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Introduction

The representation and the mathematical analysis of connections between
individual parts or components of a system (of any kind) have been very
useful in enormous amount of contexts. Whether we are talking about small
communities of individuals, network of electronic devices, system of proteins,
abstract theoretical structures, the study through graph theory of the nature
of system of connections system has been deeply developed over the recent
years ([4], [5]). For these needs, graph theory has been enriched with many
abstract structures, models, algorithms to satisfies a lot of different requests
aimed at understanding, analyzing and even improving the functioning of a
general network. We can see a system of units that interact with each other
as a graph, i.e., a mathematical model consisting of a set of nodes (the units)
and a set of links between the nodes (the relations): a node i is connected
with a node j if i and j are related, in some pre-fixed sense, in the system.
This leads us to see a graph as a binary matrix A = (aij) where aij is 1 if i
and j are connected, 0 otherwise ([4]). We can do more and put weights on
the edges, so the matrix is no longer binary and gives more information on
the interactions.

The first graph theory problem dates back to 1736, with Leonhard Euler’s
work on the “Seven bridges of Königsberg”: the problem was to exhibit a walk
through the city of Königsberg that would cross each of the seven bridges
of the town once and only once ([15]). Euler proved that this walk does
not exist. Nowadays we would approach this problem talking about nodes,
vertices, degree, paths, distances from a node to another, connectivity and
so on, and we would have all the tools to rigorously prove the non existence
of this path. Many other problems were discussed after that and now we are
able to study and manage even huge networks such as the World Wide Web,
or the social network that “live” within.

The existence of a path between nodes that satisfies a particular property,
such as that considered by Euler, is only one of the classical problems in graph
theory, and it is applied in many situations: think of the need to improve
transport efficiency on the internet, e.g. understanding if a shortest path
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is the fastest path, or the need to organize the websites in the World Wide
Web, hence the analysis of the structure of the connections is crucial when it
comes to optimizing network efficiency ([4], [5], [13]). As for smaller networks,
one of the most popular example is the “Zachary’s karate club”, that is
the graph describing the relationships between 34 members of a university-
based karate club monitored from 1970 to 1972 by Wayne W. Zachary ([14]).
The interesting part was that at one particular moment there was a conflict
between two members A and B and the connections in the entire club deeply
changed, leading to fission of the social circle. Through a graph theory
algorithm, Zachary predicted the two final communities (except one person).

These are two examples that give us a little overview of the importance
and adaptability of graph theory, but this theory can be used for a big variety
of purposes: connectivity, shortest path problem, visualization, partitioning,
etc. In particular, in this thesis we will focusing on two of them: centrality
measures and clustering ([8], [9], [10], [11], [12], [4]).

In many situations it is useful to find the most important nodes of a
graph by assigning to each of them a numerical value which is supposed to
represent or estimate a feature of that node: this is what is called a centrality
measure. Clearly, we cannot define a general ranking of ‘importance’ in a
graph because any ranking clearly depends on the particular nature of the
network and especially on what we mean by ‘important’. For example, a
vertex i of a graph G can be important because it has local influence on the
information flows on the graph (like in certain electrical circuits) or a global
one (e.g., the rumors spreading in a community) ([4]). So the first step in
approaching this problem is to understand what it means to be important
in that network based on the task or purpose at hand. After figuring out
how we want to interpret the network, we can use an appropriate centrality
measure to rank the nodes. This has often proved very useful especially in
complex and big networks.

The first chapters of this thesis will be dedicated to the theory behind
these concepts, which involves linear algebra, probability theory and stochas-
tic processes. We will exhibit some of the best-known centrality measures,
including the world-famous Google PageRank, i.e., the algorithm that Google
uses to order search engine results ([2], [13], [3]).

Another important problem in graph theory is the division of a graph in
sub-graphs, depending on certain requirements. This is another challenge, in
general especially in big graphs (for example in social network analysis for
which an overview of the connections in the graph cannot be done visually,
so a mathematical approach is mandatory). But it is a challenge even for
smaller networks (see Zachary’s karate club as a simple example).

This topic of research is often divided in two: graph partitioning and
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community detection ([4]). The main difference is that, in the first case, one
needs to know a priori the sizes of the searched communities, the second case,
one does not. There are plenty of algorithms and techniques that have been
developed and used to find suitable sub-graphs in a graph and we will exhibit
some of them. We will also propose a new method of graph partitioning
that is based on Voronoi cells associated to central nodes. The method
defines Voronoi cells for a predetermined group of important nodes, and
then determines whether to merge a certain cells depending on the average
distance of its node to the central nodes of the other cells. In this thesis we
apply all these techniques to drama. In particular, we studied five plays by
William Shakespeare: Macbeth, Romeo and Juliet, Richard III, Twelfth Night
and The Winter’s Tale. The idea of using graphs to visualize and study plays
is not new and it is developing in recent times, especially around William
Shakespeare’s literary work. We cite as an example the work of Martin
Grandjean (an overview is available online) or the Shakespearean Network
in Wolfram Demonstrations Project. Grandjean compares the graphs of the
characters relations in Shakespeare’s tragedies. The Shakespearean Network
is an online interactive project that allows one to visualize the relations
among characters of ten plays and rank the most important nodes based
on PageRank centrality.

The following is a summary of the content of this dissertation. We in-
vestigate two types of graphs that represent two different interpretations of
the interactions among characters: they are based on the data set of how
many times i talks to j and how many times i talks about j . The natu-
ral approach is to define a graph where the vertices are the characters and
the edges are the relations among them, according to what kind of analysis
we want to make. Consequently we studied the roles and functions of the
characters using centrality measures in the two graphs. We also propose a
new point of view in “reading” relations between characters through graphs,
defining a finite number of graphs associated to K characters. Each such
graph is associated to a particular interesting character i: its nodes are the
other characters, and a link exists between the nodes j, k if the characters j,
k talked about i (counting how many times). This kind of approach brought
us to define two new centrality measures, not on the nodes, as it is generally
done, but on the K graphs, leading us to a ranking of importance of the
nodes i. On our five plays we tested the standard method for community de-
tection and graph partitioning, plus our new algorithm based on the Voronoi
cells. Finally, with the help of prof. R. Coronato of Università di Padova, we
interpret our final results and obtain several clear indications –some obvious,
some not- as to the meaning of the plays and the role of the characters in
them.
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Chapter 1

Background

1.1 A brief introduction to Graph Theory

A graph G is defined as the ordered pair G = (V, E) where V is a set
of n := |V | elements called nodes and E is a set of e := |E| elements called
edges. In particular, E can be written as follows:

E = {(i, j) ∈ V × V : i connected to j}.

G is called undirected if (i, j) ∈ E implies (j, i) ∈ E ; otherwise G is called
directed.

A graph G can be also represented by a n × n matrix A = (aij) called
adjacency matrix defined (with abuse of notation on the nodes’ label) as
follows:

aij =

{
1 if (i, j) ∈ E
0 else

We remark that G is undirected ⇐⇒ A is symmetric.
A path in a (un)directed graph G is an ordered k-tuple of nodes w =

(i1, . . . , ik) ∈ V k such that il 6= is for l, s ∈ {1, . . . , k}, l 6= s, and there is a
(un)directed edge between il and il+1 for all l = 1, . . . , k − 1. We call k the
length of the path. We denote the set of all directed paths of length k in
a directed graph as P+

k ⊆ V k and (Pk) for the undirected case. Finally, we
denote the set of all shortest paths of length k as P geo

k .
An undirected graph is connected if there exists a path between every pair

of nodes. A directed graph is strongly connected if there exists a directed path
between every pair of nodes.

Finally, a graph G is called simple if (i, i) /∈ E ∀ i ∈ V (absence of loops).
In literature simple means also that G must not have multiple edges : that is
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an example of the more generic case of a weighted graph, which is an ordered
triple G = (V, E , wG) in which V and E have the same meaning as before and
wG is a map:

wG : E −→ R
(i, j) 7→ wij

wG(E) can be seen as a set of ”weights” that we associate to every edge
in E . In particular, if wG(E) ⊂ N then every weight wij can be seen as the
number of repeated edges (i, j) in E .

In the weighted case we define (with abuse of notation) the adjacency
matrix as W = (wij) of G and G′ = (V, E) the associated unweighted graph.

For ease of exposition, when it is not specified, the graph G has every
weight equals to 1 and we write as before G = (V, E).

1.2 Perron-Frobenius Theorem

In order to understand how some centrality measures work we start by
recalling an important linear algebra result for positive matrices and for
irreducible non-negative matrices. We will write A ≥ 0 if aij ≥ 0 ∀ i, j =
1, . . . , n and A > 0 if the inequality is strict. All the materials in this section
can be found in [1] and [8].

Theorem 1.2.1 (Perron-Frobenius Theorem for positive matrix). Let A =
(aij) > 0 be a n × n matrix. We write the set of the eigenvalues of A as
Λ := {λ1, . . . , λn} such that ρ(A) = |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then:

1. λ1 ∈ R+ (Perron root) and λ1 > |λi| for i = 2, . . . , n − 1 (i.e. A is
primitive).

2. ∃ v > 0 and w > 0 such that Av = λ1v and wTA = λ1w
T

(Perron vectors).

3. The algebraic multiplicity of λ1 is 1.

4. If vi (or equivalently wi) is a right (left) eigenvector associated to λi
then if vi > 0 (wi > 0)⇒ i = 1.

5. limk→∞
Ak

λ1
k = vwT =: µ (Perron projection) where v and w are nor-

malized such that wTv = 1. The rate of convergence is of the order of(
λ2
λ1

)k
.

6. λ1 ≤ max
i=1,...,n

∑
j aij = ‖A‖∞.
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Proof. First, we remark that if ρ(A) = 0 then A is nilpotent for some n ∈ N,
so ‖An‖∞ = 0 and that contradicts the positivity of A. Thus ρ(A) > 0.

Let PJP−1 = A be the Jordan decomposition of A. Hence, PJkP−1 =
Ak. We denote Jλi the mi×mi Jordan block associated to the eigenvalue λi
and Ni = (njs) the mi ×mi nilpotent matrix such that:

njs =

{
1 if s = j + 1

0 else

Then Nmi = 0 and N, λiI commute, so we can apply the binomial
theorem:

Jkλi = (λiI +N)k =
k∑
l=0

(
k

l

)
λk−li N l =

min(k,mi−1)∑
l=1

(
k

l

)
λk−li N l. (1.1)

If ρ(A) < 1 then

lim
k→∞

min(k,mi−1)∑
l=1

(
k

l

)
λk−li

λ1
k

= 0 ∀ i = 1, . . . , n.

So ∃ limk→∞ J
k = 0 ⇒ ∃ limk→∞ PJ

kP−1 = limk→∞A
k = 0. We will

need this after. For now on, we will assume ρ(A) = |λ1| = 1.
If Av = λ1v and if we denote |v| = (|vi|)i=1,...,n then:

‖v‖ = |λ1|‖v‖ = ‖λ1v‖ = ‖Av‖ ≤ ‖A‖∞‖v‖ ⇒ |λ1| ≤ ‖A‖∞

and

|v| = |λ1||v| = |λ1v| = |Av| ≤ |A||v| ⇒ y := |A||v| − |v| ≥ 0.

If by contradiction y > 0⇒ Ay > 0⇒ z := A|v| > 0⇒ ∃ ε > 0 :

Ay = A(|A||v| − |v|) = |A|z− z > εz⇒ A

1 + ε
z > z

Defining B := 1
1+ε

A and multiplying by B the inequality above we obtain
the chain:

Bkz > Bk−1z > · · · > Bz > z ∀k ∈ N.

We have that ρ(B) = ρ( 1
1+ε

A) = 1
1+ε

ρ(A) = 1
1+ε

< 1 so, for the argument

on the Jordan decomposition of a positive matrix, we have limk→∞B
k = 0

thus z < limk→∞B
kz = 0 and that is absurd ⇒ y = 0, hence |v| is an
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eigenvector of |A| = A with eigenvalue 1 ⇒ 1 ∈ Λ, 1 = |λ1| = ρ(A) ⇒ 1 =
λ1 > 0.

If ρ(A) 6= 1 then we consider the matrix 1
|λ1|A. We have:

ρ(
1

|λ1|
A) = 1⇒ ∃v > 0 :

A

|λ1|
v = v⇒ Av = |λ1|v

so v is an eigenvector of A with eigenvalue |λ1| ⇒ |λ1| ∈ Λ and, as before,
λ1 > 0.

Now we have to show that ∀ i = 2, . . . , n : λ1 6= |λi| so that λ1 > |λi| and
that the algebraic multiplicity of λ1 is 1. Again, we can suppose λ1 = 1. In
order to do that we prove that:

• 1 is the only eigenvalue with absolute value equals to 1;

• its index (i.e. the dimension of its Jordan block in the Jordan decom-
position of A) is 1 so that we can say that the algebraic multiplicity of
1 is equal to its geometric multiplicity;

• finally, its geometric multiplicity is 1.

Let assume that ∃ i : |λi| = 1. As before, if Ax = λix then |A||x| = |x| >
0. In particular:∑

j=1,...,n

akj|xj| =
∑

j=1,...,n

|akjxj| = |xk| = |λi||xk| =

= |λixk| = |(Ax)k| = |
∑

j=1,...,n

akjxj|.

This means that we have equality in the triangle inequality so

∃ αj > 0 : akjxj = αj(ak1x1) ∀j = 2, . . . , n

⇒ x = x1(1,
α2ak1
ak2

, . . . ,
αnak1
akn

)T =: x1p > 0

Then A(x1p) = λix1p⇒ λip = Ap = |Ap| = |λip| = p⇒ λi = 1.
By contradiction, we assume that the index of 1 is m > 1. We write A

in its Jordan form, i.e. P−1AP = J and by hypothesis there exists a m×m
Jordan block J1 associated to the eigenvalue 1 in J . Then limk→∞ ‖Jk1 ‖∞ =
∞⇒ limk→∞ ‖Jk‖∞ =∞.

