynomials Rn and Rn+1 is transmitted to their coefficients
an,m, an+1,m
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3n+3∑
m=n

an+1,mp
−m(−2n− 2−mρ) =

3n∑
m=n

an,mp
−m−1

[
r0(n) + r1(n,m)ρ+ r2(n,m)ρ2 + r3(m)ρ3

]
(5.1.12)

where we defined ri as the coefficient of the i-th power of ρ.

r0(n) = 2n3 + 3n2 +
(3

2
− 2λ2

)
n+

1

4
− 4|k2|

r1(n,m) = 3n2m+
3

2
n2 + 3(−M + 1)nm+

(
M2 − 3

2
M +

3

4
− 4|k2|

)
m+

(
−3

2
M +

3

2

)
n

+
(1

2
M2 − 3

4
M +

3

8
− 2|k2|

)
r2(n,m) =

3

2
nm2 +

(
−3

2
M +

3

4

)
m2 + 3nm+

(
−3M +

3

2

)
m+

9

8
n− 9

8
M +

9

16

r3(m) =
1

4
m3 +

9

8
m2 +

23

16
m+

15

32

The powers of ρ we need are

ρ = 2M + 2Ms2M 1

p

ρ2 = 4M2 + 8M2s2M 1

p
+ 4M2s4M 1

p2

ρ3 = 8M3 + 24M3s2M 1

p
+ 24M3s4M 1

p2
+ 8M3s6M 1

p3

The n+ 1-th side reads

3n+3∑
m=n+1

(
−2n− 2− 2Mm− 2Mms2M 1

p

)
an+1,mp

−m

=

3n+3∑
m=n+2

[
A0(n,m)an+1,m +A1(n,m− 1)an+1,m−1

]
p−m

+A0(n, n+ 1)an+1,n+1 p
−n−1 +A1(n, 3n+ 3) p−3n−4

with the important definitions

A0(n,m) = An0 (m) = −2n− 2− 2Mm (5.1.13)

A1(n,m) = An1 (m) = −2Ms2Mm (5.1.14)

The n-th side reads
3n∑
m=n

(
B1(n,m)

1

p
+B2(n,m)

1

p2
+B3(n,m)

1

p3
+B4(n,m)

1

p4
)an,mp

−m

=

3n+1∑
m=n+4

(
B1(n,m− 1)an,m−1 +B2(n,m− 2)an,m−2 +B3(n,m− 3)an,m−3 +B4(n,m− 4)an,m−4

)
p−m

+B1(n, 1)an1p
−n−1 +

(
B1(n, 2)an2 +B2(n, 1)an1

)
p−n−2 +

(
B1(n, 3)an3 +B2(n, 2)an2 +B3(n, 1)an1

)
p−n−3

+
(
B2(n, 3n)an,3n +B3(n, 3n− 1)an,3n−1 +B4(n, 3n− 2)an,3n−2

)
p−3n−2 +

(
B3(n, 3n)an,3n

+B4(n, 3n− 1)an,3n−1

)
p−3n−3 +B4(n, 3n)an,3np

−3n−4
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Were we defined

B1(n,m) = r0(n) + 2Mr1(n,m) + 4M2r2(n,m) + 8M3r3(m)

= 2M3m3 + 2n3 + 6M2nm2 + 6Mn2m+ (3M3 + 3M2)m2 + (3M + 3)n2 + (6M2

+ 6M)nm+ (
3

2
M3 + 3M2 +

3

2
M − 8|k|2M)m+ (

3

2
M2 + 3M +

3

2
− 8|k|2)n+ (

1

4
M3 +

3

4
M2

+
3

4
M +

1

4
− 4|k|2M − 4|k|2)

B2(n,m) = 2Ms2Mr1(n,m) + 8M2s2Mr2(n,m) + 24M3s2Mr3(m)

= s2M
[
6M3m3 + 12M2nm2 + 6Mn2m+ (15M3 + 6M2)m2 + 3Mn2 + (18M2+

+ 6M)nm+
(25

2
M3 + 9M2 +

3

2
M − 8|k|2

)
m+ (6M2 + 3M)n+

13

4
M3 + 3M2

+
3

4
M − 4|k|2M

]
B3(n,m) = 4M2s4Mr2(n,m) + 24M3s4Mr3(m)

= s4M
[
6M3m3 + 6M2nm2 + (21M3 + 3M2)m2 + 12M2nm+ (

45

2
M3 + 6M2)m

+
9

2
M2n+

27

4
M3 +

9

4
M2
]

B4(m) = 8M3s6Mr3(m)

= s6M [2M3m3 + 9M3m2 +
23

2
M3m+

15

4
M3]

The "core" equation is
3n+1∑
m=n+4

[
A0(n+ 1,m)an+1,m +A1(n+ 1,m− 1)an+1,m−1

]
p−m

=

3n+1∑
m=n+4

(
B1(n,m− 1)an,m−1 +B2(n,m− 2)an,m−2 +B3(n,m− 3)an,m−3 +B4(n,m− 4)an,m−4

)
p−m

(5.1.15)

(5.1.16)

while for the "extremal" terms the following sub-equations of the previous main equation hold

A0(n, n)an+1,np
−n = 0[

A0(n, n+ 1)an+1,n+1 +A1(n, n)an+1,n

]
p−n−1 = B1(n, n+ 1)an,n+1p

−n−1[
A0(n, n+ 2)an+1,n+2 +A1(n, n+ 1)an+1,n+1

]
p−n−2 =

[
B1(n, n+ 2)an,n+2 +B2(n, n+ 1)an,n+1

]
p−n−2[

A0(n, n+ 3)an+1,n+3 +A1(n, n+ 2)an+1,n+2

]
p−n−3 =

[
B1(n, n+ 3)an,n+3 +B2(n, n+ 2)an,n+2

+B3(n, n+ 1)an,n+1

]
p−n−3

[
A0(n, 3n+ 2)an+1,3n+2 +A1(n, 3n+ 1)an+1,3n+1

]
p−3n−2 =

=
[
B2(n, 3n)an,3n +B3(n, 3n− 1)an,3n−1 +B4(n, 3n− 2)an,3n−2

]
p−3n−2[

A0(n, 3n+ 3)an+1,3n+3 +A1(n, 3n+ 2)an+1,3n+2

]
p−3n−3 =

=
[
B3(n, 3n)an,3n +B4(n, 3n− 1)an,3n−1

]
p−3n−3[

A1(n, 3n+ 3)an+1,3n+3

]
p−3n−4 =

[
B4(n, 3n)an,3n

]
p−3n−4
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We note that this recursion relations for the coefficients does not give explicitly the single coefficient
an+1,m in terms of the coefficients an,k, for some ks, but give a linear combination of coefficients
of the polynomial Rn+1 in terms of the coefficients of Rn. For the n+ 1-th side we must therefore
consider the upper triangular matrix An defined as

An =



An1 (n) An0 (n+ 1) 0 . . . 0 0 . . . 0 0

0 An1 (n+ 1) An0 (n+ 2) . . . 0 0 . . . 0 0
...

...
. . .

...
0 0 0 . . . An1 (m) An0 (m+ 1) . . . 0 0

0 0 0 . . . 0 An1 (m+ 1) . . . 0 0
... . . .

. . .
...

0 0 0 . . . 0 0 . . . An1 (3n+ 2) An0 (3n+ 3)

0 0 0 . . . 0 0 . . . 0 An1 (3n+ 3)


(5.1.17)

The first line correspond to an equation which would be identically satisfied when multiplied by an,m,
it is not linearly independent. We have deleted it so as to be able to define a determinant, which also
does not vanish

detAn =

3n+4∏
m=n+1

A1(n,m− 1) =

3n+3∏
j=n

A1(n, j)

= (−2Ms2M )2n+4 (3n+ 3)!

(n− 1)!
(5.1.18)

We want to use the Cramer method to solve the linear non homogeneous system generated by the
coefficients recursion relation. We schematically write this system as

Anan+1 = bk (5.1.19)

where clearly by an+1 we denote the vector of all the (a priori) non null components an+1,m ,
m = n + 1, n + 2, ...3n + 3 and by bk = bk[an] we denote the functional of the coefficients of an
established by the recursion relation (5.1.15)
Therefore we define the modified matrix of coefficients Anm whose determinant,divided by the
determinant of An, gives us the coefficient an+1,m

Anm =



An1 (n) An0 (n+ 1) 0 . . . b1 0 . . . 0 0

0 An1 (n+ 1) An0 (n+ 2) . . . b2 0 . . . 0 0
...

...
. . .

...
0 0 0 . . . bm An0 (m+ 1) . . . 0 0

0 0 0 . . . bm+1 An1 (m+ 1) . . . 0 0
... . . .

...
. . .

...
0 0 0 . . . b3n+2 0 . . . An1 (3n+ 2) An0 (3n+ 3)

0 0 0 . . . b3n+3 0 . . . 0 An1 (3n+ 3)


(5.1.20)

55



detAmn =

m−1∏
j=n

A1(n, j)

3n+3∑
k=m

(−1)k−mbk

[
A0(n,m+ 1) · · ·A0(n, k)A1(n, k + 1) · · ·

· · ·A1(3n+ 3)
]

an+1,m =

∑3n+3
k=m (−1)k−mbk

[
A0(n,m+ 1) · · ·A0(n, k)A1(n, k + 1) · · ·A1(3n+ 3)

]
∏3n+3
j=m A1(n, j)

This kind of finite product is simply a Pochhammer symbol (ascending factorial) or descending
factorial.

N∏
j=1

(1 + cj) = cN
N∏
j=1

(1

c
+ j
)

= cN
Γ( 1

c + 1 +N)

Γ( 1
c + 1)

= cN
1
c +N

1
c

Γ( 1
c +N)

Γ( 1
c )

= cN (1 + cN)
Γ( 1

c +N)

Γ( 1
c )

In our case
k∏

i=m+1

A0(n, i) =

k∏
i=m+1

(−2n− 2− 2Mi)

= (−2M)k−m
k∏

i=m+1

(n+ 1

M
+ i
)

= (−2M)k−m
Γ(n+1

M + 1 + k)

Γ(n+1
M + 1 +m)

The other product is trivially reduced to elementary factorials
l∏

i=k

A1(n, i) = (−2Ms2M )l−k+1 l!

(k − 1)!

We can finally write the expression for the an+1,m coefficient

an+1,m =

∑3n+3
k=m (−1)k−mbk

[
(−2M)k−m

Γ(n+1
M +1+k)

Γ(n+1
M +1+m)

(−2Ms2M )3n+3−k (3n+3)!
k!

]
(−2Ms2M )3n+4−m (3n+3)!

(m−1)!

= − 1

2M

3n+3∑
k=m

(−1)k−m(s2M )m−k−1 (m− 1)!

k!

Γ(n+1
M + 1 + k)

Γ(n+1
M + 1 +m)

bk

= − 1

2M

3n+3∑
k=m

(−1)k−m(s2M )m−k−1 (m− 1)!

k!

Γ(n+1
M + 1 + k)

Γ(n+1
M + 1 +m)

[
B1(n, k)an,k +B2(n, k − 1)an,k−1

(5.1.21)

+B3(n, k − 2)an,k−2 +B4(n, k − 3)an,k−3

]
(5.1.22)

where the Bi+1(n, k − i) are polynomials up to the third degree in k and n.
We write the final formula more symmetrically, shifting m→ m+ 1

an+1,m+1 =
(−1)mm!s2Mm

2M

3n+3∑
k=m+1

(−1)k

k!
(s2M )−k

Γ(n+1
M + k + 1)

Γ(n+1
M +m+ 2)

× (5.1.23)

×
[
B1(n, k)an,k +B2(n, k − 1)an,k−1 +B3(n, k − 2)an,k−2 +B4(n, k − 3)an,k−3

]
(5.1.24)
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Define B̂k−1(n,m) = s−2M(k−1)Bk(n,m). We reorder the terms.

B̂0(n,m) = (2m3 + 3m2 +
3

2
m+

1

4
)M3 + (6nm2 + 3m2 + 6nm+ 3m+

3

2
n+

3

4
)M2

+ (6n2m+ 3n2 + 6nm+
3

2
m+ 3n+

3

4
)M − (2m+ 1)4|k|2M − (2n+ 1)4|k|2

+ (2n3 + 3n2 +
3

2
n+

1

4
) (5.1.25)

B̂1(n,m) = (6m3 + 15m2 +
25

2
m+

13

4
)M3 + (12nm2 + 6m2 + 18nm+ 9m+ 6n+ 3)M2

+ (6n2m+ 3n2 + 6nm+
3

2
m+ 3n+

3

4
)M − (2m+ 1)4|k|2M (5.1.26)

B̂2(n,m) = (6m3 + 21m2 +
45

2
m+

27

4
)M3 + (6nm2 + 3m2 + 12nm+ 6m+

9

2
n+

9

4
)M2 (5.1.27)

B̂3(m) = (2m3 + 9m2 +
23

2
m+

15

4
)M3 (5.1.28)

(5.1.29)

It can proved by induction that

an,m = s2M(m−n)ân,m ∝ s2M(m−n) (5.1.30)

where the ân,m are s-indendent. We write the s-independent final formula as

ân+1,m+1 =
(−1)mm!

2M

3n+3∑
k=m+1

(−1)k

k!

Γ(n+1
M + k + 1)

Γ(n+1
M +m+ 2)

××
[
B̂0(n, k)ân,k + B̂1(n, k − 1)ân,k−1

+ B̂2(n, k − 2)an,k−2 + B̂3(n, k − 3)ân,k−3

]

(5.1.31)
We rewrite this expression isolating an,k in the sum

(−1)m−12Mân+1,m

(m− 1)!
=

3n+3∑
k=m−3

k+3∑
l=k

(−1)l

l!

(n+ 1

M
+m+ 1

)l−m
Bnl−k+1(k)ân,k (5.1.32)

or

Γ(n+1
M +m+ 1)(−1)m(−2Mm)ân+1,m

Γ(m+ 1)
=

3n+3∑
k=m−3

k+3∑
l=k

(−1)l
Γ(n+1

M + l + 1)

Γ(l + 1)
Bnl−k+1(k)ân,k (5.1.33)

(5.1.34)

5.1.1 Gelfand Dikki coefficients test

We now want to control that our recursive procedure (5.1.31) is correct.
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We list the first Gelfand Dikii polynomials

R1[U ] =
1

2
U

R2[U ] =
3

8
U2 − 1

8
U ′′

R3[U ] =
5

16
U3 − 5

32
U ′2 − 5

16
U ′′U +

1

32
U (4) (5.1.35)

R4[U ] =
35

128
U4 − 35

64
UU

′2 − 35

64
U2U ′′ +

5

32
U
′′2 +

15

64
U ′U ′′′ +

7

64
UU (4)

+
1

64
U (4)2 − 1

128
U (6) (5.1.36)

The initial condition is just the number 1

R0 = 1 (5.1.37)

a00 = 1 (5.1.38)

We calculate the coefficients of R1 immediately by halving the coefficient of U

U(z) =
1

z2

[(
−1

4
M2 − 1

2
M − 1

4
+ 4|k|2

)1

p
+
(
−3

2
M2 − 1

2
M
)s2M

p2
+
(
−5

4
M2
)s4M

p3

]

or

R1(z) =
1

2
U(z) (5.1.39)

a11 = −1

8
M2 − 1

4
M − 1

8
+ 2|k|2 (5.1.40)

a12 = s2M
(
−3

4
M2 − 1

4
M
)

(5.1.41)

a13 = s4M
(
−5

8
M2
)

(5.1.42)

To calculate R2, we need U2

U2(z) =
1

z4

[( 1

16
M4 +

1

4
M3 +

3

8
M2 +

1

4
M + 16|k|2 − 2|k|2M2 −M − 2|k|2 +

1

16

) 1

p2

+
(3

4
M4 +

7

4
M3 +

5

4
M2 +

1

4
M − 12|k|2M2 − 4|k|2M

)s2M

p3
+
(23

8
M4 +

11

4
M3 +

7

8
M2

− 5

2
4|k|2M2

)s4M

p4
+
(15

4
M4 +

5

4
M3
)s6M

p5
+

25

16
M4 s

8M

p6

]
the first derivative of U

dU

dz
=

1

z3

[(1

2
M3 +

3

2
M2 +

3

2
M +

1

2
− 8|k|2M − 8|k|2

)1

p

+
(

+
13

2
M3 + 6M2 +

3

2
M − 8|k|2M

)s2M

p2
+
(27

2
M3 +

9

2
M2
)s4M

p3
+

15

2
M3 s

6M

p4

]
and the second derivative

d2

dz2
U(z) =

1

z4

[(
−M4 − 9

2
M3 − 15

2
M2 − 11

2
M − 3

2
+ 16|k|2M2 + 40|k|2M + 24|k|2

)1

p

+
(
−27M4 − 93

2
M3 − 27M2 − 11

2
M + 48M2|k|2 + 40M |k|2

)s2M

p2
+
(
−107M4

− 183

2
M3 − 39

2
M2 + 32M2|k|2

)s4M

p3
+
(
−141M4 − 99

2
M3
)s6M

p4
− 60M4 s

8M

p5

]
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Finally

R2(w) =
3

8
U2(w)− 1

8

d2

dw2
U(w) =

3

8
U2(z)− 1

8

(1

p

d2

dz2
U(z)− 1

2

p′

p2

d

dz
U(z)

)
(5.1.43)

a21 = 0 (5.1.44)

a22 =
27

128
M4 +

27

32
M3 +

81

64
M2 +

27

32
M + 6|k|2 − 15

4
|k|2M2 − 15

2
|k|2M − 15

4
|k|2 +

27

128
(5.1.45)

a23 = s2M
[145

32
M4 +

237

32
M3 +

135

32
M2 +

27

32
M − 25

2
|k|2M2 − 15

2
|k|2M

]
(5.1.46)

a24 = s4M
[1085

64
M4 +

441

32
M3 +

189

64
M2 − 35

4
|k|2M2

]
(5.1.47)

a25 = s6M
[693

32
M4 +

231

32
M3
]

(5.1.48)

a26 = s8M
(1155

128
M4
)

(5.1.49)

We checked the recursive procedure (5.1.31) for R0 → R1 and R1 → R2.

5.2 Gauge s-independence and basis for integrals

We recall that, at least forM > 1, Dorey and Tateo identified the Q function with the Stokes coefficient
(wronskian) as in (2.4.5). Then, following Lukyanov and Zamolodchikov, not so explicit, suggestion,[16]

we further identified the Q function with the Bäcklund eigenfunction calculated at z → s, with
the understanding that s → 0 (4.4.3); so that Dorey and Tateo’s rigorous identification (2.4.9) is
somehow imitated. In this subsection, we try to give a more support to such identification, even if we
will not be completely rigorous. In particular, we are going to charaterize the general s-dependence
of the integrals of the functional basis In,m for the Gelfand Dikii polynomials Rn(z; s) and we will
show that the Q function can be written in a s-independent way. We write the general Gelfand Dikii
polynomials Rn(z; s) ∫ ∞

s

dz
√
p(z)Rn(z) =

3n∑
m=n

an,mIn,m (5.2.1)

where In,m is the integral of the functional part of the m-th Gelfand-Dikii coefficient.

Inm =

∫ ∞
s

dz z−2n(z2M − s2M )−m+1/2 (5.2.2)

To obtain the expansion of the Q function in terms of the local integrals of motion, such wronskian
must be expanded in the energy parameter of ODE-IM equation (2.1.1), rather than in the spectral
parameter λ = eθ(1−β

2). The two choices are related as

√
E =

λ

ν
= eθ(1−β

2)
( 2

β2

)1−β2

Γ(1− β2) (s=1) (5.2.3)

However, if this was true for the original Schrödinger equation (2.1.1), it is not necessarily true in
the modified Schrödinger equation (4.1.13). In fact, Lukyanov and Zamolodhikov[16] set

√
E = eθ(1−β

2)s
1−β2

β2 (5.2.4)

Therefore, we cannot write directly the expansion of Q (4.4.4), which is valid only if s = 1

logQ ∼
∞∑
n=0

√
E

(1−2n)

1−β2
3n∑
m=n

an,mIn,m E →∞ (s=1) (5.2.5)

59



we must use instead λ = eθ(1−β
2) as expansion parameter and then use (5.2.4)

logQ ∼
∞∑
n=0

eθ(1−2n)
3n∑
m=n

an,mIn,m <θ → +∞ (5.2.6)

We choosed to integrate z from s to +∞, instead than from 0, wth the understanding that s→ 0.
This choice is better justified "a posteriori", after the observation of the independence of the expansion
from the fictitious gauge parameter s. Indeed, we now show that the coefficient of the n-th term of
the expansion is s-independent. The general s -dependence Gelfand Dikii coefficient an,m is (5.1.30)

an,m = s2M(m−n)ân,m (5.2.7)

where ân,m are the s-independent Gelfand-Dikii coefficients.
We now calculate the general basis integral, by which we shall find also its s dependence

Inm =

∫ ∞
s

dz z−2n(z2M − s2M )−m+1/2 t =
1

z
, dz = −dt

t2

=

∫ 1/s

0

dt t2n−2
(1− s2M t2M

t2M

)−m+1/2

=

∫ 1/s

0

dt t2n−2+2Mm−M(1− (st)2M
)−m+1/2

v = (ts)2M dt =
1

2Ms
v

1
2M−1

=
1

2M
s−2n−2Mm+2+M−1

∫ 1

0

dv v
n
M−

1
M +m− 1

2 + 1
2M−1(1− v)−m+ 1

2

=
1

2M
s−2n+1−2Mm+M

∫ 1

0

dv v( 2n−1
2M +m− 1

2 )−1(1− v)(−m+ 3
2 )−1

=
1

2M s2n−1+M(2m−1)
B
(2n− 1

2M
+

2m− 1

2
,
−2m+ 3

2

)
where the Euler Beta function, in general, is to be defined through its analytic continuation to all
possible complex values of the parameters, by means of the integration on the Pochhammer contour
(rather than on the segment [0, 1]).[26] In conclusion

Inm =
1

2M s2n−1+M(2m−1)

Γ( 2n−1
2M + 2m−1

2 )Γ(−2m+3
2 )

Γ( 2n−1
2M + 1)

(5.2.8)

We can also define the s-independent basic integrals Înm by

Inm = s1−2n+M(1−2m)Înm (5.2.9)

We can thus say that, on one hand, the integral of the Gelfand-Dikii n-th polynomial Rn depends
from s only through the index n (not m) as∫ ∞

s

dz
√
p(z)Rn(z; s) = s(1−2n)(M+1)

3n∑
m=n

ân,mÎnm (5.2.10)

On the other hand, the expansion parameter includes s as (4.1.12)

eθ =
√
E
M+1
M s−(M+1) (5.2.11)

so that the n expansion coefficient multiplies the power (5.2.4)

eθ(1−2n) =
√
E
M+1
M (1−2n)

s−(M+1)(1−2n) (5.2.12)
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We thus see the powers of s completely cancel and the expansion of Q becomes

logQ ∼
∞∑
n=0

√
E

1−2n

1−β2
3n∑
m=n

ân,mÎnm E → +∞ (5.2.13)

As a consequence of the s independence, we can freely fix it to any value, in particular to 0. We thus
justify the identification[14] of ψ(0) with Q also with the different (4.1.13) ODE-IM equation of[16]

Q = χ(0) = exp

{∫ ∞
0

dz
√
p(z)S(z)

}
' exp

{∫ ∞
s

dz
√
p(z)S(z)

}
s→ 0

(5.2.14)

(5.2.15)

5.3 Minimal models local integrals of motion

We observe that, for the leading order

Î00 =
1

2M

Γ(− 1
2M −

1
2 )Γ( 3

2 )

Γ(− 1
2M + 1)

=
1

2M
(−1)

Γ(− 1
2M −

1
2 )Γ( 1

2M )

Γ(− 1
2 )

(5.3.1)

= −a
DT
0

2
=

1

4M

Γ(− 1
2M −

1
2 )Γ( 1

2M )
√
π

(5.3.2)

where +aDT0 /2 is Dorey’s and Tateo’s[14] leading term. In other words, our calculations match
the standard result of Dorey Tateo, save the use of an expansion parameter with the opposite sign.
Continuing the operations on the Gamma functions

Î00 =
1

4M

Γ(− 1
2M −

1
2 )Γ( 1

2M )
√
π

= − 1

2M + 2

Γ(− 1
2M + 1

2 )Γ( 1
2M )

√
π

(5.3.3)

= − 1

(2M + 2)Γ(1− β2)1+ξ
MBLZ (5.3.4)

so after Dorey and Tateo identification (2.4.3) of the expansion parameter

√
E

1+ξ
=
(λ
ν

)1+ξ

= λ1+ξ(2M + 2)Γ(1− β2)1+ξ (5.3.5)

we match also the standard[8] leading order, apart the opposite sign of the expansion parameter.
We now manipulate a bit the all basic integrals, which, for convenience, we rewrite using the parameter
ξ = 1

M )

În,m =
ξ

2

Γ((n− 1
2 )ξ +m− 1

2 )Γ(−m+ 3
2 )

Γ((n− 1
2 )ξ + 1)

We use the Gamma function reflection property

Γ(−m+
3

2
) =

π

sin
(
π(m− 1

2 )
) 1

Γ(m− 1
2 )

Γ((n− 1

2
)ξ + 1) = − π

sin
(
π(n− 1

2 )
) 1

Γ(−(n− 1
2 )ξ)

so that the integral becomes

În,m =
ξ

2
(−1)m−n−1 Γ((n− 1

2 )ξ +m− 1
2 )Γ(−(n− 1

2 )ξ)

Γ(m− 1
2 )
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We also multiply and divide by two different Gamma functions, in order to obtain a common
n-dependent normalization which factorize some polynomial (the ratio of those Gamma functions)

În,m =
ξ

2

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
Γ(n− 1

2 )

[
(−1)m−n−1

Γ
(

(n− 1
2 )(ξ + 1) +m− n

)
Γ((n− 1

2 )(ξ + 1))

Γ(n− 1
2 )

Γ(n− 1
2 +m− n)

]

In fact, the two ratios of Gamma functions in the square parenthesis are polynomials, because
numerator and denominator differ by the shift of an integer. The coefficients of such polynomials can
be easily expressed in terms of the standard Stirling numbers of the first kind, as reported in the
appendix C.1. Perhaps now it is more simple to write the whole m-dependent part as two products,
which is also convenient because we can write it as a single product

În,m =
ξ

2

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
Γ(n− 1

2 )

[
(−1)m−n−1

m−n−1∏
l=0

(
(n− 1

2 )(ξ + 1) + l
)

(
n− 1

2 + l
) ]

=
ξ

2

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
Γ(n− 1

2 )

[
(−1)m−n−1

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]
(5.3.6)

Now, we recall Dorey and Tateo fundamental ODE-IM identification (2.4.3) (apart the aforementioned
minus sign)

λ = eθ(1−β
2) =

√
E

1−β2 21−β2

β2(1−β2)

Γ(1− β2)
(5.3.7)

eθ =
√
E

β2

2Γ(1− β2)
1

1−β2
(5.3.8)

Besides, by (2.4.4), the expansion must be intended in the parameter
√
E, not

√
Λ23. The correct

ODE-IM expansion becomes, for θ → +∞

logQ ∼
∞∑
n=0

√
E

1−2n ξ

2
(−1)n+1

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
Γ(n− 1

2 )

3n∑
m=n

ân,m

[
− (−1)m

n− 1
2

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]

= −
∞∑
n=0

√
E

1−2n ξ

2
(−1)n+1

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
Γ(n+ 1

2 )

3n∑
m=n

ân,m

[
(−1)m

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]

We use now the property
Γ(n+

1

2
) =
√
π2−n(2n− 1)!! (5.3.9)

or
Γ(n+

1

2
) =
√
π2−n(2n)!!

(2n− 1)!!

(2n)!!
=
√
πn!

(2n− 1)!!

(2n)!!
(5.3.10)

23Dorey and Tateo identification[14] can be thought to amount to a shift of the rapidity θ
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Hence, we continue our calculation, also noting that ξ = β2/(1− β2) (there were typos in[8])

logQ = −
∞∑
n=0

√
E

1−2n (−1)n+1β2

(1− β2)

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
2
√
πn!

β2nβ−4n×{
β2n (2n)!!

(2n− 1)!!

3n∑
m=n

ân,m

[
(−1)m

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]}

= −
∞∑
n=0

√
E

1−2n
β2(1−2n)

Γ(1− β2)
1−2n

1−β2

(−1)n+1

(1− β2)

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
2
√
πn!

β2nΓ(1− β2)
1−2n

1−β2×{
β2n (2n)!!

(2n− 1)!!

3n∑
m=n

ân,m

[
(−1)m

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]}

= −
∞∑
n=0

eθ(1−2n)21−2n (−1)n+1

(1− β2)

Γ
(
−(n− 1

2 )ξ
)

Γ
(

(n− 1
2 )(ξ + 1)

)
2
√
πn!

β2nΓ(1− β2)
1−2n

1−β2×{
β2n (2n)!!

(2n− 1)!!

3n∑
m=n

ân,m

[
(−1)m

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]}

=

∞∑
n=0

eθ(1−2n)B̃nI2n−1

where we defined the local integrals of motion as

I2n−1 = 2−2nβ2n (2n)!!

(2n− 1)!!

3n∑
m=n

ân,m

[
(−1)m

m−n−1∏
l=0

(
1 +

(n− 1
2 )ξ

n− 1
2 + l

)]
(5.3.11)

and the B̃n are the standard normalization constants.

