

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

 DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

 TESI DI LAUREA

 In

 COMPUTER NETWORKS M

Containerization in Cloud Computing: performance

analysis of virtualization architectures

CANDIDATO RELATORE:

Amedeo Palopoli Chiar.mo Prof. Ing. Antonio Corradi

 CORRELATORI:

 Prof. Ing. Luca Foschini

Ing. Filippo Bosi

 Dott. Ing. Stefano Monti

Anno Accademico 2016/17

Sessione II

Acknowledgements

• First and foremost, I would like to thank my supervisors at University of

Bologna, Prof. Antonio Corradi and Prof. Luca Foschini, for this fantastic

opportunity to work with them and develop this interesting thesis.

• I would also like to thank everybody affiliated with Imola Informatica

S.p.A who directly or indirectly contributed in this work. In particular, I

would like to thank Ing. Filippo Bosi who followed me with dedication.

Surely, this experience has been very fundamental for my professional and

educational career and so, I cannot forget everyone that gave me the

possibility to work in this interesting project.

• Moreover, I have to thank everyone who allowed me to realize this little

dream. In particular, my parents Carmine and Virginia. Without their

support, I could never have completed this important step of my life.

• I consider myself a lucky person, because I am surrounded of special

people. Of course, one of them is Maria, my girlfriend. You have always

been present in every moment, and maybe thanking you is not enough…

• Lastly, but not the least, I would like to thank my brother Francesco and

my grandmother Annuzza. I am grateful for the various pieces of good

advice which have been given that, of course, helped me to grow up easier.

Abstract

La crescente adozione del cloud è fortemente influenzata dall’emergere di

tecnologie che mirano a migliorare i processi di sviluppo e deployment di

applicazioni di livello enterprise. L’obiettivo di questa tesi è analizzare una di

queste soluzioni, chiamata “containerization” e di valutare nel dettaglio come

questa tecnologia possa essere adottata in infrastrutture cloud in alternativa a

soluzioni complementari come le macchine virtuali. Fino ad oggi, il modello

tradizionale “virtual machine” è stata la soluzione predominante nel mercato.

L’importante differenza architetturale che i container offrono ha portato questa

tecnologia ad una rapida adozione poichè migliora di molto la gestione delle

risorse, la loro condivisione e garantisce significativi miglioramenti in termini di

provisioning delle singole istanze. Nella tesi, verrà esaminata la

“containerization” sia dal punto di vista infrastrutturale che applicativo. Per

quanto riguarda il primo aspetto, verranno analizzate le performances

confrontando LXD, Docker e KVM, come hypervisor dell’infrastruttura cloud

OpenStack, mentre il secondo punto concerne lo sviluppo di applicazioni di

livello enterprise che devono essere installate su un insieme di server distribuiti.

In tal caso, abbiamo bisogno di servizi di alto livello, come l’orchestrazione.

Pertanto, verranno confrontate le performances delle seguenti soluzioni:

Kubernetes, Docker Swarm, Apache Mesos e Cattle.

Abstract

The increasing adoption of cloud computing is strongly influenced by emerging

of technologies whose aim is to improve the development and deployment

processes of enterprise applications. The goal of this thesis is to investigate one

of these solutions, called “containerization”, and deeply analyze how this solution

can be included in cloud infrastructures as an alternative to complementary

solutions like virtual machines. So far, the virtual machine model has been the

predominant solution. The key differentiator nature that containers offer has

stimulated an increasing adoption of this technology because improves resource

management, resource sharing, and it guarantees substantial improvements

regarding provisioning time of single instances. In this work, we will analyze the

containerization paradigm from both infrastructure and application point of views.

For the first one, we will investigate the performances by comparing LXD,

Docker, and KVM, as hypervisor of OpenStack cloud infrastructure, while the

second one concerns the development of enterprise applications that are

distributed over a set of server hosts. In this case, we need to exploit high-level

services such as orchestration. Therefore, we will compare the performances of

the following container orchestrators: Kubernetes, Docker Swarm, Apache

Mesos, and Cattle.

Summary

5

Summary

Introduction ... 12

1 Virtualization and Containerization .. 14

1.1 Overview ... 14

1.2 Virtualization in cloud computing .. 15

1.2.1 Storage virtualization ... 15

1.2.2 Network virtualization .. 16

1.2.3 Server virtualization ... 18

1.3 Types of virtualization with virtual machine .. 19

1.3.1 Full virtualization ... 20

1.3.2 Hardware-assisted virtualization .. 21

1.3.3 Paravirtualization .. 22

1.4 Container-based virtualization .. 23

1.4.1 Linux-VServer .. 24

1.4.2 OpenVZ .. 26

1.4.3 LXC .. 28

1.5 Closing remarks .. 30

2 Container Management ... 34

2.1 Overview ... 34

2.2 Docker ... 35

2.2.1 Architecture .. 37

2.2.2 Docker Images .. 39

2.2.3 Docker containers ... 40

2.2.4 Network .. 43

2.2.5 Storage .. 46

2.2.6 Docker Compose .. 47

2.3 RKT .. 48

2.3.1 Architecture .. 49

Summary

6

2.3.2 Process Model .. 50

2.3.3 Network .. 51

2.3.4 Storage .. 52

2.4 LXD .. 52

2.4.1 Architecture .. 53

2.4.2 Containers ... 54

2.4.3 Snapshots .. 55

2.4.4 Images ... 55

2.4.5 Profiles .. 56

2.4.6 Network .. 56

2.4.7 Storage .. 56

2.4.8 Closing remarks .. 57

3 Container Orchestration Engine .. 60

3.1 Overview ... 60

3.2 The need of Orchestration .. 60

3.3 Docker Swarm .. 62

3.3.1 Docker Clustering ... 62

3.3.2 Architecture .. 63

3.3.3 Docker Swarm API .. 65

3.3.4 Swarm scheduling .. 65

3.3.5 Swarm service discovery .. 66

3.3.6 Swarm and single-host networking .. 67

3.3.7 Swarm and multi-host networking ... 67

3.4 Kubernetes .. 68

3.4.1 Architecture .. 69

3.4.2 Network .. 73

3.4.3 Storage .. 76

3.4.4 Scheduling .. 79

3.4.5 High-availability ... 79

Summary

7

3.4.6 Service Discovery ... 82

3.4.7 Quality of Service ... 83

3.4.8 Cluster Federation .. 83

3.4.9 APIs to extend Kubernetes ... 85

3.4.10 Platform as a Service and OpenShift.. 86

3.5 Apache Mesos ... 88

3.5.1 Architecture .. 89

3.5.2 Scheduling .. 90

3.5.3 Executors isolation ... 92

3.5.4 Marathon... 92

3.5.5 Service Discovery and Load Balancing ... 93

3.5.6 Chronos ... 95

3.6 Rancher ... 96

3.6.1 Architecture .. 97

3.6.2 Network .. 99

3.6.3 Storage .. 99

3.6.4 Cattle ... 100

3.6.5 Cattle Scheduling ... 101

3.6.6 Rancher WebHook ... 102

3.7 Amazon EC2 Container Service ... 102

3.7.1 AWS Elastic Beanstalk .. 103

3.7.2 Amazon ECS .. 103

3.7.3 Architecture .. 104

3.7.4 Scheduling .. 105

3.7.5 Network .. 105

3.7.6 Storage .. 105

3.8 Kontena ... 106

3.8.1 Architecture .. 107

3.8.2 Network .. 108

Summary

8

3.8.3 Storage .. 108

3.8.4 Scheduling .. 109

3.8.5 Kontena Objects ... 110

3.9 Nomad ... 110

3.9.1 Architecture .. 111

3.9.2 Scheduling .. 113

3.9.3 Use cases .. 114

3.10 Closing remarks .. 114

4 Container-focused Operating System ... 119

4.1 Overview ... 119

4.2 The need of a Container Operating System .. 119

4.3 CoreOS.. 120

4.3.1 Architecture .. 121

4.3.2 Configuration and Service Discovery .. 122

4.3.3 Application Management and Scheduling 122

4.3.4 Container runtime ... 122

4.3.5 Applications .. 123

4.4 RedHat Project Atomic ... 123

4.4.1 Architecture .. 124

4.4.2 Network .. 125

4.4.3 Storage .. 125

4.5 Mesosphere DCOS ... 126

4.5.1 Architecture .. 127

4.5.2 Network .. 128

4.5.3 Storage .. 129

4.5.4 Container Orchestration ... 129

4.6 Snappy Ubuntu Core... 130

4.6.1 Architecture .. 130

4.6.2 Containerization with Internet of Things 131

Summary

9

4.6.3 Package build ... 133

4.7 Closing remarks .. 134

5 Containers with OpenStack ... 135

5.1 Overview ... 135

5.2 Cloud Computing.. 135

5.3 OpenStack ... 136

5.3.1 Architecture .. 136

5.3.2 Nova System Architecture ... 139

5.3.3 The adoption of software-container in OpenStack 141

5.4 OpenStack Magnum ... 142

5.4.1 Architecture .. 142

5.4.2 Network .. 144

5.4.3 Security and Multi-tenancy .. 144

5.4.4 Magnum API Objects ... 145

5.4.5 Resource lifecycle .. 147

5.5 OpenStack Zun ... 148

5.5.1 Architecture .. 149

5.5.2 Comparison between Zun and Magnum .. 150

5.5.3 Zun Concepts .. 151

5.6 OpenStack Kolla ... 152

5.6.1 Architecture .. 153

5.6.2 Benefits of using containerized deployment 154

5.6.3 Deployment .. 155

5.6.4 Network .. 156

5.7 Murano .. 157

5.7.1 Architecture .. 158

5.7.2 Network .. 159

5.7.3 Advantages to using Murano .. 159

5.8 Closing remarks .. 160

Summary

10

6 Experimental Results .. 161

6.1 Overview ... 161

6.2 Requirements .. 162

6.3 Test Plan ... 163

6.3.1 Virtualization and Containerization ... 163

6.3.2 Container Orchestration ... 165

6.4 Deployment Tools .. 167

6.4.1 Infrastructure as Code: why do we need it? 167

6.4.2 Maas ... 167

6.4.3 Juju ... 169

6.5 System Description ... 169

6.5.1 System specification ... 169

6.5.2 Virtualization and Containerization ... 170

6.5.3 Container Orchestration ... 172

6.6 Benchmarking Tools ... 174

6.6.1 Ganglia monitoring system .. 174

6.6.2 PXZ ... 175

6.6.3 Iperf .. 175

6.6.4 Ping ... 175

6.6.5 Bonnie++ .. 176

6.7 Results ... 176

6.7.1 Virtualization and Containerization ... 176

6.7.2 Container Orchestration ... 197

6.8 Closing remarks .. 204

7 Case study: a Fault-Tolerant Cloud-based application by comparing

virtualization architectures .. 205

7.1 Overview ... 205

7.2 Requirements .. 205

7.3 System Analysis .. 206

7.3.1 Apache Web Server .. 206

Summary

11

7.3.2 Apache Tomcat ... 207

7.3.3 Apache mod_jk ... 207

7.3.4 MySQL RDBMS .. 207

7.3.5 Galera Cluster for MySQL ... 207

7.4 Test Plan ... 208

7.4.1 Apache JMeter .. 208

7.5 Design and Implementation .. 208

7.6 Results ... 210

7.6.1 CPU Analysis ... 211

7.6.2 Memory Analysis ... 212

7.6.3 Network Analysis ... 212

7.6.4 Input/Output Database Server Analysis ... 214

7.6.5 Apache Web Server Benchmark .. 215

7.7 Closing remarks .. 216

Conclusions ... 218

References ... 220

Introduction

12

Introduction

Cloud computing is a paradigm where a large pool of computers is connected in

private or public networks to provide resources or applications dynamically.

These are available on the Internet, and five essential features characterize them:

on-demand self-service, broad network access, resource pooling, rapid elasticity,

and measured services. In this way, consumers can focus on their core business

without the need to buy or maintain the IT systems.

Virtualization is the core technology of cloud computing since it is the enabling

solution allowing us to concurrently run multiple operating systems on the same

server, thereby providing for efficient resource utilization and reducing costs.

More precisely, this is called server virtualization, and the “virtual machine”

model is the most known type of virtualization that is involved in cloud

deployments. Server Virtualization introduces overhead to emulate the underlying

hardware and load an entire operating system for each server instance and, as the

demand for cloud computing increases day after day, the interest in traditional

technologies is decreasing.

At the same time is increasing the demand for new virtualization technology as

“containerization” or “lightweight virtualization”. Unlike the existing

virtualization approach, containerization does not involve to load a complete

operating system by reducing, in this way, system overload. In fact, as opposed to

traditional hypervisors, containers share the underlying kernel used by the

operating system running the host machine. Furthermore, this also offers most of

the benefits that are provided with the traditional virtual machine model.

The thesis was developed at Imola Informatica S.p.A. in Imola (Bo), a consulting

and skill transfer company that works alongside customers, in management and

development of mission critical projects. The objective of this work is to evaluate

the adoption of containerization as cloud hypervisor in opposition to the

traditional virtual machine model. In particular, we will investigate both cloud

solutions in order to understand what is more suitable and particularly when is

more appropriate to use containerization instead of machine virtualization in a

cloud environment.

Introduction

13

The first chapter provides an overview of virtualization technologies, how they

are adopted in the IT industry and a comparison between containerization and

traditional virtualization model.

The second chapter focuses on “container management”. This consists of

providing users the possibility to deal with containers regardless to explore low-

level details that are exploited through an independent API.

The third chapter concerns the usage of containers in cluster deployments by

introducing a new higher level: orchestration. This is necessary to offer users other

features that are architecture-dependent.

The fourth chapter is based on the highest level of abstraction: container-focused

operating systems. This is the possibility to build a platform which provides

services on a distributed architecture by exploiting the containerization paradigm.

The fifth chapter is dedicated to analyzing a cloud infrastructure solution that is

OpenStack. This is introduced since it is the platform where this analysis will be

performed on.

The sixth chapter is aimed to show the experimental results that addressed the

containerization paradigm in cloud deployments and concern both infrastructure

and application level.

The last chapter describes a case study that aims to provide a cloud-based service

in order to evaluate the behavior of two types of server virtualization from the

applicative point of view.

Virtualization and Containerization

14

1 Virtualization and Containerization

1.1 Overview

Innovation is necessary to ride the inevitable tide of change and, for this reason,

most of the enterprises are striving to reduce their computing cost. The most

important answer to the demand of reducing the computing cost is the introduction

of Cloud Computing [1]. This is rapidly becoming the standard for hosting and

running software applications on the Internet. Cloud computing is not a new

technology but an IT paradigm which offers the reduction of upfront

capitalizations, rapid scalability, and ubiquitous accessibility. Cloud computing

has been designed through the evolution of other existing solutions such as

virtualization. This is one of the fundamental technologies that made up the cloud

paradigm. Due to this new model, nowadays, consumers are able to concentrate

more on the core application functionalities instead of focusing on not business

aspects.

The term virtualization broadly describes the separation of a service request from

the underlying physical delivery of that service [2]. Therefore, a new layer is

included between client and service provider which is able to implement operation

requests regardless the underlying physical infrastructure.

Modern application infrastructure techniques and methodologies incentivize an

accelerated adoption of cloud computing technologies as well as various

virtualization technologies. The most popular virtualization technique is about

server virtualization, in which the virtualization layer allows multiple operating

system instances to run concurrently on a single computer dynamically

partitioning and sharing the available physical resources such as CPU, storage,

memory and input/output devices.

However, the virtual machine is not the unique model solution used for cloud

deployments. An alternative solution to machine virtualization is the

containerization. This technology involves encapsulating an application in a

container with its own operating environment and includes many of the benefits

of using virtual machines as running on everything, from physical computers to

virtual machines, bare-metal servers, private cloud clusters, public instances and

more. Therefore, this chapter will investigate the state of the art of virtualization

technologies.

Virtualization and Containerization

15

1.2 Virtualization in cloud computing

In computing, virtualization means creating a virtual representation of a resource,

such as a server, storage device, network or also an operating system where the

middleware divides the resource into one or more execution environments [3].

Something as simple as partitioning a hard drive is considered virtualization

because it is possible to take one storage device and partition it in order to create

two different hard drives. This does not impact the behavior of devices,

applications and human users which are able to interact with the virtual resources

as if they were single logical resources. Even if server virtualization is the most

known type, nowadays the term involves a number of computing technologies

such as storage virtualization, operating system-level virtualization, network

virtualization.

1.2.1 Storage virtualization

Companies are increasingly producing so much information that now IT figures

are coming up with different approaches to consolidate their systems. Therefore,

the increasing amount of data involves the increasing amount of storage devices

in order not to lose data. However, managing all those devices can soon become

difficult and of course is needed a solution to make easier the management of the

storage service level. A new way to combine drives into one centrally manageable

resource is possible due to the introduction of storage virtualization. Figure 1

shows a storage system which can be described as a storage array.

Figure 1 - Storage virtualization system

Virtualization and Containerization

16

Typically, it is used special hardware and software along disk drives in order to

provide fast and reliable storage for computing and data processing. This enables

better functionalities and more advanced features in computer data storage

systems, taking advantages as well as with server virtualization technologies.

Two storage types are provided through storage systems: block and file storage.