Now:

‖Jk‖∞ = ‖(P−1AP )k‖∞ ≤ ‖P−1‖∞‖Ak‖∞‖P‖∞

⇒ ‖Ak‖∞ ≥
‖Jk‖∞

‖P−1‖∞‖P‖∞
⇒ ‖Ak‖∞ →∞
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We denote ik the index that realizes ||Ak||∞. We know that ∃ p = (pi) >
0 : Ap = p so:

‖p‖∞ ≥ pik =
∑

j=1,...,n

a
(k)
ikj
pj ≥

∑
j=1,...,n

a
(k)
ikj

min
i=1,...,n

pi = ‖Ak‖∞ min
i=1,...,n

pi →∞

as k → ∞ ⇒ limk→∞ ‖p‖∞ = ∞ and that is absurd because p does not
depend on k ⇒ m = 1.

We recall that mgeo(1) is the number of Jordan blocks associated to 1 and
malg(1) is the sum of the sizes of the Jordan blocks associated to 1, so we
just proved that mgeo(1) = malg(1).

If m := mgeo(1) =dim Ker(A − λ1I) = malg(1) > 1 ⇒ ∃v1, . . . ,vm

positive and linearly independent vectors : Avi = vi ∀i = 1, . . . ,m. In
particular, vi 6= αvj ⇒ ∃ l ∈ {1, . . . , n} : vil 6= vjl ⇒ z := vi − vil

vjl
vj satisfies

Az = z ⇒ A|z| = |z| > 0 but this cannot be true because zl = 0 ⇒ m =
1 =dim Ker (A− I)⇒ ∃ v > 0 eigenvector of 1, that is the searched Perron
vector.

Clearly, all the proof can be used to find the unique left-hand Perron
vector w > 0 replacing A with AT .

If the eigenvector vi associated to λi is positive and w is the left-hand Per-
ron vector, then wTvi > 0 and wT = wTA⇒ wTvi = wTAvi = wTλivi ⇒
λi = 1.

We study now the behaviour at the limit of 1
λ1
kA

k. As we said before we

can decompose A and study the Jordan blocks
(

1
λ1
Jλi
)k ∀i = 1, . . . , n.

If i 6= 1 for the same argument as the one at the beginning of the proof
we have: (Jλi

λ1

)k
=

min(k,mi−1)∑
l=1

(
k

l

)
λk−li

λ1
k
N l (1.2)

Since λ1 > λi for i 6= 1, then limk→∞
(
k
l

)λk−li

λ1
k = 0⇒ limk→∞

(
Jλi
λ1

)k
= 0.

If i = 1 then Jkλ1 = λ1
k ⇒

(Jλi
λ1

)k
= 1. Finally, we have that:

∃ lim
k→∞

(Jλi
λ1

)k
= (1, 0, . . . , 0)T (1, 0, . . . , 0)⇒ lim

k→∞
P
(Jλi
λ1

)k
P−1 = lim

k→∞

Ak

λ1
k

with speed of convergence of the order of
(
λ2
λ1

)k
as we can see in 1.2.

Now, we normalize the Perron vectors v and wT such that wTv = 1.
With abuse of notation we still call them v and wT . Then we can write a
Jordan decomposition of A as PAP−1 = J , where the first column of P is v
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and the first row of P−1 is wT . So:

P−1
Jk

λ1
k
P =

Ak

λ1
k
⇒ lim

k→∞

Ak

λ1
k

= lim
k→∞

P−1
Jk

λ1
k
P.

We remark that, to the limit, in 1
λ1
kJ

k it survives only J
(k)
11 = 1 and the

remainder tends to 0, so by a direct calculation we have

lim
k→∞

P−1
Jk

λ1
k
P = vwT

.

Definition-Proposition 1.2.1. A n × n matrix A is irreducible if one of
the following statement is true:

1. A is not similar to a block upper triangular matrix, i.e. 6 ∃P permutation
matrix such that

P−1AP =

(
X Y
0 Z

)
where X and Z are both square matrices.

2. (I + A)n−1 > 0

3. ∀i, j = 1, . . . , n ∃ m ∈ N such that (Am)ij 6= 0

Definition 1.1. Let A be a n × n matrix, A ≥ 0. The period of a state i
is defined as the GCM{m ∈ N : (Am)ii > 0}. If A is irreducible then all
the states have the same period (by 3. of definition-Proposition 1.2.1). If the
period is 1 then A is called aperiodic, otherwise it is periodic.

Remark 1. If A is the adjacency matrix of a graph G = (V, E) then A ≥ 0
and (Ak)ls = #{w ∈ Pk : w1 = il, wk = is}. In other words, the kth-power of
the adjacency matrix gives the number of paths of length k between any pair
of nodes: keeping this in mind and using 3. of the 1.2.1, it can be shown that
a (directed) graph G is (strongly) connected if and only if A is irreducible.

Theorem 1.2.2 (Perron-Frobenius Theorem for irreducible non-negative
matrix). Let A = (aij) ≥ 0 be an irreducible n × n matrix with period h.
We write the set of the eigenvalues of A as in theorem 1.2.2. Then:

1. λ1 ∈ R+ (Perron root)

2. λ1, λ2 = λ1e
2πi 1

h , λ3 = λ1e
2πi 2

h , . . . , λh = λ1e
2πih−1

h ∈ Λ; they all have
algebraic multiplicity 1 and, obviously, λ1 = |λi| ∀i = 1, . . . , h.
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3. ∃ v > 0 and w > 0 such that Av = λ1v and wTA = λ1w
T (Perron

vectors)

4. If vi (or equivalently wi) is a right (left) eigenvector associated to λi
and vi > 0 (wi > 0)⇒ i ∈ {1, . . . , h}.

5. if h=1 then limk→∞
Ak

λ1
k = vwT =: µ (Perron projection) where v and

w are normalized such that wTv = 1. The rate of convergence is of the

order of
(
λ2
λ1

)k
.

There are some other results of this theorem concerning irreducible ma-
trices. For the second proof and more details see chapter 8 of [1].

1.3 Random walks and Ergodic Theorem

The Perron-Frobenius Theorem has an interpretation in terms of random
walks on a graph G that gives a more practical understanding of some im-
portant centrality measures. We recall now some basic properties and results
about Markov chains that can be found in [7] and then we will exhibit the
stochastic explanation of the theorem.

Definition 1.2. Let (Xn)n∈N be a stochastic process, i.e. a sequence of
random variables defined on a probability space (Ω,A, P ), where Ω is a set,
A is a sigma-algebra on Ω, P is a probability and S is a discrete measurable
set with respect to a sigma-algebra S:

Xn : (Ω,A, P ) −→ (S,S)
w 7→ Xn(w)

(Xn)n∈N is a Markov chain if it satisfies the Markov property :

P (Xn = in|Xn−1 = in−1, . . . , X0 = i0) = P (Xn = in|Xn−1 = in−1)

A Markov chain is time homogeneous if P (Xn = j|Xn−1 = i) does not
depend on n. For now on, we consider time homogeneous Markov chain.

We associate to a Markov chain (Xn)n∈N a function Q called transition
matrix defined as:

Q(i, j) = P (Xn = j|Xn−1 = i).

We remark that, with abuse of notations on the elements of S, Q can be
seen as a |S| × |S| matrix. Now:

P (X0 = i0, . .., Xn = in) =

14



= P (X0 = i0, . .., Xn−1 = in−1)P (Xn = in|X0 = i0, . .., Xn−1 = in−1) =

= P (X0 = i0, . .., Xn−1 = in−1)P (Xn = in|Xn−1 = in−1) =

= P (X0 = i0, . .., Xn−1 = in−1)Q(in−1, in) =

... = P (X0 = i0)Q(i0, i1)...Q(in−1, in) = P (X0 = i0)
n∏
j=1

Q(ij−1, ij)

So:
P (Xn = in) =

∑
i0,. ..,in−1∈S

P (X0 = i0, . .., Xn = in) =

=
∑

i0,. ..,in−1∈S

P (X0 = i0)
n∏
j=1

Q(ij−1, ij) =

=
∑
i0∈S

P (X0 = i0)
∑

i1,. ..,in−1∈S

n∏
j=1

Q(ij−1, ij) =

∑
i0∈S

P (X0 = i0)Q
n(i0, in)

We compact this result in matrix notation: if µn is the probability of Xn,
we have

µn = µ0Q
n.

The Markov property guarantees thatQ is a stochastic matrix, i.e. ∀ i, j ∈
S:

1. Q(i, j) ≥ 0

2.
∑

j Q(i, j) = 1

hence, 1 is an eigenvalue of Q since Q1 = 1.
If a time homogeneous Markov chain has spatial homogeneity, i.e.:

Q(i, j) = Q(0, j − i)

then the Markov chain is called random walk.

Definition 1.3. A Markov chain is called irreducible if Q is irreducible. In
other words, (Xn)n is irreducible if, starting from i, at a certain time n there
is a positive chance to arrive on j, for all nodes i and j.
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Definition 1.4. The period of a state i ∈ S is defined as

hi = GCD{n : Qn(i, i) > 0}.

A state i ∈ S is called aperiodic if hi = 1. Otherwise, i is periodic. Thus,
a state i is periodic if starting from i it returns cyclically on i with a positive
probability.

Definition 1.5. A probability measure µ = (µ1, . . . , µn, . . . ) on S is station-
ary for Q if: ∑

i

µiQ(i, j) = µj, ∀ j ∈ S.

In matrix notation this means µ = µQ, so, if such µ exists, it is an
eigenvector for Q associated to the eigenvalue 1.

Remark 2. If a Markov chain is aperiodic and irreducible then, as we said, 1
is an eigenvalue of Q. Moreover, for Perron-Frobenius Theorem (6.) ρ(Q)=
1 since 1 = ||Q||∞ ≥ ρ(Q) ≥ 1 and all the other eigenvalues are smaller
in norm. Also, there is a unique stationary probability vector µ for Q (it
exists for Perron-Frobenius Theorem and it is unique because it has to satisfy∑

j µj = 1). In particular, limk→∞Q
k = 1µ, so:

lim
k→∞

Qk(i, j) = µj

with rate of convergence as |λ2|k.
This means that the long-term probability of being in j is independent

of the initial state i and the system evolves over time to a stationary state
µ. This is the probability point of view of the Perron-Frobenius Theorem,
known as the Ergodic Theorem.

In particular, if we have a random walk on a graph G that has the prop-
erties as above, then Qk(i, j) is the probability to pass from i to j through a
path on G of length k. Thus, finding its stationary state means choosing an
initial state i0, joining another connected state i1 from i0 with the probability
specified by Q(i0, i1) and so on, repeatedly. At the limit this process con-
verges to a probability vector that identifies the amount of mass that passed
through any node.
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Chapter 2

Centrality measures

The goal of this section is to find a way to detect the most important
node of a graph. Clearly, this is often a difficult request especially because
”being the most important node” is not a property that can be extended to
all types of networks, instead it changes depending on the context and the
specific network we are studying through the model of a graph.

We introduce now some of the most common centrality measures; it is not
surprising that most of them can be seen as a function of the adjacency matrix
A or, at least, as an information that we can find out by a manipulation of
A.

2.1 Degree centrality

Let G be an undirected graph. The simplest way to define ’importancy’
of the node i in G is to count the number of nodes j such that ∃ (i, j) ∈ E ,
the so called neighbors of i. We define this number as the degree of i.

Note that, if 1 is the vector of all ones (1, . . . , 1)T , d := A1 gives the
column vector such that

di =
n∑
j=1

aij

is the degree of i.
This can be naturally extended to directed graphs. The only difference

is that we have to distinguish two types of degree:

• douti = [A1]i out-degree of i

• dini = [AT1]i in-degree of i

17



Clearly, if G is undirected douti = dini = di.
If G = (V,E,wG) is a weighted graph, then we define in-degree and out-

degree of i as before, but clearly the weighted in-degree and out-degree are
no longer the number of incoming and outgoing neighbors.

2.2 Closeness centrality

Let G be a connected undirected graph. The distance between two nodes
i and j is defined as: d(i, j) = min{k ∈ N : w ∈ Pk, w1 = i, wk = j}; in
other words d(i, j) is the length of the shortest path that connects i and j.

Bavelas in 1950 (see [9]) defined the closeness centrality of i as

Ci =
1∑

j∈V
d(i, j)

The more a node has short distances with all the other nodes (in this sense
it is ’closer’), the more its closeness is large.

If G is not connected, then there are two generalizations of closeness
centrality. The first one is the harmonic centrality (see [10] and [11]):

Hi =
∑
j∈V

1

d(i, j)

When d(i, j) =∞ we use the convention 1
∞ = 0.

The second one can be seen as a generic formula (that we will use in our
applications) that considers also the size n of the network and the number
ni of reachable nodes from i:

ci =

(
ni

n− 1

)2

·Ci

The generalizations to strongly connected directed graphs are the follow-
ing:

• couti =
(
ni
n−1

)2 · 1∑
j∈V

d+(i,j)
out-closeness of i

• couti =
(
mi
n−1

)2 · 1∑
j∈V

d+(j,i)
in-closeness of i

where mi is the number of nodes that can reach i, ni is the number of
reachable nodes from i and d+(i, j) := min{k ∈ N : w ∈ P+

k , w1 = i, wk =
j}.
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2.3 Betweenness centrality

In a lot of networks (the most popular example is a telecommunication
network) it is interesting to define ’importance’ as the capacity of a node
of being in the middle of a lot of shortest paths between the other nodes
of the graph. That means in some sort of way that a node i with a large
betweenness centrality is a good mediator/intermediary in the network.

Let G be a directed graph. Freeman (see [12]) gave the first definition of
betweenness centrality of a node i as follows:

Bi =
∑
l,s∈V
l 6=s

g(l,i,s)
g(l,s)

where g(l,i,s) is the number of shortest paths w ∈
⋃
kP

geo
k such that if w ∈

P geo
k then w1 = l, wk = s, ∃j ∈ {2, . . . , k − 1} such that wj = i and
g(l,s) =

∑
j∈V g(l,j,s).

Every terms of the sum Bi can be seen as the probability to pass through
i walking in a shortest path from l to s. So Bi is a quantification of how
much i is present in the shortest paths between every other pair of nodes.