B̃n =
(−1)n+1

2
√
π(1− β2)

Γ(
2n− 1

2− 2β2
)Γ(

2n− 1

2− 2β−2
)β2(1−2n)Γ(1− β2)

1−2n

1−β2 (5.3.12)

Apart the factor β2n, the summand I2n−1/β
2n in formula (5.3.11) is a polynomial in M , because the

Gelfand Dikii coefficient an,m is a polynomial in M , with lowest power Mm−n

ân,m =

2n∑
p=m−n

ân,m,pM
p (5.3.13)

= Mm−n
3n−m∑
p′=0

ân,m,p′+m−nM
p′ (5.3.14)

and the finite product is a polynomial in M−1, with highest power M−(m−n).

m−n∏
l=1

(
1 +

(n− 1
2 ) 1
M

m− 1
2 − l

)
=

1

Mm−n

m−n∏
l=1

(
M +

(n− 1
2 )

m− 1
2 − l

)
(5.3.15)

so that the lowest and highest power perfectly compensates
The multiplication by the factor β2n, instead, makes (5.3.11) a polynomial in c, as it should be.[10]

In fact, it trivially follows from the central charge expression (1.3.3) that, for some 2n− 1-degree
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polynomial with M with M2n−1,l coefficients

I2n−1 =
1

(M + 1)n

2n−1∑
l=0

M2n−1,lM
l (5.3.16)

=
1

(M + 1)n

2n∑
l=1

[2n−1∑
q=0

SlqM2n−1,q

]
(M + 1)l (5.3.17)

=

n∑
l=0

C2n−1,lc
l (5.3.18)

where Slq is some, simply determined, matrix for the basis transformation. Thus we get an n-degree
polynomial in c with C2n−1,l coefficients.

5.3.1 Test

We control that our result for I1 matches that of[17]24

I1
4−1β2

= 2

[
a11 −

(
1 +

1

M

)
a12 +

(
1 +

1

M

)(
1 +

1

3M

)
a13

]
(5.3.19)

= 4|k|2 − M + 1

6

I1 =
1

4(M + 1)

[
|k|2 − M + 1

6

]
(5.3.20)

so that we match also the result of the the standard reference[10]

I1 = ∆− c

24
(5.3.21)

because ∆ = (p/β)2 + (c− 1)/24 and p = |k|β2.
We control that our result for I3 matches that of[17]

I3
4−2β4

=
8

3

[
a11 −

(
1 +

1

M

)
a22 +

(
1 +

1

M

)(
1 +

3

5M

)
a23 −

(
1 +

1

M

)(
1 +

3

5M

)(
1 +

3

7M

)
a34

+
(

1 +
1

M

)(
1 +

3

5M

)(
1 +

3

7M

)(
1 +

3

9M

)
a25 −

(
1 +

1

M

)(
1 +

3

5M

)(
1 +

3

7M

)(
1 +

3

9M

)
a26

]
(5.3.22)

= 16|k|4 − 4|k|2(M + 1)− (M + 1)(4M + 3)(M − 3)

60
(5.3.23)

I3 =
1

(4M + 4)2

[
16|k|4 − 4|k|2(M + 1)− (M + 1)(4M + 3)(M − 3)

60

]
(5.3.24)

and with the standard reference[10]

I3 = ∆2 − (c+ 2)

12
∆ +

c(5c+ 22)

2880
(5.3.25)

24In their work[17] concerning the ODE-IM correspondence, Dorey, Millikan-Slater and Tateo used the parameter
λD = 4|k|2. However, in our work we have chosen to follow Lukyanov’s and Zamolodchikov’s ,[16] because the λ
variable of[17] causes confusion with the λ = eθ(1−β

2) of the asymptotic expansions of integrability (1.5.7)
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6 General markovian WKB expansion

6.1 Riccati equation and standard WKB expansion

Consider a Schrödinger operator of the following form (for our purposes, it is convenient to use w as
independent variable)

− }2 d2

dw2
χ(w) + q(w)χ(w) = 0 (6.1.1)

We represent the eigenfunction χ in terms of its logarithmic derivative S, by the eikonal representation

χ(w) = exp

∫ w0

w

dw′S(w′) (6.1.2)

which satisfies the following Riccati equation (cf. (4.2.9))

S2(w) +
dS(w)

dw
=

1

}2
q(w) (6.1.3)

We now expand S asymptotically for }→ 0 in terms of its modes Sn(w)

S(w) =

∞∑
n=−1

Sn(w)}n (6.1.4)

=

√
q

}
+
∞∑
n=0

Sn}n (6.1.5)

The first mode S−1 is trivially obtained from the leading order in } of the Riccati equation (6.1.3)

S−1(w) =
√
q(w) (6.1.6)

Note that now it is not constant (cf. (4.2.13)). Thus, S−1 serves as initial condition for the WKB
standard recursion relation. The WKB recursion, for all orders in }, is obtained substituting in the
Riccati equation (6.1.3) the asymptotic expansion (6.1.4).

2S−1Sn +

n−1∑
m=0

SmSn−1−m + S′n = 0 (6.1.7)

Sn+1, is thus determined by

Sn+1 = − 1

2
√
q

(n−1∑
m=0

SmSn−1−m + S′n

)
(6.1.8)

We report the first terms of the WKB expansion in terms of the multiplicative part of the Schrödinger
operator q(w)

S−1 =
√
q (6.1.9)

S0 = −1

4

q′

q
(6.1.10)

= −1

4

d

dw
log q

S1 =
1

8

q′′

q3/2
− 5

32

q
′2

q5/2
(6.1.11)

S2 = − 1

16

q′′′

q2
+

9

32

q′′q′

q3
− 15

64

q
′3

q4
(6.1.12)

= −1

2

d

dw

( S1

S−1

)
S3 =

1

32

qiv

q5/2
− 7

32

q′′′q′

q7/2
− 19

128

q
′′2

q7/2
+

221

256

q′′q
′2

q9/2
− 1105

2048

q
′4

q11/2
(6.1.13)
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Since the WKB recursion (6.1.8) is very similar to the large energy recursion (4.2.12), we expect that
we may similarly use the Gelfand-Dikii analysis. However, the different form of the Riccati equa-
tion (6.1.3) and the different initial condition (6.1.6), suggest that some not too trivial modifications
might be needed. The aim of this section is to develop these observations, in order to obtain a very
convenient markovian (cf. subsection 4.5) recursion relation for the WKB expansion.

6.2 Decomposition in odd and even part

This section and the next are the adaptation, for the WKB expansion, of D. Fioravanti’s analysis
and proof, for the large energy expansion, in his still unpublished work with A. Fachechi.[18]

We begin by separating, as usual, the even and odd part of the solution of the Riccati

Seven(w) =

∞∑
n=0

S2n}2n (6.2.1)

Sodd(w) =

∞∑
n=0

S2n−1}2n−1 (6.2.2)

so that the Riccati equation can be splitted in two equations

S2
even(w) + S2

odd(w) +
dSeven

dw
= q(w) (6.2.3)

2Seven(w)Sodd(w) +
dSodd

dw
= 0 (6.2.4)

The latter equation implies that the even part Seven is a total derivative

Seven = −1

2

S′odd
Sodd

(6.2.5)

and therefore is negligible if we integrate over a period or over the entire dominion. We substitute
Seven in the former equation, obtaining (until differently claimed, we use the prime ′ to indicate the
w derivative)

− 2S′′oddSodd + 3S
′2
odd + 4S4

odd =
1

}2
4qS2

odd (6.2.6)

Following Fioravanti,[18] we define the function R as (1/2) the algebraic inverse of Sodd

R(w) =
1

2Sodd(w)
(6.2.7)

such function R(w) expands asymptotically for }→ 0 in terms of its modes Rn

R(w) =

∞∑
n=0

Rn(w)}2n+1 (6.2.8)

with initial condition R0 = 1/2
√
q.

We pause the usual procedure for an important observation. The functions Rn25, integrated over a
period, are not equivalent to the densities S2n−1, for the WKB expansion; they were such only for the
large energy expansion. The equivalence, in fact, was rigorously proved by Fioravanti in,[18] as we
already reported in (4.4.1). As a consequence, the conjecture we made in subsection 6.1, regarding

25For setting the problem, we use the same notation we used for the large energy expansion; however, the resulting
Gelfand-Dikii polynomials for the WKB expansion, will not be the Rn modes. The Rn functions, are always defined
as the modes of the algebraic inverse of the eikonal integrand S function.
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the applicability of Gelfand-Dikii polynomials to the small } expansion, will evidently require some
modification of Fioravanti’s proof.
Continuing the previous calculations, by (6.2.6) we obtain the the function R(w) satisfies the
equivalent equation

2R′′R−R
′2 =

4q

}2
R2 − 1

Still following,[18] we apply the w-derivative

}2R′′′ = 4qR′ + 2q′R (6.2.9)

In terms of the modes Rn we obtain

R′n+1 +
q′

2q
Rn+1 =

1

4q
R′′′n (6.2.10)

This recursion is evidently markovian, in the sense the to calculate the successive term is sufficient only
the precedent one. However, this recursion, which has just been obtained as the direct analogue (6.2.7)
of Fioravanti’s analysis of,[18] appears not at all of the Gelfand-Dikii form.[16] We obtain thus a
markovian recursion, but not for the well-known[19] Gelfand Dikii polynomials. However, we are
going to show that the markovian modes Rn are simply related to some markovian and Gelfand-Dikii
modes.

6.2.1 Examples and heuristics

We report the first examples of the modes Rn. This will also support further developments.
The leading order in } is

R ' }
2S−1

= }
1

2
√
q

So the S−1 is equivalent (actually, strictly equal) to

S−1 = 2qR0 =
√
q (6.2.11)

note a factor q correcting the usual (6.2.7) density.
We continue with the next }3 order, using the technique of algebraic series inversion, which is a
fundamental tool of complex analysis[25]

R ' }
2S−1(1 + }2S1/S−1)

= }
1

2
√
q

(1− }2 S1

S−1
)

= }R0 + }3
(
− 1

16

q′′

q5/2
+

5

64

q
′2

q7/2

)
the mode R1 therefore is

R1 = − 1

16

q′′

q5/2
+

5

64

q
′2

q7/2
(6.2.12)

Comparing with (6.1.11) we can establish the equivalence, as strict equality

S1 = −2qR1 (6.2.13)

Note, again, a factor q and a different numerical coefficient correcting the usual (6.2.7) density.
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We proceed to the }5 order

R ' }
2S−1(1 + }2S1/S−1 + }4S3/S−1)

= }
1

2
√
q

(1− }2 S1

S−1
− }4 S3

S−1
+ }4 S

2
1

S2
−1

)

= }R0 + }3R1 + }5 1

2q
(−S3 +

S2
1

S−1
)

So, we can establish the strict equality

2qR2 = −S3 +
S2

1

S−1
= −3S3 +

1

S−1
(2S3S−1 + S2

1)

= −3S3 +
1

S−1
(−2S0S2 − S′2)

= −3S3 − d2

or

S3 = −2

3
qR2 +

1

3
d2 (6.2.14)

where d2 can be shown to be a total w derivative as follows

−d2 =
1

S−1
(−2S0S2 − S′2)

=
1
√
q

[1

2

q′

q

(
− 1

16

q′′′

q2
+

9

32

q′q′′

q3
− 15

64

q
′3

q4

)
+

1

16

qiv

q2
− 13

32

q′q′′′

q3
− 9

32

q
′′2

q3
+

99

64

q
′2q′′

q4
− 15

16

q
′4

q5

]
=

qiv

16q5/2
− 7

16

q′q′′′

q7/2
− 9

32

q
′′2

q7/2
+

27

16

q′′q
′2

q9/2
− 135

128

q
′4

q11/2

=
1

16

( q′′′
q5/2

)′
− 9

32

(q′′q′
q7/2

)′
+

15

64

( q′3
q9/2

)′
The expression of R2 is

R2 =
1

32
√
q

[
−1

2

qiv

q3
+

7

2

q′′′q′

q4
+

21

8

q
′′2

q4
− 231

16

q′′q
′2

q5
+

1155

128

q
′4

q5

]
(6.2.15)

6.3 Equivalence proof for the WKB integrands

In this paragraph we just adapt, to the WKB expansion, Fioravanti’s rigorous proof in,[18] made for
the large energy expansion. To make the analogy perfect, define k−1 = } and s = Sodd as

s(w) = k
√
q(w) +

∞∑
n=1

s2n−1(w)

k2n−1
(6.3.1)

We recall that the usual large energy equivalent density R is WKB expanded as

R(w) =

∞∑
n=0

Rn(w)

k2n+1
(6.3.2)

We also report in the new notation the Riccati equation (6.2.6) for the odd part of S

4s4 + 3s
′2 − 2ss′′ − 4k2qs2 = 0 (6.3.3)

Now, following Fioravanti[18] derive s with respect to k

∂s

∂k
=
√
q −

∞∑
n=1

(2n− 1)
s2n−1

k2n
(6.3.4)
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and define a new quantity t as

t =
1

k

∂s

∂k
=

√
q

k
−
∞∑
n=1

(2n− 1)
s2n−1

k2n+1
(6.3.5)

With the aid of the previous heuristics, we conjecture

t = 2Rq + d (6.3.6)

where d is a total w derivative, to be specified below.
We now prove this, again, by analogy with Fioravanti.[18] We differentiate (6.3.3) with respect to k

16s3 ∂s

∂k
+ 6s′

∂s′

∂k
− 2

∂s

∂k
s′′ − 2s

( ∂s
∂k

)′′
− 8kqs2 − 8k2qs

∂s

∂k
= 0

then divide by 2k

8s3t+ 3s′t′ − ts′′ − st′′ − 4qs2 − 4k2qst = 0

and divide by s

8s2t+ 3
s′

s
t′ − ts

′′

s
− t′′ − 4qs− 4k2qt = 0

Now, since
s′

s
= −R

′

R

s′′

s
= 2
(R′
R

)2

− R′′

R
(6.3.7)

we can replace s by R to obtain

2
1

R2
t− 3

R′

R
t′ − 2t

(R′
R

)2

+
R′′

R
t− t′′ − 2q

1

R
− 4k2qt = 0

2t− 3R′Rt′ − 2R
′2t+RR′′t−R2t′′ − 2qR− 4k2qR2t = 0

4qk2R2t+ 2qR = 2t− 3RR′t′ − 2R
′2t+RR′′t−R2t′′

Recalling also equation (6.2) for R

2R′′R−R
′2 + 1 = 4qk2R2 (6.3.8)

we can write

2qR = t− 3RR′t′ −R
′2t−RR′′t−R2t′′

t− 2qR = 3RR′t′ +R
′2t+RR′′t+R

′2t′′ (6.3.9)

We note that d really is a total derivative

d = 3RR′t′ +R
′2t+RR′′t+R2t′′

= (tR2)′′ − (tRR′)′

(6.3.10)

(6.3.11)

In other words we have proven the conjecture

t = 2qR+ d (6.3.12)

which, in terms of the modes is

∞∑
n=1

s2n−1

k2n+1
= − 2

2n− 1

∞∑
n=1

qRn
k2n+1

− d

2n− 1
(6.3.13)
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or (restoring the capital letter)

S2n−1 = − 2

2n− 1
Wn + ∂w(local fields) n ≥ 1 (6.3.14)

where we defined the correct equivalent densities

Wn = qRn (6.3.15)

By analogy with Fioravanti’s rigorous proof in,[18] we have thus proved that, under integration over
a period or over the entire dominion, integrating the standard WKB density S2n−1 is equivalent to
integrating the new WKB densities Wn, up to a simple numerical n dependent factor. The difference
with respect to the large energy expansion of Fioravanti is, however, that the equivalent densities are
not directly Rn, but require multiplication by the function q.

6.4 The markovian recursion relation and its solution

Evidently, the new densities Wn satisfy a markovian recursion relation, that is, Wn+1 is determined
only by Wn, without contributions from all the preceding orders. In particular, from (6.2.10) we
obtain

qW ′n+1 −
1

2
q′Wn =

1

4
W ′′′n −

3

4

q′

q
W ′′n +

(
−3

4

q′′

q
+

3

2

q
′2

q2

)
W ′n +

(
−1

4

q′′′

q
+

3

2

q′′q′

q2
− 3

2

q
′3

q3

)
Wn (6.4.1)

If one now wish to have only one term on the right side, new densities Tn must be defined as

Tn =
Wn√
q

=
√
qRn (6.4.2)

which turn out to be exactly the Gelfand-Dikii polynomials. In fact equation (6.4.1) yields

−T ′n+1 = − 1

4q
T ′′′n +

3

8

q′

q2
T ′′n +

(3

8

q′′

q2
− 9

16

q
′2

q3

)
T ′n +

(1

8

q′′′

q2
− 9

16

q′′q′

q3
+

15

32

q
′3

q4

)
Tn (6.4.3)

We emphasize that the derivatives in this section are with respect to the variable w. The Gelfand
Dikii recursion equation (6.4.3) of the Tn densities, for the WKB expansion, written in the Bäcklund
variable w, is of the very same form of the Gelfand Dikii recursion equation of the Rn densities, for
the large energy expansion (4.3.23), written in the non-Bäcklund variable z. The only substantial
difference is that q is used in the place p and u is set to zero26. In the next section we are going to
clarify the very simple reason behind this correspondence.

6.4.1 Conventions and test

We now make some simple tests of the recursion.
The initial condition T0 for the recursion must be set as in Gelfand Dikii original work.[19]

T0 =
1

2
(6.4.4)

With respect to the previously written large energy Gelfand Dikii polynomials Rn in the other
convention, there are the following differences. First, because the zero term was not 1 but 1

2 , each

26The sign convention is another difference, because here it is opposite to that Lukyanov and Zamolodhikov,[16] but
in accord with the original Gelfand Dikii[19] work.
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polynomial must be multiplied by this factor (the recursion equation is linear). Second, each odd n
Gelfand-Dikii polynomial R2n+1 must be taken with the opposite sign, because of the sign convention
in (6.4.3). Third, we recall now the prime indicates derivative with respect to w, not to z.
We can thus check directly with Gelfand Dikii original work,[19] using as function U (remember
u = 0)

V (w) =
1

4

q′′

q2
− 5

16

q
′2

q3
(6.4.5)

from (6.4.3) we obtain

T ′1 = − 1

16

q′′′

q2
+

9

32

q′′q′

q3
− 15

64

q
′3

q4
(6.4.6)

which can be obtained also from differentiating 2W1 of (6.2.13) and dividing by 2
√
q. This can be

integrated to give
T1 = −1

4
V (6.4.7)

Continuing

T2 =
3

16
V 2 − 1

16

d2

dw2
V (6.4.8)

=
3

16
V 2 +

1

32

q′

q2

d

dz
V − 1

16

d2

dz2
V (6.4.9)

=
1

32

[
−1

2

qiv

q3
+

7

2

q′′′q′

q4
+

21

8

q
′′2

q4
− 231

16

q′′q
′2

q5
+

1155

128

q
′4

q5

]
which perfectly matches with (6.2.15)
So, without calculating S3 from the WKB non-markovian recursion relation, which involves all the
previous Si and also without inverting the analytic series in }, we can say that the next Gelfand-Dikii
polynomial is

T3 = − 5

32
V 3 +

5

64

(dV
dw

)2

+
5

32

d2V

dw2
V − 1

64

d4V

dw4
(6.4.10)

We thus see that using the Gelfand Dikii polynomials of the WKB expansion makes the calculations
far easier.

6.5 Simple justification for the possibility of a Gelfand-Dikii analysis

There is a simple reason which explains why the recursion of the WKB densities Tn has the very
same form of the recursion of the large energy densities Rn at u = 0. In fact consider the generic
modified Schrödinger equations

− d2

dx2
φ(x) + Λp(x)φ(x) = 0 (6.5.1)

− d2

dx2
φ(x) +

1

}2
p(x)φ(x) = 0 (6.5.2)

it appears evident that if we treat Λ and }2 as dumb parameters, if they were asymptotically related
as

} ∼ 1√
Λ

Λ→∞ (6.5.3)

(as they indeed can) the WKB asymptotic expansion of φ(x), at positive powers of } must necessarily
be the same as the large energy asymptotic expansion, at negative powers of

√
Λ. as the asymptotic

expansion at small reduced Planck constant (positive powers of }).
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Considering our particular equations,

d2

dz2
ψ(z)− Λp(z)ψ(z) = 0 Λ→∞ with u(z) = 0 (6.5.4)

d2

dw2
χ(w)− 1

}2
q(w)χ(w) = 0 }→ 0 (6.5.5)

we can also say that the link between the two situations that the WKB expansion of any Schrödinger
equation corresponds to the large energy expansion of some modified Schrödinger equation with zero
potential u(z) (cf.(4.1.1)). Substituting p(z) by q(z) in (4.2.1) it is clear that we must expect the
function √q in the measure of the eikonal integrals. Moreover, we expect a Bäcklund potential
without the u term as in (6.4.5). The "simple justification" might end here, however, for the sake of
clarity, we carry out in detail the Bäcklund change of variable we are referring to.
So, we introduce a new (second) Bäcklund variable v and eigenfunction η27

v(w(z)) =

∫ w

dw
√
q(w) =

∫ z

dz
√
p(z)

√
U(z) + Λ (6.5.6)

η[χ[ψ]] = 4
√
qχ = 4

√
U + Λ 4

√
pψ (6.5.7)

where we specified a double equality to clarify the link with the large energy situation, with old
Bäcklund potential U(z) (4.1.8), eigenvalue Λ and the use of p(z) in the basis for the polynomials.
Note that the Bäcklund change of variable introduces the square root √q in the measure of the integral.
Consequently, the new Schrödinger equation in the variable v has the Bäcklund potential

V =
1

4

q′′

q2
− 5

16

q
′2

q3
(6.5.8)

and as "energy" eigenvalue 1
}2 . Explicitly,

d2

dv2
η(v)− V (v)η(v) =

1

}2
η(v) (6.5.9)

Let’s now introduce, as usual, the eikonal density σ for the eigenfunction

η(v) = exp
{∫ v

dv′σ(v′)
}

(6.5.10)

= exp
{∫ w

dw′
√
q(w′)σ(w′)

}
(6.5.11)

which satisfies the Riccati equation
σ′ + σ2 = V +

1

}2
(6.5.12)

If we decompose in odd and even part the asymptotic expansion at small },

σ = σe + σo (6.5.13)

we will again find that the even part is a total derivative, therefore negligible under integration over
a period or the entire space. Further, taking the inverse for the odd part

T =
1

2σo
(6.5.14)

=

∞∑
n=0

Tn}2n+1 (6.5.15)

27Note that we are legitimated to say that the Bäcklund transformation (6.5.6), (6.5.7) was actually a second
Bäcklund transformation, only if our ODE-IM equations (4.1.13) and (4.1.18), were already Bäcklund transformed in
the form (6.1.1).
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Since, from the Riccati equation, the first }-mode of σ is σ−1 = 1, we understand the reason for the
initial condition

T0 =
1

2
(6.5.16)

Note that, however, we have yet to prove that all the Tn are indeed the Gelfand Dikii polynomials
with V as "fake KdV" potential. Following the same procedure as in section 4, from the Riccati
equation for σo, we find the equation for T

2T ′′T − (T ′)2 − 4(V +
1

}2
)T 2 + 1 = 0 (6.5.17)

to which we can apply the v derivative, finding

T ′′′ − 4(V +
1

}2
)T ′ − 2V ′T = 0 (6.5.18)

In terms of the modes Tn of the WKB }→ 0 asymptotic expansion, the equivalent recursion is finally
found to be the Gelfand Dikii recursion[19]

−dTn+1

dv
= −1

4

d3

dv3
Tn + V

d

dv
Tn +

1

2

dV

dv
Tn (6.5.19)

This is already in the form of Gelfand Dikii recursion equation (4.3.12) if we use the second transformed
Bäcklund variable v instead of the first transformed Bäcklund variable w as variable and further use
the potential V of (6.4.5) instead of U of (4.1.8).
To make comparison clearer, we write also this recursion in the first transformed Bäcklund variable
w. The Bäcklund change of variable implies

d

dv
=

1
√
q

d

dw

d2

dv2
=

1

q

d2

dw2
− 1

2

q′

q2

d

dw

d3

dv3
=

1

q3/2

d3

dw3
− 3

2

q′

q5/2

d2

dw2
+
(
−1

2

q′′

q3/2
+
q
′2

q3

) d

dw

so that equation (6.5.19) becomes

− q d
dw

Tn+1 = −1

4

d3

dw3
Tn +

3

8

q′

q

d2

dw2
Tn +

(3

8

q′′

q
− 9

16

q
′2

q3

) d

dw
Tn +

(1

8

q′′′

q
− 9

16

q′′q′

q2
+

15

16

q
′3

q3

)
Tn

(6.5.20)
exactly as expected.

6.6 Conclusive remarks

In conclusion, thanks to a strict analogy with Davide Fioravanti’s rigorous proof,[18] we have proven
also that the WKB eikonal densities S2n−1 are equivalent, modulo total derivatives, to the densities
Wn defined by

Wn(w) = q(w)Rn(w) (6.6.1)

which satisfies the markovian recursion relation (6.4.1). Further, we have shown that the strictly
related densities Tn

Tn(w) =
Wn(w)√
q(w)

(6.6.2)

are nothing but the standard Gelfand-Dikii polynomials,[19] with a "fake KdV" potential given by the
Bäcklund potential related to the Bäcklund transformation (6.5.6), (6.5.7).
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In other words, thanks to,[18] we have drastically simplified the standard WKB approximation recursion
relation, because

1. The recursion is markovian, i.e. ,in order to obtain a certain mode, it is sufficient to operate
only on the preceding one, disregarding all the preceding modes.

2. The Gelfand Dikii polynomials are equivalent, via Bäcklund transformation, to the eikonal
densities for the WKB expansion.

We note that the first property also opens to the possibility of an exact solution, at all orders, for
the Gelfand Dikii recursion, as we did in section 11.2.
The application of Gelfand-Dikii polynomials to the WKB approximation seems an important result,
but it was deduced rather simply from: (i) the knowledge of Gelfand-Dikii polynomials from;[19] (ii)
the rigorous proof of Fioravanti in[18]. We thus wonder whether someone else in post[19] history has
already deduced our result. In any case, in the literature we examined until now, this both powerful
and simple result seems to be unknown.
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7 Proof of He-Miao conjecture for N = 2 gauge theory

7.1 Introduction

For the self dual case b2 = −β2 = 1, that is M = −2 the generalized Mathieu equation reduces to
the Mathieu equation.

d2

dx2
ψ(x) + (P 2 + 2e2θ cosx)ψ(x) = 0 (7.1.1)

Actually, the standard form for the Mathieu equation needs the rescaling x = 2z

d2

dz2
ψ(z) + (4P 2 + 8e2θ cos 2z)ψ(z) = 0 (7.1.2)

Therefore we must also rescale by 1
2 the Floquet exponent of the sections where we used the other

convention for the Mathieu equation.
We relate our parameters to those of He and Miao[34] λHM and qHM

λHM = 4P 2 (7.1.3)

qHM = −4e2θ = −(2K)2 (7.1.4)

The following parameters instead are standard: ε stands for }, while u stands for the so-called
Coulomb branch moduli.

ε2 =
1

qHM
= − 1

4Λ
= −1

4
e−2θ (7.1.5)

u =
λHM
2qHM

= −P
2

2Λ
= − P 2

2e2θ
(7.1.6)

Dividing by 2q, the Mathieu equation can be expressed in Schrödinger form as

ε2

2

d2

dz2
ψ(z) + [u− cos 2z]ψ(z) = 0 (7.1.7)

The solution ψ can be expanded in a WKB series with

ε ∼ }→ 0 (7.1.8)

However note that in this WKB case ε as defined (11.3.1)

ε = ± 1

2i
e−θ → 0 (7.1.9)

is a bit different with respect to the large energy expansion parameter (4.2.4) which we denote with
the same symbol.
Therefore, it is essential to observe that also the P 2 parameter must diverge in order for u to be finite
as qHM ∼ ε−2 →∞. More precisely, the WKB approximation is valid only if

P = ±
√
−2ueθ

P 2 = O(e2θ)→ +∞ as θ → +∞

(7.1.10)

(7.1.11)

Hence the wave function is asymptotically expanded for ε→ 0 as

ψ(z) = exp
{
i

∫ z

z0

dz′ p(z′)
}

(7.1.12)

= exp

{
i

∫ z

z0

dz′
[p0(z′)

ε
+ p1(z′) + εp2(z′) + ...

]}
(7.1.13)
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For example,

p0 =
√

2(u− cos 2z) (7.1.14)

p1 =
i

2
(ln p0)′ (7.1.15)

p2 = − 1

8p0
[2(ln p0)′′ − (ln p0)

′2] (7.1.16)

He and Miao[34] conjectured the existence of differential operators in u, with polynomial coefficients
in u of the form ∮ π/2

−π/2
p2n+1(z′)dz = 0∮ π/2

−π/2
p2n(z′)dz =

n∑
k=0

Ĉn,ku
k ∂

k+n

∂uk+n

∮ π/2

−π/2
p0(z′)dz

(7.1.17)

(7.1.18)

(7.1.19)

where n = 0, 1, 2... and the Ĉn,k (k = 0, 1, ..., n) are numerical coefficients which they left unspecified
(apart for n = 1, 2, 3, 4).

Cn,k = Ĉn,ku
k k = 0, 1, 2, ..., n (7.1.20)

In this section, we give a rigorous proof of the existence and uniqueness of the He-Miao differential
operators and give a general algorithm for calculating them.
In our usual conventions the eikonal density Sn is related to that of He and Miao[34] as

ipn(z) = Sn−1(z) (7.1.21)

7.2 Gelfand-Dikii WKB markovian recursion for b = 1

The simplicity of the Gelfand Dikii recursion will be our first step for the construction of the Cn,k
He-Miao operator coefficients, so we now turn our attention to it.
First, we have to apply our previously discussed Gelfand Dikii Markovian WKB analysis with

q(z;u) = 2 cos 2z − 2u

cos 2z =
q(z;u)

2
+ u

(7.2.1)

(7.2.2)

From the first integrands we conjecture the general form of the integrands

Tn(z;u) =

3n∑
m=n

bn,m(u)

qm(z)
(7.2.3)

For this first step, the following simple observation is crucial

1

qm−1/2
= − 1

(2m− 3)!!