Block level storage can be seen as the hard drive on a server but with the need to

be installed in a remote chassis [4]. With this storage type, raw storage volumes

are created, and then a server-based operating system connects to these volumes

using them as individual hard drives. This makes block-level storage usable for

almost any kind of application, including file storage, database storage, virtual

machine file system (VMFS) volumes, and more. However, with block storage

access, it is usual for an organization to be able to use operating system native

backup tools or third-party backup tools such as Data Protection Manager(DPM)

to back up files.

Block level storage is extremely flexible, but nothing beats the simplicity of file-

level storage when all that is needed is a place to dump raw files. This consists of

a solution with centralization, high-availability, and an accessible place to store

files and folders. Usually, Network Attached Storage (NAS) devices are used in

order to provide a lot of space at what is generally a lower cost than block level

storage.

To conclude the comparison between the two storage types we can summarize

that in the block level world, it is necessary to create a volume, deploy an OS, and

then make an attachment to the created volume whereas, at the file level, the

storage device handles the files and folders on the device.

1.2.2 Network virtualization

The introduction of cloud computing has put the focus on server virtualization

even if there were other critical implications of that technology. In fact, the ability

to create virtual environments means that we move resources within the cloud

infrastructure. This elasticity and mobility have several implications for how

network services are defined, managed and used to provide cloud services.

Therefore, there are not just servers which benefit from virtualization but there

also advantages that are necessary from the network point of view. This challenge

was addressed due to the introduction of network virtualization.

Virtualization and Containerization

17

Network virtualization is a process of abstraction which separates the logical

network behavior from the underlying physical network resources [5]. This allows

network aggregation and provisioning, combining different physical networks

into a single virtual network, or breaking a physical network into multiple virtual

networks that are isolated from each other.

As enterprises had moved from traditional server deployments to virtualized

environments, the network issue was to provide security and segregation of

sensitive data and applications. The solution to those requirements was to build

the so-called multi-tenancy networking [6].

Multi-tenant networks are data center networks that are broken up and logically

divided into smaller, isolated networks. They share the physical networking gear

but operate on their own network without any visibility into the other logical

networks. Often this requirement comes from business processes of the

organization or from federal regulatory in which there is the need to isolate and

control parts of the network system.

Network virtualization lends itself to cost savings, efficiency, security, and

flexibility. In a virtual environment, logical switch ports are created and abstracted

from the underlying physical ports. This allows more virtual switch ports to be

added and connected to other switch ports quickly without having to commit real

ports or cable them together in the data center. Figure 2 shows a typical network

system used in cloud solutions.

Figure 2 - Network virtualization system

Virtualization and Containerization

18

It consists of using a layered architectural pattern in which the bottom level

includes the physical devices used to communicate as well as in the classical

network design. In the middle, we have software components that provide

middleware services, in order to create multiplexer-functionalities to the top layer,

the virtual network adapters.

Network virtualization can be split up into external and internal network

virtualization. External network virtualization combines or subdivides one or

more local area networks (LANs) into virtual networks to improve the efficiency

of a large data center network. To do that, the key components are virtual local

area network (VLAN) and network switches. This allows for a system

administrator the possibility to configure systems physically attached to the same

local network into separate virtual networks. Conversely, an administrator can

combine systems on separate local area networks into a single VLAN spanning

segments of a large network.

Internal network virtualization configures a single system with software

containers. As it will be explained later, this approach consists of a method in

which the kernel of an operating system allows the existence of multiple isolated

user-space instances, instead of just one. Such instances, which are sometimes

called containers, may look like real computers from the point of view of

programs running in them.

With the usage of internal network solutions, a physical network can be emulated

by software implementations. This can improve the efficiency of a single system

by isolating applications to separate containers or pseudo-interfaces.

1.2.3 Server virtualization

The most common form of virtualization is the virtual machine (VM) [7]. A VM

is an emulation of a computer system, and it is based on computer architectures

providing functionalities of a physical computer. The implementation may

involve specialized hardware, software, or a combination. With this improvement,

a physical machine could spawn more virtual machines for each physical

computer system. This allows better machine consolidation and augmented

security. In fact, if the service becomes unstable or compromised, the other

services on the physical host will not be affected.

Server virtualization hides server resources, including the number and identity of

individual physical servers, processors, and operating systems, from server users

Virtualization and Containerization

19

[8]. The server administrator uses a software application to divide one physical

server into multiple isolated virtual environments.

In order to create, run and control VMs, a new software layer is required between

the application and the hardware which is called hypervisor. The hypervisor

presents the guest operating systems with a virtual operating platform and

manages the execution of the guest operating systems. This software component

uses a thin layer of code in software or firmware to allocate resources in real time.

It is even the traffic cop that controls input/output and memory management.

As shown in Figure 3, numerous studies have classified the hypervisor solution

with two models that are called respectively “Type One” and “Type Two”.

Figure 3 - Hypervisor Types

Figure 3 represents the architectural model of the two types of server

virtualization implementations. The first is the solution in which the hypervisor

software runs directly on the system hardware. It is often referred to as a “native”,

“bare metal” or “embedded” hypervisor in vendor literature. On the contrary, type

2 hypervisors run on a host operating system. A Type One hypervisor provides

better performance and greater flexibility because it operates as a thin layer

designed to expose hardware resources to virtual machines, reducing the overhead

required to run the hypervisor itself.

1.3 Types of virtualization with virtual machine

Virtualization is the technology that is rapidly transforming the IT landscape. It

guarantees better hardware utilization, saves energy and makes it possible to

concurrently run multiple applications and various operating systems on the same

physical server. This increases the utilization, efficiency, and flexibility of

Virtualization and Containerization

20

existing computer hardware. As anticipated in the previous section, there is a

software that makes possible the virtualization of the server machine. This

software is called hypervisor, and it is placed between the hardware and the

operating system. Its role is to decide the access that applications and operating

systems have with the processor and other hardware resources.

Partitioning a physical server into smaller virtual servers help to maximize

resources but there are also some complexities which are included due to the

competition with guests operating systems. By definition, the operating system is

the unique component that is placed between the underlying hardware and the

applications running on top. With the introduction of server virtualization, there

is also the hypervisor which needs to be placed between the hardware and the

operating system guests that share the underlying infrastructure.

One of the most important purposes of virtualization is to mask the service request

from the physical implementation. This means that the operating systems, which

are installed on top of the hypervisor, should be kept as well as they are running

on top of physical resources. However, the mediation between the hypervisor and

the operating system requires the introduction of an implementation which cannot

be completely transparent. Therefore, the virtualization technologies that have

emerged can be split up into three categories: full-virtualization, hardware-

assisted virtualization, and para-virtualization.

1.3.1 Full virtualization

Full virtualization consists of an approach that relies on binary translation to trap,

into the virtual machine monitor (hypervisor), and to virtualize certain sensitive

and non-virtualizable instructions with new sequences of instructions that have

the intended effect on the virtual hardware [9]. This guarantees the total isolation

of guest operating systems from their hosts.

Meanwhile, the user-level code is directly executed on the processor for high

performance, privileged commands which come from the guest operating system

are trapped by the hypervisor because it is the unique component able to execute

those operations.

Virtualization and Containerization

21

Figure 4 - Ring levels with full virtualization

Figure 4 shows us the representation of the ring level executing model with full

virtualization. A variety of operating systems can run on the hypervisor without

any modification, but the speed is somewhat low due to the machine code

conversion process.

1.3.2 Hardware-assisted virtualization

One of the core elements of first-generation hardware-assisted virtualization was

the introduction in the x86 CPU ring architecture, known as Ring -1. This allows

hypervisors to run at Ring -1 in order to execute guest instructions at Ring 0, just

as they normally would when running on a physical host [10]. Figure 5 shows an

architecture that supports hardware-assisted virtualization.

Figure 5 - Ring levels with Hardware-assisted virtualization

Virtualization and Containerization

22

It provides a Ring-1 level, and the hypervisor runs on Ring-1 while the operating

system runs on Ring 0. This does not require the process of binary translation for

privileged commands, and a command is executed directly by hardware via the

hypervisor with a notable performance improvement.

1.3.3 Paravirtualization

Paravirtualization is an enhancement of virtualization technology in which a guest

operating system is recompiled before to install it inside a virtual machine [11]. It

creates an interface layer to the guest operating systems that can differ somewhat

from that of the underlying hardware. This capacity minimizes overhead and

optimizes system performance by supporting the use of virtual machines.

Figure 6 - Ring levels with Paravirtualization

Figure 6 shows the ring level view of a solution with paravirtualization. The main

limitation of paravirtualization is the fact that the guest operating system must be

tailored specifically to run on top of the virtual machine monitor. However,

paravirtualization eliminates the need for the virtual machine to trap privileged

instructions.

Virtualization and Containerization

23

1.4 Container-based virtualization

Containerization, also known as container-based virtualization, is a virtualization

method at the operating system level for deploying and running distributed

applications [12]. Containers and virtual machines both allow to abstract the

workload from the underlying hardware, but there are important differences in the

two approaches that need to be analyzed. Moreover, the principle is the same and

with a physical server, but using a single kernel, multiple isolated systems can be

run. These are called containers.

Considering that containers share the same OS kernel, they can be more efficient

than virtual machines. In fact, containers hold the components necessary to run

the desired software, such as files, environment variables, and libraries. On the

contrary, a virtual machine includes a complete operating system along with any

drivers, binaries or libraries, and then the application. Each virtual machine is

executed atop a hypervisor, which itself runs on a host operating system and in

turn, operates the physical server hardware.

With containerization, the operating system is responsible for controlling

containers access to physical resources, such as CPU and memory. This means

that a single container cannot consume all physical resources of a host. A major

factor in the interest in containers is they can be created much faster than

hypervisor-based instances. This makes for a much agiler environment and

facilities new approaches, such as microservices, continuous integration, and

delivery.

The concept of containerization basically allows virtual instances to share a single

host operating system and relevant binaries, libraries or drivers. This reduces

wasted resources because each container only holds the application and related

binaries or libraries. Furthermore, the role of a hypervisor is handled by a

containerization engine, as it will be discussed further, which is installed on the

host operating system and allows to users the possibility to manage containers, as

well as a classical hypervisor, does with virtual machines.

However, there are not just advantages. In fact, a potential drawback of

containerization is lack of isolation from the operating system running on the host.

Therefore, security threats have easier access to the entire system when compared

with hypervisor-based virtualization.

Virtualization and Containerization

24

Figure 7 - Container-based virtualization architecture

Figure 7 presents the stack architecture of a container-based virtualization. It is

also called as lightweight virtualization layer in which there is no virtualized

driver. Therefore, a group of processes is put together in an isolated environment

even if the underlying operating system is shared.

Containers are a solution to the problem of how to get the software to run reliably

when moved from one computing environment to another. This is obviously quite

suitable to be adopted in cloud computing environments because the mobility of

resources is one of the most important features that the model provides to users.

The technology was introduced for the first time in 1979 [13]. The first mover

was the so-called chroot UNIX, a system call that allows the change of the root

directory of running processes. The idea was to provide a sort of isolation between

applications. Of course, this was the precursor of Linux container, and later

container solutions such as Linux VServer, OpenVZ, and LXC were introduced.

The purpose of this section is to investigate these proposals, how they implement

the concept of containerization and particularly what are the key differences

between them.

1.4.1 Linux-VServer

Linux-VServer is a virtual private server implementation that was created by

adding operating system-level virtualization capabilities to the Linux kernel [14].

It is developed and distributed as open-source software and consists of a jail

mechanism in which is possible to securely divide up resources on a computer

system (such as the file system, CPU time, network addresses and memory) in

such a way that processes cannot mount a denial-of-service attack on anything

outside their logical resources. Each partition is called security context, and the

Virtualization and Containerization

25

virtualized system within it is the virtual private server, nowadays correspondent

to the concept of a container.

The context themselves are robust enough to boot many Linux distributions

unmodified. To save space on such installations, each file system can be created

as a tree of copy-on-write hard links to a “template” file system. The hard link is

marked with a special file system attribute and when modified, is securely and

transparently replaced with a real copy of the file.

Virtual servers share the same system call interface and do not have any emulation

overhead. Furthermore, they do not have to be backed by opaque disk images but

can share a common file system and common sets of files (through copy-on-write

hard links).

Processes within the virtual server run as regular processes on the host system.

Networking is based on isolation rather than virtualization, so there is no

additional overhead for packets.

However, there are also disadvantages: VServer requires that the host kernel must

be patched; no clustering or process migration capability is included, and this

means that the host kernel and host computer is still a single point of failure for

all virtual servers.

Figure 8 - VServer Control Daemon Architecture

Figure 8 illustrates the architecture of a VServer implementation.

Virtualization and Containerization

26

The architecture consists of five major parts: the configuration database (VXDB),

the XMLRPC Server, the XMLRPC Clients, the Template Management which

acts as a lightweight statistic collector.

The configuration database stores all virtual private server related configuration

data like disk limits, CPU scheduler or network addresses. Furthermore, the

daemon stores information about its users and their permissions. This database is

implemented using SQLite.

The XMLRPC Server is the core of VServer Control Daemon and implements the

XMLRPC standard for Remote Procedure Calls (RPC). XMLRPC is a

specification and a set of implementations that allow software running on different

operating systems.

The XMLRPC protocol describes the serialization format that clients and servers

use to pass remote procedure calls to each other. This protocol is characterized by

two important features: the details of parsing the XML are hidden from the user,

and there is no need to write both client and server in the same language.

The XMLRPC Clients, on the other hand, connect to the XMLRPC Server using

the HTTP protocol. They need to pass authentication information and the

connection between server and client is not persistent. This means that is required

to pass authentication information with every method call.

The Template Management consists of various scripts and XMLRPC methods

used to build and create new virtual private servers. The Template Build process

assembles a complete root filesystem usable in virtual private servers and stores

its content in a single tarball, the Template Cache.

The last component, the Statistic Collector, is a very lightweight daemon used to

collect time-series data from running virtual private servers. The collected data is

stored in Round Robin Database which is the industry standard data for logging

and graphing applications.

1.4.2 OpenVZ

OpenVZ creates multiple secure, isolated containers on a single physical server

enabling better utilization and ensuring that applications do not conflict [15].

These are even called virtual environments or virtual private servers, and therefore

each container executes exactly like a stand-alone server.

Virtualization and Containerization

27

A virtual environment is an isolated program execution environment, which looks

and feels like a separate physical server. Multiple virtual environments co-exist

within a physical server and, even if they can run different Linux distributions, all

these environments operate under the same kernel.

It requires a modified Linux kernel with the augmenting of functionalities such as

virtualization and isolation of various subsystems, resource management,

checkpointing. While other concepts have already been discussed in

complementary solutions, the checkpointing is a key concept of OpenVZ. It is a

process of “freezing” a virtual environment, saving its complete state to a disk

file, with the ability to “unfreeze” that state later. Checkpointing allows the “live”

migration of a virtual environment to another physical server. Therefore, both

temporary and persistent states can be transferred to another machine and the

virtual environment can be “unfrozen” there.

Figure 9 - OpenVZ General Architecture

Figure 9 illustrates the architecture of a system with the implementation of

OpenVZ.

OpenVZ is distributed with a client utility, which implements a high-level

command line interface to manage Virtual Environments. All the resources can

be changed during runtime. This is usually impossible with other virtualization

technologies, such as emulation or paravirtualization.

Virtualization and Containerization

28

Virtual environments are created from templates, set of packages, and a template

cache is an archive (tarball) of the chrooted environment with those packages

installed.

Moreover, the concept of containerization is realized with techniques that are also

used in complementary solutions such as Linux VServer. Each one provides its

own features even considering the time in which they have been designed.

Furthermore, the goal is always to abstract the way in which a physical server can

be used to run multiple applications that do not need any shared level.

1.4.3 LXC

Linux containers (LXC) provides lightweight operating system virtualization and

is relatively new [9]. LXC does not require hardware architecture support, and it

is the successor of Linux VServer and OpenVZ.

The Container-paradigm allows for processes and their resources to be isolated

without any hardware emulation or hardware requirements. For this reason, they

provide a sort of virtualization platform where every container can run their own

operating system. This means that each container has its own filesystem, network

stack and running its own Linux distribution.

These abstractions make a container behave like a virtual machine with a separate

filesystem, networking, and other operating system resources. Isolation is an

important aspect of the container, and it is provided through two kernel features

of the Linux operating system: groups and namespaces.

Cgroups, abbreviated from control groups, is a Linux feature that limits and

isolates the resource usage of a collection of processes, while namespaces are

responsible for isolating and virtualizing system resources of a set of processes.

Namespaces are used to isolate resources like: filesystem, networking, user

management and process ids; cgroups are used for resource allocation and

management. In this way, it is possible to limit the number of resources that can

be assigned to a specific container.

An important difference in resource allocation between LXC and virtual machine

solutions is that CPU resources cannot be allocated on a per core basis, rather one

should specify a priority. Originally, LXC containers were not as secure as other

OS-level virtualization methods such as OpenVZ. The problem was that a root

user of the guest system could run arbitrary code on the host system with root

privileges, much like chroot jails.