Note that with these definitions, in the case of an undirected graph we
have g(l,s) = g(s,l) and g(l,i,s) = g(s,i,l) ∀l, s ∈ V, l 6= s, so that in the formula
for Bi we count twice two identical probabilities; for this reason it is better
to redefine in the undirected case the formula as:

BU
i =

1

2
Bi

2.4 Eigenvector centrality

Let us consider two nodes i and j in an undirected network such that
di = dj; considering degree centrality, i and j have the exact same impor-
tance in the graph, but in a lot of networks this is not how things work.
Precisely, we would like to distinguish the case in which i is connected to
some important nodes and j isn’t, increasing the centrality of i. This is
eigenvector centrality’s job, so we can consider it as a much more precise
degree centrality. Let’s see how we can formalize this concept, using the
argument mentioned in [4].

Let G = (V,E) be a strongly connected (un)directed graph, A its ad-
jacency matrix and let x be the unknown vector of centrality. We want to
define a sequence of vector xk such that xk+1 is an improved version of xk,
in the sense that we have increased the centrality (xk)i of a node i if i is con-
nected to important nodes. We first remark that A satisfies the hypothesis of
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Perron-Frobenius Theorem for non negative irreducible matrix; in particular,
denoting the set of the eigenvalues as in the statement of the Theorem, we
have that λ1 ≥ |λi| ∀ i 6= 1.

We start by setting:

x0 =
1

λ1
1

i.e. every node has the exact same importance equals to 1
λ1

. The need

of adding the factor 1
λ1

will be clear soon. Now, we want to give more
importance to the nodes that are connected to other important nodes for x0,
that for now are every vertex. This leads us to define:

x1 :=
1

λ1
Ax0 =

1

λ1
d

i.e. the scaled vector of degree centrality. In general, if we want to
improve xk in the sense that we discussed before, we have to define:

(xk+1)i =
1

λ1

∑
{j: (i,j)∈E}

(xk)j =
∑
j

1

λ1
aij(xk)j

hence:

xk+1 = Axk =
1

λk1
Akx0.

It is natural to think that the limit of this sequence gives the best opti-
mization vector, i.e. the searched x. Let’s calculate it.

We know that ∃ ci ∈ R :

x0 =
∑
i

civi

where vi are the eigenvectors of A. Thus:

xk = Akx0 = Ak
∑
i

civi =
∑
i

ciA
kvi =

∑
i

ciλ
k
i vi = λk1

∑
i

ci
λki
λk1

vi

⇒ lim
k→∞

1

λk1
xk = c1v1

We find out that the limiting vector is proportional to v1, i.e. the searched
x satisfies Ax = λ1x. In other word, it is an eigenvector for λ1 and this is why
we added 1

λ1
a priori. Since centrality measures have sense if they are positive,

by Perron-Frobenius Theorem we know that there is a positive eigenvector
for λ1, p > 0. Finally, we define the eigenvector centrality of i as Ei := pi.
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2.5 PageRank

PageRank is the algorithm that Google uses to order the list of their
search engine results. We can see the World Wide Web has a graph where
the nodes are the websites and the edges are the links from a site to another.

An obvious but important remark to make is that if the website i has a
link to the website j there’s no guarantee that j has a link to i. So the graph
can be directed, and this is one of the strength of the method. Even if it
has born for the website ranking purpose, PageRank constitutes an actual
centrality measure that can be used in every network and can be seen as a
better eigenvector centrality. Let’s see how and why, following the approach
suggested in [2] of the Page algorithm explained in [13] and [3]. It is clear
that this method gives perfectly strong results for undirected graph.

Let G = (V,E) be a directed graph, A its adjacency matrix. Our ultimate
goal is to construct an irreducible stochastic matrix so that we can use Perron-
Frobenius theorem to find a positive centrality measure for the nodes.

We first want to define a matrix H = (hij) that represents the probability
for a node i to be reached (in one step) by the node j; if there is no link from
j to i the chance is 0, otherwise it is 1

doutj
.

Let D = (dij) be the diagonal matrix such that

dij =


doutj if i = j and doutj > 0

1 if i = j and doutj = 0

0 else

We remark that the apparently not necessary condition on j such that
doutj = 0 ensures that D is invertible. Let H = ATD−1 = (hij) = (ajid

−1
jj ).

Thus:

hij =

{
0 if (j, i) /∈ E
1
dij

else
. (2.1)

We remark that if ∃ j : doutj = 0 ⇒ aji = 0 ∀i ∈ {1, . . . , n} ⇒ hij =
0 ∀i ∈ {1, . . . , n}. This nodes are called dangling nodes and correspond to the
columns of H made of all zeros. The goal is to make possible the walk from
the dangling nodes to some other node. We fix it introducing an uniform
discrete distribution for the dangling nodes as follows: we denote as I the
vector with the indices of the dangling nodes and we construct a such that

aj =

{
1 if j /∈ I

0 else
.
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We define:

S = H +
1

n
1aT

In other words, we are hypothetically adding (j, i) ∈ E ∀i ∈ {1, . . . , n}, ∀j ∈
I. This can still be a reducible matrix, so we introduce a constant α ∈ (0, 1)
(the so called Google damping factor) and we finally define the Google matrix :

Gα =: αS + (1− α)
1

n
11T

We remark that S represents a random walk on G, or equivalently a
weighted directed graph where every edge (i, j) in G has as weight the prob-
ability of reaching j from i, and where we connected all the nodes to all the
dangling nodes j with weight sij = 1

n
. But we can still have nodes that are

not reachable from some others. So we introduced an imaginary node that
with probability 1−α is reached by any other node with uniform probability
1
n
, so the graph G becomes strongly connected and this leads us to the irre-

ducibility of Gα. Finally, for Perron-Frobenius Theorem it exists the Perron
vector p(α) associated to the eigenvalue 1, so we define the PageRank of node
i as p(α)i. We could have chosen any other probability vector instead of the
uniform one, but this choice in our case is the most reasonable.

This is a procedure that shows how we ”modify” the properties of the
graph considering Gα instead of G, in order to have a better mathematical
environment.

2.6 Analytic functions and centrality measures

Since a graph can be seen as a matrix, it is natural to ask what are
the conditions under which we can define a centrality measure as a function
of the adjacency matrix A. We are interested in finding a class of positive
measures that can be manipulated through a parameter in order to give more
importance to shorter or longer walks, based on our requirements. All the
concepts of this section can be found in [2].

Let BR := {z ∈ C : |z| < R}. We consider the class of analytic functions
with positive coefficients:

F = {f : C→ C : ∃Rf > 0, c0 ≥ 0, (ck)k∈N ∈ R+ : ∀z ∈ BRf f(z) =
∞∑
k=0

ckz
k}

In the following we refer to Rf as the radius of convergence of f and we
will use all the notations of theorem 1.2.2.
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Definition 2.1. A function f is defined on the spectrum of A if ∀ λi ∈ Λ
∃ f (j)(λi) ∀ j = 0, . . . ,mi, where mi is the largest size of the Jordan blocks
associated to λi in the Jordan decomposition A = PJP−1.

If f is defined on the spectrum of A we define:

f(J) :=


f(J1) 0 · · · 0

0 f(J2) · · · 0
...

...
. . .

...
0 0 · · · f(Jn)


where:

f(Ji) :=


f(λi) f ′(λi) · · · f (mi−1)(λi)

(mi−1)!

0 f(λi) · · · f (mi−2)(λi)
(mi−2)!

...
...

. . .
...

0 0 · · · f(λi)


and f(A) := Pf(J)P−1.

Proposition 2.6.1. Let f ∈ F , f(z) =
∞∑
k=0

ckz
k ∀ z ∈ BRf .

If f is defined on the spectrum of A then f(A) =
∞∑
k=0

ckA
k > 0.

In general, if τ :=
Rf
λ1

, then ∀ t ∈ (0, τ) f(tA) is well defined and f(tA) >
0.

Proof. As we remarked in 1.1 we can write Ji = λiI+Ni whereNi is nilpotent.
If f is defined on the spectrum of A then:

f(Ji) = f(λi)I + f ′(λi)Ni + · · ·+ f (mi−1)(λi)

(mi − 1)!
Nmi−1
i =

=
∞∑
k=0

ckλ
k
i I +

∞∑
k=1

kckλ
k−1
i Ni + · · ·+

∞∑
k=mi−1

(
k

mi − 1

)
ckλ

k−(mi−1)
i Nmi−1

i =

=
∞∑
k=0

ck

min(k,mi−1)∑
l=0

(
k

l

)
λk−li N l =

∞∑
k=0

ckJ
k
i

With a direct calculation we have P−1f(A)P = f(J) =
∑∞

k=0 ckJ
k, hence:

f(A) =
∞∑
k=0

ck(PJ
kP−1) =

∞∑
k=0

ckA
k.

23



If f ∈ F then surely f is defined in tλ1 ∀t such that |tλ1| < Rf , i.e.

∀ t ∈ (0, τ). So f is defined on the spectrum of tA⇒ f(tA) =
∞∑
k=0

ckt
kAk.

In both cases the matrix is strictly positive because ck > 0 for all k.

2.6.1 Examples

We show some other well-known centrality measures that are examples
of the previous concepts.

1. f(βz) = eβz. Rf =∞ so for what we said we can choose β > 0.
The exponential subgraph centrality of node i is defined as:

SC(β)i = [eβA]ii = (
∞∑
k=0

βk

k!
Ak)ii

(Ak)ii is the number of all walks of length k that begin and end with
i (closed walks). So SC(β)i is a measure of how easy i can return to
itself walking through any path in the entire network. The coefficients
βk

k!
penalize the contribution of the number of path of length k when k

is large, giving more weight to the shorter paths.

The total communicability centrality of node i is defined as:

TC(β)i = [eβA1]i

The difference with exponential subgraph centrality is that total com-
municability centrality counts all the walks that just begin with i, i.e.
it is a measure of how i ”communicates” with all the other nodes j,
again, in the entire network.

2. f(αz) = (1− αz)−1 =
∞∑
k=0

αkzk Rf = 1 so we can choose 0 < α < 1
λ1

.

We remark that with these conditions on α the matrix (I − αA) is
invertible and its inverse can be written as its Neumann expansion, i.e.
the power series as above.

The resolvent subgraph centrality of node i is defined as:

RC(α)i = [(I − αA)−1]ii = (
∞∑
k=0

αkAk)ii

and the Katz centrality of node i is defined as:

K(α)i = [(I − αA)−11]i = (
∞∑
k=0

αkAk1)i.
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Similar considerations as the ones above can be done for this two cen-
tralities.

2.6.2 Limiting behavior

The crucial point of using this class of centralities is to find the better
choice for the parameter in order to avoid the ones that will give similar
ranking of importance for the nodes to other centrality formula or even to
the centrality in question itself.

Let F∞ be the subset of functions f ∈ F such that Rf =∞ and Flim be
the subset of functions f ∈ F such that

Rf <∞ and
∞∑
k=0

ckR
k
f =∞.

We remark that F∞ ∪ Flim ( F because if we consider f(z) =
∞∑
k=1

zk

k2
we

have Rf = 1 and
∞∑
k=1

1
k2
<∞.

Definition 2.2. Let G = (V, E), |V | = n, be a graph. We name the nodes
as {1, . . . , n}. Let the map

c : V −→ R
i 7→ c(i)

be a centrality measure on G. We denote C ∈ Rn the vector such that
Ci = c(i). We order the nodes of V as {i1, . . . , in} so that if l ≤ s then
c(il) ≥ c(is). We define the sequence:{

ri1 = 1

rik+1
= rikδc(ik+1),c(ik) + k(1− δc(ik+1),c(ik)) for 1 < k < n

where δ is the Kronecker delta.
Finally we define the ranking of C as the vector RC such that (RC)i = ri.

Theorem 2.6.2 (Undirected case). Let G = (V,E) be a connected, undi-
rected graph with primitive adjacency matrix A. Let f ∈ F be defined on the
spectrum of A and let SC(t) and TC(t) be the vectors:

- SC(t)i := [f(tA)]ii f-subgraph centrality

- TC(t)i := [f(tA)1]i f-total communicability centrality
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Then:

1. lim
t→0+

RSC(t) = lim
t→0+

RTC(t) = Rd where d is the degree centrality.

2. If f ∈ F∞ ∪ Flim then:

lim
t→τ−

RSC(t) = lim
t→τ−

RTC(t) = RE = v

where E is the eigenvector centrality and v the right-hand Perron vec-
tor.

3. If we replace in the definition of f -total communicability 1 with some
other positive vector the previous statements are still true.

Remark 3. Before proving it we remark that this theorem tells us that while
the parameter decays to 0 we are basically giving more and more weight to
the shorter paths (because the weights of longer walks decay faster), until
near 0 we are in fact dealing with paths of length 1, i.e. the degree. Same
argument with opposite conclusion can be given for t that grows. That’s
why the parameter is fundamental if we want to use the same centrality in
different situations, whether we have a network where ’importance’ has to
be given to shorter paths (local influence), whether we want the contrary
(global influence).

Lemma 2.6.3. Let a(t) :=
∞∑
k=0

akt
k, b(t) :=

∞∑
k=0

bkt
k with ak > 0, bk > 0

∀ k ∈ N and a(t) <∞, b(t) <∞ ∀ t ≥ 0.

If lim
k→∞

ak
bk

= 0 then lim
t→∞

a(t)
b(t)

= 0

Proof. Let ε > 0. For hypothesis ∃ N ∈ N such that ∀k > N ak
bk
< ε. Then:

a(t)

b(t)
=

N∑
k=0

akt
k

N∑
k=0

aktk +
∞∑

k=N+1

aktk
+

∞∑
k=N+1

ak
bk
bkt

k

N∑
k=0

aktk +
∞∑

k=N+1

aktk
<

<

N∑
k=0

akt
k

N∑
k=0

aktk +
∞∑

k=N+1

aktk
+ ε

∞∑
k=N+1

bkt
k

N∑
k=0

aktk +
∞∑

k=N+1

aktk

The first term tends to 0 as t→∞ so we have the thesis.
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Lemma 2.6.4. Let A be a primitive matrix and f ∈ F∞ ∪ Flim defined on
the spectrum of A. Then:

lim
t→τ−

tjf (j)(tλ1)

f(tλi)
= 0 ∀ j ∈ N, ∀ i = 2, . . . , n

Proof. If f ∈ Flim then tjf (j)(tλ1) is a power series with radius of convergence
Rf . tλ1 < Rf is t → τ so tjf (j)(tλ1) is finite. Plus, lim

t→τ−
f(tλi) = ∞ for all

i 6= 1, so we have the thesis.
Let f ∈ F∞. As before, f (j) has the same radius of convergence of f and

|tjf (j)(tλ1)| ≤
∞∑
k=0

(k + j) . . . (k + 1)ck+jt
k+j|λi|k <∞

We denote ak = (k + j) . . . (k + 1)ck+jλ
k
i , bk = ckλ

k
i . For lemma 2.6.3 we

have the thesis.

