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Sommario

Secondo l’organizzazione mondiale della sanità, nel 2015 le morti causate

da tumori sono state circa 8.8 milioni. Ogni tumore necessita di un tratta-

mento specifico detto “Treatment Planning System (TPS)”, il quale non è

completo per l’adroterapia, in quanto i dati che riguardano la dose di radi-

azione rilasciata nel paziente non sono sufficienti per stimare un giusto valore

di efficacia biologica (RBE, Relative Biological Effectiveness), tenendo conto

della dose del fascio stesso e delle particelle prodotte dalla frammentazione

del proiettile e del bersaglio.

In questo contesto, si colloca l’esperimento FOOT, progetto finaniato

dall’INFN, in grado di raccogliere misure e dati sulle sezioni d’urto di fram-

mentazione, sia di proiettile che del bersaglio. Infatti le informazioni a

riguardo sono poche, soprattutto per le interazioni di protoni e ioni su ma-

teriali presenti nei tessuti umani, con fasci di energia usati in adroterapia

(circa 250 MeV per i protoni e 350 MeV/n per gli ioni di Carbonio).

Al momento, l’esperimento FOOT è al suo inizio, cos̀ı come l’apparato

sperimentale e il sistema di acquisizione dati. Su queste basi, in questo

lavoro di tesi si vuole riportare il panorama scientifico attuale, evidenziando la

necessità di coprire i dati mancanti con nuove misure. Inoltre, è riportato un

esempio preliminare di sistema di acquisizione dati con il rispettivo sistema

di monitoraggio online per testare le schede elettroniche di acquisizione.
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Abstract

According to the World Health Organization (WHO) about 8.8 million

of deaths in 2015 were caused by cancer. The treatments for cancer are

several: beyond the traditional surgery, chemiotherapy and radiotherapy, also

hadrontherapy is developing. The hadrontherapy cures the cancer with ion

or proton beams. Every tumor type requires a specific treatment plan called

Treatment Planning System (TPS), that it is not complete for hadrontherapy

because there is the need of knowing the dose deposition both due to the

beam particle ionization and the fragmentation.

In this context, the FOOT experiment aims at collecting measurements

and data about target or projectile fragmentation cross sections since cur-

rently the experimental panorama is rather scarse on the measurements of

fragments produced in the interaction of protons or ions with tissue nuclei

at the hadrontherapy energies (about 250 MeV for protons and 350 MeV/n

for carbon ions).

At the moment, the FOOT experiment is at its start and so are the

detectors setup and the acquisition system projects. On these bases, this

thesis work reports the scientific panorama, highlighting the need of covering

the measurement lacks. Moreover, a preliminary example of DAQ system

is described with a connected online monitoring system to test the DAQ

boards.
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Introduction

Nearly one out of six deaths per year is due to cancer, which is the

second leading cause of death globally and has been responsible for 8.8 mil-

lion deaths only in 2015. Cancer, or tumor, is a generic term for a large

group of diseases that can affect any part of the body. One of the main

features of the cancer is the rapid creation of abnormal cells that grow be-

yond their usual boundaries, and which can invade adjoining parts of the

body and spread to other organs (metastases). Every cancer type requires

a specific treatment plan that encompasses one or more modalities such as

surgery, radiotherapy, chemotherapy and, more recently, immunotherapy. In

the last decades, the progress in technology has lead to the establishment of

an alternative technique with respect to conventional radiotherapy, based on

charged particle beams: hadrontherapy (or proton therapy).

The hadrontherapy is an oncological technique that exploits the different

energy loss mechanism that characterizes the interaction of protons and other

ions with matter (which is different with respect to the case of photons or

electrons). Infact, charged particles release almost all the energy at the

end of their path in tissues, in correspondence to the so called Bragg peak

position, minimizing the damage to surrounding healthy tissues and organs

at risk [1]. These physics aspect and radiobiological effects will be illustrated

in Chapter 1, using them for comparing hadrontherapy with radiotherapy
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INTRODUCTION

and the use of protons with ions.

However, there is the pressing need of increasing the dose deposition

knowledge due to the fragmentation of the incident particles (with the atomic

number Z > 1) and the target tissues. Currently a very low number of ex-

perimental measurements of nuclear reaction cross sections of fragments pro-

duced in the interaction with tissues nuclei (especially H, C, O) of 60-250 MeV

protons and 100-350 MeV/n carbon ions, which are the typical energies

adopted in hadrontherapy treatments. These data are required to improve

the algorithms currently used in the Treatment Planning Systems (TPS) for

proton and heavy ion therapy, necessary to prepare the patient for the treat-

ment procedure. The scientific scenario of all the measurements performed

in this field will be summarized and shown in Chapter 3.

The main goal of the FOOT (FragmentatiOn Of Target) experiment is

to measure the target and projectile fragmentation cross sections relevant

for hadrontherapy. To achieve the goal, the FOOT experiment adopts an

inverse kinematic approach to overcome the difficulties related to the short

fragments range (∼ µm). Moreover, in order to bypass the problems given by

the management of a pure hydrogen target, data are extracted by subtraction

of cross sections on C and C2H4 targets. The FOOT detector and its setup

will be discussed in Chapter 2.

The aim of the present thesis is to described the written algorithm for

monitoring the Data Acquisition System (DAQ), discussed in Chapter 4.

At the moment the acquisition system does not include all the devices for

the whole detector, however it is important to preliminary check this with

some tests, in particular regarding the main features and information as well

performing acquisition system, as the event number for each device.
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Chapter 1

Hadrontherapy

The “hadrontherapy” is an oncological technique that uses protons and

ions as the main projectiles to kill cancer cells. It is a therapy complementary

to the radiotherapy, that uses X-rays and gamma rays to threat patients, and

that can be used also in situations where standard treatments like surgery,

chemiotherapy or radiotherapy cannot be used. This happens in situations

where the cancer cells are located in brain, in the spine or near organs that

might suffer from other therapies. As an example, the hadrontherapy has

been already used for almost 30,000 patients with a cancer near critic or-

gans. In these case a standard radiotherapy, which is more invasive, would

compromise the functionality of the close-by organs. In this chapter the

main aspects of the hadrontherapy, its history, its working principles and

applications are briefly recalled.

1.1 History of Hadrontherapy

More than a hundred years have passed since the discovery of X-rays

by William Conrad Röntgen in 1895, who demonstrated the extraordinary
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1. Handrontherapy

properties of his ‘rays’, which today we know to be photons of energy around

104 eV. Observing the absorption of X-rays, the conclusion was that different

tissues have a different absorption coefficient for X-rays: this led to the first

radiography (Fig.1.1).

Figure 1.1: The first radiography made by Röntgen .

Then, in 1896, Henry Becquerel discovered the natural radioactivity,

and, even if the radiobiological effects were not known at that time, the idea

to cure cancer with this mysterious radiations has been achieved.

The first application of accelerators in medicine started in 1931, thanks

to the first cyclotron realized by Ernest Lawrence and Stan Livingston.

Ernest and his brother John (a doctor, considered the founder of nuclear

medicine) started to irradiate patients with salivary gland tumor using neu-

tron beams; and since neutron nuclear products are ions this study can be

considered the first use of ions for treating cancer.

The history of this new technique began in 1946 when Robert Wilson
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1. Hadrontherapy

was called to lead the team for the design and the construction of a new

160 MeV cyclotron in Harvard. He spent one year in Berkeley, collaborating

with Ernest Lawrence, who had been his professor in the early 1930s, to

complete the design of the accelerator. It was then that Lawrence asked him

to define the shielding of the new cyclotron, by calculating the interactions

with matter of a beam of 100 MeV protons. Wilson followed this suggestion

and found that the proton dose has a completely different trend with depth

than a beam of X-rays.

Infact, protons remove electrons from molecules, ionizing them while

slowing down and the maximum number of ionisations per millimeter (placed

at the end of the range) is called Bragg Peak.1 These observations leaded

Wilson to propose the use of protons for irradiating solid tumors, as a better

therapy than the one based on X-rays. His pioneering and now famous paper

(“Radiological Use of Fast Protons”) was published in 1946 in the journal

Radiology [2].

Two years after Wilson’s paper, researchers at the Berkeley Laboratory

conducted extensive studies on proton beams and confirmed his predictions.

After many animal irradiations, the first patient was treated in 1954 under

the guidance of Cornelius Tobias, a Hungarian physicist, who, together

with Lawrence, performed the first hadron treatment on humans. The first

irradiations were not directly on the tumor but on the pituitary gland that,

after treatment, would stop making hormones that stimulated the cancer

cells to grow. Patients with metastatic breast cancers were treated surgically

to remove most of the tumoral mass and then irradiated with protons on the

pituitary gland to reduce the production of grow hormones and hence the

chances of metastatic proliferation. The pituitary gland was a natural site

1William Bragg was the first to discover the existence of this peak for alpha particles.
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1. Handrontherapy

for the first treatments, because the gland location was easily identified with

standard X-ray films. Between 1954 and 1974 about 1,000 hypophysis and

pituitary tumors were treated with protons with a 50% success rate.

This technique was so called ‘hadrontherapy’ in 1992 and this term was

later used to include all types of non-conventional radiation beams used at the

time: protons, helium ions, neon ions, neutrons and pions. Indeed physicists

call ‘hadrons’2 all the particles that feel the strong interaction because they

are made of quarks and antiquarks [3].

The hadrontherapy is nowadays not widely uses compared with the ra-

diotherapy due to two factors: space and cost. In case of radiotherapy,

photons are produced by accelerated electrons up to 10 MeV, while protons

(for hadrontherapy) needs to be accelerated to reach higher kinetic energies

(up to 200 MeV) in order to have a suitable range in body to reach deep

sited tumors, as 200 MeV. For these reasons cyclotrons and synchrotrons

are so much more expensive than LINAC (Linear Accelerators) which are

employed in radiotherapy. The hadrontherapy is not a substitution of radio-

therapy, but it’s useful to treat tumors that are “radio-resistance” or localized

near an organ.

The kind of tumors that are mostly treated with hadrontherapy are chor-

doma3 and chondrosarcoma4, which are located in critic zones like the base

of cranium or spine; uveal melanoma5 for which the proton therapy produces

the same chance of survival than the enucleation. In the first two cases, after

a certain time, are free from tumor recurrencies is about 80%, instead of the

40% for patients treated with X-rays. For the uveal melanoma is more than

2From the greek adrós that means ‘strong’.
3A rare malign tumor of the bone tissue.
4Different kind of tumors, they start from cartilage cells.
5It’s the more frequent eye tumor in adults, it can make metastasis even after 20 year.
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1. Hadrontherapy

95% and more of 80% of patients that have kept the sight capability after

treatment.

