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Sommario

Questo lavoro di tesi tratta l’implementazione di un’applicazione decen-

tralizzata in grado di certificare eventi accaduti nel mondo reale, compiuti

da parte di un’organizzazione. Tali certificati devono essere (i) verificabili

da chiunque, in un qualsiasi momento della storia e senza la necessità di

terze parti, (ii) avere un costo di rilascio ragionevole per l’autore e (iii), avere

tempi di conferma accettabili. Per poter definire meglio (a) le modalità in

cui è possibile farlo, (b) l’esito del lavoro svolto ed eventuali problemi emersi,

e (c) i futuri sviluppi, la tesi si prefissa i seguenti obiettivi. Verrà discusso in

che modo un generico protocollo Blockchain si inserisce nell’ambito dei sis-

temi distribuiti. L’avvento di Bitcoin infatti, permette per la prima volta di

implementare un sistema distribuito e decentralizzato, in cui è possibile avere

fiducia tanto quanto necessario per eseguire transazioni finanziarie. Verranno

individuate le proprietà che un protocollo deve avere per garantire sicurezza,

e se possono essere raggiunte contemporaneamente. Nello stesso modo in cui

i protocolli blockchain esistono ”sopra” le reti peer-to-peer, verrà descritto

il modo in cui gli Smartcontracts possono essere introdotti nelle blockchain.

Verrà visto come questi costrutti rendono possibile l’implementazione di Ap-

plicazioni Decentralizzate (dapp). Si vedrà che tali registri distribuiti e pub-

blici, sono comunque in una fase di sviluppo piuttosto immatura e presen-

tano alcuni problemi. Fra questi, quello della scalabilità all’aumentare degli

utenti. Verrà visto il motivo, e il modo in cui questo problema interferisce

con l’operatività della dapp realizzata.





Introduction

Reaching global consensus about facts within a distributed system, with

no trusted authority has always been a problem. The advent of Bitcoin [2]

and its consensus algorithm, is the result of various attempts to solve the

digital currency double-spending problem, in a completely decentralized sys-

tem for payments. For the first time indeed, the participants of a system are

able to agree about a ledger of totally ordered events, with no intermediary.

Such systems that require no trust into other participants however, are not

only useful for payments. The underlying Blockchain technology started to

be used in a variety of use cases, and new business models with no middlemen

involved are being tested. Blockchain technology gave an impulse to research

for new consensus algorithms, aimed to both public and private systems. It

allowed then to integrate Smartcontracts [7, 8] into its architecture, giving

life to decentralized programmable networks [15, 17] capable of running de-

centralized applications. The innovating impact of this new decentralization

paradigm is broadly recognized. In this relatively immature stage of their life,

blockchain and related technologies are facing a series technical, social and

political challenges. Among all of them however, one main problem is how

to reach global-scale adoption by solving its scalability issues. It is known

that a blockchain network congestion almost certainly results into higher

transaction fees and confirmation time delays. While it can be a temporary

problem for normal users willing to transfer funds, it may be prohibitive to

realize decentralized applications for real-world businesses. Often, they have

a transaction cost upper bound, and should always guarantee operativity.

i



ii INTRODUCTION

Aims of this Thesis

A blockchain is a public, immutable and ordered distributed ledger. This

features allow to realize a wide range of applications. A specific case-study

decentralized application will be realized. Given an information, and an

event related to it which must be unique in time, the problem is to encode

them and certify their authenticity on-demand on the blockchain. Such a

decentralized application, must satisfy several requirements related to trust,

transaction cost and confirmation delays. At any point in the history in-

deed, anyone must be able to verify a certificate authenticity, and no trusted

party should be needed in order to do it. For real-world businesses, another

problem is given by transactional cost upper bound and time after which a

certificate is confirmed by the network consensus. In order to understand (i)

in which degree such requirements can be achieved and how to realize such a

decentralized application, (ii) how to interpret the outcomes and (iii) what is

the likeliness that emerged problems will be solved, this thesis is structured

as follows.

Bitcoin is the first blockchain protocol that with its consensus algorithm,

reaches a relaxed form of consistency on pure peer-to-peer networks. It will

be seen what kind of improvements it introduces as a distributed system.

Prior Byzantine Fault Tolerant agreement algorithms instead, often relied

on synchrony assumptions in order to achieve desired properties. The Bit-

coin Protocol contribution to the problem of reaching fully asynchronous

distributed consensus will be discussed in Chapter 1.

Since distributed ledgers are in some degree a modular technology, a

blockchain protocol generalization will be viewed. It is then required to un-

derstand what kind of properties these protocols should have in order to be

secure. Then, how these properties can be achieved and if simultaneously.

Decentralized distributed ledgers introduce indeed new challenges that Chap-

ter 2 will discuss. Particularly, the above mentioned scalability problem will

be reviewed.

Just like blockchains exist on top of peer-to-peer networks, a blockchain
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protocol allowed in turn to enforce other technologies on top of it. Smartcon-

tracts are used to define higher level concepts like Decentralized Applications

and Decentralized Autonomous Organizations. Chapter 3 will introduce the

fundamentals of the Decentralization Paradigm, and the specific Ethereum

implementation of this vision.

The above principles allow to implement decentralized applications like

the one that will be described in this thesis. Today, multiple platforms

providing these functionalities exist. Some of them are in a too early stage

of their development, while others are suitable only for some problem types

and not for others. The problem of issuing blockchain certificates will be

defined, then we will try to understand what is the best platform to solve

it, currently. Chapter 4 will provide a decentralized business logic definition,

and a way to actually interact with it. The goal is to analyze in which degree

our requirements of trust, operational cost and confirmation time are satisfied

simultaneously. Then, what current architectural challenges are limiting our

possibilities and why.
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Chapter 1

Asynchronous Distributed

Systems

A ledger is a book in which accounts or events are recorded. Historically,

ledgers are used to reach consensus about facts such as ownership, identities,

authority and status. A common agreement about facts, how and when

they change should be reached. Most types of services available nowadays

require to interact with an entity that must be trusted, which is often an

intermediary actor that keeps its own ledger about users and their related

data. It is well known today that sets of data generated by this middlemen

are highly valuable, which of course led to an increase of data driven business

models. To trust such a centralized entity implies to rely on its integrity, on

its ability to handle attacks and to have confidence in the certainty of its

future operativity. Last but not least, implies a position of vulnerability

for the user. Alternately, building a system that behaves in a trustworthy

manner without knowing any of its participants, has always been a problem,

and a particular instance of this problem is given by digital currencies. As for

physical mediums of exchange, digital currencies have to face the problem of

being counterfeited. But while a physical object cannot be in multiple places

at once, digital coins must additionally solve the double-spending problem,

3



4 1. Asynchronous Distributed Systems

where an actor is able to make multiple transactions using the same digital

currency unit. For a digital currency that is backed by a national currency,

the problem is solved by a centralized Financial Institution. Also known

as Clearing House, it stands between participants and validates transactions

according to its own rules, beside making sure that the system works properly.

The idea of a digital currency that reaches decentralized global consensus

about the order of transactions, was around since decades but without any

concrete solution. As we know, this was until 2009, when in an attempt to

create such an electronic payment system, the first so called crypto-currency

was born, known as Bitcoin [2]. The pseudo-anonymous owner of a Bitcoin

is able to transfer it to the next, by signing previous output transactions

which belongs to him, through asymmetric cryptography and trusting no

one. After being validated by the network, the receiver is then able to unlock

the content of the incoming transaction. When the receiver wants, he spends

it by performing the same operations the sender did. New coins are produced

through computational efforts made by the peer-to-peer network nodes. But

these concepts had already been considered before:

• electronic cash problems such as accountability and anonymity have

already been discussed previously [3], resulting into new cryptographic

tools proposals;

• the concept of money creation through computationally challenging

problem solving was proposed before Bitcoin too [5, 6] (using hashcash

mechanism, initially designed to limit email spam and denial of service

attacks [4]).

All this ideas however were still based on the principle that transactions

must be timestamped by trusted servers to keep them ordered. What makes

Bitcoin an applicable in practice innovation, allowing to interact with its sys-

tem in a trustless manner, is the introduction of a computing power based

writing permission. This ability to write refers to a distributed ledger of

ordered blocks of transactions, instead of a list of ordered transactions. Net-
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work participants are allowed to disagree about the most recent blocks of

transactions, but they will always agree on the same unique chain structure.

Since it can be viewed as an append-only chain of blocks, this data structure

is called blockchain. The blockchain is continuously expanding according

to its most computationally expensive version, which is the basis the Bit-

coin’s decentralized consensus protocol. Without any centralized component

indeed, the protocol allows all the nodes in the network to agree on a unique

event order. The main goal of this chapter is to understand the principles of

the blockchain technology, and how it places itself as a distributed system.

Blockchains are mainly a combination of the following science fields:

1. Distributed Systems ;

2. Cryptography ;

3. Game Theory.

Primary role of cryptographic primitives is to secure transaction ownership

and ledger safety. Elements of game theory and behavioral economics as-

sumptions are crucial when designing consensus algorithms. Decentralization

technologies became also objects of study from a juridical, economic and po-

litical points of view. While some of these aspects will be covered, none of

them are the argument of this work. Decentralized ledger technologies will be

mainly discussed in this chapter, as well as in the entire thesis, as distributed

and peer-to-peer systems.

1.1 Distributed Systems

This section provides basic concepts about distributed systems, to better

understand how the blockchain introduces itself as a technology. A dis-

tributed system is a network consisting of autonomous components, that

process local knowledge to achieve global goals. Different resources and ca-

pabilities are shared among nodes, to provide each user with a coherent

network that behaves, as much as possible, as a single system.
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Adopting the terminology seen in [9], when considering a distributed sys-

tem, assumptions are to be made about several crucial factors:

1. timing model, which is formed by the timing events in a distributed

system, can be distinguished as:

• synchronous, meaning that components perform simultaneous, well

organized computational steps, there is a precise time lower and

upper bound for events to occur;

• asynchronous, where distinct components perform computational

steps in an arbitrary order, with a message based progress and no

timing guarantees, with high levels of uncertainty;

• partially synchronous, the lower and the upper bounds exist like

in the asynchronous model, but they are unknown, therefore un-

usable as parameters.

2. inter-process communication, specifies the communication type between

nodes, that can be message-based or by accessing a shared memory;

3. failure model, which is the expected class of unintentional errors or

malicious behavior conducted by the nodes;

4. addressed problem, the class of problems which the system or the pro-

tocol tries to solve.

The asynchronous model has no global clock, and its nodes are expected

to make local decisions, based on external messages and internal computa-

tions. It captures indeed environments like public Internet, where an event

may occur with an arbitrary delay or never. Partially synchronous mod-

els are often used to implement real world applications, but their latency

assumptions might be violated. Synchronous models on the other side, are

mainly useful for integrated circuits and theoretical environments, where rea-

soning on technical feasibility algorithms is required. The most sever type

of failure model is given by asynchronous public networks, where a node or
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a group of nodes may behave arbitrarily (1.1.2), enter or leave the system

whenever they want. The failure model is also defined by the software and

hardware specifics the nodes have in common. The problems addressed by

a distributed system might be communication, resource allocation systems,

service providers, consensus problems and so on.

1.1.1 Consistency, Availability and Partition Tolerance

When designing web services for asynchronous distributed systems, the

following properties are often required:

• consistency, (also referred as safety or atomicity) guarantees that all

operations made in the system are totally ordered, or, in other words,

the distributed shared memory of the network is asked to respond one

request at a time, as if it were a single local machine memory;

• availability, (also referred as liveness) ensures that every request made

to the system must terminate, it means that if received by a healthy

node, must result in a response to the client;

• partition tolerance, the network is allowed to lose an arbitrary num-

ber of messages from one node to another.

The described properties however, cannot be achieved all three in the same

asynchronous network. It has been firstly stated as a conjecture by Eric

Brewer, in 1998, which resulted later into the CAP Theorem 1.

Theorem 1 (CAP Theorem). A distributed system cannot have Consistency,

Availability and Partition Tolerance simultaneously.

A formal proof has been later provided [1], which shows that it is only

possible to achieve two out of these three properties. While the partition

tolerance is a binary property, meaning that it can be only allowed to lose

messages or not, consistency and availability are measurable in a spectrum.

Therefore, assuming that the network has no partitions, it is possible to
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provide full consistency and availability. Otherwise, it is only possible to

have a trade-off between them.

1.1.1.1 Distributed Consensus Algorithms

The previously discussed consistency property is achieved by consensus

algorithms. Consensus algorithms allow network nodes to share the same

memory state, even if a subset of its participants are faulty processes. An

ideal consensus mechanism possess the following characteristics:

1. termination, correctly working nodes always terminate their execution

of the consensus protocol;

2. agreement, correctly working nodes make decision based on the same

values;

3. fault toleration, the algorithm continues to operate even in presence of

malicious or broken nodes;

4. validity, values agreed by nodes are the same as the ones initially pro-

posed by at least one correct node;

5. integrity, correctly working nodes take a decision once, in a single de-

cision cycle.