Virtualization and Containerization

29

Starting with the LXC 1.0 release, it is possible to run containers as regular users

on the host using “unprivileged containers”. These are more limited in that they

cannot access hardware directly. Nevertheless, even privileged containers should

provide adequate isolation in the LXC 1.0 security model, if properly configured.

Privileged containers are defined as any container where the container root user

identifier is mapped to the same root identifier of underlying host. In such

containers, protection of the host and prevention of escape is entirely done through

mandatory access control solutions.

They are still valuable in an environment where trusted workloads are running or

where no untrusted task is running as root in the container. In contrast to OpenVZ,

LXC works in the vanilla Linux kernel requiring no additional patches to be

applied to the kernel sources.

Figure 10 - LXC General Architecture

Figure 10 shows us the general architecture of LXC in which the software layer

(LXC) intermediates between kernel features and containers. As explained before,

LXC implements container primitives performing a sort of arbiter role, necessary

to control and manage the underlying realization.

Unprivileged containers are safe by design. The root container identifier is

mapped to an unprivileged user outside of the container and only has extra rights

Virtualization and Containerization

30

on resources that it owns itself. With such container, the use of additional security

solution is not necessary.

However, LXC will still adopt security solutions which may be handy in the event

of a kernel security issue, but they do not enforce the security model.

1.5 Closing remarks

Although virtualization, as a form of technology has existed since the 1960s, only

recently has become a staple in the IT industry [16]. Of course, the increasing of

popularity is influenced by the introduction of cloud computing. By offloading

hardware requirements and utility costs, it can rapidly transform the infrastructure

and improve its efficiency by itself. In fact, Cloud computing takes advantages of

virtualization allowing to run multiple applications and operating systems on the

same server, thereby providing for efficient resource utilization and reducing

costs.

Figure 11 - Rate Adoption of Virtualization

Figure 11 presents the adoption of virtualization in IT industry.

Essentially, virtualization differs from cloud computing because it is a software

that manipulates hardware, while cloud computing refers to a service that results

from that manipulation. However, virtualization is a foundational element of

cloud computing considering the fact that it helps deliver on the value of cloud

computing.

Virtualization and Containerization

31

As described in this chapter, the first and most known type of virtualization is

about running multiple virtual machines on the same physical server.

Determining whether or not this type of virtualization is the best solution for a

business requires an in-depth analysis of the organization requirements.

Therefore, the purpose of this thesis is to perform an in-depth analysis in order to

evaluate the differences between deployments with virtual machines and

containers. The virtual machine model includes the introduction of software that

exists outside of a guest operating system to intercept the commands sent to the

underlying hardware. This is called “hypervisor” and, as mentioned in the

correspondent section, could be deployed according to one of these following

solutions: full virtualization, hardware-assisted virtualization, paravirtualization.

Figure 12 - Comparison Virtualization Techniques

Figure 12 illustrates a comparison between the techniques involved with the

virtual machine model. As it is possible to notice from the table above [17],

sometime, performances should be sacrificed in favor of guest compatibility and

hardware requirements.

Virtualization and Containerization

32

Modern cloud infrastructure uses virtualization to isolate applications, optimize

the utilization of hardware resources and provide flexibility. However, at the end

of this chapter, we can assert that conventional virtualization comes at the cost of

resource overhead.

As the virtual machine model requires the presence of a hypervisor, the

containerization includes the introduction a software layer which is called

container engine. This chapter has followed the historical path of containerization

in which the most spread solutions were: Linux VServer, OpenVZ, and LXC.

 Linux VServer OpenVZ LXC

Works on non-

patched kernel

  ✓

Limit memory

usage

✓ ✓ ✓

Limit kernel

memory usage

✓ ✓ 

Limit disk IO

  ✓

Limit disk

usage

✓ ✓ Partial

Checkpointing

 ✓ ✓ new

Live migration

 ✓ ✓ new

Table 1 - Comparison between Linux VServer, OpenVZ, and LXC

Table 1 illustrates a comparison between the solution of container engines which

have been discussed in this chapter. LXC is newer than others, and several

functionalities have been introduced later due to the increasing adoption of

container paradigm. Furthermore, container-based virtualization could be an

alternative as it potentially reduces overhead and thus improved the utilization of

data centers. Both virtualization technologies are used to take advantages even if

there is still no winner and both are the right choice for different use cases.

In conclusion, we have seen that containerization is a valid complementary

solution that could also be adopted in cloud deployments. However, the container

Virtualization and Containerization

33

engine is not enough and, as happened with virtual machines, the solution should

include other points of view, such as management and orchestration of these

instances.

Therefore, the next chapters will discuss the introduction of higher services which

have been introduced in the containerization paradigm. Nevertheless, the question

which we want to answer is if the containerization is a suitable alternative to server

virtualization in cloud computing and of course what are the key concepts that an

organization should consider an alternative to scenarios with server virtualization

deployments.

Container Management

34

2 Container Management

2.1 Overview

In the previous chapters, we investigated the possibility to create server

virtualization using hypervisor-based virtual machines or container engines.

Furthermore, containerization can also be used for higher services, according to

another paradigm such as microservice [18]. This has led to distinguish between

two categories: system and application containers. System containers are meant

to be used as completely server virtualization in which the target is to run multiple

operating systems on the same physical server concurrently. Application

containers are the solution to the microservice paradigm in which consumers need

to focus at a higher level.

Operating-system level virtualization is becoming increasingly fundamental for

server applications since it provides containers as a foundation of the emerging

microservice architecture, which enables agile application development,

deployment, and operations. At the moment, cloud containers are a hot topic in

the IT world, and the main idea is that containers are designed to virtualize a single

application. So far, cloud containers have predominantly been the domain of

Linux-based servers but nowadays even Microsoft, with Hyper-V container, will

introduce the support to this new paradigm. However, there are still questions that

need answers, such as how exactly are containers different to traditional

hypervisor-based virtual machines. Therefore, the goal of this work is to

investigate this technology comparing its own benefits with other well-adopted

deployments, such as hypervisor-based virtual machines.

Today, many organizations strive to cope with rapid market changes, such as

evolving customer requirements and new business processes. Agility in the

microservice architecture depends on fast management operations for the

container, such as create, start, and stop. A common design practice is to

implement a service as a set of microservices, and the goal is to take advantages

of existing solutions in order to get portability, isolation, and robustness. While

system containers are designed to run multiple processes and services, application

containers are meant to package and run a single service.

The most common application containerization technology is Docker, based on

universal runtime runC, while the main competitive offering is CoreOS rkt

container engine, which relies on the App Container specification. These solutions

Container Management

35

are the most spread in the area of application containers. Furthermore, between

application and system containers, a recently new solution, LXD, has been

introduced in order to provide features that Docker or rkt handles less elegantly

external to the container hosting. The primary value of LXD is simplicity. It is a

container hypervisor that does not include the application delivery framework as

included in both Docker and rkt. However, LXD is easier to integrate with

virtualization frameworks, such as OpenStack, or with general DevOps tools,

such as Chef and Ansible. Therefore, this chapter will investigate these solutions

in order to evaluate a higher point of view of the containerization paradigm.

2.2 Docker

Docker comprises a command-line program, a background daemon, and a set of

remote services that take a logistical approach to solve common software

problems and simplify the experience of installing, running, publishing and

removing software [19]. It accomplishes this through the containerization

technology. Using containers has been a best practice for a long time, but

manually building containers can be challenging and easy to do incorrectly.

This challenge has put them out of reach for some, and misconfigured containers

have lulled others into a false sense of security. Docker is a helper in this scenario

and any software, which is running with Docker, runs inside a container.

Docker uses Linux namespaces and cgroups, which have been part of Linux since

2007. Furthermore, it does not provide the container technology, but it specifically

makes it simpler to use.

Figure 13 - A basic computer stack running two programs

Figure 13 represents an architecture stack with two running programs started from

the command line. This case involves a command line interface which runs in the

so-called user space, just like other programs that run on top of the operating

system. Ideally, programs running in user space cannot modify kernel space

Container Management

36

memory. In fact, the operating system is the interface between all user programs

and the hardware that the applications are running on.

Until some time ago, Docker was built on top of LXC in order to create

namespaces and all the components that go into building a container. As Docker

matured and portability became a concern, a new container runtime called

“libcontainer” [19] was built, replacing LXC. However, the ecosystem uses an

interface layer so that users can change the container execution provider.

The idea behind application containers is that containers should be created for

each component of the application. This is fundamental for a multi-component

system using the microservice architecture.

Figure 14 - Docker running three containers

Figure 14 illustrates the case in which three containers are deployed on a basic

Linux operating system. The user space includes the command line interface in

which the Docker client interacts with the Docker daemon. The architecture of the

ecosystem will be detailed in the correspondent section, but the purpose of the

picture is to demonstrate how the technology makes use of kernel features such

as namespaces. Therefore, each container is completely isolated from other

processes, such as the agent that created it.

Each container is running as a child process of the Docker daemon, wrapped with

a container, and the delegate process is running in its own memory subspace of

the user space. Programs running inside a container can access only their own

memory and resources as scoped by the container. Therefore, the containers that

Docker builds are isolated concerning some aspects.

Container Management

37

Isolation aspect Description

PID namespace Process identifiers and capabilities

UTS namespace Host and domain name

MNT namespace File system access and structure

IPC namespace Process communication over shared memory

NET namespace Network access and structure

USR namespace User names and identifiers

Chroot Controls the location of the root file system

Cgroups Resource protection

Table 2 - Isolation aspects of Docker containers

Table 2 shows the isolation aspects of Docker containers which are set by default

to each Docker container. However, there is the possibility to extend the level of

security enabling appropriate security solutions.

However, these are not the unique security measures adopted by Docker.

Therefore, the ecosystem takes even care about operating system features access

through involving capabilities [19], which are features of the Linux operating

system. Whenever a process attempts to make a gated system call, the capabilities

of that process are checked for the required capability. The call will succeed if the

process has the required capability and fail otherwise.

At the creation of a container, by default, Docker drops a specific set of

capabilities in order to further isolate the running process from the administrative

functions of the operating system.

Sometimes there are cases in which we need to run a system administration task

inside a container. Therefore, that container should be granted with privileged

access to the underlying host operating system. As shown in LXC, these are called

privileged containers. They maintain their file system and network isolation but

have full access to shared memory and devices in addition to possess full system

capabilities.

2.2.1 Architecture

The architecture is based on the client-server model. The Docker client talks to

the Docker daemon, which is responsible for building, run and distribute Docker

containers [19]. The ecosystem automates the repetitive tasks of setting up and

configuring development environments so that developers can focus on just

building software.

Container Management

38

Figure 15 - Docker Architecture

Figure 15 shows us the components of the Docker ecosystem Architecture, which

are structured following the client/server paradigm.

There is no constraint to have client and daemon running on the same host. They

are designed to work without no difference if they were local or remote. They

communicate using a REST API, over UNIX sockets or a network interface.

When the processes are running on the same host, the implementation provides

optimization in order to take advantages of inter-process communication.

Due to this level, the complexity is pushed into containers that are easily built,

shared and run. The clear advantage of this architecture is that there is no need to

have extra hardware for guest operating systems because everything works as

Docker containers.

As shown in Figure 15 the architecture consists of the following main

components:

• Docker daemon (dockerd) – it is the server which listens for Docker API

requests and manages Docker objects such as images, containers, networks,

and volumes. It can also communicate with other daemons to manage

Docker services.

• Docker client (docker) – it is the primary way that many Docker users

interact with Docker. This sends HTTP REST requests to dockerd, which

carries them out.

• Docker registry – it stores Docker images. Docker Hub and Docker Cloud

are public registries that anyone can use.

By default, Docker is configured to look for images on Docker Hub. Each pull

request is performed to a configured registry allowing anyone to buy and sell

Container Management

39

Docker images or distribute them for free. Furthermore, this does not require any

customization between different staging environments. In fact, it is always

possible to upgrade the application by pulling the new version of the image and

redeploying the containers.

2.2.2 Docker Images

The metaphor associated with Docker containers is that they are considered as

physical shipping container [19]. It is a box where is possible to store and run the

application and all of its dependencies. Moreover, to easily work with containers,

it is necessary to provide a mechanism to distribute containers with ease. Docker

completes the traditional container metaphor by including a way to package and

distribute software. The component that fills the shipping container role is called

an image.

A Docker image is a bundled snapshot of all the files that should be available to

a program running inside a container. Many containers can be created from an

image but, even if containers started from the same image, they do not share

changes to their file system. Software with Docker is distributed through images,

and this allows the receiving computers to create containers from them.

Images are the shippable units in the Docker ecosystem, and therefore a set of

infrastructure components are coordinated to simply distributing Docker images.

These components are registries and indexes, and it is even possible to use the

publicly available infrastructure provided by Docker Inc., other hosting

companies, or the own local registries and indexes.

A Docker image is a collection of layers. Each of which is an image that is related

to at least one other image; images define parent/child relationships built from

their parents to form layers. Therefore, each file available to a container is

obtained by the union of all the layers in the lineage of the image that the container

was created from. This aspect is quite different from the implementation in

operating system containers because by default they do not include any layered

file system.

Programs running inside containers know nothing about image layers.

Furthermore, the file system operates as though it does not run in a container or

operate on an image. From the perspective of the container, it has exclusive copies

of the file provided by the image. This is made possible with something called a

union file system.

Container Management

40

Docker uses a variety of union file systems, which is part of a critical set of tools

that combine to create the effective file system isolation. The other tools are MNT

namespaces, and the chroot system call. The file system is used to create mount

points on the host file system, which is responsible to abstract the use of layers.

Therefore, these layers are bundled into a Docker image.

When a Docker image is installed, its layers are unpacked and appropriately

configured for use by the specific file system provider chosen for the underlying

host. The Linux kernel provides a namespace for the MNT system. When Docker

creates a container, that new container will have its own MNT namespace, and a

new mount point will be created for the container to the image. Lastly, chroot is

used to make the root of the image file system the root in the container context.

This prevents anything running inside the container from referencing another part

of the host file system.

The most important benefit of this approach is that common layers need to be

installed only once. This means that several specializations of a program are

installed without storing redundant file or downloading redundant layers. By

contrast, most virtual machine technologies will store the same files as many times

as redundant virtual machines are installed on a computer.

2.2.3 Docker containers

A container is a runnable instance of an image. Using Docker API or CLI, it is

possible to perform actions on Docker containers [19]. By default, a container is

relatively well-isolated from other containers and its host machine. It is defined

by an image as well as any configuration options provided when created or run it.

When a container is stopped, any changes to its own state, which are not stored in

persistent, will be disappeared.

Container Management

41

Figure 16 - The state transition diagram for Docker containers

Figure 16 represents the diagram state of a Docker container.

It consists of four states, and the execution phase is placed in the running state.

When an image is built, the docker daemon prepares the content to launch a new

instance of that image. This is accomplished by executing the run command of

the Docker API. At this point, the container becomes a running process, and the

execution is delegated to its main command. Therefore, Docker is considered an

application container because the purpose is to execute a single command within

the execution environment.

In addition to isolation features of the Linux kernel, such as cgroups and kernel

namespaces, Docker makes use of a union-capable file system. This is a file

system service for Linux which implements a union mount for other file systems.

Furthermore, this allows files and directories of separate file systems, known as

branches, to be transparently overlaid, forming a single coherent file system. This

allows independent containers to run within a single Linux instance, avoiding the

overhead of starting and maintaining virtual machines.

Container Management

42

Figure 17 - Docker Linux Interfaces

Figure 17 illustrates the interaction model between Docker engine and the

underlying Linux kernel. Since version 0.9, Docker includes the libcontainer

library as its own way to directly use virtualization facilities provided by the Linux

kernel, in addition to using abstracted virtualization interfaces via libvirt, LXC

and system-nspawn.

Building on top of facilities provided by the Linux kernel, a Docker container,

unlike a virtual machine, does not require or include a separate operating system.

Instead, it relies on the functionalities of the kernel and uses resource isolation

and separate namespaces to isolate the application point of view from the

underlying operating system.

Docker containers running on a single machine share the kernel operating system;

they start instantly and use less compute and RAM than virtual machines.

Furthermore, they are based on open standards and run on all major Linux

distributions, Microsoft Windows, and on any infrastructure including virtual

machines, bare-metal and in the cloud. However, Docker is not a system container

and therefore also the integration with cloud operating platforms such as

OpenStack is no longer maintained. As it will be seen later, complementary

solutions such as LXD or Zun, are more suitable to be integrated.

Container Management

43

2.2.4 Network

Docker is concerned with two types of networking: single-host virtual networks

and multi-host networks [19]. Local virtual networks are used to provide container

isolation while multi-host virtual networks provide an overlay where any

container on a participating host can have its own routable IP address from any

container in the network. This section covers single-host virtual networks. This is

crucial for the security-minded, and multi-host networking requires a broader

understanding of other ecosystem tools in addition to understanding the material

covering single-host networking.

Figure 18 - The default local Docker network topology

Figure 18 illustrates the default network topology with two docker containers. As

it is possible to see, those containers have their own private loopback interface

and a separate Ethernet interface linked to another virtual interface in the

namespace of the underlying kernel. These two linked interfaces make a link

between the host network stack and the stack created for each container. Docker

uses features of the underlying operating system to build a specific and

customizable virtual network topology. The virtual network is local to the

machine where Docker is installed and is made up of routes between participating

containers and the wider network where the host is attached.