This and more results brought lots of oncologists to approve the superiority

of the proton therapy, especially for children (because hadrontherapy has a

less risk of induced carcinogenesis).

The evolution of hadrontherapy was not a process that developed only

in the USA, but in the ’80 a lot of hadrontherapy centers were built also

in Japan. Recently also Italy has opened 3 national centers: CATANA (in

Catania, where only eye tumors are treated), CNAO (in Pavia, where since

2011 they are using carbon ions for treatments) and the Proton Therapy

Center (in Trento, that started to cure patients in 2014).

1.2 Physics Principles in Hadrontherapy

This section concerns the basic reactions which occur when heavy charged

particles encounter matter and their effects. Heavy charged particles (with

M >> me
6) see matters in terms of electrons and nuclei, so processes that

can occur are both elettromagnetic and nuclear. In general, two principal

elettromagnetic features characterize the passage of charged particles, with

a bigger mass than electrons, through matter: (1) a loss of energy by the

particle (inelastic collisions with the atomic electrons), (2) a deflection of the

particle from its incident direction (elastic scattering from nuclei).

These two reactions may occur many times per unit path length in mat-

ter, heavy particles may also interact directly with nuclei, though nuclear

processes or reactions that might produce secondary particles [4].

While the single particle interactions can be described at the atomic or

6Where M is the mass of the particle and me the electron rest mass.
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1. Handrontherapy

nuclear level, at the macroscopic level the most important quantity is the

“stopping power” that parametrize the friction force that acts on an ion while

it travel inside the medium. The stopping power that measure the energy

loss per unit of path length depends on the properties of the charged particle

such as its mass, charge, velocity and energy as well as on the properties of

the absorbing medium such as its density and atomic number.

1.2.1 The Bethe-Bloch formula and the Bragg peak

The inelastic collisions with electrons are the principal responsible for

the energy loss of the heavy charged particles in matter. In these processes

the energy is transferred from the particles to the atomic electrons, causing

and excitation (soft collision) or an ionization (hard collision). The amount

of energy transferred in each collision is a small fraction of the particle’s

total kinetic energy; however the number of collisions per unit path lenght

(in dense matter) is so large, that a substantial cumulative energy loss is

observed.

Elastic scattering from nuclei also occurs frequently although not as often

as electron collisions. In general the transferred energy in these collisions is

smaller and negligible. In general, a sizeable fraction of energy is transferred

in each single collision and its exact amount depends on the ratio of the

impinging particle mass and the mass of the nuclei of the medium. The

energy lost in this way is in any case a small fraction of the overall energy loss

since the probability of nuclear scattering is much lower than the probability

of interactions with the electrons.

So, during its motion through an absorbing medium, a charged particle

experiences a large number of interactions before its kinetic energy is com-

pletely lost. In each interaction the charged particle’s path may be altered
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1. Hadrontherapy

(elastic or inelastic scattering) and it may lose some of its kinetic energy that

will be transferred to the medium. The energy loss of the charged particle

propagating through the absorbing medium depends on the characteristics

of the particle as well as the absorber; and each interaction has a specific

cross section σ.

The rate of energy loss (typically expressed in MeV) per unit of path

length (typically expressed in cm) by a charged particle in an absorbing

medium is called the linear stopping power (−dE/dx) [5]. The stopping

power for heavy charged particles in matter was first calculated byBohr using

a classic approach and later by Bethe and Bloch using quantum mechanics.

The formula obtained by Bethe, Bloch and other physicists is then:

−dE

dx
= 2πNAr

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2ν2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
Here, there is a first constant part that depends from the classical electron

radius (r2
e = 2.817 · 10−13 cm), the electron mass (me) and to the Avogadro’s

number (NA = 6.022 · 1023 mol−1). Then, there is a part depending on

the medium characteristics (atomic number Z, atomic weight A and the

density ρ) and a part depending on the beam characteristics: the charge of

the incident particle (z, in unit of e), the mean excitation potential (I), the

ratio v/c (β) and γ, the maximum energy transfer in a single collision (Wmax).

The last two terms in the Bethe-Bloch Formula are two corrections: δ is

the density effect correction and C the shell correction. The first is important

at high energies and the second at low energies, so both are outside the range

of energy that are important in hadrontherapy and can be neglected.

In the Figure 1.2 is shown the stopping power as function of the βγ of

the particle, that is equal to the ratio
p

Mc
, where p is the momentum of the

particle, M the mass and c the light speed. For a non relativistic particle,

dE/dx is dominated by the overall factor 1/β2 and decreases with increasing
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1. Handrontherapy

Figure 1.2: The linear stopping power divided by the density ρ of the medium (in unit

of MeV cm2 g−1) in function of β γ of the particle.

velocity until a minimum is reached at v ∼ 0.96c. At this point, particles

are usually referred to as Minimum Ionizing Particles (MIP). As the energy

increases beyond the MIP point, dE/dx rises again due to the logarithmic

contribution in Bethe-Bloch formula. When different charged projectiles with

the same velocity are compared, z is the only factor that change outside the

logarithmic term, so particles with greater charge will have a larger specific

energy loss. Instead, studying dE/dx for different materials as absorbers,

it can be pointed out its main dependence on the electron density of the

medium: the higher is the density materials, the higher is the energy loss.

Taking into account all the aforementioned considerations, a heavy charged

particle deposits more energy per unit path length at the end of its path

inside the target, rather than at its beginning, as shown in Figure 1.3. The

10



1. Hadrontherapy

amount of ionization created by a heavy charged particle as a function of its

penetration depth inside the target is known as the Bragg Curve [4].

Figure 1.3: A typical Bragg Curve for protons (in red) and for Carbon ions (in blue).

In green is reported the energy loss of X-rays in the medium, for take a first comparison

between the use of radiotherapy and hadrontherapy for treating cancer.

As it is possible to see in Figure 1.3, in case of X-rays the energy loss

is big at the beginning of the medium and then tends to decrease. On the

contrary, for charged particles it stays constant at the medium entrance until

the Bragg Peak, where protons or carbon ions lose all their energy and are

stopped there. The small tail after the Bragg Peak is present for nuclei only

and is due to secondary ions produced in fragmentation processes of the

impinging carbon ion..

These differences between X-rays and charged particle (and so between

radio and hadron-therapy) and the one between the use of protons or carbons

are going to be deeper analyzed in the last section of this chapter.

1.2.2 Nuclear fragmentation

The nuclear fragmentation is a non elettromagnetic process that became

important at the energies used in hadrontherapy. It is a nuclear collision

11



1. Handrontherapy

between the projectile and the target nuclei, that can be divided in central

collision (that occurs in a ∼ 10% of cases and brought to the complete

distruction of the projectile and the target) and in peripheal collision (that

is more probable and produced a number of secondary products).

In particular, in hadrontherapy the interest is focused on the peripheral

collisions, that can occur in four ways:

1. In the case we are using protons as projectile:

• collision of a proton on a proton does not produce fragmentation;

• collision of a proton on a nucleus produces the fragmentation of

the target nucleus only.

2. In the case we are using ions as projectile:

• collision on a proton will produce the fragmentation of the projectile

only;

• collision on a nucleus will produce the fragmentation of both,

projectile and target.

The main goals of FOOT (FragmentatiOn Of Target) project are the

study of two processes: the fragmentation of the target (proton on nucleus)

and the projectile fragmentation (ion on proton). One of the problems in the

fragments detection is that in peripheral collision the momentum and energy

transferred are very small, because the overlap zone is small and only few

nucleons interact during the collisions. So, in the case of target fragmentation

is very difficult to detect the secondary products, due to their low energy they

don’t exit from the target. The solution is to approach this problem with

the inverse kinematic, but this part is going to be treated deeper in the next

chapter.
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1. Hadrontherapy

The fragmentation process can happen in two different steps, reported in

Figure 1.4: abrasion process and then ablation [6]. The first stage involves

nucleons, which gained a certain amount of energy and are expelled by the

target; and in the same way some nucleons are expelled from the projectile

too. In the second stage take place the thermalization and de-excitation of

the remaining nuclei with emission of light and intermediate mass fragments.

During the abrasion process a fireball is also created, which evaporate during

the ablasion [7].

Figure 1.4: Abrasion and Ablation Model in two stages. In this imagine is reported the

general case of two nuclei interaction, i.e. a collision of an ion on a nucleus.

1.3 Radiobiological Effects

To understand better the use of the hadrontherapy, it’s important to

introduce some physic and biologic quantities that characterize the particle

therapy.

1.3.1 Physical aspects

Two parameters are of fundamental importance to understand the capa-

bility of the hadrontherapy to cure patients:

1. ABSORBED DOSE:

Radiobiological effects in hadrontherapy (and radiation therapy in general)

13



1. Handrontherapy

are correlated to the absorbed dose, i.e. the mean energy deposited by

ionizing radiation (E) per unit mass (m) [8]:

D =
dE

dm

The Absorbed dose, as defined, is measured in Gray (Gy) in the SI (in-

ternational system of unit): 1 Gy = 1 J/kg (1 joule of absorbed radia-

tion by 1 kg of mass).

2. LINEAR ENERGY TRANSFER (LET):

It refers to the transferred energy from a ionizing radiation to a medium

per unit distance, so it is linked only to the energy loss of the primary

charged particle due to electronic collisions. The higher is the LET

value, higher is the transferred energy and more damage the radiation

will make to the DNA chains (see next subsection). The LET can be

write as:

L =
dE

dx

where dE is the energy loss of the charged particle due to electronic

collisions when transversing a distance dx. The unit of measurement for

LET is KeV/µm. For example, protons and photons are low-LET while

carbon ions are high-LET because of their larger ionization density.

Moreover as the Bragg Peak is of the order of few millimeters and tumors

are in the order of centimeters, it’s necessary to overlap more than one Bragg

Peak. This technique is called Spread Out Bragg Peak (SOBP), visible in

Figure 1.5 [9].

1.3.2 Biological aspects

To cure a cancer, it is not necessary to kill a cell, but it is enough to pre-

vent its duplication, i.e. damaging its DNA. This is possible in two ways [10]:

14



1. Hadrontherapy

Figure 1.5: The orange line shows the SOBP as the result of the sum of different dose

distributions (red lines). The green one is the released dose of X-rays.

• Direct Way: the radiation hits the DNA, damaging its structure (see

Figure 1.7, reported below);

• Indirect Way: the radiation hits the water copiously present in the

cell, this caused the production of free radicals (very reactive neutral

atoms or molecules due to an odd electron) and these radicals attach

chemically the DNA chain.

