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Introduction

This thesis is based on a project developed by a group of researchers at the Fac-

ulty of Mathematics and Computer Science at the Jagiellonian University of Krakow.

They have recently introduced a new tool in computational topology: the multivector

field. One of the reasons why they created such a tool is to study, from a combinatorial

point of view, sampled dynamics. Thus their work starts with a could of vectors which

is transformed into a combinatorial multivector field on a simplicial complex. From a

combinatorial multivector field it is then possible to construct a directed graph. Now,

applying to this directed graph a decomposition into strongly connected components, we

obtain a directed acyclic graph, called Morse graph, that describes the global dynamics

of the initial cloud of vectors.

So an important question might be: how much a perturbation in the cloud of vectors

can affect the global dynamics described by the multivector field? To give an answer to

this question we may start comparing Morse graphs. The first step might be to study

the isormophism problem, that is we try to understand if two Morse graphs, or more

in general two directed acyclic graphs, are equal up to a permutation of their vertices’

labels. A second step could be the analysis of how much two not isomorphic graphs are

actually different.

This dissertation is focused on the first step: the isomorphism problem. However, at the

end we propose a possible way to proceed with the second step.

The main issue regarding the isomorphism of graphs is the fact that it is still an open

problem. In particular it is known to be NP, but we still don’t know if it is also NP-

complete. Moreover, there are no general characterization of isomorphic graphs. We

have many invariants which enable us to say if two graphs are definitely not isomorphic,
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but no one of these invariants is complete, while for instance a complete invariant exists

for trees isomorphism (see [16]).

Therefore to state that two graphs are for sure isomorphic we have to express an iso-

morphism between them. Fortunately there are many algorithms developed to find an

isomorphism between two graphs if it exists.

The work is organized as follows.

In the first chapter we present the general problem. In particular the first section is

dedicated to the theory of multivector fields and to how we create a Morse graph. In the

second section we define the isomorphism of graphs and we describe one of the algorithms

cited above.

In the second chapter we describe four different ways to distinguish not isomorphic di-

rected graphs. The first section aims to prove four simple features, that isomorphic

directed graphs share, and each one is translated into a Python script described in the

second section. Our propositions are based on a partition of the set of vertices induced

by their degree. So in the third section we describe an alternative partition, finer than

the one we used.

In the third chapter are several examples. In particular with the first section of this

chapter we give examples created specifically for our tests. In the second section we

analyze the class of regular acyclic graphs, which are the most difficult to distinguish

one another.

The fourth chapter is about a possible way to develop the future work, that is the study

of multivector fields as finite topological spaces. Therefore in the first section we give

some notions about the algebraic topology of finite topological spaces. The second sec-

tion describes one possible application of this theory to the comparison of multivector

fields.



Introduzione

Questa tesi si basa su un progetto sviluppato da un gruppo di ricercatori della Facoltà

di Matematica ed Informatica dell’Università Jagiellonica a Cracovia. Recentemente

loro hanno introdotto un nuovo strumento nell’ambito della topologia computazionale: i

campi multivettoriali. Uno dei principali motivi per cui hanno creato un tale strumento

è lo studio, da un punto di vista combinatorio, di sistemi dinamici noti solo mediante

un campione di dati. Il loro lavoro inizia dunque con una nuvola di vettori che viene

trasformata in un campo multivettoriale su un complesso simpliciale. Dal campo multi-

vettoriale si passa poi a definire un grafo diretto. Ora, applicando a questo grafo diretto

una decomposizione in componenti fortemente connesse, si ottiene un grafo diretto aci-

clico, detto grafo di Morse, che descrive la dinamica globale della nuvola di vettori.

Una domanda fondamentale potrebbe quindi essere: quanto una perturbazione nella nu-

vola di vettori può influire sulla dinamica globale descritta dal campo multivettoriale?

Per dare una risposta a questa domanda si può iniziare confrontando i grafi di Morse.

Il primo step potrebbe essere studiarne l’isomorfismo, cioè cerchiamo di capire se due

grafi di Morse, o più in generale due grafi diretti aciclici, sono uguali a meno di una

permutazione delle etichette dei loro vertici. Un secondo step potrebbe essere l’analisi

di quanto due grafi non isomorfi, sono effettivamente diversi.

In questa tesi ci si concentra principalmente sul primo step: il problema dell’isomorfismo.

Ad ogni modo nell’ultimo capitolo proponiamo una possibile strada da seguire per il

secondo.

La principale questione riguardante l’isomorfismo di grafi è il fatto che questo problema

è ancora aperto in matematica. In particolare si sa che è un problema della classe NP

ma non è ancora noto se sia NP-completo o meno. Inoltre non esistono caratterizzazioni
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per i grafi isomorfi. Ci sono molti invarianti che ci permettono di stabilire se due grafi

sono definitivamente non isomorfi, ma nessuno di essi è un invariante completo, mentre

ad esempio esiste un invariante completo per l’isomorfismo di alberi (si veda [16]).

Di conseguenza, per stabilire con certezza che due grafi sono isomorfi bisogna esplici-

tarne un isomorfismo. Fortunatamente ci sono molti algoritmi sviluppati per trovare un

isomorfismo tra due grafi, se esso esiste.

Il lavoro è organizzato come segue.

Nel primo capitolo presentiamo il problema generale. Il primo paragrafo è dedicato alla

teoria dei campi multivettoriali e a come viene creato un grafo di Morse. Nel secondo

paragrafo definiamo l’isomorfismo tra grafi e descriviamo uno degli algoritmi citati sopra.

Nel secondo capitolo sono descritti quattro diversi modi per distinguere grafi diretti non

isomorfi. Il primo paragrafo mira a dimostrare quattro semplici proprietà che grafi diretti

isomorfi condividono ed ognuna è tradotta in uno script Python descritto nel secondo

paragrafo. Le nostre proposizioni si basano su una partizione dell’insieme dei vertici in-

dotta dal loro grado. Nel terzo paragrafo descriviamo quindi una partizione alternativa,

più fine di quella usata in precedenza.

Nel terzo capitolo vi sono svariati esempi. In particolare con il primo paragrafo di questo

capitolo presentiamo degli esempi creati appositamente per i nostri test, mentre nel

secondo analizziamo la classe dei grafi aciclici regolari, che sono i più difficili da

distinguere l’un l’altro.

Il quarto capitolo riguarda infine una possibilità per sviluppare il lavoro futuro, che è lo

studio dei campi multivettoriali come spazi topologici finiti. Quindi nel primo paragrafo

presentiamo alcune nozioni di topologia algebrica nell’ambito degli spazi topologici finiti.

Il secondo paragrafo descrive una possibile applicazione di questa teoria al confronto dei

campi multivettoriali.
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Chapter 1

Isomorphism of Morse graphs

In this first chapter we present the problem analyzed throughout the whole work and

a tool to solve it that already exists.

Main references for the first section are [4] and [6]. Our definitions are taken from [4],

but in [6] are given more general ones. Moreover in this section we cite cubical and cell

complexes; for a deepened treatise of the former we refer to [5] and for a definition of

the latter to [13].

The second section is dedicated to Networkx, a Python library created to work with

graphs and networks, whose documentation [9] is available on internet.

1.1 The problem

The purpose of this section is to describe how the object of our study, i.e. Morse

graphs, is constructed in the specific context of multivector fields.

Given a cloud of vectors we create on it a simplicial mesh and then a multivector field,

which itself describes a dynamics for the cloud of vectors. Therefore we have a combina-

torial dynamical system, which may be visualized as a directed graph. As a consequence,

the term dynamics may be translated in the concept of all paths of a directed graph,

both finite and infinite.

At this point we extract from the directed graph the recurrent dynamics studying how

1
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its vertices tend to group together into clusters. These clusters are called strongly con-

nected components. There are three main reasons why the study of such components is

useful. First of all, the set of strongly connected components is efficiently computable.

Moreover examining strongly connected components lends itself to extracting rigorous

results when considering directed graphs obtained from continuous processes. And as

last but central feature, we have that strongly connected components describe the global

dynamics of the directed graph. In fact, collapsing each strongly connected component

to a single vertex and using a partial order upon them, it is possible to create a directed

acyclic graph, namely the Morse graph, which is a description of the global dynamics of

the system.

Our task is to study the isomorphism of directed acyclic graphs because we want to com-

pare Morse graphs. Since they describe global dynamics, to have similar Morse graphs

means to have similar global dynamics.

1.1.1 Lefschetz complex

We start our description with a cloud of vectors because behind the mathematical

model presented in [4] there is the analysis of sampled dynamics, that is dynamics known

only from a sample.

The sampled data often consists of a cloud of vectors, which is

V :=
{
~v = (sv, tv)|sv, tv ∈ Rd

}
.

The first step we do in order to analyze the cloud of vectors, is the creation of a simplicial

mesh X such that sv is a vertex of X.

We remind that a simplicial complex is a family X of simplices, that are non-empty

subsets of a finite set of vertices, such that any non-empty subset σ of a simplex τ ∈ X,

called a face of τ , is in X.

In our examples we use simplicial complexes but actually one might use cubical or cell

complexes. More in general, the mesh can be created using a Lefschetz complex, which

is a notion that generalizes all the previous.

Definition 1.1. Let R be a ring with unity. (X, k) is a Lefschetz complex if X =

(Xq)q∈Z+ is a finite set with gradation, k : X ×X → R is a map such that k(x, y) 6= 0
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implies x ∈ Xq, y ∈ Xq−1 and for any x, z ∈ X we have:∑
y∈X

k(x, y)k(y, z) = 0 (1.1)

The elements of X are called cells and k(x, y) is the incidence coefficient of x and

y.

Some simple examples of Lefschetz complexes are provided not only by the family of all

simplexes of a simplicial complex, as we said above, but also by the family of all cubes in

a cubical complex or a regular finite CW-complex. In these cases the incidence coefficient

is obtained from the boundary homomorphism of the associated simplicial, cubical or

cellular chain complex.

Since we give examples using simplicial complexes we write the expression of the map k

in this particular case, as it is defined in [15].

A simplex σ of a simplicial complex X is coded as σ =< v0, . . . , vq > where vi are

0-simplexes of σ for i = 1, . . . , n. The map k is

k(σ, τ) :=

(−1)i for σ =< v0, . . . , vq > and τ =< v0, . . . , vi−1, vi+1, . . . , vq >

0 otherwise

Thanks to 1.1 we have a free chain complex (R(X), ∂k) where R(X) is the free group

spanned by X and ∂k : R(X)→ R(X) is defined on generators by

∂k(x) :=
∑
y∈X

k(x, y)y.

The Lefschetz homology of (X, k), denoted by Hk(X), is the homology of this chain

complex.

It is possible to define a relationship among the cells of a Lefschetz complex.

Given two cells x, y ∈ X we say that y is a facet of x and write y ≺k x if k(x, y) 6= 0.

The relation ≺k extends uniquely to a minimal partial order, which is denoted by ≤k.

We say that y is a face of x if y ≤k x.

Definition 1.2. The closure of A ⊆ X, denoted clA, is obtained by recursively adding

to A the facets of cells in A, the facets of the facets of cells in A and so on.

The set A is closed if clA = A.
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The mouth of A is moA := clA \ A.

The set A is said to be proper if moA is closed.

Remark 1. Every proper subset of a Lefschetz complex with incidence coefficient re-

stricted to this subset is a Lefschetz complex too. So all the previous definitions and

constructions are suitable for proper subsets of a Lefschetz complex.

We now present an example to sum up all the definitions given so far.

Example 1.1. In the simplicial complex K in fig 1.1 we can consider the subset A

composed by the cells {2, 3, 4}. The closure of A is cl(A) = {0, 1, 2, 3, 4, 5, 6} and its

mouth is mo(A) = {0, 1, 5, 6}.
An example of not closed subset of K is mo(A), while B = {7} is closed.

The last subset marked in figure 1.1, that is C = {11, 12, 13, 14}, is an example of proper

subset. Indeed for its closure we have

cl(C) = {8, 9, 10, 11, 12, 13, 14}

so mo(C) = {8, 9, 10} and it is closed.

Figure 1.1: A simplicial complex consisting of 7 0-simplexes, indicated with blue dots,

11 1-simplexes or edges, each one with a green dot, and 5 2-simplexes, indicated with

red dots
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1.1.2 Combinatorial multivector fields

Given the simplicial complex with the cloud’s vectors attached to all its vertices, the

second step we do in our analysis, is the creation of a combinatorial multivector field.

For a deepened description of this delicate step we refer to [6]. Here we simply want to

give the definitions that are necessary to create the Morse graph.

To keep the treatise more general, in the following, (X, k) is a fixed Lefschetz com-

plex. Moreover we need another fundamental notion before defining the combinatorial

multivector field.

Definition 1.3. A combinatorial multivector or briefly a multivector, is a proper

subset V ⊆ X admitting a unique maximal element with respect to the partial order ≤k.

This element is called dominant and, from now on, it is denoted V ∗.

As a consequence of remark 1, we can calculate the Lefschetz homology of a multi-

vector.

A multivector V is said to be regular if its Lefschetz homology is zero; otherwise it is

called critical. Trying to give an intuitive vision of a regular multivector V , we can say

it is such that clV may be collapsed to moV . On the contrary a critical multivector

indicates that clV may not be collapsed to moV .