Each container gets a unique private IP address that is not directly reachable from

the external network. Connections are routed through the Docker bridge interface

called docker0 and the virtual interfaces created for containers are linked to that

Container Management

44

bridge. Together they form a network, and this bridge interface is attached to the

network where the host is connected to.

The connections between interfaces describe how exposed or isolated any specific

network container is from the rest of the network. Docker uses kernel namespaces

to create those private virtual interfaces, but the namespace itself does not provide

the network isolation. Network exposure or isolation is provided by the firewall

rules of the underlying host.

In order to define how a container interacts with the other network components, a

so-called archetype is adopted. All Docker containers follow one of the following

archetypes:

• Closed containers – with no communication possibilities.

• Bridged containers – communication with local containers.

• Joined containers – sharing network interfaces with another container.

• Open containers – with full access to the host network.

Figure 19 - Network archetypes and their interaction with the Docker network

topology

Figure 19 illustrates the four archetypes of the Docker network subsystem. This

is meant to the level of isolation that a user wants to reserve to its own containers.

Closed containers are the strongest type of network container. There is no network

traffic allowed for this archetype. Processes running in such a container will have

Container Management

45

access only to a loopback interface. If they need to communicate only with

themselves or each other, this will be suitable whereas if the software needs to

download updates, it will not be able to, considering the fact that it cannot use the

network. Docker builds this type of container by simply skipping the step where

an externally accessible network interface is created. In fact, there is no

connection to the Docker bridge interface. Programs in these containers can talk

only to themselves. Therefore, closed containers should be used when the need

for network isolation is the highest or whenever a program does not require

network access. In fact, this is not the default archetype for Docker containers.

By default, Docker creates bridged containers that relax network isolation in

doing. They have a private loopback interface and another private interface that

is connected to the rest of the host through a network bridge. All interfaces

connected to the docker bridge are part of the same virtual subnet. This means

that they can talk to each other and communicate with the larger network through

the docker0 interface.

Bridged containers are not accessible from the host network by default. In fact,

containers are protected by the firewall system of the underlying host. By default,

there is no route from the external interface of the host to a container interface.

Usually, containers would not be very useful if there were no way to get to them

through the network. Moreover, the docker run command provides a flag (-p or –

publish) that can be used to create a mapping between a port on the host network

stack and the new container interface.

The next less isolated network container archetype is called joined container.

These containers share a common network stack, and by this way, there is no

isolation between joined containers. Docker builds this type of container by

providing access to the interfaces created for a specific container to another new

container. Therefore, network interfaces are shared but containers, joined in this

way, will maintain other forms of isolation such as file system, memory, and

more.

The last archetype of network container is open containers. They are not isolated

because they have full access to the host network stack. This includes access to

critical host services. Open containers provide absolutely no isolation and should

be considered only in cases when no other option is suitable.

Container Management

46

2.2.5 Storage

Docker provides the storage subsystem with the concept of volume. This is a

mount point on the container directory tree where a portion of the host directory

tree has been mounted. Without volumes, container users are limited to work with

the union file system that provides image mounts, not providing the durability of

data which should be held even after the execution of the container.

A volume is a tool for segmenting and sharing data that has a scope or life cycle

that is independent of a single container. That makes volumes an important part

of any containerized system design that shares or writes files.

Figure 20 – Docker volume types

Figure 20 illustrates the two-volume types of Docker ecosystem. Every volume is

a mount point on the container directory tree to a location on the host directory

tree, but the types differ in where that location is on the host. The first type of

volume is a bind mount whereas the second one is a managed volume.

Managed volumes use locations that are created by the Docker daemon in space

controlled by itself, which is called Docker managed space. A “bind mount

volume” is a volume that points to a user-specified location on the host file

system. This is useful when the host provides some files or directories that need

to be mounted into the container directory tree at a specific point. Furthermore,

this is also fundamental when other processes, running outside a container, want

to share data such as components of the host system itself. Moreover, it is possible

to mount the volume as read-only, guaranteeing that any process inside the

container cannot modify the content of the volume.

Bind mount volumes are not limited to directories, even if that is how they are

frequently used. Therefore, it is possible to use a bind mount volumes to mount

individual files. This provides the flexibility to create or link resources at a level

that avoids conflict with other resources. The important thing to note in this case

Container Management

47

is that the file must exist on the host before creating the container. Otherwise,

Docker will assume that is needed to use a directory and so it will create it on the

host, and it will be mounted at the desired location (even if a file occupies the

location).

The first problem with bind mount volumes is that they tie portable container

description to the filesystem of a specific host. Furthermore, this can be difficult

to manage considering the fact that they create an opportunity for conflict with

other containers. In fact, it would be a bad idea to start multiple instances of an

image that all containers use the same host location as a volume. In that case, each

of the instances would compete for the same set of files and therefore, without

other tools such as file locks, that would likely result in corruption of the content.

Managed volumes are different from bind mount volumes because the Docker

daemon creates managed volumes in a portion of the host file system that is owned

by Docker. Using managed volumes is a method of decoupling volumes from

specialized locations on the filesystem. This is useful when it is just needed to

have a place where to put some data that can be thrown away after finished to

work with them. Therefore, Docker can confidently remove any directories or

files that are no longer being used by a container.

2.2.6 Docker Compose

Docker compose is a tool for defining, launching and managing services, where a

service is defined as one or more replicas of a Docker container [19]. A simple

client command-line program, docker-compose, is used to manage services and

systems of services. These are defined in YAML (Yet Another Markup Language)

files. It accomplishes the task of building Docker images, launching containerized

applications as services, launching full systems of services, managing the state of

individual services in a system and scale services up or down. This allows us to

stop focusing on individual containers and instead of pointing out full

environments and service component interactions. A compose file might describe

four or five unique services that are interrelated but should maintain isolation and

independent scaling. One of the most impressive and useful features of Compose

is the ability to scale a service up and down. When performed, compose creates

more replicas of the containers providing the service. These are automatically

cleaned up when they are scaled down. This tool is useful for managing

environments and iterating on projects are similar to docker command-line

commands. In fact, all the operations that are available with a single docker

container have the equivalent counterpart with Docker compose.

Container Management

48

2.3 RKT

Rkt is a container engine designed for modern cloud-based environments [20]. It

includes aspects not present in other solutions of container engine such as native

integration of pod. It defines an execution environment strongly modular and an

interface layer which simply allows the integration with other components. In

Rkt the atomic unit of execution is the pod, the same concept introduced in the

Kubernetes Orchestration System. Furthermore, it allows the possibility to specify

low-level configurations in order to define a fine-grained behavior of each

application.

The architecture is not so far different from other solutions such as Docker.

Moreover, there is no central daemon, but it is self-contained, guaranteeing

isolation by executing each pod directly within classical Unix processes. Rkt

implements an open and standard format of container runtime, which is called

App Container Specific, but it is also able to build Docker images.

It is the first challenger to Docker in the application container space. The key

concept that differentiates it from Docker it is the security point of view, designed

to alleviate many of the flaws inherent in the Docker, container model.

Nevertheless, this justifies the fact that Docker has recently remediated some of

its more critical aspects such as eliminating the need of running containers as root,

addressing a longstanding security gripe among its adopters.

Furthermore, Rkt includes the support to check of container images

cryptographically. RunC is the container runtime, an implementation of Open

Container Initiative Specification but the disadvantage is that users need to know

low-level features of the operating system and the overhead is increased with the

responsibility to check security properties.

Container Management

49

2.3.1 Architecture

The primary interface of the ecosystem is a command-line tool, rkt, which does

not require a long-running daemon. This architecture [20] allows the project to be

updated in-place without affecting application containers which are currently

running. Furthermore, this allows separating the levels of privilege between

different operations.

Figure 21 - RKT Architecture

Figure 21 describes the architecture of RKT ecosystem. The whole state of rkt is

hand over through the file system, and the concurrent execution of the command

uses kernel features such as file-locking in order to avoid competition access

problems.

Execution with rkt is divided into several distinct stages, and the execution chain

follows the numbering of stages. The first invokes involves the execution of the

rkt command-line, which belongs to the so-called “stage0”. This is the state in

which a process is invoked, and this operation is accomplished by a shell or a

supervisor process. This state consists of a typical fork and exec, generating a

child process of the process which has invoked it.

After completing the execution of the first stage, there is the transition to the new

state in which the process is substituted with an exec to the entry point.

Furthermore, this state is the intermediate between the ecosystem environment

and the application which is wanted to run.

Container Management

50

Figure 22 - RKT Execution Stages

Figure 22 illustrates the execution chain of the Rkt ecosystem. Stage1 has the duty

to take the file system, created in the stage0 for the pod, define the network

isolation and perform mounting to execute the pod. This consists of loading image

and manifest of pod because inside the manifest there is specified the exec of each

application. The isolation process requires the use of flavor.

The isolation process is accomplished through the use of flavors. Actually, there

are three implemented flavors: fly, system-nspawn, and KVM. The last stage

concerns about the environment in which is executed the application.

2.3.2 Process Model

Initially, Docker adopted a tightly coupled process model in which the docker

daemon was responsible for acting as completely centralized process and

therefore running with super-user privileges. Of course, this is a solution with

some advantages from the point of view of managing containers. However, there

are also other aspects which cannot be integrated such as the automation of some

workloads. Therefore, from version 1.11, the docker engine does not manage

containers delegating this responsibility to another process, which is called

containerd. All of that is completely transparent to users who continue to use the

Container Management

51

traditional Docker APIs. Furthermore, the docker daemon is just responsible for

preparing the image as a bundle of the Open Container Image(OCI). After that,

the containerd is invoked in order to start the OCI bundle. This produces the

binary useful to the container runtime (runC) to create and launch container

instances.

Rkt does not have a central process, but containers are directly launched within

the client command. Moreover, it includes the same functionalities but does not

expose the user to low-level details. The execution model of rkt is not so tightly

coupled, and therefore other formats are supported such as docker images. This is

possible due to the App Container Images standard that both Docker and rkt are

based on.

With Rkt, container images are created with a proper build tool in order to define

the manifest and the filesystem of a container. Subsequently, the container is

ready to be distributed over HTTPS, without the need of specialized registries.

2.3.3 Network

Rkt is designed in the same period of the standardization of Container Network

Interface (CNI) [21], a standard to configure network interfaces of Linux

containers. Due to this standard, it is possible to define several network

configurations that can be useful to different use cases. This implies the creation

of a named network using a specific networking mode.

The network model of rkt ecosystem includes three different types of

implementation: none, host and default. “None” does not include any network and

by this way, a pod is completely isolated from the network. This means that the

pod is created with just the loopback interface. On the contrary, host-network

includes full access to the host network, sharing the network stack with the

underlying host. However, there is no isolation guaranteed using this networking

mode, and therefore this is suitable if pod processes belong to the same network

namespace of the host.

If no mode is specified with the network option, rkt uses the default configuration

type. In fact, in the “stage1” some plugins are configured in order to implement

the CNI standard. By default, rkt uses “ptp” with host-local, even if there are also

other integrated implementations. Nevertheless, this information will be sent to

the execution phase which is the crucial state of the creating container.

Container Management

52

2.3.4 Storage

By definition, a container file system is integrated with the image and the

modifications applied during the execution are lost at the termination of the

container. As in Docker, it is even possible to do that a volume can be mounted in

a location of the container file system, necessary to allow persistent data storage.

There is no difference if the storage is provided with physical disks, cloud, and

more. The most important aspect is to define which partitions have to be mounted.

This responsibility is left to the systemd process which has the duty to make it

sure of that.

The specification defines two types of volumes: host and empty. The first consists

of exposing a host directory or a host file to the pod whereas the second one

involves an initialized empty volume with a life-cycle linked to the pod, and so it

will be deleted from a garbage collector.

2.4 LXD

As anticipated in the overview of this chapter, ecosystems based on the

application container paradigm focus on application delivery from development

to production. We have learned that these solutions offer a great way to deliver

applications but the applicative point of view is not the unique layer of

containerization. In fact, a current debate, which this work wants to investigate, is

if containers could be an alternative to virtual machines. This is the case in which

operating system containers are more suitable because users want to use them as

well as hypervisor-based virtual machines.

Ubuntu has been one of the most supporters of this new paradigm, and since 2012

it gives us tools for container management and a wide choice of container

operating system templates. The concept of container operating system is not new,

and different solutions, such as LXC, OpenVZ e Linux VServer have been

proposed. However, notwithstanding the fact that these are quite similar to virtual

machines, a lot of users found difficulties due to the lower-level profile of

implementations. Therefore, the company wanted to realize the potential of its

own LXC project and promoted an enhancement which is called LXD.

LXD [22] builds on LXC capabilities to deliver multi-host container management

with advanced features like live migration and online snapshotting including

running state. It is written in the go language, providing a system daemon which

is available to applications using a UNIX socket, or over the network via HTTPS.

Container Management

53

Several advantages justify the introduction of LXD to support the LXC

technology. With pure-play LXC, it is necessary to separate processes for each

container in order to run many LXC containers using only a single system

daemon. With LXD this is guaranteed, using a single system daemon, in order to

make simpler the management and reduce the overhead.

Furthermore, on plain LXC, container security is more difficult. LXD uses

unprivileged containers by default, and it provides more isolation and security

than normal LXC containers. In fact, one of the purposes was to face multi-tenant

workloads and other use cases that require more locked down environments.

Containers are just one element in an application delivery strategy, and the right

type container choice depends on the business strategy, including deployment,

security, and governance, but also application performance. LXD users can use

the ecosystem as native or wrap the tool in their own higher application delivery

framework. This simplicity has been characterizing the solution, and so recently

it is available as hypervisor driver in the OpenStack cloud operating system.

2.4.1 Architecture

LXD contains a system daemon which provides an interface layer to drive LXC

containers. Its main purpose is to provide user experiences as similar as to that of

virtual machines but using Linux containers rather than hardware virtualization

[23]. Figure 23 exposes the architecture of LXD ecosystem.

Figure 23 - LXD Architecture

Container Management

54

The architecture purpose of the project is to take advantages of existing operating

systems solutions, such as LXC, in order to provide the same ease of use already

spread in the containerization market. Furthermore, keeping backward

compatibility with older containers and deployment methods have also prevented

LXC from using security features by default, leading to the more manual

configuration for users. Therefore, LXD addressed this topic and provided a new

solution which is quite accepted in the so-called container lighter-visor.

LXD focuses on system containers, which are long-running and based on a clean

distribution image. In addition, traditional configuration management and

deployment tools can be used as well as with virtual machines, cloud instances or

bare-metal servers. Therefore, as shown in the picture below, a client can be a

normal command line program but also a specialized component such as Nova of

OpenStack.

There are some main components that make LXD, and those are typically visible

in the LXD directory structure, in its command line client and in the API structure

itself. Moreover, the architecture is even based on a client/server model in which

the client requires the execution of an action by using a REST API layer.

Therefore, a LXD daemon should act as a server, and when a client request is

received, then it will be accomplished through the underlying subsystem.

LXD does not provide the containerization technology by itself, but it relies on

existing solutions such as LXC. Furthermore, the mediation between clients and

LXC allows the ecosystem to use the adapter design pattern in order to convert

the server interface into that which is exposed to the clients. In fact, the underlying

containerization technology forces its users to understand lower-level details

about creating and managing containers. This requires a lot of initial knowledge

to understand what they do and how they work. Of course, this limitation is faced

by LXD that provides the additional feature with no difference according to the

operating system paradigm. This is obviously quite important because of makes

of the ecosystem a valid alternative to existing virtualization solutions such as

VMs.

2.4.2 Containers

Containers objects are the core of LXD ecosystem. They can be created, updated

and deleted. Most of the methods for operating on the container itself are

asynchronous whereas the operations for getting information about the containers

are synchronous. As other container implementation, even LXD container is made

Container Management

55

of a file system, known as rootfs, which is useful to work with files within the

container file system. Furthermore, these are operating system containers, and so

there is no need to use a layered file system. Each container owns a bunch of

devices such as UNIX disks, blocks, and network interfaces. The container

execution environment is set through profiles from which the container inherits

data. Furthermore, the configuration settings, such as resource limits,

environment, and security options, are defined with a list that is associated with

the container state.

2.4.3 Snapshots

Container snapshots are identical to containers except for the fact they are

immutable and so they can be renamed, destroyed or restored but cannot be

modified in any way. This allows us to store the container runtime state. This is

the ability to roll back the container including its CPU and memory state at the

time of the snapshots. Furthermore, this is an important feature, not well-included

in previous solutions of container operating systems, that is fundamental to the

so-called live-migration. In fact, even in cloud deployments, this allows us to

move a virtual server from a compute node to another one while the instance

continues running.

2.4.4 Images

LXD is image based, and so all containers come from an image. These are

typically clean Linux distribution images similar to what is used for a virtual

machine or a cloud instance. It is even possible to make an image from a container

which can use then by the local or remote LXD hosts. Images are identified by

their sha256 hash and can be referenced by using their full or partial hash. Aliases

can also be set as one to one mapping between a unique user-friendly string and

an image hash.