∂m

∂um
√
q∫ π/2

−π/2
dz
√
qTn =

3n∑
m=n

− bn,m(u)

(2m− 3)!!

∫ π/2

−π/2
dz

∂m

∂um
√
q

(7.2.4)

(7.2.5)

The integrals for z from −π/2 to π/2 are integrals with compact support. Hence, the exchange of
order of u-derivative and z integral, surely satisfies the necessary assumptions of convergence.?
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∫ π/2

−π/2
dzS2n−1(z;u) =

2

2n− 1

3n∑
m=n

bn,m(u)

(2m− 3)!!

∂m

∂um

∫ π/2

−π/2
dzS−1(z;u) (7.2.6)

As simple as it is, this is only a partial proof of He-Miao conjecture, because the number of terms in
our operator is 2n+ 1 rather than n+ 1 and the bn,m are not at all homogeneous in u as those of He
and Miao (see the next subsection for clarifications).
However, this "redundant operators" anyway give the correct integrals and we can immediately write
a recursion (7.2.26) for the coefficients of the derivatives.
The integral of S−1 =

√
q is reduced to the Gauss hypergeometric function[34]

∫ π/2

−π/2
dzS2n−1(z;u) =

2πi

2n− 1

3n∑
m=n

bn,m(u)

(2m− 3)!!

∂m

∂um

{√
2(u+ 1)2F1(−1

2
,

1

2
; 1;

2

u+ 1
)
}

(7.2.7)

by means of the well-known Euler formula[26]

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− zt)a
(7.2.8)

We can now pass to the main objective of this section: the markovian recursion relation for the
coefficients bn,m. We consider28 the usual Gelfand Dikii recursion equation (6.4.3) for the integrated
densities.

− T ′n+1 = − 1

4q
T ′′′n +

3

8

q′

q2
T ′′n +

(3

8

q′′

q2
− 9

16

q
′2

q3

)
T ′n +

(1

8

q′′′

q2
− 9

16

q′′q′

q3
+

15

32

q
′3

q4

)
Tn (7.2.9)

Hence, on the n+ 1 side∮
dz S2n+1(z) = − 2

2n+ 1

∮
dz
√
q(z)Tn+1(z) =

2

2n+ 1

∮
dz
√
q(z)

∫ z

dz̄ (−1)
∂Tn+1

∂z̄

=
2

2n+ 1

∮
dz
√
q(z)

∫ z

dz̄

3n+3∑
m=n+1

bn+1,m(u)
[
m

q′(z̄)

qm+1(z̄)

]
(7.2.10)

While, on the n side∮
dz
√
q(z)

∫ z

dz̄ bn,m
1

qm+1

{[1

4
m+

1

8

]q′′′
q

+
[
−3

4
m(m+ 1)− 3

8
m− 3

8
m− 9

16

]q′q′′
q2

+
[1

4
m(m+ 1)(m+ 2) +

3

8
m(m+ 1) +

9

16
m+

15

32

]q′3
q3

}
Until now the calculation respected the generality of the Gelfand Dikii recursion (apart the ansatz
form (7.2.3)). To proceed we must simplify the derivatives of q(z) and their product for the particular
case of the Mathieu equation. We start collecting the derivatives of q with respect to z

∂q

∂z
= −4 sin 2z

∂2q

∂z2
= −8 cos 2z = −4q − 8u = −8(u+

q

2
)

∂3q

∂z3
= 16 sin 2z = −4q′

∂4q

∂z4
= 16q

28For further considerations (in particular, the discarding of a total derivative from recursion relation), it is important
to keep in mind the double integration in which the Gelfand Dikii recursion for the density is embedded
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The expression for q
′2 will also be essential below

q
′2 = 16− 16 cos2 2z = 16

(
1− q2

4
− qu− u2

)

q
′2 = −16[(u2 − 1) + qu+

q2

4
] (7.2.11)

The Gelfand Dikii recursion becomes∮
dz
√
q(z)

∫ z

dz̄ mbn+1,m
1

qm+1
=

∮
dz
√
q(z)

∫ z

dz̄ bn,m
1

qm+1

{[1

4
m+

1

8

]
(−4)

1

q

+
[3

4
m2 +

3

2
m+

9

16

] (4q + 8u)

q2
+
[1

4
m3 +

9

8
m2 +

23

16
m+

15

32

] (−16)[u2 − 1 + qu]− 4q2

q3

}
=

∮
dz
√
q(z)

∫ z

dz̄ bn,m

{[
−1

8
(1 + 2m)3

] 1

qm+2
+
[
−4u(m+

1

2
)(m+ 1)(m+

3

2
)
] 1

qm+3

− 4(u2 − 1)
[
(m+

1

2
)(m+

3

2
)(m+

5

2
)
] 1

qm+4

We therefore find the Gelfand Dikii recursion for the Gelfand Dikii coefficients bn,m

bn+1,m = −
(m− 1

2 )3

m
bn,m−1 − 4u

(m− 3
2 )(m− 1)(m− 1

2 )

m
bn,m−2

− 4(u2 − 1)
(m− 5

2 )(m− 3
2 )(m− 1

2 )

m
bn,m−3 (7.2.12)

or also

bn+1,m+1 =−
(m+ 1

2 )3

m+ 1
bn,m − 4u

(m− 1
2 )m(m+ 1

2 )

m+ 1
bn,m−1

− 4(u2 − 1)
(m− 3

2 )(m− 1
2 )(m+ 1

2 )

m+ 1
bn,m−2 (7.2.13)

7.2.1 Test of the recursion relation

We tested the coefficient recursion (7.2.13) directly T0 → T1 and T1 → T2, using the WKB formulas
for general q .In fact, we know from the previous section on the Markovian WKB that

T0 =
1

2
(7.2.14)

T1 = −1

4
U} = − 1

16

q′′

q2
+

5

64

q
′2

q3
(7.2.15)

T2 =
1

32

[
−1

2

qiv

q3
+

7

2

q′′′q′

q4
+

21

8

q
′′2

q4
− 231

16

q′′q
′2

q5
+

1155

128

q
′4

q6

]
(7.2.16)

which simplified corresponds to

b00 =
1

2
(7.2.17)

b1,1 = − 1

16
b1,2 = −3

4
u b1,3 = −5

4
(u2 − 1) (7.2.18)

b2,2 =
27

256
b2,3 =

145

32
u b2,4 =

1085

32
u2 − 455

32

b2,5 =
693

8
u3 − 693

8
u b2,6 =

1155

16
u4 − 1155

8
u2 +

1155

16
(7.2.19)
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7.2.2 Further examples of Gelfand-Dikii coefficients

From Wolfram Mathematica we get also the coefficients of T3

b33 = −1125

2048
b34 = −26285

512
u b35 = − 63

512

(
6905u2 − 2133

)
(7.2.20)

b36 = −231

64
u
(
1513u2 − 1063

)
b37 = −429

128
(u2 − 1)

(
4943u2 − 1235

)
(7.2.21)

b38 = −765765

32
u
(
u2 − 1

)2
b39 = −425425

32

(
u2 − 1

)3 (7.2.22)

We get also the coefficients of T4

b44 =
385875

65536
b45 =

3945753u

4096

b46 =
231

(
493415u2 − 129609

)
4096

b47 =
429u

(
771239u2 − 447347

)
1024

b48 =
6435

(
610843u4 − 603310u2 + 80667

)
2048

b49 =
36465

256
u(u2 − 1)

(
44887u2 − 23011

)
b4,10 =

46189

256

(
u2 − 1

)2 (
67117u2 − 11875

)
b4,11 =

780825045

64
u
(
u2 − 1

)3
b4,12 =

1301375075

256

(
u2 − 1

)4 (7.2.23)

We calculated also the coefficients of T5 but we don’t report them.

7.2.3 "Redundant He-Miao coefficients" recursion relation

The "partially correct" coefficient operators would be

Bn,m(u) =
2

(2n− 1)(2m− 3)!!
bn,m(u) (7.2.24)∫ π/2

−π/2
dzS2n−1(z;u) =

3n∑
m=n

Bn,m(u)
∂m

∂um

∫ π/2

−π/2
dzS−1(z;u) (7.2.25)

but, with respect to those of He and Miao,[34] they are not neither in the correct number, nor of the
homogeneous form.
However, as we anticipated, for this "Redundant He-Miao coefficients" we can write a recursion
relation. It just suffices to slightly correct the recursion for the Gelfand Dikii coefficients bn,m (7.2.12).

Bn+1,m+1 =
n− 1

2

n+ 1
2

{
−1

2

(m+ 1
2 )3

(m+ 1)(m− 1
2 )
Bn,m − u

m(m+ 1
2 )

(m+ 1)(m− 3
2 )
Bn,m−1

− 1

2
(u2 − 1)

m+ 1
2

(m+ 1)(m− 5
2 )
Bn,m−2

}
(7.2.26)

7.3 General algorithmic proof of He Miao conjecture

We now prove He-Miao conjecture in all generalities. A first step for the proof was already made in
the previous section, however the "redundant He-Miao operator" (7.2.25) was not exactly that of
He-Miao[34] and quite more complex. In fact, the number of derivative involved was double and they
multiplied polynomial, rather than monomial coefficients in u.
We can write the general structure of the bn,m coefficient as

bn,m =


∑(m−n)/2
k=0 βn,m,lu

2k if m− n is even∑(m−n+1)/2
k=1 βn,m,lu

2k−1 if m− n is odd
(7.3.1)
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In particular, if m = 2n+ l with l ≥ 0 the Gelfand Dikii coefficients are divisible by (u2 − 1)l

bn,2n+l = (u2 − 1)lb̂n,2n+l :=

(u2 − 1)l
∑n
k=0 βn,m,lu

2k if n+ l is even

(u2 − 1)l
∑(2n+1)/2
k=1 βn,m,lu

2k−1 if n+ l is odd
(7.3.2)

We can immediately check the form (7.3.2) for n = 1, 2, 3, 4. In general we have proven true it
by induction, using formula (7.2.12). This fact is going to be shown to be the condition for the
elimination of the unwanted higher (m > 2n) derivatives.
To obtain the fundamental formula of our proof, consider the following second derivative

∂2

∂z2

(
1

qm−5/2(z)

)
= (m− 5

2
)(m− 3

2
)

q
′2

qm−1/2(z)
− (m− 3

2
)

q′′

qm−3/2(z)
(7.3.3)

We simplify this expression using the usual formulas for the particular case of Mathieu equation

q
′2 = −16

[
(u2 − 1) + qu+

q2

4

]
(7.3.4)

q′′ = −4q − 8u (7.3.5)

So we get the fundamental formula of our proof

u2 − 1

qm−1/2(z)
=

1

4

∂2

∂z2

(
1

qm−5/2(z)

)
− m− 2

m− 3
2

u
1

qm−1−1/2(z)
−

m− 5
2

4(m− 3
2 )

1

qm−2−1/2(z)
(7.3.6)

which under the integration over a period corresponds to the equivalence

u2 − 1

qm−1/2(z)

.
= −m− 2

m− 3
2

u
1

qm−1−1/2(z)
−

m− 5
2

4(m− 3
2 )

1

qm−2−1/2(z)
(7.3.7)

Let’s define for convenience the functions which perform the fundamental operation for each power
m− 1 and m− 2

d1(m) = −m− 2

m− 3
2

D1(m) = ud1(m) (7.3.8)

d2(m) = −
m− 5

2

4(m− 3
2 )

D2(m) = d2(m) (7.3.9)

so that the fundamental operations reads

u2 − 1

qm−1/2(z)

.
= ud1(m)

1

qm−1−1/2(z)
+ d2(m)

1

qm−2−1/2(z)
(7.3.10)

Now, consider the general (up to a trivial factor u) coefficient in (7.3.2) for 2n ≤ m ≤ 3n

bn,m(u) = (u2 − 1)(m−2n)b̂n,m(u) (7.3.11)

bn,m(u)

qm−1/2
=
[
(u2 − 1)m−2n−1b̂n,m(u)

] u2 − 1

qm−1/2

.
=
[
(u2 − 1)m−2n−1b̂n,m(u)u d1(m)

] 1

qm−1−1/2

+
[
(u2 − 1)m−2n−1b̂n,m(u) d2(m)

] 1

qm−2−1/2
(7.3.12)

The result is a modification of the the two "lower" coefficients

b
(2)
n,2n+l−1 = b

(1)
n,2n+l−1 + (u2 − 1)l−1b̂

(2)
n,2n+l(u)u d1(2n+ l) (7.3.13)

b
(1)
n,2n+l−2 = bn,2n+l−2 + (u2 − 1)l−1 ˆb(2)

n,2n+l(u) d2(2n+ l) (7.3.14)

b
(2)
n,2n+l−2 = b

(1)
n,2n+l−2 + (u2 − 1)l−2b̂

(2)
n,2n+l−1(u)u d1(2n+ l − 1) (7.3.15)
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where the superscript (1) or two (2) stands for the number of transformations which have affected the
coefficient, in the process starting from m = 3n. Of course, if we consider the process starting from
m = 3n our coefficient bn,m is actually already twice transformed and should be denoted as b(2)

n,2n+m.
Note that the transformation (7.3.10) guarantees that the divisibility characteristics (7.3.2) are
unchanged.
It is clear that in this manner we can eliminate all coefficients for 2n+ 1 ≤ m ≤ 3n, the result being
a double transformation of the two lowest index coefficients, namely bn,n−1 and bn,n−2.
We begin to write some explicit formulas. In all our formulae, we shall always use certain coefficients
Bjn,m(u) calculated very simply with the following "Fibonacci-like" recursion

Bjn,m = D1(m+ j)Bj−1
n,m + (u2 − 1)D2(m+ j)Bj−2

n,m (7.3.16)

= ud1(m+ j)Bj−1
n,m + (u2 − 1)d2(m+ j)Bj−2

n,m (7.3.17)

and initial conditions

B0
n,m = 1 (7.3.18)

B1
n,m = D1(m+ 1) = ud1(m+ 1) (7.3.19)

To begin with, we need also the second transformed of the n+ 1-th Gelfand-Dikii coefficient bn,2n+1,
even if its third transformed is null.

b
(2)
n,2n+1 =

n−1∑
j=0

Bjn,2n+1

bn,2n+1+j

(u2 − 1)j
b
(2)
n,2n+1 = (u2 − 1)b̂

(2)
n,2n+1 (7.3.20)

In fact it permits us to calculate the first transformed of the n− 1-th coefficient

b
(1)
n,2n−1 = bn,2n−1 +D2(2n+ 1)

b
(2)
n,2n+1

(u2 − 1)
(7.3.21)

= bn,2n−1 +

n∑
j=1

D2(2n+ 1)Bj−1
n,2n+1

bn,2n+j

(u2 − 1)j
(7.3.22)

which of course is a partial result. We can directly write the second transformed of the n-th coefficient
in terms of the Gelfand Dikii coefficient of higher index 2n < m ≤ 3n

b
(2)
n,2n =

n∑
j=0

Bjn,2n
bn,2n+j

(u2 − 1)j
(7.3.23)

(7.3.24)

We now expand all the remaining coefficients in the n dimensional basis

u2 − 1 , (u2 − 1)2 , · · · , (u2 − 1)n , un (7.3.25)
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up to the usual global factor u the expansion is (we assume n odd)

b
(2)
n,2n = β

(2)
n,2n,nu

n + u

(n−1)/2∑
l=1

γ
(2)
n,2n,l(u

2 − 1)l

b
(1)
n,2n−1 = β

(1)
n,2n−1,n−1u

n−1 +

(n−1)/2∑
l=1

γ
(1)
n,2n−1,l(u

2 − 1)l

bn,2n−2 = βn,2n−2,n−2u
n−2 + u

(n−1)/2−1∑
l=1

γn,2n−2,l(u
2 − 1)l

bn,2n−3 = βn,2n−3,n−3u
n−3 +

(n−1)/2−1∑
l=1

γn,2n−3,l(u
2 − 1)l

... (7.3.26)

bn,n+k = βn,n+k,ku
k + uδk

(n−1)/2−[(n−k)/2]∑
l=1

γn,n+k,l(u
2 − 1)l (7.3.27)

...

bn,n+2 = βn,n+2,2u
2

bn,n+1 = βn,n+1,1u

bn,n = βn,n,0

where δk = 1 if k is odd, whether δk = 0 if k is even. We introduced alternative γn,n+k,l Gelfand-Dikii
subcoefficients (rather than βn,n+k,l), because we changed the basis (7.3.25) for the polynomial in u.
It is clear now that the same fundamental transformation (7.3.10) can be applied to the part of the
coefficients bn,n+k (0 ≤ k ≤ n) proportional to some power of u2 − 1.

bn,n+k − βn,n+k,ku
k = (u2 − 1)uδk

(n−1)/2−[(n−k)/2]∑
l=1

γn,n+k,l(u
2 − 1)l−1 (7.3.28)

[
bn,n+k − βn,n+k,ku

k
] 1

qn+k−1/2(z)

.
= d1(n+ k)uδk+1

(n−1)/2−[(n−k)/2]∑
l=1

γn,n+k,l(u
2 − 1)l−1 1

qn+k−3/2(z)

+ d2(n+ k)uδk
(n−1)/2−[(n−k)/2]∑

l=1

γn,n+k,l(u
2 − 1)l−1 1

qn+k−5/2(z)

(7.3.29)

82



It is evident that final result is of the form

b
(3)
n,2n = β

(2)
n,2n,nu

n

b
(3)
n,2n−1 = β

(3)
n,2n−1,n−1u

n−1

b
(3)
n,2n−2 = β

(3)
n,2n−2,n−2u

n−2

b
(3)
n,2n−3 = β

(3)
n,2n−3,n−3u

n−3

...

b
(3)
n,n+k = β

(3)
n,n+k,ku

k (7.3.30)

...

b
(3)
n,n+2 = β

(3)
n,n+2,2u

2

b
(2)
n,n+1 = β

(2)
n,n+1,1u

b(1)
n,n = β

(1)
n,n,0

In practice, given a second transformed Gelfand-Dikii coefficient b(2)
n,2n−l, with l = 0, 1, ..., n, we can

obtain the final coefficient cn,2n−l by calculating it in u2 = 1 and then restoring the lost u dependence
by multiplication by un−l.

cn,2n−l(u) = b
(2)
n,2n−l(u)

∣∣∣
u2=1

un−l l = 0, 1, ..., n (7.3.31)

the difference ∆n,2n−l is defined by

∆n,2n−l = bn,2n−l − cn,2n−l (7.3.32)

The general formula for the modified is similar to the previous for 2n ≤ m ≤ 3n, but now is recursive
on the second index m because requires the nowledge of cn,k

b
(2)
n,2n−l = bn,2n−l +

n+l∑
j=1

Bn,2n−l+j
∆n,2n−l+j

(u2 − 1)j
l = 2, 3, ..., n− 1 (7.3.33)

The "extremal" indexes l = 0, 1, n are related to different equations. For l = 0 we use the second
transformed coefficient

cn,2n = b
(2)
n,2n(u)

∣∣∣∣
u=1

un (7.3.34)

∆
(2)
n,2n = b

(2)
n,2n − cn,2n (7.3.35)

For l = 1 we use the first transformed coefficient

b
(2)
n,2n−1 = b

(1)
n,2n−1 +

1

u2 − 1
D1(2n)∆n,2n (7.3.36)

cn,2n−1 = b
(2)
n,2n−1(u)

∣∣∣
u=1

un−1 (7.3.37)

∆
(1)
n,2n−1 = b

(1)
n,2n−1 − cn,2n−1 (7.3.38)

While for l = n there is no contribution from the next higher coefficient (corresponding to l = n− 1)

b(1)
n,n = bn,n +D2(n+ 2)

b
(2)
n,n+2

u2 − 1
(7.3.39)

= bn,n +D2(n+ 2)
bn,n+2

u2 − 1
+

n−2∑
j=1

D2(n+ 2)Bn,n+2+j
∆n,n+2+j

(u2 − 1)j+1
(7.3.40)
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Because of (7.2.4), the He-Miao operator coefficients are in general given by

Cn,m =
2

(2n− 1)(2m− 3)!!
β

(3)
n,m,m−nu

m−n n ≤ m ≤ 2n (7.3.41)

as they are in the exact number and of the exact u-homogeneous form. This completes the proof of
He-Miao conjecture.

7.4 Examples

We report here only the first two examples of application of our procedure and proof. Further
examples can be found in appendix. In all cases we checked our results with those of He and Miao[34]

7.4.1 Trivial example: T1

The only transformation we need is that of the highest degree coefficient of R1, that is b13

b13

q5/2
= −5

4

(u2 − 1)

q5/2
(7.4.1)

≡ −5

4

[
ud1(3)

q3/2
+
d2(3)

q1/2

]
(7.4.2)

which implies that

b
(1)
13 = 0 (7.4.3)

b
(1)
12 = b12 −

5

4
d1(3)u =

u

12
(7.4.4)

b
(1)
11 = b11 −

5

4
d2(3) =

1

24
(7.4.5)

Formula (7.3.41) now gives the coefficients of the differential operator in u

C12 =
1

6
u (7.4.6)

C11 =
1

12
(7.4.7)

which are exactly those of He and Miao in their article[34]

We note that

b
(1)
12 = c12 = b12 +

b13

u2 − 1
ud1(3) (7.4.8)

=
[
β121 + β132d1(3)

]
u (7.4.9)

b
(1)
11 = c11 = b110 +

b13

u2 − 1
d2(3) (7.4.10)

= β110 + β132d2(3) (7.4.11)

7.4.2 Simple example: T2

Let’s begin with transformation of b26, that is, the highest degree coefficient of R2

b26

q11/2
=

1155

16
(u2 − 1)

(u2 − 1)

q11/2
(7.4.12)

≡ 1155

16
(u2 − 1)

[
ud1(6)

q9/2
+
d2(6)

q7/2

]
(7.4.13)
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which implies that

b
(1)
26 = 0 (7.4.14)

b
(1)
25 = b25 +

1155

16
d1(6)(u2 − 1)u =

539

24
u
(
u2 − 1

)
(7.4.15)

b
(1)
24 = b24 +

1155

16
d2(6)(u2 − 1) =

35

192

(
109u2 − 1

)
(7.4.16)

We operate now on (the transformed of) b25

b
(1)
25

q9/2
=

539

24
u

(u2 − 1)

q9/2
(7.4.17)

≡ 539

24
u

[
ud1(5)

q7/2
+
d2(5)

q5/2

]
(7.4.18)

which implies that

b
(2)
25 = 0 (7.4.19)

b
(2)
24 = b124 +

539

24
u2d1(5) =

7

192

(
17u2 − 5

)
(7.4.20)

b
(1)
23 = b23 +

539

24
ud2(5) =

25u

48
(7.4.21)

We end thus the elimination of the "extra coefficients" (with m > 2n = 4). To proceed further we
operate with the fundamental operation on (the second transformed of) b24, but before it is necessary
to expand it in the (7.3.25)

b
(2)
24

q7/2
=

7u2

16

q7/2
+

35

192

(
u2 − 1

)
q7/2

(7.4.22)

≡
7u2

16

q7/2
+

35

192
ud1(4)

1

q5/2
+

35

192
d2(4)

1

q3/2
(7.4.23)

so that

b
(3)
24 =

7u2

16
(7.4.24)

b
(2)
23 = b

(1)
23 +

35

192
ud1(4) =

3u

8
(7.4.25)

b
(1)
22 = b22 + +

35

192
d2(4) =

5

64
(7.4.26)

Formula (7.3.41) now gives the coefficients of the differential operator in u

C24 =
1

25

28

45
u2 (7.4.27)

C23 =
1

25

8

3
u (7.4.28)

C22 =
1

25

5

3
(7.4.29)

which are exactly those of He and Miao in their article[34]

We now write explicit formulas.

b
(2)
24 = b24 +

1

u2 − 1

[
ud1(5)b25 + d2(6)b26

]
+

1

(u2 − 1)2
u2d1(6)d1(5)b26 (7.4.30)

= b24 +
1

u2 − 1
ud1(5)b25 +

1

(u2 − 1)2

[
(u2 − 1)d2(6) + u2d1(6)d1(5)

]
b26 (7.4.31)

=
[
β240 − β264d2(6)

]
+
[
β242 + β253d1(5) + β264d1(6)d1(5) + β264d2(6)

]
u2 (7.4.32)

(7.4.33)
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So the highest corrected coefficient c24 is

c24 =
[
β240 + β242 + β253d1(5) + β264d1(6)d1(5)

]
u2 (7.4.34)

∆
(2)
24 = −

[
β240 − β264d2(6)

]
(u2 − 1) (7.4.35)

Passing to the next Gelfand-Dikii coefficient b23, for its first transformation we need the transformed
of b25

b
(1)
25 = b25 +

1

u2 − 1
ud1(6)b26

so

b
(1)
23 = b23 + d2(5)b

(1)
25 = b23 + d2(5)

[
b25 +

1

u2 − 1
ud1(6)b26

]
(7.4.36)

= b23 + d2(5)b25 + d1(6)d2(5)u
b26

u2 − 1
(7.4.37)

b
(2)
23 = c23 = b

(1)
23 +

∆
(2)
24

u2 − 1
ud1(4) (7.4.38)

=
[
β231 + d2(5)β253 + d1(6)d2(5)β264 − d1(4)β240 − d2(6)d1(4)β264

]
u (7.4.39)

=
[
β231 − d1(4)β240 + d2(5)β253 + d1(6)d2(5)β264 − d2(6)d1(4)β264

]
u (7.4.40)

We arrive now to the lowest coefficient b22, which is transformed only once

b
(1)
22 = c22 = b22 +

∆
(2)
24

u2 − 1
d2(4) (7.4.41)

= β22 − d2(4)β240 − d2(6)d2(4)β264 (7.4.42)
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Part III

Liouville ODE/IM
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8 Zamolodchikov’s Generalized Mathieu equation

8.1 Derivation of generalized Mathieu equation

In the draft of his unfinished work,[2] Al. Zamolodchikov considered the equation (2.1.1){
− d2

dx2
+
l(l + 1)

x2
+ x2M − E

}
φ(x) = 0 (8.1.1)

which was considered by Dorey, Tateo[12] and Bazhanov, Lukyanov, A. Zamolodchikov, to establish
the ODE-IM correspondence for the minimal models. In particular, they considered the range
M > 029. Instead, the Liouville model corresponds to the range

−∞ < β2 < 0 ⇐⇒ −∞ < M < −1 (LIOUVILLE) (8.1.2)

Then in his draft, he conjectured that to establish the ODE-IM correspondence in the Liouville
model, the following differential equation must be considered{

− d2

dy2
+ µ+e

y/b + µ−e
−yb + P 2

}
ψ(y) = 0 (8.1.3)

where y ∈ C; b is the dimensionless parameter for the Liouville model (which is the same as that of
the massive Sinh-Gordon model); while P parametrized the highest weight vector of the Liouville
Virasoro-Heisenberg module

∆ = −P 2 +
Q2

4
(8.1.4)

Zamolodchikov[2] propose to call µ+ and µ− coupling constants to be determined.
Al. Zamolodchikov propose to call this (conjecturely) ODE-IM equation (8.1.3) Generalized Mathieu
equation. Actually, a better name would be "Generalized modified-Mathieu equation", because for
b = 1, for certain choices of µ+ and µ−, the equation reduces to the well-known modified-Mathieu
equation.[26] We now reconstruct the passages which permit to obtain this equation (8.1.3) from the
corresponding ODE-IM standard (8.1.1)30

The central charge for the Liouville model is

c = 1 + 6Q2 = 13 + 6
(
b2 +

1

b2

)
(8.1.5)

It is evident that it is obtained by (1.3.3) by the analytic continuation on the parameter β of the
Sine-Gordon model[8]

β → ib b ∈ R+ (LIOUVILLE) (8.1.6)

so as to effectively transform it in the Sinh-Gordon model.[29]

Namely, we apply a succession of transformations, the first of which is the Langer transform

x = eŷ φ(x) = eŷ/2ψ(ŷ) (8.1.7)

29Actually, in detail in the case M > 1, and studied very briefly in the "dual" case −1 < M < 0.
30Al. Zamolodchikov did not report this calculations in his draft,[2] we aid ourselves with Bazhanov’s seminar at

Bologna INFN in september 2011,[1] which also informed us of the existence of this unplished and unfinished work of
Zamolodchikov.
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so that the equation becomes{
− d2

dŷ2
+ e2ŷ/β2

− Ee2ŷ +
(
l +

1

2

)2}
ψ(ŷ) = 0 (8.1.8)

Now, we continue to transform, passing to the variables

ŷ =
β

2
ȳ (8.1.9){

− d2

dȳ2
+
β2

4
eȳ/β − β2

4
Eeβȳ +

β2

4

(
l +

1

2

)2}
ψ(ȳ) = 0 (8.1.10)

and also

ȳ = iỹ (8.1.11){
+
d2

dỹ2
+
β2

4
eiỹ/β − β2

4
Eeiβỹ +

β2

4

(
l +

1

2

)2}
ψ(ỹ) = 0 (8.1.12)

Now we send β = ib, that is, rather than of giving real values to β, we imagine it to have imaginary
values. The equation for the minimal models is thus transformed in the equation for the Liouville
model. We also define a new parameter31

P 2 = − p
2

β2
=
p2

b2
(8.1.13)

or also

P 2 =
(l + 1

2 )2b2

4
= −

(l + 1
2 )2β2

4
(8.1.14)

{
− d2

dỹ2
+
b2

4
eỹ/b − b2

4
Ee−bỹ + P 2

}
ψ(ỹ) = 0 (8.1.15)

A final change of variable and parametrization

y = ỹ − α+ b ln
b2

4
(8.1.16)

α =
ln (−E)

2b
+
b2 + 1

2b
ln
b2

4
(8.1.17)

according to which the energy of (8.1.1) can be expressed as

E = −e2αb

(
4

b2

)b2+1

(8.1.18)

delivers now the generalized Mathieu equation{
− d2

dy2
+ e(α+y)/b + e(α−y)b + P 2

}
ψ(y) = 0 (8.1.19)

with the coupling constants of Bazhanov seminar[1]

µB+ = eα/b µB− = eαb (N = 2 conventions) (8.1.20)

31Note that the limit P 2 →∞ can be interpreted as the limit l + 1
2
→∞ and β constant, which means also p→∞.