For what concern the indirect way: a radiation that hits on a water molecule

may free an electron H2O → H2O
+ + e−, now the electron may be captured

by another water molecule and generate an H2O
−. Now two reactions can

occur:

H2O
− → Ho +OH−

H2O
+ → H+ +OHo

Here, the subscript o (as in Ho and OHo) indicates the free radicals, i.e. an

atom or a molecule, that has an unpaired valence electron. These products

15



1. Handrontherapy

may combine in three different ways, assembling two different final molecules:

• WATER MOLECULE: it is the product of two harmless reactions

Ho +OHo → H2O

H+ +OH− → H2O

• PEROXIDE OF HYDROGEN: it is created when two OH0 combine

together causing a cell damage for this anomalous production:

OHo +OHo → H2O2

For what concern the direct way, as we have seen before, an important

aspect is the LET which depends on the particle, or better from its charge (as

shown in Figure 1.6). Higher charged particles have a less linear trajectory,

Figure 1.6: Comparison between the ionization density of gammas, protons, alphas and

carbon ions. Higher charge correspond to a higher LET and so to a higher DNA damages.

because of their bigger stopping power (-dE/dx). This caused the so called

16



1. Hadrontherapy

Figure 1.7: DNA damages from photons and heavy-ion, it’s shown the bigger damage

caused by the second track.

double strand break, which is more difficult to repair by the cell itself and

brings with a bigger probability to the cell death, as reported in Figure 1.7.

Two other physical quantities influence the damaging effect of the radia-

tions:

1. RELATIVE BIOLOGICAL EFFECTIVENESS (RBE):

It is a sort of estimation of the efficacy of the projectile and so it

depends on the radiation type and energy, on the dose deposition and

the biological system (tissue or cell type). The equation that define the

RBE is:

RBE =
Dref

Dtest

It is the ratio of the reference absorbed dose of a standard radiation

(Dref , typically the X-rays from 60Co), to the absorbed dose of the

radiation under study (Dtest) that produces the same biological effect.

The RBE is an important quantity because it describes the power of
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the radiation in killing the tumor cells. For heavy charged particles

at the start of their path (high energy), the LET is low and the RBE

is about 1 (for protons a typical value is 1.1), while at the end (low

energy, in the Bragg Peak zone) the LET is high and so is the RBE.

This means that ions are more effective than photons in killing tumor

cells.

2. OXYGEN ENHANCEMENT RATIO (OER):

As mentioned before, the presence of oxygen brings a higher probability

in the free radicals production. In a tumor, like for every cell in a

human body, the oxygen is brought by blood vessels, but not always this

happens in a cancer. If vessels are not generated faster enough or do not

work well, hypoxic regions can develop in the tumor, i.e. regions where

the oxygen did not arrive to the tumor. These are often localized deep

inside the cancer and caused a great reduction of the radio-sensitivity

of cells. This problem is described by the OER parameter, which is

defined as the ratio between the necessary dose for hypoxic region and

for the well oxygenated ones:

OER =
Dhypoxic

Dnot−hypoxic

These values can stand between one (well oxygenated tumor) to three

(strongly hypoxic tumor). As it’s possible to see in Figure 1.8, for

having the same survival fraction, the hypoxic tumor needs to receive

a higher dose in gray. Radiations with high-LET usually have a lower

OER and this can be used for increasing the power of radiation treat-

ment.
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Figure 1.8: In purple the curve for hypoxic cells and in orange the one for aerobic

cells. As it’s possible to see, the ratio at the same survival level is the OER: bigger is the

difference in the curve trend, bigger is the ratio.

1.4 Comparisons

In this section some recaps and comparisons are reported to show the

pros and cons for hadrontherapy in respect to the radiotherapy and between

the use of protons or ions, in particular, then, the case of using 16O for the

hypoxic tumors.

1.4.1 Hadrontherapy and radiotherapy

In radiotherapy, photons beams are used and as was shown in Figure 1.3

(the green line) their energy loss decrease with the deep of their path. This

causes a radiation release of the same size order in the tumor and in the

healthy cells before and after the tumor itself. The first step in this direction

is the IMRT (Intensity Modulated Radiation Therapy), i.e. the overlap of

different photons beams from different directions. This allow a higher dose

19



1. Handrontherapy

in the tumor keeping constant the dose in the normal cells, which remain

constant but still not low enough for being sure to prevent other damages.

Hadrons beams, instead, have a completely different trend for what con-

cern the energy loss in a medium: a low release of energy before the Bragg

Peak and the peak itself, where the particle lose almost its whole energy.

This allow to keep low the radiation to the healthy tissue cells and high the

radiation in the cancer, always using (as mentioned in the previous section)

the Spread Out Bragg Peak (SOBP) for covering the whole area of the tumor.

Figure 1.9: A comparison between the radio (at left) and the hadron-therapy (at right).

In blue the areas with less energy loss and in red the high-LET regions, where the tumor

has to be placed. The radiotherapy dose arrives till the healthy tissues (in this case the

hearth) while the hadrontherapy preserves them better.

An important effect that must be considered is the, before mentioned,

multiple Coulomb scattering. This process makes the beam wider and so

causes a dose release in a bigger area, which can be outside the tumor too.

The probability of this scattering becomes lower for particles with a big-

ger mass (that makes ions a better candidates with respect to protons).

Another process that can happen at the energy of hadrontherapy (about

200 MeV/u) is the nuclear fragmentation (exposed in subsection 1.2.2), the

fragment produced must be considered in the planning of the treatment.

So these contributions have to be studied and that’s the first reason of the
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FOOT experiment.

The bigger disadvantage of hadrontherapy is the cost of cyclotrons and

syncrotrons and the space they need (Figure 1.10). Infact, a IMRT treatment

costs about 10, 000 euros, while for the hadrontherapy the cost is almost

millions of euros.

Figure 1.10: At right a facility for hadrontherapy and at left for radiotherapy.

1.4.2 Protons and ions

For what concern the use of protons beams or carbon-ions beams, there

are some considerations that have to keep in account:

• At first, the dose from protons is lower than the one released from

heavy ions (RBE almost 1 at start and 3-4 at the Bragg Peak);

• The disadvantage of 12C is the “tail” (Figure 1.11) that they present

after the Bragg Peak, which is caused by the products of nuclear frag-

mentation. For what concern the ions heavier than Carbon, they are

difficult to use because they produce more fragmentation and have a

higher LET in the first zone before the Bragg Peak, causing a higher

damage to the healthy tissue;
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Figure 1.11: Bragg curve for a 12C beam with kinetic energy of 187 MeV/u, they present

a tail caused by the fragmentation.

• Carbon-ions present a minor diffusion and a less probable Coulomb

scattering, and so are more precise in hitting the tumor cells only [11].

Moreover, oxygen beams are increasingly considered as a fundamental

tool against hypoxic tumors. Since it has been shown that OER decreases

substantially with LET, the reason for using oxygen beams is basically driven

by their similar characteristics as compared to carbon, but with an impor-

tantly larger LET distribution, able in contrasting hypoxia (lack of cell oxy-

genation). However, in normal (aerobic) conditions, the larger fragmentation

of oxigen-ions beam in the target and entrance channel, makes their use less

convenient as compared to lower Z ions (such as C). The challenge in an

assessment considering a possible use of Oxygen is then a trade-off between

the LET advantage and the worse fragmentation in the normal tissue, which

should be evaluated, case by case, accordingly to geometry, tissue sensitivity

and other patient based characteristics. In most of the cases, oxygen beam
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is envisaged not as a full alternative option, rather as a boost in combination

with other types of (lower LET) particles.

After the evaluation of all the processes that are related to hadrontherapy

and their pros and cons, the FOOT project is going to study better the

fragmentation of target, where there is a lack of data, both for proton and

ion beams. In addition, the project will provide also projectile fragment

production cross sections for new, high LET ions, like oxygen beams and

will cover the energy gap in available data of 12C ion fragmentation cross

sections.

These studies are very important for developing a new generation of bi-

ologically oriented Treatment Planning Systems for proton and ion therapy.

All the physics, motivations and experimental setup for FOOT project is

going to be shown in the next chapter.
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Chapter 2

The FOOT Project

The FOOT (FragmentatiOn Of Target) experiment has been conceived

in order to perform a set of measurements of nuclear fragmentation cross

sections which will be used to develop a new generation of biologically ori-

ented Treatment Planning Systems for proton and ion therapy. This because

in the energy range of therapeutic application (50-250 MeV for protons and

50-400 MeV/u for carbon ions), the fragmentation process has not been com-

pletely covered by experimental measurements.

Furthermore, the products of the target fragmentation could be one of the

causes for the increasing of the proton RBE, that is estimated to be 1.1. This

constant value may be an underestimation of the real dose released in the

healthy tissues and this leads to a difficulty in the Treatment Planning System

(TPS), that, for this reason, has not a standard protocol for hadrontherapy.

In the case of proton therapy, only the fragmentation of the target may

occur, that produces low energy fragments with short range, these particles

have a short range, very high LET and so very high RBE. This process may

have an impact on the channel entrance of protons and it’s crucial to measure

the consequences on the human body.
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2. The FOOT Project

In the next sections motivations of the FOOT experiment are going to

be seen in details and then some experimental issues will be treated, with a

recap about the detectors setup.

2.1 Motivations of the Experiment

For what concerns the Hadrontherapy, the first aim of FOOT is the mea-

surement of target fragment production cross sections for proton beams. In

addiction, FOOT will provide also projectile cross sections for high LET ions,

as carbon and oxygen, and will cover the leak of measurements in the energy

range of the hadrontherapy.

The Treatment Planning System needs an accurate knowledge of the

released dose and consequently of the possible biologic effects; this makes

the study of the nuclear fragmentation at the energies of the hadrontherapy

necessary. Each fragment contribution interacts with the cells producing a

different damaging result, meaning that the damages depend on the type of

beam and its energy.

Then in the case of proton therapy the target fragmentation is more rele-

vant in the entrance region, where the proton energy is still quite large with

respect to the peak region where ionization is more probably than fragmen-

tation. Now, since the targets fragment are reduced at very low energies,

the particles are going to travel a distance of few microns, and so this makes

their experimental detection difficult. For this reason, FOOT is going to use

an inverse kinematic approach (described in the next section).

In the case of direct kinematic approach, instead, FOOT is useful to

measure the projectile fragmentation for each type of beam as carbon, oxygen

and helium.
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2. The FOOT Project

Figure 2.1: In this graph is reported the relationship between OER and LET, and

between RBE and LET.

1. CARBON:

Carbon-ions present a minor diffusion and a less probable Coulomb

scattering than protons, and they have also a higher released dose in

the Bragg Peak. The disadvantage of Carbon is the “tail” that they

present after the Bragg Peak, which is caused by the products of nuclear

fragmentation.