Now, LXD supports two image layouts, unified or split. The first is what LXD

uses when generating images by itself. On the contrary, the split format consists

of two distinct tarballs that are commonly used by users who are focused on

rolling their own images with an existing compressed filesystem tarball. However,

each of those two formats is effectively LXD-specific though the latter makes it

easier to reuse the filesystem with other container or virtual machine runtimes.

Furthermore, it is focused on system containers, and so it does not support any of

the application container “standard” image formats.

Container Management

56

2.4.5 Profiles

Profiles are information that describes the configuration state of a container. Any

number of profiles can be applied to a container, and they are applied in the

specification order. In any case, resource-specific configuration always overrides

that coming from the profiles. Moreover, if the object is not defined, LXD creates

a default profile which is set for any new containers.

2.4.6 Network

Initially, LXD came with no network defined at all [24]. The initialization

command of the daemon provides the possibility to set one bridge up and attach

it to all new containers by default. This bridge is called “lxdbr0”. While this

certainly worked, it was a bit difficult because most of that bridge configuration

was outside of LXD. None of this was exposed over the API, making remote

configuration a bit of a pain. That was all until LXD 2.3 when it finally grew its

own network management API and command line tools to match. An example is

the possibility to define a network and attach it to a container. With LXD we have

the support to DHCP and DNS server, which is run on the bridge. Furthermore,

the network subsystem makes it very easy to define anything from a simple-host

network to a very complex cross-host network for thousands of containers. In

addition, it is also simple to define a new network for a few containers or add a

second device to a container, connecting it to a separate private network.

2.4.7 Storage

For a long time, LXD has supported multiple storage drivers. Users could choose

between zfs, btrfs, or plain directory storage pools but they could only ever use a

single storage pool. With LXD it is possible to support not just a single storage

pool but multiple storage pools. This is accomplished with its own storage

management API [25].

A new LXD installation comes without any storage pool defined. However, by

initialization, the lxd daemon creates a storage pool on which containers are

created to. By default, LXD attaches storage volumes to the container with write

capabilities. This means that the lxd process needs to change the ownership of the

storage volume to the container identifier. However, storage volumes can also be

attached to multiple containers at the same time. This is fundamental for sharing

data among multiple containers, but it is possible only if all containers share the

same identifier mapping.

Container Management

57

The two best options for use LXD are ZFS and btrfs. They have about similar

functionalities, but ZFS is more reliable. These have an internal send/receive

mechanism which allows for optimized volume transfer. Therefore, LXD uses

those features to transfer containers and snapshots between servers. This has led

to LXD achieving great performance that can be evaluated in contrast to using the

traditional server virtualization model. Moreover, understanding if containers can

replace virtual machines is the goal of this work, and so a further dedicated chapter

will discuss a performance analysis between the two deployment models.

2.4.8 Closing remarks

At the end of the chapter, we understood that containerization represents a valid

approach to run systems also from the application point of view. In fact, as

happened with cloud computing, the paradigm can be addressed from a higher

level in which the focus is based on the platform service. This is what in

containerization literature is called container management because the solutions

involved relies on a containerization engine without showing the infrastructure

level. This has influenced the classification between application and system

containers. Application contaiers are used for a user who wants to simply package

and deploy a single enterprise component, whereas system containers are meant

to be treated like hypervisor-based virtual machines in which the workload can

involve multiple services. Figure 24 shows us the increasing adoption rate of

Docker ecosystem.

Figure 24 - Docker Adoption Trend

Container Management

58

This interesting report [26] is coming from production use cases and the numbers

here might look less than Docker findings. Docker is the most popular solution in

the area of application containers even if it does not meet the needs of every IT

requirements. In fact, when Docker was found to have several security issues,

another solution, Rkt, was designed to be more secure, interoperable and

according to an open format runtime.

Since then, Docker has covered a lot of ground in addressing all critical issues,

but it is a worthwhile comparison to note how these two platforms differ in their

various capabilities. So, the next table shows us a list of features and how these

two platforms provide each one. Nevertheless, these are only the major container

platforms available for production use now, and for this reason, at any point, users

must evaluate available technologies against deployment factors, such as security

and operating system overhead. Table 3 presents a functional comparison between

Docker and Rkt.

 Docker Rkt

Container image

security

Docker Content

Trust, introduced

since Docker 1.8

By default, with Rkt

signature verification

Root privilege

attacks

There is the need to

use security solutions

such as SELinux or

AppArmor

There is no need to

enforce the security

model because each

container is never

created from a

privileged root process

Flexibility in

publishing or

sharing images

Size of code base

There is the need to

set up a special

private registry or

use a Docker paid

account

It is enough to have a

web server which is

able to operate through

HTTPS

Size of code base Each new version

causes the increasing

of code lines of the

whole program

The modular

architecture allows

confining modifications

on the single new block

Portability to other

container systems

Now it uses an open

standard which is

called “Open

Container Initiative.”

Uses an open source

format known as

“Appc”

Table 3 - A comparison between Docker and Rkt ecosystems

Container Management

59

As it is possible to see, even if Docker is quite spread in the container market,

there are several issues that Rkt was able to face. This is also characterized from

the architectural point of view in which Docker is based on a tight client/server

model and therefore it is not suitable to be integrated with external supervisor

system processes such as systemd. In fact, each container is always created from

a client command, and a client fail is detected as well as the container was stopped,

even if this is not properly the case. Rkt was designed to face Docker issues

basically and for this reason, it gets over these problems.

Docker, Rkt and other application containers focus on ephemeral, stateless,

minimal containers that are typically not involved in upgrading but instead just be

replaced entirely. LXD focuses on system containers, also called infrastructure

containers. Those containers will typically be long-running, based on a clean

distribution image, and they are used as we would use them for a traditional virtual

machine. That makes Docker and similar projects much closer to a software

distribution mechanism than a machine management tool. Therefore, in cloud

deployments, LXD is more suitable because it can be used in order to perform

operations according to the specific service request level. In fact, recently it has

been integrated into cloud solutions, such as OpenStack, whereas Docker is no

longer maintained by the Nova project considering the fact that is properly

focused on application containers.

The OpenStack integration of LXD allows us to create instances on that

ecosystem in the same way that it would normally create virtual machines running

on a traditional hypervisor such as KVM. Security has been a key principle from

the design stage and, on the contrary of other solutions such as Docker, an

excellent isolation was built from the start rather than as an afterthought.

Furthermore, it provides scalability and trusted sources which are fundamental to

create full filling systems.

Container Orchestration Engine

60

3 Container Orchestration Engine

3.1 Overview

Until now, we focused on the different types of server virtualization and how

containers can be used in production in order to provide the same benefits of the

traditional virtual machines. The need for business agility [27] has led to

commercial pressure for more frequent deployment of software. In order to

support this, new software development techniques (known as ‘agile’) and

operational cultures (such as ‘DevOps’) have taken hold. Therefore, applications

increasingly tend to be built from existing components and a modern design

involves the use of multiple components, even with a smaller number being

written in-house. This has led to a new design trend in which the application is

entirely composed of microservices, small independently deployable services

which communicate over a network.

As seen in the previous chapter, containers provide an ideal vehicle for such

components due to their low overhead and speed of deployment. Furthermore,

they are also suitable for efficient horizontal scaling by deploying multiple

identical containers of the relevant component. Modern applications thus might

be built from hundreds or even thousands of containers, potentially with complex

interdependencies. Nevertheless, according to this new trend of application

design, the usage of container solutions, such as the application containers which

we have already investigated, is quite limited and difficult to be adopted.

Therefore, these issues were addressed with the introduction of a higher

containerization level which is called “container orchestration”. The purpose of

this chapter is to investigate this new layer and the widespread solutions,

considering the fact that they are also fundamental in production cases of cloud

computing.

3.2 The need of Orchestration

When container solutions emerged, there were no orchestrators designed for

containers. Today, there are a lot of such solutions, like Docker Swarm,

Kubernetes, Mesos and more, that it can be difficult to know which one to adopt.

At the most basic level, all container orchestrators do the same thing: they

automate the provisioning and management of containerized infrastructure [28].

It was introduced in order to face with continuously automated scheduling,

coordination, and management of complex systems of containerized components

Container Orchestration Engine

61

and the resources they consume. It is also worth noting that orchestrators are not

strictly limited to the container world. In fact, orchestration tools like Juju cloud

orchestrator had existed for other types of infrastructure when containers became

popular.

However, orchestrators are particularly important in a containerized environment

because we have a lot of components, and managing things by hand is likely to

fail. Therefore, the increasing adoption of container solutions stimulated the

introduction of new capabilities that can be distinguished in functional and not-

functional qualities. Among these, we can find scheduling, resource management,

and service management. In fact, the scenario is a set of machines whose kernel

holds a container engine in order to deal with containerized applications.

Figure 25 - Capabilities of Orchestration Layer

Figure 25 illustrates the layered structure of the container orchestrator.

Furthermore, the concept of orchestration is not new, and it is even present with

managing systems which could be run on bare metal or virtual machines. The

usage of orchestration is often discussed in other contexts such as service-

oriented-architecture [29] or converged infrastructure [30]. The orchestration is

Container Orchestration Engine

62

about aligning the business request with the applications, data, and infrastructure.

It defines the policies and service levels through automated workflows,

provisioning, and change management. This creates an application-aligned

infrastructure that can be scaled up or down based on the needs of each

application.

As usual in distributed computing, it is fundamental to trade off the right overhead

in order not to make heavy the system. For this reason, it is necessary a resource

management layer to manage low-level resources, such as Memory, CPU,

Volumes, and more. Lastly, considering the fact that the focus is addressed to the

application and not to the infrastructure, it is important to include a service

management functionality in order to provide functional capabilities to build and

deploy enterprise applications quickly.

3.3 Docker Swarm

Docker Swarm is a clustering and scheduling tool for Docker containers. This

allows IT operators to manage a cluster of Docker nodes as a single virtual system.

Nowadays, even containerization needs the important feature of clustering [31].

This is an important aspect because it creates a cooperative group of systems that

provide redundancy and enable the failover mechanism if one or more nodes

experience an outage. Furthermore, the orchestration tool provides to

administrators the centralization where to manage and control the whole system.

As it will be seen later, the orchestrator is based on the master/slave model in

which the master is the main component of the whole cluster. It is that node which

is responsible for scheduling containers whereas a slave node is responsible for

launching the received containers. Also, Docker Swarm provides the ability to

add or subtract container iterations as computing demands change. This is

obviously important in cloud environments where the elasticity is one of the most

important features. Moreover, Docker Swarm continues to use the standard

Docker application programming interface to interact with other tools, such as

Docker Machine. This means that a Docker user does not find any difference to

work with a single machine or with an entire cluster.

3.3.1 Docker Clustering

A cluster is a group of servers and other resources that act like a single system

enabling high availability and, in some cases, load balancing and parallel

processing. Since a cluster is a logical rather than a physical unit, the size of a

cluster can be varied.

Container Orchestration Engine

63

Working with distributed systems involve meeting long latencies and unexpected

failures. Building a cluster is a solution that can be used in order to prevent these

problems using more robust hardware and better network interconnections.

With Docker, this strategy requires reasons deeply because organizing containers

to run across a fleet of machines is not a trivial task [19]. It used to be the case

that we would deploy different pieces of software to different machines.

Furthermore, with Linux containers for isolation and Docker for container

management, the remaining major concerns are the efficiency of resource usage,

the performance characteristics of hardware, network locality.

3.3.2 Architecture

A Swarm cluster is made up of two types of machines: a machine running Swarm

in management mode called a manager and another one, which is called docker

node, that runs a Swarm agent [19]. Both types of nodes are just like any other

Docker machines. These agents require no special installation or privileged access

to the machines, but they run in Docker containers.

Figure 26 - Docker Swarm Architecture

Figure 26 shows us the architecture of Docker Swarm. The only difference

between Docker Swarm and Docker standalone is a small set of additional

command-line parameters that are included with the “create” subcommand.

Container Orchestration Engine

64

Building up a swarm cluster requires specifying the machine which should act as

Swarm manager. This means that a particular agent will be placed in order to

enable additional functionalities to provide the cluster mode. After that, each slave

node needs to be joined with the swarm manager through an agent component

which is running on. Furthermore, every type of machine in a Swarm cluster

requires a way to locate and identify the cluster it is joining.

Figure 27 - The discovery subsystem in Docker Swarm

Figure 27 represents the way in which a swarm manager and agents interact to

discover available services on the built cluster. This involves that manager nodes

need to check the lists of registered Swarm agents periodically. However, this is

not enough because to fit other mechanisms, such as scheduling, it is fundamental

to catch information on resource usage, and a container list. On the contrary,

Swarm agents need to register with the cluster discovery subsystem.

Like other Docker projects, Docker Swarm follows the “swap, plug and play”

principle [32]. Therefore, it is possible to swap out the pre-defined scheduling

backend using an out-of-the-box solution. This feature is quite important

considering that it is suitable for most use cases, and is suitable for large-scale

production deployments for more powerful backends, like Mesos.

Container Orchestration Engine

65

3.3.3 Docker Swarm API

Docker Swarm Manager endpoints expose the Swarm API. Clients can use that

API to manage or inspect a cluster. Moreover, the Swarm API is an extension to

the Docker Remote API [19]. In fact, any Docker client can directly connect to a

Swarm endpoint as well as if it were a single machine.

Figure 28 – A Swarm cluster with a simple Docker client

Figure 28 shows us how it is possible to use the same docker client to interact

with a swarm cluster. However, the implementation of the Docker Remote API is

different from the Docker Engine. In fact, depending on the specific operation, a

single request from a client may impact one or many Swarm nodes.

3.3.4 Swarm scheduling

Docker Swarm provides three different scheduling [19] algorithms. Each of which

has its own advantages and disadvantages. The algorithm is set at the moment in

which a Swarm manager is created, and the user can tune the scheduling

algorithms for a given Swarm cluster by providing constraints for specific

containers.

The first one is the so-called spread algorithm. It will try to schedule containers

on under-used nodes and spread a workload over all nodes equally. The algorithm

specifically ranks all the nodes in the fleet by their resource usage and then ranks

Container Orchestration Engine

66

those with the same resource rank, according to the number of containers which

are running on. This algorithm works best in situations where resources

reservations have been set in containers, and there is a low degree of variance in

those limits. As the resources required by containers those provided by nodes

diversify, the Spread Algorithm can cause issues.

The second one has fine-tuned scheduling with filters. Before the Swarm schedule

applies the algorithm, it gathers and filters a set of candidate nodes, according to

the Swarm configuration and the needs of the container. Each candidate node will

pass through each filter of the configured cluster, which is used to customize every

scheduling algorithm.

The last ones are BinPack and Random. The BinPack scheduling algorithm

prefers to make the most efficient use of each node before scheduling work on

another. This algorithm uses the fewest number of nodes to support the workload.

Random provides a distribution that can be a compromise between Spread and

BinPack. Each node in the candidate pool has the same opportunity of being

selected, but that does not guarantee that the distribution will realize evenly across

that pool.

BinPack is particularly useful if the containers in the system have high variance

in resource requirements or the project requires a minimal fleet and the option of

automatically downsizing. Whereas the Spread algorithm makes the most sense

in systems with a dedicated fleet, BinPack makes the most sense in a wholly

virtual machine fleet with scale-on-demand features. This flexibility is gained at

the cost of reliability.

3.3.5 Swarm service discovery

A distributed system needs some mechanisms to find its pieces. When processes

are placed on the same machine, some named shared memory pool or queue will

be used. However, if the components are designed to interact over a network, they

need to agree on names for each other and decide on a mechanism to resolve those

names. Most of the time, networked applications rely on DNS for name-to-IP

address resolution. Container links are managed by Docker through static

configuration into the name-resolution system of the container [19]. However, this

is not suitable in distributed environments where the docker engine has no

visibility of services running on other hosts. Therefore, the goal of the Swarm

project is to provide a “batteries-included” but the optional solution for clustering

Container Orchestration Engine

67

containers. However, this needs the development of several technologies and

enhancements to the underlying Docker Engine.

3.3.6 Swarm and single-host networking

The Docker Engine creates a local network behind a network bridge on every

machine where it is installed on. This means that on a Swarm cluster, deployed

on machines that operate with the single-host network, containers can discover

each one running on the same host. Nowadays, is more popular to have clustered

applications. These are viable for some use cases in spite of this limitation, but

the most common scenarios are underserved. Therefore, server software typically

requires multi-host distribution and service discovery.

3.3.7 Swarm and multi-host networking

Actually, the Docker network system is implemented by three types of drivers

which are: bridge, host, overlay. While bridge and host are used to implement

single-host networking features, the overlay driver implements an overlay

network with IP encapsulation or VXLAN.

Figure 29 - MultiHost Networking with Docker Swarm on top of Docker Engine

Figure 29 shows us a swarm deployment with the support of multi-host

networking. By this way, each container gets a unique IP address that is routable

from any other container in the overlay network. All that work is performed in the

Container Orchestration Engine

68

infrastructure layer provided by Docker and the integrated key-value store. This

abstracts container locality from the concerns of the applications within Docker

containers. Each container will act as a host on the overlay network.