This consideration can be useful for the WKB analysis.
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Somewhat contradictorily, Bazhanov’s choice of parameters make impossible the matching with the
Sinh-Gordon32 TBA conventions, even if they are correct for the conventions of N = 2 gauge
theory. Anyway, we show below that a simple shift in α and y is sufficient to get the correct TBA
normalization. For now, we use µB+ and µB−, as Bazhanov[1] invited us to do.
For later considerations, we observe also that the initial variable x and the Langer’s variable ŷ, can
be conveniently expressed in terms of the final variable y as

x = exp
[
−yb

2
− αb

2
+
b2

2
ln
b2

4

]
ŷ = −yb

2
− αb

2
+
b2

2
ln
b2

4

(8.1.21)

(8.1.22)

This shows that x→ 0 corresponds to <y → +∞, while x→ +∞ corresponds to <y → −∞.

8.2 ODE-IM for the Generalized Mathieu equation

8.2.1 Study of asymptotic solutions

Still following Bazhanov,[1] we specify the two uniquely defined WKB decaying solutions of Al.
Zamolodchikov’s generalizes Mathieu equation (8.1.19)

U0(y) ' 1√
2b
e−

α+y
4b e−2be

α+y
2b <y → +∞

V0(y) ' b√
2
e−

(α−y)b
4 e−

2
b e

(α−y)b
2 <y → −∞

(8.2.1)

(8.2.2)

The Stokes sectors of C[26] characterizing the generalized Mathieu equation are are only defined
asymptotically, for <y → +∞, or <y → −∞, respectively:

D+
k = {y ∈ C|(2k − 1)πb < =y < (2k + 1)πb} k ∈ Z (8.2.3)

D−k = {y ∈ C|(2k − 1)π/b < =y < (2k + 1)π/b} k ∈ Z (8.2.4)

Equation (8.1.19) has two important symmetries:

Ωb : D+
k → D+

k+1 , D−k → D−k

y 7→ y + πib , α 7→ α+ iπb ,

Ω1/b : D−k → D−k+1, D+
k → D+

k

y 7→ y − πi/b , α 7→ α+ iπ/b

(8.2.5)

(8.2.6)

(8.2.7)

(8.2.8)

which in the original coordinates of (8.1.1) are respectively

Ωβ : x→ qx , E → q−2E , (8.2.9)

Ω1/β : x→ x , E → E (8.2.10)

where, as standard, q = eiπβ
2

. Note that these symmetries are exact, that is, they hold in the whole
plane, not only in a neighborhood of infinity.
By using these symmetries one can automatically generate new solutions of (8.1.19)

Uk(y) = ΩkbU0(y), V0(y) = ΩkbV0(y), (8.2.11)

U0(y) = Ωk1/bU0(y), Vk(y) = Ωk1/bV0(y), (8.2.12)

32Therefore, Liouville TBA conventions, since the leading order for large rapidity is the same.
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whose explicit asymptotic expression is

Uk(y) ∼ e−ikπ/2√
2b

e−(α+y)/4be(−1)k+12be(α+y)/2b

(8.2.13)

Vk(y) ∼ be−ikπ/2√
2

e−(α−y)b/4e(−1)k+1 2
b e

(α−y)b/2
(8.2.14)

Note, however, that the application of the symmetries to the original asymptotic expression does
not give us information about the subdominant terms of the dominant solutions. The subdominant
dominant or dominant behaviour of the solutions can be expressed by the limits:

lim
<y→+∞

U2n(y) = 0 (8.2.15)

lim
<y→−∞

V2n(y) = 0 (8.2.16)

lim
<y→+∞

U2n+1(y) = i(−1)n+1∞ (8.2.17)

lim
<y→−∞

V2n+1(y) = i(−1)n+1∞ (8.2.18)

The wronskians of "nearby solutions" is readily calculated

W [Uk+1, Uk] = − i

b2
(8.2.19)

W [Vk+1, Vk] = +ib2 (8.2.20)

(8.2.21)

However, we are not allowed to calculate in this way wronskians of the type W [Uk, U−k]. Analytic
continuation of the asymptotic expression would be needed[14]

8.2.2 QQ system

Define the entire function of α

X̄(α) = W [V0, U0] (8.2.22)

i.e. the wronskian of the WKB solution around y → +∞ and that around y → −∞ (=y = 0). That
it is non-null will be shown below (8.2.33). Note that it is independent from y.
As a consequence, applying the Ωb and Ω1/b symmetries we can obtain also

X̄(α+ iπb) = W [V0, U1] (8.2.23)

X̄(α+ iπ/b) = W [V1, U0] (8.2.24)

and so on.
Let us expand linearly, but asymptotically, the fundamental pair of solutions at +∞ in terms of the
fundamental pair at −∞.

V0(y) = AU0(y) +BU1(y) (8.2.25)

V1(y) = CU0(y) +DU1(y) (8.2.26)

the Stokes coefficients are readily calculated taking some wronskians

W [V0, U1] = AW [U0, U1] = X̄(α+ iπb) =
i

b2
A

A = −ib2X̄(α+ iπb) (8.2.27)

W [V0, U0] = BW [U1, U0] = X̄(α) = − i

b2
B

B = +ib2X̄(α) (8.2.28)
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W [V1, U1] = CW [U0, U1] = X̄(α+ iπb+ iπ/b) =
i

b2
C

C = −ib2X̄(α+ iπb+ iπ/b) (8.2.29)

W [V1, U0] = DW [U1, U0] = X̄(α+ iπ/b) = − i

b2
D

D = ib2X̄(α+ iπ/b) (8.2.30)

Rewriting the relations (8.2.25),(8.2.26) we find the linear relations

i

b2
V0(y) = X̄(α+ iπb)U0(y)− X̄(α)U1(y) (8.2.31)

i

b2
V1(y) = X̄(α+ iπQ)U0(y)− X̄(α+ iπ/b)U1(y) (8.2.32)

From the definitions

lim
<y→+∞

U0(y) = 0 lim
<y→+∞

U1(y) = i∞

and the relation (8.2.31)

lim
<y→+∞

V0(y) = ib2X̄(α) lim
<y→+∞

U1(y) (8.2.33)

so that, in modulus, |V0| → ∞ as y → +∞. In other words V0, defined as subdominant for y → −∞
is dominant at for y → +∞. This proves the linear independence of V0 and U0 and therefore that
X̄(α) is non null (this is not an assumption of the foregoing operations).
We can also obtain the QQ system

X̄(α)X̄(α+ iπQ)− X̄(α+ iπb)X̄(α+ iπ/b) = 1 (8.2.34)

In fact,(
i

b2

)2

W [V0, V1] =
i

b2
= W [U0, U1]

[
− X̄(α+ iπb)X̄(α+ iπ/b) + X̄(α)X̄(α+ iπQ)

]
=

i

b2

[
− X̄(α+ iπb)X̄(α+ iπ/b) + X̄(α)X̄(α+ iπQ)

]
8.2.3 TQ systems

Taking inspiration from Dorey and Tateo[14] (summarized in 2), but modifying slightly their calcula-
tions, we can construct the first TQ system with the Ω1/b symmetry, which operates on the solutions
around y → −∞ or x→ +∞.

V := V0

Vk := Ω1/bV = V (y − kπi/b;α+ kπi/b)

Formula (8.2.35) is the source of difference between Dorey and Tateo construction and ours, i.e. we
have no prefactor as in (2.1.10). The general Stokes relation reads

Vk−1(y;α) = Ck(α)Vk(y;α) + C̃k(α)Vk+1(y;α) (8.2.35)

Ck(α) = Ck−1(α+ πi/b) C̃k(α) = C̃k−1(α+ πi/b) (8.2.36)
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Define the general wronskian

Wk1,k2 := W [Vk1 , Vk2 ] (8.2.37)

Wk1+1,k2+1(α) = Wk1,k2(α+ iπ/b) (8.2.38)

Wk1,k2(α+ iπb) = Wk1,k2 (8.2.39)

W01 = W [V0, V1] = −ib2 (8.2.40)

In particular,

C := C0 =
W−1,1

W01
=

i

b2
W [V−1, V1]

C̃k = −Wk−1,k

Wk,k+1
= −1 ∀k

remember that C corresponds to the Baxter T function (2.4.6). The Stokes relation for k = 0

corresponds to the TQ relation

V1 = CV0 − V−1

CV0 = V1 + V−1 (8.2.41)

The solutions around y → +∞, i.e x = 0

U+ := U0 U− := U1 (8.2.42)

U±k := Ω1/bU
± = U± (8.2.43)

W [Vk, U
±](α) = W [V,U±](α+ kπi/b) (8.2.44)

permit us to define also the D function, which corresponds (2.4.4) to the A or Q function

D∓(α) = W [V,U±](α) (8.2.45)

But, recalling the previous definition (8.2.22), we note that D−(α) coincides with X̄(α)

X̄(α) = −D−(α) (8.2.46)

Similarly
X̄(α+ iπb) = −D+(α) (8.2.47)

We can therefore write in different notations the TQ relation

C(α)D−(α) = D−(α+ πi/b) +D−(α− πi/b) (8.2.48)

or
˜̄T (α)X̄(α) = X̄(α+ πi/b) + X̄(α− πi/b) (8.2.49)

and also

C(α)D+(α) = D+(α+ πi/b) +D+(α− πi/b) (8.2.50)
˜̄T (α)X̄(α+ πib) = X̄(α+ πi/b+ πib) + X̄(α− πi/b+ πib) = ˜̄T (α+ iπb)X̄(α+ iπb) (8.2.51)
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the last equality being due to the iπb periodicity (8.2.39)in α of the wronskians constructed with the
Vk functions.

˜̄T (α+ iπb) = ˜̄T (α) (8.2.52)

It is important to note that, thanks to the similarity of structure33 of the generalized Mathieu
equation (8.1.19) at y → +∞ and y → −∞, we can construct the first TQ system with the Ωb

symmetry, which acts on the solutions around y → +∞, i. e. x = 0. We merely repeat the just done
passages.

U := U0 (8.2.53)

Uk := ΩkbU = U(y + kπib;α+ kπib) (8.2.54)

the Stokes relation between the solutions around x = 0 is

Uk−1(y;α) = Bk(α)Uk(y;α) + B̃k(α)Uk+1(y;α) (8.2.55)

with new Stokes coefficients Bk and B̃k, which enjoy the properties

Bk(α) = Bk−1(α+ πib) B̃k(α) = B̃k−1(α+ πib) (8.2.56)

Define the general wronskian as
Wk1,k2 := W [Uk1 , Uk2 ] (8.2.57)

which has the property
Wk1+1,k2+1(α) = Wk1,k2(α+ iπb) (8.2.58)

and the periodicity
Wk1,k2(α+ iπ/b) = Wk1,k2(α) (8.2.59)

In particular,

B := B0 =
W−1,1

W01
(8.2.60)

B̃k = −Wk−1,k

Wk,k+1
= −1 ∀k (8.2.61)

W01 = W [U0, U1] =
i

b2
(8.2.62)

The Stokes relation for k = 0 is

U1 = BU0 − U−1

BU0 = U1 + U−1 (8.2.63)

and corresponds to the TQ relation, with B playing the role of T . Because of the periodicity (8.2.59)
of the wronskians constructed with the Uk functions, the T function is periodic

T̄ (α) = B(α) = B(α+ iπ/b) = T̄ (α+ iπ/b) (8.2.64)

The solution around y → −∞, i.e. x→ +∞ are

V + := V0 V − := V1 (8.2.65)

V ±k := ΩkbV
± = V ± (8.2.66)

33At both edges of the dominion there are essential singularities.
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A useful wronskian is
W [V −, V +] = ib2 (8.2.67)

We define the analogues of the D∓ functions, which have the role of A± function

E∓(α) = −W [U, V ±](α) (8.2.68)

we observe that
W [Uk, V

±](α) = W [U, V ±](α+ kπib) (8.2.69)

Recalling the definition (8.2.22) we can write the correspondence

E−(α) = X̄(α) (8.2.70)

E+(α) = X̄(α+ iπ/b) (8.2.71)

We can write another TQ system34

B(α)E∓(α) = E∓(α+ πib) + E∓(α− πib) (8.2.72)

or

T̄ (α)X̄(α) = X̄(α+ πib) + X̄(α− πib) (8.2.73)

and also

T̄ (α+ iπ/b)X̄(α+ πi/b) = X̄(α+ πi/b+ πib) + X̄(α− πi/b+ πib) (8.2.74)

8.2.4 Observations

In the ordinary variable x of (8.1.1) there is only one TQ system, where the Q is the wronskian
between the eigenfunctions calculated at 0 and +∞ in x (see, for instance[14]). In our case there are
two different TQ-system essentially because in the Langer variable y, +∞ and −∞ are symmetrical,
that is, the eigenfunctions have analogous form. Here Q is the wronskian between the eigenfunctions
calculated at −∞ and +∞ in y. For the minimal models (β2 real) there is only one T operator, while
for the Liouville model there are two of them. However, for the Liouville model there only one X̄ (Q)
operator, since E− and D− differ only by a sign; while for the minimal models there are actually two
Q± operators, which are obtain through the action of the symmetry Λ (2.1.4) which sends p→ −p.
The two symmetries used in the ODE-IM construction for the range β2 > 0 (minimal models) are
very different: Ω (2.1.8) acts on the solutions at x→ +∞ only through x and Λ (2.1.4) acts on the
solutions at x→ 0 only through l. Now, the the two symmetries used for the range β2 < 0 (Liouville
model) are very similar: both Ωb and Ω1/b act on the solutions at y → ±∞ through y and α. In the
Liouville model, P 2 → P 2 under the minimal models symmetry Λ (because l→ −l− 1 leaves l(l+ 1)

invariant). Thus,
Therefore, we can somehow justify why the symmetry Ω1/b in (8.2.10) is just the trivial symmetry in
the minimal models set up, that is the identity transformation. In fact, we have just seen that also
Λ (2.1.4) is the trivial symmetry in the Liouville model set up.

34In fact, they are two but differ by an insignificant shift of argument.
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8.2.5 Quantum wronskians

We construct the quantum wronskians again adapting[14] construction to our situation.
We can write a Stokes relation for U also using the V ± basis. Recalling that W [V −, V +] = ib2 and
the definitions of E∓, we must write

ib2U(y, α) = E−(α)V −(y, α)− E+(α)V +(y, α) (8.2.75)

which, applying the Ωb symmetry becomes

ib2Uk(y, α) = E−(α+ ikπb)V −(y, α)− E+(α+ ikπb)V +(y, α) (8.2.76)

because the V ∓ functions are invariant under this symmetry. We now take the wronskian of this
U−1 and Un using this formula

−b4W [U−1, Un](α) = −ib2X̄(α− iπb)X̄(α+ iπ/b+ iπnb) + ib2X̄(α+ iπ/b− iπb)X̄(α+ iπnb)

W [U−1, Un](α) = i
1

b2
X̄(α− iπb)X̄(α+ iπ/b+ iπnb)− i 1

b2
X̄(α+ iπ/b− iπb)X̄(α+ iπnb)

(8.2.77)

Now, defining

C(n)(α) = C
(n)
0 (α+ iπ(1− n)b) =

W [U−1, Un](α+ iπ(1− n)b)

W [U0, U1]
= −ib2W [U−1, Un](α+ iπ(1− n)b)

(8.2.78)
we get

C(n)(α+ iπ(n− 1)b) = X̄(α− iπb)X̄(α+ iπ/b+ iπnb)− X̄(α+ iπ/b− iπb)X̄(α+ iπnb)

C(n)(α) = X̄(α− iπnb)X̄(α+ iπ/b+ iπb)− X̄(α+ iπ/b− iπnb)X̄(α+ iπb) (8.2.79)

In the case n = 1

T̄ (α) = −X̄(α+ iπb)X̄(α+ iπ/b− iπb) + X̄(α− iπb)X̄(α+ iπ/b+ iπb) (8.2.80)

We note that with respect to the seminar of V. Bazhanov[1] we got the opposite sign.

8.3 Liouville integrable structure

The works of Bazhanov, Lukyanov, A. B. Zamolodchikov,[7],[8] restricted consideration on the region
−∞ < c ≤ 1. In his unfinished work,[2] Al. Zamolodchikov tried to extend their considerations to the
region c > 1. In this subsection, we report and comment Zamolodchikov”s (somewhat non-rigorous)
definitions of the general Tj and Q operators (not just their void eigenvalues, as we are used to do).
Zamolodchikov considered the usual chiral free boson field

φ(u) = φ0 + P̂ u+
∑
n 6=0

a−n
in

einu (8.3.1)

but defined in a such a way as to be free from the parameter b (analogue of β, cf. (1.3.1) and (1.3.5) )

[am, an] =
1

2
mδm,n

[am, P ] = [am, φ0] = 0

[φ0, P ] =
i

2

(8.3.2)

(8.3.3)

(8.3.4)
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For any b, the eigenspace B(P ) of the operator P̂ with eigenvalue P is a highest weight representation
of V ir with central charge and conformal weight

c = 1 + 6Q2 = 13 + 6b2 + 6
1

b2
(8.3.5)

∆ =
Q2

4
− P 2 (8.3.6)

The corresponding highest weight vector is[30]

e2iPφ0 |p〉 (8.3.7)

As we observed in section 8.2.4, at variance with the minimal models case, now there are two different
kind of T operators. In fact, Zamolodchikov[2] considered two copies of vertex operators (cf. (1.3.6))
and of other quantities of quantum integrability

V±b =: exp (±2bφ(u)) : (8.3.8)

V±1/b =: exp (±2φ(u)/b) : (8.3.9)

Since there are two symmetries at infinity, two q parameters must also be defined (cf. (1.3.10))

q = eiπb
2

; q̃ = eiπ/b
2

(8.3.10)

As a consequence, Zamolodchikov had to consider also two quantum algebras Uq(sl(2)), and Uq̂(sl(2)),
whose generators have the commutation relations (cf. (1.3.9))

[H,E±] = ±2E± , [E+, E−] =
qH − q−H

q − q−1
(8.3.11)

[H̃, Ẽ±] = ±2Ẽ± , [Ẽ+, Ẽ−] =
q̃H − q̃−H

q̃ − q̃−1
(8.3.12)

Therefore, by analogy with the[8] foundational work for the minimal models, Zamolodhikov defined
the two Tj operators as

Tj(λ) = trπj

[
e2πibPHP exp

(
λ

∫ 2π

0

K(u)du
)]

(8.3.13)

T̃j(λ) = trπj

[
e2πiPH̃/bP exp

(
λ̃

∫ 2π

0

K̃(u)du
)]

(8.3.14)

where

K(u) = V−b(u)q
H
2 E+ + Vb(u)q−

H
2 E− (8.3.15)

K̃(u) = V−1/b(u)q̃
H̃
2 Ẽ+ + V1/b(u)q̃−

H
2 Ẽ− (8.3.16)

Similarly, Zamolodchikov[2] defined also two quantum oscillator algebras (cf. (1.4.1))

[H, E±] = ±2E± , qE+E− − q−1E−E+ =
1

q − q−1
(8.3.17)

[H̃, Ẽ±] = ±2Ẽ± , q̃Ẽ+Ẽ− − q̃−1Ẽ−Ẽ+ =
1

q̃ − q̃−1
(8.3.18)

However, he did not specify the Q operator expression relative to this algebra.
For the purpose of our ODE-IM construction, the main thing we have to note is that, for the large
energy (or rapidity) expansion of the T and Q functions, there are two different expansion parameters,
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rather than one (cf. the parameter λ in (1.3.21) and (1.6.6)). In fact, their dependence can be
deduced by (8.1.18). Explicitly[2]

λb ∝ eαb = eθQb (8.3.19)

λ1/b ∝ eα/b = eθQ/b (8.3.20)

However, Zamolodchikov did not specify the normalizations. We are going to fix them through the
leading order through the TBA matching.35

Comparing with λ in (1.5.7) we note that it coincides only with λb

λ = e
θ

1+ξ = eθ(1+b2) = eθQb = λb (8.3.21)

This means that our transformations to get the generalized Mathieu equation (8.1.19) somewhat
break the duality symmetry, as one can see by (8.1.18).

8.4 Minimal models analogue

We now stop our considerations on the Liouville model for an important comment: the previous
equation (8.1.10) up describes minimal models if 0 < β2 < 1. If we define

t = ȳ − a+ β ln
β2

4
(8.4.1)

the equation becomes{
− d2

dt2
+ ea/βet/β − Eβ

2

4

(β2

4

)−β2

eβaeβt +
β2

4

(
l +

1

2

)2}
ψ(t) = 0

And defining also a as

α̃ = − ln (−E)

2β
+
β2 − 1

2β
ln
β2

4
(8.4.2)

which means
E = −e−2βα̃

( 4

β2

)1−β2

(8.4.3)

Finally, we can write the new "Langer form" minimal models ODE-IM equation{
− d2

dt2
+ e(α̃+t)/β + eβ(−α̃+t) − P 2

}
ψ(t) = 0 (8.4.4)

Note the minus sign of P 2 and that now t in the two exponential appears always with the same sign,
while now α̃ does change sign. Only one of the two exponentials, evidently, dominates for β 6= 1, but
it is always the same for every t. This seems to make impossible the construction of the following
paragraph with two TQ systems. However, as it should be, one TQ system can be constructed.
At β = 1 this equation becomes{

− d2

dt2
+ (2ea)et − P 2

}
ψ(t) = 0 , β = 1 (8.4.5)

i.e. an exponential potential for the energy P 2.
35In particular, we shall find that the X̄(α) function which we used until now has an expansion in terms of eθQ,

even if the standard TBA function X(θ) has an expansion in K = eθ, if we define it by X(θ) = X̄(α) (see section 9
for further specifications).
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8.5 Modified Schrödinger form

Consider the Generalized Mathieu equation{
− d2

dy2
+ e(α+y)/b + e(α−y)b + P 2

}
ψ(y) = 0

we search a change of variable that would put it in the form apt for the large energy expansion{
− d2

dy′2
+ Λp(y′) + u(y′)

}
ψ(y) = 0 (8.5.1)

for some parameter Λ and functions p and u.
It suffices a simple shift of y

y = y′ + s s =
α(b− 1/b)

Q
=
α(b− 1/b)

b+ 1/b
(8.5.2)

2θ = (α− s)b =
(α+ s)

b

(8.5.3)

the new form is {
− d2

dy′2
+ e2θ(ey/b + e−yb) + P 2

}
ψ(y) = 0 (8.5.4)

with

θ =
α

Q
(8.5.5)

and Λ = e2θ, p(y) = ey/b + e−yb and u = P 2.
The symmetry transformations in the new parameter θ become

Ωb : α→ α+ iπb ⇐⇒ θ → θ + iπp

Ω1/b : α→ α+ iπ/b ⇐⇒ θ → θ + iπ(1− p)

(8.5.6)

(8.5.7)

being p = b/Q and 1− p = 1/bQ.
The same kind of transformation on the Langer form of the minimal models equation (8.4.4){

− d2

dt2
+ e(α̃+t)/β + eβ(−α̃+t) − P 2

}
ψ(y) = 0 (8.5.8)

requires the shift

t = y′ + s s =
a(1 + β2)

−1 + β2
(8.5.9)

so that the equation becomes{
− d2

dy′2
+ e2θ̃(ey

′/β + eβy
′
)− P 2

}
ψ(y′) = 0 (8.5.10)

where

2θ̃ =
a+ s

β
= (−a+ s)β =

2αβ

β2 − 1
(8.5.11)

θ̃ = α
β

β2 − 1
(8.5.12)
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8.6 Reflection amplitude

Following Zamolodchikov[2] we want to express U0 and U1 in (8.2.13) as

U0 '
1√
kr
e−kr <y → +∞ (8.6.1)

U1 '
1√
kr
e+kr <y → +∞ (8.6.2)

with
kr = 2be

α+y
2b

For example, we can set

k = (2b)Q/beα/b = (2b)Q/beθQ/b = (2beθ)Q/b (8.6.3)

r = (4b2eαb)−1/2b2ey/2b = (2b)−1/b2e−α/2bey/2b (8.6.4)

We rewrite the linear relation (8.2.31) shifting α→ α− iπb/2 (or θ → θ − iπp/2)

V0(y; θ) = −ib2X̄(θ + iπp)U0(y; θ) + ib2X̄(θ)U1(y; θ)

V0(y; θ − iπp/2) = −ib2X̄(θ + iπp/2)U0(y; θ + iπp/2) + ib2X̄(θ − iπp/2)U1(y; θ − iπp/2)

with the new parametrization

U0(y; θ) =
exp (ikr)√

kr

U0(y; θ − iπp/2) = i
exp (ikr − iπ/4)√

kr

V0(y; θ − iπp/2) = b2X̄(θ + iπp/2)
exp (ikr − iπ/4)√

kr
+ b2X̄(θ − iπp/2)

exp (−ikr + iπ4)√
kr

= eiπ/4b2X̄(θ − iπp/2)
[
S(k)

exp (ikr)√
kr

+
exp (−ikr)√

kr

]
Zamolodchikov[2] defined a reflection amplitude as

S(θ) = −i X̄(θ + iπp/2)

X̄(θ − iπp/2)
(8.6.5)

However, since the waves and variables are different, this is only formally a reflection amplitude, but
is not exactly the standard Liouville reflection amplitude.[30]
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9 Thermodynamic Bethe ansatz for Liouville model

9.1 X and T functions matching

The correct X function for the Sinh-Gordon or Liouville TBA of sections 3 (cf. (3.5.5) and (8.2.73))
is not X(α) defined in this section but a new function X̄(θ), defined by

X(θ) = X̄(α) (9.1.1)

with α = θQ from (8.5.5), so that X(θ) = X̄(θQ). The same discourse must be applied to the T
function

T (θ) = T̄ (α) (9.1.2)

In other words, one recovers the TBA constructions of the previous sections by a dilation of the
rapidity θ.
For example, the TQ relation is correctly expressed as (cf. (8.2.73))

T (θ)X(θ) = X(θ + iπp) +X(θ − iπp) (9.1.3)

simlarly, the TQ dual relation is matched (cf. (8.2.49))

T̃ (θ)X(θ) = X(θ + iπ(1− p)) +X(θ − iπ(1− p)) (9.1.4)

Another example is the X system for the argument α (cf. (8.2.34))

X(θ + iπ/2)X(θ − iπ/2) = 1 +X(θ + iaπ/2)X(θ − iaπ/2) (9.1.5)

As a consequence, for instance, even if the standard[29] asymptotic expansion of X(θ) for Liouville is
in terms of the parameter K = eθ

logX(θ) = −B̃0e
θ −

∞∑
n=1

B̃nI2n−1e
−(2n−1)θ (9.1.6)

we expect that the asymptotic expansion of X̄ to be in the parameter eαQ

log X̄(α) = −B̃0e
αQ −

∞∑
n=1

B̃nI2n−1e
−(2n−1)αQ (9.1.7)

The normalization constants are given by Lukyanov[29]

B̃n =

[
Γ(p2 )Γ( 1−p

2 )mR

8
√
πQ

]1−2nΓ( (2n−1)p
2 )Γ( (2n−1)(1−p)

2 )

2
√
πn!Q

(9.1.8)

9.2 Matching of large energy leading order

We estimate the large µ behaviour, by the semiclassical approximation to the differential equation
originally considered by Al. Zamolodchikov[2] (not Bazhanov[1])

− d2

dy2
ψ(y) +

[
P 2 + µ−e

−yb + µ+e
y/b
]
ψ(y) = 0 (9.2.1)

i.e., without making any choice of µ+ and µ−. In fact, as we already pointed out, Bazhanov’s
choice (8.1.20) is not consistent with TBA. Define, as Al. Zamolodchikov did[2]

p̄(y) = µ−e
−yb + µ+e

y/b (9.2.2)
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Now, at the leading order in µ− and µ+ (considering P 2 negligible)

W [V0, U0] ∼ 2
√
p̄(y)U0(y)V0(y) =

∫ ∞
−∞

dy′
√
p̄(y′) (9.2.3)

where the integral is understood as analytic continuation in b.∫ ∞
−∞

dy′
√
µ−e−yb + µ+ey/b = µ

1/2
−

∫ ∞
−∞

dy e−yb/2
[
1 +

µ+

µ−
eyQ
]1/2

y = y′ − 1

Q
ln
µ+

µ−

= µ
1/2
−

[
µ+

µ−

] b
2Q
∫ ∞
−∞

dy′ e−y
′b/2
[
1 + ey

′Q
]1/2

x = ey
′Q dy′ =

1

Q

dx

x

=
1

Q
µ

1/2
−

[
µ+

µ−

] b
2Q
∫ ∞

0

dxx−
b

2Q−1
[
1 + x

]1/2
x =

t

1− t
dx =

dt

(1− t)2

=
1

Q
µ

1/2
−

[
µ+

µ−

] b
2Q
∫ 1

0

dt (1− t)−2t−
b

2Q−1(1− t)
b

2Q+1(1− t)−1/2

=
1

Q
µ

1/2
−

[
µ+

µ−

] b
2Q
∫ 1

0

dt (1− t)−1/2+b/2Q−1t−
b

2Q−1

=
1

Q
µ

1−p
2
− µ

p
2
+

Γ(−p2 )Γ(− 1−p
2 )

Γ(− 1
2 )

(9.2.4)

that is, we reduced our integral to a Euler Beta function. We continue, using the reflection property
of the Gamma function∫ ∞

−∞
dy′
√
µ−e−yb + µ+ey/b = − 1

Q
µ

1−p
2
− µ

p
2
+

Γ( 3
2 )

Γ(1 + p
2 )Γ(1 + 1−p

2 )

π

sin (πp/2) sin (π(1− p)/2)

= − 1

Q
µ

1−p
2
− µ

p
2
+

1
2

√
ππ

Γ(p2 )Γ( 1−p
2 )

4

p(1− p)
1

sin (πp/2) cos (πp/2)

= −µ
1−p
2
− µ

p
2
+

2
√
ππQ

Γ(p2 )Γ( 1−p
2 )

1

b(Q− b)
1

sin (πp/2) cos (πp/2)

= −µ
1−p
2
− µ

p
2
+

4
√
ππQ

Γ(p2 )Γ( 1−p
2 )

1

sin (πp)
(9.2.5)

so we match Zamolodchikov’s[2] result. Zamolochikov noted that, notwithstanding the general
form (9.2.1) of the his Generalized Mathieu equation, by a sort of gauge symmetry, all its property
depend on the following combination of parameters µ+ and µ−.