Now we can introduce the main concept described in [4].

Definition 1.4. A combinatorial multivector field, or briefly a multivector field, on

X is a partition V of X into multivectors.

For each cell x ∈ X we denote by [x]V the unique multivector in V to which x belongs

and x∗ the dominant cell of [x]V .

Example 1.2. In figure 1.2 we have a partition of the simplexes of a simplicial complex

K in which every simplex is indicated with a dot in its center of mass. Similarly to

example 1.1, 0-simplexes are marked with blue dots, 1-simplexes are marked with green

dots and 2-simplexes with orange dots. The partition’s blocks are indicated with red

ovals both solid and dashed. This partition is not a multivector field because the block

{0, 1, 2} is not a proper subset of K, so it is not a multivector. The other block marked

with a dashed oval, namely {3, 4, 5}, is a proper subset but it has two maximal elements,
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so again it is not a multivector.

Figure 1.2: A partition of a Lefschetz complex that is not a multivector field

Figure 1.3: A multivector field over the same complex given in 1.2

In figure 1.3 we have an example of combinatorial multivector field.

This multivector field presents many examples of critical multivectors, for instance those

with only one element are all critical.

Remark 2. We may notice that it is always possible to define a multivector field on

a Lefschetz complex. For instance the multivector field in which every element of the

partition is a singleton always exists.
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1.1.3 Dynamics on multivector fields

A combinatorial dynamical system on a simplicial complex X is a multivalued

map F : X ⇒ X, i.e. a map F : X → P(X), that sends every simplex of X into a family

of simplexes in X. Since the concept of multivalued map is equivalent, on the formal

level, to the concept of directed graph, we can see a combinatorial dynamical system

F as a directed graph GF whose vertices are simplexes of X and with a directed edge

from x to y if and only if y ∈ F (x). A direct consequence of this interpretation of a

combinatorial dynamical system as a directed graph, is that some concepts in dynamics

may be translated into concepts in directed graphs and vice versa.

Now we can go back to our multivector field to show how we can create from it a directed

graph, and so a multivalued map. Again we use the more general notion of Lefschetz

complex instead of simplicial complex. Moreover we remind that the dominant cell of a

multivector V is denoted V ∗.

Given a multivector field V on a Lefschetz complex X, we associate with it a dynamics

using a directed graph GV . This graph has vertices in X and three types of arrows:

up-arrows, which have heads in V ∗ and tails in all the other cells of V , down-arrows,

with tails in V ∗ and heads in moV , and loops, that join V ∗ with itself for all critical

multivectors V . If we want to give a more formal definition of the arcs of GV , we can

say that there is an arrow from a cell x to a cell y if one of the following conditions is

satisfied:

1. x 6= y = x∗ (up-arrow)

2. x = x∗and y ∈ clx \ [x]V (down-arrow)

3. x = x∗ = y and [y] is critical (loop)

A useful observation we could do is that the up-arrows sharing the same head uniquely

determine a multivector.

An example of directed graph associated with a multivector field is in figure 1.4. Here

up-arrows are the solid ones while down-arrows are dashed. The loops are indicated with

a red circle around the cell itself.
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Figure 1.4: The graph GV associated with the multivector field in 1.3

It is possible to define a relation on X given by the arrows of GV . We can write

y ≺V x if there is an arrow from x to y in GV .

So in our case we can define the multivalued map ΠV : X ⇒ X which sends a cell x to

the set

ΠV(x) := {y ∈ X|y ≺V x} .

1.1.4 Strongly connected components

Now we want to extract from this directed graph the family of its strongly connected

components. For the sake of clarity we give some definitions and an example, taken from

[14], regarding only directed graphs, before describing the decomposition in the context

of multivector fields.

A strongly connected component of a directed graph G is a maximal subset C of the

set of vertices such that for every pair of vertices u, v ∈ C there is a directed path from v

to u and a directed path from u to v. The family of the strongly connected components

of a directed graph is naturally ordered. In fact, given an index set P for the collection

of strongly connected components, we can define a partial order saying that, for p, q ∈ P ,

q ≤ p if there is a path in G starting from a vertex in q and ending at a vertex in p.

From this partially ordered family, one can construct a new graph, which results directed

acyclic, by collapsing each strongly connected component to a single vertex and forming

an edge q → p if q ≤ p.
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Example 1.3. Let the one in figure 1.5 be our directed graph. We can think at this

graph as a model for the propagation of information on a social network. From this point

of view each state correspond to the users who are in possession of the information. In a

basic setting we may consider n users, which correspond to n vertices, and if user i has

access to the information of user j, then there is a directed edge j → i.

Figure 1.5: Directed graph

This graphs contains four strongly connected components and only one vertex does

not lie in any component. Indeed the information can be shared among users in the same

component but it can only be propagated further to other users according to the partial

order on the strongly connected components. The Morse graph reflects this idea.

Figure 1.6: Strongly connected

path components in 1.5 Figure 1.7: Morse graph of 1.5
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1.1.5 Morse graph

With this paragraph we translate the idea of strongly connected component in a

similar concept for the multivector fields. Moreover we describe a more general decom-

position adapting some notions of dynamical systems to the context of multivector fields.

Again we start with a directed graph, but here the decomposition of GV in strongly con-

nected components is made by means of basic sets and developed as follows.

Let A ⊆ X be V-compatible, i.e A equals the union of multivectors contained in it. We

write x
A→V y if there exists a path of GV in A from x∗ to y∗ of length at least one. We

also write x
A↔V y if x

A→V y and y
A→V x.

The subset A is said to be weakly recurrent if for every x ∈ A we have x
A↔V x. And

it is strongly recurrent if for any x, y ∈ A we have x
A↔V y. The chain recurrent set

of X is the maximal weakly recurrent subset of X and it is denoted CR(X). Therefore

CR(X) :=
{
x ∈ X|x X↔V x

}
The relation ↔V is an equivalence relation when restricted to CR(X) so it is possible to

consider its equivalence classes, we call them basic sets of V .

Given two basic sets B1, B2 we write B1 ≤V B2 if there exists a path in GV such that all

its sufficiently early elements belong to B2 and all its sufficiently far elements belong to

B1. The relation ≤V is a partial order on the family of basic sets. The Hasse diagram of

this partial order is our Morse graph.

Remark 3. The family of basic sets with the partial order just defined is an example of

Morse decomposition. Even though we would like to give only an intuitive definition of

it, we need to describe some more notions.

A solution of a multivector field V is a sequence of cells such that any two consecutive

cells in it form an arrow in the graph GV . We may have different types of solutions. If

the sequence is bi-infinite the solution is said to be full. But the sequence could be also

backward infinite, forward infinite and finite.

A subset A ⊆ X is said to be invariant if for every multivector V ⊆ A there is a full

solution through V ∗ in A.

A finite solution in clA is an internal tangency in A if the values at its endpoints are

in A but one of the other values is not in A.
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A subset A ⊆ X is an isolated invariant set if it is invariant and admits no internal

tangencies.

Finally we can give an informal definition of Morse decomposition.

Given a family M = {Mr}r∈P of mutually disjoint, non-empty, isolated invariant sets,

we write r ≤ r′ for r, r′ ∈ P if there exists a full solution such that all its sufficiently

far terms belong to Mr and all sufficiently early terms belong to Mr′ . We say that the

family M is a Morse decomposition of X if the relation ≤ on P is a partial order.

Again the Morse graph is the Hasse diagram of the partial order ≤.

As it is proved in [4, Theorem 8.4], every basic set is a strongly recurrent isolated invariant

set.

We conclude this section with an example regarding a multivector field.

Example 1.4. In figure 1.8 we have a simplicial complex K with four 0-simplexes, six

1-simplexes and three 2-simplexes. The multivector field V is defined by the associated

graph GV ; only up-arrows and loop are drawn in figure 1.8. Cells sharing the same

number are contained in the same basic set because they are all equivalent by means of

↔V . So they provide three different blocks in the Morse decomposition of K.

Figure 1.8: Morse decomposition of a multivector field. Cells with same number are in

the same element of the decomposition.

In figure 1.9 we have the Morse graph of 1.8. If we want to say something about

the global dynamics of V we have to remind two notions. An isolated invariant set is

an attractor, respectively a repeller, if there aren’t full solutions crossing it which go
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Figure 1.9: The Morse graph of the Morse decomposition in 1.8.

away from it forward in time, respectively backward in time.

From the Morse graph in figure 1.9 we can understand that the dynamics created by V
has a repeller, that is the vertex with label 2, two attractors that are 0 and 3, and an

isolated invariant set which is neither an attractor nor a repeller.

1.2 An algorithm for graphs isomorphism

As we said in the previous section, our target is to compare Morse graphs. To keep

the topic more general, since Morse graphs are directed acyclic, we want to understand

whether two directed acyclic graphs are isomorphic or not.

We recall the definition of graph isomorphism, as it is presented in [1] and [2].

Definition 1.5. Two directed graphs G = (V,A) and G′ = (V ′, A′) are isomorphic if

there exist two bijections φ : V → V ′ and ψ : A→ A′ such that x is an arc from u to v

in G if and only if ψ(x) is an arc from φ(u) to φ(v) in G′.

The pair of functions (φ;ψ) is called an isomorphism.

Unfortunately the isomorphism problem is still an open problem in mathematics. It

belongs to the class NP but we still don’t know if it is NP-complete. Nevertheless there

are many algorithms to find an isomorphism between two graphs, if it exists.

An example of two isomorphic graphs is given by G1 in figure 1.10 and G2 in 1.11.
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Figure 1.10: Graph G1 Figure 1.11: Graph G2

1.2.1 Networkx

In this section we are going to describe one of the algorithms for graph isomorphism.

It is implemented in a library called Networkx.

Networkx is a Python package for the creation, study and manipulation of the structure,

dynamics and functions of complex networks. There are four basic Python classes to

implement undirected simple graphs, directed graphs, undirected multi-graphs and di-

rected multi-graphs. The graph internal data structures are based on an adjacency list

representation and implemented using Python dictionary datastructures. The adjacency

structure, implemented as a Python dictionary of dictionaries, allows fast addition, dele-

tion, and lookup of nodes and neighbors in large graphs.

Moreover this library provides us many algorithms to study and compare graphs. Going

back to our target, since the object of our study are simply directed acyclic graphs we

can convert them into a Networkx’s graph-like object and analyze the isomorphism using

the function is-isomorphic. This function is the only one in the package that can give

us a positive answer; it returns True if the graphs given as parameters are isomorphic

and returns False otherwise. There are three more functions to compare graphs but they

cannot give a positive answer. They simply return False if the two graphs are definitely

not isomorphic, that is exactly what our tests, presented in the following chapter, are

supposed to do.

The function is-isomorphic is based on a matching algorithm presented in [7]. It is called

VF2 and is an improved version of the VF algorithm created by the same authors. In our

presentation we refer to both [7] and [8]. We suppose that the analyzed graphs are di-
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rected and we refer to them as G1 = (V1, A1) and G2 = (V2, A2); anyway the extension

of the algorithm to undirected graphs is trivial.

The algorithm tries to create a matching between two graphs, that is equivalent to trying

to express an isomorphism.

A matching process between two graphs G1 and G2 consists in the determination of a

mapping M which associates nodes of the first graph to nodes of the second one and

vice versa. The mapping M is often expressed as the set of ordered pairs (n,m), with

n ∈ V1 and m ∈ V2, each representing the mapping of the node n into the node m. So

we simply have

M = {(n,m) ∈ V1 × V2|n is mapped onto m} .

The matching process can be suitably described by means of a sequence of states. Each

state s of the matching process can be associated with a partial matching solution M(s),

that is a subset of M so it contains only some components of M . A partial mapping

solution univocally identifies two subgraphs G1(s) of G1 and G2(s) of G2 obtained by

selecting from G1 and G2 only the nodes included in the components of M(s) and the

edges connecting them.

In 1.5 there is an example of partial matching M(s) with G1(s) and G2(s). We write

M1(s) and M2(s) to indicate the projections of M(s) into V1 and V2 respectively.

Looking at a partial matching as a state of the matching process, we have that the

transition between two states corresponds to the addition of a new pair of matched

nodes.

Example 1.5. Here we present an example of a matching between two graphs G1, in

fig 1.10, and G2, in fig 1.11.

The only possible matching between these two graphs is

M = {(n1,m2), (n2,m3), (n5,m4), (n3,m1), (n4,m5)}

We can consider a state s such that M(s) = {(n1,m2), (n4,m5)}. The graphs associated

with this state are in figure 1.12.
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Figure 1.12: On the left the graph G1(s) and on the right the graph G2(s)

To visualize the transition between two states of the matching process, we now con-

sider a state s′ obtained from s adding the pair (n3,m1). The figure 1.13 shows the

transition. Among all the possibilities from the state s, represented as arrows with tail

in s, we choose the one that brings us to s′.

Figure 1.13: A representation of the transition between two states of the matching

process.

Since we changed state we had a development in the matching process, so there are

two new graphs associated with s′. They are shown in figure 1.14
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Figure 1.14: On the left the graph G1(s
′) and on the right the graph G2(s

′)

As we saw, the final matching is created adding matched nodes to a partial solution.