2. OXYGEN:

Oxygen beams are considered a fundamental tool against hypoxic tu-

mors, because due to the low OER value in corresponding to high

LET, especially beyond ∼ 100 KeV/µm (Figure 2.1), so the reason

to use oxygen ions is the high-LET able to be effective in contrasting

hypoxia1. However in aerobic conditions, their larger fragmentation in

the target makes the use of oxygen not convenient in respect with lower

1Hypoxia is a condition in which the body or a region of the body is deprived of

adequate oxygen supply at the tissue level. Hipoxia in a tumor causes a lower probability

in the free radicals production (as described in Subsection 1.3.2)
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Z ions (as carbon). As a matter of facts, oxygen is used as a boost in

combination with other types of particles.

3. HELIUM:

Helium beams are considered a possible alternative to protons, because

of their lower multiple Coulomb scattering, allowing an higher resolu-

tion in lateral spread (see Figure 2.2). Then, Helium is convenient

above Carbon for the lower cost but also for the lower impact of nu-

clear fragmentation, especially in the tail after the peak

Figure 2.2: Comparison of treatment plans on a skull chordoma: Helium (4He) is more

convenient as compared to protons in the case of lateral organs at risk.

Another application of the FOOT project is the radioprotection in space,

i.e. studying the risk assessment for astronauts in view of long duration space

missions. Infact, there is a common ground between protecting astronauts

from the harmful effects of space radiation (as the energetic particles product

by Solar Particle Events, Galactic Cosmic Rays, etc.) and providing tumor

therapy. The overlap is in terms of energy: the energy for tumor therapy is

not so far from the energy region of the solar flare protons as well as near

the peak of the Galactic Cosmic Rays spectrum [12].
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2.2 Experimental Strategies for Measurements

The study the projectile fragmentation, do not present particular prob-

lems because the produced fragments have enough energy to escape the tar-

get and to travel all the detector, allowing a traditional approach of direct

kinematic.

While to perform measurements on the target fragmentation consequently

to a proton beam, the main obstacle is the short range of the produced

fragments. In Table 2.1 it’s shown the range of the fragments produced by

incident protons of 180 MeV in a water target; the range is of the order of

tens of µm that prevent the fragments to escape the target.

Fragment E(MeV) LET(MeV/µm) Range(µm)

15O 1.0 983 2.3

15N 1.0 925 2.5

14N 2.0 1137 3.6

13C 3.0 951 5.4

12C 3.8 912 6.2

11C 4.6 878 7.0

10B 5.4 643 9.9

8Be 6.4 400 15.7

6Li 6.8 215 26.7

4He 6.0 77 48.5

3He 4.7 89 38.8

2H 2.5 14 68.9

Table 2.1: Expected average physical parameters for target fragments produced in water

by a 180 MeV proton beam. The initial average energies of secondary fragments are

calculated according to the Goldhaber formula [13].
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The Range is calculated from the energy of the fragment, which is derived

from the Goldhaber formula [13]:

Efrag =
3

5

[
Mtarget −Mfrag

Mtarget − 1

]
p2
F

2mp

where pF = 281
(
1−M−0.568

frag

)
Here, pF is the Fermi momentum, mp the mass of proton at rest, Mtarget

is the mass of the target and Mfrag the mass of the fragment.

Now, given a fragment produced by a proton projectile somewhere in

the target matter, the ion can cross and leave the target only if it has been

produced at a distance less than few micrometers from the exit surface of

the target material. Otherwise the fragment deposits all its energy locally,

being trapped inside the target, not allowing any possibilities of detection.

The problem could be solved using a very thin target, but this kind of

target provide a lot of issues: it’s difficult to be created and the rate of

fragmentation is lower and suppressed.

2.2.1 The inverse kinematic approach

To overcome the issues related to the measurements of the target frag-

mentation, the FOOT approach is to use the inverse kinematic. So, while the

direct fragments production reaction is represented by a proton that collides

inelastically with the target nuclei (as similar as possible to human bodies

nuclei) at rest: the inverse kinematic approach switch the role of the incident

proton with the target nuclei. Thus the particle beam is composed of 16O and

12C ions, which are the principal component of the human body, impinging

on a proton target, at rest.

By studying the inverse interaction and measuring the four-momentum

of the produced fragments and of the incident beam, it is possible to gain

experimental access to the inverse decay chain information, performing a
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Lorentz transformation. In this way it is possible to take measurements with

a thicker (> µm) target providing a higher fragmentation rate and significant

amount of data, without the issues related to the direct kinematic approach.

The problem now stays in the proton target, because the use of a pure

gaseous hydrogen target leads to some considerable technical difficulties: its

low density and the issues about transport. For these reasons, it has been

decided to adopt a double target made of polyethylene (C2H4) and graphite

(C), which are easier to produce and manage; the cross section measurement

of the only hydrogen target can be obtain performing a subtraction of the

measured cross sections in both target:

σ(H) =
σ(C2H4)− 2σ(C)

4

The subtracting cross section method, with a CH2 target instead of

C2H4, has already been tested at Ganil (France) with the results shown

in Fig. 2.3 [14].

Figure 2.3: Combination of carbon and CH2 targets angular distribution to determine

the hydrogen one for 2He fragments. The angular distribution for the hydrogen target is

the difference between both, divided by two.
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2.2.2 Two different setups

To introduce a new proton RBE model, which includes the effects of nu-

clear interactions, the FOOT experiment has to accomplish different require-

ments regarding the identification of the nuclear fragment particles created

by the incident protons. Both heavy and light fragments have to be detected

and studied.

Due to the mass difference of the produced fragments, the heavier ones

(typically with Z > 3) are mainly produced in the forward direction (within

θ ≤ 10o), while the lighter ones at larger angles (as it is possible to notice in

Fig.2.4). Due to this difference, it has been decided to adopt two different

setup in order to focus the attention on the two species of fragments. The

Figure 2.4: Angular distribution for the emitted fragments: the lighter nuclei are emitted

until 80o while the heavier ones (with Z > 3) stay in the limit of 10o.

first setup focuses on the fragments with Z > 3, while the experimental ar-

32



2. The FOOT Project

rangement designed to detect the lighter fragments is based on the Emulsion

Cloud Chamber (ECC) and it will be described in Subsection 2.3.2.

2.3 FOOT Detector Setup

To measure the fragment production due to protons and heavy ions, it

is necessary to use beams of carbon and oxygen ions with energies about

100-300 MeV/u, and so CNAO (Centro Nazionale di Adroterapia Oncologica,

Pavia, Italy), HIT (Heidelberg Ion-Beam Therapy Center, Heidelberg, Ger-

many) and GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Ger-

many) hadrontherapy centers are chosen to be the three most suitable loca-

tions for the experiment, because they are equipped with carbon and proton

beams with energy and resolution typical of the hadrontherapy treatment.

Considering the dimensions of the available experimental rooms, all the de-

tectors have to be allocated in an approximatively 2 meter length along the

beam line. Thus both the experimental setups (to detect low and high Z frag-

ments) have been designed in order to be easily movable (“table top setup”)

fitting the space limitations and covering the fragments angular spread [12].

One of the main requirement of the FOOT detector design is the identi-

fication of the fragments measuring their momentum, kinetic energy, time of

flight (TOF) and the energy loss (dE/dx). The momentum, kinetic energy

and total energy can be obtained by following relations:

p = mcβγ Ek = mc2(γ − 1) Ek =
√
p2c2 +m2c4 −mc2

where β = v/c and γ = 1/
√

1− β2 are derived from the fragment TOF. The

mass of the produced fragments can be extracted by using contemporary

two of the previous formula; in this way the mass can be obtained in three

different ways correlated between them.
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2.3.1 Heavy nuclei detection

In the first experimental setup the main interest is focused on the frag-

ments with Z > 3, whose cross section data are missing in the literature. A

schematic view of the detector is shown in Figure 2.5.

Figure 2.5: Schematic view of the FOOT apparatus for the detection of heavy frag-

ments [12].

The FOOT apparatus for the detection of heavy fragments can be divided

in three regions:

1. PRE-TARGET AND TARGET REGION: this first region contains:

• The Start Counter (SC): a thin plastic scintillator detector (250 µm

of thickness with 4 channels read out by fast PMTs) used to pro-

vide trigger information and the start of the TOF.

• The Beam Monitor (BM): a drift chamber (21 cm x 11 cm x
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11 cm), composed of six planes of alternated horizontal and ver-

tical wire layers. Each layer has three cells to provide the mea-

surements in terms of the drift coordinates. The purpose of the

BM is to measure the beam direction (necessary for the inverse

kinematic approach) and reject the events in which the primary

ion has fragmented before the target.

• The Target: both polyethylene and graphite targets are needed to

adopt the subtraction of cross section method. The thickness of

the target is chosen to be about 2 mm, avoiding both the fragment

trapping effect and the decrease of the nuclear interaction rate.

2. THE MAGNETIC SPECTROMETER: which is formed by:

• The Front Silicon Pixel Tracker (FSPT): four layers of silicon de-

tector placed just after the target to be used as vertex detector.

• The Magnets: two permanent magnets with Halbach geometry2

(Figure 2.6) to perform the momentum measurements.

• The Rear Silicon Pixel Tracker (RSPT): two layers of silicon de-

tector, designed as an enlarged copy of the Front Silicon Pixel

Tracker.

• A Micro Strip Detector (MSD): a silicon strip detector of 9x9 cm2

of transverse dimension composed by 3 layers each one composed

by two orthogonal silicon strip layer of 70 µm thick, each for the

xy−reconstruction.

2A Halbach cylinder is a special arrangement of permanent magnets that produced a

magnetic field confined entirely within the cylinder with low field outside.
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Figure 2.6: Calculated magnetic field map for the design of the FOOT Permanent

Magnet in Halbach geometry [12].

3. THE CALORIMETER REGION: downstream the magnetic spectrom-

eter the fragments travel ∼ 1 meter to reach the ∆E and TOF detector:

• Scintillator (SCI): 22 + 22 plastic scintillator bars arranged in two

orthogonal layers, each bar is 20 cm long and 3 mm thick. Goal

of the scintillator is the measure of the energy deposited (dE/dx),

the stop of the time of flight and an estimation of the fragment

position. The total time resolution is ∼ 70 ps and the energy

resolution is estimated to be between 3% and 5%.

• Calorimeter (CAL): a cylindrical detector with 20 cm radius, formed

by 360 elements of BGO crystals (Bi4Ge3O12) of 21 cm thick and

with a density of 7.13 g/cm3.

2.3.2 Light nuclei detection

The experimental apparatus designed to detect light fragments is based

on the Emulsion Cloud Chamber (ECC). The start counter and the beam

monitor are the same as the first experimental setup, as they provide informa-

tion about the incident particle beam, while the other detectors are replaced
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by the ECC. The ECC is composed by a sequence of nuclear emulsion films

Figure 2.7: Schematic view of the FOOT apparatus for the detection of light frag-

ments [12].