Proof of theorem 2.6.2. SC(t)i =
∞∑
k=0

ckt
k[Ak]ii. The ranking is invariant for

translation and scalar multiplication of the elements of the centrality so if
we define:

Yi(t) :=
1

c2t2
[SC(t)− c01]i = di +

∞∑
k=3

ck
c2
tk−2[Ak+1]ii

then RY(t) = RSC(t). So:

lim
t→0+

RSC(t) = lim
t→0+

RY = Rd.

We can do the same defining:

Yi(t) :=
1

c1t
[TC(t)− c01]i;

we have the same result for RTC(t).

SC(t)i =
n∑
k=1

f(tλk)vk
2
i , where vk is the unit right eigenvector associated

to λk and v1 > 0 is the right Perron eigenvector. We define:

Y(t)i :=
1

f(tλ1)
SC(t)i = v1

2
i +

n∑
k=2

f(tλk)

f(tλ1)
vk

2
i → v1

2
i
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as t→ τ−, for lemma 2.6.4. Thus, we have the thesis since Rv1 = Rv1
2 . We

can do the same with TC(t)i =
∑n

k=1 f(tλk)(vk
T1)vki. We define:

Y(t)i :=
1

f(tλ1)(vk
T1)

TC(t)i

and we obtain the same result.
All these arguments can be done identically with any other positive vector

instead of 1, so the proof is complete.

Remark 4. If A is not primitive then we can consider the primitive matrix
Aε = εA+(1−ε)I, 0 < ε < 1 and if the limit behaviour of f(tAε) still depends
on ε we can then calculate the limit for ε → 0+. It is useful to remark that
ρ(A) = ρ(Aε) so the radius of convergence is identical.

The theorem 2.6.2 can be extended to directed weighted graphs but first
a remark has to be done: when we are working with directed networks we
have to make a difference between central nodes that are important based
on their incoming edges (authorities) and central nodes that are important
based on their outgoing edges (hubs). In mathematical terms, this means
that we can calculate f(tA) if we are interested in detecting authority nodes
and f(tAT ) for the hubs ones.

We now give a table that resumes the general case of the directed weighted
graph. The proof is similar to the previous one, although with some varia-
tions: instead of the spectral decomposition we must use the more general
Jordan decomposition. More details are in [2].

Theorem 2.6.5. Let G = (V,E,wG) be a generic strongly connected, di-
rected, simple graph with adjacency matrix W , with wG ≥ 0. We denote
v the right-hand Perron vector of W and w the left-hand one. With the
same hypothesis on f as in theorem 2.6.2, denoting TCT(t) = [f(tW T )1],
we have the same results for hubs and authorities centralities, resumed in the
following table:

α→ 0+ α→ τ−

TC(t) dout v
TCT(t) din w

Remark 5. The spectral gap of a matrix A is the value |λ1−λ2|. In undirected
graph we can see in the proof of the theorem that the speed of convergence
of the ranking as t→ τ− depends on the spectral gap. If the spectral gap is
big, when t→ τ− f(tλ1) will grow much faster than f(tλ2) and consequently
than f(tλk) for k = 3, . . . , n. Thus in networks with a large spectral gap it
is smart to use eigenvector as a measure of centrality.
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As t → 0+ we see that Yi(t) − di is dominated by c3
c2
t(A3)ii, so the

number of triangles where i is a vertex is crucial for the speed of convergence
to degree centrality. If i is in a lot of triangles then its position in the graph
is similar to the one of a node of a clique, i.e. a (sub)graph where every node
shares an edge with all the others. Thus i has the possibility to communicate
(i.e. exchange information) with a dense community in the network so its
centrality takes time to become just the degree one when we are focusing on
local influence.

2.6.3 Extension to PageRank

It is worthy to mention a result that involves the limiting behavior of the
PageRank when the parameter α tends to zero.

Theorem 2.6.6. Let Gα be the Google matrix, H as in 2.1 and p(α) be the
PageRank of G, 0 < α < 1. Then:

lim
α→0+

Rp(α) = H1.

We don’t prove this theorem but we give an idea. It can be shown [3]
that p(α) = x(xT1)−1 where x satisfies:

(I − αH)x =
1

n
1 := n

The system is solvable because I − αH is invertible and equals to its
Neumann expansion. So x =

∑∞
k=0 α

kHkn and x−n
α

has the same ranking as
x. But then:

lim
α→0+

x− n

α
= Hn =

1

n
H1⇒ lim

α→0+
Rp(α) = lim

α→0+
Rx−n

α
= R 1

n
H1 = RH1

and the last term is essentially the ranking of the weighted in-degree.
The behavior near τ = 1 is bad for some kind of networks in terms of

accuracy, especially the one that are not enough connected. Basically, α near
the endpoints tends to delete all the good characteristics of the PageRank
procedure. This is not surprising because choosing α ∼ 1 means join the
the damping factor very rarely and choosing α ∼ 0 means join the nodes of
the graph very rarely. That’s why, in general, the choice of the parameter is
fundamental to avoid multiple data set rankings that are not too correlated.

The most common choice, proposed by Page, is α = 0.85. For more
details see [13].
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Chapter 3

Applications to Shakespeare’s
plays and new centrality
measures

We will show in this chapter how we can use all the previous concepts
and methods to analyze drama; in fact, a study of literature works through
this theory can be useful for three reasons: confirm a qualitative analysis
with a purely quantitative analysis, enlighten a criterion that predicts qual-
itative aspects and enlighten aspects that cannot be seen immediately with
a qualitative check of the plays.

We have studied five William Shakespeare’s works: Macbeth, Romeo and
Juliet, Richard III, Twelfth night and The Winter’s tale. The choice has
been made based on the different type of genres: in order, we choose two
tragedies, a historical play and two comedies. All the implementations and
algorithms were performed using MATLAB.

3.1 Drama as graphs

Depending on what kind of analysis we are interested in, there are many
ways to represent the interactions between the characters in a story.

3.1.1 Undirected case

The first natural representation is an undirected weighted graph

G1 = (V, E1, w1)

where the nodes in V are the characters and (i, j) ∈ E1 ⇐⇒ (j, i) ∈ E1 ⇐⇒
i and j talk to each other at least once during the entire play. The edge
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weights can be the amount of times that i talks with j. The associated
unweighted graph GA

1 = (V, E1) is simply the graph that gives us an overview
about the direct verbal interactions between the characters.

Figure 3.1: Relation among characters in Macbeth

3.1.2 Directed case

Even if the previous model can give perfectly reasonable results (we will
see it), a complex plot cannot certainly be resumed just by how many times
people talk to each other. In fact we can also consider the weighted graph

G2 = (V, E2, w2)

where (i, j) ∈ E2 ⇐⇒ i talks about j. The weight of (i, j) is, again, how
many times i talks about j. Contrary of what we said about G1, here if i
talks about j, there is no guarantee that j talks about i, so this graph is
directed.
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Figure 3.2: Relation among characters in The Winter’s Tale

3.1.3 A different point of view and new centrality mea-
sures

We propose here a new idea to study the aspect of gossiping in a social
circle. In addition to the directed graph G2, we can do more. Let i be a
node such that dini > 0. This means that there are people that talk about i.
Then, for such i we can define the graph Gi = (V i, E i, gi) where V i are the
Ni nodes that can join i through one of the dini edges, and (j, k) ∈ E i ⇐⇒
(k, j) ∈ E i ⇐⇒ j and k talked about i. The weight gijk is the amount of
times that j and k talked about i. So for every node i ∈ V we have a graph
Gi that represents if and how the other characters are talking about i and
we will refer to it as ”j talks about i with k”.

The goal is to define a centrality measure not of the nodes of every Gi as
we have done so far, but of the entire graph. This is a change of perspective
that allow us to better understand the qualitative aspects inside a graph and
see more.

Weighted spectral gap centrality measure

Let Gi as before. We want to use Perron-Frobenius Theorem on the
adjacency matrix A(i) of Gi but, in general, Gi can be disconnected.

So let Gi
+ be the largest connected component of Gi and A

(i)
+ the associ-

ated submatrix of A
(i)
+ . Let λ1 be the Perron root of A

(i)
+ and λ2 the second

largest eigenvalue of A
(i)
+ .

As we studied, |λ2|
λ1

gives a measure on the speed of convergence of the
powers of the matrix. Now, we also want to raise up in the ranking the nodes
i such that Gi has a large number of nodes: if a lot of people talks about
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i that surely means that i is more important. Thus, we define the weighted
spectral gap centrality measure as:

λ(i) := Ni
λ1 − |λ2|

λ1

where we recall that Ni is the number of vertices in Gi.

Weighted mean time centrality measure

Let suppose that Gi is a clique. Then the informations between the nodes
are spread in the fastest way possible. In fact, if we suppose that walking
through an edge takes one second, in a clique the information arrives to
every node in one second. We can generalize this concept in a generic graph
calculating the mean time for the nodes in Gi

+ to join each others. In other
words, we want to produce an information on the topology of the graph:
if the nodes are ”well positioned” between them then the gossip spreads
better. While the spectral gap measures a global speed (longer walks), this
is a similar concept but also based on shorter walks. So we expect that the
rankings with the previous centrality will be similar but not equal. So we
define the weighted mean time centrality measure as:

MTi :=
1

Ni

∑
j,k

1

Ni(Ni − 1)
d(j, k)

where d(j, k) is the distance from j to k and Ni as before the number of
nodes that talks about i.

To better understand this formula let’s suppose Gi1 be a clique of 3 nodes
and Gi2 be a clique of 10 nodes. If we calculate just the mean time, it is
in both cases equals to 1 and this is not exactly what we want because
we planned to reward the more complex network. This is why we add the
coefficient 1

Ni
. Another remark is that, contrary to all the other centrality

measures that we use, here having a low weighted mean time centrality score
means being higher in ranking.

3.2 Most important characters: results

3.2.1 Undirected case

We are interested in interpreting the results on the undirected graph,
which we will refer as ”i talks to j”.

33



The first goal is to detect the characters that are the most important,
based on the different centrality measures discussed in Chapter 2, i.e. based
on different particular aspects about the characters that we want to enlighten.

We exhibit the table of results, where the last column are the ranking
mean of all centrality rankings:

Table 3.1: Macbeth centrality measures for i talks to j

PageRank p Rp Degree d Rd Closeness C RC Betweenness B RB Eigenvector E RE Mean
Macbeth 0,133927324 1 18 1 0,015597473 1 294,6428571 1 0,101645065 1 1
Ross 0,061317306 4 8 3 0,012626526 2 104,1738095 2 0,054863624 4 3
Lady Macbeth 0,065078636 3 9 2 0,012626526 2 37,83333333 10 0,069198759 2 3,8
Banquo 0,057928791 5 8 3 0,011872704 4 50,8452381 6 0,060750971 3 4,2
Malcolm 0,065561301 2 8 3 0,010606282 10 87,33333333 3 0,039227997 7 5
Duncan 0,045603558 7 6 6 0,011872704 4 52,34047619 4 0,053021546 5 5,2
Macduff 0,039692641 8 5 8 0,011528567 6 40,32857143 7 0,043131326 6 7
1 Murderer 0,046178336 6 6 6 0,01074961 9 51,41666667 5 0,03460068 11 7,4
Doctor 0,033489939 10 4 10 0,01104821 7 40,32857143 7 0,034199562 12 9,2
Lennox 0,033489939 10 4 10 0,01104821 7 40,32857143 7 0,034199562 12 9,2
1 Witch 0,038714654 9 5 8 0,010330794 11 32 11 0,038795026 8 9,4
2 Witch 0,029705606 12 4 10 0,010198348 12 0 15 0,037951779 9 11,6
3 Witch 0,029705606 12 4 10 0,010198348 12 0 15 0,037951779 9 11,6
2 Murderer 0,02480777 16 3 14 0,010198348 12 11,41666667 14 0,02307467 20 15,2
Servant 0,016798676 19 2 17 0,009700868 15 0 15 0,027112779 14 16
Messenger 0,016798676 19 2 17 0,009700868 15 0 15 0,027112779 15 16,2
Siward 0,028313083 14 3 14 0,009249664 21 32 11 0,015318057 26 17,2
Lady Macduff 0,025029506 15 3 14 0,009249664 21 13,01190476 13 0,015458681 25 17,6
Angus 0,010656175 30 1 21 0,00958399 17 0 15 0,016130991 21 20,8
Attendant 0,010656175 30 1 21 0,00958399 17 0 15 0,016130991 21 20,8
1 Apparition 0,010656175 30 1 21 0,00958399 17 0 15 0,016130991 21 20,8
Son 0,017969062 17 2 17 0,008117053 24 0 15 0,007944381 31 20,8
2 Apparition 0,010656175 30 1 21 0,00958399 17 0 15 0,016130991 24 21,4
3 Murderer 0,017908057 18 2 17 0,007575916 30 0 15 0,009153032 28 21,6
Old Man 0,010850608 28 1 21 0,00837338 23 0 15 0,008706814 29 23,2
Sergeant 0,010799565 29 1 21 0,008035062 25 0 15 0,008414477 30 24
Porter 0,011088047 26 1 21 0,007875952 27 0 15 0,006844907 32 24,2
Fleance 0,010490143 34 1 21 0,008035062 25 0 15 0,009641131 27 24,4
Gentlewoman 0,011458957 22 1 21 0,007648761 28 0 15 0,005427443 36 24,4
Lord 0,011458957 22 1 21 0,007648761 28 0 15 0,005427443 36 24,4
Donalbain 0,011294723 24 1 21 0,00743431 31 0 15 0,006225452 33 24,8
Soldiers 0,011294723 24 1 21 0,00743431 31 0 15 0,006225452 34 25
Menteith 0,012362962 21 1 21 0,006741281 34 0 15 0,002430964 38 25,8
Hecate 0,010917107 27 1 21 0,0072979 33 0 15 0,00615674 35 26,2
Caithness 0,00433526 35 0 35 0 35 0 15 0,026315789 16 27,2
Seyton 0,00433526 35 0 35 0 35 0 15 0,026315789 16 27,2
3 Apparition 0,00433526 35 0 35 0 35 0 15 0,026315789 16 27,2
Young Siward 0,00433526 35 0 35 0 35 0 15 0,026315789 16 27,2
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Table 3.2: Richard III centrality measures for i talks to j