Obviously there are always many possibility for adding a pair of vertices to a partial

matching. In order to reduce the number of these possibilities, we impose that the cor-

responding partial solution verifies some coherence conditions, depending on the desired

mapping type. For instance, to have an isomorphism it is necessary that the partial

mappings are isomorphisms between the corresponding subgraphs. If the addition of a

pair to the partial mapping produces a state that is in contradiction with the coherence

condition, we may ignore it because it certainly cannot lead to the final goal. For a given

state s, in the algorithm are introduced some criteria for foreseeing if s has no coherent

successors after a certain number of steps. These criteria are called feasibility rules; in

particular a rule implements a k-look-ahead if, given a state s and a pair (n,m) to be

included in s to create a new state s′, it allows us to establish if all the states reachable

from s′ in k steps are incoherent. The duty to check these rules is given to a feasibil-

ity function that is a boolean function F (s, n,m). It returns True if it is guaranteed

that the state s′ obtained from s adding (n,m), is a partial isomorphism whenever s is.

Therefore, at the end of the process the final state is either an isomorphism between G1

and G2 or a graph-subgraph isomorphism between a subgraph of G1 and G2.

Now we give the outline of the algorithm.
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Algorithm 1 VF2 Algorithm

procedure Match(s)

INPUT: an intermediate state s; the initial state s0 has M(s0) = ∅
OUTPUT: the mapping between the two graphs

if M(s) covers all the nodes of G2 then OUTPUT M(s)

else

Compute the set P (s) of the pairs candidate for inclusion in M(s)

for all (n,m) ∈ P (s) do

if F (s, n,m) then

Compute the state s′ obtained by adding (n,m) to M(s)

CALL Match(s′)

end if

end for

Restore data structures

end if

end procedure

The definition of the set P (s) containing the node pairs that can be added to the

current state is based on the definition of two other sets. They are the out-terminal

set T out
i (s) and the in-terminal set T in

i (s) for i = 1, 2, defined as follows.

T out
i (s) = {v ∈ Vi|v /∈Mi(s) but ∃(n, v) ∈ Ai for some n ∈Mi(s)} (1.2)

T in
i (s) = {v ∈ Vi|v /∈Mi(s) but ∃(v, n) ∈ Ai for some n ∈Mi(s)} (1.3)

Now we are able to construct P (s); we have three possibilities to do it.

If both T out
1 (s) and T out

2 (s) are not empty then

P (s) = T out
1 (s)×

{
minT out

2 (s)
}

where minT out
2 (s) is the vertex in T out

2 (s) with smallest label, or if another type of total

order is fixed, it is the smallest vertex in that order.

If both T out
1 (s) and T out

2 (s) are empty, and both T in
1 (s) and T in

2 (s) are not, then

P (s) = T in
1 (s)×

{
minT in

2 (s)
}
.
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If all the four terminal sets are empty, then

P (s) = (V1 \M1(s))× {min(V2 \M2(s))} .

In the case that only one of the in-terminal sets or only one of the out-terminal sets is

empty, it may be proved that the state s cannot be part of a matching, and it is no

further explored.

To conclude this section we would like to turn again our attention to the feasibility

function. As we said before it implements the feasibility rules. In the specific case of an

exact graph isomorphism, the rules are of three types: 0-look-ahead, 1-look-ahead and

2-look-ahead. Therefore to evaluate F (s, n,m) the algorithm 1 examines all the nodes

connected to n and m; if such nodes are in the current partial mapping the algorithm

checks if each branch from or to n has a corresponding branch from or to m and vice

versa, that is a 0-look-ahead rule. Otherwise, if these nodes are not in the current

partial matching, the algorithm 1 counts how many nodes are in T in
i (s), T out

i (s) and

(Vi \Mi(s) \ T in
i (s) \ T out

i (s)). For the isomorphism these counts must be equals for n

and m, moreover they correspond to a rule of the type 1-look-ahead and 2-look-ahead

respectively.

A last observation could be done about feasibility rules.

There are two kinds of feasibility rules, those described above regard the syntax of the

graphs. The other type concerns the semantics.

If the nodes and the branches of the graphs being matched also carry semantic attributes,

another condition must hold for F (s, n,m) to be valuated as True. Namely the attributes

of the nodes and the branches paired must be compatible. The semantic compatibility

has to be defined with reference to the specific application domain.



Chapter 2

Four negative answers

In this chapter we present our tests to establish whether two directed acyclic graphs

are not isomorphic.

Main references for the definitions in the first section are [2] and [1].

In the second section we briefly describe the implementation of our tests. The complete

code can be found in the appendix A.

The third section is dedicated to a particular partition of the set of vertices introduced

in [3].

2.1 Four properties of isomorphic directed graphs

If two graphs are isomorphic, they necessarily share some particular features. Con-

versely if two graphs don’t share one of these particular features, they for sure cannot

be isomorphic.

Here we analyze four of these properties, each one is presented by a proposition and

leads to a Python test described in the next section.

When two directed graphs, or briefly digraphs, G and G′ are isomorphic we write G ' G′.

Remark 4. If G = (V,A) and G′ = (V ′, A′) are simple digraphs, i.e. digraphs without

loops and multiple arcs, then G ' G′ if and only if there is a bijection φ : V → V ′ such

that (u, v) ∈ A if and only if (φ(u), φ(v)) ∈ A′.

Since in our case the digraphs are simple, we use the definition given in remark 4.

19
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Another notion we can recall is the degree sequence of a digraph. Since in a digraph G

every arc is oriented, for every vertex v in G is necessary to count how many arcs have tail

in v and how many have head in v. So every vertex v has an in-degree d−G(v) that is the

number of arcs with head in v and an out-degree d+G(v) that is the number of arcs with

tail in v. We simply call degree of a vertex v the ordered pair dG(v) = (d−G(v), d+G(v));

so the degree sequence of a digraph is the list of these pairs. With a notation borrowed

from network theory, we call source a vertex with in-degree equal to zero and sink a

vertex with out-degree equal to zero. All the other vertices are said to be intermediate.

The easiest property of isomorphic digraphs we can see is that they have the same degree

sequence, that somehow means they have the same vertices.

Proposition 2.1.1. Let G = (V,A) and G′ = (V ′, A′) be two digraphs.

If G and G′ are isomorphic, then they have the same degree sequence.

Proof. Let u be a vertex of G.

Since G ' G′, there exists an isomorphism between these two digraphs; we call it φ. So

there is a vertex v in G′ such that φ(u) = v. From the definition of isomorphism we have

that ∀w ∈ V such that (w, u) ∈ A there exists a vertex w′ ∈ V ′ such that φ(w) = w′ and

(w′, v) ∈ A′.
⇒ d−G(u) = d−G′(v)

Analogously for the out-degree:

∀w ∈ V such that (u,w) ∈ A there exists a vertex w′ ∈ V ′ such that φ(w) = w′ and

(v, w′) ∈ A′.
⇒ d+G(u) = d+G′(v)

Therefore u and v have the same degree. Since this is valid for every vertex of G and

every vertex has exactly one vertex in G′ associated with it by means of φ, the two

digraphs have the same degree sequence.

Thanks to this proposition it is possible to see that if two digraphs don’t have the

same degree sequence, they cannot be isomorphic.

The second feature is about arcs. More precisely it states that two isomorphic digraphs

have the same connections, that is they have arcs whose ending points have identical

degrees.
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Proposition 2.1.2. Let G = (V,A) and G′ = (V ′, A′) be two isomorphic digraphs.

Then there exists an injective relation between the two sets of arcs f : A → A′ with the

following property: if e = (u, v) is an arc of A and f(e) = (u′, v′) is its image in A′ then

dG(u) = dG′(u′) and dG(v) = dG′(v′).

Proof. Let φ : V → V ′ be the isomorphism between G and G′.

As we have already proved in 2.1.1, ∀v ∈ V we have dG(v) = dG′(φ(v)).

Now let e = (u, v) be an arc of G, that is e ∈ A. From remark 4, e′ = (φ(u), φ(v)) is an

arc of G′, that is e′ ∈ A′. We can set f(e) = (φ(u), φ(v)) for every e = (u, v) ∈ A. This

function satisfies the property required.

Moreover it is injective and well defined because φ is injective itself and well defined. It

is quite easy to see this; for instance we can prove the injectivity since the well definition

is similar.

Let e = (u, v) and a = (x, y) be arcs of G.

Suppose that f(e) = f(a), i.e. (φ(u), φ(v)) = (φ(x), φ(y)). This means that φ(u) = φ(x)

and φ(v) = φ(y). Since φ is a bijection, we have u = x and v = y that is e = a.

As in the case of proposition 2.1.1, we can use this second proposition to check

whether two digraphs are not isomorphic. We simply need to find an arc a = (u, v) in G

such that there isn’t an arc e = (x, y) in G′ with dG(u) = dG′(x) and dG(v) = dG′(y), so

we cannot create the function f .

Checking the connections of the two digraphs leads us to a superficial knowledge of their

structure. If we want to go deeper we can analyze all the possible paths of length two

and then we can also study longer paths.

In order to keep the notation as clear as possible, we write the definition of directed path

as it is given in [2].

Definition 2.1. A (v0; vt)−directed walk or a directed walk from v0 to vt is an alter-

nating sequence

W := (v0, a1, v1, a2, v2, . . . , vt−1, at, vt)

of vertices and arcs where ai is an arc from vi−1 to vi for all i = 1, . . . , t. Here, the

vertices or arcs need not be distinct.
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A (v0; vt)−path or a path from v0 to vt is a (v0; vt)−directed walk in which all vertices

and arcs are distinct.

From now on a path will be denoted with the sequence of its vertices because our

digraphs are simple. Nevertheless the length of a path is the number of arcs it involves.

The following proposition states that two isomorphic digraphs have the same paths of

length two.

Proposition 2.1.3. Let G = (V,A) and G′ = (V ′, A′) be two isomorphic digraphs.

Then for all paths of length two P = (u1, u2, u3) with ui ∈ V ∀i = 1, 2, 3 in G, there

exists in G′ a path P ′ = (v1, v2, v3) of length two with vi ∈ V ′ ∀i = 1, 2, 3 such that

dG(ui) = dG′(vi) ∀i = 1, 2, 3.

Proof. Let φ : V → V ′ be the isomorphism between G and G′.

Every vertex ui in the path P has an image φ(ui) in V ′ and as proved in 2.1.1 we have

dG(ui) = dG′(φ(ui)) ∀i = 1, 2, 3.

Moreover (u1, u2) is an arc from u1 to u2 in G, then (φ(u1), φ(u2)) has to be an arc from

φ(u1) to φ(u2) in G′ because φ is an isomorphism. The same is valid for (u2, u3) ∈ A;

(φ(u2), φ(u3)) is an arc in G′.

As a consequence we have that (φ(u1), φ(u2), φ(u3)) is a path from φ(u1) to φ(u2) with

dG(ui) = dG′(φ(ui)) ∀i = 1, 2, 3.

Now we can denote φ(ui) = vi ∀i = 1, 2, 3.

⇒ (v1, v2, v3) is the searched path.

The last property of isomorphic digraphs is an easy and natural extension of the

previous one. It states that two isomorphic digraphs have the same paths of any length.

Without loss of generality we can assume k ≤ |V | in the following proposition.

Proposition 2.1.4. Let G = (V,A) and G′ = (V ′, A′) be two isomorphic digraphs.

Then for all paths P = (u1, . . . , uk) in G with ui ∈ V ∀i = 1, . . . , k, there exists in G′ a

path P ′ = (v1, . . . , vk) with vi ∈ V ′ ∀i = 1, . . . , k such that

dG(ui) = dG′(vi) ∀i = 1, . . . , k.
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Proof. If we name again φ the isomorphism between G and G′, we can iterate the method

used in 2.1.3.

In this way we obtain a path P ′ = (v1, . . . , vk) in G′ where vi = φ(ui) ∀i = 1, . . . , k.

Therefore dG(ui) = dG′(vi) ∀i = 1, . . . , k and P ′ is the searched path.

2.2 Implementation of four tests

In this section we present four tests based on the previous propositions. These tests

are written to check if two directed acyclic graphs are not isomorphic. They cannot give

us a positive answer, so the word True here means “I don’t know”.

The general assumptions behind this implementation are: the analyzed graphs are

acyclic, simple, their vertices are labeled with numbers from 0 to n and there are no

graphs with only sources and sinks.

The implementation of a graph is a list of pairs that represent its arcs. Even though the

list is an ordered data type, here the order in which arcs are written is not relevant. For

example the graph in 2.1 could be implemented with the list

[(0, 1), (1, 2), (1, 3), (3, 4), (3, 5), (4, 5), (5, 2)] .

Figure 2.1: A directed acyclic graph.

In the following explanation the word “graph” refers to the list described above.

2.2.1 Degree sequences and edges

The first test we do on our graphs is based on proposition 2.1.1. So it returns

False if the two degree sequences are different and this means that the two graphs
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are not isomorphic, otherwise it returns True. To create the degree sequence is used

CreateBidegList which takes a graph and returns a list B of pairs. The element B[i] is

the degree of the vertex i in the graph.