3.4 Kubernetes

We have already learned that, as the number of deployable application

components grows, it starts to become hard to manage them all. Google was the

first company that realized it needed a much better way of deploying and

managing their software components and their infrastructure if they were going

to scale globally. However, this was enforced by the fact that the company ever

faces system execution on a great number of servers. This has led them to build

solutions for making the development and deployment of thousands of software

components manageable and cost-efficient [33]. Initially, they developed an

internal system called Borg (later changed to Omega), which helped both

application developers and system administrators to manage the huge amount of

applications and services. After having kept Borg and Omega secret for a whole

decade, in 2014, Google introduced Kubernetes, an open source system based on

the experiences gathered through Borg, Omega, and other internal Google

systems.

Kubernetes is a system for managing containerized applications across a cluster

of machines [34]. It was designed to address the lack between how modern

clustered infrastructures are designed and some of the assumptions that most

applications have about their environments. Therefore, it enables to run software

applications on thousands of server nodes as if all those nodes were a single

computer.

Users do not need to see the infrastructure level because the platform abstracts it.

Therefore, deploying applications through Kubernetes is always the same with no

difference if the size of the cluster is continuously changing. As Docker Swarm,

Kubernetes is based on a master/slave architectural pattern in which the developer

submits a list of apps to the master and, subsequently, the platform takes care to

deploy them across the worker nodes.

For this reason, Kubernetes is considered as an operating system for the cluster

because it shows users the whole set of resources as a single and central point

management. Furthermore, application developers do not need to implement

certain infrastructure-related services because they can rely on Kubernetes to

provide these services. This includes functionalities such as service discovery,

Container Orchestration Engine

69

scaling, load-balancing, self-healing and also leader election. This makes of

Kubernetes the most adopted solution in the orchestration market. In fact, due to

this useful set of features, developers are able to focus on the business core and

not waste time figuring out how to integrate it with the infrastructure.

3.4.1 Architecture

Kubernetes is an open-source platform for deployment and management of

applications based on containers executed on a cluster of machines. Even if it is a

container orchestration system, the whole project consists of a complex

architecture which aims to expose container-centric APIs to users. Those do not

need to care about infrastructure management and low-level components such as

compute, storage and network. The architecture is based on master-slave

architectural pattern, and it is also designed with an open layer interface.

Therefore, it is possible to customize the platform extending the behavior of such

components. To do that, components do not directly interact, but they have been

designed to have decoupled interactions. The project is quite modular, and each

function is made up of components. Each entity provides services and uses APIs

of the Kubernetes core. Furthermore, the asynchronous communication pattern

guarantees flexibility and the possibility to use the project in a customizable way.

Figure 30 - Kubernetes Architecture

Figure 30 illustrates the architecture components of a Kubernetes cluster.

Container Orchestration Engine

70

As it is possible to see, there are three main entities: a master node, one or more

minion nodes, and a persistent data storage system. The master represents the

control plane of the cluster, and it can be replicated to guarantee high-availability

and fault-tolerance. It is composed of different components, each of which is used

to implement a specific functionality. One of those is the module that exposes

REST-APIs. These are dedicated to providing the four basic functions of

persistent storage, properly known as creating, read, update, delete (CRUD) [35].

User access these APIs and, after succeeding the authentication phase, are able to

work with Kubernetes objects to orchestrate them on the whole cluster. Therefore,

the REST layer represents a shared point that every user accesses to work with

the platform. Considering that Kubernetes can be easily customized, it is possible

to modify some specific parts such as the container engine or the replication

module.

At runtime, there will be components whose job is to guarantee a specific quality

of service. Therefore, it is necessary a monitoring process that will be used to

check if the current state is the same of the desired state specified by the user. Of

course, the interaction between these components is completely decoupled and

without a single centralization point of failure.

Another fundamental component of the master node is the cluster state data store.

Typically, etcd is used, and its job is to store data necessary for components which

have to check the current state of the system. Moreover, to guarantee the desired

state, there is a server component which is called Controller-Manager. The major

application functionalities are included in that component. It is a separated

process, and its responsibilities are lifecycle and business logic management. On

the contrary of other components, it is more monolithic.

The focus of the Kubernetes is multi-container applications, typically enterprise

service components. The concept of multi-container is implemented on a platform

object which is called “pod”. By design, Kubernetes provides a containerized

application as a set of containers, each of which is specific for a single

microservice. A pod is a set of containers which are involved to be deployed as

the smallest atomic unit of the architecture. This means that containers placed in

a pod will be located on the same machine of the cluster. In fact, the platform

takes care of the whole pod, and the chosen minion will receive the whole

structure of the Kubernetes object.

Container Orchestration Engine

71

Users communicate to Kubernetes that a pod needs to be located on a machine

running on the cluster. Which decides to place the pod is the scheduler, another

component of the master node. Furthermore, the framework supports user-

provided schedulers which are useful when customers want to adapt the

scheduling behavior to their needs.

The master node is the control plane of the cluster, but there is no pod executed

on that because it is reserved to hold just management functionalities. Containers

can be executed on slave nodes, called minions or Kubernetes nodes. Therefore,

these must contain the necessary components to guarantee the execution of the

Kubernetes applications. Nevertheless, it is even important that the control plane

obtains information about the cluster state. For this reason, there should be a

functionality that communicates to the master information about the current state

of each minion node.

A minion node consists of three main components: Kubelet, a container runtime,

Kube Proxy. Kubelet is the most important component of each slave node, and it

is an agent whose purpose is to perform platform-specific actions. Without the

presence of that component, the project cannot work as a cluster orchestration

system.

Furthermore, Kubernetes uses containers with complete isolation. However, this

does not follow the principle of the design model used in traditional operating

systems. In fact, isolation is guaranteed not only between containers but also

between containers and the underlying host.

Kubelet is the slave component which is responsible for deciding, accordingly to

its own strategy, which pods can be executed on the host which it is running on.

This means that, even if the master node takes the scheduling decisions, the final

arrangement it is up to the Kubelet component.

In order to get information about containers, which are currently running on the

host, Kubelet is linked with another component which is called cAdvisor. Data

collected in this way are fundamental to build atop a monitoring system that can

be used by the Controller-Manager, but also to perform fine-tuned scheduling

strategies.

As mentioned before, Kubelet is not the unique infrastructure component of a

Kubernetes slave. In fact, there is also a container runtime that is necessary to

manage the lifecycle of containers. This represents the container management

Container Orchestration Engine

72

layer of the solution. For this reason, it is responsible for downloading images and

to execute containers.

There is no strong relationship between Kubelet and the container engine. Thus,

an open layer definition of the container runtime has been designed in order to

make modular the underlying infrastructure. This allows us to perform evaluation

tests between different providers. Actually, the supported container engines are

docker, rkt, cri-o, and frakti. This was also influenced by the competition between

different container solutions such as Docker and rkt.

Kubernetes was one of the first mover supporting the introduction of a different

model like Rkt. Considering the fact that design integrates the concept of the pod,

such solution guarantees to the platform a better way to manage the architecture

without no need to create specialized infrastructure components. Moreover,

Kubernetes has always been quite opened to the container solutions by defining

an open infrastructure level able to support multiple implementations. However,

this was not the case of other competitors such as Docker Swarm, which does not

provide any solution outside the Docker world. Of course, this has influenced the

Kubernetes strategy to be more accepted due to its own openness and flexibility.

The last service component in the slave node is the so-called Kube Proxy. It

consists of a simple process which executes on every node to configure the

iptables firewall. As it will be seen further, Kubernetes specifies the concept of

“service” to represent an applicative component which is reachable by other

clients.

In fact, the relationship between a server component and clients is not fixed and,

even if the server component can change its own IP address, there should be a

mechanism that allows both pairs to communicate. Therefore, Kubernetes uses

this strategy in order to configure the underlying firewall that is aware of the

current state of service components. Furthermore, this component is responsible

for performing load balancing in order to choose the destination of a service

request between multiple instances of the same pod.

Container Orchestration Engine

73

This is the high level of a Kubernetes deployment, but it is not completely the

whole platform. In fact, there are other functionalities that can be included such

as the following:

• DNS – local domain name system to resolve the association between the

name of services and the associated network address.

• Ingress Controller – component to route external service requests in order

to centralize some internal services into a single-entry point.

• Heapster – component to enable container cluster monitoring and

performance analysis.

• Dashboard Graphic User Interface – a web-based user interface which is

used to manage the cluster obtaining an overview of the whole cluster

resources.

3.4.2 Network

Kubernetes networking is approached somewhat differently than Docker does by

default. In fact, the network sub-system defines distinct aspects of dealing with:

• Highly-coupled container-to-container links: solved by pods and localhost

communications.

• Pod-to-Pod communications: the primary focus of this section.

• Pod-to-Service and External-to-Service communications: covered by the

Kubernetes object “Service”.

By design, Kubernetes allows to pods the possibility to communicate with other

pods, regardless of which host they land on [36]. Every pod gets its own IP

address, so it is not necessary to explicitly create links between pods by mapping

container and host ports. This creates a clean, and backward-compatible, a model

where pods can be treated much like virtual machines or physical hosts from the

perspectives of port allocation, naming, service discovery, load balancing,

application configuration, and migration.

To do that, Kubernetes [37] has defined a specific networking model imposing

the following fundamental requirements on any network implementation (barring

any intentional network segmentation policies): each container can communicate

with other containers without techniques of network-address-translation (NAT);

all nodes can communicate with all containers (and vice-versa) without NAT; the

IP that a container sees by itself is the same network address that others see it has.

Container Orchestration Engine

74

This means that with two Docker-compliant hosts, it is not guaranteed that

Kubernetes works well. In fact, it should be ensured that the fundamental

requirements are primarily met. Furthermore, this model is achieved through a

quite number of implementations that can be adopted. Each pod gets its own IP

address but, as mentioned before, a typical Kubernetes deployment involves

different use cases in which is not easy to maintain an association between the

logic name of the service and the pod IP address. This concerns about multiple

instances of a specific pod which implement the same service or the case in which

a pod has been scheduled on a different node following a host outage. In that case,

it is difficult to maintain the binding between the logic and the physical name of

that service component.

Therefore, Kubernetes introduces another resource: the concept of “Service”. It is

important to make easier the interaction with pods, regardless of the networking

model adopted by the underlying implementation. A typical component exposes

services to outside, and so it is fundamental to have a sort of mechanism that

allows anyone to reach the component without no difference if the client is inside

or outside the cluster.

There are many cases in which the micro-kernel design pattern is adopted. This

means that a pod can be a client of another pod, currently executing inside the

cluster. Therefore, it is necessary to have a name resolution system that is

independent of the underlying infrastructure.

Thus, a service in Kubernetes is just a mechanism on top of the underlying

communication infrastructure. In fact, it identifies a specific component that can

be implemented by many pods. Each service is created with an IP address and a

port that does not change. This allows any client to reach the server pointing out

the same IP address and port, even if the location of the underlying pods change

during execution. This is completely hidden to clients who just see the concept of

a high-level service, and no constraint involves a specific host to run pods which

are associated with a service.

Container Orchestration Engine

75

Furthermore, this creates a sort of load-balancing mechanism if the service is

implemented by many pods, each of which is distributed all over the cluster.

Figure 31 – A Kubernetes Service exposed to application clients

Figure 31 shows us a high-level view of the service concept introduced in

Kubernetes. The mechanism used to be aware which pods implement a service is

also involved in the behavior of the Replication Controller. This is the Kubernetes

component which is responsible for making sure that a certain number of pods are

currently providing a specific service. Therefore, a service is built with a label

and the implementation pods are characterized with the same labeling system.

These labels are used by the so-called Kubernetes selectors which are responsible

for investigating the association between an object and a specific label.

After completing the creation phase, a service gets two principal addresses, which

are respectively called Cluster-IP and External-IP. The first one is the address

accessible just inside the cluster while the second one is exposed to external

clients. Obviously, while a cluster-IP is always included with a service definition,

an External-IP depends on the infrastructure provider on which the Kubernetes

cluster is built on. Therefore, a Cluster-IP is not a routable address, and so it makes

sense just inside the local deployment. Therefore, when a request is addressed to

a Cluster-IP, this is intercepted by the local kube-proxy, which opportunely

forwards the message to an endpoint of that service.

Kubernetes was the first project to propose this different network model, and

therefore other competitors decided after to follow the principle of multi-host

networking. Of course, it is needed to consider that application developers and

operators are quite linked to the traditional orchestration model and so different

solutions, such as that originally adopted by Docker, was not so properly suitable.

In fact, Kubernetes started to move towards the direction in which users need to

focus just on the application features, and for this reason, the definition of this

type of architecture was completely considered a success.

Container Orchestration Engine

76

3.4.3 Storage

Kubernetes introduces the support even for the storage sub-system. As seen in

Docker, this involves the concept of “Volume” [35]. A volume is not an

application business resource such as services and pods. For this reason, they

cannot be directly created and deleted through HTTP requests to the API server

of the Kubernetes master. The concept of Volume is strongly linked to the pod,

which is quite similar to a virtual machine. Moreover, containers that are executed

inside a pod share different namespaces, such as the network stack. Nevertheless,

there are also cases in which it is important to share storage devices, as well as

between different processes which are executing on the same virtual machine.

By definition, a container file system comes from the image which the container

has been created from [37]. They are isolated, and so there is no mechanism to

share data between containers that belong to the same pod. Kubernetes faces this

lack through the concept of “Volume”. Considering the fact that a volume is not

a high-level resource, its own lifecycle is strongly dependent on the pod which is

associated to. This means that a volume is initialized when a pod is created and

evicted at the destruction of that pod. A specific type characterizes a Kubernetes

volume and the definition of these types is explained in the table below.

Volume Types Description

EmptyDir Simple empty directory used for storing

transient data

HostPath Useful for mounting directories from the

underlying node file system into the pod

GitRepo Volume initialized by checking out the

content of a Git repository

NFS A network file system type of volume which

is mounted into the pod

Cloud disk format Useful for mounting cloud provider specific

storage (Google, AWS, Azure)

Network storage

Other types of network storage (Cinder,

Ceph, Gluster, and more)

Security types Used to expose certain Kubernetes

resources and cluster info to the pod

PersistentVolumeClaim A way to use a static or dynamically

provisioned persistent storage

Table 4 - Kubernetes Volume Types

Table 4 shows the different volumes types of Kubernetes.

Container Orchestration Engine

77

This is a fundamental information that characterizes a volume, each of which is

suitable for a different use case and can be useful for several applicative scenarios.

It is possible to mount a volume at a specific part of the container file system. This

guarantees that data written by containers will not be lost even if containers are

started again.

In Kubernetes, volumes are classified into two types: temporary and persistent.

The first ones are “emptyDir” and “gitRepo” whereas the remaining are all

persistent volume types. As the name suggests, temporary volumes concern about

a directory created at the initialization and destroyed when the pod will be deleted.

This is not suitable for components whose state needs to be maintained even after

the execution of the pod. Therefore, it is important to use the other volume types

which allow having long-persistent data.

Furthermore, these different types of the volume are characterized by data which

are stored locally and others which rely on a network infrastructure. This requires

that the developer needs to be exposed at infrastructure level services. However,

this is not the Kubernetes principle, whose aim is to leave developers to focus

only on business aspects.

In fact, the infrastructure management should be reserved for the cluster

administrators. Thus, the platform should include the possibility by which the

developer just specifies a specific amount of storage that the application needs.

Which decides to provision that service is responsibility of Kubernetes that needs

to match the request with the underlying infrastructure provisioning.

Nevertheless, the principle is the same used in an application process that requires

hardware resources such as CPU, memory, and more.

For this reason, Kubernetes has introduced two other important concepts:

Persistent Volumes and Persistent Volume Claims. The first is the Kubernetes

object corresponding to the underlying physical resource whereas the other one is

an object which is associated with an applicative service request. Therefore, the

cluster administrator takes care about registration of persistent Volumes while

users will use them through the concept of PersistentVolumeClaim.

Container Orchestration Engine

78

Figure 32 - A Kubernetes application whose storage is taken by Google Cloud,

Figure 32 shows us the case in which a Kubernetes user defines a specific storage

object. On the contrary of other solution like Docker Swarm, users specify just

the minimum amount of storage and the access mode of that resource. After sent

this information to the Kubernetes API server, if it is possible, the association will

be dynamically accomplished by the mediation of the Kubernetes middleware.

Furthermore, Kubernetes supports the possibility to relax the constraint to have

always a cluster administrator that needs to create the correspondent Kubernetes

resources. In fact, there is the possibility to delegate this duty to Kubernetes itself,

through the use of a dynamical provisioning of persistent volumes. As shown in

Figure 33, in this case, the cluster administrator needs to deploy a so-called

“PersistentVolumeProvisioner” and define one or more “StorageClass”.

StorageClass are used by users to specify what types of persistent volumes they

need, but the component which takes care of provisioning is the “Persistent

Volume Provisioner”. Nowadays, Kubernetes is well-adopted in cloud

deployments, and therefore it statically includes the provisioning support for the

major types of cloud providers.

Figure 33 - Kubernetes Storage Provisioning with cloud features

Container Orchestration Engine

79

This completely integrates a Kubernetes deployment through a weak-coupled

relation with the cloud provider. In fact, it is possible to change the underlying

storage provisioning with no effects to the application point of view of the

business component. Of course, this makes of Kubernetes a sort of featured player

because it was able to face these issues that existing solutions have never thought

to deal with.