The way these challenges have been addressed will be discussed below.

1.1.2 Byzantine Generals Problem

In the field of agreement protocols, a well known problem is the Byzantine

Generals Problem (BGP). To better explain it, the author tells a scenario

where distinct divisions of the Byzantine Army surround an enemy city [10].

Each general in charge of its own division, after observing the city, commu-

nicates to other generals his own decision to attack or retreat. The problem

is that some of these generals might be traitors, sending then wrong or even

incoherent messages to each of other generals. In order to have a system
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with reliable outputs, the following goals must be achieved: the group of

loyal generals must agree on the same plan, attack or retreat; and the group

of traitors shouldn’t be able to induce loyalists to make bad decisions. If v(i)

is the information communicated by the ith general, these two conditions

have to be verified in order to achieve the goals:

1. every loyal general must have the same information {v(1), ..., v(n)};

2. if the ith general is loyal, the information he sends must be used by

every loyal general as v(i).

Since both conditions are focused on a single event v(i), the problem can be

reduced as follows. Instead of having n generals, it can be viewed as a single

commanding general and its n− 1 lieutenants.

Problem 1 (Byzantine Generals Problem). A commanding general must

send an order to his n− 1 lieutenant generals such that:

1. All loyal lieutenants obey the same order;

2. If the commanding general is loyal, then every loyal lieutenant obeys

the order he sends.

Withing this metaphor, loyal generals and lieutenants are correct pro-

cesses, the orders they send and receive are messages, traitors are faulty

processes (whether malicious or unintentional). In a reliable system, in order

to make a set of processes generate the same valid output, first of all it is

necessary to provide all of them the same input. So the commander gen-

eral is the input generator, while lieutenants are the processes that should

elaborate the same input. Hopefully, none of them are faulty. Every voting

system should first of all resolve the BGP.

Oral messages By assuming that generals and lieutenants communicate

through oral messages, the following conditions are implied:

(A1) every sent message is guaranteed to be delivered correctly;
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(A2) a message receiver always knows who sent it (meaning that the nodes

form a fully connected network with unbreakable links);

(A3) the absence of a message is always detectable (the system is syn-

chronous).

The initial problem can be solved by recursively assigning each general the

commander role, while treating the others as lieutenants. Under these con-

ditions, it has been shown that a solution exists only if n > 3m + 1, where

n is the number of nodes and m of them are faulty. Obviously, the above

assumptions are too strong for a realistic distributed system.

Signed messages Oral messages allow a traitor to lie about the decision he

was told previously. But let’s take in consideration an additional assumption,

by introducing signed messages:

(A4) 1. a loyal general signature cannot be falsified, and any alteration of

his message can be detected;

2. anyone can verify the authenticity of the general’s signature.

If signed messages are introduced, a traitor can be easily detected, because

his signature can be found on signed contradictory statements about v(i).

It has been shown that the solution in the case of signed messages, solves

the problem for any number of traitors up to m, where m should be already

known. Both solutions can be modified to have more relaxed assumptions

about node connectivity, but they still operate in synchronous environments.

Asynchronous model When considering real world networks, the follow-

ing considerations have to be made about the previous constraints:

(A1) correct message delivery guarantee is not achievable, but a missing

message can also be viewed as one of the m traitor processes;

(A2) knowing the sender is already achieved with (A4);
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(A3) detecting the absence of a message isn’t achievable, it can be simulated

via time-out, which in turn requires the following assumptions:

1. there is a minimum time for message generation and transmission,

which is doable;

2. sender and receiver have synchronized clocks with a fixed maxi-

mum error, which is a problem of the same degree of difficulty as

BGP [11];

(A4) 1. complete unforgeability of the general’s message is not achievable,

but the probability of a signature to be falsified can be reduced as

much as needed;

2. message authenticity verification is completely achievable.

The above solution clearly doesn’t fit asynchronous models. The most severe

scenario is an asynchronous public network with arbitrary message delays,

with no global clock and no preliminary knowledge about participants. It has

been proved that no fully asynchronous consensus protocol can tolerate even

a single unannounced process fault [12]. Even worse, the conclusion is made

upon the assumption that the message system is completely reliable, which

means that a message is always delivered and exactly once (with no time-out

or order guarantee). It is clearly stated however, that the result doesn’t show

a practical solution impossibility. The asynchronous model rather requires

more realistic assumptions and more relaxed requirements, resulting into new

distributed computing models. Data consistency in distributed databases

are affected by this conclusions, too. For example, a set of processes that

participated in some transaction processing, should agree whether to commit

the transaction result or not. All involved processes must agree on the final

decision, in a fully asynchronous environment with no central component.
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1.1.3 Practical Byzantine Fault Tolerance

It has been seen that a Byzantine Fault (BF) can be caused by uninten-

tional malfunctions, or by a malevolent intelligence which tries to subvert

the system. Byzantine Faults induce a subset of nodes to produce inconsis-

tent outputs with arbitrarily long delays up to the infinite. Such events may

harm the consistency requirement of a distributed system. BFs are expected

to become more and more frequent with time, since software becomes more

complex and malicious attacks bring higher reward if successful. A process

is stateful if it is able to remember previous events, the information actually

stored in its memory defines its state. State replication algorithms are used

to implement resilient to BFs distributed systems. The property of a system

to correctly survive a certain amount of BFs is referred as Byzantine Fault

Tolerance (BFT).

The first attempt to introduce a state-machine replication protocol in

a real-world like asynchronous model, has been proposed as Practical BFT

(PBFT) [13]. The protocol allows to implement a deterministic service with

a state and its operations, which allow to perform arbitrarily complex com-

putations. Components within this model are connected by a network that

may fail to deliver messages, delay them, duplicate or change their order. It

is also assumed that nodes have distinct implementations of the same soft-

ware and different administrators. Collision resistant hash functions are used

to prevent message corruption, and each message digest is signed through

public-key cryptography and attached to plain text. It is required that all

replicas are aware of others’ public-key. The adversary is assumed to be

powerful enough to manipulate groups of faulty nodes, delay messages and

correct nodes, but not forever.

The PBFT algorithm provides consistency in a fully asynchronous model.

All client requests are totally ordered. The algorithm requires the same start

state for all replicas, and a maximum number of allowed faulty nodes f . It

operates according to the following principles:

• there is a set of replicas R = {r0, ..., rn−1} in the network;
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• each replica ri ∈ R is part of a view, such that:

– each view has a primary replica, the others are backups ;

– replicas in the view have a index v, the primary replica has index

p = v mod n;

– if the primary replica appears to be faulty, the view changes.

• the state of ri is modified according to the following protocol:

1. the client c make an operation request to primary;

2. the primary assigns a sequential number to the request and broad-

casts it (pre-prepare messages);

3. if ri accepts this number, it multicasts the event (prepare mes-

sages), offering to replicas the possibility to agree on total order-

ing;

4. if ri receives 2f prepare-messages, it multicasts the commit mes-

sage, meaning that replicas agreed on total ordering;

5. if ri receives 2f + 1 commit-messages, request is placed in queue

to be executed;

6. each non-faulty ri sends the result directly to c.

• c accepts the result when at least f + 1 replies are identical.

It is proved that such an approach guarantees asynchronous consistency,

usable in real-world applications. However, it happens if less than f = n−1
3

exhibit BF. The requirement to have 3f + 1 replicas is indeed expensive.

Synchrony assumptions are still required to achieve availability. In the case

that the primary is faulty, c sets a time-out when making a request. If the

time-out expires and there is no response, c will broadcast the same request to

all replicas. After that, a change-view operation will be required as described

in the protocol. Other important problems are related to message overhead

and system scalability. A series of PBFT-like algorithms have been proposed

through time, but they still require various forms of weak synchrony.
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1.2 The Bitcoin Protocol

In public networks, an arbitrary number of participants might be spawned

by an attacker to induce the system to behave incorrectly. Bitcoin behaves

correctly as long as the majority of network computing power is offered by

honest nodes. Next, in order to show why Bitcoin is reliable enough for

financial transactions in such a severe environment, its consensus principles

are provided. However, for a deeper view of the Bitcoin implementation, and

how to actually use it, which is not the goal of this thesis, the reader can refer

to [16]. In order to reach global ledger consensus, Bitcoin nodes perform the

following independent, local steps:

1. transaction verification, performed by every node according to a well

defined set of rules;

2. transaction aggregation into a new block and Proof of Work computa-

tion, performed by miner nodes ;

3. candidate block verification, and their concatenation to the blockchain;

4. block selection, based on the highest cumulative Proof of Work chain

version.

Each mentioned local step will be described, in order to see if and how

termination; consensus agreement; fault tolerance; validity and integrity have

been achieved.

1.2.1 Transaction Verification

The process of changing a fact in a ledger is called transaction. A common

agreement about facts, how and when they change, should be reached. In

double-entry bookkeeping, transactions are recorded in the ledger with input

and output parameters. A basic Bitcoin transaction is a record that encode

value transfer from a user to another. Each transaction is a new entry in this

public, double-entry ledger which underlies Bitcoin. Transaction outputs are
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amounts of BTC1, recorded on the ledger and confirmed by the network. An

unspent transaction output is called UTXO, and it is defined by:

• currency amount in its smallest unit, called satoshi ;

• a locking script, or cryptographic puzzle, that a user must satisfy in

order to spend the amount.

The script is written in the Bitcoin’s stateless, stack-based scripting language

called Script. A transaction input instead is made up of:

• one ore more UTXOs that the user is spending;

• a unlocking script which satisfies the above mentioned locking script.

Transaction inputs, are defined by which UTXO will be used and the user

ownership proof. Every transaction is a Bitcoin state-machine transition.

The Bitcoin state is defined by the UTXO set, which is the current amount of

the UTXOs on the ledger. Suppose that Bob has 10 BTC and he sends 2 of them

to Alice. This action will generate two transaction outputs: the amount sent

to Alice (2 BTC) and the remaining amount sent back to himself. A wallet

contains a collection of UTXOs that the user is able to unlock and spend. If

a user makes a transaction through his wallet, it is then broadcasted on the

network. Other nodes receive the transaction. But before propagating it

again to its neighbors, they will first verify if the transaction is valid. The

verification proceeds according to a strict set of rules which include, but is

not limited to:

• transaction syntax and data structure correctness;

• transaction semantic properties, like input and output non emptiness,

sum of inputs shouldn’t be lower than output value, etc...;

• size in bytes smaller or equal to a parametric value (currently, 100byte);

1BTC will be used when referring to Bitcoin as a currency unit, Bitcoin will be used

when referring to the protocol itself.
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• locking and unlocking scripts related constraints;

• transaction fee verification.

If a transaction doesn’t match all the requirements, it will not be propagated

on the network. Otherwise, every node will receive it asynchronously. At

this point however, a transaction is still unconfirmed. Each node maintains a

set of received unconfirmed transactions called transaction pool or mempool.

1.2.2 Block Creation and Mining

Bitcoin network is a collection of peer-to peer nodes running the protocol

on top of the internet. There are no hierarchies and each node runs sev-

eral modular functions. One of these functions is called mining, and it is

what allows to reach network consensus without a central authority. Valid

transactions from local mempool are selected by miner nodes. This limited

amount of transactions are then timestamped, by being putt in the same

block. Each miner wants his block to be the next one attached to the chain

of blocks that they have locally: the blockchain. This is what differentiates

miners from other nodes, they propose candidate blocks to be appended next

to the ledger.

Roughly, a block creation can be described as follows. After an empty

block is created, a special coinbase transaction is added to it (which will be

discussed in 1.2.4), this transaction doesn’t require an UTXO. After that, a

selected set of mempool transactions are added. On the blockchain, each

block will contain the summary of all the transaction contained in, in or-

der to efficiently prove that a given transaction txi has been included. For

this purpose, binary hash trees are used (or merkle trees). A merkle tree

is built by hashing each leaf txi, and by recursively hashing pairs of nodes

(hxn/2y, hxn/2+1y), until a merkle root hash is obtained. Anyone will be able

to verify if txi is included in the block in O(log n).

In order to have a winner candidate block, miners start a computationally

expensive race between them, which consists into solving a mathematical
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problem through iterative input trials. The solution to this problem is called

Proof of Work (PoW), which is a hashcash based [4] mechanism. It is difficult

to produce but easy for others to verify that the miner spent resources for.

This is a round-like competition and each round length should be constant

over years and decades. Therefore, PoW difficulty is dynamically adjustable

by the system, in order to face the constantly improving hardware used by

miners. The difficulty is given by the probability to obtain a solution, which

is calculable prior to a range of consecutive rounds. The block header is filled

by a miner with the following information:

1. protocol version that the node is running;

2. previous block hash (again, according to the local version of the ledger);

3. block creation timestamp;

4. merkle root hash;

5. target, which encodes the difficulty to find a solution;

6. nonce.

Roughly, the nonce is the input variation which allowed the miner to find

the solution to the problem. Once the miner obtains the PoW after a solving

session, he attaches it to the block and broadcasts it.