In order to check whether the two degree sequences are identical the function CheckBideg

sorts a copy of them and uses the Python comparison operator ==.

Example 2.1. The degree sequence of the graph in 2.1 would be

[(0, 1), (1, 2), (2, 0), (1, 2), (1, 1), (2, 1)].

The second test is CheckConnections and it is based on proposition 2.1.2. First of

all it invokes the function EdgeBideg, which takes a graph and its degree sequence as

arguments. Then EdgeBideg creates a list with the arcs of the graph in which each vertex

is replaced with its degree; below an example.

Example 2.2. Naming G the list that implements the graph in figure 2.1 and B its

degree sequence we have

EdgeBideg(G,B) = [((0, 1), (1, 2)), ((1, 2), (2, 0)), ((1, 2), (1, 2)), ((1, 2), (1, 1)),

((1, 2), (2, 1)), ((1, 1), (2, 1)), ((2, 1), (2, 0))]

Now the function CheckConnections is able to compare the two sets of arcs. It returns

True if the two lists created by EdgeBideg are equal, False otherwise. In particular, for

every element in the first list, the function looks for an identical element in the second

one. If such an element is found, then it is deleted from the list, otherwise the function

ends. This behavior reflects the injectivity of the function f in proposition 2.1.2.

2.2.2 Paths of length two

At this point, if the previous tests gave positive response, we proceed to check the

paths of length two with CheckSimplePath. The test can be summarize in three key

points:

1. two dictionaries with the information of the graphs are created;

2. the function AllSimplePath creates all possible paths of length two in the first

graph;
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3. the function FindSameSimplePath searches in the second graph for the same paths

generated in the previous step.

We can start analyzing the first point. An information dictionary for a directed graph

has graph’s vertices as keys and the values are lists such that the first element is the

key’s degree and the second one is the number of marks. These marks are needed in the

third point because we want the function FindSameSimplePath to move in the direction

less visited, so they indicate how many times a vertex has been used.

Example 2.3. At the beginning the dictionary of the graph in figure 2.1 would be:

D = {0 : [(0, 1), 0], 1 : [(1, 2), 0], 2 : [(2, 0), 0], 3 : [(1, 2), 0], 4 : [(1, 1), 0], 5 : [(2, 1), 0]}

In order to analyze the second point we need two more definitions; they are from [2].

Definition 2.2. Given a digraph G = (V,A), the set

Nout(v) = {x ∈ V |(v, x) ∈ A}

is called the set of out-neighbors of v ∈ V , and the set

Nin(v) = {x ∈ V |(x, v) ∈ A}

is called the set of in-neighbors of v ∈ V .

The function AllSimplePath creates all paths of length two as follows.

For every intermediate vertex v it creates the sets Nin(v) and Nout(v), then it matches

each vertex in the first set with all vertices in the second one. In this way it is possible

to have all paths of length two that have the vertex v as central vertex.

Now, for every path of length two in the first graph, the function CheckSimplePath looks

for an equal path in the second graph. To do this it invokes the function FindSameSim-

plePath. This last function has a path p = (u0, u1, u2) as argument and tries to create a

path sp = (v0, v1, v2) in the second graph such that dG(ui) = dG′(vi) ∀i = 0, 1, 2.

An important observation is that the response of this test depends on the order in which

the graphs are entered as arguments, because it creates all possible paths on the first

graph and looks for the same paths in the second graph. So changing the order in which

the arguments are entered we can obtain a different response; we will see this with an

example in the next chapter. For this reason the function CheckSimplePath is called

twice when we compare two graphs.
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2.2.3 Paths from a source to a sink

The last test we do is about complete paths, which are those that start with a source

and end with a sink. Since our graphs are acyclic we always have such paths and following

a path in the program we cannot create an infinite loop.

First of all the test CheckLongPaths creates all possible long paths in the first graph using

the function AllPathsInGraph. For every source in the graph, this last function invokes

AllPathSource to create all possible paths starting from that source. The algorithm used

by AllPathSource is the following:

1. Given a source s, the set Nout(s) is created.

2. For every vertex u in Nout(s) we do:

3. create a path (s, u, u1, u2, . . . , un) where un is a sink and append it to a list AllPaths

4. take the last complete path p = (s, w1, . . . , wm) stored into AllPaths

5. starting with t = m− 1 we do:

if the vertex wt is not exhausted, look for a vertex in Nout(wt) in order to create

another complete path different from the previous ones, append the new complete

path to AllPaths and go back to 4;

6. if wt is exhausted, repeat the step 5 with t = t− 1.

7. When the analyzed vertex is the source s, quit.

Here the word “exhausted” has the following meaning. Let L = [p1, . . . , pm] be the list

of complete paths created so far. Suppose we are now analyzing the last path inserted

pm = (u0, . . . , un). A vertex ut ∈ pm is exhausted if for all v ∈ Nout(ut) there already

exists a path in L that contains (ut−1, ut, v) as sub-path.

Now, fixed a long path p, CheckLongPaths looks for a similar path in the second graph

using the function SameLong, which invokes FindSameLongPathSource for every source

with same degree of the starting point of p.

Let G = (V,A) and G′ = (V ′, A′) be respectively the first and the second graphs given

as arguments. Let lp = (w1, . . . , wm) be a path in G. The algorithm used by FindSame-

LongPathSource is the following:
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1. given a path lp = [w1, . . . , wm] in G and a starting point s1 ∈ V ′ with dG′(s1) =

dG(w1),

2. create a list for the searched path sl = [s1] and another for the no good directions,

initially empty;

3. use an index j to scan the path lp;

4. look for a vertex v in the set of out-neighbors of the last element in sl such that v

has the same degree of lp[j] and sl.append(v) is not a bad direction;

5. if you find it, append it to sl and restart from 4

6. if you don’t find it, the last vertex of sl is a bad direction and it’s not possible to

proceed in the creation of sl: so append the sl path to the list of bad directions

and take off the elements of sl until you find a vertex from which you can take a

good direction;

7. if only bad directions are available and sl has length 1, the searched path doesn’t

exist, so return error.

Here an elementary but clarifying example of how the algorithm works.

Example 2.4. Let our graphs be F1 and F2. They are isomorphic but they are almost

regular, therefore since our criterion to distinguish vertices is their degree, we could say

that they are all similar, except for the source and the sink. This will bring us a little

more work to do.
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Figure 2.2: F1 Figure 2.3: F2

We look for a path in F2 similar to lp = (0, 1, 2, 3) in F1.

Since the source is unique we can start the path sl with 0, so we have sl = [0]. Now

we have two possibilities to proceed because Nout(0) = {5, 6} and they have the same

degree of 1 ∈ lp so they are both available. We choose 5 so sl = [0, 5]. Now the only

possibility is 4 and it has the same degree of 2 ∈ lp, so we add it to sl. At this point we

should find a sink in the Nout(4) because 3 ∈ lp is a sink in F1, but there are no sinks

in the neighbourhood of 4 ∈ F2. So this direction is a bad one and we need to take off

4 from sl. Then we look for a vertex in Nout(5) different from 4 but there isn’t. So we

need to take off from sl also 5 and look for another vertex in the neighbourhood of 0.

This vertex is 6 and following the algorithm we don’t find bad directions. Finally we

obtain the path sl = (0, 6, 1, 2) in F2.

Remark 5. Note that the response of this test depends on the order we enter the argu-

ments. So again we have to invoke it twice when we compare two graphs.

2.3 A finer partition

In this section we are going to analyze a partition of the vertices of a directed graph

presented in [3]. In this paper the authors propose an algorithm to test the isomorphism

of directed graphs. The algorithm tries to create a complete matching between the two
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digraphs and it is based on the partition we report.

As we saw in 2.1.1, a digraph isomorphism preserves the degree of vertices. For this

reason in the previous section, when we wrote “the same vertices” we were meaning

“vertices with same degree”. In fact the degree creates a partition of the vertices, but

as we saw in the last example 2.4, sometimes this partition is very unrefined. In the

partition given by the degree, a vertex is characterized by its relationship with all the

adjacent vertices and nothing more. What seems to be more useful is a way to evaluate

the relationship of a vertex with all other vertices in the graph.

This last information could be obtained from the distance matrix.

Definition 2.3. Given a graph G = (V ;E), the distance matrix D is an |V | × |V |
matrix in which the element dij represents the length of the shortest path from the vertex

vi to vj.

Remark 6. • For every pair of vertices there is a unique minimum distance.

• If i = j then dij is zero.

• If a path doesn’t exist between the two vertices, the length is defined to be infinite.

Since the distance matrix is a unique representation of a graph and it gives us infor-

mation about the relationship among all the vertices in the graph, it can be used for our

purpose.

We now give some notions that are needed to define the partition.

Definition 2.4. Given a digraph G = (V,A) with |V | = n we define a row character-

istic matrix XR to be an n× (n− 1) matrix such that the element xrim is the number

of vertices which are a distance m away from vi.

A column characteristic matrix XC is an n× (n− 1) matrix such that each element

xcim is the number of vertices from which vi is a distance m.

A characteristic matrix X is formed by the termwise juxtaposition of the correspond-

ing rows of XR and XC.

Given two digraphs G1 = (V,A) and G2 = (V ′, A′), let X1 = (x1lk) and X2 = (x2lk) be

the characteristic matrices of G1 and G2 respectively. An isomorphism will map v1i ∈ V
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in v2r ∈ V ′ only if x1im = x2rm ∀m. Therefore vertices which exhibit identical rows of the

characteristic matrix will be assigned to the same class. A class vector C is a vector

in which the element ci is the class of the vertex vi.

The partition given by the characteristic matrix is often finer than the one given by the

degree and it can never be less so. The following theorem is the proof of that.

Theorem 2.3.1. If two vertices vi and vj are partitioned into separate classes by the

degree, they will also be partitioned into separate classes by the characteristic matrix.

Proof. For every vertex vi, the element xri1 of the first column in XR is d+G(vi) and

the element xci1 of the first column in XC is d−G(vi). This means that if two vertices

have different degree, they will present a different element in the first column of the

characteristic matrix. So they have different class.

In order to give a criterion similar to that given by 2.1.1, we can define a class count

vector, which is a vector K such that the element ki is the number of vertices in class

i. It follows that if G is isomorphic to G′, then ki = k′i ∀i.
We now show an example in which the partition given by the distance matrix is much

more refined than that given by the degree.

Example 2.5. We consider the directed acyclic graph in figure 2.4

Figure 2.4: S1

The partition given by the degree is P = [(0), (1, 2, 4, 5, 7, 8, 9), (3), (6), (10)]. So we

have a block with seven elements.
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The distance matrix of the graph S1 is

D =



0 1 2 3 4 4 5 6 7 8 9

∞ 0 1 2 3 3 4 5 6 7 8

∞ ∞ 0 1 2 2 3 4 5 6 7

∞ ∞ ∞ 0 1 1 2 3 4 5 6

∞ ∞ ∞ ∞ 0 ∞ 1 2 3 4 5

∞ ∞ ∞ ∞ ∞ 0 1 2 3 4 5

∞ ∞ ∞ ∞ ∞ ∞ 0 1 2 3 4

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 1 2

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0


Now it is easy to write the row characteristic matrix and the column characteristic

matrix.

After calculating these two matrices it is possible to check that the characteristic matrix

is the following.

X =



10 10 10 20 10 10 10 10 10 00

11 10 20 10 10 10 10 10 00 00

11 21 10 10 10 10 10 00 00 00

21 11 11 10 10 10 00 00 00 00

11 11 11 11 10 00 00 00 00 00

11 11 11 11 10 00 00 00 00 00

12 11 11 11 01 00 00 00 00 00

11 12 11 01 01 01 00 00 00 00

11 11 02 01 01 01 01 00 00 00

11 01 01 02 01 01 01 01 00 00

01 01 01 01 02 01 01 01 01 00


As a consequence the partition has only blocks of cardinality one except for a block of

cardinality two. Looking at the rows of this matrix we can see that the fifth and the

sixth row are identical, while the remaining rows are all different from each other. So



2.3 A finer partition 32

the partition puts the vertex 4 in the same class of 5 -because our vertices are labeled

starting from 0- and leaves all the others alone, each in a different class. In fact the class

vector is C = [1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10] and the partition is

P ′ = [(0), (1), (2), (3), (4, 5), (6), (7), (8), (9), (10)].

A last observation that could be done is the following.

If we have graphs with few vertices, we might be tempted to try all possible permutations

of the vertices’ labels to check the isomorphism. The fact that the degree is preserved

by an isomorphism allowed us to try not all the permutations but only those which

associate vertices with same degree. Unfortunately this operation is sometimes very

expensive. For instance if we want to check the isomorphism between the graph S1 and

another one identical but with permuted labels, we should try 7! permutations, because

we have seven vertices with same degree. Nevertheless, using the partition just presented

we can reduce this number to 2, because we have a class with two elements and all the

others with only one element.



Chapter 3

Examples

In this chapter we are going to try out our tests.

In particular in the first section we present some examples to explain how each test works

and what kind of graphs it can distinguish.

The second section is dedicated to more regular acyclic graphs, that are the most difficult

to analyze.