3.4.4 Scheduling

The Kubernetes scheduler is a policy-rich, topology-aware, workload-specific

function that significantly impacts availability, performance, and capacity [37]. It

requires getting an in-depth individual account and collective resource

requirements. Furthermore, it is designed to consider different aspects such as

quality of service, applicative constraints, affinity specifications, data locality,

inter-workload interference, deadlines, and so on. These requirements are exposed

through the APIs as necessary. The scheduler is not just an admission controller;

for each pod that is created, it finds the best candidate machine for that pod, and

if no machine is suitable, the pod remains unscheduled until a machine becomes

suitable.

Furthermore, the scheduler component is quite configurable [35]. Basically, it

supports two policy types, which are respectively called “FitPredicate” and

“PriorityFunction”. “FitPredicate” requires rules to satisfy a specific request even

if there is no available candidate who is able to face it. In fact, in these cases, the

building pod is not scheduled on any nodes. This is the case in which the pod

remains in “Pending” state until it can be satisfied by one of the Kubernetes slaves.

Furthermore, if the scheduler finds that multiple machines are able to host the pod,

there is the possibility to work with a fine-grained strategy. That is where priority

functions come in. Basically, the scheduler ranks the machines that meet all of the

fit predicates and then chooses the best one. This allows users to choose a specific

policy according to the infrastructure requirements. Nevertheless, scheduling

component is able to be dynamically modified. Therefore, users can decide which

“fit predicates” and “priority functions” are desired to apply.

3.4.5 High-availability

One of the most important features of Kubernetes Orchestration System is the

possibility to design an application with high-availability, without requiring no

action of the system administrator. An example is the case of a web application.

Container Orchestration Engine

80

If the main process crashes, Kubernetes takes care about that and performs a

recovery action to fail over the problem. However, another failure type is the

outage node where the web process is running on. In this case, it is necessary that

the system is able to detect the event and subsequently schedule the component

on a different node.

Kubernetes includes the failover mechanisms [37] to deal with both cases. When

a fault concerns about the main process of a container, the event is detected by the

kubelet agent, which is installed on the slave node. After that, the agent relaunches

the container through the local container engine. However, there are cases in

which is not possible to detect the event of process-fault such as deadlock, etc. In

this case, the agent cannot detect the event unless there is a communication

mechanism between the agent and the application.

Nevertheless, Kubernetes deals with this issue by introducing a communication

system between the agent and the application. This mechanism is called “stay-

alive,” and they are messages that are sent by the kubelet agent in order to know

the health state of the container. Furthermore, these messages are distinguished

between three probe types: HTTP GET, TCP Socket, and exec command. The

first one consists of an HTTP message sent to an HTTP server which is listening

on the container. The return status code allows the agent to be aware of the

container service soundness.

The second one, TCP Socket consists of the initialization of a TCP connection

with a server that is listening on the application container. If the connection is

established, the agent recognizes this event as a good health state of the container.

The last one possibility consists of executing a command inside the container, and

the agent knows the health state through the exit status code of the process.

Moreover, it is even possible to configure the probe delay if the container needs

an amount of time, before becoming available to response probe messages. If no

probe message is declared, the kubelet agent will detect just the crash state of a

container. Of course, this requires the evaluation of a right trade-off in order not

to stress the system because the monitoring process includes a not negligible

overhead.

However, if the whole slave node crashes, there is no way to failover the service

if that component will not be scheduled on a different slave node. Therefore,

Kubernetes introduces the definition of a management component that is called

Container Orchestration Engine

81

“Replication Controller”. It is a framework object whose task is to maintain the

desired number of pod instances.

If the current state is not the same of that desired, like in cases of an outage node,

automatically the Replication Controller will start the scheduling of a new

instance on a different slave node. This is possible because the creation of that

pod is delegated to this component which holds a template of that application

service.

Figure 34 - Kubernetes Replication Controller with node failures

Figure 34 shows us the case in which a pod is under control of a specific

Replication Controller. Therefore, each pod is distinguished in managed and not.

Pods not managed by a ReplicationController will not survive a crash of the slave

node which they are running on. Thus, in order to guarantee the desired state, the

unique possibility to face these cases is to perform manual actions.

Furthermore, the controller mechanism of the heartbeat is not too aggressive and

it is designed with a subscriber notification system that notifies the execution of

some actions on the API server.

These fundamental settings characterize a ReplicationController: label selector, a

specific number of instances desired, a pod template. The label select is necessary

to point out the pod to be monitored. The template is the structure of the pod to

be used when is necessary a new creation of that instance, while the “replica

count” gives the controller the desired state for that specific pod. There is no

difference between controller and other framework resources. This means that is

possible to change the label selector or the template. Changes on label selectors

Container Orchestration Engine

82

imply that the set of managed pods will change, whereas changing template will

influence updates just on newer instances, which are created by the

ReplicationController.

It is always possible to take pods from the managed state out of the scope of a

ReplicationController. To do that, it is necessary to modify the label selector. An

important update concerns about the new version of a specific component. This is

about changing the template of the ReplicationController which manages its own

pods. However, even in this case, the updates will be applied after the creation of

new instances, and so it is necessary that the controller detects a variation between

the desired and the current state of the system.

Another important resource is the so-called ReplicaSet. It is quite similar to the

ReplicationController because it is a specialization. The unique difference is that

the behavior of label selectors can be customized with sophisticated expressions.

The controllers saw until now concern just failover to maintain the desired state

of a specific application component.

Requirements of high-availability interest even other aspects such as component

whose aim is to perform a job or others whose instances need to be just one for

each slave node. To deal with that, Kubernetes introduces the concept of Job,

DaemonSet, and CronJob. Job takes care of controlling that a task can be correctly

executed without no constraint to maintain it long-running.

On the contrary, the second one is used to guarantee that, for each slave node, a

specific task is running on. This is quite useful to system components such as

framework agents whose presence is fundamental for the soundness of the whole

platform. Lastly, CronJob interests tasks whose behavior is finished but also

repeatable. It is an extension of the Job Controller whose aim is to guarantee that

a specific task completes the execution. Furthermore, it is suitable for a periodic

scheduling of the job that is fundamental to perform particular actions at specific

time intervals.

3.4.6 Service Discovery

Each service gets an IP address and a port, regardless of the implementation pods

are continuously changing their endpoints. Therefore, clients should have an

access mode always to reach the service. For this reason, it is necessary a

mechanism to discover the IP address and the port. Kubernetes gives different

ways to do that [33]. An example consists of using environment variables. When

Container Orchestration Engine

83

a pod is initialized, a set of environment variables are associated with the pod.

One of these variables contains even information on services. This makes sure

that a pod is always able to find out the address and the port of a service through

a classical mechanism of discovering. This is not the standard form of traditional

discovering such as DNS.

Nevertheless, Kubernetes includes this resolution possibility. In fact, within

system pods, there is a particular pod, which is called kube-dns. This is a DNS

server that automatically configures the executing pods on the cluster, involving

the update of the local DNS file. This is an important feature because clients are

able to reach the service, knowing just the fully qualified domain name of the

component. Furthermore, this architectural design pattern has been recently

included in complementary solutions, like Docker Swarm but the way in which

the discovery process is performed is quite different.

3.4.7 Quality of Service

Kubernetes takes care of health state of pods by sending liveness probes to

containers with the purpose to detect a crash state. This allows starting a container

again when a liveness probe fails. However, a fundamental requirement is not just

high-availability but also the quality of service. An example concerns about

services whose pods need to be accessible when a client performs a request. When

a pod implements a service, it is quickly added to the list of endpoints that are

available.

Furthermore, there are many cases in which pods need a setup time in order to be

ready to respond. For this reason, Kubernetes has introduced the so-called

“readiness probes”. They are similar to liveness probes, and the classification

includes the following: HTTP request, TCP connection, and exec command. On

the contrary of liveness probes, a failure, in this case, does not imply a failure and

consequently reboot of the container. Simply, this means that the pod cannot be

associated with an endpoint in the list of the services. This allows to forward

messages just to ready pod and clients will not be served from not ready

components.

3.4.8 Cluster Federation

One of the most important benefits of Kubernetes is to maintain high-availability

even if a node failure, or local congestion, happens. If the organization maintains

its own services over different datacenters, the solution seen until now do not

allow us to work guaranteeing the same requirements. Therefore, Kubernetes has

Container Orchestration Engine

84

introduced the support to different cluster installed over different locality and even

with an underlying infrastructure provided by a different cloud provider. This is

called “Cluster Federation”. Due to this support, we can maintain requirements

even if a fault hits a specific datacenter such as disaster recovery events.

Furthermore, another suitable use case is about the fidelity level that a cloud

administrator has with a cloud provider. It is more likely that an organization do

not want to install every data on a specific cloud provider. Therefore, a sort of

backup services is created, and so a good level of uptime will be guaranteed.

Figure 35 - Kubernetes Cluster Federation System

Figure 35 illustrates the architecture of cluster federation in Kubernetes and, as it

is possible to see, it is not so different from the standalone architecture. In fact, it

is simply an enhancement of the existing solution; whose aim is to manage the

federation between different clusters that belong to the federated cluster. In this

case, we have a high-level master, which is called Federated Control Plane, while

every single cluster is known as cluster worker.

The Federated Control Plane consists of the following three parts:

• Etcd, to store persistent objects through federated API;

• Federation API server;

• Federation Controller Manager.

Etcd is used to store federated objects which are registered through the REST

endpoint (Federation API Server). The Federation Controller Manager [33]

contains a list of federation controllers, each one of these executes operations

Container Orchestration Engine

85

depending on the federated object involved in the invoked API. Users interact

with the Federation API Server [37] which creates federated objects. These are

stored in the storage federated etcd. Furthermore, federation Controllers subscribe

to the control plane in order to receive events associated to the correspondent

federated objects. When it is necessary to execute an action, the federation

controller interacts with the API server of underlying clusters to propagate the

creation of regular Kubernetes resources. When a ReplicationController is used,

the desired behavior is not to create a number of objects for each underlying

cluster. The principle is to extend the strategy at the federation level, and so the

desired state is expressed at the federated level and not single-cluster.

Nevertheless, the synchronization is only one-directional, from the federation

server to the underlying cluster. Modifying the resource on the underlying cluster,

changes will not be notified to the API Server, taking to a not consistent state.

When an entire cluster faults, the federated control plane detects the event and, if

some fault-tolerant strategy is configured, the system will make sure that on the

remaining clusters available the resource will be installed.

However, federating clusters has not just advantages. In fact, it is possible to point

out disadvantages that in a single-cluster deployment these are not present. Surely,

this involves higher overhead because the system uses a greater amount of

network. The federation control plane should check every cluster and control that

the desired state is the same of the current state. So, if clusters are placed on the

different and far region, this includes a not negligible overhead.

Another disadvantage is that a bug on the federation control plane causes a fault

on the whole system. For this reason, it’s fundamental that the federation control

plane should act as simple front-end and delegate requests to correspondent

single-clusters.

3.4.9 APIs to extend Kubernetes

Kubernetes was designed to provide a set of defined resources in order to model

an application using pods, volumes, Replication Controllers, and more. Each

resource type is defined by a manifest, described with a YAML or JSON format.

Furthermore, the implementation consists of a controller that registers itself on

the API Server in order to receive events associated to the correspondent managed

resource [33]. This implements the desired behavior executing low-level actions,

characterizing the most popular way to use Kubernetes.

Container Orchestration Engine

86

Nevertheless, one of the most important features of Kubernetes is the possibility

to extend the platform customizing the open source project. In fact, it is possible

to create custom objects and define the business logic of controllers, whose aim

is to manage custom objects. Kubernetes is composed of components completely

decoupled and independent, with a weak relationship necessary to guarantee

flexibility. This allows us to modify the runtime, even choosing a different

container-engine. All of that has influenced the adoption of Kubernetes in may

projects, such as OpenShift, Deis, WorkFlow, and Helm.

3.4.10 Platform as a Service and OpenShift

Since Kubernetes operates at the application level rather than at the hardware

level, it provides some generally applicable features common to the paradigm of

Platform as a Service (PaaS), such as deployment, scaling, load balancing,

logging, monitoring. However, the decoupled architecture makes it able to be

pluggable and extensible. This results in a system that is easier to use and more

powerful.

Red Hat OpenShift is a Platform-as-a-Service with the purpose to allow the

developer to focus only on designing services. This means that the target is to

quickly provide results obtaining at the same time scaling and long-term

maintenance of applications. The original versions of the platform did not have

any link to Kubernetes. However, the last release(III) was completely designed

with a distributed platform atop of Kubernetes. There is a strong separation in the

responsibility model to design services: Kubernetes takes care of managing

runtime changes and application scaling, while OpenShift concerns about

building images and correspondent deployments, without integrating any

Continuous Integration solutions such as Jenkins, etc.

Furthermore, OpenShift introduces even the concept of user and group to deal

with multi-tenancy of Kubernetes clusters. This means that users have access to

their own namespace. The application which is executing in their namespace are

completely network isolated. Basically, OpenShift is an extension of Kubernetes

with the introduction of the following resources: Users and Groups, Projects,

Templates, BuildConfigs, DeploymentConfigs, ImageStreams, Routes.

Furthermore, this extension opened the integration with cloud computing feature

that Kubernetes has never met yet. One of these is multi-tenancy. So, the platform

service includes the concept of users and projects, as a workspace to host single

tenant workload. Each user has access to the project, practically speaking

Container Orchestration Engine

87

Kubernetes namespaces. Furthermore, user accesses to projects are managed by

cluster administrators.

OpenShift allows to users the possibility to define configurable manifests. These

are called Templates, which are a list of objects whose definitions can include

several parameters. These values are set when the template is initialized, and so

developers can have a sort of existing solutions which are spread for the most

applicative use cases.

Figure 36 - OpenShift Templates

Figure 36 shows us the process of building Kubernetes application through the

high-level concept of OpenShift Template. These are simply pre-defined

manifest, with a set of parameters, that is given to a logic component in order to

build a set of common solutions.

One of the most benefits of OpenShift is the possibility to enable the automatically

run after completed the build process of the application. In this case, there is no

need to execute the build with the container image. This is possible due to the

OpenShift resource which is called “BuildConfig”. To do that, a git repository is

used, but the implementation does not monitor that repository. So, this is

accomplished by a hook to that repository that notifies OpenShift the execution

of a new commit command. After that, OpenShift will execute the pull operation

from the repository and start the execution of the entire process.

Furthermore, another important OpenShift resource is the so-called

“DeploymentConfig”. When a container image is built, this will be added to an

ImageStream. This consists of a notification queue that holds each image after

completing the build process. When the DeploymentConfig detects that a build

has been done, it starts the rollout of the new image. This is the case when an

application needs an upgrade or update modifications.

Container Orchestration Engine

88

Figure 37 - BuildConfig and DeploymentConfigs in OpenShift

Figure 37 recaps what we have just discussed about the deployment configuration

in OpenShift. This consist of a notification system that is used to detect the

definition of a different application component. This involves a chain execution

that as a result yields to the rollout of the application, without no need to have

management downtime.

3.5 Apache Mesos

Apache Mesos is an open source project designed before Docker. Basically, it is

a platform whose aim is to manage computer clusters using Linux Cgroups [38].

In fact, the purpose of the system is to provide CPU, I/O, filesystem, and memory

isolated resources. It is described as a cluster platform which provides computing

resources to frameworks. The primary benefit of this project is the level of

abstraction it provides. In fact, there is no lock-in with a cloud provider or

datacenter vendor infrastructure. Basically, it joins the whole set of resources as

a centralized logic control system.

It was built to support mixed workloads of long-running (application) and short-

running (batch processing) processes and jobs. The main principle of Mesos [39]

is to provide computing resources to frameworks, such as Hadoop, Spark and so

on. In fact, there may be multiple frameworks running on a Mesos cluster for

different kinds of task and users interact with frameworks rather than directly with

Mesos. Sharing improves cluster utilization and avoids per-framework data

replication. Studies have asserted that Mesos can achieve near-optimal data

locality when sharing the cluster among frameworks. Furthermore, it is quite

resilient to failures.

Mesos [40] has a different philosophy than Docker Swarm and Kubernetes, which

are both container management tools with a cluster-to-cluster relationship. Mesos

is more of a resource allocation manager that allows users to manage both Docker

Container Orchestration Engine

89

and non-Docker jobs. In fact, the execution of framework jobs is accomplished

using native operating system features, and not necessarily with Docker

containers. This offers us the possibility to build a specific executor binary in

order to launch an isolated process within the Mesos infrastructure. That is

properly what many cluster frameworks, such as Hadoop, Spark, and more have

already done. Furthermore, there is no tight-coupled relation between the

application level and the underlying infrastructure. In fact, Mesos provides a

framework to launch heterogeneous workloads onto the same cluster.

Nevertheless, Mesos works between the operating system and the application

layer. The aim is to provide dynamic allocation of resources of the underlying

data center, and this has not led the project to be quite spread in the orchestration

market. For this reason, in the segment of container orchestration, Mesos is now

used in conjunction with another framework which is called Marathon. This

serves as a container orchestration platform on top of Mesos, providing

functionalities such as scaling and self-healing for containerized workloads. In

fact, it is focused on application level, and users can interact with the platform as

well as with other existing solutions such as Docker Swarm or Kubernetes.