(detector) interleaved with passive material of C and CH2 (target) and Pb.

The passage of a charged particle in the nuclear emulsions produces an image,

turned into a sequence of silver grains which are lied along the trajectory of

the particle with a density almost proportional to the energy loss [15]. The

structure of ECC (Figure 2.7) proposed for the FOOT experiment consists

of three different sections:

1. TARGET AND VERTEXING: it is about 4 cm and it is formed by 60

alternated layers of emulsion films (300 µm) and target layers (1 mm

of C/CH2), operating as vertex detector with the purpose to track all

the charged particles.

2. CHARGE IDENTIFICATION: this section is ∼ 1 cm of thickness and

it is composed of emulsion films only, with the aim of identifying the

atomic numbers of low charged fragments (proton, helium and lithium).

37



2. The FOOT Project

3. MOMENTUM MEASUREMENT: the thickness is ∼ 4 cm and it is

composed by 10-50 alternated layers of emulsion films (300 µm) and

absorber layers (1 mm of Pb), adopted to measure the fragments range

in order to estimate the particles momenta. The number of layers varies

according to the incident beam energy.
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Chapter 3

Fragmentation Cross Sections

The study of the nuclear fragmentation process is relevant for many fields

of interest, from the hadrontherapy, to the spatial vehicles shielding design,

to work safely in space with acceptable risks from galactic cosmic ray. Indeed,

the measure of the fragmentation cross section is an important information

to estimate how this process modifies dose distributions and biological effec-

tiveness in oncological therapies with ion beams.

At the moment, simulations are used to deal with these problems. Such

approach presents a considerable uncertainty, both on the fragmentation

cross sections and on the different radiation biological effectiveness. Due

to the reduced number of measurements in the interested energy ranges,

therefore a larger amount of fragmentation cross section data is necessary:

a wide energy range and different ions and materials have to be explored.

For targets, the best ones to simulate soft biological tissues are plastics and

water, because the human body mostly consists of four elements: hydrogen,

carbon, oxygen and nitrogen.

One of the most important aspects in this research field is to understand

and to characterize physics and radiobiological effects like biological damages
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related to ion fragmentation [16]. In fact, nuclear fragmentation of the pro-

jectile nuclei may deposit undesired energy in healthy tissues surrounding

and beyond the target. This is a less significant phenomenon in the pro-

ton therapy, even if neutrons arising from nuclear reactions may travel and

deliver dose far from the irradiation region.

In some cases, nuclear reactions can actually be profitably exploited, for

example, the production of the unstable fragments, decaying through the

β+ process, can be used for quality assurance of the beam delivery. The

positron from the β+ decay is quickly stopped and annihilates, producing

two peculiar back-to-back gamma rays that can be detected and traced up

to the annihilation vertex [17]. However, neutrons are neutral particles, with

a lower interaction rate with respect to the charged ones. For this reason,

they can deliver doses to distant tissues, possibly causing late secondary

tumors [18].

3.1 Cross Sections Measurement

The measurement of the cross section may be performed in different

ways [19]:

1. INCLUSIVE CROSS SECTION

The inclusive cross section is defined as the cross section of a process in

which only a subgroup of final state particles are specified. An inclusive

reaction is typically denoted as P + T → F + X, where the projectile

P and the target T make up the initial state. The final state consists

of the measured projectile fragment F and the outgoing particles X,

which may or may not be measured.
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2. EXCLUSIVE CROSS SECTION

An exclusive cross section results when all outgoing particles are as-

sumed to be detected. This kind of experimental measurement is more

difficult than the previous one, because all outgoing particles have to

be measured and identified.

In literature, it is possible to find different cross section measurements for

different nuclear reactions, so it is helpful to briefly define them.

The charge changing cross section (denoted by σ∆Z≥1) is defined as

the cross section of a process in which a charge difference of at least one is

present between the projectile and the fragment. Whereas, the mass chang-

ing cross section (σ∆A≥1) is defined to be the cross section for removing at

least one nucleon from the projectile. In Fig.3.1 are reported data collected

in this field of study about charge changing cross section, in different ranges

of energy and for different combinations of targets and projectiles.

Figure 3.1: The availability of a charge changing cross section measurement for couples

of projectiles and targets is marked with a σ for two different kinetic energy ranges: left,

the data for T<280 MeV/n and at right, the energy range 280 MeV/n ≤ T < 3 GeV/n [19].
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Many measurements have been performed, but it is straightforward to

notice the lack of data in certain ranges (280MeV/n ≤ T < 3 GeV/n and

T<280 MeV/n), in particular in the region Zprojectile < 10 and Ztarget < 10,

which is relevant for Carbon or Oxigen ion therapy.

The isotopic cross section describes the production of a fragment with

a given charge and mass. Compared to charge changing cross sections, iso-

topic cross sections are more difficult to measure experimentally, because

each isotope needs to be identified separately. Collected data about isotopic

cross section are reported in Fig.3.2. Also in this case, the measurements

have been performed in different energy ranges and for different combination

of target and projectile. Moreover, the same problem of the lack of measure-

ments is shown in these plots, even more accentuated.

Figure 3.2: The availability of isotopic cross section for the production of a proton (1H

fragment) is marked with a σ for two different kinetic energy ranges: left, the data for

T<280 MeV/n and at right, the energy range 280 MeV/n ≤ T < 3 GeV/n [19].
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The goal of the FOOT experiment points to the measurement of two more

important cross section, in the hadrontherapy field: the fragment produc-

tion cross sections (σ(ZF )), that quantify the probability for production of

fragments with a given charge; and the differential cross sections, which

take account angular or energy information, in its calculation. The first is

more difficult to measure than charge changing cross section because of the

difficulty of identify fragments against the background of projectile particles.

The second type of cross section is useful because angular and momentum

distribution data can be used to differentiate between models and to estimate

two and three dimensional dose distributions into materials. The differential

cross section is measured as a function of one or more variables (such as

fragment energy E, momentum p, or emission angle θ). For example, a sin-

gle differential cross section may depend only from the angular distribution

(dσ/dΩ), while the double differential cross section (dσ/dΩdE) is measured

as a function of both the fragment energy (or momentum) and angle: they

provide more detailed information on dose distributions than simple angular

distributions integrated over all fragment energies or energy spectra taken at

a single angle.

In Figs.3.3, 3.4, 3.5 all the fragmentation cross section and the differential

cross section measurements have been shown, for different energy ranges and

target-projectile combination. In this case, more than in the previous one,

the extremely low number of overall measurements and in particular in the

hadrontherapy region (Zprojectile < 10 and Ztarget < 10) is striking and the

urgency of covering this deficiency is clear.
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Figure 3.3: The availability of fragmentation cross section for H fragments is marked

with a σ for two different energy ranges. Left, the data for a beam kinetic energy of

280 MeV/n ≤ T < 3 GeV/n and right, the energy range 3 GeV/n ≤ T < 15 GeV/n [19].

Figure 3.4: The availability of single differential cross section for H fragments is marked

with a Σ for two different energy ranges. Left, the data for a beam kinetic energy smaller

than 280 MeV/n and right, the energy range 280 MeV/n ≤ T < 3 GeV/n [19].
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Figure 3.5: The availability of double differential cross section for H fragments is marked

with a D for two different energy ranges. Left, the data for a beam kinetic energy smaller

than 280 MeV/n and right, the energy range 280 MeV/n ≤ T < 3 GeV/n [19].

3.2 Previous Data on Fragmentation

A fragment is defined as a charged nuclear particle with a mass and charge

that are different from the primary beam particle.

The enhanced relative biological effectiveness (RBE, as defined in sub-

section 1.3.2) of heavy ions (like carbons), with respect to protons, is one

of the main reasons, together with their good ballistic properties, for their

use in hadrontherapy. Moreover the RBE increases towards the end of the

ion range in the biological material as the energy decreases, thus further

improving the already better ion depth-dose distribution (an example for

protons is reported in Fig.3.6).

The Continuous Slowing Down Approximation (CSDA) range is a very

close to the average path length traveled by a charged particle as it slows

down to rest. In this approximation, the rate of energy loss at every point
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along the track is assumed to be equal to the total stopping power (dE/dx).

The straggling depends on the fact that the energy loss is not a continuous

phenomenon, but statistical. Indeed, two identical particles with the same

initial energy will not suffer the same number of collisions and hence the same

energy loss. For this reason, the range is modified to consider this statistical

distribution of different ranges centered on a mean value.

Figure 3.6: Depth-dose distribution of protons in water for kinetic energy E = 100 MeV,

considering the CSDA (Continuous Slowing Down Approximation, only the stopping power

is taken in account) range and adding straggling (depends on the statistic of the energy

loss) and nuclear fragmentation.

For example, when Carbon beam proceeds through the matter, it frag-

ments in smaller particles with velocity similar to those of the beam, pro-

ducing a “tail” in the dose distributions after the Bragg peak and implying

the irradiation of the immediately downstream healthy tissues.
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In the last years, the studies has been focused on Carbon ion beams,

but the abundance and energy spectrum of secondary particles emitted by

hadrontherapy beams at larger angles with respect to the primary beam

direction are mainly unknown, and, as a consequence, very poorly reproduced

by the nuclear model implemented in the Monte Carlo (MC) simulation used

to prepare Carbon ion treatment planning systems.

The reliability of the MC estimations can be assessed only by comparing

the results of different models with experimental data and, at the moment,

the amount of data on fragment energy distribution at large angles is rather

poor [20].

There are more than one model to simulate nuclear reactions between

the target nuclei and the radiation and a lot of data are reported in several

databases both for neutrons and light charged particles [21, 22].

Not all databases are equally complete in the coverage of the relevant

nuclides and energies for a specific application: in some cases the existing

experimental data may be too scarce. Then, even if the relevant nuclides are

covered by the database, they only assess the inclusive one-body cross sec-

tions and do not provide any information about correlations among particles

produced by the same nuclear reaction.

Moreover, the knowledge of the total nuclear cross-section (σtot) is im-

portant for protons or helium and oxygen beams as well, since they have an

important impact in the sophisticated features of therapy planning. The σtot

provides essential information about the decrease of the fluence of primary

beams and the release of secondary particles in the patient body. The im-

pinging ions can produce exited nuclei with might then decay via β+ or β−

with additional emission of a γ [23].
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Regarding the proton beams, it is necessary to have information on target

fragmentation, because it can modify the RBE of protons. However it is not

always taken in account, because it is studied only using thin targets, that

allow to detect low energy fragments (as the target fragments are), but do

not allow a great interaction rate [13].