3.1 Some focused examples

3.1.1 Isomorphic graphs

As we described in the previous chapter, our tests are only able to say if two graphs

are not isomorphic. This clearly means that if we use two isomorphic graphs, the response

has to be positive.

Therefore the first pair of graphs we give as input to our tests is composed by the two

isomorphic graphs in figure 3.1.

33
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Figure 3.1: Two isomorphic directed acyclic graphs.

Using the tests with these graphs we obtain True.

If two graphs are isomorphic, then one is exactly the other but with permuted labels.

For this reason, we simply generated a graph and then we permuted its labels using the

shuffle function of Python. In order to check a huge number of graphs, we used a random

generator of directed acyclic graphs.

We tested graphs with a number of nodes from five to twenty and for every graph we

applied seven permutations. The response was positive in every test.

3.1.2 Graphs with different degree sequence and connections

The first test we do on our input graphs is based on proposition 2.1.1 while the second

one is based on proposition 2.1.2. So we first check if the graphs have the same degree

sequence and if the output is True we proceed with the second test.

In figure 3.2 we have three directed acyclic graphs. To simplify the explanation we call

them G = (V,A), G1 = (V1, A1) and G2 = (V2, A2).
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Figure 3.2: From the left: G, G1, G2.

If we invoke our tests onG1 andG2 we obtain that they have different degree sequence.

Indeed the two degree sequences are respectively:

BG1 = [(0, 3), (1, 0), (1, 1), (1, 1), (3, 0), (0, 1)]

BG2 = [(0, 3), (1, 0), (1, 1), (3, 1), (0, 1), (1, 1), (1, 0)]

Therefore they are not isomorphic and the program quits with output False.

The graph G has instead the same degree sequence of G1, so the response of the first

test is True. Nevertheless they don’t have similar connections because the arc (2, 3) in

G1 links two vertices with degree (1, 1) but in G there isn’t such an arc. This means that

we cannot create a function f : A1 → A as described in 2.1.2 because the arc (2, 3) ∈ A1

wouldn’t have an image in A.

Obviously it is also impossible to create a function f : A → A1 as described in 2.1.2

because it should be injective. Indeed there are two different arcs in A which link vertices

with degree respectively (0, 3) and (1, 1); they are the arc (0, 3) and the arc (0, 2). But in

A1 there is only one arc which connects such vertices, that is (0, 2). So we might create

the function f but it wouldn’t be injective, so it wouldn’t be that in 2.1.2.

3.1.3 Graphs with different paths of length two

The third test is about paths of length two. As we mentioned in the previous chapter,

since we create all possible paths of length two in the first graph given as input and then
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we look for equal paths in the second graph, the response of this test depends on the

order we enter the graphs. Now we give a clear example.

We consider the two graphs in figure 3.3 and we call them G and G′. They have the

same degree sequence and same connections, so the first two tests result True and we

can proceed analyzing paths of length two.

Figure 3.3: The graph G on the left and the graph G′ on the right

The test which checks the paths of length two is CheckSimplePath. If we invoke this

function on (G′, G), we obtain a positive response.

In fact the paths of length two in G′ are only of two different types. There are paths

(v1, v2, v3) with

d(v1) = (0, 3), d(v2) = (1, 1), d(v3) = (1, 1) (3.1)

or with

d(v1) = (1, 1), d(v2) = (1, 1), d(v3) = (3, 0). (3.2)

From the figure 3.3 we can see that in G we have both the paths’ types. In particular, to

the first set belongs (0, 2, 4) while to the second (4, 5, 6). So whenever we look for a path

of the type 3.1 the program finds in G the path (0, 2, 4) and when we look for a path of

the type 3.2 it finds (4, 5, 6). This is the reason why, if we enter G′ as first argument and

G as second argument, the output is True even though the graphs are not isomorphic.

To make the test more strong and precise we decided to invoke it twice changing the

order of the arguments. Indeed CheckSimplePath(G,G′) gives a negative response and

makes the program end with the right output, that is False.

Analyzing the graph G, we find two additional types of paths (v1, v2, v3), that are

d(v1) = (1, 1), d(v2) = (1, 1), d(v3) = (1, 1) (3.3)
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and

d(v1) = (0, 3), d(v2) = (1, 1), d(v3) = (3, 0). (3.4)

For instance, of the type 3.3 is (2, 4, 5) and of the type 3.4 is (0, 1, 3).

Since G′ has paths only of the type 3.1 and 3.2, it is impossible to find in it paths of the

type 3.3 and 3.4.

Therefore using G as first argument of CheckSimplePath and G′ as second one, we have

output False.

3.1.4 Graphs with different complete paths

The last test we do to check if two graphs are not isomorphic, regards paths from a

source to a sink. Again we invoke this test if and only if the previous have given positive

response.

Two graphs that pass all the previous tests are S1, studied in the second chapter and

shown in figure 2.4, and the graph S2 in figure 3.4.

Figure 3.4: S2

These graphs have same degree sequences, same connections and same paths of length

two, but it is easy to see that they don’t have similar complete paths.

As we did in the previous example, we can divide the paths into types. Both graphs

have only one type of paths. In S1 we have two complete paths of length 9, say p =

(v1, . . . , v10), and the degrees of the vertices they involve are exactly

d(v1) = (0, 1), d(v10) = (0, 1), d(v4) = (1, 2), d(v6) = (2, 1), d(vi) = (1, 1)∀i ∈ {2, 3, 5, 7, 8, 9} .

On the other hand, S2 has again only two complete paths of length 9, say p′ = (v′1 . . . , v
′
10),

but the degrees are

d(v′1) = (0, 1), d(v′10) = (0, 1), d(v′5) = (1, 2), d(v′7) = (2, 1), d(v′i) = (1, 1)∀i ∈ {2, 3, 4, 6, 8, 9} .
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To make the difference between the two paths types more evident we may substitute

each vertex with its degree. So for the paths in S1 we have

((0, 1); (1, 1); (1, 1); (1, 2); (1, 1); (2, 1); (1, 1); (1, 1); (1, 1); (0, 1))

while for the paths in S2 we have

((0, 1); (1, 1); (1, 1); (1, 1); (1, 2); (1, 1); (2, 1); (1, 1); (1, 1); (0, 1)) .

Therefore the graphs don’t have the same paths from a source to a sink and they are not

isomorphic.

3.1.5 Not isomorphic graphs with positive response

To conclude this section we present an example of two not isomorphic graphs for

which our tests give positive response. This happens because there are some graphs

more difficult to distinguish, they are those almost regular. Moreover, as we described

in the second chapter, our tests are based on conditions that are only necessary for the

isomorphism and not sufficient. So whenever our tests have output True, the analyzed

graphs might be isomorphic or not; simply the program is not able to distinguish them.

An example of this behavior might be observed using the graphs in the following figures.

We call them M , in figure 3.5, and N , shown in 3.6. All our tests give a positive response

on these graphs.

Figure 3.5: The graph M
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Figure 3.6: The graph N

These graphs are almost regular in the sense that their vertices have all the same

degree except for the sources and the sinks. Therefore the partition of the vertices’

sets V and V ′ given by the degree is very unrefined and the two graphs are difficult to

distinguish.

Looking at the figures above, it is clear that the two graphs are not isomorphic. For

instance one may use the chromatic number to establish this. In fact N has chromatic

number 2 while M has 3.

Nevertheless, if we study only the paths, we can see they have the same paths both of

length two and longer. In particular, all possible paths from a source to a sink in M are

PM = {(0, 1, 3, 7); (12, 6, 8, 7); (0, 2, 4, 5, 7); (12, 11, 10, 9, 7)} .

So when the program searches a path in N similar to (0, 1, 3, 7) ∈M , it finds (0, 3, 4, 5)

and again when it looks for a path similar to (12, 6, 8, 7) ∈ M it finds (0, 3, 4, 5) ∈ N .

The reason why the test makes these associations is that we asked it to check nothing

but the degree of the vertices and these vertices have almost all the same degree.

Similarly for the paths of length four. The program finds the path (9, 10, 11, 12, 5) ∈ N
whether it looks for a path equal to (0, 2, 4, 5, 7) ∈M or to (12, 11, 10, 9, 7) ∈M .

3.2 Acyclic regular graphs

As we saw with the last examples of the previous section and in the second chapter,

there is a class of graphs more difficult to distinguish. They are the regular graphs.
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In the undirected case, a graph G = (V,E) is said to be k-regular if every vertex v ∈ V
has degree k. The extension of this definition to directed graphs is straightforward.

As we can read in [10], a directed graph G = (V,A) is said to be k-regular if

d+G(v) = d−G(v) = k ∀v ∈ V.

So we don’t simply need every vertex to have the same in-degree, or out-degree, of the

others, but also these two numbers, in-degree and out-degree, need to be equal. The

reason is that, in a directed graph, the following equality has to be valid:∑
v∈V

d+G(v) =
∑
v∈V

d−G(v).

Anyway our case is a bit different. Since our graphs are directed acyclic, we cannot have

this kind of graphs. Indeed a necessary condition for a graph to be acyclic is to have at

least one source and one sink. So we may force our graphs to have all vertices with same

degree except for sources and sinks, i.e. all intermediate vertices have the same degree.

In order to check how much regular graphs are difficult to distinguish for our tests, we

created a generator of acyclic regular graphs. Actually we don’t generate directly such a

graph, but we create an acyclic graph and then we “complete” it preserving the acyclic

condition.

Therefore we start with a directed acyclic graph G = (V,A) whose vertices are labeled

with numbers from 0 to n and i < j for all arcs (i, j) ∈ A, because of the implementation

of our random generator of directed acyclic graphs. Then we create a graph G′ = (V ′, A′)

which has G as subgraph and |V ′| = n+2d, where d is the maximum number of incoming

or outgoing arcs for one single vertex v ∈ V . In particular, d of these 2d more vertices

we add, will play the role of sources in the graph G′ and the remaining d will be sinks

in G′. The reason why we need exactly this number of new sources and sinks is that

we want every vertex of G to have degree (d, d) in G′ and G′ to be simple. Therefore a

source in G needs d new sources in G′ to become an intermediate vertex with in-degree

equal to d as well as a sink in G needs exactly d new sinks in G′ to become a vertex with

out-degree equal to d.

So, to create G′, we first calculate d then we create d new sources and d new sinks. Now

for every vertex v ∈ V we add as many arcs as necessary to reach dG′(v) = (d, d). When
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we have to add an arc, we may face two different situations. First, if we have to add an

incoming arc to v ∈ V , we make it come from a source, i.e. we create an arrow (s, v)

where s is one of the new d sources contained in V ′. Second, if we add an outgoing

arc from v ∈ V , we choose to connect v with the nearest vertex available in G, that

means among all vertices u ∈ V with u > v and d−G′(u) < d we choose the smallest. If

no such vertex exists, for instance because all the vertices in G bigger than v already

have in-degree equal to d, we connect v with one of the new d sinks contained in V ′.

Moreover, creating connections using always the nearest vertex less used, allows us to

not create parallel edges and preserve the acyclic nature of the graph.

We now give an example of how the algorithm works.

Example 3.1. We consider the graph G = (V,A) in figure 3.7 and we follow the algo-

rithm step by step to make it become G′ = (V ′, A′) in figure 3.8.

Figure 3.7: G = (V,A) Figure 3.8: G′ = (V ′, A′)

In order to transform G into G′ we have to calculate d. In this simple example we

have d = 2 so we add to the graph four new vertices, everyone not connected with the

others at the beginning. This passage is performed in figure 3.9.

Now we analyze each vertex of G starting from 0. This vertex needs to be connected

with two different vertices in order to make its indegree become 2. So we create two
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incoming arcs, that are (5, 0) and (6, 0) as shown in figure 3.10.

To complete the process for 0 we add an outgoing arc connecting this vertex with the

vertex 2. In figure 3.11 we see how the graph looks after these steps.

Figure 3.9: G with

two new sources and

two new sinks

Figure 3.10: Addition

of two incoming arcs

to 0

Figure 3.11: Addition

of one outgoing arc

from 0

Now we proceed with the vertex 1. It already has an incoming arc so we need to

add only another one; we choose the source 5 to create this connection. Analogously for

the outgoing arcs; the vertex 1 already has an outgoing arc so we add only one new arc

(1, 3). Notice that we choose the vertex 3 because 2 already has two incoming arcs, so we

cannot add another one. This implies that 3 is the nearest available vertex for creating

an outgoing arc from 1.

Figure 3.12 shows the situation after these steps.

Now we should complete 2 but it already has degree (2, 2) so we can pass over it.

Analyzing 3 we see it has degree (2, 1), so we need only to add an outgoing arc. We

create (3, 7) and we obtain the graph in figure 3.13.

To conclude the process we add two outgoing arcs to 4, that are (4, 8) and (4, 7). Now

we have the almost regular graph G′.
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Figure 3.12: The graph after com-

pleting the vertex 1

Figure 3.13: Addition of one out-

going arc from 3

To conclude the dissertation about acyclic regular graphs, we sum up in three tables

the results obtained analyzing these graphs with our tests. In particular we want to

check how many times our tests give positive response even though the graphs in input

are not isomorphic.