1.2.3 Block Verification and Consensus

If a miner is still solving the given problem, but receives from the net-

work someone else’s block that satisfies the difficulty target, he immediately

stops. The miner knows he lost at this round. Beside starting to prepare

transactions for the next round, a local validation of the received candidate

block occurs. Similarly to a transaction verification, a node propagates it

only if the candidate block satisfies several conditions. Blocks must have

valid syntax, they must satisfy the difficulty target all included transactions
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must be valid, and so on. Dishonest miners proposals are rejected, and they

lose both the possibility to modify the ledger and their computational efforts.

It is still possible that several nodes may obtain a PoW a the same time,

and all of them will be broadcasted. At this point, more nodes will surely

start to disagree about the most recent blockchain history. Ledger copies

aren’t consistent because newly mined blocks arrive at different moments to

each peer. Different versions of the blockchain are called forks. However,

inconsistencies are temporary: each node will always prefer the blockchain

version with the highest cumulative Proof of Work. Even if more than one

node mined a block in a given round, some solutions are always harder to find

than others. This is also know as the longest chain. In other words, given a

round R, the winner block will always be the one with most expensive PoW.

1.2.4 Incentive and Network Attacks

It has not yet been said why someone should spend resources, trying to

have the right to append a block to the chain. Mining is also a process of

creation of new satoshi units. Miners receive reward in terms of BTC in two

ways, they are indeed rewarded with:

1. new coins created with each new block, the amount produced will de-

crease over time down to 0, due to the deflationary nature of Bitcoin;

2. fees from all the transactions included in that block, approximately in

year 2140 this will be the only miner reward system.

The first type of reward is given to the miner through the previously men-

tioned coinbase transaction. A coinbase transaction is always the first to

be included. It doesn’t consume any UTXO and creates BTC from nothing.

Coinbase transaction output is the miners’ address.

1.2.4.1 Attacking Bitcoin

The above summarized reward system stimulate nodes to participate, but

its purpose isn’t limited to that. The network is public with high levels of
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Figure 1.1: Block structure and Proof of Work correctness, miners actively search

a nonce such that the block header satisfies shown conditions.

uncertainty, and consensus participants could be unknown entities. The PoW

algorithm makes it more convenient for them to work according to the rules,

instead of working against the protocol. Bitcoin and Bitcoin-like theoretical

models are secure with adversary hash power strictly lower than 1/2 (in a

byzantine-style notation, correct nodes should be more than 2f + 1, where f

is the computational power held by bad actors). Hash power requirements

have been shown to be lower only in case that the adversary has the ability

to delay messages for an arbitrarily long amount of time [30] (even infinite).

With unbounded network delays consistency and chain-quality (blockchain

protocol security properties 2.1.1) cannot be achieved.

An emerged problem is that a minority pool of miners could be incen-

tivized to delay their own messages. Bitcoin is designed to reward miners

in proportion of the overall computing power they control. A theoretically

feasible strategy has been described that could help a mining minority group

to obtain more reward than its power share [32]. This selfish miners, in other

words, could keep private their version of chain if it is longer than the pub-

licly shared one. After several rounds selfish miners will publish the whole
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chain they kept privately, forcing honest miners to adopt it. Selfish miners

will be able to claim all the coinbase and fees rewards, while others will have

wasted their efforts. The proposed solution however, ensures that groups of

miners with a smaller power share than 1/4 cannot engage this strategy. To

easily detect selfish pools then, at least 2/3 of the network mining power

must be owned by honest nodes.

1.3 Achievements in Asynchronous Systems

Upon a public asynchronous environment like Internet, Bitcoin Protocol

[2, 16] prevents double-spending in a decentralized manner. All the nodes

are aware that a transaction occurred and a coin is spent, being part of a

confirmed block. All the following transactions of the same coin, made by

the same user, will be rejected. Bitcoin doesn’t contradict CAP Theorem

1, but manages to achieve all three properties in practical and probabilistic

manner. A relaxed consistency assumption which fits asynchronous envi-

ronments is introduced. Consistency isn’t obtained immediately. There is

a strong probabilistic guarantee that nodes will reach consensus in near fu-

ture instead, while currently having both partition tolerance and availability.

Academic efforts have shown that Bitcoin do achieve these properties both

in formal synchronous and asynchronous environments [14, 30, 31]. These

achievements rely on practically hard to break assumptions related to ad-

versary computing power; arbitrary message delay possibilities or malicious

alliances by groups of miners.

On the top of the Internet multiple protocols with different blockchains

may exist, where the definition of a transaction and the architecture of the

blockchain itself may vary. Therefore, each blockchain may have a different

use case and digital currencies such as Bitcoin are only one of them. The

previously introduced trust problem is solved by decentralized consensus,

introducing the so called trustless trust architecture. Some might argue that

this is a misname, and that it is actually a distributed trust among nodes,
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or even a system trust. However what is important is that a blockchain

user is now allowed not to know any of other participants, expecting the

right outputs or the wanted service, with no intermediaries. Other promising

features of this new paradigm are:

• configurable transaction transparency;

• ledger immutability;

• service availability;

• security;

• decentralization.

Alternative Consensus Models Bitcoin is based on the consensus algo-

rithm called Proof of Work. After PoW however, other consensus models

have been proposed and implemented in order to deal with public asyn-

chronous networks. For example, in the Proof of Stake consensus model, the

idea is that the rights to write on the ledger are given not by the author’s

computing power proportion, but in terms of his stake in the system. The

principle is that the more an actor has invested in the network, the less he

will want to break the rules. Some versions require that in case of bad behav-

ior, the actor loses at least a part of its stake. One main advantage of PoS is

that it doesn’t consume energy. In Proof of Work the barriers to be enabled

as a miner is given by the mining difficulty, while in PoS the barriers are

given by the price of stake units. However, less reseach have been made in

terms of PoS. Other consensus models are implemented in blockchain public

systems, however, their full coverage is out of scope of this work.





Chapter 2

Blockchain and Distributed

Ledgers

Bitcoin is the first specific implementation of a blockchain protocol. As

a paradigm, this type of decentralization is already proving to be useful in

different kinds of real world applications, not only financial transactions.

When designing a blockchain, different use cases would require to enforce

some paradigm properties, while not focusing so much on others. The advent

of blockchain on public asynchronous networks however, has stimulated ad-

ditional research efforts in permissioned consensus protocols, too. While the

term blockchain refers indeed to permissionless distributed systems, where

anyone can join and leave, Distributed Ledger Technologies (DLT) refers to

permissioned systems. In a distributed system with a permissioned consensus

algorithm, the transaction validator is an already trusted entity or a group

of. In this thesis the main focus is on permissionless ledgers.

First, it will be seen how blockchains have been formalized as a concept,

in order to understand its properties and possible architectural trade-offs.

This chapter is going to be a summary of the main features and challenges

that a blockchain architecture introduces.

23
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2.1 Blockchain

Blockchain protocols work upon a relaxed form of consensus mechanism,

called T-consistency. It requires that correct nodes agree on the chain struc-

ture, except for a potentially small amount T of the latest added blocks.

Usually, these T blocks are called unconfirmed. T -consistency is the most ap-

propriate form of consistency for blockchain protocols, with arbitrary message

delays. However, when a block becomes confirmed, its placement on the chain

will be permanent for all the nodes. Only the confirmed part of a blockchain

is actually a chain, but from a global point of view, the unconfirmed part is

a tree-like structure. In this section an already existing blockchain protocol

definition [30] will be shown briefly, to understand how it would look like

more formally. The minimal set of properties of a secure blockchain will be

then provided. Each block can be defined as a triple (h−1, η,m), where:

• h−1 represents a pointer to the previous block;

• m is the record component of the block;

• η a Proof of Work is derived both from m and h−1.

This is in fact an abstract view of the block header described in 1.2, and the

blockchain protocol itself is defined as in 1.

Definition 1 (Blockchain Protocol). A blockchain protocol is a pair of algo-

rithms (ΠV , C), such that:

• Π is a stateful algorithm that maintains a local state, receives a security

parameter κ as input;

• C(κ, state) outputs −→m, an ordered sequence of records m, that is the

record chain;

• V (−→m) = 1 ⇐⇒ −→m is valid, where V is a validity predicate that has a

semantic definition;
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The Bitcoin specific protocol is parametrized by an adjustable mining

hardness parameter p, which defines the target Dp = p(κ) ∗ 2κ. A block can

be proposed as candidate if, for a given η, H(h−1, η,m) < Dp. H is a hash

function and, as we have seen, its output should be less than the target. The

record chain −→m is another way to say blockchain, and the validity predicate V

might be the semantic definition of no double spending. (ΠV , C) blockchain

protocol execution is determined by the joint view of all parties, denoted

by EXEC(ΠV ,C)(A,Z, k). Z is an execution environment which activates a

number of participants as either correct or corrupted. A is the attacker that

controls corrupted parties and sets the messages that they send.

2.1.1 Security Properties

It has been already said that PoW based protocols allow to achieve a

certain level of consistency. However, T -consistency is insufficient to provide

a secure blockchain [30]. A blockchain, in order to be secure, must have the

following properties:

1. the already mentioned T -consistency, which means that extremely high

probability, at any point, the chains of two correct nodes can differ only

within the most recent T blocks;

2. future self-consistence, at any two time points r, s, with an extremely

high probability, the chains of two correct nodes can differ only within

the most recent T blocks;

3. g-chain-growth, at any point of the execution and with extremely high

probability, correct node chains grow by at least T blocks in the last T
g

rounds, where g is the chain-growth rate;

4. µ-chain-quality, at any point of the execution, for any T consecutive

blocks and for any correct node chain, with an extremely high prob-

ability, the fraction of blocks attached by honest players is at least

µ.
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Figure 2.1: Blockchain Technology Stack.

The chain quality property ensures that the number of blocks attachable

by A is proportional to its computational power. Chain growth guarantees

that the chain grows proportionally with the number of rounds in a pro-

tocol. Future self-consistency is required in order to exclude such protocols

that, for example, oscillates between two chains −→m1 and −→m2 on odd and even

rounds. Authors show that with Bitcoin protocol all these properties have

been achieved, under some value of mining hardness p, if message delays are

∆-bounded. Higher is ∆, higher is the probability of chain forks. Meaning

that if messages circulate less, than it is more likely that nodes will have

their own version of facts for a greater amount of time. Malicious behav-

ior like selfish mining is possible with unbounded message delays 1.2.4. It

has been shown too that with unbounded delays it is not required to own

more than 1/2 computing power to attack the network. All of these four

properties have been proved necessary to achieve consensus which simulta-

neously satisfies both persistency and availability. Persistency is the ability

of a ledger to never suffer from an already added record deletion. While the

already mentioned availability property guarantees that a network response

is always provided.



2.2 Decentralized Systems 27

2.2 Decentralized Systems

A system where its components process local data in order to receive

global goals, has been defined as distributed in Section 1.1. The term decen-

tralized instead, has grown in popularity since the advent of blockchain. It

is often used to indicate that blockchain protocols are able to disjoint mono-

lithic organizations into multiple independent entities that perform the same

task. Both decentralization and distribution are often used as interchange-

able concepts, but this habit is incompatible with arguments treated in this

thesis. This section provides an attempt to make a distinction between them,

and to define decentralization as for how it will be further used.

The first known time that terms decentralized and distributed have been

used to express distinct concepts, while discussing network survivability, was

in [34]. Roughly, a decentralized network has been defined as a hierarchi-

cal structure that is a mixture of a centralized network and a distributed

system (Figure 2.2). By attacking the small number of nodes on top of the

hierarchy all the system might result unavailable. The distributed version of

the network is viewed as an ideal state of information and communication

redundancy, with an optimal survivability in case of physical attacks.

In today’s blockchain paradigm however, a distributed system can still

be described as centralized. It is necessary to distinguish the centralization-

decentralization spectrum upon multiple dimensions. A system can be de-

centralized1:

• architecturally, depending both by:

a. the number of physical subsystems which is made up of;

b. the degree to which the system is able to tolerate a subset of its

components being down;

• logically, if the system does not require a single-state definition, and

1The Meaning of Decentralization (https://medium.com/@VitalikButerin/

the-meaning-of-decentralization-a0c92b76a274).

https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
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Figure 2.2: Centralized, Decentralized and Distributed according to [34].

acts independently, in the same manner, if divided in N parts;

• politically, depending on how many organizations are able exert a form

of control over its components.

Bitcoin is architecturally decentralized, because it relies on multiple peers

and there is no software or hardware single point of failure. Distributed

systems are in fact architecturally decentralized. Bitcoin is also politically

decentralized, since no single entity controls it, and anyone can join the

network as a node. However, Bitcoin is logically centralized, because all the

nodes have to agree on a unique state of the data structures.