One of the goals of the FOOT experiment is to measure accurately the

nuclear fragmentation with large statistics. For this reason instead of using

very thin targets, it uses the inverse kinematic approach (discussed in Chap-

ter 2), that greatly reduces the need to perform separate experiments. In

fact, for example, cross section data for the reaction 4He+12C, can be used

to study the reaction 12C+4He, too. However, the projectile energies will be

different in each case [19].

Moreover, the two different FOOT setups (as explained in subsection

2.2.2) detect both heavy and light fragments for different beams and targets,

collecting data also for Helium and Oxygen beams and focusing on the mea-

surement of the differential cross section in function of the fragment energy.

In fact, the final goal is to build a model for the treating planning system

and a differential cross section is extremely necessary for this purpose.

3.2.1 Proton beams

The four important nuclei in medical applications are 1H, 12C, 16O and

40Ca. They are used as targets in case of proton beams.

To obtain information about the proton interaction mechanism with nu-

clei of atoms, total cross section from proton-induced reactions is useful.

Until now, several experimental and theoretical studies on proton total cross

sections have been performed.
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Fig.3.7 shows the experimental data and the simulation about proton

cross sections (p+p interaction), as do Fig.3.8 and Fig.3.9 for the two reac-

tions p+12C and p+16O respectively.

The experimental data, reported as black dots, are collected from database

of different and previous experiments, while the lines represent the Monte

Carlo distributions of the considered process. These distributions clearly

show that the data are more copious at low energy (below 50 MeV), while

around the proton-therapy energy (around 200 MeV) are quite poor, in par-

ticular for Oxygen targets. Regarding a 200 MeV proton beam, the measure-

ments of total cross sections are about 25 mb for the p+p reaction, 230 mb

for the p+12C reaction and 350 mb for the p+16O reaction.

The cross section measurements and simulations, reported above, are re-

lated to the total reaction cross section, i.e. the probability that a certain

reaction occurs at a fixed beam energy.

Figure 3.7: Total cross section of p+p reaction as function of the beam energy [24].
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Figure 3.8: p+12C cross section as function of the proton beam energy. Black dots are

experimental data and colored curves are different MC simulation for comparisons [17].

Figure 3.9: p+16O cross section as function of the proton beam energy. Black dots are

experimental data and colored curves are different MC simulation for comparisons [17].

For proton beams the angle-differential cross section (at different beam
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energies and targets) has been measured as well, the experimental data are

reported in Fig.3.10 as black dots, while the lines represent the Monte Carlo

distributions of the considered process.

Figure 3.10: Angle-differential cross sections for proton beams at different energy and

targets. The columns are referred to Carbon, Oxygen and Calcium respectively, while the

rows are beams at different energies: 10 MeV (a,b,c), 50 MeV (d,e), 45 MeV (f), 140 MeV

(h), 150 MeV (g,i), 200 MeV (k,l) and 249 MeV (j). The black dots are the experimental

data while the distributions are different Monte Carlo simulation for comparisons.
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What is missing in these data is the discrimination between different frag-

ments, which is important in hadrontherapy to estimate biological damages

and RBE variation after the Bragg peak.

In Tab.3.1 (reported at the end of this section) are summarized the pre-

vious data for proton-nucleus reactions, whereas there is not fragmentation

for the p+p reaction. Moreover, the fragments studied as function of the

beam energy are reported as well. The associated distributions, only for the

p+12C reaction, are shown in Fig.3.11 for lighter fragments and in Fig.3.12

for the heavier ones, compared with different Monte Carlo simulations.

Figure 3.11: p+12C cross section as function of the proton beam energy for the different

fragments: neutrons (a), protons (b), deuterons (c), tritons (d), 3He (e) and 4He (f). The

black dots are the experimental data while the distributions are different Monte Carlo

simulation for comparisons.
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Figure 3.12: p+12C cross section as function of the proton beam energy for the different

fragments: 6Li (a), 7Li (b), 7Be (c), 9Be (d), 10Be (e), 10B (f), 11B (g), 10C (h), 11C (i).

The black dots are the experimental data while the distributions are different Monte Carlo

simulation for comparisons.

First of all, the collected data are not enough for each fragment and so

the experimental panorama is not complete for what concern the fragment

discrimination. Therefore, a further step is required and it is one of the FOOT

goals: it consists of discriminating the outgoing fragment not only as function

of angle or beam energy, but especially with respect to the fragment itself

and its energy (or momentum). The reason is that the depth-dose deposition

in the human body depends on the fragment energy and its charge.
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PROTON BEAMS

Energy Angle Target Detected

(MeV/n) (degrees) material fragments

10 0-160

12C
p, n, d, t, 3,4He, 6,7Li,

7,9,10Be, 10,11B, 10,11C

50 0-90

150 0-80

249 0-100

10 0-160

16O

p, n, d, t, 3,4He, 6,7Li,

7,9,10Be, 10,11B, 10,11,14C,

13N, 15O

50 120-160

140 0-30

200 0-130

10 0-160

40Ca
p, n, d, t, 3,4He, 28Si, 32S,

36Cl, 36,37,38Ar, 38,39K, 39Ca

45 0-160

150 0-90

200 0-60

Table 3.1: Angle-differential cross section data for proton beams on different targets.

Beam energies, emission angles and detected fragments are reported for each case.

3.2.2 Carbon ion beams

For the promising features already described at the beginning of this para-

graph, the Carbon ions RBE has to be replaced by the one associated with

the arising mixed radiation field (because the RBE depends on the LET,

which is different for each isotope, as defined in Chapter 1). Moreover, the

incident ions lose their energy passing through the patient body (up to 70%

of energy for 400 MeV/u 12C in water [25]) so that the inelastic nuclear re-

actions may occur at energies much lower than the incident ones.
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Therefore, all these effects arising from the carbon fragmentation have to

be considered and correctly evaluated when planning a tumor treatment [26].

The Carbon ion beams data at the hadrontherapy energies are several

in literature, here a brief summary is reported (with a review in Tab.3.2 at

the end of this section). At INFN-LNS facility in Catania, Italy, differential

cross section data (shown in Fig.3.13) have been collected for a Carbon beam

energy of 62 MeV/n and 80 MeV/n at different angles on 12C-target [27], on

197Au [28] and on a PMMA1 target [29]. These energy are both too low to

study fragmentation in case of hadrontherapy energies.

Figure 3.13: Angular differential cross sections for the 4He production in the 12C+12C

(red dots) and 12C+197Au (blue dots) reactions [28].

1Poly-Methyl-Methacrylate (C5H8O2).
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The most complete data collection have been made at GANIL, Grand

Accélérateur National d’Ions Lourds (with SPIRAL2 experiment started in

2011), and at GSI thanks to the FIRST (Fragmentation of Ions Relevant for

Space and Therapy) experiment. The fragment discrimination as a function

of the scattering angle (dσ/dΩ) were well measured both in SPIRAL2 and

FIRST experiment.

SPIRAL2 took measurements to obtain the double differential fragmen-

tation cross sections for 95 MeV/n Carbon ion beam on different thin targets

at angles from 4 to 43o [14].

The measurements were made for twenty different angles and five dif-

ferent targets leading to the double differential fragmentation cross sections

of 12C on hydrogen, carbon, oxygen, aluminum and titanium in fragmented

particles, ranging from protons to carbon ion isotopes. These observations

indicate that most of the emitted particles result from the projectile frag-

mentation during nuclear reactions. Moreover, the method used to combine

the cross sections of composite targets to extract an elemental target (CH2

and C to extract H) has been validated.

In order to complete these data, a new data collection has been per-

formed on September 2013 to measure the fragmentation cross section at

zero degree [25]. The angular distributions for the carbon target at GANIL

(12C+12C reaction, with a beam energy of 95 MeV/n) are shown in Fig.3.14:

one plot per Z is drawn, on which the different detected isotopes and their

sum, including a measurement at zero degree angle value, are superimposed.

Whereas, the FIRST experiment has been designed for the measurement

of ion fragmentation cross sections at different angles and energies (between

100 and 1000 MeV/nucleon).
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Figure 3.14: Angle-differential cross section for fragments resulting from the fragmen-

tation on carbon target. Each graph represents the distribution per Z value.

The start of the scientific program of the FIRST experiment was on sum-

mer 2011 and the focus was on the measurement of 400 MeV/n 12C beam

fragmentation on thin (8 mm) graphite target [30].
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The experimental setup was optimized to study two distinct angular re-

gions: the small angle region, where fragments are produced with a polar

angle θ with respect to the impinging beam direction smaller than 6o [31]

and a large angle region with 6 < θ < 40 degree. Regarding the bigger

angles, data have been obtained by exposing two ECC (Emulsion Cloud

Chamber, defined in paragraph 2.3.2) detectors to the beam, in order to col-

lect fragments with a continuous angular distribution in the range 47o-81o

with respect to the beam axis [20]. The measured differential cross sections,

as a function of θ are shown in Fig.3.15: it can be noticed that while most

of the fragments are emitted forward, a not negligible fraction of the light

Z = 1, 2 fragments are produced with larger angles distribution.

Figure 3.15: Fragmentation cross sections as a function of the fragment angle with

respect to the beam axis, for H, He, Li, Be and B, measured by the FIRST experiment

for the Carbon on graphite reaction. Light fragments are produces mostly at large angle

distribution [32].
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Figure 3.16: Angle-differential cross section for fragments resulting from the 12C+197Au

reaction, where each plot represents the distribution per Z value.
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Using the ECC technique, at the HIMAC facility in Chiba, Japan, a cham-

ber made of Lexan2 plates alternated with nuclear emulsion films was exposed

to a Carbon ion beam. Lexan plates acted as passive material simulating hu-

man body tissues while nuclear emulsion films were used as both tracking

devices with micrometric accuracy and ionization detectors. Such a detec-

tor allowed the detection of Carbon interactions produced along their path,

the identification of the fragments produced and the measurement of their

scattering angle. The results have been measured for the total and par-

tial charge-changing cross-sections for ∆Z = 1, 2, 3, 4. The corresponding

cross-sections are [33]:

σ(∆Z = 1) = (2510± 140stat ± 250sys) mbarn;

σ(∆Z = 2) = (1170± 90stat ± 120sys) mbarn;

σ(∆Z = 3) = (1460± 105stat ± 150sys) mbarn;

σ(∆Z = 4) = (7510± 240stat ± 750sys) mbarn.

Regarding the survival probability of the Carbon nuclei along the Chamber

until the Bragg peak was found to be about 30%, i.e. only this percentage

of Carbon ions arrives at the end of their range, while the complementary

fraction interacts before.