First of all we generated 100 graphs in three different moments with n = 5, 6, 7 nodes,

we made them almost regular and we divided them into classes with respect to the max-

imum number of incoming or outgoing arcs for a single vertex, i.e. the number so far

indicated with d. Then in each class we paired the graphs, so we used, with every pair,

both our tests and the function is-isomorphic of the library Networkx, described in the

first chapter.

We tested the isomorphism only on graphs with same number d because graphs with

different d are trivially not isomorphic and, since they have different degree sequences,

our tests are able to distinguish them.

Moreover we excluded the two cases with d = 1 and d = n − 1, because those graphs

are trivially isomorphic. In the case of d = 1, the graphs are “linear” and since they

have the same number of vertices they are all isomorphic. In the second case, we have

graphs that are “complete” in the sense that every vertex i ∈ V has an incoming arc for
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Nodes Degree Graphs Comparisons Failures

5 (2, 2) 27 351 33

5 (3, 3) 53 1378 217

6 (2, 2) 7 21 6

6 (3, 3) 40 780 56

6 (4, 4) 37 666 232

7 (3, 3) 19 171 12

7 (4, 4) 45 990 180

7 (5, 5) 29 406 226

Table 3.1: First attempt

all j ∈ V with j < i and an outgoing arc for all k ∈ V with k > i.

In table 3.1 we sum up the results obtained in the first moment of testing. In the

columns we have respectively the number of vertices in the basic graph G, the degree

of the intermediate vertices in the new graph G′, the number of graphs generated, how

many comparisons we did and how many times our response was True with not isomor-

phic inputs.

The first observation we could do is that, for fixed number of nodes in the basic graph,

excluding the cases with too few comparisons, the number of failures grows with the

degree, i.e. with the almost completeness of the graph. For instance the table 3.1 shows

that in the case of degree (4, 4) and 6 vertices of the basic graph, more than one third

of the comparisons fails. And in the case with degree (5, 5) and 7 vertices in the basic

graph, about a half of the comparisons fails.

Another behavior we could observe, again excluding the cases with too few graphs, is

that for fixed degree, the more the vertices in the basic graph are, the less our tests fail.

This is the case of the degree (3, 3): with 5 vertices in the basic graph we have a failure

of about 15% but with 6 or 7 vertices in the basic graph the failures are about 7%.

The reason why this happens is that, if we have to create a fixed number of connections,

the more vertices we have to choose among, the more is probably to create very different

graphs.
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Nodes Degree Graphs Comp. Fail.

5 (2, 2) 24 276 32

5 (3, 3) 53 1378 182

6 (2, 2) 8 28 5

6 (3, 3) 41 820 45

6 (4, 4) 33 528 98

7 (3, 3) 23 253 15

7 (4, 4) 37 666 85

7 (5, 5) 37 666 246

Nodes Degree Graphs Comp. Fail.

5 (2, 2) 29 406 38

5 (3, 3) 49 1176 144

6 (2, 2) 8 28 3

6 (3, 3) 37 666 30

6 (4, 4) 49 1176 490

7 (3, 3) 17 136 9

7 (4, 4) 46 1035 263

7 (5, 5) 25 300 118

Table 3.2: On the left the second attempt and on the right the third one

Here are two more tables with the results in other two different moments. Since the

basic graphs are randomly generated it is not possible to observe precisely the two facts

just described, anyway the global behavior reflects them.





Chapter 4

Future work

With this last chapter we want to introduce what might be the next step in the work

just presented.

After studying the isomorphism problem, it could be interesting to analyze graphs from

a different point of view. The main reason to do this is that, if two Morse graphs are not

isomorphic, we could wonder how much they are effectively different and if it is however

possible to say something about the multivector fields, from which they come, or not.

This different point of view is based on finite topological spaces. Therefore in the first

section we present the theoretical background, while in the second section we describe

its application to our context giving two examples.

The main reference for this chapter is [11] but some definitions are taken from [12], which

sums up many concepts expressed in [11].

We omit the definition of homotopy groups but a complete treatise might be found in

the fourth chapter of [13].

4.1 Finite topological spaces

A finite topological space is simply a topological space with a finite number of

points. A topology on a finite set X is a subset of the power set of X. For every

point x ∈ X, the minimal open set Ux is defined as the intersection of all open sets

containing x. Minimal open sets constitute a basis for the topology of X, indeed any

47
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open set U of X is a union of all Ux with x ∈ U .

It is also possible to create a preorder on X defining x ≤ y if x ∈ Uy.

On the other hand, if we have a preordered set X, we can define a topology on X. In

particular we can choose as basis for our topology the family {y ∈ X|y ≤ x}x∈X . It is

now easy to see that y ≤ x if and only if y ∈ Ux.

Therefore finite spaces and preoredered sets are basically the same objects considered

from different perspectives. Moreover, in 1937 Alexandroff showed the correspondence

between finite T0 spaces and finite partially ordered sets. In fact, the antisymmetry of

a partial order corresponds to the T0 separation axiom. We remind that a topological

space is said to be T0 if for any pair of its points, there exists an open set containing one

and only one of them.

Thanks to this correspondence we can move freely from the context of finite posets to

the context of finite topological spaces and vice versa.

Here two consequences of this correspondence.

Remark 7. Open sets of finite spaces correspond to down-sets and closed sets to up-sets.

A subset U of a preordered set X is a down-set if for every x ∈ U and y ≤ x, it holds

that y ∈ U . The notion of up-sets is dually defined.

Remark 8. Given a finite topological space X we have a preorder on it, so it is possible

to speak of maximal, or minimal, element as well as of maximum, or minimum. In

particular an element x ∈ X is said to be maximal if y ≥ x implies y = x, and it is a

maximum if y ≤ x for every y ∈ X.

4.1.1 Maps and homotopies

Since morphisms between topological spaces are continuous functions, we could won-

der what a continuous function on finite topological spaces is. To answer this question

we have the following result.

Proposition 4.1.1. [11, Prop. 1.2.1] A function f : X → Y between finite spaces is

continuous if and only if it is order preserving, i.e. x ≤ x′ implies f(x) ≤ f(x′) for every

x, x′ ∈ X.
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In order to give a description of homotopies in the context of finite topological spaces,

we have to recall some notions of algebraic topology.

Definition 4.1. Let X and Y be topological spaces. The mapping space Y X denotes

the set of maps from X to Y . Y X can be considered a topological space by using the

compact-open topology, i.e. the topology whose subbasis is given by the sets

W (C,U) =
{
f ∈ Y X |f(C) ⊆ W for all C compact in X and U open in Y

}
.

If X and Y are finite spaces we have that Y X is finite and we can consider on it the

pointwise order, that is f ≤ g if f(x) ≤ g(x) for every x ∈ X.

An important remark is that every subspace of a finite space is compact because of the

finiteness of the topology.

We recall now the definition of homotopic functions and homotopy equivalent spaces.

Definition 4.2. Two maps f, g : X → Y between topological spaces X and Y are

homotopic if there exists a map, called homotopy, G : X × I → Y , where I = [0, 1],

such that for all x ∈ X, G(x; 0) = f(x) and G(x; 1) = g(x). If two maps f and g are

homotopic, we write f ' g.

Two spacesX and Y are said to be homotopy equivalent if there exist maps f : X → Y

and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY .

Given two maps f, g : X → Y such that for some A ⊂ X we have f |A = g|A; an homotopy

G between f and g is said to be relative to A if, ∀t ∈ I we have G|A×{t} = f |A = g|A.

In this case we write f ' g rel A.

We also recall that a path between two points x and y of a topological space X is a

map α : I → X such that α(0) = x and α(1) = y.

If X is a finite space and x, y ∈ X are two comparable points, then there exists a

path from x to y (see [11, Lemma 1.2.3]). In fact, if we assume x ≤ y, we can define

α : I → X,α(t) = x if 0 ≤ t < 1, α(1) = y. Now if U ⊆ X is open and contains y, then

it contains x also. Therefore α−1(U) is one of the sets ∅, I or [0, 1), which are all open

in I. Thus, α is a path from x to y.

Moreover the existence of a path between to comparable elements x, y ∈ X implies that

there is a sequence of points x0, . . . , xn in X such that x0 = x, xn = y and xi is compa-

rable to xi+1 for all i = 1, . . . , n− 1.
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For finite spaces X and Y , there is a natural correspondence between the set of ho-

motopies {H : X × I → Y } and the set of paths
{
α : I → Y X

}
. The correspondence is

simply given by H(x; t) = α(t)(x).

This fact implies that homotopy classes of maps between finite spaces are equivalent to

path components in the mapping space and we have the following proposition.

Proposition 4.1.2. [11, Corollary 1.2.6] Let f, g : X → Y be two maps between finite

spaces. Then f ' g if and only if there is a sequence of maps f0, . . . , fn such that

f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g.

Remark 9. Any finite space X with maximum or minimum is contractible, i.e. it has the

same homotopy type of a point. Indeed, in that case, the identity map idX is comparable

with a constant map c, so thanks to 4.1.2 idX ' c.

4.1.2 The classification theorem

When we are studying homotopy types of finite spaces, we can restrict ourselves to

T0-spaces. In fact, given a finite topological space X we can create a particular quotient

of it which is a T0-space and has the same homotopy type of X.

The following proposition enables us to create such a quotient.

Proposition 4.1.3. [11, Prop. 1.3.1] Let X be a finite space. Let X0 be the quotient

X/ ∼ where x ∼ y if x ≤ y and y ≤ x. Then X0 is T0 and the quotient map q : X → X0

is a homotopy equivalence.

Remark 10. X0 is homotopy equivalent to X.

In fact we can take the quotient map q : X → X0 and one of its sections p : X0 →
X, which is by definition such that q ◦ p = idX0 . Thus p ◦ q is order preserving and

furthermore, p ◦ q ≤ idX because it only sends elements to themselves or to something

less than or equal to themselves. So using the proposition 4.1.2 we have p ◦ q ' idX .

This means that p is a homotopy inverse of q. So X and X0 have the same homotopy

type.

Actually X0 is a strong deformation retract of X, i.e. there exists a map r : X → X0

with r|X0 = idX0 such that i ◦ r ' idX rel X0, where i : A→ X is the inclusion map.
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We give the definition of a particular type of points, whose removal doesn’t affect

the homotopy type of the space. First we remind that a point x of a finite T0-space X

covers another point y ∈ X if in the Hasse diagram of the poset X there is an arc (x, y)

from x to y.

Definition 4.3. A point x in a finite T0-space X is a down beat point if x covers one

and only one element of X, or equivalently if the set Ûx = Ux \ {x} has a maximum.

Dually, x ∈ X is an up beat point if x is covered by a unique element. Again this is

equivalent to say that F̂x = Fx \{x} has a minimum, where Fx = {y ∈ X|y ≥ x} denotes

the closure of {x} in X.

In any of the two cases of the definition 4.3, we say that x is a beat point. The

following proposition shows the fundamental property of beat points.

Proposition 4.1.4. [11, Prop. 1.3.4] Let X be a finite T0-space and x ∈ X a beat point.

Then X \ {x} is a strong deformation retract of X.

Definition 4.4. A finite T0-space is a minimal finite space if it has no beat points.

A core of a finite space X is a strong deformation retract which is a minimal finite space.

Thanks to propositions 4.1.4 and 4.1.3, we have that every finite space X has a core

and it is possible to find it by creating first the T0-strong deformation retract X0 ⊂ X,

as shown in 4.1.3, and then removing beat points one by one till we obtain a minimal

space.

The most important property of this process is given by the following theorem ([11,

Corollary 1.3.7]).

Theorem 4.1.5 (Classification theorem). A homotopy equivalence between minimal fi-

nite space is a homeomorphism. In particular the core of a finite space is unique up to

homeomorphism and two finite spaces are homotopy equivalent if and only if they have

homeomorphic cores.

Therefore the core Xc of a finite space X is the smallest space homotopy equivalent

to X. If Y is another finite space homotopy equivalent to X, then the core of Y must

be homeomorphic to Xc.
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4.1.3 Weak homotopy and simple homotopy type

Sometimes the spaces we have to compare do not have beat points. So we cannot use

the method of reduction described above. In these particular cases we can however say

something about our spaces using a tool a bit weaker than homotopy type, namely the

weak homotopy type.

A map f : X → Y between topological spaces is said to be a weak homotopy equiv-

alence if it induces isomorphisms in all homotopy groups, i.e. if f∗ : π0(X)→ π0(Y ) is

a bijection and the maps

f∗ : πn(X, x0)→ πn(Y, f(x0))

are isomorphisms for every n ≥ 1 and every base point x0 ∈ X.

Homotopy equivalences are weak homotopy equivalences.

Definition 4.5. Two topological spaces X and Y , not necessarily finite, are weak

homotopy equivalent, or they are said to have the same weak homotopy type, if there

exists a sequence of spaces X = X0, X1, . . . , Xn = Y such that there are weak homotopy

equivalences Xi → Xi+1 or Xi+1 → Xi for every 0 ≤ i ≤ n− 1.

Note that, for finite spaces, weak homotopy equivalences are not in general homotopy

equivalences and there exist weak homotopy equivalent spaces such that there is no

weak homotopy equivalence between them. However if two spaces X and Y are weak

homotopy equivalent, there always exists a third space Z such that there exist weak

homotopy equivalences Z → X and Z → Y .