µ = µb+µ
1/b
− (9.2.6)

so for the TBA matching at the leading order, comparing with (3.4.14), it must hold the equality

µ1/2Q 4
√
ππQ

Γ( bQ )Γ( 1
2bQ )

1

sin (πb/Q)
= eθ

π

2 sin (πb/Q)
(9.2.7)

so we infer that µ must be chosen as

µ = e2Qθµ̃ (9.2.8)

where µ̃ is

µ̃ =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]2Q

(9.2.9)

:= µ̃b+µ̃
1/b
− (9.2.10)
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and it has been parametrized in terms of some µ̃+ and µ̃− given by

µ̃B+ =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]Q/b
(9.2.11)

µ̃B− =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]Qb
(9.2.12)

This parametrization is convenient for a direct match with Bazhanov’s equation (8.1.19). In fact, if
we make a shift of α in

α→ α+Q ln

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]
(9.2.13)

− d2

dy2
ψ(y) +

[
P 2 + µ̃−e

αbe−yb + µ̃+e
α/bey/b

]
ψ(y) = 0 (9.2.14)

Alternatively, if we we consider Fioravanti’s "shifted equation" (8.5.4), which is more conveniently
for large energy expansion in the parameter eθ (recall that α = θQ) we must parametrize µ̃ in an
equal way, that iswith is

µ̃ = µ̃b+µ̃
1/b
− =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]2Q

(9.2.15)

µ̃+ =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]Q/b
(9.2.16)

µ̃− =

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]Qb
(9.2.17)

This parametrization is convenient, because if we make a shift of θ in Fioravanti’s equation (8.5.4)

θ → θL = θ + ln

[
Γ( b

2Q )Γ( 1
2bQ )

8
√
πQ

]
− d2

dy2
ψ(y) +

[
P 2 + µ̃1/Qe2θ

(
e−yb + ey/b

)]
ψ(y) = 0

(9.2.18)

(9.2.19)

We emphasize that the Generalized Mathieu equation in this form, that is, after both a shift in the
independent variable y and in the rapidity θ with respect to Bazhanov’s form,[1] is apt for the Liouville
ODE-IM analysis, because it matches the standard leading Sinh-Gordon TBA.? However, the previous
Fioravanti’s form (8.5.4), after only a shift in y, is apt for the N = 2 analysis.

9.2.1 Liouville TBA

Liouville TBA was already, formally, obtained from Sinh-Gordon TBA in (3.2.10). Anyway, we
report here that important result

ε = πeθL − ϕ ∗ log (1 + e−ε) (9.2.20)

where ϕ is the usual Sinh-Gordon kernel (3.2.4).
The b = 1 self dual case is particularly important, so we specify the TBA equation

ε = πeθL − 2ϕ̂ ∗ log (1 + e−ε) (9.2.21)

where we defined a new kernel
ˆϕ(θ) =

1

2π

1

cosh θL
(9.2.22)
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Note that because a = 0 at b = 1 the former kernel (3.2.4) is twice the present

ϕ(θL) = 2ϕ̂(θL) (9.2.23)

In fact, this definition was made because the factor 2 is crucial for further developments, as we are
going to show.

9.2.2 Speculations on the TBA for Q at the self dual point

We now concentrate in particular on the self dual case b = 1. It is important to note that, because
a = 0 for b = 1

Y (θ) = X2(θ) (9.2.24)

So in terms of the pseudoenergy the TBA is

ε(θ) = −Z1e
θ − 2

∫
l1

dθ′

2π

1

cosh (θ − θ′)
log (1 + e−ε(θ

′)) (9.2.25)

We can consider then also a new "pseudoenergy" εX for X, namely

X(θ) = e−εX(θ) εX(θ) =
1

2
ε(θ) (9.2.26)

Noting that
log (1 +X2) = log (1 + iX) + log (1− iX) (9.2.27)

we can write

εX(θ) = −1

2
Z1e

θ −
∫
l1

dθ′

2π

1

cosh (θ − θ′)

[
log (1 + e−εX(θ′)+iπ/2) + log (1 + e−εX(θ′)−iπ/2)

]
(9.2.28)

9.2.3 N = 2 TBA and proof of a conjecture by Gaiotto

Gaiotto, in his article,[37] considered the pure SU(2) gauge theory spectral curve

x2 =
1

z
+

u

z2
+

1

z3
(9.2.29)

which is reconducible to Seiberg-Witten spectral curve.[36] Gaiotto’s noted that setting u = 0, for
symmetry reasons his "TBA-like" integral equation for a certain XG(θ) reduces to (I set εG =

e−θ, ε′G = e−θ
′
)

logXG(θ) = +Z1e
θ − 2

e−θ

π

∫
l1

dθ′e−θ
′

e−2θ′ + e−2θ
log (1 +XG(θ)) (9.2.30)

which becomes

logXG(θ) = +Z1e
θ + 2

1

π

∫
l1

dθ′

e−θ′+θ + e−θ+θ′
log (1 +XG(θ))

= Z1e
θ + 2

∫
l1

dθ′

2π

1

cosh (θ − θ′)
log (1 +XG(θ)) (9.2.31)

In order for this to actually be N = 2 TBA Z1 must be such that

eθL−θZ1 = πZ1 = πe−(θ−θL) = π
8
√
πQ

Γ( b
2Q )Γ( 1

2bQ )
(9.2.32)
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Gaiotto reported also that numerical evidence gave suggested him the following candidate as
Schrödinger operator (u 6= 0)

−ε2G∂2
z +

1

z
+
u− ε2/4

z2
+

1

z3
(9.2.33)

which corresponds exactly to our own with b = 1.

ε2∂2
z +

1

z
+
u− ε2/4

z2
+

1

z3
(9.2.34)

Consider the generalized Mathieu equation on the imaginary axis x = −iy, set ε = e−θ and u = P 2ε2{
d2

dx2
+

1

ε2

[
eix/b + e−ibx + u

]}
ψ(x) = 0 (9.2.35)

Now change variable z = eix/b and φ(z) =
√
zψ(z), the equation becomes{

− d2

dz2
+

1

ε2
b2

z2

[
z + u+

1

zb2

]
− 1

4

}
φ(z) = 0

or {
− d2

dz2
+

1

ε2

[b2
z

+
b2u

z2
+

b2

zb2+2

]
− 1

4

}
φ(z) = 0 (9.2.36)

We could also choose t = e−ix/b and obtain{
− d2

dt2
+

1

ε2
1

b2t2

[
t+ u+

1

t1/b2

]
− 1

4

}
φ(t) = 0{

− d2

dt2
+

1

ε2

[ 1

b2t
+
u

b2
+

1

b2t1/b2+2

]
− 1

4

}
φ(t) = 0 (9.2.37)

We note that, in the general Liouville case with parameter b 6= 1, the operator contains rational
powers. Thanks to the duality, we can always consider 0 < b ≤ 1.
However, Gaiotto’s equation should refer to Y , because of the integrand of the convolution.

XG(θ) = Y (θ) = X2(θ) (9.2.38)
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10 Local integrals of motion for Liouville model

In this section we use the Gelfand Dikii polynomials to calculate the Baxter’s Q function for the
Liouville model (9.1.6).

Q(θ) = W [V0, U0](α) (10.0.1)

where we considered rescaling X(θ) = X̄(α) in (9.1.1). Given the subdominant solution U0, around
y → +∞ and the subdominant solution V0, around y → −∞, defined as

U0 = exp

{
−
∫ ∞
y

dy′
√
p(y′)S(y′)

}
(10.0.2)

V0 = exp

{∫ y

−∞
dy′
√
p(y′)S(y′)

}
(10.0.3)

where p(y) = ey/b+e−yb, directly by Fioravanti’s modified Schrödinger form (8.5.4) for the generalized
Mathieu equation. Following Dorey and Tateo’s suggestion (2.4.9), to calculate the Baxter’s Q function
as the regularized solution of (8.1.1) for x→ 0. From the transformations of variable we made (8.1.21),
it is evident that x → 0 in the minimal models case[14] corresponds to y → +∞ in Liouville case.
Therefore, we can assume that the wronskian (10.0.1) can be calculated as

Q(θ) = lim
y→−∞

U0(y) = exp

{∫ ∞
−∞

dy′
√
p(y′)S(y′)

}
(10.0.4)

In fact, we already checked in subsection 9.2 that the leading order matches the TBA result for Q.
Note that this expression coincides with U0V0 and that there is no need for regularization. If this
assumption is correct, by the asymptotic expansion

Q(θ) ' exp

{ ∞∑
n=0

(−Λ)n−1/2
(
− 1

2n− 1

)∫ ∞
−∞

dz
√
p(z′)Rn(z′)

}
Λ = e2θ →∞ (10.0.5)

we must find the local integrals of motion; thereby giving an "a posteriori proof", in subsection 10.2.
Note that in (10.0.5) we took into account also Fioravanti’s theorem (4.4.1). More explicitly, in order
to match the leading order, as already discussed in subsection 9.2, it is necessary to shift the rapidity
in the Fioravanti’s form of the Generalized Mathieu equation

θ → θL = θ + ln
Γ(p2 )Γ( 1−p

2 )

8
√
πQ

(10.0.6)

we then must find the asymptotic expansion (9.1.6)

Q(θ) ' exp

{
−
∞∑
n=0

B̃nI2n−1e
−(2n−1)θ

}
(10.0.7)

with exactly Lukyanov’s normalization constants (9.1.8).

10.1 Gelfand Dikii coefficients recursion in the Liouville case

The Gelfand-Dikii recursion36 is obtained from the general one (4.3.23), remembering that, for the
Liouville model, the "Bäcklund coefficient" u = P 2.

dRn+1

dy
= −1

4

1

p

d3Rn
dy3

+
3

8

p′

p2

d2Rn
dy2

+
(P 2

p
+

3

8

p′′

p2
− 9

16

p
′2

p3

)dRn
dy

+
(
−P

2

2

p′

p2
+

1

8

p′′′

p2
− 9

16

p′′p′

p3
+

15

32

p
′3

p4

)
Rn (10.1.1)

36Following the conventiions of[16]
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We rewrite the "Bäcklund coefficient" p

p(y) = e−yb + ey/b = e−ybρ(y)−1 (10.1.2)

in terms of a convenient function ρ

ρ(y) =
1

1 + eyQ
= e−ybp−1(y) (10.1.3)

From direct inspection (cf. (10.1.44) and (10.1.51)) of the first polynomials, we conjecture the general
form for Rn

Rn(y) =

3n∑
m=n

anme
nbyρ(y)m =

3n∑
m=n

anme
nby(1 + eyQ)−m (10.1.4)

=

3n∑
m=n

anme
(n−m)by[e−by(1 + eyQ)]−m

=

3n∑
m=n

anme
(n−m)byp(y)−m (10.1.5)

We list some useful expressions for derivatives and powers of p in terms of the function ρ. For the
first derivative:

p′

p
=

1

b
−Qρ (10.1.6)

In fact,

p′ =
1

b
e
y
b − be−by =

1

b
(e

y
b + e−by)−Qe−by =

1

b
p−Qe−by

the following expressions are proved similarly. For the second derivative:

p′′

p
=

1

b2
+ (Q2 − 2

Q

b
)
e−by

p
(10.1.7)

In fact,

p′′ =
1

b2
e
y
b + b2e−by =

1

b2
(e

y
b + e−by) + (b2 − 1

b2
)e−by

b2 − 1

b2
= Q2 − 2

Q

b

It is convenient to reorder the terms rewrite them through the Q parameter, both for computational
clarity and for theoretical understanding. For the third derivative:

p′′′

p
=

1

b3
+
[
−Q3 + 3Q

]
ρ (10.1.8)

In fact,

p′′′ =
1

b3
e
y
b − b3e−by =

1

b3
(e

y
b + e−by)− (b3 +

1

b3
)e−by

b3 +
1

b3
= Q3 − 3Q

For our purposes, it is enough to calculate and rearrange only the first three derivatives, since the
remaining quantities we need are simple products of these.

p
′2

p2
=

1

b2
− 2

Q

b
e−by

1

p
+Q2e−2by 1

p2
(10.1.9)

p′′p′

p2
=

1

b3
+
[Q2

b
− 3

Q

b2

]
ρ+

[
−Q3 + 2

Q2

b

]
ρ2 (10.1.10)

p
′3

p3
=

1

b3
− 3

Q

b2
e−by

1

p
+ 3Q2 1

b
e−2by 1

p2
−Q3e−3by 1

p3
(10.1.11)
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The Gelfand-Dikii recursion relation (10.1.1) becomes

p
dRn+1

dy
= −1

4

d3Rn
dy3

+
[3

8

1

b
− 3

8
Qρ
]d2Rn
dy2

+
[
P 2 − 3

16

1

b2
+
(3

8
Q+

3

8

1

b

)
Qρ− 9

16
Q2ρ2

]dRn
dy

+
[
−P

2

2

1

b
+

1

32

1

b3
+
(P 2

2
− 1

8
Q2 − 3

16

Q

b
− 3

32

1

b2

)
Qρ+

( 9

16
Q+

9

32

1

b

)
Q2ρ2 − 15

32
Q3ρ3

]
Rn

(10.1.12)

The derivatives of the Gelfand Dikii polynomial (10.1.5) are the trickier part of the calculation. For
their computations, it is useful to express the derivative of ρ in term of ρ-itself.

ρ′

ρ
= −Q+Qρ (10.1.13)

The first derivative of the Gelfand Dikii polynomial is

R′n(y) =

3n∑
m=n

anm

{
e(n−m)byp−m[nb−mQ] +mQe(n−m−1)byp−m−1

}
=

3n∑
m=n

anme
(n−m)byp−m

{
[nb−mQ] +mQe−byp−1

}
(10.1.14)

The second derivative of the Gelfand Dikii polynomial is

R′′n(y) =

3n∑
m=n

anm

{
[nb−mQ]2e(n−m)byp−m

+mQ[2nb− (2m+ 1)Q]e(n−m−1)byp−m−1 +m(m+ 1)Q2e(n−m−2)byp−m−2
}

(10.1.15)

=

3n∑
m=n

anme
(n−m)byp−m

{
[nb−mQ]2 +mQ[2nb− (2m+ 1)Q]e−byp−1

+m(m+ 1)Q2e−2byp−2
}

(10.1.16)

The third derivative of the Gelfand Dikii polynomial is

R′′′n (y) =

3n∑
m=n

anm

{
[nb−mQ]3e(n−m)byp−m

+
{

[2nmbQ− (2m+ 1)mQ2][nb− (m+ 1)Q] +mQ[nb−mQ]2
}
e(n−m−1)byp−m−1

+m(m+ 1)Q2
{

[nb− (m+ 1)Q] + [2nb− (2m+ 1)Q]
}
e(n−m−2)byp−m−2

+m(m+ 1)(m+ 2)Q3e(n−m−3)byp−m−3
}

(10.1.17)

=

3n∑
m=n

anme
(n−m+1/2)byp−m

{
[nb−mQ]3

+mQ
[
(3m2 + 3m+ 1)Q2 − (6nm+ 3n)bQ+ 3n2b2

]
e−byp−1

+m(m+ 1)Q2[3nb− (3m+ 3)Q]e−2byp−2 +m(m+ 1)(m+ 2)Q3e−3byp−3
}

(10.1.18)
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We now expand the n-th side of the Gelfand-Dikii recursion

3n∑
m=n

{{
−1

4
[nb−mQ]3 − 1

4
mQ

[
(3m2 + 3m+ 1)Q2 − (6nm+ 3n)bQ+ 3n2b2

]
ρ

− 1

4
m(m+ 1)Q2[3nb− (3m+ 3)Q]ρ2 − 1

4
m(m+ 1)(m+ 2)Q3ρ3

}
+
{ 3

8b
[nb−mQ]2 +

3

8

Q

b
m[2nb− (2m+ 1)Q]ρ+

3

8b
m(m+ 1)Q2ρ2

}
+
{
−3

8
Q[nb−mQ]2ρ− 3

8
mQ2[2nb− (2m+ 1)Q]ρ2 − 3

8
m(m+ 1)Q3ρ3

}
+
[
P 2 − 3

16

1

b2
+

3

8

(
Q2 +

Q

b

)
ρ− 9

16
Q2ρ2

]
(nb−mQ) +

[
P 2 − 3

16

1

b2
+

3

8

(
Q2 +

Q

b

)
ρ− 9

16
Q2ρ2

]
mQρ

+
[
−P

2

2

1

b
+

1

32

1

b3
+
(P 2

2
− 1

8
Q2 +

3

8
− 9

16

Q

b
+

9

32

1

b2

)
Qρ+

( 9

16
Q+

9

32

1

b

)
Q2ρ2 − 15

32
Q3ρ3

]}
an,mρ

menby

Expanding also the derivatives of the Gelfand Dikii polynomial in powers of ρ and restoring integration
one finds∮

dy
√
p

∫ y

dy′
3n+3∑
m=n+1

an+1,me
(n+1)byρm

{
[(n+ 1)b−mQ] +mQρ

}

=

∮
dy
√
p

∫ y

dy′
3n∑
m=n

an,me
nby 1

p
ρm
{
B1(n,m) +B2(n,m)ρ+B3(n,m)ρ2 +B4(n,m)ρ3

}
(10.1.19)

where

B1(n,m) = −1

4
[nb−mQ]3 +

3

8b
[nb−mQ]2 +

(
P 2 − 3

16b2

)
[nb−mQ] +

(
−P

2

2b
+

1

32b3

)
(10.1.20)

B2(n,m) = Q3
[
−3

4
m3 − 15

8
m2 − 25

16
m− 13

32

]
+Q2b

[3

2
(n+

1

2
)(m+

1

2
)(m+ 1)

]
+Qb2

[
−3

4
(m+

1

2
)(n+

1

2
)2
]

+ P 2Q(m+
1

2
) (10.1.21)

B3(n,m) =
3

4
(m+

1

2
)(m+

3

2
)2Q3 − 3

4
(n+

1

2
)(m+

1

2
)(m+

3

2
)bQ2 (10.1.22)

B4(m) = −1

4
(m+

1

2
)(m+

3

2
)(m+

5

2
)Q3 (10.1.23)

We observe that the k-th power of ρ (k = 0, 1, 2, 3) always multiplies at least the same k-th power of
Q. The proper basis function therefore appears to be r(y) = Qρ(y). However, we shall continue to
use ρ(y) in order not to add further complexity to our calculations.
Since

e(n+1)byρm = enbyp−1ρm

enbyρm = enbyρm+1

for trivial theorems of integration theory we can write∮
dy
√
p

∫ y

dy′
3n+3∑
m=n+1

an+1,mρ
m

{
[(n+ 1)b−mQ] +mQρ

}

=

∮
dy
√
p

∫ y

dy′
3n∑
m=n

an,mρ
m

{
B1(n,m)ρ+B2(n,m)ρ2 +B3(n,m)ρ3 +B4(n,m)ρ4

}
(10.1.24)
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It will be also convenient to define

A0(n+ 1,m) = (n+ 1)b−mQ (10.1.25)

A1(m) = mQ (10.1.26)

The Gelfand Dikii recursion relation for the coefficients is

A0(n+ 1,m)an+1,m +A1(m− 1)an+1,m−1 = B1(n,m− 1)an,m−1 +B2(n,m− 2)an,m−2 (10.1.27)

+B3(n,m− 3)an,m−3 +B4(m− 4)an,m−4 (10.1.28)

up to null terms for the lowest and highest values of m.
We now repeat exactly the derivation already done in the minimal models case.
We note that this recursion relations for the coefficients does not give explicitly the single coefficient
an+1,m in terms of the coefficients an,k, for some ks, but give a linear combination of coefficients
of the polynomial Rn+1 in terms of the coefficients of Rn. For the n+ 1-th side we must therefore
consider the upper triangular matrix An defined as

An =



A1(n+ 1) An+1
0 (n+ 2) . . . 0 0 . . . 0 0

0 A1(n+ 2) . . . 0 0 . . . 0 0
...

...
. . .

...
0 0 . . . A1(m) An+1

0 (m+ 1) . . . 0 0

0 0 . . . 0 A1(m+ 1) . . . 0 0
... . . .

. . .
...

0 0 . . . 0 0 . . . A1(3n+ 2) An+1
0 (3n+ 3)

0 0 . . . 0 0 . . . 0 A1(3n+ 3)


(10.1.29)

The first line correspond to an equation which would be identically satisfied when multiplied by an,m,
it is not linearly independent. We have deleted it so as to be able to define a determinant, which also
does not vanish

detAn =

3n+3∏
j=n+1

A1(m) (10.1.30)

= Q2n+3 (3n+ 3)!

n!
(10.1.31)

We want to use the Cramer method to solve the linear non homogeneous system generated by the
coefficients recursion relation. We schematically write this system as

Anan+1 = bk (10.1.32)

where clearly by an+1 we denote the vector of all the (a priori) non null components an+1,m ,
m = n + 1, n + 2, ...3n + 3 and by bk = bk[an] we denote the functional of the coefficients of an
established by the recursion relation (5.1.15)
Therefore we define the modified matrix of coefficients Anm whose determinant,divided by the
determinant of An, gives us the coefficient an+1,m
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Anm =



A1(n+ 1) An+1
0 (n+ 2) . . . b1 0 . . . 0 0

0 A1(n+ 2) . . . b2 0 . . . 0 0
...

. . .
...

0 0 . . . bm An+1
0 (m+ 1) . . . 0 0

0 0 . . . bm+1 A1(m+ 1) . . . 0 0
... . . .

...
. . .

...
0 0 . . . b3n+2 0 . . . A1(3n+ 2) An+1

0 (3n+ 3)

0 0 . . . b3n+3 0 . . . 0 A1(3n+ 3)


(10.1.33)

detAmn =

m−1∏
j=n+1

A1(j)

3n+3∑
k=m

(−1)k−mbk

[
A0(n+ 1,m+ 1) · · ·A0(n+ 1, k)A1(n, k + 1) · · ·

· · ·A1(3n+ 3)
]

(10.1.34)

an+1,m =

∑3n+3
k=m (−1)k−mbk

[
A0(n+ 1,m+ 1) · · ·A0(n+ 1, k)A1(k + 1) · · ·A1(3n+ 3)

]
∏3n+3
j=m A1(j)

(10.1.35)

We can finally write the expression for the an+1,m coefficient

an+1,m =

∑3n+3
k=m (−1)k−mbk

[
(−Q)k−m

Γ(− (n+1)b
Q +k+1)

Γ(− (n+1)b
Q +m+1)

Q3n+3−k (3n+3)!
k!

]
Q3n+4−m (3n+3)!

(m−1)!

=
1

Q

3n+3∑
k=m

(m− 1)!

k!

Γ(− (n+1)b
Q + k + 1)

Γ(− (n+1)b
Q +m+ 1)

bk

=
1

Q

3n+3∑
k=m

(m− 1)!

k!

Γ(− (n+1)b
Q + k + 1)

Γ(− (n+1)b
Q +m+ 1)

[
B1(n, k)an,k +B2(n, k − 1)an,k−1

+B3(n, k − 2)an,k−2 +B4(n, k − 3)an,k−3

]
(10.1.36)

where the Bi+1(n, k − i) are polynomials up to the third degree in k and n. With the understanding
that for k = m the ratio of Gamma functions is one.
We now write this recursion more symmetrically, shifting the index m to m+ 1 and redefining the
Bk functions as

B̂k−1(n,m) = Bk(n,m) k = 1, 2, 3, 4 (10.1.37)

We write the final formula as

an+1,m+1 =
m!

Q

3n+3∑
k=m+1

1

k!

Γ(− (n+1)b
Q + k + 1)

Γ(− (n+1)b
Q +m+ 2)

[
B̂0(n, k)an,k + B̂1(n, k − 1)an,k−1

+ B̂2(n, k − 2)an,k−2 + B̂3(n, k − 3)an,k−3

]
(10.1.38)

10.1.1 Test

In this paragraph we test the correctness of the recursion found for the Gelfand-Dikii coeffients (10.1.38).
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The Bäcklund potential for the Liouville case is explicitly given by

U(y) =
P 2

ey/b + e−yb
+

1

4

1
b2 e

y/b + b2e−yb

(ey/b + e−yb)2
− 5

16

1
b2 e

2y/b − 2ey/b−yb + b2e−2yb

(ey/b + e−yb)3
(10.1.39)

we now rearrange and simplify it in order to find its coefficients with respect to the Gelfand-Dikii
basis

U(y) = P 2 eyb

1 + eyQ
+

1

4b2
eybeyQ

(1 + eyQ)2
+

1

4
b2

eyb

(1 + eyQ)2
− 5

16b2
eybe2yQ

(1 + eyQ)3

+
5

8

eybeyQ

(1 + eyQ)3
− 5

16
b2

eyb

(1 + eyQ)3

= eyb
[

1

1 + eyQ

(
P 2 − 1

16

1

b2

)
+

1

(1 + eyQ)2

(1

4
b2 +

5

8
+

3

8

1

b2

)
+

1

(1 + eyQ)3

(
− 5

16
b2 − 5

8
− 5

16

1

b2

)]
(10.1.40)

Hence, the Gelfand Dikii polynomial R1 = 1/2U has the coefficients

a11 =
P 2

2
− 1

32

1

b2
(10.1.41)

a12 =
1

8
b2 +

5

16
+

3

16

1

b2
(10.1.42)

a13 = − 5

32
Q2 (10.1.43)

In terms of the variable ρ, the first Gelfand-Dikii polynomial can be written succintly as

R1(y) = eby
[
a11ρ+ a12ρ

2 + a13ρ
3
]

(10.1.44)

The coefficients of R1 have been tested (R0 = 1→ R1) from (10.1.38).
The second Gelfand Dikii polynomial is

R2(w) =
3

8
U2(w)− 1

8

d2

dw2
U(w) =

3

8
U2(y)− 1

8

(1

p

d2

dy2
U(y)− 1

2

p′

p2

d

dy
U(y)

)
(10.1.45)

By direct calculation we find

a26 =
1155

2048
Q4 (10.1.46)

a25 = −1155

512

Q3

b
+

231

256

(
−Q2 + 2

Q

b

)
Q3 (10.1.47)

a24 =
7
(
b2 + 1

)2 (
56b4 + b2

(
184− 80P 2

)
+ 155

)
1024b4

(10.1.48)

a23 = −
(
b2 + 1

) (
2b2 + 5

) (
8b4 + b2

(
28− 80P 2

)
+ 29

)
512b4

(10.1.49)

a22 =
27

2048
b4 − 15P 2

64b2
+

3P 4

8
(10.1.50)

In terms of the variable ρ, the first Gelfand-Dikii polynomial can be written written succintly as

R2(y) = e2by
[
a22ρ

2 + a23ρ
3 + a24ρ

4 + a25ρ
5 + a26ρ

6
]

(10.1.51)

Also the coefficients of R2 given by (10.1.38) have been tested succesfully.
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10.2 Liouville local integrals of motion

10.2.1 Basis for integrals

The general Gelfand Dikii polynomial Rn has been expressed in terms of the just considered coefficients
an,m of its expansion in the basis e(n−m)byp−m, for (n ≤ m ≤ 3n).

Rn(y) =

3n∑
m=n

an,me
(n−m)byp−m =

3n∑
m=n

an,me
nbyρm (10.2.1)

Since the integration measure implies multiplication by the factor √p, in general, the basic integrals
can be reduced to Mellin transforms by the change of variable x = eyQ.

Jmn :=

∫ ∞
−∞

dy
eyb(2n−1)/2

(1 + eyQ)(2m−1)/2∫ ∞
−∞

dy
eyb(2n−1)/2

(1 + eyQ)(2m−1)/2
=

∫ ∞
−∞

dy
eyQp(2n−1)/2

(1 + eyQ)(2m−1)/2

=
1

Q

∫ ∞
0

dxx(n− 1
2 )p−1 1

(1 + x)m−1/2

It is more convenient to make a change of variable t−1 = 1 + x and reduce the Mellin transform to a
Euler Beta function∫ ∞

0

dxx(n− 1
2 )p−1 1

(1 + x)m−1/2
=

∫ 1

0

dt

t2
tm−1/2

(1− t
t

)(n−1/2)p−1

=

∫ 1

0

dt tm−1/2−(n−1/2)p−1(1− t)(n−1/2)p−1

= B
(

(n− 1/2)p,m− 1/2− (n− 1/2)p
)

= B
(

(n− 1/2)
b

Q
,m− 1/2− (n− 1/2)

b

Q

)

Jmn =
1

Q

Γ
(

(n− 1/2) bQ

)
Γ
(
m− 1/2− (n− 1/2) bQ

)
Γ(m− 1/2)

(10.2.2)

10.2.2 Expansion in local charges

In order to match the leading order, as we discussed in subsection 9.2, we need to shift the rapidity

θ → θL = θ + ln
Γ(p2 )Γ( 1−p

2 )

8
√
πQ

(10.2.3)

As a consequence, the expansion (10.0.5) becomes, for θ → +∞

logQ ∼
∞∑
n=0

(−1)neθ(1−2n)

[
Γ(p2 )Γ( 1−p

2 )

8
√
πQ

]1−2n 3n∑
m=n

[
− 1

n− 1
2

Γ( (2n−1)p
2 )Γ(− (2n−1)p

2 +m− 1
2 )

2Γ(m− 1
2 )Q

an,m

]

= (−1)n+1
∞∑
n=0

eθ(1−2n)

[
Γ(p2 )Γ( 1−p

2 )

8
√
πQ

]1−2nΓ( (2n−1)p
2 )Γ( (2n−1)(1−p)

2 )

(n− 1
2 )2Γ(n− 1

2 )Q
×

×
3n∑
m=n

[
Γ( (2n−1)(1−p)

2 +m− n)Γ(n− 1
2 )

Γ( (2n−1)(1−p)
2 )Γ(n− 1

2 +m− n)
an,m

]
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For the elementary property
Γ(n+

1

2
) =
√
π2−n(2n− 1)!! (10.2.4)

or
Γ(n+

1

2
) =
√
π2−n(2n)!!