p Rp d Rd C RC B RB E RE Mean
Richard III 0,123731874 1 29 1 0,011963724 1 555,3270563 1 0,076839585 1 1
Queen Elizabeth 0,063078145 3 17 2 0,01004362 3 148,3770563 4 0,061694523 2 2,8
Lord Hastings 0,066692062 2 17 2 0,01004362 3 146,7573593 5 0,060379863 3 3
Duke of Buckingham 0,062916722 4 16 4 0,010429914 2 202,7307359 2 0,058179749 4 3,2
Sir William Stanley 0,037227624 6 9 6 0,009459689 5 127,3556277 6 0,040772866 7 6
Duchess of York 0,042110323 5 11 5 0,008842753 7 54,89761905 7 0,038486987 9 6,6
Lord Rivers 0,03405516 7 9 6 0,009039258 6 23,31666667 10 0,043803946 5 6,8
Marquis of Dorset 0,026084831 9 7 8 0,008747669 8 1,581818182 15 0,04022931 8 9,6
Queen Margaret 0,026068663 10 7 8 0,008747669 8 1,498484848 16 0,040914047 6 9,6
Sir William Catesby 0,022169107 12 5 11 0,008654609 10 45 8 0,02803471 11 10,4
King Edward IV 0,022816446 11 6 10 0,008654609 10 0,166666667 17 0,036765995 10 11,6
Prince Edward 0,020937027 13 5 11 0,008135333 13 2,333333333 14 0,024772049 13 12,8
Messenger 0,019963734 16 5 11 0,008054785 14 8,657575758 13 0,027064714 12 13,2
Richmond 0,031195175 8 5 11 0,007329128 23 173 3 0,011051555 28 14,6
Lady Anne 0,016530741 21 4 15 0,008217508 12 0 18 0,023473405 14 16
First Murderer 0,02004299 14 4 15 0,007463608 19 22 11 0,010847312 29 17,6
George Plantagenet 0,02004299 14 4 15 0,007463608 19 22 11 0,010847312 30 17,8
John Morton 0,013281133 25 3 18 0,007975816 15 0 18 0,021059742 15 18,2
Sir Richard Ratcliff 0,013153683 26 3 18 0,007603115 18 0 18 0,019510346 16 19,2
Lord Mayor of London 0,013508568 23 3 18 0,007822435 16 0 18 0,017222001 22 19,4
Richard Plantagenet 0,013508568 23 3 18 0,007822435 16 0 18 0,017222001 22 19,4
Sir Robert Brackenbury 0,015127773 22 3 18 0,007395757 22 0 18 0,010619824 34 22,8
Lord Lovel 0,009938416 30 2 24 0,007463608 19 0 18 0,014789243 24 23
Thomas Rotherham 0,012781574 27 3 18 0,006560752 34 0 18 0,013714348 25 24,4
First Citizen 0,019880716 17 2 24 0,000768935 48 0 18 0,019230769 17 24,8
Third Citizen 0,019880716 17 2 24 0,000768935 48 0 18 0,019230769 17 24,8
Second Citizen 0,019880716 17 2 24 0,000768935 48 0 18 0,019230769 21 25,6
Cardinal Bourchier 0,009657068 31 2 24 0,006953276 32 0 18 0,012778122 26 26,2
Lord Grey 0,009349765 35 2 24 0,006560752 34 0 18 0,011370418 27 27,6
Boy 0,009386715 32 2 24 0,006508266 36 0 18 0,010797366 31 28,2
Duke of Norfolk 0,009386715 32 2 24 0,006508266 36 0 18 0,010797366 31 28,2
Girl 0,009386715 32 2 24 0,006508266 36 0 18 0,010797366 31 28,2
Blunt 0,016936511 20 2 24 0,005282683 44 45 8 0,001205114 49 29
Third Messenger 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 35 30,2
Earl of Surrey 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 36 30,4
Second Messenger 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 36 30,4
Sir James Tyrrel 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 36 30,4
Sir Thomas Vaughan 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 36 30,4
Fourth Messenger 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 40 31,2
Gentleman 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 40 31,2
Page 0,006606172 39 1 35 0,007199409 24 0 18 0,00828162 40 31,2
Second Murderer 0,011503709 28 2 24 0,005317211 43 0 18 0,002338204 48 32,2
Sheriff of Wiltshire 0,006324824 48 1 35 0,006614092 33 0 18 0,006270499 45 35,8
Another 0,006752944 38 1 35 0,005852757 42 0 18 0,003021526 47 36
Sir Walter Herbert 0,010217775 29 1 35 0,004088107 47 0 18 0,000129885 52 36,2
Earl Oxford 0,00827371 36 1 35 0,005214957 45 0 18 0,001191115 50 36,8
Lords 0,00827371 36 1 35 0,005214957 45 0 18 0,001191115 50 36,8
Priest 0,006314352 49 1 35 0,006456613 39 0 18 0,006507623 43 36,8
Pursuivant 0,006314352 49 1 35 0,006456613 39 0 18 0,006507623 43 36,8
Christopher Urswick 0,006502068 47 1 35 0,006210178 41 0 18 0,004394419 46 37,4
Henry VI 0,002982107 51 0 51 0 51 0 18 0,019230769 17 37,6
Scrivener 0,002982107 51 0 51 0 51 0 18 0,019230769 17 37,6
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Table 3.3: Romeo and Juliet centrality measures for i talks to j

p Rp d Rd C RC B RB E RE Mean
Capulet 0,090144695 1 12 1 0,0153125 1 128,0595238 1 0,092785388 1 1
Romeo 0,083297943 2 11 2 0,014723558 2 102,3928571 3 0,089584034 2 2,2
Nurse 0,061471074 3 8 3 0,013671875 4 103,9285714 2 0,071396106 4 3,2
Friar Laurence 0,060072019 4 8 3 0,014178241 3 53,6547619 6 0,076882839 3 3,8
Prince Escalus 0,050146878 6 6 5 0,01255123 6 87,30952381 4 0,041810136 8 5,8
Benvolio 0,052375217 5 6 5 0,011427239 10 56,57142857 5 0,034342196 12 7,4
Juliet 0,043552357 9 6 5 0,012976695 5 5,369047619 13 0,069809306 5 7,4
Paris 0,037771203 11 5 8 0,011962891 7 14,16666667 10 0,056616814 6 8,4
Tybalt 0,031660898 13 4 9 0,011778846 9 6,404761905 12 0,041924488 7 10
Mercutio 0,031781364 12 4 9 0,011259191 12 9,666666667 11 0,038910728 9 10,6
Montague 0,025574909 14 3 12 0,011962891 7 18,57142857 9 0,027707388 15 11,4
Peter 0,043555039 8 4 9 0,009815705 17 53 7 0,014826597 22 12,6
Balthasar 0,024589138 15 3 12 0,011427239 10 4,571428571 14 0,034159404 13 12,8
Lady Capulet 0,023752093 18 3 12 0,0109375 13 0 17 0,03837671 10 14
First Watchman 0,03800949 10 3 12 0,009114583 23 53 7 0,007247142 27 15,8
Sampson 0,045441072 7 2 16 0,001953125 30 1 16 0,037655778 11 16
First Servant 0,019218911 20 2 16 0,010074013 14 0 17 0,018203177 18 17
Second Servant 0,019218911 20 2 16 0,010074013 14 0 17 0,018203177 19 17,2
Page 0,018190952 22 2 16 0,00945216 21 1,333333333 15 0,016142953 20 18,8
First Musician 0,020452362 19 2 16 0,009570313 20 0 17 0,014141341 25 19,4
Abraham 0,023935763 16 1 21 0,001302083 31 0 17 0,026626656 16 20,2
Gregory 0,023935763 16 1 21 0,001302083 31 0 17 0,026626656 17 20,4
Second Capulet 0,011050873 31 1 21 0,009943182 16 0 17 0,015217683 21 21,2
Apothecary 0,01110229 29 1 21 0,009691456 18 0 17 0,014692631 23 21,6
Servant 0,01110229 29 1 21 0,009691456 18 0 17 0,014692631 24 21,8
First Citizen 0,01208546 27 1 21 0,008144947 24 0 17 0,005632446 28 23,4
Friar John 0,011048272 32 1 21 0,00945216 21 0 17 0,012609515 26 23,4
Lady Montague 0,01208546 27 1 21 0,008144947 24 0 17 0,005632446 28 23,4
Second Musician 0,013921057 25 1 21 0,007291667 26 0 17 0,002431702 30 23,8
Third Musician 0,013921057 25 1 21 0,007291667 26 0 17 0,002431702 31 24
Third Watchman 0,01543478 23 1 21 0,006897523 28 0 17 0,0011886 32 24,2
Second Watchman 0,01543478 23 1 21 0,006897523 28 0 17 0,0011886 33 24,4
Chorus 0,00466563 33 0 33 0 33 0 17 0,03030303 14 26
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Table 3.4: Winter’s Tale centrality measures for i talks to j

p Rp d Rd C RC B RB E RE Mean
Leontes 0,10122598 1 15 1 0,017379196 1 197,3239538 1 0,095295648 1 1
Paulina 0,094802635 2 13 2 0,014896453 3 129,5214286 2 0,077985722 3 2,4
Polixenes 0,055608389 3 9 3 0,015136719 2 39,12279942 8 0,082759316 2 3,6
Florizel 0,044900863 5 7 4 0,014663696 4 86,64502165 4 0,06249824 6 4,6
Camillo 0,046686224 4 7 4 0,014438101 6 40,16060606 7 0,067281415 5 5,2
Perdita 0,043795192 7 7 4 0,014663696 4 25,63946609 11 0,071613596 4 6
Old Shepherd 0,043668253 8 7 4 0,012855843 9 24,26709957 12 0,058901605 7 8
Clown 0,03909533 9 6 8 0,012348376 11 35,69105339 9 0,043745495 9 9,2
Autolycus 0,043962655 6 6 8 0,011730957 17 112,984632 3 0,027307191 15 9,8
Servant 0,032663499 11 5 10 0,01321798 7 13,75873016 13 0,046555275 8 9,8
Antigonus 0,032624501 12 4 11 0,012348376 11 30 10 0,031483165 12 11,2
Hermione 0,029135549 15 4 11 0,013034397 8 10,35 14 0,040614021 10 11,6
Mamillius 0,034302609 10 4 11 0,01187945 15 58 5 0,020982506 18 11,8
First Lord 0,029079998 16 4 11 0,012855843 9 3,424603175 16 0,03684568 11 12,6
Cleomenes 0,031277948 13 4 11 0,012188007 14 6,433333333 15 0,030437551 13 13,2
First Gentleman 0,030740102 14 3 16 0,008853552 26 58 5 0,004215839 29 18
Lord 0,015848313 26 2 18 0,012348376 11 0 18 0,023133963 17 18
Gentleman 0,016591223 25 2 18 0,01187945 15 0 18 0,025404563 16 18,4
Officer 0,017046449 24 2 18 0,011444836 18 0 18 0,018433586 19 19,4
Dion 0,017505247 23 2 18 0,010312929 20 0 18 0,015895799 20 19,8
Mopsa 0,02394047 17 3 16 0,009576291 25 2,677272727 17 0,011245603 25 20
First Lady 0,020813883 20 2 18 0,008689598 28 0 18 0,003604699 30 22,8
Dorcas 0,017676492 22 2 18 0,008609877 30 0 18 0,005652177 27 23
Second Lady 0,020813883 20 2 18 0,008689598 28 0 18 0,003604699 31 23
Emilia 0,010857825 28 1 27 0,010091146 21 0 18 0,011433388 22 23,2
First Servant 0,010399028 31 1 27 0,01117234 19 0 18 0,013971175 21 23,2
Gaoler 0,010857825 28 1 27 0,010091146 21 0 18 0,011433388 22 23,2
Second Gentleman 0,023309215 18 2 18 0,006951678 31 0 18 0,000724262 32 23,4
Second Servant 0,010857825 28 1 27 0,010091146 21 0 18 0,011433388 24 23,6
Third Gentleman 0,023309215 18 2 18 0,006951678 31 0 18 0,000724262 33 23,6
Mariner 0,011602913 27 1 27 0,008853552 26 0 18 0,004615707 28 25,2
Archidamus 0,010334837 32 1 27 0,009878701 24 0 18 0,009864043 26 25,4
Time 0,00466563 33 0 33 0 33 0 18 0,03030303 14 26,2
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Table 3.5: Twelfth Night centrality measures for i talks to j

p Rp d Rd C RC B RB E RE Mean
Viola 0,106167894 1 11 1 0,043478261 1 31 2 0,098233636 2 1,4
Olivia 0,100030155 2 10 2 0,04 2 33,55555556 1 0,092249718 5 2,4
Sir Andrew Aguecheek 0,090066425 4 10 2 0,04 2 10,48888889 5 0,100181977 1 2,8
Orsino 0,092707274 3 9 4 0,04 2 27,83333333 3 0,071798725 8 4
Sir Toby Belch 0,080964474 5 9 4 0,038461538 5 8,777777778 6 0,094126105 4 4,8
Feste 0,080458202 6 9 4 0,038461538 5 3,988888889 7 0,096982729 3 5
Malvolio 0,063444066 8 7 7 0,034482759 7 0,444444444 9 0,081375831 6 7,4
Fabian 0,063444066 8 7 7 0,034482759 7 0,444444444 9 0,081375831 7 7,6
Antonio 0,065788527 7 6 9 0,033333333 9 17,83333333 4 0,046709236 11 8
Sebastian 0,05750868 10 6 9 0,033333333 9 1,233333333 8 0,065275336 10 9,2
Maria 0,05513152 11 6 9 0,03125 11 0 12 0,070191204 9 10,4
First Officer 0,034057052 12 3 12 0,029411765 12 0,4 11 0,028098718 12 11,8
Valentine 0,025296711 13 2 13 0,027777778 13 0 12 0,021846873 13 12,8
Captain 0,016539465 18 1 14 0,025641026 14 0 12 0,012621702 14 14,4
Servant 0,016828933 16 1 14 0,024390244 15 0 12 0,011852849 15 14,4
Curio 0,01709058 15 1 14 0,024390244 15 0 12 0,009225171 17 14,6
Priest 0,016828933 16 1 14 0,024390244 15 0 12 0,011852849 16 14,6
Second Officer 0,017647043 14 1 14 0,02173913 18 0 12 0,006001509 18 15,2

The first self-evident thing to remark is that we can do three divisions of
the characters. In fact, after a first chaotic behavior of the mean ranking, we
can see that it grows more and more slowly and tends to stabilize. There are
three sections in all the plays: the apical characters, the middle roles and the
rest. Now, the larger values of ”importance” are concentrate to a particular
position in the ranking and this happens in all the five plays, even when
the number of characters visibly changes: this specific social circle is formed
by the nodes that are at most at the 6-th or 7-th place in the ranking list,
coherently with a qualitative analysis of the plots. Then, we have a group of
nodes (relating to the moment when the ranking mean is about to stabilize)
and the rest formed by the nodes that are basically read by the model as
having completely irrelevant roles. This is true because they play absolutely
no active role on the development of the facts in the story. So it is plausible
to concentrate our analysis to the group of characters for which the ranking
still has an acceptable ”rapid” variation.