Even in this weak context there exists a notion similar to beat points: weak beat points.

Definition 4.6. Let X be a finite T0-space. A point x ∈ X is a weak beat point, or

briefly a weak point, if either Ûx is contractible or F̂x is contractible. In the first case we

say the x is a down weak point while in the second case we say up weak point.

A useful observation is that beat points are in particular weak points thanks to remark

9. Moreover, for weak points, we have a result similar to proposition 4.1.4.

Proposition 4.1.6. [11, Prop. 4.2.4] Let x be a weak point of a finite T0-space X. Then

the inclusion map i : X \ {x} ↪→ X is a weak homotopy equivalence.
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Thanks to this proposition it is possible to remove weak points from a space X

to obtain another space with the same weak homotopy type and it is contained in X.

Unfortunately, when we compare spaces, we rarely have one contained into the other, so

we may not use the proposition 4.1.6. In these cases we probably need not only to remove

points but also to add them, so as to create a sequence of weak homotopy equivalences

and then show the two spaces have the same weak homotopy type.

The following definitions are necessary to present the solution to this problem.

Definition 4.7. Let X be a finite T0-space and let Y ⊂ X. We say that X collapses to

Y by an elementary collapse (or that Y expands to X by an elementary expansion) if

Y is obtained from X by removing a weak point. We denote X
e

↘ Y (or Y
e

↗ X).

In general, given two finite T0-spaces X and Y, we say that X collapses to Y (or Y

expands to X) if there is a sequence X = X0, X1, . . . , Xn = Y of finite T0-spaces such

that for each 0 ≤ i < n, Xi

e

↘ Xi+1. In this case we write X ↘ Y (or Y ↗ X).

Two finite T0-spaces X and Y are simple homotopy equivalent if there is a sequence

X = X0, X1, . . . , Xn = Y of finite T0-spaces such that for each 0 ≤ i < n, Xi ↘ Xi+1 or

Xi ↗ Xi+1.

It is possible to prove that homotopy equivalent finite T0-spaces are simple homotopy

equivalent.

Therefore, given two finite T0-spaces X and Y, we have the following sequence of impli-

cations:

X and Y are homotopy equivalent

⇓

X and Y are simple homotopy equivalent

⇓

X and Y are weak homotopy equivalent

This means that if we want to transform a space into another without changing its

weak homotopy type, we can do it by simply removing or adding weak points.
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To conclude, if we have two finite topological spaces X and Y and we want to compare

their homotopy types, we may proceed as follows. We can create two finite T0-spaces X0

and Y0 homotopy equivalent to X and Y respectively. Removing beat points from X0

and Y0 we obtain the cores Xc of X and Yc of Y . If the two cores are homeomorphic,

then X0 and Y0 are homotopy equivalent and so are also X and Y . If the two cores are

not homeomorphic, X0 and Y0 don’t have the same homotopy type but they could be

weak homotopy equivalent. To see this we may use proposition 4.1.6, if the spaces are

cointained one into the other, or the strategy of collapses. Since homotopy equivalences

are particular kind of weak homotopy equivalences, if X0 is weak homotopy equivalent

to Y0, so are X and Y .

4.2 Application to multivector fields

The theory of finite topological spaces might be suitably applied to multivector fields.

In fact, we start with a finite Lefschetz complex, which is itself a finite topological space,

and define on it a dynamics by means of a multivector field. As we saw in section 1.1.3,

every multivector field V uniquely defines a directed graph GV . Moreover we defined

a relation ≺V on the Lefschetz complex X given by the arrows of GV . This relation

induces a preorder ≤V on X. Therefore the preordered set (X,≤V) corresponds to a

finite topological space which doesn’t satisfy the T0 separation axiom. In order to obtain

a T0-space, we may use the proposition 4.1.3. The resulting T0-space is that given by

the Morse graph of V . In fact, the equivalence relation given in 4.1.3 is exactly our

decomposition in strongly connected components.

Therefore our directed acyclic graph G with the relation u ≤ v if there is an arc in G

from u to v, corresponds to a finite T0-space with the topology of down, or up, sets. It

is straightforward that we can now use the theory described in the previous section to

compare this kind of graphs.

If the two directed acyclic graphs we are analyzing result not isomorphic, we may ask

how much they are different. So we can study their homotopy type, and weak homotopy

type, to draw some conclusions on the multivector fields, using the classification theorem

4.1.5.
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Unfortunately, this approach might sometimes give very scarce information. For instance,

all the graphs examined in the third chapter are contractible, so if they were Morse

graphs, they would come from spaces which are homotopy equivalent one another.

Moreover the study of weak homotopy type might sometimes induce us to consider as

similar graphs which actually look very different. We show this fact in two examples. In

the first example we use two graphs that are not isomorphic but look very similar because

one can be obtained from the other by removing a vertex. And in the second example

we show that two graphs, which don’t look similar, have the same weak homotopy type.

Example 4.1. We consider the two directed acyclic graphs in figure 4.1. We call them R

and R1. They are clearly not isomorphic, because R has a vertex less than R1. Moreover

they cannot have homeomorphic cores because R1 doesn’t have beat points, so its core

is itself. Therefore the two graphs don’t have the same homotopy type, but we are going

to prove they are weak homotopy equivalent.

Figure 4.1: On the left the graph R and on the right the graph R1

From the figure it is easy to notice that we may obtain R from R1 by removing the

vertex 4. Therefore we start analyzing that vertex; it is an up-weak point for R1. To

see this we have to consider F̂4 in R1, which is shown in figure 4.2. This subspace is

contractible. Indeed the vertices 9 and 11 are two down-beat points because both Û9 and
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Û11 are composed of a single vertex. Therefore we can remove from F̂4 these two vertices

obtaining a subspace with a maximum, which is contractible because of remark 9. This

proves that 4 is a weak point of R1 and, thanks to 4.1.6, we can remove it preserving the

weak homotopy type. So R and R1 are weak homotopy equivalent.

Figure 4.2: F̂4 in R1.

Example 4.2. Now we compare the graph R1, shown in figure 4.1, with the graph R2 in

figure 4.3. Again they are not isomorphic and don’t have homeomorphic cores. In fact,

the core of R1 is R1 itself, while R2 is contractible.

Figure 4.3: The graph R2.

To see that R2 is contractible we may simply notice that the vertices 2 and 1 are both

up-beat points. Indeed the set F̂2 = {5, 7, 8, 11, 10} has a minimum, which is 5, and the

set F̂1 = {3, 4, 5, 6, 7, 8, 9, 10, 11} has a minimum too, which is 3.
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Thanks to proposition 4.1.4 we can remove these two vertices without modifying the

homotopy type of R2. As shown in figure 4.4, the new graph R1
2 has a minimum, which

is the vertex 0. Therefore it is contractible, because of remark 9, and its core is a single

point.

Figure 4.4: The graph R1
2.

We can conclude that R2 and R1 don’t have homeomorphic cores so they are not

homotopy equivalent. Nevertheless they could have the same weak homotopy type but

they are not contained one into the other. So, to show they are weak homotopy equiva-

lent, we have to use the strategy of elementary collapses and expansions.

As we have already shown, the graph R2 can be reduced to a single vertex, removing

beat points, that are in particular weak points. Therefore we start with this vertex to

reconstruct R1. The single vertex which is the core of R2 becomes the vertex 0 of R1

and then we add in order: vertices 3 and 4 that are down-beat points, the 1 and 2 that

are up-beat points. So we obtain the graph R1
1 in figure 4.5.
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Figure 4.5: Graph R1
1 Figure 4.6: Graph R2

1

Now we can add the vertex 6 which is a down-weak point. In fact Û6 is R1
1 which is

contractible. So we obtain the graph R2
1 in figure 4.6.

To this last graph we add the vertices 7 and 10, which are both down-beat points, ob-

taining the graph R3
1.

Now we add to R3
1 the vertex 5, which is up-beat, creating the graph R4

1.

Then we add the vertex 8 which is again up-beat, and we obtain the graph R5
1.

Figure 4.7: From the left: R3
1, R

4
1, R

5
1.

The last step to obtain R1 consists in adding to R5
1 the vertices 9 and 11 which are

two weak points. In this way we have the following sequence of collapses and expansions,
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where • represents the graph with a single vertex:

R2 ↘ R1
2 ↘ • ↗ R1

1 ↗ R2
1 ↗ R3

1 ↗ R4
1 ↗ R5

1 ↗ R1.

As a consequence we have that R1 and R2 are simple homotopy equivalent and so they

are weak homotopy equivalent.





Appendix A

The code

Here we present the code used in our implementation. It is divided in four modules.

The module presented in the first section contains the four tests describe in section 2.2

and the function which invokes them sequentially.

The module PATHS contains functions for the creation and manipulation of paths in a

directed acyclic graph. It is presented in section A.2.

Two basics modules are GRAPH, which contains functions for working directly on the

directed acyclic graph, and a second module with auxiliary functions. They are in

sections A.3 and A.4 respectively.

In section A.5 we have two scripts: one to generate a directed acyclic graph and the other

to make a directed acyclic graph become more regular, as we described in paragraph 3.2.

Remark 11. We remind that we worked with the general assumption that our graphs

were acyclic, simple and with only few vertices. Therefore our implementation cannot be

used to analyze graphs which have cycles and its performance, in terms of time, depends

on the number of vertices and edges. Moreover this code is based on a representation of

the directed acyclic graph as that we described in section 2.2.
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A.1 The module for testing the isomorphism

from PATHS import*

def CheckBideg(B1 ,B2):

#input: two sets of arcs

#output:true if the degree sequences are equal ,

# false otherwise

Bideg1=sorted(B1)

Bideg2=sorted(B2)

return(Bideg1 == Bideg2)

def CheckConnections(G1 ,G2 ,BidegA ,BidegB ):

#input:two graphs G1 and G2, two degree sequnces

#output:true if the graphs have the same connections ,

# false otherwise

E1=EdgeBideg(G1 ,BidegA)

E2=EdgeBideg(G2 ,BidegB)

for e in E1:

if e not in E2:

return(False)

else:

i=index(E2,e)

del E2[i]

return(True)

def CheckSimplePath(A,B,dictA ,dictB ,Inter):

#input: two graphs A and B, two info dictionaries ,

# list Inter of intermediate vertices in A

#output:True B has the same short paths of A,

# False otherwise

infoA=dictA.copy()

infoB=dictB.copy()

Paths=AllSimplePath(infoA ,A,Inter)

error=False

i=0

while i<len(Paths) and not error:

p=Paths[i]
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same=FindSameSimplePath(p,infoA ,infoB ,B)

if same ==[]:

error=True

else:

for u in same:

infoB[u][1]= infoB[u][1]+1

i=i+1

return(not error)

def CheckLongPaths(P,B, dictA , dictB):

#input: list P of all paths in A, the graph B,

# two info dictionaries

#output:True if B has the same long paths of A

infoA=dictA.copy()

infoB=dictB.copy()

error=False

j=0

while not error and j<len(P):

path=P[j]

res=SameLong(path ,infoA ,infoB ,B)

if not res:

error=True

j=j+1

return(not error)

def CompleteTest(A,B):

#input: two lists of arcs

#output:False if they are not isomorphic ,

# True otherwise

BidegA=CreateBidegList(A)

BidegB=CreateBidegList(B)

B1=BidegA.copy()

B2=BidegB.copy()

f=CheckBideg(B1,B2)

if f== False:

return(False ,’Different bidegree lists’)

s=CheckConnections(A,B,BidegA ,BidegB)

if s== False:
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return(False , ’Different connections ’)

infoA=CreateInfoDict(A)

infoB=CreateInfoDict(B)

Inter=ListInter(infoA)

if Inter ==[]:

return(False , ’only sinks and sources ’)

else:

t=CheckSimplePath(A,B,infoA ,infoB ,Inter)

if t== False:

return(False , ’second graph has different short paths’)

else:

interB=ListInter(infoB)

#if interA !=[], then interB !=[]

t=CheckSimplePath(B,A,infoB ,infoA ,interB)

if t==False:

return(False ,’first graph has different short paths’)

dictA=infoA.copy()

AllPathsA=AllPathsInGraph(A,dictA)

l=CheckLongPaths(AllPathsA ,B, infoA , infoB)

if l== False:

return(False ,’second has different long paths’)

dictB=infoB.copy()

AllPathsB=AllPathsInGraph(B,dictB)

l1=CheckLongPaths(AllPathsB , A, infoB , infoA)

if l1== False:

return(False ,’first has different long paths’)

return(True ,"I don’t know")

A.2 The module PATHS

from GRAPH import*

def FindSameSimplePath(path ,D1 ,D2 ,B):

#input: path (a,b,c) in the graph A, two info dictionaries D1 and D2,

# the set of arcs of the graph B

#output :(x,y,z) the path found in the second graph ,

# found =[] it this path doesn ’t exist

a=path [0]
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b=path [1]

c=path [2]

poss =[]

same =[]

for e in D2:

if D2[e][0]== D1[b][0]:

poss.append(e)

i=0

found=False

while i<len(poss) and not found:

#Create the star of edges

y=poss[i]