The whole scenario of data collected by different experiments is shown

in Tab. 3.2, using different targets and beams (described above), ordered by

energy, from the lowest to the highest. It is easy to notice that the entire

energy range for hadrontherapy is not covered (50-400 MeV/n for carbon

ions), therefore a larger number of measurement is needed. It is important

to point out that, as for proton beams, the fragment energy is not measured,

moreover only the projectile fragmentation is considered. As discussed in the

2Lexan is a plastic material which belongs to the polycarbonates group.
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previous chapter, the FOOT experiment is going to make measurements in

inverse kinematic for considering and evaluating the target fragmentation as

well.

12C BEAMS

Energy Target Angles Detected

(MeV/n) material (degree) fragments

62

12C
2.2, 7.6, 14.4, 18 4He, 6,7Li, 7,9Be, 10,11B

11.4, 14.4, 17.2, 19.4 p, d, t

12C, 197Au
8.6 6,7Li, 7,9Be

8.6, 14.4, 18, 21.8 4He

80 PMMA 90 protons

95
H, C, O 0 < θ < 43

1,2,3H, 3,4,6He

6,7Li, 7,9,10Be, 8B

10,11B, 10,11,12C

H, C 0 4He, 6,7Li, 7Be

220 PMMA 60, 90 p, d, t

400

12C θ < 5 H, He, Li, Be, B

ECC
47 < θ < 81 12C

0 < θ < 57 ∆Z = 1, 2, 3, 4

Table 3.2: Collected data about 12C beams ordered by energy, for each energy are

reported the target material, the angles at which the measurement was made and the

fragments studied with the detection.
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Chapter 4

The Acquisition System

The FOOT detector (described in Chapter 2) will be equipped with a

Data Acquisition System (DAQ) designed to acquire the largest sample size

of data with high accuracy in a controlled and online-monitored environment.

4.1 The DAQ Components

The FOOT experiment goals (as described in Chapter 2) are to measure

the fragmentation of the projectile and the target for energies and materials

useful in hadrontherapy. The collected data are needed to better plan the

Treatment Planning System (TPS). To detect these fragments, the FOOT

experiment need to provide the measurement of the following quantities:

• the momentum p of the outgoing fragments, with a resolution σ(p)
p
> 5%;

• the time of flight (TOF) of the fragments with a resolution of the order

of 100 ps;

• the kinetic energy Ek of the fragments with a resolution σ(Ek)
Ek
∼ 2%;

• the stopping power (dE/dx) with a minimal resolution of the 2%.
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The acceptance of the detector is limited to solid angles up to 10o from

the beam direction. This is enough to measure most of the heavy fragments

produced on target. In the first region of the detector, the beam impinge

on a plastic scintillator due to provide the trigger for the experiment and to

measure the start for the TOF, thanks to four fast photomultipliers (PMTs),

then it will pass through a drift chamber to track the direction and to monitor

possible unwanted beam interactions in the scintillators. After these two

detectors the beam will impinge on the target (the detector setup is in detail

described in Chapter 2).

The beam and the fragments, produced in the target, will go through

the Vertex Tracker (made up of pixel sensors of the MIMOSA28/Ultimate

type and described in subsection 2.3.1) which can detect the position of each

fragment.

After the Vertex Tracker, the particles pass through a magnetic region

(0.8 T) spaced out with two Silicon pixel detectors. This tracking system

needs to calculate the momentum p of the particles, knowing the relation

p = rqB (r is the curvature radius of the particle trajectory, q the particle

charge andB the magnetic field). The fragments travel for about one meter in

the air before impinging on a plastic scintillator, which measures the stopping

power and provides the stop of the TOF. At last, there will be an inorganic

scintillator (BGO, bismuth germanate) to measure the kinetic energy of the

fragments.

The data have to be collected by a DAQ system, which need to have the

following characteristics:

• the acquisition frequency must depend on the beam characteristic and

the slowest detector rate. It is important not to have data or events

overlapping;
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• the acquisition system must work in different laboratories and condi-

tions, therefore it is necessary to be easily configurable;

• the monitoring of the DAQ system must be possible during the acqui-

sition (online), as well as the acquired data and information from each

sub-detector.

For these reasons, the best estimated rate for the trigger is 1 kHz, because

it depends on the slowest detector, that is the MIMOSA28 chips in the pixel

tracker. Infact, it has a frame readout time of 180 µs, needed to readout

about 106 pixels per chip. This detector fixes the overall maximum DAQ

rate at about 5 kHz, but in order to reduce the effects of pile-up (the overlap

of two different events), in the MIMOSA chips, the actual trigger rate will

be of the order of 1 kHz.

In general, all the DAQ components need to be monitored during the

acquisition. This control system will be hosted on a PC (Head PC) used

to start/stop a single run, to check and to configure the acquisition system.

While, another PC (Storage PC) will be used to collect the information

coming from the different detectors and to store on disk the acquired data.

In Tab.4.1 the detectors that will be used in the experiment with the

associated acquisition boards are reported. The readout systems are consists

of standard VME boards placed in VME crates, so a Single Board Computer

(SBC) is needed in each crate to dispatch DAQ commands on the different

boards in the crate. As reported in Tab.4.1, the estimated event data size is

of the order of 22 kB to be acquired at an average rate of 1 kHz (as explained

above). This fixes the capability of the system at the Storage PC to be of

the order 22 MB/s on average.
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Detector Board Type Max Event Rate Event size

Trigger V2495 10 kHz 40 B

Start Counter DreamWave 1 kHz 8.2 kB

Beam Monitor TDC 5 kHz 0.1 kB

Vertex Detector SoC on DEx 2 kHz 0.9 kB

Inner Tracker SoC on DEx 2 kHz 2.1 kB

Outer Tracker Custom 2 kHz 0.5 kB

∆E/∆x DreamWave 1 kHz 8.4 kB

Calorimeter QDC 2 kHz 1.7 kB

Total DAQ Storage PC 1 kHz ∼22 kB

Table 4.1: List of the detectors with the associated DAQ boards, the maximum event rate

and the event size. CAEN V2495 is the trigger board, SoC stands for System-On-Chips,

TDC is a Time to Digital Converter and QDC, Charge to Digital Converter [12].

At the moment, the preliminary tests are made on a first simple setup

that contains only the trigger, a flash ADC1 (connected to two PMTs, which

read two scintillators) and the Vertex detector. In particular, the scintillators

collect data (for now by cosmic rays) and the PMTs produce a voltage signal

which is sent to the trigger board and to the flash ADC, which converts the

signal from the event in a digital signal, easy to be stored and read by the

acquisition software. The trigger is also connected to the Vertex board (see

the subsection 4.1.3) that, for now, produce the same kind of data as the

vertex detector.

1Analog to Digital Converter
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4.1.1 The trigger

The trigger system task is to send a signal to the DAQ components, each

time a particle passes through the Start Counter (SC). This sets the start of

an event and, by consequence, of the system.

The trigger board (CAEN V2495, shown in Fig.4.1) will receive four logic

signals from the four PMTs of the detector and one signal from each detector

with its DAQ status: IDLE, ready to acquire, or BUSY, still reading the

previous event. A schematic view of the trigger input and output signals is

shown in Fig.4.2.

In particular, the trigger signal will be obtained asking for at least a time

coincidence between two PMT signals within a gate of 20 ns. Then, the

trigger signal will be broadcasted to all detectors only if all the detectors will

be at the IDLE status [12].

It is also extremely important to collect information from DAQ system

itself: its time (in clock ticks) and live time since the previous trigger, PMT

signal counters and information on the BUSY status of the sub-detectors. All

these information are very useful in the DAQ monitoring system for checking

the synchronization and the consistency of the data acquired.

Figure 4.1: The trigger board CAEN V2495.
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Figure 4.2: Schematic view of the DAQ components and the connection between them

and the trigger.

4.1.2 The flash ADC

The flash ADC board is a CAEN V1720 board (Fig.4.3), which is used

to store the acquired events.

When the acquisition is running, a trigger signal allows to increment

the Event Counter and to fill the active buffer with the data. An event is

therefore composed by the data and the event counter. A trigger signal can

be refused if the memory is full and therefore there are no available buffers

or if the trigger overlaps the previous one and the board is not enabled for

accepting overlapped triggers [34].

The registered event has a standard structure: the header of the event

contains the information about the number of channels that have been used

(for a maximum of 8), the number of words for each channel and the event
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number. The header is followed by the acquired data itself (like the voltage

values from the PMTs connected to the two scintillators).

Figure 4.3: The flash ADC board CAEN V1720.

4.1.3 The vertex detector

The Vertex Tracker may contain up to four different Silicon pixel layers,

which allow to detect particles with an emission angle in the range of ±40o

with an efficiency higher than 95%. Measuring the particle position in four

different points, it is possible to determine the trajectory of the particle.

The MIMOSA28 (a picture of the M28/Ultimate chip is shown in Fig.4.4)

is formed by a 928x960 pixels matrix and it belongs to the MAPS-CMOS

type (Monolithic Active Pixel Sensors – Complementary Metal-Oxide Semi-

conductor).
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Figure 4.4: MIMOSA28/Ultimate chip used in the Vertex DAQ board.

4.2 The DAQ Interface

The DAQ system contains different elements for the whole data acqui-

sition; in Fig.4.5 the logical structure of the DAQ system with the control

PC on top and all the distributed DAQ elements and devices is shown. The

detector elements are directly connected with electronic boards residing on

custom or VME crates or on PCs, which are handled by software modules

called generically “Readout Modules”. These software elements are respon-

sible for configuration of the detectors and of the electronics and of the data

read-out. All the collected data are saved in the PC Storage that receives

data via different methods, depending on the sub-detectors (fiber or ethernet

connection). Stored data will be sent to different PCs in order to constantly

monitor the sub-detectors and to a PC needed for the general monitoring of

the whole systems [35].
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Figure 4.5: DAQ interface and system scheme.

In a DAQ system, a set of data sources can be combined between them to

build events from different sub-detectors or parts of them. All streams of data

need to be handle by a software, which also shows online information about

the run for monitoring its acquisition. The DAQ system will provide several

sets of online monitoring information. Simple information pieces on the DAQ

running can be collected from each VME board or device at a monitoring

rate (each 10 s [12]) and provided to the network of PCs connected to the

experiment.

The FOOT TDAQ Software runs on the PC Control DAQ, which talks

to the other devices through the software itself using a finite-state machine

(FSM) to describe the current status of the DAQ. It is a logical machine

that can change from one state to another in response to some external in-

puts; the change from one state to another is called a transition. The state

transition of a FSM corresponds to some methods, called in all the Readout

Modules present in the DAQ system, which determine the state itself. The
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FOOT DAQ Software interface is shown in Fig.4.6: the various transitions

are on the left side with the current DAQ state (in this case RUNNING),

while on the right there are the logical view of the system. In the lower part

of the interface the Error Reporting System (ERS) shows the information

on warnings or errors during the transitions or the running state. During

the run time the Readout System (ROS) delivers fragments data (or releases

fragments) only when triggered by an external demand.