PageRank centrality is, as we expect, the more precise in terms of a quan-
titative evaluation on the principal players. To have a more qualitative sense
on ”why” they are important we need a less general graph as the one in the
next section. The general overview detects also the most influential conflicts:
Malcolm and Macbeth, Capulet and Romeo, Richard and Elizabeth, Paulina
and Leontes. We can also see that, immediately after the predictable primacy
of the main characters, the mediators/intermediaries of the plays are found
by betweenness centrality: Duke of Buckingham and Hastings in Richard III,
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Friar Laurence and the nurse in Romeo and Juliet, Viola in Twelfth Night.
These are characters that are high in betweenness because they share a

lot of informations with the rest of the network and they contribute actively
in this way to the development of the story, at least in a quantitative way.

For the other two works, the highest in betweenness are the one that are
in the middle of a lot of shortest paths because they are in the entourage of
the apical nodes, thus indirectly they receive a lot of important informations.
This is also confirmed by their values of closeness centrality.

Another interesting way of seeing this data set is by comparison: if a node
is high for PageRank and low for betweenness that says something about the
function of the character on the story. This is for example the case of Juliet,
lover of the main character but not so active (again, in a quantitative way)
in the story and Perdita because she is important but she appears only in the
second half of the play. Same for Feste and Malvolio comparing degree and
betweenness, or Sir Toby and Sir Andrew: tormentor and tormented shares
the aspect of talking with people but they do not spread informations in
order to develop the story: for example the comic roles (Shakespeare fools).

3.2.2 Directed case and new point of view

We study now the case ”i talks about j”. First of all, not all the characters
are subject of gossip in the story or talk about somebody, so the network
has less nodes than the previous one. Since the graph is directed some of the
centralities that we studied are no longer suitable. We focused our attention
on eigenvector centrality and PageRank.

We tested the ranking behavior of PageRank centrality on the graph ”i
talks about j” depending on α. Here we show some of the tested values with
the relative ranking. The first column is the ranking of the matrix H1 seen
in 2.1. For ease of exposition we ignored some irrelevant nodes.
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Table 3.6: Macebth

H α = 0.01 α = 0.90 α = 0.85 α = 0.75 α = 0.65 α = 0.55
Angus 17 17 17 17 17 17 17
Attendant 17 17 17 17 17 17 17
Banquo 2 1 4 4 3 3 2
Caithness 17 17 17 17 17 17 17
Doctor 17 17 17 17 17 17 17
Donalbain 10 8 9 9 10 10 10
Duncan 1 3 1 1 1 1 1
1 Apparition 17 17 17 17 17 17 17
1 Murderer 17 17 17 17 17 17 17
1 Witch 14 14 12 12 12 13 13
Fleance 11 9 11 11 11 11 11
Gentlewoman 17 17 17 17 17 17 17
Hecate 17 17 17 17 17 17 17
Lady Macbeth 5 5 8 8 8 6 6
Lady Macduff 8 11 6 6 6 7 7
Lennox 17 17 17 17 17 17 17
Lord 17 17 17 17 17 17 17
Macbeth 3 2 2 2 2 2 3
Macduff 4 4 3 3 4 4 4
Malcolm 6 6 5 5 5 5 5
Menteith 17 17 17 17 17 17 17
Messenger 17 17 17 17 17 17 17
Old Man 17 17 17 17 17 17 17
Porter 17 17 17 17 17 17 17
Ross 17 17 17 17 17 17 17
2 Apparition 17 17 17 17 17 17 17
2 Murderer 17 17 17 17 17 17 17
2 Witch 14 14 12 12 12 13 13
Sergeant 17 17 17 17 17 17 17
Servant 17 17 17 17 17 17 17
Seyton 13 13 15 15 15 12 12
Siward 12 10 16 16 16 16 16
Soldiers 17 17 17 17 17 17 17
Son 8 11 6 6 6 7 7
3 Apparition 17 17 17 17 17 17 17
3 Murderer 17 17 17 17 17 17 17
3 Witch 14 14 12 12 12 13 13
Young Siward 7 7 10 10 9 9 9
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Table 3.7: Richard III

H α = 0.01 α = 0.90 α = 0.85 α = 0.75 α = 0.65 α = 0.55
Another 28 28 28 28 28 28 28
Blunt 20 19 27 27 26 26 24
Boy 22 25 19 20 22 22 22
Cardinal Bourchier 28 28 28 28 28 28 28
Christopher Urswick 28 28 28 28 28 28 28
Duchess of York 17 21 14 14 14 15 17
Duke of Buckingham 9 7 9 8 8 7 7
Duke of Norfolk 14 12 7 9 9 9 9
Earl of Surrey 28 28 28 28 28 28 28
Earl Oxford 28 28 28 28 28 28 28
First Citizen 28 28 28 28 28 28 28
First Murderer 28 28 28 28 28 28 28
Fourth Messenger 28 28 28 28 28 28 28
Gentleman 28 28 28 28 28 28 28
George Plantagenet 3 4 3 4 4 4 4
Girl 26 26 22 23 23 24 26
Henry VI 10 11 12 11 12 12 12
John Morton 28 28 28 28 28 28 28
King Edward IV 2 3 2 2 3 3 3
Lady Anne 23 22 13 15 16 18 18
Lord Grey 15 16 16 16 17 16 15
Lord Hastings 6 6 6 6 6 6 6
Lord Lovel 21 20 26 25 25 23 23
Lord Mayor of London 27 27 25 26 27 27 27
Lord Rivers 12 15 11 12 13 13 13
Lords 28 28 28 28 28 28 28
Marquis of Dorset 19 18 21 19 19 19 20
Messenger 28 28 28 28 28 28 28
Page 28 28 28 28 28 28 28
Priest 28 28 28 28 28 28 28
Prince Edward 4 2 4 3 2 2 2
Pursuivant 28 28 28 28 28 28 28
Queen Elizabeth 5 5 5 5 5 5 5
Queen Margaret 8 10 10 10 10 10 10
Richard III 1 1 1 1 1 1 1
Richard Plantagenet 7 8 8 7 7 8 8
Richmond 11 13 18 18 15 14 14
Scrivener 28 28 28 28 28 28 28
Second Citizen 28 28 28 28 28 28 28
Second Messenger 28 28 28 28 28 28 28
Second Murderer 28 28 28 28 28 28 28
Sheriff of Wiltshire 28 28 28 28 28 28 28
Sir James Tyrrel 18 14 23 22 20 20 19
Sir Richard Ratcliff 28 28 28 28 28 28 28
Sir Robert Brackenbury 25 24 24 24 24 25 25
Sir Thomas Vaughan 15 16 16 16 17 16 15
Sir Walter Herbert 28 28 28 28 28 28 28
Sir William Catesby 24 23 20 21 21 21 21
Sir William Stanley 13 9 15 13 11 11 11
Third Citizen 28 28 28 28 28 28 28
Third Messenger 28 28 28 28 28 28 28
Thomas Rotherham 28 28 28 28 28 28 28
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Table 3.8: Romeo and Juliet

H α = 0.01 α = 0.90 α = 0.85 α = 0.75 α = 0.65 α = 0.55
Abraham 7 7 7 7 7 7 7
Apothecary 7 7 7 7 7 7 7
Balthasar 7 7 7 7 7 7 7
Benvolio 7 7 7 7 7 7 7
Capulet 6 5 5 5 5 5 5
Chorus 7 7 7 7 7 7 7
First Citizen 7 7 7 7 7 7 7
First Musician 7 7 7 7 7 7 7
First Servant 7 7 7 7 7 7 7
First Watchman 7 7 7 7 7 7 7
Friar John 7 7 7 7 7 7 7
Friar Laurence 7 7 7 7 7 7 7
Gregory 7 7 7 7 7 7 7
Juliet 2 4 4 4 4 4 4
Lady Capulet 7 7 7 7 7 7 7
Lady Montague 7 7 7 7 7 7 7
Mercutio 5 6 6 6 6 6 6
Montague 7 7 7 7 7 7 7
Nurse 7 7 7 7 7 7 7
Page 7 7 7 7 7 7 7
Paris 4 3 3 3 3 3 3
Peter 7 7 7 7 7 7 7
Prince Escalus 7 7 7 7 7 7 7
Romeo 1 1 1 1 1 1 1
Sampson 7 7 7 7 7 7 7
Second Capulet 7 7 7 7 7 7 7
Second Musician 7 7 7 7 7 7 7
Second Servant 7 7 7 7 7 7 7
Second Watchman 7 7 7 7 7 7 7
Servant 7 7 7 7 7 7 7
Third Musician 7 7 7 7 7 7 7
Third Watchman 7 7 7 7 7 7 7
Tybalt 3 2 2 2 2 2 2
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Table 3.9: Twelfth Night

H α = 0.01 α = 0.90 α = 0.85 α = 0.75 α = 0.65 α = 0.55
Antonio 9 9 9 9 9 9 9
Captain 9 9 9 9 9 9 9
Curio 9 9 9 9 9 9 9
Fabian 9 9 9 9 9 9 9
Feste 7 7 8 7 7 7 7
First Officer 9 9 9 9 9 9 9
Malvolio 2 6 5 5 6 6 6
Maria 9 9 9 9 9 9 9
Olivia 1 1 1 1 1 1 2
Orsino 4 2 4 3 3 2 1
Priest 9 9 9 9 9 9 9
Sebastian 6 4 6 6 5 4 4
Second Officer 9 9 9 9 9 9 9
Servant 9 9 9 9 9 9 9
Sir Andrew Aguecheek 8 8 7 8 8 8 8
Sir Toby Belch 5 5 3 4 4 5 5
Valentine 9 9 9 9 9 9 9
Viola 3 3 2 2 2 3 3

Table 3.10: Winter’s Tale

H α = 0.01 α = 0.90 α = 0.85 α = 0.75 α = 0.65 α = 0.55
Antigonus 9 9 9 9 9 9 9
Archidamus 10 10 10 10 10 10 10
Autolycus 10 10 10 10 10 10 10
Camillo 2 3 3 3 3 3 3
Cleomenes 10 10 10 10 10 10 10
Clown 10 10 10 10 10 10 10
Dion 10 10 10 10 10 10 10
Dorcas 10 10 10 10 10 10 10
Emilia 10 10 10 10 10 10 10
First Gentleman 10 10 10 10 10 10 10
First Lady 10 10 10 10 10 10 10
First Lord 10 10 10 10 10 10 10
First Servant 10 10 10 10 10 10 10
Florizel 7 7 6 6 6 6 7
Gaoler 10 10 10 10 10 10 10
Gentleman 10 10 10 10 10 10 10
Hermione 4 4 5 5 5 5 4
Leontes 5 2 4 4 4 4 2
Lord 10 10 10 10 10 10 10
Mamillius 6 6 7 7 7 7 6
Mariner 10 10 10 10 10 10 10
Mopsa 10 10 10 10 10 10 10
Officer 10 10 10 10 10 10 10
Old Shepherd 10 10 10 10 10 10 10
Paulina 8 8 8 8 8 8 8
Perdita 1 1 1 1 1 1 1
Polixenes 3 5 2 2 2 2 5
Second Gentleman 10 10 10 10 10 10 10
Second Lady 10 10 10 10 10 10 10
Second Servant 10 10 10 10 10 10 10
Servant 10 10 10 10 10 10 10
Third Gentleman 10 10 10 10 10 10 10
Time 10 10 10 10 10 10 10
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We immediately observe the result of theorem 2.6.6 comparing the first
column with the column in which α = 0.01.

As we said in the last chapter, the PageRank ranking behaviour near the
endpoints of (0, τ) is not stable since it tends to ranking vectors that are far
from doing PageRank’s job. So it is clever to choose the parameter to use in
the applications in a specific range far from the endpoints. Testing different
values, we find that the best choice is 0.75.

We can now show the centrality measures results. Note that we have a
less number of nodes because only smaller circles are subject of gossip.