N=BackwardNeig(y,B)

#look for the first element of same

x=BestChoice(a,N,D1 ,D2)

F=neigbourhood(y,B)

z=BestChoice(c,F,D1 ,D2)

if x==-1 or z==-1:

i=i+1

else:

same.append(x)

same.append(y)

same.append(z)

found=True

return(same)

def AllSimplePath(D,A,Inter):

#input: info dictionary D, set of arcs A,

# set of intermediate vertices Inter

#output: list of all paths of length two

AllPath =[]

for b in Inter:

FN=neigbourhood(b, A)

BN=BackwardNeig(b,A)

for a in BN:

for c in FN:

path=[a,b,c]

AllPath.append(path)
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return(AllPath)

def LongPath(s,A,path ,AP):

#input: starting point s, the set of arcs A, a path , the list

# of all paths just created using s as starting point

#output: a complete path

N=neigbourhood(s,A)

if N==[]:#s is a sink

return(path)

else:

found=False

i=0

while not found and i<len(N):

j=index(path ,s)

sublist =[path[j-1],s,N[i]]

if not is_contained(sublist ,AP):

found=True

i=i+1

path.append(N[i-1])

return(LongPath(N[i-1],A,path ,AP))

def AllPathSource(s,A,D):

#input: a source s, the set of arcs A, the info dictionary D

#output: a list with all complete paths from the source s

N=neigbourhood(s,A)

AllPath =[]

for x in N:

AllPath_x =[]

p=LongPath(x,A,[s,x],AllPath_x)

AllPath.append(p)

AllPath_x.append(p)

last_path=AllPath_x[len(AllPath_x )-1]

pointer=len(last_path)-1

while last_path[pointer ]!=s:

b=last_path[pointer]

a=last_path[pointer -1]

if not is_exhausted(a,b,A,AllPath_x) and not is_sink(b,D):

k=index(last_path ,b)



A.2 The module PATHS 67

path=last_path [0:k+1]

new_path=LongPath(b,A,path ,AllPath_x)

AllPath.append(new_path)

AllPath_x.append(new_path)

last_path=new_path

pointer=len(last_path)-1

else:

pointer=pointer -1

return(AllPath)

def AllPathsInGraph(A,D):

#input: set of arcs A, info dictionary D

#output: all the complete paths in A

Res=[]

Sources=ListSources(D)

for s in Sources:

L=AllPathSource(s,A,D)

for p in L: #Union of lists

Res.append(p)

return(Res)

def FindSameLongPathSource(s1 ,lp ,D1 ,D2 ,B):

#input: a source s1 in the graph B, a complete path lp in the graph A,

# the two info dictionaries D1 and D2, the set of acrs of B

#output: a complete path in B similar to lp if it exists ,

# otherwise an empty list

i=1

error=False

NoGood =[]

samelong =[s1]

v=s1

j=0

while i<len(lp) and not error:

u=lp[i]

N=neigbourhood(samelong[j],B)

poss =[]

for x in N:

tmp=samelong.copy()
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tmp.append(x)

if tmp not in NoGood:

poss.append(x)

v=BestChoice(u,poss ,D1 ,D2)

if v==-1:

if i==1:

error=True

samelong =[]

else:

NoGood.append(samelong)

samelong=samelong [0:len(samelong )-1]

i=i-1

j=j-1

else:

samelong.append(v)

j=j+1

i=i+1

D2[v][1]= D2[v][1]+1

return(samelong)

def SameLong(lp ,D1 ,D2 ,B):

#input: a complete path in A, two info dictionaries ,

# the set of arcs of B

#output:True if there exists in B a path similar to lp,

# False otherwise

S=ListSources(D2)

found=False

i=0

while not found and i<len(S):

if D2[S[i]][0]== D1[lp [0]][0]:

slp=FindSameLongPathSource(S[i],lp ,D1 ,D2 ,B)

if slp !=[]:

found=True

i=i+1

return(found)
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A.3 The module GRAPH

from AUX_FUNCTIONS import *

def CreateBidegList(A):

#input: a set of arcs

#output: its degree sequence

vertex =0

Bideg =[]

while vertex <NumVertex(A):

outdeg =0

indeg =0

for e in A:

if e[0]== vertex:

outdeg=outdeg +1

if e[1]== vertex:

indeg=indeg +1

vertex=vertex +1

Bideg.append ([indeg ,outdeg ])

return(Bideg)

def CreateInfoDict(A):

#input: list of arcs

#output:info dictionary

# {vertex :[(indeg , outdeg), marks ]}

InfoDict=dict()

vertex =0

while vertex <NumVertex(A):

outdeg =0

indeg =0

for e in A:

if e[0]== vertex:

outdeg=outdeg +1

if e[1]== vertex:

indeg=indeg +1

InfoDict[vertex ]=[( indeg , outdeg ),0]

vertex=vertex +1

return(InfoDict)
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def ListSources(D):

#input: a info dictionary

#output: list of sources sorted with respect to degree

L=VertexSorted(D)

S=[]

i=0

while L[i][1][0][0]==0:

S.append(L[i][0])

i=i+1

return(S)

def ListInter(D):

#input: a info dictionary

#output:list of intermediate vertices

L=[]

for e in D:

if D[e][0][0]!=0 and D[e][0][1]!=0:

L.append(e)

return(L)

def is_sink(v,D):

#input: a vertex v in a graph G,

# the info dictionary of G

#output:True if v is a sink of G

# False otherwise

return(D[v][0][1]==0)

def is_source(v,D):

return(D[v][0][0]==0)

def EdgeBideg(A,Bideg):

#input: A set of arcs , D info dictionary of A

#output:list of arcs with degree instead of vertices

E=[]

for e in A:

a=e[0]

b=e[1]
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E.append (( Bideg[a],Bideg[b]))

return(E)

def neigbourhood(u, A):

#input: u vertex of a graph A

#output:the set of out -neighbors

Neig =[]

for e in A:

if e[0]==u and e[1] not in Neig:

Neig.append(e[1])

return(Neig)

def BackwardNeig(u,A):

#input: u vertex of a graph A

#output:the set of in-neighbors

Back =[]

for e in A:

if e[1]==u and e[0] not in Back:

Back.append(e[0])

return(Back)

def BestChoice(u,N,D1 ,D2):

#input:D1 info dictionary of graph G1, D2 info dict of graph G2

# u vertex of G1, N subset of vertices in G2

#output:a vertex v in N with same degree of u and

# minumum number of marks if it exists ,

# -1 otherwise

found=False

i=0

res=-1

poss =[]

while i<len(N):

x=N[i]

if D2[x][0]== D1[u][0]:

poss.append(x)

i=i+1

if poss !=[]:

res=MinMarks(poss ,D2)
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return(res)

def is_exhausted(a,b,A,AllPaths ):

#input: a,b vertices of A,

# AllPaths list of paths in A

#output:True is the vertex b is exhausted

# False otherwise

F=neigbourhood(b,A)

ShortPaths =[]

for f in F:

ShortPaths.append ([a,b,f])

exhausted=True

i=0

while exhausted and i<len(ShortPaths ):

p=ShortPaths[i]

if not is_contained(p,AllPaths ):

exhausted=False

i=i+1

return(exhausted)

def ChooseSourceSink(L, minim): #for regular acyclic

#input: L list of degrees of sources or sinks , minim a vertex

#output:a source or a sink with minimun number of connections

v=minim

deg=max(L[0][0] ,L[0][1])

for j in range(1,len(L)):

if max(L[j][0],L[j][1])< deg:

v=minim+j

deg=max(L[j][0],L[j][1])

return(v)

def NotAlreadyUsed(G,v): #for acyclic generator

#input: a graph G and a vertex v

#output:-1 if there is an edge in G with v as ending point

#otherwise it returns a number between 0 and v-1

i=0

while i<len(G):
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if G[i][1]==v:

return (-1)

i=i+1

return(random.randint(0,v-1))

def ChooseNearestAvailable(L,d, minim , G, w): #for acyclic regular

#input: L list of degrees of vertices , d degree ,

# minim minimun vertex available ,

# G graph , w vertex to connect

#output: the nearest vertex available if it exists ,

# -1 otherwise

v=-1

i=0

found=False

while not found and i<len(L):

if L[i][0]<d and (w,i+minim) not in G :

v=minim+i

found=True

i=i+1

return(v)

A.4 The auxiliary functions

import time

def NumVertex(A):

#input: list of arcs

#output: number of vertices

maxim=0

for e in A:

if e[0]> maxim:

maxim=e[0]

if e[1]> maxim:

maxim=e[1]

return(maxim +1)

def Choice(t):

#Auxiliary function used in VertexSorted
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return(t[1][0])

def VertexSorted(D):

L=sorted(D.items(), key=Choice)

return(L)

def index(L,e):

#input: L list , e in L

#output:index of e in L

i=0

while i<len(L):

if L[i]==e:

return (i)

i=i+1

return (-1)

def SameList(U,Used):

#Checks if two lists are equal

for e in U:

if e not in Used:

return(False)

return(True)

def MinMarks(N,D):

#input: N list of verteces of G, D info dictionary of G

#output: a vertex in N with minimum number of marks

res=N[0]

mark=D[res ][1]

for e in N:

if D[e][1]< mark:

res=e

mark=D[e][1]

return(res)

def is_contained(subList ,L):

#input: two lists

#output:True if in L there is a element that contains subList

# False otherwise



A.5 Two scripts to generate directed acyclic graphs 75

listindex =0

found=False

while not found and listindex <len(L):

p=L[listindex]

j=1

while j<len(p)-1:

if p[j-1]== subList [0] and p[j]== subList [1] and p[j+1]== subList [2]:

found=True

j=j+1

listindex=listindex +1

return(found)

def use_permutation(Edges , sigma):

#input: a list Edges of pairs (x,y), a permutation sigma

#output: a list of pairs (sigma(x),sigma(y))

Res=[]

for e in Edges:

newedge =( sigma[e[0]], sigma[e[1]])

Res.append(newedge)

return(Res)

A.5 Two scripts to generate directed acyclic graphs

We assume that the Python library random and the module GRAPH are imported.

The following code generates a directed acyclic graph. The inputs are two positive

numbers. The former is the number of nodes we want in the graph and the latter

expresses the probability to create an edge between two vertices.

def my_gen(num_nodes ,percent ):

graph =[]

Used =[]

j=0

while j<num_nodes -1:

for k in range(j+1, num_nodes ):

tmp=random.randint (0 ,100)

if(tmp <percent ):

graph.append ((j,k))

if j not in Used:
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Used.append(j)

if j not in Used:

node=random.randint(j+1,num_nodes -1)

graph.append ((j,node))

j=j+1

node=NotAlreadyUsed(graph , num_nodes -1)

if node !=-1:

graph.append ((node ,num_nodes -1))

return(graph)

With the following script it is possible to transform a directed acyclic graph, created

with the generator just presented, into a regular acyclic graph.

def regular_acyclic(G):

n=NumVertex(G)

V=CreateBidegList(G)

d=0

R=G.copy()

for e in V:

if d<max(e[0], e[1]):

d=max(e[0],e[1])

for k in range(0, 2*d):

V.append ([0 ,0]) #add d sources and d sinks

i=0

while i<n:

if V[i][0]<d: #addition of incoming arcs

tot=d-V[i][0]

for j in range(0,tot):

sources=V[n:n+d]

s=ChooseSourceSink(sources , n)

R.append ((s,i))

V[i][0]=V[i][0]+1

V[s][1]=V[s][1]+1

if V[i][1]<d: #addition of outgoing arcs

tot1=d-V[i][1]

for j in range(0,tot1):

poss=V[i+1:n]

u=ChooseNearestAvailable(poss ,d, i+1, R, i)

if u==-1: #no intermediate vertices are available
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sinks=V[n+d:] #so choose a sink

u=ChooseSourceSink(sinks , n+d)

R.append ((i,u))

V[i][1]=V[i][1]+1

V[u][0]=V[u][0]+1

i=i+1

return (R,d)
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compagni della divisione giovani che mi hanno sempre incoraggiata. Grazie anche a tutto

il gruppo Vittoria di Ancona, che mi ha sempre accolta a braccia aperte ogni volta che

ero di ritorno ad Ancona. Grazie alle bellissime giovani donne con cui anche durante

queste ultime vacanze natalizie ho condiviso stupendi momenti di studio e confronto.

Sono contenta di tornare da loro.

Con questa tesi si conclude un lungo percorso di studio che ho condiviso pienamente

con due persone speciali: Elena e Ilaria. Meravigliose compagne di avventure e amiche

sincere. Anche da loro ho imparato molto. Non le ho mai viste vacillare, nemmeno un

secondo. Le ho viste vivere e superare momenti difficilissimi, soprattutto negli ultimi

anni, senza mai fare un singolo passo indietro. Sono davvero fortissime e gli voglio un

bene immenso.

Grazie a Marta, per il suo sostegno e le belle chiacchierate.

Grazie a tutti i miei amici. In particolare Sara, Martina, Luca e Matteo, che hanno

sempre creduto in me. Ci siamo sempre divertiti tanto insieme e sono contenta di poter

dire che questi cinque anni, in cui ho vissuto lontana da loro, non hanno minimamente
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