(2n− 1)!!

(2n)!!
=
√
πn!

(2n− 1)!!

(2n)!!
(10.2.5)

we continue obtain a the correct factorial of n, to match the conventions for the normalization
constants (9.1.8). We thus continue, also multiplying and dividing by the mass parameter

logQ = −
∞∑
n=0

eθ(1−2n)

[
Γ(p2 )Γ( 1−p

2 )mR

8
√
πQ

]1−2nΓ( (2n−1)p
2 )Γ( (2n−1)(1−p)

2 )

2
√
πn!Q

×

{
(−1)nm2n−1 (2n)!!

(2n− 1)!!

Γ( (2n−1)(1−p)
2 +m− n)Γ(n− 1

2 )

Γ( (2n−1)(1−p)
2 )Γ(n− 1

2 +m− n)
an,m

}

= −
∞∑
n=0

eθ(1−2n)B̃nI2n−1

where the normalization constant perfectly matches that of Lukyanov [29]

B̃n =
Γ(p2 )Γ( 1−p

2 )mR

8
√
πQ

]1−2nΓ( (2n−1)p
2 )Γ( (2n−1)(1−p)

2 )

2
√
πn!Q

(10.2.6)

and the local integral of motions (or local charges) are expressed as

I2n−1 = (mR)2n−1(−1)n
(2n)!!

(2n− 1)!!

3n∑
m=n

Γ( 2n−1
2 )

Γ( 2n−1
2 +m− n)

Γ( (2n−1)(1−p)
2 +m− n)

Γ( (2n−1)(1−p)
2 )

an,m (10.2.7)

= (mR)2n−1(−1)n
(2n)!!

(2n− 1)!!

3n∑
m=n

m−n−1∏
l=0

[
(n− 1

2 )(1− p) + l
]

[
(n− 1

2 ) + l
] an,m (10.2.8)

= (mR)2n−1(−1)n
(2n)!!

(2n− 1)!!

3n∑
m=n

{
m−n−1∏
l=0

[
1−

(n− 1
2 )p

n− 1
2 + l

]
an,m

}
(10.2.9)

(10.2.10)

The final formula for Liouville integrals of motion is

I2n−1(b;P )

(mR)2n−1
= (−1)n

(2n)!!

(2n− 1)!!

3n∑
m=n

{
m−n−1∏
l=0

[
1−

(n− 1
2 ) bQ

n− 1
2 + l

]
an,m(b;P )

}
(10.2.11)

10.2.3 Test

We now test the correctness of our formula (10.2.11). We calculate I1 and I3 and compare our results
with those of[29] and.[10] For n = 1, (10.2.11) gives

I1
mR

= −2

{
a11 +

(
1− b

Q

)
a12 +

(
1− b

Q

)(
1− b

3Q

)
a13

}
(10.2.12)

= −P 2 − 1

24
= ∆− Q2

4
− 1

24
= ∆− c

24
(10.2.13)
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For n = 2, (10.2.11) gives

I3
(mR)3

=
8

3

{
a22 +

(
1− b

Q

)
a23 +

(
1− b

Q

)(
1− 3b

5Q

)
a24 (10.2.14)

+
(

1− b

Q

)(
1− 3b

5Q

)(
1− 3b

7Q

)
a25 +

(
1− b

Q

)(
1− 3b

5Q

)(
1− 3b

7Q

)(
1− 3b

9Q

)
a26

}
(10.2.15)

=
8

3

[
3

8
P 2 +

3

32
P 2 +

4b4 + 17b2 + 4

2560b2

]
= P 4 +

P 2

4
+

4b4 + 17b2 + 4

960b2
(10.2.16)

= ∆2 − (c+ 2)

12
∆ +

c(5c+ 22)

2880
(10.2.17)

10.3 Universality of Gelfand-Dikii recursion

We collate here the two Gelfand-Dikii recursions

an+1,m+1 =
m!

Q

3n+3∑
k=m+1

1

k!

Γ(− (n+1)b
Q + k + 1)

Γ(− (n+1)b
Q +m+ 2)

[
B̂0(n, k)an,k + B̂1(n, k − 1)an,k−1

+ B̂2(n, k − 2)an,k−2 + B̂3(n, k − 3)an,k−3

]
ân+1,m+1 =

(−1)mm!

2M

3n+3∑
k=m+1

(−1)k

k!

Γ(n+1
M + k + 1)

Γ(n+1
M +m+ 2)

×

×
[
B̂0(n, k)ân,k + B̂1(n, k − 1)ân,k−1 + B̂2(n, k − 2)ân,k−2 + B̂3(n, k − 3)ân,k−3

]
We note that not only the recursion is of the same form, but its terms its coefficients are of the
same form. In fact, by analytic continuation, 1

M = − b
Q . The reason for this equality is, simply put,

that both the local integrals of motion I2n−1 are the same (if expressed in terms of the conformal
parameters) and also the normalization constant B̃n is the same.
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11 Proof of Zamolodchikov’s fundamental relation for self-dual

Liouville

The Generalized Mathieu equation at the self dual point of the Liouville coupling b = 1 reduces to
the the modified-Mathieu equation.[26]

− d2

dy2
u(y) + (P 2 + 2eα cosh y)ψ(y) b = 1 (11.0.1)

If we change variable so as to consider this equation on the imaginary axis

y = −iz

we get the well known Mathieu equation

d2

dz2
u(z) + (P 2 + 2eα cos z)ψ(z) = 0 (11.0.2)

It is well known that, as a consequence of Floquet theorem,[24] there exist a particular solution f(z)

of the Mathieu equation for which the following monodromy relation [26] holds

f(z + 2πν) = e2πνf(z) (11.0.3)

where ν is called Floquet index.
In his draft,[2] Al. Zamolodchikov conjectured that the Baxter’s T function for the self dual Liouville
model (b = 1) is exactly equal to the cosine of the Floquet index. In particular,[2][1]

T (α) = 2 cos 2πν (11.0.4)

In his seminar[1] told that Zamolodhikov proved this interesting relation. However, there is no
analytical proof in Al. Zamolodchikov’s draft,[2] but only numerical computations. In this section,
we are going to give two different proofs of this relation. The first proof we give is directly through
Floquet theorem and is exact ; the second proof we give is through the calculation of the complete
asymptotic expansion of T and ν and thus is just an asymptotic proof.

11.1 Proof by Floquet theory

11.1.1 Floquet theorem and Hill determinant

Note that the points at infinity transform as

<y → ±∞ ←→ =z → ±∞ (11.1.1)

while the Stokes sectors of C for the Mathieu equation are[26]

D̄+
k = {z ∈ C|(2k − 1)π < =(−iz) < (2k + 1)π}, k ∈ Z

D̄−k = {z ∈ C|(2k − 1)π < =(−iz) < (2k + 1)π}, k ∈ Z

D̄+
k = {z ∈ C|(2k − 1)π < <z < (2k + 1)π}, k ∈ Z (11.1.2)

D̄−k = {z ∈ C|(2k − 1)π < <z < (2k + 1)π}, k ∈ Z (11.1.3)

In order to match exactly the standard Mathieu equation we simply divide by two the coordinate

z = 2z′ (11.1.4)
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so that the periodicity of the Mathieu equation becomes π, rather than 2π.

d2

dz′2
u(z′) + (4P 2 + 8eα cos 2z′)u(z′) = 0 (11.1.5)

The Mathieu equation is a particular case of the Hill equation[24]

d2u

dz′2
u(z′) +

(
θ0 + 2

∞∑
n=1

θn cos 2nz′
)
u(z′) = 0 (11.1.6)

with
θ0 = 4P 2 θ±1 = 4eα (11.1.7)

the other parameters being zero. In the following, we shall drop the prime from z.
According to Floquet theorem,[24] the Mathieu equation has two linearly independent solutions which
factorize into an exponential part and a periodic part. They can be written as

f1(z) = eiνzp(z) f2(z) = e−iνzp(−z) (11.1.8)

where the function p(x) is even37 and periodic: p(x+2π) = p(x). The (parameter dependent) number
ν is called Floquet index.
Following the standard[24] and,[1] we expand in modes the Bloch eigenfunctions of the Floquet
theorem

f±(z) = e±2iνzp(±z)

p±(z) =

k=+∞∑
k=−∞

p̂±(k)e2ikz p(±(z + π)) = p(±z)

(11.1.9)

(11.1.10)

Then, by substituting these expressions in the Mathieu equation, we find
∞∑

k=−∞

(2iν + 2ik)2bke
(2ν+2ik)z +

( 1∑
n=−1

θne
2inz

)( ∞∑
k=−∞

bke
(2ν+2ik)z

)
= 0 (11.1.11)

and equating the coefficients of the same exponentials e(2ν+2ik)z

(2iν + 2ik)2pk + θ−1pk+1 + θ0pk + θ1pk−1 = 0 (11.1.12)

It is clear that, in order for the modes pk to be all non-null the determinant of the following matrix
must be zero

(−2ν + 4)2 − θ0 −θ1 0 0 0

−θ1 (−2ν + 2)2 − θ0 −θ1 0 0

0 −θ1 (−2ν)2 − θ0 −θ1 0

0 0 −θ1 (−2ν − 2)2 − θ0 −θ1

0 0 0 −θ1 (−2ν − 4)2 − θ0


(11.1.13)

To be precise, in the standard definition of Hill’s determinant each line is multiplied by a suitable
factor

∆(−ν) = det



(−2ν+4)2−θ0
42−θ0

−θ1
42−θ0 0 0 0

−θ1
22−θ0

(−2ν+2)2−θ0
22−θ0

−θ1
22−θ0 0 0

0 −θ1
02−θ0

(−2ν)2−θ0
02−θ0

−θ1
02−θ0 0

0 0 −θ1
22−θ0

(−2ν−2)2−θ0
22−θ0

−θ1
22−θ0

0 0 0 −θ1
42−θ0

(−2ν−4)2−θ0
42−θ0


= 0 (11.1.14)

37That the function p(z) is even follows from the fact that the Mathieu is such.
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By considering well-known infinite products, it can be proven the expression[24]

∆(−ν) = ∆(0)− sin2 πν

sin2 πP
(11.1.15)

The roots ν of the Hill determinant are thus shown to satisfy the simplified equation[1]

∆(0) sin2 πP = sin2 πν (11.1.16)

which can be written also as

2 cos 2πν = 2(∆(0)− 1) + 2∆(0) cos 2πP (11.1.17)

11.1.2 Proof of Zamolodchikov’s conjecture through Floquet theorem

Considering numerical calculations, in his draft,[2] Al. Zamolodchikov conjectured that

T (α) = 2 cos 2πν (11.1.18)

We now prove it, directly by the use of Floquet theorem. In fact, consider the TQ relation at b = 1

T (α) =
X̄(α+ iπ)

X̄(α)
+
X̄(α− iπ)

X̄(α)
(11.1.19)

where the terms on the right side ("Q side") can be constructed through the wronskians of the
fundamental solutions of the modified Mathieu equation.

X̄(α) = W [V0, U0] X̄(α± iπ) = W [V0, U±1] (11.1.20)

U0(y) ' 1√
2
e−(α+y)/4e−2e(α+y)/2

<y →∞ (11.1.21)

U±1(y) ' ∓i√
2
e−(α+y)/4e2e(α+y)/2

<y →∞ (11.1.22)

On the imaginary axis of y these are solutions of the Mathieu equation (11.0.2). We report only the
correspondence between the periodic shifts, on the imaginary and real axis of y, respectively

z → z + 2π ↔ y → y − 2πi (11.1.23)

We can expand the fundamental solutions in the Floquet theorem’s basis (11.1.8)

V0(y) = a1e
−νyp1(y) + a2e

νyp2(y)

U0(y) = c1e
−νyp1(y) + c2e

νyp2(y)

the coefficients being understood as Stokes coefficients as in section 2. Note that the functions
pi i = 1, 2 are periodic only on the imaginary y-axis; therefore, for <y → +∞ the varying domi-
nant/subdominant behavior of the solutions U±1, U0 is admitted.
Bazhanov[1] defined the U±1 functions by application of the Ωb (b = 1) symmetry to the U0 function,
as in (8.2.11)

U±1(y;α) := U0(y ± πi;α± πi) = Ω1U0(y;α) (11.1.24)

We note that this definition permit us to obtain, from the asymptotic representation of the subdomi-
nant solution U0, the asymptotic representation of the dominant solutions U±1, staying within the
same Stokes sector of y. We can define two, in general, different functions Ũ±1 as

Ũ±1(y;α) := U0(y ± 2πi;α) (11.1.25)
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which, however, for the leading order, have the same asymptotic representation

Ũ±1(y;α) ' U±1(y;α) ' e2e(α+y)/2

<y → +∞ (LEADING ORDER) (11.1.26)

In fact, at the leading order in y, it is legitimate to use the approximate equation{
− d2

dy2
+ eα+y + P 2

}
ψ(y) ' 0 <y → +∞ (11.1.27)

Since, by Abel theorem,[27] the wronskians are independent from y, we can write their asymptotic
calculation for <y → +∞ as

W [V0(y;α), U±1(y;α)] = W [ lim
y→+∞

V0(y;α), lim
y→+∞

U±1(y;α)]

= W [ lim
y→+∞

V0(y;α), lim
y→+∞

Ũ±1(y;α)] = W [V0(y;α), Ũ±1(y;α)]

Thus we see that, exactly at all orders, it is true that we can use Ũ±1 in the place of U±1 for the
calculations of the wronskians

W [V0, U±1](α) = W [V0, Ũ±1](α) (11.1.28)

Note that α has been left untouched.
Thus, the proper "dominant" functions to be expanded in the Floquet basis are Ũ±1

Ũ−1(y) = b1e
−νyp1(y) + b2e

νyp2(y) (11.1.29)

Ũ1(y) = d1e
−νyp1(y) + d2e

νyp2(y) (11.1.30)

in terms of some Stokes coefficients bi and di. By considering the definition of Ũ±1, we can write

Ũ±1(y) ∼ U0(y ∓ 2πi) <y → +∞ (11.1.31)

= c1e
±2πiνe−νyp1(y) + c2e

∓2πiνeνyp2(y) (11.1.32)

The key observation of our proof is the ensuing relation between the Stokes coefficients

b1 = e−2πiνc1 b2 = e2πiνc2

d1 = e2πiνc1 d2 = e−2πiνc2

(11.1.33)

(11.1.34)

we treat the Stokes coefficients as they were ordinary linear coefficients, because we just reach the
border of a single Stokes sector (in which the Stokes coefficients are uniquely determined).
So, the wronskians of interest are expressed as

W [V0, Ũ−1] = (a1b2 − a2b1)W [e−νyp1(y), eνyp2(y)] (11.1.35)

W [V0, Ũ1] = (a1d2 − a2d1)W [e−νyp1(y), eνyp2(y)] (11.1.36)

W [V0, U0] = (a1c2 − a2c1)W [e−νyp1(y), eνyp2(y)] (11.1.37)

Finally, the TQ relation can be exactly written as

T (α) =
X̄(α+ iπ)

X̄(α)
+
X̄(α− iπ)

X̄(α)
=
W [V0, U1]

W [V0, U0]
+
W [V0, U−1]

W [V0, U0]

=
W [V0, Ũ1]

W [V0, U0]
+
W [V0, Ũ−1]

W [V0, U0]
=

(a1d2 − a2d1) + (a1b2 − a2b1)

a1c2 − a2c1
(11.1.38)

=
(e−2πiνa1c2 − e2πiνa2c1) + (e2πiνa1c2 − e−2πiνa2c1)

a1c2 − a2c1

= 2 cos 2πν (11.1.39)
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we thus conclude our proof of Zamolodchikov’s conjecture (11.0.4).

T (α) = 2 cos 2πν (11.1.40)

11.1.3 Observations

We end this paragraph with an observations concerning the possibility of generalization of Zamolod-
chikov relation (11.0.4) for some b 6= 1.
For example, we know that at all rational b the Floquet theorem holds. Now, ey/b has period 2πib,
e−yb has period 2πi/b. Let us suppose that b is a rational number, namely, suppose b = m

n , with m
and n integers. Then the two periods are commensurable and there exist a common period.

A2πib = B2πi/b (11.1.41)

A
m

n
= B

n

m
n,m ∈ Z (11.1.42)

A = n2, B = m2 (11.1.43)

With this choice, ey/b + e−yb is invariant under the shift

y → y ± 2πin2b = y ± 2πim2/b (11.1.44)

Then, by Floquet theorem, the generalized Mathieu equation (8.5.4), for rational b, has two linearly
independent solutions

ψ1(y) = e−νyf(y) ψ2(y) = e+νyf(y) (11.1.45)

f(y ± 2πin2b) = f(y ± 2πim2/b) = f(y) (11.1.46)

Nevertheless, the problem is that the TQ relation doesn’t generalize to a relation between the
wronskians of U0 and Un2b.
Hence, it is not trivial to obtain a generalization of Zamolodchikov’s relation (11.0.4) between T and
ν for b 6= 1, perhaps it is impossible.

11.2 Proof by integrability theory

In this section, we are going to give an asymptotic proof, for large rapidity θ, of Zamolodchikov’s
relation (11.0.4). This shall be done by direct calculation, of both the Floquet index ν asymptotic
expansion and the usual logQ asymptotic expansion. The asymptotic proof amounts to a check
that, for each n-th asymptotic coefficient, the only difference between 2πiν and logQ is just the
ratio (1.6.21) of C̃n and B̃n between the constant of normalization of the Baxter’s log T function
expansion and logQ expansion, which is consistent with the TQ relation (1.6.13)

2 cos (2πν(θ)) =
Q(θ + iπ/2)

Q(θ)
+
Q(θ − iπ/2)

Q(θ)
(11.2.1)

which asymptotically, for large rapidity, reads (1.6.13)38

2πiν(θ) ' logQ(θ + iπ/2)− logQ(θ) θ → +∞ (11.2.2)
38The asymptotic approximation 2 cos 2πν ∼ e2πiν is true only in particular Stokes sectors of θ which we don’t

specify, for simplicity, because the only other possibility amounts to a trivial minus sign. In fact, the leading order is
proportional to eθ; if the real part of the proportionality constant is positive, the contribution is dominant, instead, if
the real part is negative, the contribution is subdominant.
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11.2.1 Floquet exponent and T function

Consider the self-dual case b = 1. The generalized Mathieu equation becomes the standard modified
Mathieu equation[26] and, by a rotation of the axis z = iy, becomes the well-known Mathieu equation.

d2

dz2
ψ(z) + (2e2θ cos z + P 2)ψ(z) = 0 (11.2.3)

The Mathieu equation is of the Liouville form (4.1.1) with p−(z) = −2 cos z and u− = −P 2. The
Bäcklund potential (4.1.8) is

U−(z) =
P 2

2 cos z
+

1

4

1

2 cos z
+

5

16

tan2 z

2 cos3 z
(11.2.4)

=
(
P 2 − 1

16

) 1

2 cos z
+

5

4

1

(2 cos z)3

We put a subscript − at p and u, to keep in mind that the rotation z = iy introduces a minus sign,
with respect with the usual p = ey/b + e−yb. Moreover, also the functions χ, S and R (nut not ψ!)
need such reminder. The Bäcklund-Schrödinger equation is[

d2

dw2
−
− U(w−)

]
χ−(w−) = e2θχ−(w−) (11.2.5)

with dw− =
√
p−dz. Our aim is to asymptotically calculate the Floquet index ν, that is, the

monodromy for the wave function around the cycle (period) −π < z < π. for the wave function
solution ψ.

ψ(z + 2π) = e2πiνψ(z) (11.2.6)

or, in the Zamolodchikov’s rotated varible y

ψ(y − 2πi) = e2πiνψ(y) (11.2.7)

We note that we can equivalently consider the monodromy of the Bäcklund-transformed wave function
χ−, since the factor 4

√
p(z), by which these two functions differ, is 2π-periodic. Hence, making

the correctly "rotated" Bäcklund change of variable in (4.2.1), we can define the Floquet exponent
through the integrand of the eikonal as

ν(θ, P ) =
1

2πi

[
logχ−(π)− logχ−(−π)

]
=

1

2πi

∫ π

−π
dz
√
p−(z)S−(z; θ, P )

(11.2.8)

(11.2.9)

which can asymptotically written as

2πiν ∼
∞∑
n=0

eθ(1−2n)
(
− 1

2n− 1

)∫ π

−π
dz
√
p−(z)Rn(z) θ → +∞ (11.2.10)

Note that the factor i is correct, from (11.2.7).
We can begin our calculations. It is convenient to introduce the variable

t(z) =
1

2 cos z
(11.2.11)
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Note that t(z) = −1/p−(z) and that is has a simple pole for z = π/2 + kπ, with k ∈ Z. The inverse
transformation is

z = cos−1 1

2t
(11.2.12)

(11.2.13)

By this transformation, the measure of integration get transformed as

dz =
dt

t
√
−1 + 4t2

dw =

√
− 1

t(z)
dz =

dt√
t3
√

1− 4t2
(11.2.14)

while the Bäcklund potential assumes a (functional) polynomial form

U [t(z)] =
(
P 2 − 1

16

)
t+

5

4
t3 (11.2.15)

By direct inspection of the first polynomials, we conjecture the following ansatz

Rn[t(z)] =

n∑
m=0

an,mt
n+2m (11.2.16)

We begin with the calculation of the coefficients an,m through the Gelfand Dikii recursion rela-
tion (4.3.13)

dRn+1

dw
= −1

4

d3Rn
dw3

+ U
dRn
dw

+
1

2

dU

dw
Rn (11.2.17)

We transform the derivatives with respect to w into derivatives with respect to t

d

dw
=
√

1− 4t2
√
t3
d

dt
d2

dw2
= (−4t5 + t3)

d2

dt2
+ (−10t4 +

3

2
t2)

d

dt
d3

dw3
=
√

1− 4t2
√
t3
[
(−4t5 + t3)

d3

dt3
+ (−30t4 +

9

2
t2)

d2

dt2
+ (−40t3 + 3t)

d

dt

]
therefore the Gelfand Dikii recursion (4.3.13) becomes

dRn+1

dt
= (t5 − 1

4
t3)

d3

dt3
Rn + (

15

2
t4 − 9

8
t2)

d2

dt2
Rn +

(45

4
t3 + (P 2 − 13

16
)t
) d
dt
Rn (11.2.18)

+
(P 2

2
− 1

32
+

15

8
t2
)
Rn (11.2.19)

where we used also the fact that
dU

dt
= P 2 − 1

16
+

15

4
t2 (11.2.20)

Expanding this equation in powers of t(z) (by using the ansatz (11.2.16)) and equating the respective
coefficients, we obtain a recursion relation for the Gelfand-Dikii coefficients

(n+ 2m+ 1)an+1,m =
[
(n+ 2m+

1

2
)P 2 − 1

4
(n+ 2m)(n+ 2m− 1)(n+ 2m− 2)− 9

8
(n+ 2m)(n+ 2m− 1)

− 13

16
(n+ 2m)− 1

32

]
an,m +

[
(n+ 2m− 2)(n+ 2m− 3)(n+ 2m− 4)

+
15

2
(n+ 2m− 2)(n+ 2m− 3) +

45

4
(n+ 2m− 2) +

15

8

]
an,m−1 (11.2.21)
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which, continuing the calculations, becomes

(n+ 2m+ 1)an+1,m =
[
(n+ 2m+

1

2
)P 2 − 1

4
(n+ 2m)(n+ 2m− 1)(n+ 2m− 2)− 9

8
(n+ 2m)(n+ 2m− 1)

− 13

16
(n+ 2m)− 1

32

]
an,m +

[
(n+ 2m− 2)(n+ 2m− 3)(n+ 2m− 4)

+
15

2
(n+ 2m− 2)(n+ 2m− 3) +

45

4
(n+ 2m− 2) +

15

8

]
an,m−1

=

{
P 2(n+ 2m+

1

2
)− 1

4

[
n+ 2m+

1

2

]3}
an,m

+

{
(n+ 2m− 1

2
)3 − (n+ 2m− 1

2
)

}
an,m−1

Simplifying again and a making also an index rearrangement (n+ 1→ n), we finally get

an,m =

[
P 2n+ 2m− 1

2

n+ 2m
− 1

4

(n+ 2m− 1
2 )3

n+ 2m

]
an−1,m +

[
(n+ 2m− 3

2 )3

n+ 2m
−
n+ 2m− 3

2

n+ 2m

]
an−1,m−1

(11.2.22)

It is perhaps already evident that this is a very simple recursion. However, its simplicity can be
emphasized by introducing the variable η(n,m), which is function of the indexes n,m39

η(n,m) = n+ 2m+
1

2
(11.2.23)

and functions of it f(η) and g(η)

f(η) = P 2 − 1

4
η2 (11.2.24)

g(η) = η2 − 1 (11.2.25)

the recursion can then be written as

an,m =
1

η − 1
2

[
f(η − 1)(η − 1)an−1,m + g(η − 2)(η − 2)an−1,m−1

]
(11.2.26)

Such simplicity makes us hope to solve it completely, with initial condition

a00 = 1 (11.2.27)

We now want to calculate the general integral of the functional coefficients. The functional basis is
made from positive power of the meromorphic function t(z)40, the singularities must be avoided in
the integration, by using the symmetries of the simple trigonometric function cos z.∫ π

−π
dz
√
−2 cos z Rn(z) =

n∑
m=0

an,m

∫ π

−π
dz
√
−2 cos z

( 1

2 cos z

)n+2m

=

n∑
m=0

an,m

{∫ π

−π
dz
√
−2 cos z

( 1

−2 cos z

)n+2m

(−1)n

}

=

n∑
m=0

an,m

{
(−1)n

∫ π

−π
dz
(
− 1

2 cos z

)n+2m−1/2
}

39Beware that in the following we shall drop the n,m dependence from η(n,m).
40Since t(z) has just a simple pole, from the general form (11.2.16) we deduce that Rn(z) has at most a 3n order

pole for z = π/2 + kπ, with k ∈ Z
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In particular, we split in two the interval of integration, according to whether cos z is positive or
negative. It is clear, then, that the area enclosed between the curve of the integrand and the z axis is
the same on every π/2-wide interval of z.∫ π

−π
dz
√
−2 cos z Rn(z) =

n∑
m=0

an,m

{
((−1)−1/2 + (−1)n)

∫ π/2

−π/2
dz
( 1

2 cos z

)n+2m−1/2
}

=

n∑
m=0

an,m

{
2(∓i+ (−1)n)

∫ π/2

0

dz
( 1

2 cos z

)n+2m−1/2
}

It is perhaps useful to define a "constant" δn41, in order to better manage this clumsy aspect of the
calculation

2δn = 2(∓i+ (−1)n) (11.2.28)

The basis In,m of the integrals is defined as

In,m =

∫ π/2

0

dz
( 1

2 cos z

)n+2m−1/2

(11.2.29)

so that we can write the integral we are interested in as

∫ π

−π
dz
√
−2 cos z Rn(z) = 2δ(n)

n∑
m=0

an,mIn,m (11.2.30)

We proceed to calculate the generic basis integral In,m

In,m =

∫ π/2

0

dz
( 1

2 cos z

)n+2m−1/2

=

∫ ∞
1
2

dt√
1− 4t2

t2m+n−3/2

Change variable s = 1/4t2, t = 1
2s
−1/2, dt = − 1

4s
−3/2.