A system can be more or less (de)centralized upon the above mentioned

dimensions. An objective scale to measure the decentralization parameter

of a system, would allow to compare multiple systems and to observe how

much a system modification impacts on it. In an attempt to quantify decen-

tralization the Nakamoto Coefficient [25] has been proposed. It is a Social
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Network Analysis style measurement that could potentially give a pretty ac-

curate view of a system centralization status. Given a system S, the method

proposed in [25] requires to:

1. decompose S into a set of its relevant subsystems S = {sub0, ..., subn−1};

2. for each subj, determine p1 > p2 > ... > p|subj | such that
∑|subj |

i=1 pi = 1,

pi is the power proportion of an actor i in the given subsystem;

3. for each subj, determine a power threshold thj that no single entity

should control in order to compromise subj;

4. for each subj, calculate the minimum number of its entities whose power

proportions reach thj;

Nsubj := min{k ∈ [1, ..., |subj|] :
∑k

i=1 pi ≥ thresholdj}

5. the Nakamoto Coefficient of S will be

Nmin := min{Nsub0 , ..., Nsubn−1}

Nakamoto coefficient is the minimum number of actors necessary to cor-

rupt in order to compromise a subsystem, and consequently the entire system.

What nakamoto coefficient is saying is that a system is centralized as much

as its most centralized subsystem subj. The main challenge introduced by

this proposal however, consists into finding the right subsystems of S to an-

alyze and its power thresholds. Especially when political decentralization is

considered. For example, in a public blockchain the following subsystems

might be detected:

• mining subsystem, governed by miners;

• repository committing power, induced by developers;

• client software subsystem;

• geopolitical subsystem, defined by geographic location of nodes;
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• ownership, which describes the distribution of currency units among

users;

• exchanges, or how many of them have relevant trade volume.

It is already clear why mining must be decentralized, where thmining = 0.51.

Distribution of commits is also important: as [26] points out, a blockchain

project survivability is correlated with the amount of active committing de-

velopers. Developers shouldn’t also belong to a single organization. Geo-

graphic location of nodes should be distributed, too. For example, a large

amount of Bitcoin mining power is located in China. Some political decisions

made by a country could harm system stability, if geographically centralized

on its territory. Too much currency units (or any type of asset) controlled

by a single entity could harm its decentralization. Despite not being part

of the protocol, it is known that too much trading volume control exerted

by a single exchange could harm the system, too2. As an example, some

divergences are possible when talking about client software decentralization.

Bitcoin’s observed dominating mindset is to use a single main client (Bitcoin

Core), upon which an independent number of developers work. On the other

side, Ethereum (Section 3.2) actively promotes multiple client implementa-

tions in different languages (C++, Python, Go, Rust, etc...)3. This feature

reminds the assumption seen in the PBFT proposal [13], which states that

nodes should have different software implementations in order to avoid the

same simultaneous fault. It can be said that political decentralization has a

big influence, and quantifying it is a highly empirical work, based on Social

Network Analysis tools.

2In 2014 Mt. Gox Bitcoin exchange was handling 70% of worldwide transactions,

before finding out that approximately 850000 BTC have been stolen over time from users.

Currently the volume share is fairly distributed among many competitors (https://en.

wikipedia.org/wiki/Mt._Gox). Today it is also possible to trade using Decentralized

Applications (Chapter 3), with no intermediary.
3A list of Ethereum clients, proposed by distinct developer teams.http://ethdocs.

org/en/latest/ethereum-clients/choosing-a-client.html

https://en.wikipedia.org/wiki/Mt._Gox
https://en.wikipedia.org/wiki/Mt._Gox
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
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2.3 Decentralization, Consensus and Scale

At the time of writing this document, the Blockchain and Distributed

Ledgers are relatively immature technologies. Currently, even the most ad-

vanced protocols are still under development and have a series of issues to

be solved. The main challenges these decentralized protocols must face, are

going to be described in this section.

Usually in a blockchain protocol all the nodes share the same state, and

do process all system state transitions. The problem that emerges with this

approach however, is that while providing security, it limits scalability. A

blockchain protocol like Bitcoin cannot process more transactions per round

more than a single node can. In order to increase the system throughput

(transactions per second), one of the most common arguments would be to

increase the block size, which is the number of transactions that fits in. But

increasing the block size has a drawback in terms the above discussed de-

centralization. In this manner indeed, a network would be kept up only by

computationally powerful players. These players would become also politi-

cally influential within the system. Other practical approaches to solve the

problem bring us to the same centralization issue. The process of tuning a

blockchain protocol parameter in order to make it operate better is called

reparametrization. Intuitively, turns out that while designing a blockchain

protocol, the following trilemma has to be considered: a blockchain can have

at most two out of the three properties of decentralization, scale and security4.

A more formal way to analyze the problem have been proposed in [33],

with the above stated trilemma resulting into a theorem. In other words, a

generic peer-to-peer system S that executes an abstract blockchain protocol,

can have the following properties:

1. decentralization, guarantees that the system has no architectural sin-

gle point of failure nor political single point of decision (architectural

4Ethereum trilemma introduction (https://github.com/ethereum/wiki/wiki/

Sharding-FAQ).

https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
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(C) Consensus (D) Decentralization

(S) Scale

Figure 2.3: The DCS Triangle.

and political decentralization, Section 2.2);

2. consensus, network participants share the same system state, reached

by consensus algorithms (T -consistency is implied, too);

3. scale, defines the capability of the system to handle a growing workload

demand.

Scaling property of a system also implies that it is capable to satisfy the

same transaction demand of any competing system, which provides the same

service to the same set of users. The proposed theorem in [33] is intuitively

represented by the DCS Triangle shown in Figure 2.3. Only two out of the

three mentioned properties can be achieved.

Theorem 2 (DCS Theorem). Decentralized consensus systems centralize at

scale when consensus participants maintain full consensus over the entire

state of the system.

The work [33] shows why the probability of such an outcome is extremely

high. Its proof is built upon the assumption that in any sufficiently large pop-
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ulation, individual access to computational power is distributed unequally.

Another axiom is that the majority of participants do not have the required

amount of computational power and storage capacity, to elaborate messages

generated by a global scale user-base. These assumptions are empirically

true. Consensus participants are defined as independent entities who main-

tain a complete copy of the system’s state, and are part of a voting process

to update this state. Let S be a decentralized consensus system whose con-

sensus participants maintain full consensus of the system state. The same

notation as in [33] will be used to define a system operational throughput.

Definition 2 (Computational Throughput). The computational throughput

T(S) of a consensus system S refers to the rate at which the system updates

its state by processing all input messages.

A system throughput is determined mainly by the following factors:

• the size of quorum required in order to consider consensus reached;

• the computational power of each consensus participant;

• the time-out message period which has been set-up by the mechanism.

In a PoW consensus mechanism, the quorum is defined by the most com-

putationally powerful users. For example, Bitcoin has a time-out period of

10 minutes, and slow participants are likely to hit it more often then oth-

ers. T (S) is fast as much as the slowest participant within the consensus

quorum. As mentioned before, a typical way in Bitcoin to increase T (S)

would be to increase the block size (or other reparametrization solutions).

But there would be less nodes able to include more transaction in a block

within the same 10 minutes time-out.

The coordination cost C(S), is defined as the difficulty for a participant to

engage others and share the same goal. The higher is the coordination cost,

the better is for the system S. It ensures that the probability of coordinated

malicious behavior is very low. The author then, puts coordination cost
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potential users

users of S

consensus
participants

Figure 2.4: Scaling user base brings transaction demand, but increasing through-

put T (S) implies that less consensus participants are able to (1) af-

ford system state maintenance and (2) enter the deciding quorum.
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into a directly proportional relation with the number of system’s consensus

participants: C(S) = |S|.
The unequal computational power distribution among population, and

the fact that most of users do not have a sufficient amount of it to maintain

a global scale consensus, leads to the following conclusions. Let c refer to

the average computational power of all participants that ever participated

in a sufficiently significant series of consensus rounds. Then T (S) exceeds

c at scale proportionally to the new users of S. The subsequent phenom-

ena is that at scale, the coordination cost C(S) for consensus participants

decreases. Low C(S) leads to the risk of coalition based behavior from con-

sensus participants. Unfortunately, single point of failure or political single

point of decision is highly probable here. It is clear that an initial decentral-

ized state of a system becomes centralized at scale. When maintaining the

full system state, a system centralize at scale.

2.4 Scalability

It is clear that the main problem blockchain protocols must face is scal-

ability, which is a factor that can make the difference between wide global

adoption or a more limited use of it. The scalability challenge consists into

finding a solution to increase the transaction throughput T (S) at scale, with-

out making it over-expensive for consensus participants and users. It has been

seen that solutions such as block size increase and block interval reduction

can be only taken as eventual preliminary steps in order to achieve a scalable

system.

2.4.1 Blockchain Sharding

A way to get around the DCS triangle and increase T (S) can be again, to

rethink the consistency property. Using again the same terminology seen in

[33], a system is DC if it focuses mainly on Decentralization and Consistency.

A global scale system can be achieved by combining multiple DC systems
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called shards. Each shard has its own group of consensus participants which

trust other groups. Again, a inter-group trust mechanism can be achieved at

system level, through various forms of transparency techniques. Obviously, a

combination of DC systems has an overall weak form of consistency. Various

challenges are introduced when high levels of inter-shard communication and

consistency is required.

There are, however, distinguishable types of sharding. The first type can

be referred as state sharding, where each shard maintains a portion of the

global state (storage). Multiple sharding-enabled systems are in development

phase, at time of writing. Ethereum (which will be seen in Chapter 3) will

eventually implement state-sharding in the future.

Another type is the computational sharding, and an example of such a

system will be briefly shown. Zilliqa platform [45] introduces the idea of

dividing the network into smaller consensus groups that process transactions

in parallel, with no overlaps. Each group is called shard. Zilliqa protocol

uses Proof of Work only for sybil-attack prevention. Consensus is instead

achieved through a PBFT-style improved algorithm (Subsection 1.1.3) with

communication complexity O(n) in the normal case, and a constant O(1)

signature size. It has indeed a two-layer blockchain structure that is out of

scope of this work.

2.4.2 State channels

A system is DS if it is designed in order to maintain Decentralization and

Scalability. Let main-chain be a DC system such as Bitcoin. A side-chain is

a DS system that allows the main-chain to increase T (S) at scale, letting it to

preserve its T -consistency. The idea is that the side-chain is used for updating

and processing transactions off the main-chain [46]. But when some desired

state is finalized, it is written to the main-chain. Both systems work together

in such a way that consensus is required less often, thus unloading time and

power-consuming operations from the main-chain. A transaction on the main

blockchain can encode a state-channel birth between two or more parties and
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another one its end, while a smartcontract (Chapter 3) can be used to enforce

the rules of participation. When a state-channel is closed and side-chain

communication ceases, the state modification induced by this interaction is

written on the main blockchain. This approach can be very useful because

(i) a few transactions are able to encode multiple transactions and (ii) it

results in a fee reduction when performing micro-payments. However, the

reduction does not occur when the fee is also a function of (a) the amount

bytes written on the blockchain and (b) the computational complexity of a

transaction. As we will deduce after reading Chapter 3 and Chapter 4, since

in Ethereum there is a block gas limit that measures (a) and (b), multiple

smartcontract deployments couldn’t be encoded within state-channels, even

if it makes sense.

2.5 Anonymity and Zero Knowledge Proofs

When designing a secure public blockchain, confidentiality questions are

also necessary to answer. It is often required to be able to chose what infor-

mation to keep private or public. A basic blockchain protocol which relies

on asymmetric cryptography provides pseudo-anonymity. Meaning that for

each transaction, the identity of the user that generated it, is tied to a public

key or address. For technical or personal reasons, the user (or its wallet)

can potentially generate as much addresses as necessary, in order to avoid

traceability from third parties. In the Bitcoin Network, however, it has been

shown that:

• it is possible to associate identities to blockchain addresses [35, 36];

• to classify both identified and unknown user’s behavior [36, 37];

• even to perform Social Network Analysis [38].

These tools might be also used as an attack vector to real identities and

miners. Attacks like network partitioning and message delaying (Subsection
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1.2.4) can be performed if coordination cost C(S) of a system S isn’t high

(Section 2.3), and especially if transactions are accessible as plain data [39,

40].

While being able to verify transaction correctness and reach system con-

sensus, it is often required the ability to hide its recipient, sender and con-

tent. Such advantages are offered by a recently proposed cryptographic tool

called zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-

SNARKs) [41], that will be briefly explained below. Let L denote a NP

language and P a program (circuit or universal function) in L. Let n be the

dimension of input instances acceptable by P . Given the input instance x

such that |x| = n, a peer s1 ∈ S broadcasts that x ∈ L. Another peer s2

receives the statement x ∈ L and he wants to know if the statement is true.

Given this peer-to-peer system within which no one knows each other, zk-

SNARK is a non-interactive and succinct proof π which proves that x ∈ L.

Non interactive because s1 and s2 never interact and they don’t know each

other, and succinct because it should be very easy to verify the statement:

• s2 is protected because he is able to verify if x ∈ L through π;

• s1 is protected because s2 is able to verify only x ∈ L, but not the

source s1 or other information.

