Development of an embedded EMG-based wristband for hand gesture recognition using machine learning algorithms.

Mancini, Mattia (2018) Development of an embedded EMG-based wristband for hand gesture recognition using machine learning algorithms. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria elettronica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (12MB)

Abstract

With the recent improvement of flexible electronics, wearable devices are becoming more and more non-invasive and comfortable, pervading fitness and health-care applications. Wearable devices allow unobtrusive monitoring of vital signs and physiological parameters, enabling advanced Human Machine Interaction (HMI) as well. On the other hand, battery lifetime remains a challenge especially when they are equipped with bio-medical sensors and not used as simple data logger. In this thesis, we present a flexible wristband, designed on a flexible PCB strip, for real-time EMG-based hand gesture recognition. Experimental results show the accuracy achieved by the algorithm and the system implementation. The proposed wristband executes a Support Vector Machine (SVM) algorithm reaching up to 96% accuracy in recognition of 5 hand gestures collecting data from 5 users. The system targets health-care and HMI applications, and can be employed to monitor patients during rehabilitation from neural traumas as well as to enable a simple gesture control interface (e.g. for smart-watches).

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Mancini, Mattia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
EMG,SVM,Embedded,Wearable,Gestures,Low Power
Data di discussione della Tesi
16 Marzo 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^