Table 3.11: Macbeth centrality measures for i talks about j

λ Rλ MT RMT E RE p Rp Mean
Duncan 5,733056745 2 0,181818182 2 0,705961583 1 0,155923389 1 1,5
Banquo 6,561609596 1 0,14599686 1 0,356194745 3 0,111311194 3 2
Lady Macduff 3 3 0,333333333 5 0,06007084 6 0,038153152 6 5
Son 3 3 0,333333333 5 0,06007084 7 0,038153152 6 5,25
Macbeth 1,366835021 15 0,326530612 4 0,552332337 2 0,117027467 2 5,75
Macduff 1,19880507 16 0,3 3 0,192348791 4 0,099870846 4 6,75
Young Siward 3 3 0,333333333 5 0,021585828 10 0,024682183 9 6,75
Malcolm 1,757359313 13 0,444444444 8 0,147457886 5 0,074491439 5 7,75
Lady Macbeth 2 6 0,5 11 0,030971284 9 0,037413485 8 8,5
Fleance 1,757359313 12 0,444444444 8 0,032356517 8 0,021503849 11 9,75
2 Witch 2 6 0,5 11 0,017059826 11 0,018621177 12 10
3 Witch 2 6 0,5 11 0,017059826 12 0,018621177 12 10,25
1 Witch 2 6 0,5 11 0,017059826 13 0,018621177 12 10,5
Donalbain 1,757359313 13 0,444444444 8 0,01159416 15 0,024310057 10 11,5
Seyton 2 6 0,5 11 0,015296691 14 0,01803794 15 11,5
Siward 2 6 0,5 11 0 16 0,011697486 16 12,25

Table 3.12: Romeo and Juliet centrality measures for i talks about j

λ Rλ MT RMT E RE p Rp Mean
Romeo 7,565966646 1 0,119791667 1 0,647886633 1 0,230391854 1 1
Tybalt 4,938287501 3 0,139717425 2 0,346820581 3 0,147607781 2 2,5
Juliet 5,279020243 2 0,148888889 3 0,580672094 2 0,104997507 4 2,75
Paris 3,401639914 4 0,177777778 4 0,340373636 4 0,11052257 3 3,75
Capulet 2 6 0,5 6 0,083211187 5 0,085029086 5 5,5
Mercutio 2,345650413 5 0,333333333 5 0 6 0,021396766 6 5,5
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Table 3.13: Richard III centrality measures for i talks about j

λ Rλ MT RMT E RE p Rp Mean
King Edward IV 7,626577881 2 0,119113573 1 0,520600804 2 0,069391048 3 2
George Plantagenet 7,631855148 1 0,123958333 2 0,640164456 1 0,066927165 4 2
Richard III 4,936609956 3 0,135380623 3 0,372538097 3 0,074598092 1 2,5
Queen Elizabeth 4,570552438 5 0,182098765 6 0,202851518 4 0,052178133 5 5
Prince Edward 4,857240484 4 0,2 9 0,197920048 5 0,069826067 2 5
Lord Hastings 3,792024891 9 0,171900826 4 0,156163127 6 0,042357439 6 6,25
Duke of Buckingham 4,024027754 7 0,179292929 5 0,113131959 8 0,038734544 8 7
Richard Plantagenet 3,061287651 12 0,183471074 7 0,096001495 10 0,038792354 7 9
Queen Margaret 3,009875941 13 0,188271605 8 0,119302622 7 0,03490701 10 9,5
Lord Rivers 4,11684397 6 0,233333333 10 0,06150932 14 0,025319734 13 10,75
Duchess of York 4 8 0,25 11 0,07200923 12 0,023030245 14 11,25
Duke of Norfolk 3 14 0,333333333 16 0,102217231 9 0,037176923 9 12
Henry VI 2,99096265 15 0,254464286 13 0,067179673 13 0,026545029 12 13,25
Lord Grey 3,75 10 0,26 14 0,044338323 16 0,021684716 17 14,25
Sir Thomas Vaughan 3,75 10 0,26 14 0,044338323 17 0,021684716 17 14,5
Lady Anne 2,535898385 16 0,375 18 0,080565117 11 0,022491811 16 15,25
Richmond 1,674341674 27 0,25 11 0,056573865 15 0,022578979 15 17
Marquis of Dorset 2,535898385 16 0,375 18 0,017470769 20 0,015035055 19 18,25
Sir William Stanley 1,757359313 25 0,444444444 20 0,028332258 18 0,026605713 11 18,5
Boy 2,345650413 18 0,333333333 16 0,017952196 19 0,013785886 22 18,75
Sir William Catesby 2 19 0,5 22 0,011251796 22 0,013953694 21 21
Sir James Tyrrel 2 19 0,5 22 0,003314157 25 0,014242572 20 21,5
Sir Robert Brackenbury 2 19 0,5 22 0,013178051 21 0,012008233 24 21,5
Girl 1,757359313 25 0,444444444 20 0,009480421 23 0,012457087 23 22,75
Lord Mayor of London 2 19 0,5 22 0,005128798 24 0,010667504 27 23
Lord Lovel 2 19 0,5 22 0,003314157 26 0,011690399 25 23
Blunt 2 19 0,5 22 0,001199749 27 0,011173793 26 23,5

Table 3.14: Twelfth Night centrality measures for i talks about j

λ Rλ MT RMT E RE p Rp Mean
Olivia 7,124729881 1 0,152777778 1 0,658338934 1 0,145175971 1 1
Sir Toby Belch 3,291965225 4 0,196428571 3 0,447977212 2 0,118386858 4 3,25
Viola 3,604814989 3 0,214285714 4 0,341317633 4 0,130598114 2 3,25
Malvolio 4,485083593 2 0,160714286 2 0,370502411 3 0,110269764 6 3,25
Orsino 3,004367023 5 0,25170068 5 0,28872775 5 0,12753815 3 4,5
Sebastian 2,973941195 7 0,25170068 5 0,151746309 6 0,114640307 5 5,75
Feste 3 6 0,333333333 7 0,057507118 7 0,055372399 7 6,75
Sir Andrew Aguecheek 2,345650413 8 0,333333333 7 0,049383986 8 0,053090901 8 7,75
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Table 3.15: Winter’s Tale centrality measures for i talks about j

λ Rλ MT RMT E RE p Rp Mean
Perdita 4,400372024 1 0,204444444 1 0,467616191 2 0,125414596 1 1,25
Polixenes 3,5 3 0,224489796 3 0,482588029 1 0,092965907 2 2,25
Camillo 4,128380477 2 0,205357143 2 0,396333706 4 0,089829634 3 2,75
Hermione 3,01081305 4 0,263392857 4 0,321305949 5 0,08599107 5 4,5
Leontes 2,192235936 7 0,28 5 0,458341979 3 0,08810464 4 4,75
Mamillius 2,800303232 6 0,3 6 0,065237657 7 0,046231987 7 6,5
Florizel 1,527864045 9 0,416666667 8 0,27118929 6 0,064505202 6 7,25
Antigonus 3 5 0,333333333 7 0 9 0,024012857 9 7,5
Paulina 1,757359313 8 0,444444444 9 0,015780403 8 0,036675994 8 8,25

The first interesting thing to remark are the first places on the mean rank-
ing. The undirected case gave us a predictable answer: the first places are
the protagonists. We might have expected that this method would confirm
those first places, but this is not the case in some plays. This diversity can be
seen as a more qualitative information on the function of the characters: if
they mostly have a role of action on the story they will be high in i talks with
j but not so high in i talks about j. This is the case of Richard and Elizabeth
in Richard III, Lady Macbeth and Macbeth, Capulet in Romeo and Juliet,
Viola in Twelfth Night, Leontes and Paulina in The Winter’s Tale. In mean
ranking they were high in the undirected case, which gives us a perspective
on the active function on the play, but they are not the first characters sub-
ject to the gossips. We can also see that the characters i with high degree in
”j talks about i with k are often the plotters of the story. Perdita, Edward,
Duncan, Banquo, Malvolio and Tybalt are the victims that turn around the
events, all high in this ranking, Olivia is the bone of contention: in other
words they all are the subjects of the gossiping and these graphs allow us
to see these details. Another interesting remark based on our results is that
the subjects of the most amount of gossip in the comedies are women and in
the tragedies they are men. This is for sure an aspect that can be confirmed
with a qualitative check of the plays. In order to understand how j talks
about i with k we see some graphs.
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Figure 3.3: Macbeth
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Figure 3.4: Richard III
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Figure 3.5: Richard III
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Figure 3.6: Romeo and Juliet
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Figure 3.7: Romeo and Juliet

Figure 3.8: Twelfth Night
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Figure 3.9: Twelfth Night
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Figure 3.10: Twelfth Night
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Figure 3.11: The Winter’s Tale

Same for Juliet: a lot of people talks about her but in the undirected
case we couldn’t see her importance. Capulet is almost ignored in this case,
so the difference between this centrality and the undirected one tells us that
he is important as a man of action and not as a protagonist of the events.
As for Olivia: she doesn’t participate actively in the story because she stays
at home but she is subjects of all the storyline through the gossiping of the
others. Same for Malvolio, considered as a crazy person: so they talk about
him but he has no power to influence the plot. Similar considerations for the
other mentioned before. We also remark that for the central nodes in the
undirected case there are more than one social circle that talks about them
(Macbeth, Richard) and for the others the communities are dense and often
unique. In general, the undirected case tells us who does the action (but
not how: we will see it in the next chapters) and the directed case who is
subjected to it. Clearly, if a character is high in both, this fact increases its
level of general importance in the plot.
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Chapter 4

Graph partitioning, community
detection and a new algorithm

Another important question in network analysis is to find a mathematical
method that discovers the ”communities” in a network, in order to cluster
nodes that are in some way more connected with each other than with the rest
of the graph. One way of saying it is that we are looking for a mathematical
study of the properties of a graph that can find the ”dense” groups of edges
and, naturally, the correspondent groups of nodes. Clearly, there can be a
lot of communities in a network so for complex networks this is not a simple
request, especially because the complexity order of some methods is often
quite expensive.

Some algorithms assume a priori the size of the communities that they
aim to detect (graph partitioning), some others do not need this information
(community detection).

We introduce now some of the methods that we will use in our applications
(detailed in [4]) and we will propose a new one that will also involve centrality
measures. We will consider only undirected graphs.

4.1 Spectral partitioning

The most basic request is to bisect a graph in two groups. A first natural
remark is that finding the two ”better” communities in a graph means finding
two set of disjoint nodes C1, C2 such that the number of edges between them
(the so called cut size) is minimized and such that the cardinality of C1 and
C2 are fixed, respectively n1 and n2.

Let G = (V,E) be an undirected graph with adjacency matrix A and
suppose to know C1 and C2.
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We denote as:
D := (C1 × C2) ∪ (C2 × C1)

the set of all pairs of nodes that belongs to different groups.
The cut size is:

R =
1

2

∑
(i,j)∈D

Aij.

We define the function:

si =

{
+1 if i ∈ C1

−1 if i ∈ C2

Note that s2i = 1; hence 1
2
(1 − sisj) = χD(i, j) (i.e. the characteristic

function of D) and

R =
1

4

∑
i,j

Aij(1− sisj).

Recalling the degree di of a node i and let δij be the Kronecker delta, we
have: ∑

i,j

Aij =
∑
i

di =
∑
i

dis
2
i =

∑
i,j

diδijsisj.

Thus:

R =
1

4

∑
i,j

(diδij − Aij)sisj =
1

4

∑
i,j

Lijsisj.

The matrix L = (lij)i,j = (diδij −Aij)i,j is called the Laplacian matrix of
G. We remark that L1 = 0. The initial bisection problem can be expressed
as follows: we calculate the vector s = (si) that minimizes

R =
1

4
sTLs.

If s was allowed to take any real value then the problem would be easy
to solve, but unfortunately this is not the case: we have the restrictions
si ∈ {−1, 1} and also 1Ts =

∑
i si = n1−n2. So an approximation approach

to this problem is necessary, the so called relaxation method.
Now, s ∈ Rn such that si ∈ {−1, 1} means that s points to one corner of

the n-dimensional hypercube in Rn centered in the origin ⇒ ‖s‖2 = n.
So we ”relax” our constraint searching s ∈ Rn such that:

R = 1
4
sTLs∑

i s
2
i = n

1Ts =
∑

i si = n1 − n2
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that can be expressed with the Lagrange multipliers method as the problem:

∂

∂sk
[
∑
i,j

Lijsisj + λ(n−
∑
i

s2i ) + 2µ(n1 − n2 −
∑
i

si)]

⇒
∑
j

Lijsj = λsk + µ⇒ Ls = λs + µ1

⇒ 1TLs = 0 = 1T(λs + µ1) = λ(n1 − n2) + µ

⇒ µ = − 1

n
λ(n1 − n2)

Defining x = s + µ
λ
1 = s + 1

n
(n1 − n2) then Lx = λx. So the solution of

the problem depends on the choice of an eigenvector x 6= 1 of L. We remark
that:

R =
1

4
sTLs =

1

4
xTLx =

λ

n
(n1n2)

so if we want to minimize this value we have to find a unit eigenvector vs

associated to the smallest eigenvalue λs 6= 0 of L, and define x := 4
n
(n1n2)vs.

We denote as In1 the set of indices of the n1 largest components of x +
1
n
(n1−n2)1, that coincides to the set of indices of the n1 largest components

of x. The ideal not relaxed s is such that sT s = n so we do the best we can
and we impose that sT (x + 1

n
(n1 − n2)1) is maximized. This happens for s

such that:

si =

{
1 if i ∈ In1

−1 else

So we finally find C1 = In1 , C2 = V \ C1.
If n1 6= n2 then the order in which we choose n1 and n2 is crucial, so we

can invert the order of C1 and C2, reapply all this procedure finding a new R
and decide who is C1 and who is C2 based on the order that gives the smaller
R.

4.2 Spectral modularity detection

We can apply a similar procedure without establish the sizes of the two
communities. First, we introduce the concept of modularity of a graph G =
(V, E). Let suppose to have two communities C1, C2 in G, i.e. two groups of
vertices that are defined having ”the same type”, such that C1 ∪C2 = V . In
order to define a measure of the presence of dense communities in the graph
we can compare the expected number of edges between nodes of the same
type and the actual one.
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Let Grandom = (V, E ′) be a graph such that we connect i and j through an
edge randomly preserving the vertex degrees., i.e., (i, j) ∈ E ′ with probability
didj
2e

. In this new graph, the fraction of the expected number of edges between
nodes of the same type is: ∑

ij

didj
2e

δ(C1, C2)ij

where e = |E| and δ(C1, C2)ij is 1 if i and j are in the same community, 0
otherwise.

The actual fraction of edges between nodes of the same type is:

1

2e

∑
ij

Aijδ(C1, C2)ij

So we can built the modularity of G as the difference between the actual
number and the expected one:

M :=
1

2e

∑
ij

(Aij −
didj
2e

)δ(C1, C2)ij

To understand why this makes sense, it can be useful to think about the case
where all the nodes are of one and only one type. With only one community
the modularity is 0, so there is no more than one dense community in the
graph.