Figure 4.6: FOOT DAQ Software interface: in this case the DAQ state is RUNNING.

In the lieft side of the interface the possible transitions are listed: in black the possible

ones and in light gray the forbidden transitions from the present status. On the right side,

system segments are shown with their own status.
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First of all, a configuration for the system has to be decided, then the

machine status can be lead to the running state . In detail, the possible

transitions are [36, 37]:

– INITIALIZE: initializes any software packages required for operating,

starts online system infrastructure and all supervised processes;

– CONFIG: prepares for the running state, i.e. reads required parame-

ters, starts any required processes and configures every device;

– START: brings the state to running;

– STOP: exits from the state of running;

– UNCONFIG: deletes the previous configuration for preparing the sys-

tem for a new one;

– SHUTDOWN: stops all the supervised processes.

Moreover, in Fig.4.6 it is possible to read the logical view of the system

(on the right), where the different data and information sources are listed: the

two ROD Crate DAQ, VMETRIG-RCD and VTX-RCD, corresponds to two

different CPUs collecting data from two sets of electronic boards. A third

element in the system, FOOT EB, the FOOT Event Builder, corresponds

to a third PC where event fragments coming from the previous CPUs are

collected and used to build the final event, which is then stored locally.

4.3 Event Building and Storage

In the distributed environment where the DAQ operates, each detector

provides information at each issued trigger and the data from all detectors
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are collected in the storage PC. A critical point of the whole data taking is

the synchronization of all detectors and the build-up of the events, putting

together fragments related to the same trigger.

The events collected are stored in files, tagged by their run numbers. To

maximize the DAQ rate, the events are first stored on a Solid State Drive

(SSD), which has a maximal bandwidth of 400 MB/s and are later transferred

to a local raid 5 system, taking advantage of any stop or dead time of the

DAQ.

4.3.1 The raw data files and event format

This paragraph describes the raw event format, based on ATLAS Trigger

and DAQ document [38].

The basic unit of the raw data file is a fragment and each fragment has

a header, a sample of data and a tail. The header marks the fragment type,

the data are the information included in the fragment (as the event size, the

acquisition time or the collected data themselves, etc.) and the tail marks

the end of that fragment.

The raw data file starts with a first fragment called Header, where the

general information, like the file name or the file size, are included. Then,

there is one fragment for each Full Event, i.e. an aggregation of ROB2

fragments, each of which contains ROD3 fragments [39]. At last, there is the

tail of the file, which indicates that the end of file is reached.

The Start of Header Markers allows the identification of the fragment

(header markers of fragment type cited above are reported in Tab.4.2). The

same happens in the ROD fragment, which is formed by the event fragments

2Readout Buffer
3Readout Drivers
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(each for every acquisition board connecting at the same ROB).

Fragment Type Header Marker

Full Event 0xaa1234aa

ROB 0xdd1234dd

ROD 0xee1234ee

Table 4.2: Start of header markers to identify the start of every new event with its inner

partition [38].

At the moment, the raw data file contains only information from the

trigger board, two empty channels (needed to simulate different devices that

are going to be add later on in the acquisition system), the Flash ADC and

the Vertex detector data. In particular first ROB includes the Trigger, the

Empty and the Flash ADC fragments, while in a second one there are another

Empty fragment and the Vertex Tracker fragment.

Each of these file fragments starts with the Source identifier, which

consists of a 32 bits word coded in this way:

- bits 31-24 are optional and often set to zero;

- bits 23-16 contains the so called “Sub Detector ID” which is a tag of a

part of a general apparatus;

- bits 0-15 contains the unique identification of the specific electronic

board that gave origin to the data that will follow.

In FOOT, all electronic boards are associated to the same Sub Detector ID,

which is fixed to the hexadecimal number 82 and boards of the same type will

have the same bits 8-15. Bits 0-7 are used to identify each board individually,

see for example Tab.4.3.
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Devices Board Name Channel ID

Trigger V2495 0x00828044

Empty 1 - 0x00828701

Flash ADC V1720 0x00828901

Empty 2 - 0x00828703

Vertex Detector MIMOSA28/Ultimate 0x00828706

Table 4.3: Source identifiers for each DAQ device, useful for their identification during

the file reading for the acquisition online monitoring functions.

4.4 The Event Reading Code

The goal of this thesis work is to provide a C++ code able to read and

decode the raw data file. This code is an important connection between

the DAQ system and the tracks reconstruction algorithm, which is currently

working with Monte Carlo simulated data. Infact, thanks to the decoded raw

data file, the reconstruction algorithm will read the real acquired events and

will use them for extracting physics information about the produced nuclei

during the projectile-target interaction.

The algorithm decodes the raw data file looking for the Header Mark-

ers of the full event, the ROB and the ROD (reported in Tab.4.2) and the

Source identifier (Tab.4.3) for distinguishing the different fragments from the

different DAQ boards. Each of these fragments, from a different device, is

linked to a struct4 in the code. Each struct contains the needed variables

for reading a fragment, in such a way that each variable is associated to one

information written in the raw data file by the respective board.

These structures are fundamental for the off-line events and tracks recon-

4In C++ a structure (struct) is a group of variables, even of different type, put together

in the same family with the same name.
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struction, because they will be implemented into the reconstruction FOOT

software (SHOE). For these reasons, the code, developed in this thesis, has

two contemporary important applications: reading and decoding the raw

data file to prepare the data for the analysis and to monitor the acquisition

itself.

At the moment, the code contains six structures (struct), one for each

type of fragment: the header (repeated once in the file beginning) and the

various fragments of the full event (repeated until the end of the file, i.e. for

the all acquired full events in that run). In Tab.4.4 are reported the struct

names associated to the board fragments and the saved information for the

monitoring. The event data from the flash ADC and the Vertex Tracker are

also read by the code, but not printed, even though the structures are able

to read and save these data for the following analysis and reconstruction.

The variables contained in these structures are used in different functions

in the code (one function for each struct). A function reads its corresponding

fragment and associates the right word to the right variable, which is printed

in the output.

The whole assemble of functions and structures is included in a class,

named EventReader, which is partially shown in Fig.4.7. The aim is to show

the basic function of the code, which are those for opening (OpenFile) and

closing (CloseFile) the encoded file, i.e. mandatory function for reading

the file; the getNextEvent is the cycling function for reading each single

event until the file ends (EndOfFileReached). Moreover, in Fig.4.7 also the

pointers for each structure are reported.

Two printed output examples are reported as well: in Fig.4.8 the header

information are shown and in Fig.4.9 the full event ones (the same screen is

reported for two event data, for the event zero and the event five, to give an
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example).

Figure 4.7: A part of the header file, reduced at minimum, of the developed class

EventReader, with its public function members and the private ones (pointers for each

structure).

Figure 4.8: The printed output of the header information in the raw data file.
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Figure 4.9: The printed output of the full event information, divided in each board data

fragments. The examples for the event number zero and number five are reported.
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Fragment Struct Name Acquired information

File Header InfoHeader

Writer

Filename

Project

Full Event Header InfoEvent

Bunch crossing time

Run type

Run number

Trigger data TrgEvent

Channel ID

Time in seconds and microseconds

Event number

Live time (in clock periods)

Time since last trigger

Event counter

Empty data EmpyEvent

Channel ID

Time in seconds and microseconds

Event number

Flash ADC data fADCEvent

Channel ID

Event number

Number of active channels

Active channel sampled data

Vertex Tracker data VTXEvent

Channel ID

Time in seconds and microseconds

Event number

Event counter

Detector hits

Table 4.4: Struct list from the acquisition control code: each fragment with its associ-

ated struct name and the important board information for the DAQ system check.
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4.4.1 The acquisition control code

As described above, the C++ code developed in this thesis has the im-

portant function to monitor and debug the acquisition system. During this

preliminary phase of DAQ development a check on each event is strictly

necessary to be sure that the event is composed by consistent fragments of

data (that means from the same trigger signal).

The whole acquisition system needs to be perfectly synchronized for

allowing a free errors acquisition and data reading. It is important to distin-

guish the different events and to assign every fragment to the corresponding

interaction event, that is the reason why the printed information (reported

in Tab.4.4) are mostly times and numbers of event.

In particular, the first step of the test has been to compare the Event

Number of each fragment for every event (on different raw data files) to verify

the consistency. The Event Number information derives from the acquisition

software, which connects with the device and write the received data. One

of each data is instead the Event Counter, that is the number of the event

measured by the board itself. The second step was to compare the Event

Number with the Event Counter of the trigger and for the Event Number of

the different devices.

In the case one of these relations (between the number of events) is not

satisfied, the code will print in the output a warning message. This monitor-

ing test has permitted to find and to fix some synchronization errors in the

acquisition between the different devices and to optimize the system which

is now more stable and robust.
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The current thesis work has been performed within the FOOT collabo-

ration, whose experiment aims at improving the knowledge of the nuclear

phenomena that are relevant in the field of the hadrontherapy. This is an on-

cological cure, complementary to the standard ones (surgery, chemiotherapy

or radiotherapy) which is particularly effective on specific cancer types (well

localized) and is almost the unique non-invasive cure for particular cancer

types (glaucoma or brain tumors).

One of the problems that has to be addressed with this technique is

the accuracy of the Treatment Planning System (TPS) for which the dose

deposition needs to be well known. At the present there are few data for the

cross sections of fragments in the interested energy range.

In this work the current scientific panorama regarding the hadrontherapy

energy beams and tissue targets is reported. It has been shown that to

improve the TPS more data on the relevant cross sections at hadrontherapy

energies are needed and the FOOT experiment will address this issue.

At the moment, the FOOT acquisition system is under development and

preliminary tests are necessary for building a stable and reliable control

system for monitoring the acquisition during the data collection, in particular

the synchronization between the trigger and the other devices. Therefore, to

address this point, a C++ code has been built with a set of classes and struc-
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tures able to read the raw data files that are written by the DAQ system.

This code will be extremely useful for the reconstruction software of

the FOOT Experiment (SHOE): the plan is to integrate the functionalities

developed in this thesis into the official framework to guarantee a consistent

data reading and reconstruction software. In addiction, the code is the base

of programs devoted to the checks of the integrity and consistency of the

acquired data. They have already permitted the identification and the reso-

lution of some synchronization errors during the acquisition.

The work presented in this thesis is, therefore, a mandatory requirement

both for a better reconstruction of experimental data and for a stable and

synchronized acquisition system.
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