In order to achieve such a system, it must be built as follows:

1. a trusted peer s0 takes the program P and performs an initial system

setup;

2. the system setup produces two public keys, proving key pk and verifi-

cation key vk;

3. then, an untrusted peer si uses pk to create a proof π, that proves

x ∈ L;

4. other untrusted peer will use vk to verify π, preserving full anonymity

as stated above.
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Succinctness property requires |π| to be constant, and π verification cost is

O(n). zk-SNARKs have been used in a blockchain protocol proposal known

as Zerocash [42], and later implemented as Zcash5. More practically, zk-

SNARKs are proofs that sj performed some computation over an input, but

without revealing the input. Miners then, will verify the transaction as for

Bitcoin, but without any type of knowledge about the transferred amount

and addresses. In Zcash, each user is provided with two addresses. z-addr

is a fully anonymous address and it is used in transactions as described

above. t-addr is a bitcoin-like pseudonym. Each user is able to chose what

transaction to keep fully anonymous.

The problem afflicting zk-SNARKs is the requirement to have a trusted

peer s0. Even assuming that s0 is honest, an attacker could possibly corrupt

the initial system setup. Therefore, generated keys might be corrupted too.

There is no way to mathematically verify that s0 is actually honest, and that

the sensible setup information have been destroyed after the process. For

example, a malicious party could use this information to issue new units

of currency in the system. Zero-knowledge Scalable Transparent Arguments

of Knowledge (zk-STARKs) instead [43] have been proposed as proofs that

could potentially replace zk-SNARKs, eliminating the necessity for s0. zk-

STARKs allow to have a system with at least the same features zk-SNARKs

provide, with no initial setup and in a trustless manner. Currently however,

the main drawback is that it a zk-STARK proof π is approximately 1000

times larger in size than a zk-SNARK.

2.5.1 Scalability with Proof Systems

As authors point out, zk-STARKs and other proof systems could be also

used to reduce scalability issues by exponentially decreasing transaction veri-

fication time. Some nodes could integrate a prover function, that will produce

proofs in quasi-linear time. These proofs can convince the network to accept

a current ledger state as valid, avoiding several expensive factors:

5https://coinmarketcap.com/currencies/zcash/

https://coinmarketcap.com/currencies/zcash/
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• to re-execute identical computations that already occurred elsewhere,

in order to achieve the same state;

• to store the entire blockchain state on each node.

2.6 Distributed Ledger Technologies

Having said that the work in this thesis covers permissionless protocols in

asynchronous networks, a brief introduction will be given about alternative

forms of distributed ledgers. In a permissionless setting like Bitcoin, any-

one is enabled to start a public node by downloading the publicly available

code. Anyone capable of, is able to validate transactions and participate

into consensus processes. Transaction are transparent but with potentially

hidden content. The main advantage of public ledgers is the ability to elimi-

nate intermediary entities, to lower or eliminate infrastructural costs through

decentralized applications.

Several ideas behind blockchains could however be used with restricted

access to a limited amount of known entities. Since these entities trust each

other and are co-interested to run the network and its protocol, there is no

need to have incentive mechanisms. These systems type are indeed coinless,

and are referred with a generic term Distributed Ledger Technologies (DLTs).

A type of DLT are the Federated Ledgers, consensus is maintained by a

group of pre-selected set of nodes, and the access to read can be restricted.

Private Ledgers instead, have its write permissions assigned to the entity

which created it, for internal business logic purposes.

Open source distributed ledger projects6 can also be offered as a service7.

Hyperledger Fabric is a distributed ledger framework implementation, which

that allows consensus models and internal services to be modular. Related

projects such as Hyperledger Composer instead, can be viewed as a language

to specify ledger actors, assets and logic. Since decentralization is heavily

6https://www.hyperledger.org/
7https://developer.ibm.com/blockchain/sandbox/

https://www.hyperledger.org/
https://developer.ibm.com/blockchain/sandbox/
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sacrificed in these types of system, the main advantage is that they can easily

scale.





Chapter 3

Decentralized Computing

Paradigm

The advent of blockchain allowed to experiment more sophisticated ver-

sions of such protocols. It is becoming more clear that multiple protocols

could coexist on the top of Internet, bringing new possibilities when inter-

acting with the Web. When it was born, the Web was mainly composed by

read-only architectures, where the user had a one-way communication with

servers, and the ability to make a request and receive some sort of informa-

tion viewable in a browser. Today it is often referred as Web 2.0, because

new features have been added to it: search engines, social networks, user-

generated and uploadable content, the ability to use tags or extensions, and

so on. Especially, Web 2.0 is today an application platform. Such web appli-

cations are kept up by centralized intermediary entities, operating between

multiple parties involved a process. The term Web 3.0 instead, is often used

in contexts like Semantic Web, Artificial Intelligence, Internet of Things and

even Virtual Reality. In the Blockchain Paradigm however, which by the way

merges very well with the previously mentioned disciplines, Web 3.0 refers

to a next generation decentralized web. It allows to run Decentralized Appli-

cations on Decentralized Computing Platforms, and to govern Decentralized

43
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Autonomous Organizations. Direct connection between involved parties may

exist in a business process, allowing to skip intermediary entities in a lot

of case scenarios. This property helps to eliminate single points of failure,

expensive commissions, total data control by third parties, and breaks new

ground to emergent business models. This chapter aims to provide the basics

for decentralization as a paradigm, and how it could be used to define new

application types and organizations.

3.1 Smartcontracts

The most common way to formalize voluntary relationships between two

or more parties, whether enforced by a government or otherwise, is through

a contract. Centuries of cultural evolution and experience have given birth

to contracts and principles affiliated to it, which are the basis of a market

economy. The digital revolution however, introduced new types of relation-

ships between parties around the world. Digital media are indeed dynamic,

it means that beside vehiculating multi-sensory information, they are able to

make different kind of decisions. This idea that a transition is needed from the

traditional static paper-based solution, to a model where contractual clauses

can be embedded into software, called smartcontracts, was for the first time

discussed in [7] and rewritten in [8]. A crucial requirement for smartcontracts

is to be prohibitively expensive to violate for possible attackers, and this is

the exact feature that a blockchain provides. The main concept behind the

term smartcontract has slightly changed over time however, which is now

often used to indicate a generic portion of code that resides on a blockchain

network. A portion of code which is identifiable by a unique address, defined

as a set of state variables and functions, and executable when transactions

to its address are made. Alternative terms such as chain-code might be also

used for. The source code is viewable by anyone involved, so code is law :

many use cases doesn’t require a third party to enforce it.

In [44] and abstract definition of a smartcontract has been given, which
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includes both smart contract code and smart legal contract concepts. In this

thesis however, despite using similar terms, a smartcontract will be referred

as a smart contract code which resides on the blockchain. Such a smart

contract has the following ideal characteristics.

• enforceable, which means that the smartcontract is always executed as

defined, with deterministic behavior and no mediation;

• automatically executable when required conditions are met;

• tamper-proof, meaning that once started, its execution is unstoppable

and secure (against BFs in its environment).

A smartcontract is enforced by the underlying blockchain protocol. It is

automatically executed when triggering network transactions occur. Tamper-

proof property on the other side, isn’t a constant and may vary to certain

degrees among implementations. Another interesting property which is not

treated here, is the ability of a smartcontract to be understood by all humans,

too. If humans and machines can both understand a smartcontract, it is more

likely that a smartcontract will be valued in legal and social contexts.

Definition 3 (Smartcontract). A smartcontract is a tamper-proof computer

program which implements an automatically executable agreement, enforced

by the underlying decentralized consensus protocol.

Stateless and Stateful A smartcontract can be stateless, meaning that it

has no internal state. A form of stateless contract are the Bitcoin’s scripts:

they keep no data during execution. A stateful contract instead, can be ex-

pressed through more powerful constructs like loops, which allow to maintain

an internal state.

Vulnerabilities Smartcontracts could also have exploitable vulnerabilities,

like any other software. Attack vectors are more dangerous on stateful smart-

contracts where definition language provide complex high level constructs.
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Oracles and Contract Incompleteness A complete contract is an ideal

type of contract which encodes what is going to happen in every possible

scenario. On the other side, an incomplete contract depends on circumstances

and even real-time variables, which often makes them renegotiable in case

of unexpected events. These type of contracts has always been expensive to

execute. However, smartcontracts lower the transaction and information cost

related to incomplete contracts, making it accessible in more use-cases and

for a larger set of organizations. An oracle is an entity, or a group of entities,

that converts real-world information into data that can be processed by a

smartcontract. The main goal of an oracle is to provide sufficient contract

completeness, in order to make them definable in an algorithmic way, which

takes the form of a smartcontract. In other words, an oracle is a connection

between real world data and blockchain decentralized logic.

3.2 The Ethereum Implementation

As a result of various attempts to integrate the above principles into the

blockchain, the concept of a decentralized, programmable and transaction-

based state machine has emerged, resulting into the Ethereum proposal [15],

and into its further formalization [17]. In other words, Ethereum is a decen-

tralized computing platform and smartcontracts are its programs, currently

writable in a turing-complete language, and runnable by the Ethereum Vir-

tual Machine on each node. Ethereum smartcontracts are indeed stateful.

Bitcoin functionalities are implementable as an Ethereum application: with

its expressive power indeed, it contains the Bitcoin stack-based scripting

language. This section describes how Ethereum works and how its Smart-

contracts can be defined, deployed and executed.

3.2.1 Ethereum

With Script, Bitcoin allows to implement very weak forms of smartcon-

tracts. For example, an UTXO (Subsection 1.2) can be owned by multiple
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Figure 3.1: Blockchain and Smartcontract Technology Stack.

parties and unlocked only if all them agree to do it [16]. It is a stateless lan-

guage with limited expressive power, which has its advantages: no consensus

participant has to remember something and send to others; less attack vec-

tors; fast execution with guaranteed termination, and it is sufficient to per-

form payments. However, beside lacking higher level constructs like loops,

Bitcoin doesn’t allow the user to access blockchain variables, to interact with

its state, neither interact with some form of real-world data.

In order to create a programmable blockchain, Ethereum [15] provides a

built-in turing-complete programming language that is used to write smart-

contracts. Smartcontracts can be defined and deployed by anyone, in order

to govern a process according to their own rules.

Account types Ethereum has two account types:

1. Externally Owned Accounts (EOA), which is created and controlled by

a user through public and private key-pair, it is defined by its address,

the account keys and the ETH balance;

2. Contract Accounts (CA), where smartcontracts reside, are defined by
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their address, the contract code and ETH balance, too;

Any user can create an EOA. When the user starts a transaction in order to

deploy a smartcontract on the blockchain, a new CA is created. In order to

trigger the same smartcontract, a transaction (with eventual parameters) to

its CA address has to be made. The right to trigger a smartcontract code is

programmable, too.

3.2.2 Smartcontracts in Solidity

Several languages can be used to define an Ethereum contract, and every

definition can be compiled into bytecode. Bytecode is executable by Ethereum

Virtual Machines (EVM), that each full node runs. Initially available only as

a proof-of-concept, the first one was the Low-level Lisp-like Language (LLL).

Serpent1 is a Python-like language that can be used for the same purpose.

But the main language which is used to defined smartcontracts is Solidity.

With its contract-oriented paradigm in a C++ style, a Solidity smartcontract

reminds an object-oriented class definition. A smartcontract is composed by:

1. state variables, contract storage variables used to maintain the its state;

2. events, which can be used to track a contract execution, even from

outside Ethereum;

3. modifiers, used to change function behavior, they often check conditions

(like contract ownership) before executing a function;

4. functions, which include the code executed when transaction to CA are

sent.

Every smartcontract has also a constructor. Contracts can be compiled and

deployed as we will see in chapter 4.

Ethereum transactions modify the network state. Since Ethereum has

a built-in turing-complete language, several precautions have to be made in

1Serpent (https://github.com/ethereum/wiki/wiki/Serpent).

https://github.com/ethereum/wiki/wiki/Serpent
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Unit wei babbage lovelace shannon szabo finney ether

Value (wei) 1 103 106 109 1012 1015 1018

Table 3.1: Denomination of Ether subunits and value.

order to avoid infinite loops on the network. A smartcontract computational

complexity is measurable in gas units. In fact, each atomic operation con-

sumes a certain amount of gas. A contract function is a combination of

operations. Each execution has a gasLimit in order to avoid a variety of

undefined behaviors. Beside specifying gasLimit, a user also tells how many

wei (the minimum sub-unit of an ether (ETH), Table 3.1) he is willing to pay

for a gas unit. The final transaction fee will be txfee = gasconsumed∗gasPrice.
In other words, the amount of gas specifies the transaction complexity, while

gasPrice is used to determine how fast the computation will happen. A

transaction has also a data field, which contains the transaction parame-

ters. A transaction data field contains a smartcontract bytecode for exam-

ple, when a contract is being deployed on the blockchain. Transactions to

EOA are fund transfers, a transaction to a CA are a method invocation.

Calls can be used for read-only operations on the network and don’t re-

quire fees. Calls don’t modify the network state. All smartcontract functions

which do not modify its state are callable for free.