We call

Bij = ((Aij −
didj
2e

)δ(C1, C2))ij

the modularity matrix of G and we remark that 1TB = B1 = 0. With the
same notation as in the previous section, we can rewrite:

M =
1

4e
sTBs

with constraint |si| = 1.
This time our goal is to find s that maximizes M and, since we don’t

make any assumptions on the sizes of the communities, the only constraint
is sT s = n. Again, with Lagrange multipliers method the problem has the
form:

∂

∂sk
[
∑
i,j

Bijsisj + λ(n−
∑
i

s2i )

⇒ Bs = λs⇒M =
n

4e
λ
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We choose v1 the unit eigenvector associated to the largest eigenvalue
of B and we define x = n

4e
v1. We denote as I the set of the indices of the

positive components of x and we impose that s has to maximize the quantity
sTx. This happens for s such that:

si =

{
1 if i ∈ I
−1 else

so we can define C1 := I, C2 := V \ I.

4.3 Hierarchical clustering

We examined the case where we are satisfied with only two groups. If
we would like to detect more than two communities, one way of doing it
is to apply k times the previous algorithm to detect 2k communities. Even
if there are plenty of networks where this request can be enough, this is of
course not the best thing we can do, especially in complex systems (naming
one: social networks) where it is naive to expect that there can be only two
communities, or that repeated bisections can give acceptable answers.

We present now a method that decompose in more than two parts a graph
with the visual use of dendrograms.

4.3.1 Similarity measures

First, we fix a metric on the set of nodes V that has the task to compare
them in the sense of dissimilarity. In order to do that we consider the rows
of the adjacency matrix A as vectors in Rn and we denote the i-th row of A
as Ai. Here some of the most common examples. For more see [4].

• Cosine similarity: the number of shared neighbors between i and j is
(A2)ij; if we consider Ai and Aj, the angle θ between them is such that

cos(θ) =
1

|Ai||Aj|
〈Ai, Aj〉 =

(A2)ij√
didj

=: σij

.

• Euclidean distance:

eij :=
1

di + dj

∑
k

(Aik − Ajk)2 = 1− 2(A2)ij
di + dj

;
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• Pearson correlation:

rij :=
var(Ai)

var(Aj)
cov(Ai, Aj) =

∑
k(Aik − E(Ai))(Ajk − E(Aj))√∑

k(Aik − E(Ai))2
√∑

k(Ajk − E(Aj))2
.

Note that cov(Ai, Aj) is the difference between the number of shared
neighbors between i and j and the expected number of shared neighbors
that i and j would have if we had placed the edges randomly, so this
idea is similar to the one seen for the definition of modularity matrix.

We can also define a similarity measure between subsets of nodes and this
is useful when we want to compare not just pair of nodes but pair of groups
of nodes, the so called linkage clustering. Let C1, C2 be two groups of nodes,
and let s be a similarity measure between nodes. We define:

• single-linkage clustering: S(C1, C2) = max
(i,j)∈C1×C2

sij

• complete-linkage clustering: S(C1, C2) = min
(i,j)∈C1×C2

sij

• UPGMA: S(C1, C2) = 1
|C1||C2|

∑
(i,j)∈C1×C2

sij

4.3.2 The method

We call the |V | = n nodes of G as {1, . . . , n}. We fix a similarity measure:

s : E −→ R
(i, j) 7→ sij

and let C0
1 , . . . , C

0
n be the n subset of V such that Ci = {i}.

Let m0 := max
ij

sij and I0 = {i ∈ V : ∃ j ∈ V : sij = m0}. Then we

define: {
C1

1 =
⋃
i∈I0 C

0
i

C1
s = C0

s if s /∈ I0

so basically we created a new partition C1
1 , . . . , C

1
n1

of V from the initial one,
joining the vertices that realize the highest similarity. Note that n1 ≤ n.

Now, if S is the similarity measure between groups associated to s, let
m1 := max

ij
S(C1

i , C
1
j ) and I1 = {i ∈ V : ∃ j ∈ V : S(C1

i , C
1
j ) = m1}. Then

we define: {
C2

1 =
⋃
i∈I1

C2
s = C1

s if s /∈ I1
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so we have a new partition C2
1 , . . . , C

2
n2

with n2 ≤ n1 ≤ n, and so on.
After a finite number of steps k we end with one partition Ck

1 in which
we have finally joined all the vertices in one class.

By construction, this method can be represented by a dendrogram. So
if we want to use this algorithm to divide in m parts the network, what we
can do is to read the (k −m)-th step of the procedure on the dendrogram,
intersecting it with an horizontal line in that exact step and see under the
line who are the groups. A simple example is given in the following two
figures:

Figure 4.1: Detection of 5 communities in a graph of 30 nodes

4.4 New algorithm: Voronoi cells on central-

ity nodes

Let us suppose to have the task of detecting the communities in a graph
based on a particular aspect of the network. Now, if we choose a good
centrality measure that depends on that particular aspect, then there is a
high chance that the communities strictly depend on the positions in the
graph of the most important nodes. So the idea is to detect communities of
the important nodes (i.e., the entourage of a particular important node). If
a node is ”close enough” to an important node then it is plausible to think
that they belong to the same group.

We present this new technique that is the result of these remarks. We
apply it for the biggest connected component of a graph because it is more
suitable for our applications; by the way, it can be extended to all the con-
nected components. In fact, if a graph has two or more disconnected com-
ponents it is obvious that they are communities on their own. So in order to
detect their sub-communities we can apply this method to every connected
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component, not just the biggest one.
Let G = (V, E) be an undirected graph and G+ = (V +, E+), |V +| = n,

is the biggest connected component of G. With the same notations as in
definition 2.2, let C be a centrality measure vector on G+, RC the associated
ranking vector and

R := {i ∈ V : (RC)i < k}.
for a pre-fixed k.

As we remarked, it is not guaranteed that |R| = k− 1. In fact, there can
be nodes with the same ranking score in RC. In our applications we will use
a particular k chosen as a measure of how many characters form the leading
groups of the most important nodes in the plot. Let r be the number of
repeated ranking scores in RC. Then we define:

k′ :=

{
n− r + 1 if (RC)n = (RC)n−1)

n− r else

and
kmax =

n

k′
. (4.1)

In our application we will use:

k :=

{
max{[kmax] , 2} if kmax − [kmax] ≤ 1

2

[kmax] + 1 else
(4.2)

where we denoted as [·] the floor function.

Remark 6. The basic idea behind this choice is the following: let

r′k = |{i ∈ V : (RC)i = k}|, 1 ≤ k ≤ n

.
Then

∑
r′k =: k′. We want to consider only the nodes that form the

most important group in the graph, based on the behavior of the ranking
RC. Since the ranking can have multiple equal positions, we can consider
k′ as the actual number of nodes, that represent the maximum value of the
vector R′C = (r′k)k such that the jumps between two consecutive rank scores
are less or equal to one. Formally we define R′C = (r′k)k such that:{

r′1 = 1

r′k+1 = r′kδ(C)k+1,C)k + (k + 1)(1− δ(C)k+1,C)k for 1 < k < n

hence,
k′ = max R′C.
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Thus, n
maxi(R′C)i

= n
k′

is a measure of how many characters we can consider

as the group of the most important. Since our graphs in the applications
are small, the proportion as before is very sensitive, so the choice 4.2 on the
decimal part was necessary and this choice turned out to be good for our
purposes.

We define the Voronoi cell of node i as the set:

Vi := {j ∈ V : d(j, i) < d(j, l), ∀ l ∈ R \ {i}}.

where we recall that d(j, i) is the distance from i to j.
If I := V \

⋃
i Vi 6= ∅ then the nodes in I have same distance with two

ore more important nodes in R. So we want to associate a node l ∈ I to
the cell with mean distance from l. If such cells Vi are more than one, we
associate l to the cell Vi with uniform probability.

In order to do it we calculate: ∀l ∈ I, ∀i ∈ R

m(l) := min
i∈R
{ 1

|Vi|
∑
j∈Vi

d(l, j)}

i.e. the smaller mean distance between l and the elements of the Voronoi
cells. Let:

Ml = {i ∈ R : m(l) =
1

|Vi|
∑
j∈Vi

d(l, j)}

that is the set of s indices that realizes the smaller mean distance m(l). Now,
for all l ∈ I we choose a pl ∈Ml with uniform probability 1

|Ml|
, and we define

for all i ∈ R
V∗i := Vi ∪ {l ∈ I : pl = i}.

Hence, we have |R| communities.
If I := V \

⋃
i Vi 6= ∅ we simply have V∗i = Vi.

Now we calculate ∀i ∈ R :

m∗(i) := { 1

|V∗i |
∑
j∈V∗i

d(i, j)},

i.e. the mean distance in the new cell V∗i .
Now, consider i, j ∈ R, i 6= j, the center of two different Voronoi cells

V∗i ,V∗j . We say that i and j are close if

d(i, j) < (
1

3
) max{m∗(i),m∗(j)}.
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The partition of V that our method provides is the one obtained after all
cells V∗i and V∗j with i close to j have been joined. In mathematical terms,
this can be redescribed as follows: let us give R a graph structure (R, ER)
where (i, j) ∈ ER ⇐⇒ i close to j.

Let us consider the connected components of this graph: {Cβ} with β in
some index set B. Then the partition we define is {V∗∗β }β∈B, where:

V∗∗β :=
⋃
i∈Cβ

V∗i
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Chapter 5

Communities in Shakespeare’s
plays

We now want to detect the principal communities in the stories using the
undirected network G1 = (V1, E1), i talks to j. First we begin applying the
already seen methods: modularity and hierarchical clustering.

5.1 Modularity and hierarchical clustering

We start with the bisection modularity algorithm. Every pair of figures
represents the two divisions of the graph. We remark that if two characters
in the same community were connected through another node in G1, here
they become disconnected.

In Romeo and Juliet we expect that the two basic communities must have
something to do with Capulets and Montagues. We will see with another
method that this is actually not the only meaningful bisection, so as we said
this kind of analysis allow us to enlighten some not apparently immediate
considerations. Modularity algorithm acceptably succeeds in detecting the
families detail. Same for Twelfth Night : Viola’s circle and Olivia’s circle are
well divided:
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Figure 5.1: Romeo and Juliet : first group

Figure 5.2: Romeo and Juliet : second group
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Figure 5.3: Twelfth Night : first group

Figure 5.4: Twelfth Night : second group
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A less but still acceptable division is done for Richard III. In fact, the
first community is coherent with the entourage of Richard and the rest is
relegated to the second community.

Figure 5.5: Richard III : first group

Figure 5.6: Richard III : second group
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The method fails for the plots where the actual bisection in the plot
is more qualitative than expected and it needs a more appropriate method
that could fit these qualitative aspects. In fact this last two plays are not
consistent for this method: it detects some aspects but not sufficiently enough
if we think to read these graphs without knowing the synopsis.

Figure 5.7: Macbeth: first group

Figure 5.8: Macbeth: second group
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Figure 5.9: The Winter’s Tale: first group

Figure 5.10: The Winter’s Tale: second group
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Dendrograms gives a different acception of the communities based, as we
said, on the hierarchic of the characters. Thus it is not usefull for studying
the stories that are supposed to have a more fragmented groups’ structure,
but they are surely usefull to understand in the two bisections of modularity
who is the central character that has the power in the community: Romeo
and Capulet, Viola/Orsino and Olivia.

Figure 5.11: Romeo and Juliet
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Figure 5.12: Twelfth Night

Figure 5.13: Richard III
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5.2 Voronoi cells

Since we are interested in detecting communities based on how they inter-
act in terms of exchange of lines, we have chosen as centrality the degree. We
choose k as in 4.1: 2 important initial nodes for Romeo and Juliet, Twelfth
Night and The Winter’s Tale, 4 for Richard III and 5 for Macbeth. Applying
the method our graph is too small to merge Voronoi cells, with these choices
of k. We remark once again that ranking positions can be equals: as we can
see in section 3.2.1, in Richard III the second position for degree is shared
by both Queen Elizabeth and Lord Hastings.

In Romeo and Juliet the communities are well divided. As we expected,
this method gives more influence to the local interactions, that’s why this
partitioning leads us to the group of old people and the group of young
people; this is a bisection not immediately conceivable. In the tragedy that’s
exactly how the events go: old people take decisions, young people react
between each other.
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In Twelfth Night it is even more clear: we have the group of Viola and
Olivia, in which we find their exact entourage. For now these are not so
obvious results because without knowing the history (one of our silent goals)
just a look on the initial graph did not say anything about the communities.
For example in Twelfth Night the initial graph is very dense and the mean
distance between the characters seems very small.
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Richard III is the only plot of the five where the centrality is always con-
centrate in one character with a big distance from the others. This make
this story the less suitable for calculations or procedure when the distances
between characters are the fundamental tools. We see that with this method
Richard incorporates all the characters: that’s because he absolutely domi-
nates the presence in the shortest paths, in the scenes, in the dialogues with
the others. In fact, if we see the value of betweenness of Richard (555,32)
it is way larger than the other characters (the second one is 202,7) in a way
that we do not have in all the other plays (the highest gap between first and
second place in betweenness is 190 in Macbeth), so it makes sense that he
is the verbal center of the play: he has the biggest interactions with almost
everybody.
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In The Winter’s Tale the two big communities are formed as we wanted
by the entourage of Paulina and the one of Leontes. We can also remark that
in this case (as well as in Richard) the topology of the two graphs are not so
similar. This indicates a different way to spread the informations.
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In Macbeth we have a qualitatively coherent partition because we start
to see the central role of Lady Macbeth and see the major difference of her
role with respect to the role of his husband.
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So, using different methods, we bisected in reasonable communities every
graph but Richard III because there is a node that is too central so a bisection
based on distances cannot succeed, and Macbeth. Now, we can force to have
just two communities with this method in Macbeth, so we let k = 3. This
algorithm succeed in detecting the two big communities in Macbeth. We are
finally able to fully enlighten the central role of Lady Macbeth, that is indeed
the real plotter of the story and the one that makes the decisions that create
it: she persuades her husband into committing regicide, after all.
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