In,m =
1

4
2−n−2m+3/2

∫ 1

0

ds√
s− 1

s−3/2−m−n/2+3/4+1/2

= 2−n−2m−1/2B(
1

2
,−m− n

2
+

3

4
)

in terms of the well-known Euler Beta function. Therefore, the generic basis integral In,m can be
expressed as

In,m = 2−n−2m−1/2
√
π

Γ(−m− n
2 + 3

4 )

Γ(−m− n
2 + 5

4 )
(11.2.31)

In conclusion, the Floquet exponent (11.2.10) can be expanded, for large Bäcklund energy e2θ42 in
terms of the Gelfand Dikii coefficients as

2πiν(θ, P ) ∼
∞∑
n=0

eθ(1−2n)2δn

{
√
π

√
2
−1−2n

1− 2n

n∑
m=0

an,m(P )
Γ(−m− n

2 + 3
4 )

Γ(−m− n
2 + 5

4 )

}
θ → +∞

(11.2.32)

41More properly, δ(n) is a function of the (now) fixed index n.
42This limit can be more properly interpreted as a large rapidity θ limit
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We can define the expansion coefficients of ν by

ν ∼
∞∑
n=0

eθ(1−2n)νn θ → +∞ (11.2.33)

or

2πiνn = 2δn

{
√
π

√
2
−1−2n

1− 2n

n∑
m=0

an,m(P )
Γ(−m− n

2 + 3
4 )

Γ(−m− n
2 + 5

4 )

}
(11.2.34)

11.2.2 Baxter’s Q function

Thanks to the standard[14] identification (??), we can calculate the Baxter’s Q function for the
self-dual case, using the wave function solution of the modified Mathieu equation43, calculated in the
transformed (by (8.1.21)) of x = 0.

d2

dy2
ψ(y)− (2e2θ cosh y + P 2)ψ(y) = 0 (11.2.35)

In particular, whether the integration extremes were +∞ and 0 in the non-transformed equa-
tion (8.1.1), now, by the transformation (8.1.21), they get transformed respectively into −∞ and
+∞. Thus, by (??) and (4.2.1)

logQ ' lim
y→+∞

logψ(y)

=

∫ ∞
−∞

dy
√
p(y)S(y)

(11.2.36)

(11.2.37)

The Bäcklund transformation involves now the functions p(y) = 2 cosh y and u = +P 2; while the
Bäcklund potential (4.1.8) is

U(y) =
P 2

2 cosh y
+

1

4

1

2 cosh y
− 5

16

tanh2 y

2 cosh y
(11.2.38)

=
(
P 2 − 1

16

) 1

2 cosh y
+

5

4

1

(2 cosh y)3

Our aim in this paragraph is to calculate the asymptotic expansion of logQ by the following formula

logQ ∼
∞∑
n=0

eθ(1−2n)
(
− 1

2n− 1

)∫ ∞
−∞

dy
√
p(y)Rn(y) θ → +∞ (11.2.39)

We can now begin this calculation. It is convenient to introduce the variable v as

v(y) =
1

2 cosh y
> 0 ∀y ∈ R (11.2.40)

We observe that, thanks to the properties cosh y, this new variable v(y) is always positive and
continuous on the real axis of y. Note also that v = 1/p. The inverse transformation is

y = cosh−1 1

2v
(11.2.41)

43We recall that, the generalized Mathieu equation (8.1.19), for the self dual Liouville model at b = 1, reduces to the
standard[26] modified Mathieu equation. With respect to the calculation of the Floquet exponent, we don’t need to
make any rotation of y.
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while the differentials get transformed as

dy = − dv

v
√

1− 4v2
dw = − dv√

v3
√

1− 4v2
(11.2.42)

In terms of the function v(y), we can express the Bäcklund potential simply as a functional polynomial

U [v(y)] =
(
P 2 − 1

16

)
v +

5

4
v3 (11.2.43)

We note that, thanks to the definition (11.2.40) of the variable v, the Bäcklund potential for the
modified Mathieu equation, as well as the expressions for the derivatives, assume the very same form
which they had with respect to variable t above, for the Mathieu equation. If we choose also the same
ansatz form44

Rn[v(y)] =

n∑
m=0

anmv
n+2m (11.2.45)

we find also the very same recursion relation (using the initial condition a00 = 1).

an,m =

[
P 2n+ 2m− 1

2

n+ 2m
− 1

4

(n+ 2m− 1
2 )3

n+ 2m

]
an−1,m +

[
(n+ 2m− 3

2 )3

n+ 2m
−
n+ 2m− 3

2

n+ 2m

]
an−1,m−1

(11.2.46)

However, the basic integrals seem different. In fact, to calculate logQ, the integral of the eikonal is
taken over the whole real axis of y, rather than on a 2πi-long segment on the imaginary axis of y. If
we were able to show that the two different basic integrals are actually equal, we would show that,
apart perhaps the correction of constant, the two different integrals and hence T and ν would indeed
be equal. More precisely, the basic integrals read∫ ∞

−∞
dy
√

2 cosh y[v(y)]n+2m = 2

∫ ∞
0

dy
√

2 cosh y[v(y)]n+2m := 2Jn,m

where we defined, for convenience of comparison with the Floquet index ν expansion, the generic
basis integral as

Jn,m =

∫ 1
2

0

dv√
1− 4v2

v2m+n−3/2 (11.2.47)

Therefore, the general Gelfand-Dikii integral we want to calculate is∫ ∞
−∞

dy
√

2 cosh yRn(y) = 2

n∑
m=0

an,m(P )Jn,m (11.2.48)

We reduce it to the usual Euler Beta function, by the change of variable r = 4v2, v = 1
2

√
r, with

dv = 1
4r
−1/2.

Jn,m =
1

2
2−n−2m+1/2

∫ 1

0

dr√
1− r

rm+n/2−3/4−1/2

= 2−n−2m−1/2B(
1

2
,m+

n

2
− 1

4
)

44which is equivalent to

Rn(t) =

3n∑
k=n

(−1)kan,(k−n)/2
1

pk
(11.2.44)

where if k − n is not an even number the relative contribution is null. Thus, the ansatz for b = 1, We observe that,
while the b = 1 Liouville model is of course a particular case of the general Liouville model; the present ansatz is only
similar to the particular case, for b = 1, of the general Liouville ansatz (10.1.5). Namely, the factor e(n−k)y is lacking.
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The generic basic integral Jn,m can be finally expressed as

Jn,m = 2−n−2m−1/2
√
π

Γ(m+ n
2 −

1
4 )

Γ(m+ n
2 + 1

4 )
(11.2.49)

Now, in order to compare with the analogue basic integral (11.2.29) for the Floquet index, we
manipulate a bit the Gamma functions which compose the Beta function. We use the reflection
formula[28]

Γ(z) =
π

sinπz

1

Γ(1− z)
(11.2.50)

so, the Beta function of the logQ basic integral (11.2.49)

B(
1

2
,m+

n

2
− 1

4
) = Γ(

1

2
)
Γ(m+ n

2 −
1
4 )

Γ(m+ n
2 + 1

4 )

= Γ(
1

2
)
Γ(−m− n

2 + 3
4 )

Γ(−m− n
2 + 5

4 )

sinπ(m+ n
2 + 1

4 )

sinπ(m+ n
2 −

1
4 )

= −
Γ( 1

2 )

tanπ(m+ n
2 −

1
4 )

Γ(−m− n
2 + 3

4 )

Γ(−m− n
2 + 5

4 )

= (−1)n+1B(
1

2
,−m− n

2
+

3

4
)

apart the alternating sign, becomes exactly the the Beta function of the 2πiν basic integral (11.2.31).
The two generic basic integrals are related as simply as

Jn,m = (−1)n+1In,m (11.2.51)

The expansion of logQ (or 2πiν) can therefore be written in two equivalent ways

logQ(θ, P ) ∼
∞∑
n=0

eθ(1−2n)2

{
√
π

√
2
−1−2n

1− 2n

n∑
m=0

an,m(P )
Γ(m+ n

2 −
1
4 )

Γ(m+ n
2 + 1

4 )

}
θ → +∞

=

∞∑
n=0

eθ(1−2n)2(−1)n+1

{
√
π

√
2
−1−2n

1− 2n

n∑
m=0

an,m(P )
Γ(−m− n

2 + 3
4 )

Γ(−m− n
2 + 5

4 )

} (11.2.52)

(11.2.53)

Comparing with the expansion (11.2.32) of 2πiν we deduce that

2πiνn = (−1)n+1δnB̃nI2n−1 = [−1 + i(−1)n]B̃nI2n−1 (11.2.54)

The "global" factor (−1)n+1δn permits perfect agreement with the TQ expansion (1.6.21). In fact,
the normalizations constants of the I2n−1 asymptotic coefficients of Baxter’s T and Q functions are
related as

C̃n = [−1 + i(−1)n]B̃n (11.2.55)

multiplying this relation by the local integrals of motion we conclude our proof, because, since the
n-th term of the ν asymptotic expansion now is

2πiνn = C̃nI2n−1 (11.2.56)

by a general theorem[23] of asymptotic expansions, starting from n = 0, we can calculate all the
coefficients through a recursive relation

νn = lim
θ→+∞

ν(θ)−
∑n−1
k=0 νke

θ(1−2k)

eθ(1−2n)
=
C̃nI2n−1

2πi
n = 0, 1, 2, ... (11.2.57)

C̃nI2n−1 = lim
θ→+∞

log T (θ)−
∑n−1
k=0 C̃kI2k−1e

θ(1−2k)

eθ(1−2n)
= 2πiνn n = 0, 1, 2, ... (11.2.58)
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which, inverted, establishes that the asymptotic expansion of the Floquet index 2πiν is equal to the
asymptotic expansion of the Baxter’s log T function. In other words, we have given an asymptotic
proof of Zamolodhikov conjecture (11.0.4).

11.2.3 Test

We tested directly45 the Gelfand Dikii recursion for b = 1, for R0 → R1, and R1 → R2. Starting
from a00 = 1, we obtain recursively from (11.2.22)

a10 =
P 2

2
− 1

32
a11 =

5

8
(11.2.59)

a20 =
3

8
P 4 − 15

64
P 2 +

27

2048
a21 =

35

16
P 2 − 455

256
a22 =

1155

128
(11.2.60)

Using these Gelfand-Dikii coefficients and the relative basic integrals (11.2.49), we calculate the first
local integrals of motion (or charges). The first charge I1 is

I1 = −2
[
a10 + 2−2 1

3
a11

]
(11.2.61)

= −2
[P 2

2
+

1

48

]
(11.2.62)

= ∆− 25

24
(11.2.63)

The second charge I3 is

I3 = +
8

3

[
a20 + 2−2 3

5
a21 + 2−4 3× 7

5× 9
a22

]
(11.2.64)

= P 4 +
1

4
P 2 +

5

192
(11.2.65)

= ∆2 − 9

4
∆ +

245

192
(11.2.66)

Thus, we checked that our results match those of,[29] for b = 1, and of,[10] for c = 25.46.

45That is, from the general expression of Gelfand Dikii polynomials (4.3.16) (4.3.17)
46We note also that, for b = 1, ∆ = 1− P 2
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11.3 WKB expansion of Zamolodchikov’s relation

In this section, we expand the TQ relation for b = 1 in WKB series, with expansion parameter

ε(θ) = ± 1

2i
e−θ (11.3.1)

which, of course, has the role of the Planck constant }. We use the following ansatz for the Q(θ)

function[18]

Q(θ) = e
1
ε(θ)

φ(θ) (11.3.2)

φ(θ) =

∞∑
n=0

φnε
n (11.3.3)

(11.3.4)

with the coefficients φn (independent from ε and therefore also from θ). The WKB expansion of
the Floquet index has been treated in section 7. In this subsection we are going to show that the
coefficients of the two expansion are related as

2πiνn = (−1 + (−1)ni)φ2n−1

=
C̃n

B̃n
φ2n−1

(11.3.5)

(11.3.6)

where we used the usual (1.6.21). However, this is only true assuming Zamolodchikov’s rela-
tion (11.0.4), since, in this subsection, we just expand the TQ relation.

11.3.1 WKB expansion of the TQ relation

The T (θ) function satisfies the TQ relation (because p = 1
2 in (9.1.4))

T (θ) =
Q(θ + iπ2 )

Q(θ)
+
Q(θ − iπ2 )

Q(θ)
(11.3.7)

In this paragraph, we are going to examine the WKB expansion of this TQ relation, using for Q the
ansatz (11.3.3) .
Because θ is divergent, it is convenient to change variable, defining an infinitesimal η as

η = e−θ (11.3.8)

= ±2iε→ 0 (11.3.9)

θ = − ln η →∞ (11.3.10)

For the sake of generality, set δ = iπ2 . We make a Taylor expansion at infinity

φ(θ + δ) = φ(− ln η + δ) (11.3.11)

=

∞∑
n=0

δn

n!

dnφ

d(− ln η)n

∣∣∣∣
− ln η

(11.3.12)

= φ(− ln η) + δ
dφ

d(− ln η)

∣∣∣∣
− ln η

+
δ2

2!

d2φ

d(− ln η)2

∣∣∣∣
− ln η

+...
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and transform the derivatives in θ = − ln η in derivatives in η, using the Stirling numbers of the
second kind s

(m)
n

dnφ

d(ln η)n
=

n∑
m=0

s(m)
n ηm

dmφ

dηm
(11.3.13)

dnφ

d(− ln η)n
=

n∑
m=0

(−1)ns(m)
n ηm

dmφ

dηm
(11.3.14)

(11.3.15)

This relations can be proven showing that some generic coefficients of expansion, actually satisfy the
characteristic recursion relation of the Stirling numbers of the second kind,[28] that is s(m)

n .

s
(m)
n+1 = ms(m)

n + s(m−1)
n (11.3.16)

A brief collection of properties of the s
(m)
n numbers can be found in appendix C.2. Thus Taylor

expansion becomes

φ(θ + δ) =

∞∑
n=0

δn

n!

n∑
m=0

(−1)ns(m)
n ηm

dmφ

dηm

∣∣∣∣
− ln η

=

∞∑
n=0

n∑
m=0

[
δn

n!
(−1)ns(m)

n

]
ηm

dmφ

dηm

∣∣∣∣
− ln η

=

∞∑
m=0

[ ∞∑
n=m

δn

n!
(−1)ns(m)

n

]
εm
dmφ

dεm

∣∣∣∣
θ(ε)

=

∞∑
n=0

[
δn

n!
(−1)ns(0)

n

]
φ

∣∣∣∣
θ(ε)

+

∞∑
m=1

[ ∞∑
n=m

δn

n!
(−1)ns(m)

n

]
εm
dmφ

dεm

∣∣∣∣
θ(ε)

(11.3.17)

As explained in appendix C.2, it is a property of the Stirling numbers that s
(0)
n = δ0n, hence our

expansion becomes

φ(θ + δ) = φ(θ) +

∞∑
m=1

[ ∞∑
n=m

δn

n!
(−1)ns(m)

n

]
εm
dmφ

dεm

∣∣∣∣
θ(ε)

(11.3.18)

We must be careful in writing the TQ relation, because the parameter of expansion depends on θ

ε(θ + i
π

2
) = ± 1

2i
e−θ−iπ/2 (11.3.19)

= ± 1

2i

1

i
e−θ = −iε(θ) (11.3.20)

so that one part of the TQ relation can be written as

Q(θ + δ)

Q(θ)
= exp

{
1

(−iε)
φ(θ + δ)− 1

ε
φ(θ)]

}
= exp

{
i

ε
[φ(θ + δ)− φ(θ)] +

i− 1

ε
φ(θ)]

}
= exp

{
i

ε

[ ∞∑
n=1

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)
εn
dnφ

dεn

∣∣∣∣
θ(ε)

]
+
i− 1

ε
φ(θ) (11.3.21)

We now take into account the expansion (11.3.3) of φ(θ) itself in the parameter ε. Since φl is
independent from θ, the general n-th derivative is

dnφ

dεn
=

∞∑
l=n

φlε
l−n l!

(l − n)!
(11.3.22)
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Substituting this expression in (11.3.18), we obtain

φ(θ + δ)− φ(θ) =

∞∑
n=1

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)
εn
dnφ

dεn

∣∣∣∣
θ(ε)

=

∞∑
n=1

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

) ∞∑
N=n

φN ε
N N !

(N − n)!

=

∞∑
n=1

∞∑
N=n

φN ε
N N !

(N − n)!

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)

=

∞∑
N=1

εN
{
φN

N∑
n=1

N !

(N − n)!

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)}
(11.3.23)

so that the part of the TQ relation we are considering (11.3.21) becomes

Q(θ + δ)

Q(θ)
= exp

{
i

ε

[ ∞∑
n=0

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)
εn
dnφ

dεn

∣∣∣∣
θ(ε)

]
− 1

ε
φ(θ)

= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφN

N∑
n=0

N !

(N − n)!

( ∞∑
m=n

δm

m!
(−1)ms(n)

m

)]}
(11.3.24)

The Stirling numbers of the second kind satisfy the following property[28]

(ex − 1)n = n!

∞∑
m=n

s(n)
m

xm

m!
(11.3.25)

which, substituted in our expression, entails

Q(θ + δ)

Q(θ)
= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφN

N∑
n=0

N !

(N − n)!

(
(e−δ − 1)n

n!

)]}

= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφNe

−Nδ
]}

(11.3.26)

The other term of the TQ relation is obtained simply by sending δ into −δ. In conclusion, for a
generic shift δ we can write

Q(θ + δ)

Q(θ)
= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφNe

−Nδ
]}

Q(θ − δ)
Q(θ)

= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφNe

Nδ

]}
(11.3.27)

(11.3.28)

(11.3.29)

If we define, trivially, a new shift parameter δ̃ by δ = iδ̃, the TQ relation is written, for general shift

T (θ) =
Q(θ + δ)

Q(θ)
+
Q(θ − δ)
Q(θ)

= exp

{
1

ε

∞∑
N=0

εN
[
−φN + iφN cos (Nδ̃)

]}
2 cosh

{
1

ε

N∑
n=0

εN
[
φN sin (Nδ̃)

]} (11.3.30)

(11.3.31)

(11.3.32)

Restoring the particular value of δ appears now essential in order to separate the odd and even terms
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in the expansion of φ(θ)

2 cos 2πν = T (θ) =
Q(θ + iπ2 )

Q(θ)
+
Q(θ − iπ2 )

Q(θ)
(11.3.33)

= exp

{
1

ε

∞∑
N=0

ε2Nφ2N [−1 + (−1)N i]

}
2 cosh

{
1

ε

∞∑
N=1

ε2N−1φ2N−1(−1)N

}
(11.3.34)

Asymptotically, in some Stokes sector of θ

e2πiν ' 2 cos 2πν =
Q(θ + iπ2 )

Q(θ)
+
Q(θ − iπ2 )

Q(θ)
<θ → +∞ =θ 6= 0 (11.3.35)

= exp

{
1

ε

∞∑
N=0

ε2Nν2N

}
(11.3.36)

It must be true that

ν0 = (−1 + i)φ0

0 = φ2N (w)

ν2N (w) = φ2N−1(w)[−1 + (−1)N i]

(11.3.37)

(11.3.38)

(11.3.39)

where we set the even modes φ2N to zero, because we assume that the φ2N are the integrals over the
whole space of the even modes of the eikonal integrand, as usual (6.2.5).
It might be worthy to note that the correcting constant for the WKB expansion is again the δn(−1)n+1

found for the large energy expansion (11.2.54), (11.2.56) and (1.6.21).

11.3.2 From large energy expansion to WKB expansion

We know that, in the WKB approximation, P ∼ eθ → +∞; more precisely,

P =
√
−2ueθ (11.3.40)

with u constant. Thus, we see that the divergence of P is necessary because e−θ is infinitesimal
(}→ 0). We recall the N = 2 form for the Mathieu equation

ε2

2

d2

dz2
ψ(z) + [u− cos 2z]ψ(z) = 0 (11.3.41)

We already know that the local integrals of motion can be expressed as polynomials in P 2, with some
coefficients pnl

I2n−1 =

n∑
l=0

pnlP
2l (11.3.42)

B in the WKB expansion, Considering the WKB expansion of Baxter’s Q function, because P ∼ eθ

as θ → +∞, there is a rearrangement of the coefficients. More precisely,

logQ =

∞∑
n=0

e(1−2n)θB̃n

(
lim

P 2→+∞
I2n−1(P )

)
= eθ

∞∑
n=0

e−2nθ
n∑
l=0

B̃npnlP
2l

= eθ
∞∑
n=0

n∑
l=0

B̃npnl(−2u)le2θ(l−n) = eθ
∞∑
l=0

∞∑
n=l

B̃npnl(−2u)le2θ(l−n)

(N = n− l) = eθ
∞∑
l=0

∞∑
N=0

B̃N+lpN+l,l(−2u)le−2Nθ =

∞∑
N=0

e(1−2N)θ

[ ∞∑
l=0

B̃N+lpN+l,l(−2u)l
]

(11.3.43)
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Thus we see that, while for the large energy (rapidity) expansion the coefficients of the Q function
were the local integrals of motion I2n−1, which are polynomials in P 2 with coefficients pnl

φ2n−1

∣∣∣
large E

= B̃nI2n−1 = B̃n

n∑
l=0

plP
2l (11.3.44)

for the WKB expansion, the coefficients pnl of undergoes a rearrangement over all but a finite number
of charges I2k−1, starting from the n-th. (k = n, n+ 1, ...) The formula for φn in the WKB case is
thus an infinite series.

φ2n−1

∣∣∣
small }

=

∞∑
l=0

B̃N+lpN+l,l(−2u)l (11.3.45)

On the other hand, the Floquet exponent for the Mathieu equation, as calculated in section 7 can be
expressed as a differential polynomial in lnu

2πiνn = un
n∑
l=0

Ĉn,n+lu
l d

l

dul

{
dn

dun

∫ π/2

−π/2
dz
√

2(cos 2z − u)

}
(11.3.46)

Taking into account the rescaling of the expansion parameter ε, one can easily deduce the precise
relation between the φ2n−1 modes of Baxter’s Q function and the 2πiνn coefficients of the Floquet
index and then find an expression for the n-th ε1 mode of the deformed Seiberg-Witten prepotential
in terms of the P 2-coefficients 47 pn,l of the local integrals of motions I2n−1.

νn = [−1 + i(−1)n]22n+1i(−1)n
∞∑
l=0

B̃N+lpN+l,l(−2u)l (11.3.47)

thanks to Zamolodchikov’s fundamental relation (11.0.4). In appendix E we began to outline a
method for exactly solving the Gelfand Dikii coefficients recursion for the self-dual Liouville model.
If, in a next work, we were to obtain a general formula for the Gelfand-Dikii coefficient

an,m(P ) ∀n,m ∈ N such that 0 ≤ m ≤ n (11.3.48)

then it should not be difficult to find also the P 2 subcoefficient and thereby applying the general
formula (11.3.47) to calculate the νn, hence the n-th mode of expansion of the deformed Seiberg-Witten
prepotential for N = 2 gauge theory.

47Which we recall that, by ∆ = 1− P 2, correspond to coefficients with respect to the conformal weight ∆.
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A Expansion modes for the Riccati equation

We report the first few modes for the eikonal integrand S(w) of the Riccati equation (4.2.9)

S±2 = ∓1

2
S′±1 = −1

4
U ′

S±3 = ∓1

2

(
S
′ ±
2 + S±2

1

)
= ±1

8
(U ′′ − U2)

S±4 = ∓1

2

(
S
′ ±
3 + 2S1 ± S±2

)
= − 1

16
U ′′′ +

1

4
UU ′ (A.0.1)

S±5 = ∓1

2

(
S
′ ±
4 + 2S±1 S

±
3 + S±2

2

)
= ± 1

32
U ′′′′ ∓ 1

8
(U ′2 + UU ′′)∓ 1

16
(UU ′′ − U3)∓ 1

16
U ′2

= ± 1

32
U ′′′′ ∓ 3

16
(UU ′′ + U ′2)∓ 1

16
U3 (A.0.2)

here the ’ stays always for the derivative with respect to w
We prove also a very simple theorem by induction

Theorem 2. In general, we have

S+
2n = S−2n n ∈ N

S+
2n+1 = −S−2n+1

In fact, let’s assume that by direct calculation we have verified this statement for k ∈ N, that is

S+
2k = S−2k

S+
2k+1 = −S−2k+1

Taking n = 2k + 1 we can write (4.2.12) as

S±2k+2 = ∓1

2

(
±S

′ +
2k+1 + (±S+

1 )S+
2k + S+

2 (±S2k − 1)+ + ...

= +...+ S+
2k(±S+

1 )
)

= −1

2

(
S
′ +
2k+1 +

2k∑
m=1

S+
mS

+
2k+1−m

)
S+

2k+2 = S−2k+2

Now take n = 2k + 2

S±2k+3 = ∓1

2

(
S
′ +
2k+2 + (±S+

1 )(±S+
2k+1) + S+

2 S2k
+ + (±S+

3 )(±S+
2k−1) + ...

= +...+ (±S+
2k+1)(±S+

1 )
)

= ∓1

2

(
S
′ +
2k+1 +

2k+1∑
m=1

S+
mS

+
2k+1−m

)
S+

2k+3 = −S−2k+3

We have proved that

S+
2k+2 = S−2k+2

S+
2k+3 = −S−2k+3
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by induction this equalities hold for all k ∈ N, as was to be proved.
We now prove also that the leading term of the Gelfand Dikii polynomials is[16]

Rn[U ] =
Γ(n+ 1

2 )
√
πn!

Un +O(Un−1) |U | → +∞ (A.0.3)

(A.0.4)

In fact:

pn−1

qn−1
Un−1 → pn−1

qn−1
Un − 1

2

∫
dw

dU

dw

pn−1

qn−1
Un−1

=
pn−1

qn−1

[
1− 1

2n

]
Un

=
pn−1

qn−1

2n− 1

2n
Un

pn = (2n− 1)pn−1

qn = 2nqn

p1 = 1

q1 = 2

pn = (2n− 1)!! (n− 1 factors, the last being 1)

qn = (2n)!! (n− 1 factors, the last being 2)

pn
qn

=
(n− 1

2 )(n− 3
2 ) · · · 2(n−1)

n!2(n−1)

=
(n− 1

2 )(n− 3
2 ) · · · 1

2Γ( 1
2 )2(n−1)

n!2(n−1)Γ( 1
2 )

=
Γ(n+ 1

2 )
√
πn!

B Gauss Hypergeometric function

The Gauss hypergeometric function is defined by the series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
n!(c)n

zn (B.0.1)

where c is not zero nor a negative integer. (a)n stands for the Pochhammer symbol

(a)n :=
Γ(a+ n)

Γ(a)
= a(a+ 1) · · · (a+ n− 1) n ≥ 1 (B.0.2)

(a)0 := 0 (B.0.3)

The series (B.0.1) converges absolutely for |z| < 1. On the circle |z| = 1 is absolutely convergent
provided <(c− a− b) > 0; it converges but not absolutely and not at z = 1 if −1 < <(c− a− b) ≤ 0

and diverges if <(c− a− b) ≤ −1.[26] The Gauss-hypergeometric function (as well as the binomial
expansion) convenes only in the circle of radius 1.
It can be proven that for <b > 0,<c > 0 the hypergeometric function has the integral representation

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− zt)a
(B.0.4)
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for z ∈ C \ (1,∞). In our case z = −eyQ → −∞ as y →∞, so

2F1(α, β; γ;−z) ∼ Γ(γ)

Γ(β)Γ(γ − β)
z−α

∫ 1

0

dt tβ−α−1(1− t)γ−β−1 z →∞

=
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)

1

za
(B.0.5)

The following formula[28] permit to expand the Gauss hypergeometric function around infinity

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a 2F1(a, 1− c+ a; 1− b+ a;

1

z
)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b 2F1(b, 1− c+ b; 1− a+ b;
1

z
) (B.0.6)

B.1 Indefinite integrals for ODE/IM

Using directly the defintion of the hypergeometric function (B.0.1) we calculated theBäcklund
independent variable (4.1.2) and also the first nontrivial eikonal density. They are both indefinite
integrals and, in general, are far more difficult with respect to the Euler Beta function.
The Bäcklund independent variable for the Liouville models is

w(y) =

∫
dy′
√
ey′/b + e−y′b (B.1.1)

= 2b
√
e
y
b + e−yb − 2Qe−yb/2 2F1

(1

2
,−p

2
,−p

2
+ 1;−eyQ

)
+ const. (B.1.2)

while for the minimal models we calculated it only for s = 1

w(z) =

∫
dz
√
z2M − 1 (B.1.3)

= − M

M + 1
iz 2F1(

1

2
,

1

2M
;

2M + 1

2M
; z2M ) +

1

M + 1
z
√
z2M − 1 + const. (B.1.4)

The indefinite integral for the first Gelfand-Dikii polynomial R1 = 1
2U is given through the integral

of the Bäcklund potential. In the Liouville case:∫
dyU(y) =

∫
dy
√
p(y)

1

p(y)

(
+P 2 +

1

4

p′′(y)

p(y)
− 5

16

p
′ 2(y)

p2(y)

)
= +P 2

∫
dy

1√
ey/b + e−yb

+
1

4

∫
dy

1
b2 e

y/b + b2e−yb

(ey/b + e−yb)3/2

− 5

16

∫
dy

1
b2 e

2y/b − 2ey/b−yb + b2e−2yb

(ey/b + e−yb)5/2

=
(

+P 2 2

b
+

1

2b
− 5

12b

)
eyb/2F21(

1

2
,

b2

2b2 + 2
,

3b2 + 2

2b2 + 2
,−eyQ)

+
eyb/2

(1 + eyQ)3/2

[ 1

2b
(b2 − 1)(1 + eyQ)− 5

48b
[6b2 − 4 + (4b2 − 6)eyQ]

]
=
(

+P 2 2

b
+

1

12b

)
eyb/2F21(

1

2
,

b2

2b2 + 2
,

3b2 + 2

2b2 + 2
,−eyQ)

+
1

24b

[
−2− 3b2 + (3 + 2b2)eyQ

] eyb/2

(1 + eyQ)3/2

In the minimal models case:∫
dz U(z) =

(2

3
− 11

6
M ± 4P 2(M + 1)2

) i
z

2 F1(
1

2
,− 1

2M
;− 1

2M
+ 1; z2M )

+
(
−11

12
+

9

4
M
) 1

z
√
z2M − 1

+
5

12
M

1

z(z2M − 1)3/2
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C Stirling numbers

C.1 Stirling numbers of the first kind

The Stirling numbers of the first kind S(m)
n can be given the following combinatorial calculus definition:

(−1)m−nS
(m)
n is the number of permutations of n symbols which have exactly m cycles.[28]

Their generating function is

x(x− 1)...(x− n+ 1) =
Γ(x+ 1)

Γ(x− n+ 1)
=

n∑
m=0

S(m)
n xm (C.1.1)

The Stirling numbers of the first kind satisfies the recurrence relation

S
(m)
n+1 = S(m−1)

n − nS(m)
n n ≥ m ≥ 1 (C.1.2)

with initial condition S(0)
0 = 1 Some examples are

S(0)
n = δ0n (C.1.3)

(C.1.4)

S(1)
n = (−1)n−1(n− 1)! (C.1.5)

S(n−1)
n = −

(
n

2

)
(C.1.6)

S(n)
n = 1 (C.1.7)

C.1.1 "Correcting polynomials" to Gelfand-Dikii coefficients

Using the signed Stirling numbers of the first kind[28] S
(l)
N , we can express the "descending factorial"

of x
Γ(x+ 1)

Γ(x−N + 1)
= x(x− 1) · · · (x−N + 1) =

N∑
l=0

S
(l)
N xl (C.1.8)

The descending factorial can be expressed in sum of powers of its argument, with as coefficients (up
to a sign) the Stirling numbers of the first kind.
We give an example of application of this formula to the calculation of minimal models basis integrals
of subsection (5.3)

Γ(
2n− 1

2M
+

2m− 1

2
) =

Γ( 2n−1
2M + 2m−1

2 )

Γ( 2n−1
2M + 2n−1

2 )
Γ(

2n− 1

2M
+

2n− 1

2
)

= Γ(
2n− 1

2M
+

2n− 1

2
)
Γ
(

(n− 1
2 )(ξ + 1) +m− n

)
Γ((n− 1

2 )(ξ + 1))

Γ(m+
1

2
) =

(2m− 1)!!