3.2.2.1 Other Smartcontract Concepts

Roughly, Solidity is an object-oriented language, where an object always

belongs to a contract class. Upon decentralized environments however, other

paradigms could be used in order to define a smartcontract. An example will

be given. The Zilliqa platform [45], that has already been said to implement

the so called computational sharding (Subsection 2.4.1), uses dataflow pro-

gramming for its smartcontract layer. A smartcontract is represented by a

directed graph, where a graph node indicates an independent execution in

the program (functions and operations). When computing the smartcontract,
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each graph node can be assigned to a different shard. This approach could

guarantee a powerful decentralized parallel computing platform. Again, at

time of writing, this and other tools are still in early development phase.

3.2.3 Oracles

Oracles have been presented as entities which provide a link between

smartcontracts and real-world data (Section 3.1). This link is often required

because of a contract incompleteness property. This missing data is provided

through APIs. An oracle can be centralized, too, which means that a single

organization provides content for smartcontracts residing on blockchains2.

Some might argue that a single organization could provide arbitrary data to

smartcontracts. In this case, oracles can be also decentralized. A decentral-

ized oracle is an ecosystem of potentially competing data sources34 which

feed smartcontracts. Each decentralized oracle node is incentivized to do

so in a Bitcoin-like manner. Also, different mechanisms are introduced to

heavily discourage faulty behavior, like bringing false information.

3.3 Decentralized Logic, Storage and Mes-

saging

A global scale decentralized computer, as a vision, not only relies on a

decentralized logic, which the smartcontracts are. Communication protocols

as decentralized messaging [22], and peer-to-peer, self-sufficient decentralized

storage networks [18, 19, 20, 21], both with a built-in incentive system, are

also required. Once combined, these complementary technologies allow the

2Oraclize is an example of organization providing data to decentralized applications

(http://www.oraclize.it/).
3Chainlink is a decentralized oracle which aims to feed Ethereum smartcontracts with

requested information (https://www.smartcontract.com/).
4Mobius is a decentralized application marketplace which integrates decentralized ora-

cle principles (https://mobius.network/).

http://www.oraclize.it/
https://www.smartcontract.com/
https://mobius.network/
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Figure 3.2: A Decentralized Application Architecture.

full operativity of ecosystems of Decentralized Applications (dapp), as in

Figure 3.2. Decentralized applications existed before the blockchain advent

too, defined as applications which runs on top of a peer-to-peer network.

A dapp, as implied further in this thesis, has its own logic defined by a

set of smartcontracts that reside on the blockchain (with some variations),

that use decentralized messaging protocols to interact with each other, and

retrieve data from underlying decentralized storage. While eventually having

a presentation layer deployed on a central server, which is the only concept in

common with an app, to deploy a dapp will usually indicate running its parts

on a decentralized platform. For completeness, it can be said that dapps are

deployable whether including a proper token economy [24] or not. In this

way, in now avoidable requiring a large number of separate blockchains for

each dapp, too expensive for small organizations.

Decentralized applications can be developed to operate in a wide range

of domains. Some examples are:

• internet of things, which refers to devices that are connected to internet

and have unique identities. IoT devices can exchange or collect data

using blockchain based applications, with a smartcontract regulated

behavior. Some concrete examples are connected vehicles, smart home

devices, locks (which can be used to rent real-world physical objects)



52 3. Decentralized Computing Paradigm

and parking;

• industry and manufacturing, decentralized applications can be used for

on-demand manufacturing (like 3D-printing), product traceability and

shipment, supply-chain tracking (for example, a pharmacological prod-

uct can be traced, to certify that it has not been exposed to dangerous

temperatures), product certification and so on;

• financial technology, decentralized applications could be used for pay-

ment platforms 5, insurance platforms, trading, investments and bank-

ing.

• records and identity management, dapp can be used to certify docu-

ment authenticity and their existence at a specific time point in history,

marriage and birth certificates, copyright protection and land registry.

3.3.1 Decentralized Autonoums Organizations

Dapps can be used to run Decentralized Organizations or Decentralized

Autonomous Organizations (DAO). Both of them can be viewed as orga-

nizations whose governance model is implemented as dapps, but unlike a

DO, a DAO is fully automated and does not require any input to execute

the logic. Successful public DAOs have been shown to be highly correlated

with community support, where none of multiple parties involved produce

the vast majority of commits [26]. Bitcoin is, actually, the first form of DAO

ever seen. Company-owned blockchain projects also started to proliferate,

especially through Initial Coin Offerings (ICO) [27], which is a process of

generating tokens and distributing them to parties, in return for the plat-

form’s native token or other currencies. Users are willing to buy these tokens,

if they value a product that will exist on a decentralized network, or will be

tied to it. While the necessity of an ICO might be questionable in some

cases, as well as the blockchain integration, new business models are now

5An example of such a platform is Request Network (https://request.network/#/)

https://request.network/#/
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definable upon token economies, otherwise prohibitive to realize [28]. Later,

the idea of a Decentralized Autonomous ICO (DAICO) to be developed, has

also been proposed [29].





Chapter 4

Decentralized Certificate Issuer

This chapter will define the specific problem of how to write blockchain

data in such a way that (a), it is enabled to certify a generic occurred event

and (b) to be verifiable by anyone, anytime, in a trustless manner. Implemen-

tation cases will be provided for public ledger platforms. Since permissioned

and federated ledgers require all involved parties to trust each other and to

actively participate in the network, these type of systems aren’t suitable for

the problem given here.

4.1 Problem Definition

The problem requires to realize a decentralized application that is able to

issue certificates on the blockchain. At any point in the history, no trusted

third party should be needed to verify an issued certificate authenticity. It

is already known that a blockchain is a public, immutable and ordered dis-

tributed ledger. It provides all the necessary features to realize such appli-

cations.

Let’s assume that organization I is the certificate issuer. Let C =

{c0, ..., cn−1} be a set of entities authorized to interact with I. Given a

specific information infoci that ci has, ci should be able to ask I to perform

an event E(infoci , attachj). E(infoci , attachj) might be some service that

55
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I offers, where attachj is a proprietary information that initially belongs to

I. The content of infoci is irrelevant in this scope. At any point in the

history, I and even a subset of C might disappear. However, any entity

even outside C ∪ I, should be able to verify that E(infoci , attachj) actu-

ally happened somewhere in the past. ci will ask I to perform E multiple

times, so there will be a sequence (info0)...(infoT−1) for each ci. For every

request instance, I must perform the event and issue a blockchain certificate

cert(E(infotci , attachj)), such that:

(R1) with no trusted parties and whenever, anyone should be able to ver-

ify that for any i and t, cert(E(infotci , attachj)) exists and attachj is

unique.

The constraint (R1) ensures that I will not use its proprietary information

attachj for more than a single certificate. Such a mechanism has multiple

use-cases. For example, a University could use it to certify someone’s aca-

demic achievements. C could be its students, E(infotci , attachj) could be its

graduation or intermediate courses, and some company could be interested

to check authenticity of cert(E(infotci , attachj)). (R1) becomes more impor-

tant in other cases, where let’s say, attachj represent the identifier of a very

expensive product.

There is another factor to take in consideration. Since nodes must be kept

incentivized in order to run a protocol, blockchain services have a transaction-

based cost in terms of the platform’s native coin. These coins must be bought

by I on pairs like <COIN>/USD. DLT services on the other side, might be

additionally offered as a service, with time-based payments. A solution must

therefore be considered in terms of a second constraint:

(R2) each certificate deployment process performed by I should have a rea-

sonable operational cost.

Additionally, not too slow deployment processes are wanted.

(R3) each certificate deployment process performed by I should be confirmed

by the ledger after a reasonable amount of time.
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The practical work described in this chapter, aims to answer whether a dapp

that solves this problem is already implementable today or not. A dapp that

provides (R1), (R2) and (R3). And if not, what is the likeliness that it will

be achievable soon.

4.2 Dapp on Stellar

Stellar is a micro-payment oriented platform. With its federated internet-

level consensus model [47] it is relatively fast, and satisfies both following

constraints:

(R2) is satisfied, transaction are a combination of at most a few operations,

which have an extremely low cost of USD 0.0000041;

(R3) is satisfied, because Stellar network usually reach consensus in less than

5 seconds.

Constructs with full expressive power like turing-complete smartcontracts

are not currently offered by this platform, and likely will never be. Stellar

relies on simplicity and speed given by light-weight transactions, which in

turn are made of simple declarative operations. This approach requires the

issuer organization I to create a Stellar account for each customer ci, or an

account ownership by ci. Then, each deployed certificate to ci is represented

by a transaction to its account, with incorporated information that encodes

cert(E(infotci , attachj)).

JavaScript code in Figure 4.1 is given by an attempt to realize such a

dapp. As an architectural choice, in order to guarantee high throughput,

Stellar allows to only attach some very small data to its transactions. There

are two attachable data types we can be interested in2:

1At the beggining of year 2018, Stellar basic operation fee is XLM 0.00001 = USD

0.000004 (https://coinmarketcap.com/calculator/).
2Stellar Documentation (https://www.stellar.org/developers/guides/concepts/

transactions.html).

https://coinmarketcap.com/calculator/
https://www.stellar.org/developers/guides/concepts/transactions.html
https://www.stellar.org/developers/guides/concepts/transactions.html
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Figure 4.1: Part of the JavaScript code that allows to perform a payment with

attached data, using StellarSDK.

1 var server = new StellarSdk.Server(horizonTestnet);

2 StellarSdk.Network.useTestNetwork ();

3
4 window.app = {

5 generateCertificate: function () {

6 var cert = {'info': 'Rafaello ', 'attached ': 'id'}
7 var hash = crypto.createHash('sha256 ');
8 hash.update(JSON.stringify(cert));

9 var memoHashHex = hash.digest('hex');
10
11 return memoHashHex;

12 },

13
14 issueCertificate: function () {

15 var certHash = this.generateCertificate ();

16 var issuerPair = StellarSdk.

17 Keypair.fromSecret(issuerPriv);

18
19 server.loadAccount(destPub)

20 .catch(StellarSdk.NotFoundError , function (error) {

21 throw new Error('Dest. account does not exist!');
22 })

23 .then(function () {

24 return server.loadAccount(issuerPub); })

25 .then(function(sourceAccount) {

26 var transaction = new StellarSdk

27 .TransactionBuilder(sourceAccount)

28 .addOperation(StellarSdk.Operation.payment ({

29 destination: destPub ,

30 asset: StellarSdk.Asset.native (),

31 amount: "1"

32 }))

33 .addMemo(StellarSdk.Memo.hash(certHash))

34 .build();

35 transaction.sign(issuerPair);

36
37 return server.submitTransaction(transaction);

38 })

39 .then(function(result) { /* result handling */ });

40 .catch(function(error) { /* error handling */ });

41
42 return;

43 }

44 }



4.3 Dapp on Ethereum 59

• MEMO TEXT: a string encoded using either ASCII or UTF-8, up to 28

bytes long;

• MEMO HASH: a 32 byte hash.

MEMO TEXT is too short to allow the dapp to attach useful information in most

applications. MEMO HASH could be an elegant solution to link arbitrary big

data to a transaction. The function defined at line 5 in Figure 4.1, converts

a test JSON to a hash string. When building a transaction (line 26), the

data hash can be added to it (line 33). Unfortunately, this is insufficient to

fully guarantee (R1). An external entity that wants to verify a certificate

authenticity, should retrieve first the certificate plain data from a trusted

party (I itself or some other trusted party). After data retrieval it would

be able to hash the certificate plain data, with the same algorithm. Only

then, the external entity would be able verify if the hash it has, matches with

the hash on the ledger. Transaction time confirmation and its cost satisfies

very well other constraints. However, Stellar is a good choice only if involved

parties are willing to sacrifice (R1).

4.3 Dapp on Ethereum

Ethereum allows to implement fully on-chain dapps, without third party

support in a wide imaginable use-cases. Explicit information can be stored

directly on the platform. In this way, given its immutability property, certifi-

cates would have blockchain-lifetime. Even in the worst case scenario with

all the Ethereum nodes going down, with C and I disappearing, the ledger

will continue to exist and computation might restart from a given commonly

agreed block. The dapp implementation and the possibility of (R1) will be

firstly discussed. Then, an analysis of deployment cost (R2) and time (R3),

and how are they linked, will be provided.
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4.3.1 Logic Definition - Fabric Pattern

Let’s suppose that I have already deployed a certain number of certificates

as smartcontracts. It would be very convenient to just query the blockchain,

and return a set of smartcontracts that match certain conditions (like in a

classic database). It would require to have the smartcontract template we are

in search for, as certificates are just a set of its instances with different data.

Alternatively, blockchain search engines for public data could be used. As

for now however, such functionalities are partially or not implemented at all.

To workaround this, the dapp that is going to be described uses the so called

fabric pattern. The fabric pattern in this case consists of two smartcontract

definitions, which interact as described below. When I receives a request

infotci from ci, it triggers an already deployed on the blockchain smartcon-

tract called Issuer. Issuer starts then an internal blockchain transaction

that creates Certificate with all its necessary data, as a result.