2m
√
π
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Thus we can write a polynomial in ξ = 1/M in terms of the Stirling numbers

Γ
(

(n− 1
2 )(ξ + 1) +m− n

)
Γ((n− 1

2 )(ξ + 1))
=

m−n∑
l=0

S
(l)
m−n

(n− 1/2

M
+m− 3

2

)l
=

m−n∑
l=0

S
(l)
m−n

l∑
r=0

(
l

r

)
(n− 1

2
)r(m− 3

2
)l−rM−r

=

m−n∑
r=0

α
(r)
m−nM

−r

α
(r)
m−n :=

m−n∑
l=r

(
l

r

)
(n− 1

2
)r(m− 3

2
)l−rS

(l)
m−n

which will be the correcting factor to our expression for the local integrals of motions (5.3.11)

C.2 Stirling numbers of the second kind

We report the recursion relation for the Stirling numbers of the second kind s
(m)
n

[28]

s
(m)
n+1 = ms(m)

n + s(m−1)
n (C.2.1)

with initial condition s
(0)
0 = 1

The Stirling numbers of the second kind can be expressed in a closed form as

s(m)
n =

1

m!

m∑
l=0

(−1)m−l
(
m

l

)
ln (C.2.2)

Some special cases are

s(0)
n = δ0n (C.2.3)

s(1)
n = s(n)

n = 1 (C.2.4)

s(n−1)
n =

(
n

2

)
(C.2.5)

A possible generating function for the Stirling numbers of the second kind is (ex − 1)n. More
precisely[28]

(ex − 1)n = n!

∞∑
m=n

s(n)
m

xm

m!
(C.2.6)

The Stirling numbers of the first kind can be expressed in terms of those of the second kind by the
relation

S(m)
n =

n−m∑
k=0

(−1)k
(
n− 1 + k

n−m+ k

)(
2n−m
n−m− k

)
s
(k)
n−m+k (C.2.7)

Hence, also the Stirling numbers of the first kind have a closed form, though quite cumbersome.

D Further He-Miao operators examples

In this appendix, we give further examples of our algorithmic proof for He-Miao conjecture. In
section 7 we reported the calculations for n = 1, 2, here we continue to n = 3, 4. We did also n = 5,
but we don’t write it. From n = 1, 2, 3, 4 we tested our results with those of He and Miao[34] (obtained
through a far more laborious procedure). For n = 5 we tested our results with those of Basar and
Dunne[35]
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D.1 Less simple example: T3

Let’s begin with transformation of b39, that is, the highest degree coefficient of R3

b39

q11/2
= −425425

32

(
u2 − 1

)2 (u2 − 1)

q17/2
(D.1.1)

≡ −425425

32

(
u2 − 1

)2 [ud1(9)

q15/2
+
d2(9)

q13/2

]
(D.1.2)

which implies that

b
(1)
39 = 0 (D.1.3)

b
(1)
38 = b38 −

425425

32
d1(9)(u2 − 1)2u = −1106105

96
u
(
u2 − 1

)2 (D.1.4)

b
(1)
37 = b37 −

425425

32
d2(9)(u2 − 1)2 = −143

96

(
9188u4 − 10033u2 + 845

)
(D.1.5)

We operate now on (the transformed of) b38

b
(1)
38

q15/2
= −1106105

96
u
(
u2 − 1

) (u2 − 1)

q15/2
(D.1.6)

≡ −1106105

96
u(u2 − 1)

[
ud1(8)

q13/2
+
d2(8)

q11/2

]
(D.1.7)

which implies that

b
(2)
38 = 0 (D.1.8)

b
(2)
37 = b

(1)
37 −

1106105

96
u2(u2 − 1)d1(8) = −143

96
(u2 − 1)

(
2048u2 − 845

)
(D.1.9)

b
(1)
36 = b36 −

1106105

96
u(u2 − 1)d2(8) = − 77

384
u
(
15079u2 − 6979

)
(D.1.10)

We operate now on (the double transformed of) b37

b
(2)
37

q13/2
= −143

96

(
2048u2 − 845

) (u2 − 1)

q13/2
(D.1.11)

≡ −143

96

(
2048u2 − 845

) [ud1(7)

q11/2
+
d2(7)

q9/2

]
(D.1.12)

which implies that

b
(3)
37 = 0 (D.1.13)

b
(2)
36 = b136 −

143

96

(
2048u2 − 845

)
ud1(7) =

1

128

(
32661u− 32041u3

)
(D.1.14)

b
(1)
35 = b35 −

143

96

(
2048u2 − 845

)
d2(7) = − 3

512

(
38509u2 − 853

)
(D.1.15)

We end thus the elimination of the "extra coefficients" (with m > 2n = 6). To proceed further we
operate with the fundamental operation on (the second transformed of) b36, but before it is necessary
to expand it in the (7.3.25). To this end, we observe that in general

c1u+ c3u
3 = d1u(u2 − 1) + d3u

3 (D.1.16)

d1 = −c1 (D.1.17)

d3 = c1 + c3 (D.1.18)
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so that

b
(2)
36 =

1

128

(
620u3 − 32661u

(
u2 − 1

))
=

155

32
u3 − 32661

128
u(u2 − 1) (D.1.19)

b
(2)
36

q11/2
≡ 155u3

32

1

q11/2
− 32661

128
u2d1(6)

1

q9/2
− 32661

128
ud2(6)

1

q7/2
(D.1.20)

so that

b
(3)
36 =

155u3

32
(D.1.21)

b
(2)
35 = b

(1)
35 −

32661

128
u2d1(6) =

1

512

(
601u2 + 2559

)
(D.1.22)

b
(1)
34 = b34 −

32661

128
ud2(6) = −441

256
u (D.1.23)

We proceed operating on the fifth coefficients, after having correctly expanded it.

b
(2)
35 =

395

64
u2 − 2559

512

(
u2 − 1

)
(D.1.24)

b
(2)
35

q9/2
=

395

64
u2 1

q(9/2)
− 2559

512
ud1(5)

1

q7/2
− 2559

512
d2(5)

1

q5/2
(D.1.25)

so that

b
(3)
35 =

395

64
u2 (D.1.26)

b
(2)
34 = b

(1)
34 −

2559

512
ud1(5) =

2295u

896
(D.1.27)

b
(1)
33 = b34 −

2559

512
d2(5) =

615

1792
(D.1.28)

Formula (7.3.41) now gives the coefficients of the differential operator in u

C36 =
1

26

124

945
u3 (D.1.29)

C35 =
1

26

158

105
u2 (D.1.30)

C34 =
1

26

153

35
u (D.1.31)

C33 =
1

26

41

14
(D.1.32)

which are exactly those of He and Miao in their article[34]

We note that

b
(2)
37 = b37 +

u

u2 − 1
d1(8)b38 +

1

u2 − 1

[
d2(9) +

u2

u2 − 1
d1(9)d1(8)

]
b39 (D.1.33)

b
(2)
36 = b36 +

u

u2 − 1
d1(7)b37 +

1

u2 − 1

[
d2(8) +

u2

(u2 − 1)
d1(8)d1(7)

]
b38

+
u

(u2 − 1)2

[
d1(9)d2(8) + d2(9)d1(7) +

u2

(u2 − 1)
d1(9)d1(8)d1(7)

]
b39 (D.1.34)

We now write general formulae. Let’s begin with c36 and ∆
(2)
36

c36 =
[
β363 + β361 + β374d1(7)− β370d1(7) + β385d1(8)d1(7) + β396d1(9)d1(8)d1(7)

]
u3 (D.1.35)

∆
(2)
36 =

[
−β361 + β370d1(7) + β385d2(8) + β369[d1(9)d1(8) + d2(9)d1(7)]

]
u(u2 − 1) (D.1.36)
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Now we pass to c35 and ∆
(1)
35

b
(1)
35 = b35 +

b
(2)
37

u2 − 1
d2(7)

= b35 +
b37

u2 − 1
d2(7) +

b38

(u2 − 1)2
ud1(8)d2(7) +

b39

(u2 − 1)3

[
(u2 − 1)d2(9)d2(7) + u2d1(9)d1(8)d2(7)

]
= β352u

2 + β350 + β374d2(7)u2 − β370d2(7) + β385u
2d1(8)d2(7)

+ β396[(u2 − 1)d2(9)d2(7) + u2d1(9)d1(8)d2(7)]

=
[
β350 − β370d2(7)− β396d2(9)d2(7)

]
+
[
β352 + β374d2(7) + β385d1(8)d2(7)

+ β396[d2(9)d2(7) + d1(9)d1(8)d2(7)]
]
u2 (D.1.37)

b
(2)
35 = b

(1)
35 +

∆
(2)
36

u2 − 1
ud1(6) (D.1.38)

=
[
β350 − β370d2(7)− β396d2(9)d2(7)

]
+

{[
β352 + β374d2(7) + β385d1(8)d2(7)

+ β396[d2(9)d2(7) + d1(9)d1(8)d2(7)]
]

+
[
−β361d1(6) + β370d1(7)d1(6) + β385d2(8)d1(6) + β396[d1(9)d1(8)d1(6) + d2(9)d1(7)d1(6)]

]}
u2

(D.1.39)

So

c35 =

{
β350 + β352 − β361d1(6) + β370[d1(7)d1(6)− d2(7)] + β385[d1(8)d2(7) + d2(8)d1(6)]

+ β396[d1(9)d1(8)d1(6) + d1(9)d1(8)d2(7) + d1(9)d1(8) + d2(9)d1(7)d1(6)]

}
u2 (D.1.40)

∆
(1)
35 = b

(1)
35 − c35 = b

(1)
35 (u)−

[
b
(1)
35 (u) +

∆36

u2 − 1
ud1(6)

]∣∣∣∣
u2=1

u2 (D.1.41)

=

{
−
[
β350 − β370d2(7)− β396d2(9)d2(7)

]}
(u2 − 1)

−
[
−β361 + β370d1(7) + β385d2(8) + β369[d1(9)d1(8) + d2(9)d1(7)]

]
d1(6)u2 (D.1.42)

Now we pass to c34

b
(2)
34 = b34 +

∆
(1)
35

u2 − 1
ud1(5) +

∆
(2)
36

(u2 − 1)2
[u2d1(6)d1(5) + (u2 − 1)d2(6)] (D.1.43)

=

{
β341 + β350d1(5)− β370d2(7)d1(5)− β396d2(9)d2(7)d1(5)

+
[
−β361 + β370d1(7) + β385d2(8) + β369[d1(9)d1(8) + d2(9)d1(7)]

]
d2(6)

}
u (D.1.44)

Note that ∆
(2)
36 is not divisible by (u2 − 1)2 and ∆

(1)
35 is not divisible by u2 − 1. However, the rational

(not polynomial) contributions cancel each other.
Finally, c33 is corrected not with ∆

(1)
35 but with ∆

(2)
35

b
(1)
33 = c33 = b33 +

b
(2)
35 − c35

u2 − 1
d2(5) = b33 +

∆
(1)
35

u2 − 1
d2(5) +

∆
(2)
36

(u2 − 1)2
ud1(6)d2(5) (D.1.45)

= β330 + β350d2(5)− β370d2(7)d2(5)− β396d2(9)d2(7)d2(5) (D.1.46)
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D.2 Less simple example: T4

Let’s begin with transformation of b4,12, that is, the highest degree coefficient of R4

b4,12

q23/2
=

1301375075

256

(
u2 − 1

)3 (u2 − 1)

q23/2
(D.2.1)

≡ 1301375075

256

(
u2 − 1

)3 [ud1(12)

q21/2
+
d2(12)

q19/2

]
(D.2.2)

which implies that

b
(1)
4,12 = 0 (D.2.3)

b
(1)
4,11 = b4,11 +

1301375075

256

(
u2 − 1

)3
ud1(12) =

706460755

96
u
(
u2 − 1

)3 (D.2.4)

b
(1)
4,10 = b4,10 +

1301375075

256

(
u2 − 1

)3
d2(12) =

46189
(
u2 − 1

)2 (
728929u2 − 66025

)
3072

(D.2.5)

We operate now on (the transformed of) b4,11

b
(1)
4,11

q21/2
=

706460755

96
u
(
u2 − 1

)2 (u2 − 1)

q21/2
(D.2.6)

≡ 706460755

96
u
(
u2 − 1

)2 [ud1(11)

q19/2
+
d2(11)

q17/2

]
(D.2.7)

which implies that

b
(2)
4,11 = 0 (D.2.8)

b
(2)
4,10 = b

(1)
4,10 +

706460755

96
u2
(
u2 − 1

)2
d1(11) =

46189
(
u2 − 1

)2 (
265249u2 − 66025

)
3072

(D.2.9)

b
(1)
4,9 = b4,9 +

706460755

96
u
(
u2 − 1

)2
d2(11) =

12155

768
u
(
299977u4 − 403070u2 + 103093

)
(D.2.10)

We operate now on (the double transformed of) b4,10

b
(2)
4,10

q19/2
=

46189
(
u2 − 1

) (
265249u2 − 66025

)
3072

(u2 − 1)

q19/2
(D.2.11)

≡
46189

(
u2 − 1

) (
265249u2 − 66025

)
3072

[
ud1(10)

q17/2
+
d2(10)

q15/2

]
(D.2.12)

which implies that

b
(3)
4,10 = 0 (D.2.13)

b
(2)
4,9 = b14,9 +

46189u
(
u2 − 1

) (
265249u2 − 66025

)
3072

d1(10)

=
143

256
u
(

1779707
(
u2 − 1

)2
+ 531372

(
u2 − 1

))
(D.2.14)

b
(1)
4,8 = b4,8 +

46189
(
u2 − 1

) (
265249u2 − 66025

)
3072

d2(10)

=
715

(
5955443u4 − 4565374u2 + 197531

)
4096

(D.2.15)

We operate now on (the double transformed of) b4,9

b
(2)
4,9

q17/2
=

143

256
u
(
1779707

(
u2 − 1

)
+ 531372

) (u2 − 1)

q19/2
(D.2.16)

≡ 143

256
u
(
1779707

(
u2 − 1

)
+ 531372

) [ud1(9)

q15/2
+
d2(9)

q13/2

]
(D.2.17)

142



which implies that

b
(3)
4,9 = 0 (D.2.18)

b
(2)
4,8 = b14,8 +

143

256
u2
(
1779707

(
u2 − 1

)
+ 531372

)
d1(9)

=
143

(
48003857u4 − 62776010u2 + 14814825

)
61440

(D.2.19)

b
(2)
4,7 = b4,7 +

143

256
u
(
1779707

(
u2 − 1

)
+ 531372

)
d2(9)

=
143u

(
2892391u2 − 975565

)
3840

(D.2.20)

We end thus the elimination of the "extra coefficients" (with m > 2n = 8). To proceed further we
operate with the fundamental operation on (the second transformed of) b4,8, but before it is necessary
to expand it in the (7.3.25). To this end, we observe that in general

c0 + c2u
2 + c4u

4 = d0(u2 − 1) + d2(u2 − 1)2 + d4u
4 (D.2.21)

d0 = −2c0 − c2 (D.2.22)

d2 = −c0 − c2 (D.2.23)

d4 = c0 + c2 + c4 (D.2.24)

so that

b
(2)
4,8 =

143

61440

(
42672u4 + 47961185

(
u2 − 1

)2
+ 33146360

(
u2 − 1

))
(D.2.25)

b
(2)
4,8

q15/2
≡ 127127u4

1280

1

q15/2
+

143

61440

(
47961185

(
u2 − 1

)
+ 33146360

) u2 − 1

q15/2
(D.2.26)

=
127127u4

1280

1

q15/2
+

143

61440

(
47961185

(
u2 − 1

)
+ 33146360

)
ud1(8)

1

q13/2

+
143

61440

(
47961185

(
u2 − 1

)
+ 33146360

)
d2(8)

1

q11/2
(D.2.27)

so that

b
(3)
4,8 =

127127u4

1280
(D.2.28)

b
(2)
4,7 = b

(1)
4,7 +

143

61440

(
47961185

(
u2 − 1

)
+ 33146360

)
ud1(8)

=
71728547u3

15360
− 13826791u

3072
(D.2.29)

b
(1)
4,6 = b4,6 +

143

61440

(
47961185

(
u2 − 1

)
+ 33146360

)
d2(8)

=
1989581u2

16384
− 252461

16384
(D.2.30)

We proceed operating on the seventh coefficient, after having correctly expanded it.

b
(2)
4,7 =

27027u3

160
+

13826791
(
u2 − 1

)
u

3072
(D.2.31)

b
(2)
4,7

q13/2
≡ 27027u3

160

1

q13/2
+

13826791u

3072
ud1(7)

1

q11/2
+

13826791u

3072
d2(7)

1

q9/2
(D.2.32)

143



so that

b
(3)
4,7 =

27027u3

160
(D.2.33)

b
(2)
4,6 = b

(1)
4,6 +

13826791

3072
u2d1(7) =

207085703u2

49152
− 252461

16384
(D.2.34)

b
(1)
4,5 = b4,5 +

13826791u

3072
d2(7) =

87405u

2048
(D.2.35)

We proceed operating on the sixth coefficient, after having correctly expanded it.

b
(2)
4,6 =

54285u2

512
+

252461
(
u2 − 1

)
16384

(D.2.36)

b
(2)
4,6

q11/2
≡ 54285u2

512

1

q11/2
+

252461

16384
ud1(6)

1

q9/2
+

252461

16384
d2(6)

1

q7/2
(D.2.37)

so that

b
(3)
4,6 =

54285u2

512
(D.2.38)

b
(2)
4,5 = b

(1)
4,5 +

252461

16384
ud1(6) =

66773u

2304
(D.2.39)

b
(1)
4,4 = b4,4 +

13826791u

3072
d2(7) =

106603

36864
(D.2.40)

Formula (7.3.41) now gives the coefficients of the differential operator in u

C4,8 =
1

27

127

4725
u4 (D.2.41)

C4,7 =
1

24

13

175
u3 (D.2.42)

C4,6 =
1

28

517

63
u2 (D.2.43)

C4,5 =
1

27

9539

945
u (D.2.44)

C4,4 =
1

211

15229

135
(D.2.45)

which are exactly those of He and Miao in their article[34]

We now write general formulae. b(2)
48 is directly expressed in terms of the Gelfand-Dikii coefficients as

b
(2)
48 = b48 +

b49

u2 − 1
ud1(9) +

b4,10

(u2 − 1)2
[u2d1(10)d1(9) + (u2 − 1)d2(10)] +

b4,11

(u2 − 1)3

[
u3d1(11)d1(10)d1(9)

+ u(u2 − 1)d1(11)d2(10) + u(u2 − 1)d2(11)d1(9)
]

+
b4,12

(u2 − 1)4

[
u4d1(12)d1(11)d1(10)d1(9)

+ u2(u2 − 1)d1(12)d1(11)d2(10) + u2(u2 − 1)d1(12)d2(11)d1(9) + u2(u2 − 1)d2(12)d1(10)d1(9)

+ u2(u2 − 1)d2(12)d2(10)
]

(D.2.46)
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E Recursion solving of Gelfand-Dikii coefficients for self-dual

Liouville

The Gelfand-Dikii recursion relation for the coefficients an,m is far simpler in the self-dual Liouville
case (11.2.22), with respect to the general Liouville case (10.1.38). We report here such simple recur-
sion, found incidentally in subsection 11.2 in the context of the asymptotic proof of Zamolodchikov’s
fundamental relation (11.0.4).

an,m =

[
P 2n+ 2m− 1

2

n+ 2m
− 1

4

(n+ 2m− 1
2 )3

n+ 2m

]
an−1,m +

[
(n+ 2m− 3

2 )3

n+ 2m
−
n+ 2m− 3

2

n+ 2m

]
an−1,m−1

(E.0.1)

The initial condition is
a00 = 1 (E.0.2)

Its simplicity was already emphasized by a first change of variables. We defined the index function
η(n,m)48 by

η(n,m) = n+ 2m+
1

2
(E.0.3)

and then defined the defined the functions f(η) and g(η)

f(η) = P 2 − 1

4
η2 = −1

4
(η − 2P )(η + 2P ) (E.0.4)

g(η) = η2 − 1 = (η − 1)(η + 1) (E.0.5)

Thus, a first simplified form for the recursion is

an,m =
1

η − 1
2

[
f(η − 1)(η − 1)an−1,m + g(η − 2)(η − 2)an−1,m−1

]
(E.0.6)

Since the functions f(η) and g(η) are very similar, we can express one in terms of the other, for
example f(η) in terms of g(η) as in

f(η) = −1

4

[
g(η) + 1− 4P 2

]
(E.0.7)

Hence, probably any finite arbitrary product of these functions can be computed. Noting the
simplicity of this self-dual situation, we express hope to solve the recursion for the Gelfand-Dikii
coefficients an,m completly.
To get an even more simplified situation, we can make a second change of variable function, defining
the functions

F (η) = ηf(η) (E.0.8)

= −1

4
(η − 2P )η(η + 2P ) (E.0.9)

G(η) = (η + 1)g(η + 1) (E.0.10)

= η(η + 1)(η + 2) (E.0.11)

48Beware that in the following we shall drop the n,m dependence from η(n,m).
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where η = n+ 2m+ 1/2 decreases by 1 when n decreases by 1, but decreases by 2 when m decreases
by 1. Equation (E.0.7) corresponds to

F (η) = −1

4

η

η − 1

{
G(η − 1) +

[
1− 4P 2

]
η(η − 1)

}
(E.0.12)

= −1

4

η

η − 1

{
(η − 1)η(η + 1) +

[
1− 4P 2

]
η(η − 1)

}
= −1

4
η2
[
η + 2− 4P 2

]
(E.0.13)

The recursion now is written simply as

an,m =
1

η − 1/2

[
F (η − 1)an−1,m +G(η − 3)an−1,m−1

]
(E.0.14)

It appears now evident that the shift in the definition on G (with respect to g) can facilitate the
calculation because in this way the total shift of both F (η) and G(η) equals the shift in η in the
Gelfand Dikii coefficient this functions multiply.
Now, also the η − 1/2 divisor, already simple, can be included in the definition of a third couple of
functions. In fact, define the final solving functions f(η) and g(η) by

f(η) =
F (η)

η + 1/2)
(E.0.15)

= −1

4

(η − 2P )η(η + 2P )

η + 1
2

(E.0.16)

g(η) =
G(η)

η + 5/2
(E.0.17)

=
η(η + 1)(η + 2)

η + 5
2

=
Γ(η + 3)

Γ(η)

1

η + 5
2

(E.0.18)

so that the recursion finally becomes

an,m = f(η − 1)an−1,m + g(η − 3)an−1,m−1 (E.0.19)

We easily show all its simplicity by iterating the first four steps: for the second

an,m = f(η − 1)f(η − 2)an−2,m +
[
f(η − 1)g(η − 4)

+ g(η − 3)f(η − 4)
]
an−2,m−1 + g(η − 3)g(η − 6)an−2,m−2

for the third

an,m = f(η − 1)f(η − 2)f(η − 3)an−3,m +
[
f(η − 1)g(η − 4)f(η − 5) + g(η − 3)f(η − 4)f(η − 5)

+ f(η − 1)f(η − 2)g(η − 5)
]
an−3,m−1 +

[
f(η − 1)g(η − 4)g(η − 7) + g(η − 3)f(η − 4)g(η − 7)

+ g(η − 3)g(η − 6)f(η − 7)
]
an−3,m−2 + g(η − 3)g(η − 6)g(η − 9)an−3,m−3
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and for the fourth

an,m = f(η − 1)f(η − 2)f(η − 3)f(η − 4)an−4,m + g(η − 3)g(η − 6)g(η − 9)g(η − 12)an−4,m−4

+
[
f(η − 1)f(η − 2)f(η − 3)g(η − 6) + f(η − 1)f(η − 2)g(η − 5)f(η − 6)

+ f(η − 1)g(η − 4)f(η − 5)f(η − 6) + g(η − 3)f(η − 4)f(η − 5)f(η − 6)
]
an−4,m−1

+
[
g(η − 3)g(η − 6)g(η − 9)f(η − 10) + g(η − 3)g(η − 6)f(η − 7)g(η − 10)

+ g(η − 3)f(η − 4)g(η − 7)g(η − 10) + f(η − 1)g(η − 4)g(η − 7)g(η − 10)
]
an−4,m−3

+
[
f(η − 1)f(η − 2)g(η − 5)g(η − 8) + f(η − 1)g(η − 4)f(η − 5)g(η − 8)

+ g(η − 3)f(η − 4)f(η − 5)g(η − 8) + f(η − 1)g(η − 4)g(η − 7)f(η − 8)

+ g(η − 3)f(η − 4)g(η − 7)f(η − 8) + g(η − 3)g(η − 6)f(η − 7)f(η − 8)
]
an−4,m−2

In general, we can write for the h-th step

a(h)
n,m =

h∑
l=0

an−h,m−l

[ (hl)∑
q=0

C
(h)
l,q [f, g]

]
(E.0.20)

and for the n-th last step

a(n)
n,m =

n∑
l=0

δm,l

[(nl)∑
q=0

C
(n)
l,q [f, g]

]
(E.0.21)

where the coefficients C(h)
l,q [f, g] are obtained by the following rules. A certain C(h)

l,q [f, g] is product of
h functions f, g such that

1. Number of f and g

Given h, in each product, the total number of function (of whichever type) is h. Given l,
distribute in all possible C(h)

l,q ways l functions of type f and h− l functions of type g

2. Lowest argument
Given l, the lowest argument is

η − (h+ 2l) (E.0.22)

or
∆maxη = ∆n+ 2∆m (E.0.23)

3. Growth of argument
Staring from the lowest argument: if one has a function f(ηX), the nearby-argument function,
whichever it is has augmented by +1; if one has a function g(ηX), the nearby-argument function,
whichever it is has augmented by +3
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The highest and lowest coefficients are easily determined

an,n =

n∏
k=1

g(η − 3k) (E.0.24)

= 3n
Γ(η)

Γ(η − 3n)

Γ( 2
3η −

1
3 − n)

Γ( 2
3η −

1
3 )

(E.0.25)

an,0 =

n∏
k=1

f(η − k) (E.0.26)

=

(
−1

4

)nΓ(η + 1
2 − n)

Γ(η + 1
2 )

Γ(η)

Γ(η − n)

[
Γ(η − 2P )

Γ(η − 2P − n)

Γ(η + 2P )

Γ(η + 2P − n)

]
(E.0.27)

Observe that the ratio of the Gamma functions in the explicit formula, for all possible orders n,
for the lowest Gelfand Dikii coefficient an0 can be expressed, through the Stirling numbers of the
first kind, as a polynomial in the Liouville momentum P 2 with coefficients pn,l and to substitute in
formula (11.3.47).
The next-to highest and lowest begin to be complex

an,n−1 =

n∑
l=1

{
f(η − 3(n− l)− 1)

n−l∏
k=1

g(η − 3k)

n−1∏
j=n−l

g(η − 3j − 4)

}
(E.0.28)

=

n∑
l=1

f(η − 3(n− l)− 1)
Γ(η)

Γ(η − 3(n− l))
Γ(η − 3(n− l)− 1)

Γ(η − 3n+ 2)
×

× (η + 1/2− 3(n− l))!!!
(η + 1/2)!!!

(η − 3n+ 9/2)!!!

(η − 3/2− 3(n− l))!!!
(E.0.29)

an,1 =

n∑
l=1

{
g(η − (n− l)− 3)

n−l∏
k=1

f(η − k)

n+1∏
j=n−l+3

f(η − j − 1)

}
(E.0.30)

In general, we conjecture that a definite, tough very involved, formula, for the generic Gelfand-Dikii
coefficient an,m

an,m(P ) ∀n,m ∈ N such that 0 ≤ m ≤ n (E.0.31)

might be found, following the rules we just outlined. In particular, the generic an,m might be
expressed in terms [m/2] finite sums. If we were correct, the final outcome of the research project we
outlined in this appendix, might be the determination of an explicit formula for the generic Liouville
charge I2n−1 at the self dual point b = 1. In fact, we remind that the Gelfand Dikii polynomial, for
the self dual Liouville case, is defined as

Rn(z) =

n∑
m=0

an,mJn,m (E.0.32)

where for integral Jn,m of the Gelfand-Dikii functional part we already, far more easily, found a
general formula (11.2.49).

Jn,m = 2−n−2m−1/2
√
π

Γ(m+ n
2 −

1
4 )

Γ(m+ n
2 + 1

4 )
(E.0.33)

Then, following the procedure outlined in the second paragraph of subsection 11.3 (cf. (11.3.47)),
it might be possible to obtain also a general formula (now involving the infinite series (11.3.47),
however) also for generic ε1-deformed Seiberg-Witten cycle 2πiνn of N = 2 pure gauge theory, thanks
to Zamolodchikov’s fundamental relation (11.0.4).
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