4.3.1.1 Certificate

cert(E(infotci , attachj)) could be encoded by the Certificate smartcon-

tract shown in Figure 4.2. The field issuer is the address of the contract that

created this instance, and issuerOwner is the addresses of I, which triggered

deployment process (line 4-5). ownerId and ownerInfo (line 7-8) refer re-

spectively to data which describe ci and infotci . At lines 10-11 productId

encodes attachj and date is the deployment timestamp. Certificate con-

structor (line 13) access global blockchain and transaction variables in or-

der to initialize some of these fields (msg, tx and block). Once created,

Certificate instances are read-only smartcontracts.

4.3.1.2 Issuer

First of all Issuer imports Certificate, it must contain its bytecode in

order to be able to deploy it. Once created at the very beginning, Issuer

can be used only by its creator I. This is ensured by the function modifier
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Figure 4.2: Solidity certificate definition.

1 pragma solidity ^0.4.18;

2
3 contract Certificate {

4 address public issuer;

5 address public issuerOwner;

6
7 uint256 public ownerId;

8 string public ownerInfo;

9
10 uint public productId;

11 uint date;

12
13 function Certificate(

14 uint id ,

15 string info ,

16 uint product

17 )

18 public

19 {

20 issuer = msg.sender;

21 issuerOwner = tx.origin;

22
23 ownerId = id;

24 ownerInfo = info;

25
26 productId = product;

27 date = block.timestamp;

28 }

29 }
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onlyOwner at line 11 in Figure 4.3, and owner is determined at construc-

tion time (line 18). issueCertificate(args...) function launches an

internal transaction to deploy a new certificate with its parameters, at line

28. At line 29, messaging system is used to launch a certificate creation

event (declared at 6) that should be eventually captured. The newly created

certificate address is saved on the blockchain too, in the certificates[]

array. In this way, anyone can retrieve deployed certificate addresses with

getCertificates() method (at line 37), for inspection.

4.3.2 Interacting with the Blockchain - Back End

Once the logic has been defined through Issuer and Contract, the re-

maining part of the dapp have to be implemented. First of all, the dapp

back-end must implement the following operations:

1. smartcontract deployment, which allow to deploy Issuer on the block-

chain, this will be required only once or very rarely;

2. issuance triggering, which allow to trigger the capability to deploy a

new Certificate, will be used very often;

3. transaction tracking, which means to capture and handle a Certificate

deployment progress;

4. information retrieval, allowing to get deployment history and to in-

sepect issued Certificates.

Listed operations define indeed our interaction with the Ethereum Blockchain

Network. In order to be able implement this interaction, a JavaScript API

is offered: Web3. Web3 provides a web33 object which in turn has various

sub-objects responsible for different tasks:

3The described dapp uses web3 1.0, which at the time of writing is in beta (https://

web3js.readthedocs.io/en/1.0/). Beta version usage is motivated by the introduction

of more high-level functionalities such as the PromiEvent construct.

https://web3js.readthedocs.io/en/1.0/
https://web3js.readthedocs.io/en/1.0/
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Figure 4.3: Solidity certificate issuer definition, imports certificate definition seen

in Figure 4.2.

1 pragma solidity ^0.4.11;

2
3 import "./ Certificate.sol ";

4
5 contract Issuer {

6 event LogNewCertificate(address certificate);

7
8 address public owner;

9 address [] public certificates;

10
11 modifier onlyOwner {

12 if (msg.sender != owner)

13 revert ();

14 _;

15 }

16
17 function Issuer () public {

18 owner = msg.sender;

19 }

20
21 function issueCertificate(

22 uint id ,

23 string info ,

24 uint product

25 )

26 public onlyOwner returns (address certificate)

27 {

28 Certificate newCert = new Certificate(id,

29 info ,

30 product);

31 LogNewCertificate(newCert);

32 certificates.push(newCert);

33
34 return newCert;

35 }

36
37 function getCertificates ()

38 public constant returns (address [])

39 {

40 return certificates;

41 }

42
43 function getTotalCertificates ()

44 public constant returns (uint)

45 {

46 return certificates.length;

47 }

48 }
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• web3.eth, blockchain and smartcontract related functionalities;

• web3.shh, whisper protocol for peer-to-peer communication;

• web3.bzz, swarm protocol for decentralized file storage;

• web3.utils, different helper functionalities.

Whisper and Swarm will not be used however during the realization of this

dapp, since they are not required. The package manager used is npm4 and

the JavaScript module bundler is webpack5.

var Web3 = require('web3');

For learning purposes Truffle6 framework has been initially used. How-

ever, at time of developing Truffle isn’t compatible with web3 1.0. There-

fore, the choice is to directly work with web3. Usually, when interacting

with dapps in a browser, dapp transactions require the user to pay some fee.

Another note regarding the learning curve is that a developer can (at least

temporarily) avoid wallet management when developing a dapp, by simply

using browser extensions such as MetaMask7. It provides an interface with in-

tegrated wallet management. When the dapp viewed in the browser starts an

Ethereum transaction, with user permission MetaMask automatically injects

web3 code which signs it cryptographically. Again, for account management,

direct work with web3 has been performed in order to achieve fully auto-

matic transactions. Another way to learn more easily dapp principles, which

has been used, is to initially interact with simulated on a local machine full

Ethereum clients. The tool used for this purpose is ganache-cli8.

4https://www.npmjs.com/
5https://webpack.github.io/
6Truffle is a full pipeline development environment with built-in capabilities

such as smartcontract compilation, linking and deployment on top of web3 (http:

//truffleframework.com/docs/).
7https://metamask.io/
8https://github.com/trufflesuite/ganache-cli

https://www.npmjs.com/
https://webpack.github.io/
http://truffleframework.com/docs/
http://truffleframework.com/docs/
https://metamask.io/
https://github.com/trufflesuite/ganache-cli


4.3 Dapp on Ethereum 65

Ethereum runs on its main-net, where users spend real amounts of ETH

in order make programmable transactions occur. Once the dapp is more

mature, but it is still too early to deploy it on the main-net, the developer

can use a test-net. Unlike a simulated environment offered by ganache-cli,

the test-net is a real network but still with fake ETH. It is useful to test how

the dapp behaves on public Internet with varying time delays. The test-net

used in this work is Ropsten. Both main and test-net require to run an

Ethereum client9 in order to interact with it. It is however avoidable, since

RPC access to Ethereum clients are also offered as a service. During this dapp

development infura10 access point has been used.

var testnet_provider = 'https://ropsten.infura.io/<user_id>';

var mainnet_provider = 'https://mainnet.infura.io/<user_id>';

In order to be able to perform and sign tasks that we are going to describe,

an Ethereum user account is needed. It can be created and managed through

web3 methods, or on interface sites like 11. A test-net account can be easily

filled with fake ETH12, while exchanges need to be used to buy ETH on the

main-net.

var account = '0x18ee6f47ab374776a7e42c4ff7bf8f8b7e319a98';

web3.eth.accounts.wallet.add('0x' + privateKey);

Below, the above mentioned operations and their implementation will be

described: smartcontract deployment, issuance triggering, transaction track-

ing and information retrieval.
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Figure 4.4: JavaScript Web3 Issuer compiling and instance creation.

1 getIssuerInstance: function () {

2 var contract = web3.eth.compile.solidity(issuerSource);

3
4 // extract ABI and Bytecode from compiled solidity code

5 var issuerAbi = contract.abiDefinition;

6 var issuerBytecode = contract.code;

7
8 // new contract instance

9 return new web3.eth.Contract(issuerAbi ,

10 {data: issuerBytecode });

11 }

4.3.2.1 Smartcontract Deployment

If I hasn’t yet an Issuer contract address to use, the first thing the dapp

will be used for is to deploy it. In order to be deployable, Issuer has to be

compiled. Issuer.sol can be compiled manually with solidity command line

compiler solc. However, the dapp should be able to compile it automatically

before each deployment. After being loaded from Issuer.sol, the Issuer

source code (Figure 4.3) is compiled through web3.eth.compile13 like in

Figure 4.4 at line 2. The returned datatype contains the abstract binary in-

terface (abi) and the executable bytecode, which are required to create a new

contract instance (line 9). The returned instance however, still owns no ad-

dress because it has not been yet deployed on the blockchain. A deployment

process is a transaction because it modifies the state of the blockchain. De-

ployment is performed by calling issuerInstance.deploy(args...). The

related transaction is tracked in the same way as later will be seen in Figure

9http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
10https://infura.io/
11https://www.myetherwallet.com/
12Enter the account address in order to receive test-net ETH (http://faucet.ropsten.

be:3001/), or, through APIs (https://github.com/sponnet/locals-faucetserver#

api).
13web3.eth.compile can also compile contracts defined in other languages like LLL and

Serpent.

http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
https://infura.io/
https://www.myetherwallet.com/
http://faucet.ropsten.be:3001/
http://faucet.ropsten.be:3001/
https://github.com/sponnet/locals-faucetserver#api
https://github.com/sponnet/locals-faucetserver#api
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4.5, for a Certificate creation.

4.3.2.2 Issuance Triggering

Once the Issuer is on the blockchain we can trigger its methods and de-

ploy Certificates. Figure 4.5 shows the newCertificate(args) method

which instantiate a new Certificate, with its parameter args that con-

tains both infotci and attachj. At lines 2-3 a new web3 Issuer object is

created, and its address field is set with the address value at which Issuer

is already deployed. Variables declared at line 5-6 will be used to update

the front-end which will be discussed later. Before instantiating however, it

is necessary to retrieve approximated transaction parameters. When calling

estimateGas() upon the issueCertificate(args) method (line 11-12),

a transaction is simulated by an Ethereum client but with no final state

change. The amount of consumed gas is returned as the simulated gasLimit.

web3.eth.getGasPrice() instead, returns the median of last few blocks, of

the amount of wei that users paid per each gas unit (line 9-10). It is re-

minded that wei is an Ethereum sub-unit. As seen in Chapter 3, the final

transaction fee will be gasLimit * wei. This information could be used by

I to understand the network state and to decide whether to accept or lower

the transaction fee. After that, at line 15-16, the web3 Issuer instance

method issueCertificate(args) is invoked as a transaction. It is done

through .send() where sender account, wei and gasLimit are specified.

4.3.2.3 Transaction Tracking

A PromiEvent is a JavaScript promise combined with an event emitter.

Promises are combined with event management constructs like on, once and

off. Each of these is executed when the Ethereum network reaches various

stages of an action, and we are looking for its results. For example, we would

like to capture events like a transaction creation, its block confirmation or to

eventually handle Ethereum Virtual Machine thrown errors.

A certificate deploying has been triggered as a transaction at lines 15-16
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Figure 4.5: JavaScript Web3 Certificate deployment handling.

1 newCertificate: async function(args) {

2 var issuerInstance = this.getIssuerInstance ();

3 issuerInstance.options.address = issuerAddr;

4
5 var txTable = document.getElementById('tableCerts ');
6 var row;

7
8 var wei , gasLimit , tx;

9 await web3.eth.getGasPrice ()

10 .then(function(res) { wei = res });

11 await issuerInstance.methods

12 .issueCertificate(args).estimateGas ({from: account })

13 .then(function(res) { gasLimit = res });

14
15 issuerInstance.methods.issueCertificate(args)

16 .send({ from: account , gas: gasLimit , gasPrice: wei })

17 .once('transactionHash ', function(txHash) {

18 row = txTable.insertRow (1);

19 row.insertCell (0); row.insertCell (0);

20 var cell = row.insertCell (0);

21 row.cells [0]. innerHTML = txHash;

22 this.sendBack(txHash);

23 })

24 .on('confirmation ', function(confNumber , receipt) {

25 row.cells [2]. innerHTML = confNumber;

26 if (confNumber >= MIN_CONFIRMS)

27 row.cells [2]. innerHTML = 'Full';
28 })

29 .on('error ', function(error) { this.handleError(tx) })

30 .then(function(receipt) {

31 issuerInstance.methods.getTotalCertificates ().call()

32 .then(function(res) {

33 var nrCerts = document.getElementById('nrCerts ');
34 nrCerts.innerHTML = res;

35 });

36
37 row.cells [1]. innerHTML = receipt.

38 events.LogNewCertificate.returnValues.certificate;

39 this.HTMLupdateBalance ();

40
41 return newCertAddr;

42 });

43
44 return;

45 }
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in Figure 4.5. Once transaction hash creation event occurs on the network

(line 17), the promise is executed and the web page of I is updated with a

new hashed transaction (lines 18-21). The txHash could be also sent back

to ci enabling him to track the transaction by its own (line 22).

Each time a new block is appended after the block which contains our

transaction, a new confirmation occurs. A confirmation event is handled

at line 31. A transaction here in considered fully confirmed if it reaches

MIN CONFIRMATIONS confirmations, which is 24. Otherwise, if after a certain

number of blocks appended to the ledger the transaction is still unconfirmed,

an error event is thrown (line 29). Currently, in web3 1.0 beta this limit

is 50 blocks. An EVM could throw other errors, like insufficient gas or lack

of execution rights, resulting into a machine state reversal. These an other

exceptions can be handled by handleError(tx). In case that I wants to

rise the gas price in order to speed up confirmation, a transaction with the

same nonce should be rebuilt and propagated again on the network, with a

slightly higher wei parameter.

What has been triggered however, is a chain of two transactions. The

first transaction has been launched explicitly by the web3 code. The second

internal to the blockchain transaction is started by the Issuer contract itself

(Figure 4.3, line 28). The received through promises receipt only provides

information about the first transaction. The second transaction, creates the

smartcontract that encodes cert(E(infotci , attachj)). Certificate address

is communicated through a solidity event instead (Figure 4.3, line 31), that

is captured on the web3 back-end side in Figure 4.5 at lines 37-38. An

intuitive representation of the transaction deployment and tracking process

can be observed in Figure 4.8.

4.3.2.4 Information Retrieval

Methods to retrieve information from Issuer are going to be described.

First of all, it can be seen in Figure 4.9 that the number of total deployed

certificates is displayed. This is achieved by performing an explicit call()
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on the Issuer method seen in Figure 4.3 at line 43, which is a read-only

function:

issuerInstance.methods.getTotalCertificates().call().then(...)

Calls do not modify anything, no fee is required. Therefore, I ∪C and other

entities can read cert(E(infotci , attachj)) whenever they want. Let’s say now

that all certificates ever deployed are wanted. Read-only contract methods

like getCertificates() in Figure 4.3 at line 37 can be defined, which returns

an array of deployed certificate addresses or a chunk of:

...

7: "0x2fFed016976aA1d37247d45c6e54F601F5a347d8"

8: "0x57c3B7954b8138E2AE2677E192432D1946Dc9d4e"

9: "0x1d843847f5f73842Dc0402803c5C9269f38aA113"

10: "0xae70a3993565278896d2cadF0A87D1B0CE97e1b0"

11: "0xbD2d50B8f921A911184b9EF2bC16C62F773dC1Cb"

12: "0xf7CD9Ee298D8C4Fa17898190559914B9D823f93b"

13: "0x86EBB57605F73a2d8F7d047c5296D63df1cD5e6E"

...

web3 code in Figure 4.6 shows how, for example, it is possible to retrieve

deployed certificates and view their owners. At line 2 a web3 Certificate

object is built. When getCertificates() is called and it returns the array

at lines 4-5, a loop can be performed where at each step we (1), change the

web3 Certificate object address and (2), access the desired smartcontract

information through another call (like ownerId, line 9).

4.3.3 Solution analysis

Requirement (R1) is fully satisfied, because:

(R1) with no trusted parties and whenever, any entity knowing Issuer’s

address on the blockchain is able to verify for any i and t, if
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Figure 4.6: JavaScript Web3 Issuer compiling and instance creation.

1 getDeployedCerts: function () {

2 var cert = self.getCertificateInstance ();

3
4 issuerInstance.methods.getCertificates ().call()

5 .then(function(res) {

6 for (i = 0; i < res.length; i++) {

7 cert.options.address = res[i];

8
9 cert.methods.ownerId ().call().then(function(ret) {

10 console.log(cert.options.address , 'owner is', ret)

11 });

12 }

13 });

14
15 return;

16 }

cert(E(infotci , attachj))

exists and attachj is unique.

Before analyzing the remaining two requirements some note is necessary

to take about the network state. At time of testing the deployed dapp on

the main-net, Ethereum experienced one of the greatest network loads ever,

as it is observable in Figure 4.7. (R2) and (R3) requirements will be shown

in a worst case scenario. Deployments occurred at approximately 1 million

tx/day, which is close enough to all time high values at time of writing this

thesis.

It has been shown in Section 2.3, that at the current state of develop-

ment, decentralized and consistent systems S like Ethereum should centralize

in order to satisfy enormous transaction demand T (S). Since Ethereum still

maintained a certain degree of decentralization and full global T -consensus,

the amount of pending transactions increased. In this scenario, in a con-

gested system where users want their transaction to be confirmed sooner,

they will be willing to rise transaction fees in order to be selected first by the

14https://bitinfocharts.com/comparison/ethereum-transactionfees.html#1y

https://bitinfocharts.com/comparison/ethereum-transactionfees.html#1y
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(a) Ethereum average transaction fee expressed in USD.

(b) Ethereum transactions per day processed.

Figure 4.7: Charts describing the Ethereum Network workload in January 2018,

when the Issuer dapp has been realized (source14).
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gas price
test-net (ropsten) main-net

txFee confirmation txFee confirmation

4Gwei
EUR 1.21

45s
EUR 1.26

480s
ETH 0.00134 ETH 0.00140

9Gwei
EUR 2.71

39s
EUR 2.71

1080s
ETH 0.00302 ETH 0.00302

20Gwei
EUR 6.64

33s
EUR 6.039

90s
ETH 0.00738 ETH 0.00671

40Gwei
EUR 12.09

42s
EUR 12.09

17s
ETH 0.01343 ETH 0.01343

Table 4.1: Transaction fees and required confirmation time at different gas price

values. gasLimit is fixed because determined by computational com-

plexity which is static, and 1 ETH exchange rate is fixed at 900 EUR.

miners (consensus participants). This behavior however, leads to an over-

all increase of commissions (Figure 4.7a), and transactions with previously

acceptable fees will be more likely be put in the wait queue. This is where

the Decentralized Certificate Issuer has been tested, and the results can be

observed in Table 4.1. The test-net is irrelevant to see any relation between

confirmation time and fees, it has been reported for completeness. On the

main-net however, it is sufficiently clear that rising the fee resulted into a

faster transaction confirmation time.

(R2) states that deployment operations should occur at a reasonable cost.

However, it is up to I to decide what is reasonable. In a micro-transaction

environment, where transactions occur very often in order to certify frequent

events, the presented solution may still not be acceptable for a real-world

business. Otherwise, if events to certify are more rare and real world costs re-

lated to E(−) are high for I, a blockchain certificate deployment cert(E(−))

usefulness could exceed by far its fee.

(R3) requires that a deployment network confirmation should occur after

a reasonable amount of time. On public ledgers, a deployment process is
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asynchronous. Meaning that even if it is fast, I shouldn’t block its execution

in order to wait deployment to occur. I should evaluate how much urgency

the deployment has: can it happen even after hours, or at most a few seconds

are allowed? As Table 4.1 shows, the answer to this question is closely related

to (R2), too.
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infotci

Request
E(infotci ,−)

Perform
E(infotci , attachj)

Injoke fee estimation

cert(E(infotci
, attachj))

Simulate
Deployment

cert(E(infotci
, attachj))

Fee Decision

Invoke Deployment

cert(E(infotci
, attachj))

Propagate
Transaction

Send ci txHash
View txHash
in explorer

Wait

X time

Receipt
arrived?

Consensus
Reaching

Send certificate
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Receive certifi-
cate address

No

Yes

ci U web3 Ethereum

Figure 4.8: A diagram that intuitively shows how a deployment process occurs
with web3.
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Conclusions

It has been seen that Bitcoin simultaneously provides system availability,

partition tolerance and a relaxed form of consistency. This consistency type

guarantees in a probabilistic manner that consensus will be reached in the

near future instead. It is also known now, that Bitcoin consensus resiliency

in fully asynchronous environments like Internet could be only lowered by

time unbounded message delays. A secure, Proof of Work based blockchain

system, should guarantee that the number of ledger writings is proportional

to the author’s computational power. It has been discussed that a distributed

system isn’t automatically decentralized, and that a system is decentralized

as much as it is its most centralized subsystem. The main desired properties

in a blockchain architecture are (i) political and architectural decentraliza-

tion, (ii) scalability to transactional demand and (iii) consistency. However,

it is now clear that in order to maintain consistency at scale, blockchain

systems tend to centralize. This is, indeed, the main challenge that public

distributed ledgers are currently facing. Beside reparametrization, multiple

research and development directions have been taken in order to solve it: al-

ternative consensus algorithms, multiple chain aggregation techniques, logic

and cryptographic enhancements.

Blockchain’s immutability feature gives a great opportunity to write in-

formation that must persist over time. The first requirement (R1) that such

a dapp should satisfy, states that certificate content and authenticity must

be verifiable by everyone, whenever, with no trusted party involved (certifi-

cate author included). For a real-world business however, a solution should

79
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furthermore provide (R2) an appropriate certificate deployment fee and (R3)

acceptable temporal confirmation delays. Ethereum has been used to realize

a decentralized application with certificate deployment functionalities. In

order to be able to certify a given event on the blockchain, the fabric pattern

has been adopted. It consists into having a main Issuer smartcontract which

always resides on the blockchain. Each time its methods are triggered by the

owner, it creates a new Certificate smartcontract with the given parameters.

The dapp has been tested in the middle of January 2018, while Ethereum

was experiencing a nearly all-time-high workload of 1 million tx/day. The

following conclusions have been made about the previously discussed require-

ments:

(R1) is fully satisfied, because any entity, with no trusted party and when-

ever, is able to retrieve all certificate addresses and their content by

only having the address which issuing organization used;

(R2) an appropriate transaction cost should be defined by the organization

controlling the dapp. However, during the dapp testing, various trans-

action fees have been set, from the lowest possible (at the time) 1.26

EUR up to 12.06 EUR, which can be definitely prohibitive for frequent

micro-transaction based environments;

(R3) of course, confirmation time delay tends to be inversely proportional to

the fee, at a fixed network workload. At the highest tested 12.06 EUR

fee confirmation time was 17s, and 90s at 6.04 EUR. While for some

organizations might be acceptable a confirmation time of 8 minutes for

a fee of 1.26 EUR, for other ones it might be unacceptable.

Observed (R2) and (R3) drawbacks are explainable by the DCS Theorem.

Ethereum maintained the same level of full consistency and decentralization,

therefore it was unable to satisfy a growing transactional demand. Since

pending transaction increased, users started to offer higher fees in order to

be preferred by miners. It caused an overall average fee increase. It can

be said that currently, high fees and longer confirmation time are closely



CONCLUSIONS 81

related to scalability problems. Currently, the main approach to overcome

the scalability problem is to sacrifice (R1).

A method of how to relax the (R1) requirement, to lower fees and confir-

mation delays, has been seen on the Stellar platform. There are no smartcon-

tracts, and a certificate can be encoded by a transaction with an appended

certificate hash, from the issuer to the requester account. However, in order

be able to verify the hash (meaning the certificate content), the verifying ac-

tor must still retrieve plain data from a trusted party. The required off-chain

support is clearly in contrast with (R1). On the other side, confirmation time

is less than 5s and a transaction fee is usually much less than a single cent,

which makes Stellar to fit into micro-transaction environments.

Private, permissioned ledgers aren’t the focus of this thesis, some notes

however have to be made. This ledger type, by totally rejecting decentraliza-

tion provides high throughput, full consistency and comparatively low costs.

Ledgers as a Service such as solutions based on Hyperledger Fabric, can be

used if trustless systems aren’t required. Such solutions however, require all

the actors (that trust each other) to be active participants within the net-

work. Certificated data could potentially lose any validity if its actors cease

their activity.

Future Works

The conclusions made in this work are to be taken as a state snapshot

of public distributed ledger technologies. Blockchains can be still consid-

ered in their early stage development. Scalability is currently considered the

most urgent problem to solve. Smartcontract enabled decentralized com-

puting platforms, are not only rapidly evolving into more sophisticated ver-

sion of themselves, but also new solutions are emerging. Sharding-enabled

platforms, side-chains, alternative data-structures and consensus algorithms,

scalability-friendly cryptographic primitives, are still to be widely experi-

mented. Therefore, a wide range of future works can be considered:
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• in the fabric pattern each deployment consists of two transactions: the

triggering one and the internal transaction which creates a certificate.

By avoiding this pattern, the dapp could use a single cheaper trans-

action. In order to be able to query a blockchain, a search-engine-like

mechanism is required. Given a certificate definition, such a tool would

allow to find its instances on the blockchain. A future work consists

into finding such tools that are currently in development phase, evalu-

ate them and implement the related dapp;

• Ethereum, in its ”2.0” version, will implement an hybrid consensus

model based on Proof of Work and Proof of Stake, features such as

state-sharding, and possibly zero knowledge proofs. After a sufficiently

relevant evolution, a future work could consist of retesting the scala-

bility of this platform;

• feasibility study and implementation on currently immature platforms

should be made. Conceptually different public distributed ledgers are

now being developed, too. Some examples follow. The discussed dapp

feasibility could be studied on platforms like the already cited Zilliqa

[45], which scheduled its main-net launch in year 2018. IOTA [48]

on the other side, is a currently under development ”blockchain-less”

protocol based on a direct-acyclic-graph data structure. IOTA’s most

interesting feature is the absence of fees, where for each transaction,

its author should validate two already existing on the network transac-

tions.
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