3.5.1 Architecture

Mesos has an architecture that is based on the master/slave model. Furthermore,

in addition to the two types of node, it comprises frameworks which are placed

atop of the entire infrastructure. This introduces another issue that concerns about

the process in which it is needed to provide scheduling. As it will be seen in the

next section, Mesos uses a multi-level process in which frameworks continue to

take scheduling decisions while the core of Mesos provides to them resource

offers [41].

The architecture consists of a master/slave design pattern, in which the execution

of tasks is delegated to slave nodes. The master process, running on the manager

node of the cluster, takes care of management and monitoring of the whole cluster

architecture. Therefore, it needs to communicate with frameworks whose aim is

to schedule jobs on the slave nodes. This means that after an explicit declaration

of the local component to the framework, the master has to launch the task

execution on a slave node. To do that, it is necessary that each framework gives

to the master a special component able to instantiate jobs for that solution. These

components are called executors, simply implemented as processes running on

slave nodes.

Container Orchestration Engine

90

Figure 38 - Mesos Architecture

Figure 38 shows us the architectural model of a Mesos.

The resource sharing strategy [42] is applied to the master through a sophisticated

mechanism: it decides to offer a set of resources to each framework. The strategies

are two: fair sharing and strict priority. However, Mesos gives us the possibility

to extend its own strategy because the master is designed through a modular

architectural pattern. Furthermore, Mesos is suitable to offer also high-

availability. This consists of replicating master nodes in order to provide failover

mechanisms in case of master failures. To do that, many solutions can be used

even if the most adopted implementation is Zookeeper. This consists of an

election algorithm which determines the new node which has to play the master

role.

3.5.2 Scheduling

A framework installed on Mesos consists of two components: a scheduler and an

executor process [28]. The scheduler is the component responsible for deciding if

accepting or not the resource offers. In that case, it will specify what resources

will be used among those offered by Mesos platform. The executor is the

framework-dependent process which has to instantiate scheduled tasks on the

node which it is running on. Furthermore, even with Apache Mesos, there is a

possibility to define a custom Mesos scheduler. Basically, there it can be built in

Container Orchestration Engine

91

two different ways: by using a C++ interface or by using the new definition of

HTTP API. Nevertheless, those schedulers, built on the notification model, are

expected to keep the subscription connection open as long as possible.

Figure 39 - Mesos Scheduling

Figure 39 shows an example of resource offer. The first step concerns about a

slave node that communicates to the master an amount of availability.

Subsequently, the master decides how many resources and to which these

resources need to be offered. This means that it will perform as an offer to the

framework which has to respond if accepting or not the offer.

Each framework has its own internal strategy in order to accept even an amount

of resources less than the proposal offered. Obviously, the master is not aware of

local information to frameworks. However, statistics shown as using that strategy

had not influenced the reach of good performances.

The design principle [43] to locally choose the accepting of a resource offer allows

satisfying application requirements because the solution was designed to adopt a

locality principle that is independent of underlying Mesos core. However, the

assign of resources has not an unlimited time, and so Mesos can decide to preempt

the offer after an expiration timeout, which is established in conjunction with the

resource offer.

Container Orchestration Engine

92

That preemption can be done through a simple communication with the

correspondent executor or killing the process associated with that framework.

However, this is not an elegant solution because it can cause inconsistencies,

considering the fact that an event of this type cannot be handled. Thus, a reserved

quota has been designed in order to guarantee a minimum allocation to the

framework.

3.5.3 Executors isolation

Executors are run on slave nodes but, considering Mesos principles, it is possible

to imagine the case in which multiple executors concurrently run on the same

slave. Therefore, in order to get isolation between executors, Mesos adopts two

mechanisms: Linux Containers and Solaris Project. These technologies limit the

usage of resources such as CPU, bandwidth, memory, I/O devices, and processes.

Furthermore, the platform supports a dynamic configuration of limits associated

with containers.

At state of the art, Mesos uses container technologies, but in the future, it is

possible that complementary solution will be investigated, as virtual machines. Of

course, the adoption of container mechanisms allows us to take advantages of

isolation already built on frameworks, such as Hadoop. In this framework, tasks

are different jobs in the same machine but practically executed as separated

processes.

In conclusion, we can affirm that Mesos is a lightweight solution to enable the

efficient resource sharing between frameworks in cluster computing. This is

enforced by two most important principles: a sophisticated resource sharing

strategy and a decentralized scheduling mechanism, which is called resource

offers. These make of Mesos a tool that guarantees a fit-for-all cluster solution

able to deal with dynamic changes to the system, without no loss of simplicity and

scalability.

3.5.4 Marathon

Until now, we have learned what a Mesos cluster focusing on infrastructure

management in order to get efficiency and scalability is. However, many solutions

have been developed in order to build on top of Mesos cluster a sort of application-

level management (orchestrator) [43].

Container Orchestration Engine

93

Figure 40 - Marathon Framework on top of Mesos Cluster

Figure 40 shows an architecture overview of the Marathon framework built atop

of a Mesos cluster. It allows us to start applications by using Mesos and

underlying technologies, such as Linux containers or Docker.

In literature, it is even considered as a sort of private Platform as a Service, which

allows us to configure the deployment of a generic application. Furthermore,

Marathon is used to specify desired resources for each instance of a generic

application. So, it is even possible to define the number of instances that are

willing to launch.

As each Mesos framework, Marathon interacts with the master component. The

idea of Marathon is to provide orchestration functionalities to the whole Mesos

cluster. Thus, if a slave faults, Marathon will start a new instance in order to

guarantee the fault-tolerance. Furthermore, this offers high-availability and the

support to developers, who can focus on business logic problems and not on

underlying infrastructure.

3.5.5 Service Discovery and Load Balancing

When an application is placed on the cluster, it is necessary to manage the

addressed traffic to that service. This should be done regardless if the sender

belongs to the same cluster or not. Furthermore, in modern microservice

applications, this is much more important because service instances have

dynamically assigned network locations. Moreover, the set of service instances

Container Orchestration Engine

94

changes dynamically because of auto-scaling, failures, and upgrades.

Consequently, the client code needs to use a more elaborate service discovery

mechanism that is completely infrastructure-agnostic [41].

Apache Mesos has included three solutions to face with these issues, and they are

Mesos-DNS, Marathon-lb, and HaProxy-marathon-bridge. Mesos-DNS is a

service discovery that uses the domain name system (DNS). It works directly with

Mesos, and it is independent of Marathon. Furthermore, it is possible to integrate

Mesos-DNS with outside implementation that can be useful when a request cannot

be locally resolved.

Figure 41 - Mesos Service Discovery

Figure 41 represents the case in which Mesos is hosted with A DNS resolution

system. As it is possible to see, the master is responsible for generating a record

for each service whereas slaves reach services by querying the Mesos DNS.

Furthermore, there is the possibility to federate the Mesos DNS which can forward

the request to an external existing DNS server.

Marathon-lb is port-based using a lightweight TCP/HTTP proxy, which is called

HAProxy. It is an alternative way to implement a discovery service. The proxy is

installed on each cluster host in order to forward requests statically addressed on

a specific port. This allows for clients to connect to a specific port without no

Container Orchestration Engine

95

knowledge about the underlying discovery process. However, this approach is

useful only if all applications are launched by using Marathon.

Figure 42 - Marathon Load Balancing

Figure 42 shows us the domain resolution system offered by Marathon atop of a

Mesos cluster. In this way, Marathon sets up a proxy which is opened to the

Internet. This is the component which stores the resolution name space in order

to find where is placed is application component. Nevertheless, there are also

other solutions such HaProxy-marathon-bridge, even if it is no longer supported.

This is a script which configures a local installation of HAProxy, an advanced

load-balancer, which is installed on each slave node. Furthermore, applications

running on a slave should listen on a specific port on the localhost network

interface. This allows HAProxy to guarantee the intra-cluster communication. In

fact, it is periodically configured by a script that gets from Marathon APIs

information about applications which are currently executing.

3.5.6 Chronos

Mesos is an elegant project which allows us to have a high-level representation of

the underlying data center infrastructure. However, popular requirements have

influenced the production of new frameworks that work on top of Mesos. Chronos

is another framework example that works on Mesos to execute similar

functionalities as the cron daemon, installed on the kernel of a UNIX-like

operating system. The purpose is to get the possibility to schedule activities to be

Container Orchestration Engine

96

executed in a repeatable way. This is typically realized with the configuration of

a cron job, which executes a particular script accordingly to a temporal

configuration. Furthermore, the Chronos project is an augmented cron daemon.

Due to this introduction, there is the possibility to specify a task and the

underlying middleware takes care to start execution on the infrastructure

architecture. Furthermore, with classical cron scripts, we are not able to explain

the dependent task. Therefore, Chronos allows us to support that in order to create

interacting activities, such as a pipeline Extract-Transform-Load (ETL).

3.6 Rancher

Containers make software development easier by making code portable across

development, test, and production environments. Furthermore, once in

production, organizations focus on an orchestration tool in order to manage their

containerized applications and service components. As we have already

anticipated, a lot of solutions have been introduced, each of which faces specific

aspects that, in part or completely, are not included in the complementary

solutions. Even if, such projects are based on a modular architecture, customizing

and setting up the orchestrators can be challenging and with the need to include a

steep learning curve [44]. This is why Rancher was introduced for.

Rancher is not a container orchestrator but a complete container management

platform that includes everything is needed to manage containers in production.

So, users can quickly deploy and run multiple clusters across multiple clouds with

a click of a bottom. This makes easier the management of all aspects of running

containers. Furthermore, Rancher supports existing orchestration tools and so it

works at a higher level than orchestration perspective. For this reason, users can

use Rancher to set up different deployment environments, each of which can be

launched in a matter of times.

This allows users not to face with orchestration-specific configurations, also

providing the possibility to stay up-to-date with new stable releases easily. In fact,

Rancher offers the possibility to set up an environment, using a specific

orchestration tool, and as a result, there is no difference using that environment.

So, clients can interact with the system as if it were built with the standalone

configuration tools.

Container Orchestration Engine

97

Also, Rancher makes the underlying orchestrations easy to be adopted, including

enhancement features such as corporate security and multi-tenant environments.

This is quite suitable for cloud scenarios where the multi-tenancy is a fundamental

feature that characterizes each cloud infrastructure. Another important

functionality that Rancher provides is the support of multi-clustering and multi-

cloud deployments. This means that is possible to have running containers on a

single on-premises as the same as containers which are running on multiple

clusters and cloud service providers.

Rancher includes a distribution of all popular container orchestration and

scheduling frameworks today, including Docker Swarm, Kubernetes, and Apache

Mesos. This allows users the possibility to create multiple orchestration clusters

by using the same underlying infrastructure. Also, Rancher supports its own

container orchestration and scheduling framework, which is called Cattle.

Rancher optimized this framework to orchestrate infrastructure services as well

as setting up, managing, and upgrading existing orchestration clusters. So, the

purpose of this section is to investigate this alternative solution and its own native

orchestration tool.

3.6.1 Architecture

Rancher is designed to run Docker containers immediately on top of the kernel,

namely those providing core Linux services to the users. Those services run inside

containers, and so, users can create their own Docker (user-level) containers, as

in any other Linux distribution [45]. Figure 43 shows us the layered architecture

of Rancher platform.

Figure 43 - Rancher Architecture

Container Orchestration Engine

98

As it is possible to notice, the solution has no tight-coupled relationships. It is

organized into three main levels: infrastructure services, container orchestration,

and application catalog. Due to this modular organization, containerized

applications are deployed on an infrastructure which is completely agnostic of the

services that are built atop. This is guaranteed by the Rancher components that

constitute the so-called “Infrastructure Services”. At this level, the platform takes

care of low-level services that involve storage, processing or networking.

Furthermore, there is a standardization way that enables the architecture to be

integrated with on-premises and cloud solutions. The unique requirement is to

have machines whose kernel is Linux-compliant. Hosts can be even

heterogeneous in terms of CPU, memory, storage, and network. To do that, this

layer was defined including also other features, such as load balancer, DNS, and

security. The flexibility is guaranteed because these components are installed in a

container and so the infrastructure is completely agnostic.

As mentioned in the overview of this chapter, it is fundamental to have a container

orchestration system in order to take advantages of external components that

support managing and deploying containers along a cluster of machines. So,

Rancher includes a layer of container orchestration in which is possible to

continue to use native-clients in order to communicate with the correspondent

container orchestration.

Actually, the supported solutions are Docker Swarm, Kubernetes, Mesos and the

native Rancher orchestration system, Cattle. This allows the support of different

cluster instances, each one with a specific orchestration system. Therefore, users

create their own clusters, starting from the concept of “Rancher Environment”.

Each environment is created from a template and, in order to build it, is necessary

to specify the orchestration system which is preferred to use.

Lastly, the application catalog is a Rancher service which provides to users a set

of pre-defined multi-container clustered applications. They can be installed with

a simple click and can also be updated at runtime with new versions and

configuration settings. Furthermore, Rancher includes an additional functionality

that is called Enterprise-Grade control. This consists of a set of services that can

be installed as a sort of plug-in like, for example, different authentication

mechanisms, such as Active Directory, LDAP, and more.

Container Orchestration Engine

99

3.6.2 Network

For the networking subsystem, Rancher supports a Common Network Interface

(CNI) layer [46]. This allows the platform to enable the openness to other lower-

level mechanisms, which can be integrated inside the Rancher platform. Basically,

it consists of specifying which network services are installed on the underlying

architecture. This is information is given by the Environment resource. However,

it is necessary to select which driver type is needed to use the underlying

infrastructure services. Therefore, for each network provider, the platform gives

us a sort of plug-in catalog in which is possible to find the supported

implementation.

By default, Rancher uses the driver which called IPsec. This defines an overlay

network using IPsec tunneling. When a network driver is launched in the

environment, a default network will be created. Therefore, each service installed

on top will be using this network. Originally, Rancher used the managed network,

using the docker bridge. With the adoption of the CNI layer, each container started

on top of the network infrastructure sees just the Rancher managed IP. This

information is not present in metadata of the underlying Docker engine and so, it

is not possible to get them through a Docker inspection. Rancher included this

new functionality extending the behavior of Docker ecosystem. Furthermore,

each container is launched with just two network interfaces: loopback and the

underlying managed by Rancher. Users interact with Rancher using the command

line interface or the web interface. However, a container is always started using

the managed network, the overlay network supported by Rancher. This allows to

containers to communicate with each other, without no loss if they are running on

the same host or not. Furthermore, this characteristic is important for other

important services, are built on top of network infrastructures, such as load-

balancer and DNS.

3.6.3 Storage

Rancher includes the possibility to use different storage services to expose the

concept of “Volume”. The principle is the same used in other solutions like

Docker. Therefore, this service type is also declared in the definition stage of an

“Environment Template”. A template is another Rancher resource which is used

to create an environment without no need to specify each functionality included.

In fact, users are able to create or use an existing environment that can be easily

made up by clicking the correspondent bottom. It is also possible to select and

launch a storage service from the catalog. In fact, the application catalog provides

Container Orchestration Engine

100

to the user the possibility to use existing storage solutions such as those that are

particularly spread in the current segment target. However, there is no guarantee

that will be a full compatibility with storage systems of some container

orchestration, such as Kubernetes.

Volumes are able to have different scopes, which refer to the level at which the

volume is managed by Rancher. Currently, using Rancher Compose files, there is

the support to create different types of volumes. These are called scoped volumes

and they must be defined in the correspondent section of a Docker compose the

file. Actually, the scope definitions are stack and environment. By default, a stack

scoped volume is created, but different scopes can be created on modifiers in the

top-level definition. As the name suggests, the first one is confined to a single

stack of services while the second one is completely visible to each component

that is defined in the environment. For this reason, users need to evaluate the

visibility trade-off in order to take advantages of both models. Furthermore, this

makes of Rancher a featured platform that includes a feature not usual in other

solution. In fact, the concept of environment is basically a synonym of the tenant

and so we can conclude that the architecture is well-suitable for cloud

infrastructure deployments.

3.6.4 Cattle

Cattle was the first container orchestration system available with Rancher and so

it represents a solution quite stable inside the platform. It is much similar to

Docker orchestration, considering the fact that is based on Docker commands. In

fact, applications are defined using docker-compose. Furthermore, the application

deployment is based on the concept of “Rancher Stack”. This is a set of

components that together compose the application. It is very useful to adopt the

microservice paradigm and so that resource has been also included with the

supporting of the other orchestration tools. A stack can be directly launched by an

application catalog, or through a docker-compose file with the augmenting of a

possible rancher-c1ompose, basically, a Rancher extension of docker compose.

Each stack is composed of services. These are docker images, characterized by

application requirements, such as scaling, health checks, service discovery links

and configuration parameters. It is even possible to include a load balancer service

and other external solutions within a cattle stack. This principle is outside other

implementations such as Kubernetes and so on. All of that allows a quick

deployment, simply based on single-click instead of defining docker-compose and

rancher-compose.

Container Orchestration Engine

101

However, as we have already explained, this is not the main feature of Rancher.

In fact, the good integrating of other existing solutions and their functionalities

has given to Rancher a good popularity that is influencing the rate adoption of that

platform to run containers in production. Due to this modular architecture, users

can easily take advantages of different solutions while maintaining a single

management experience. Furthermore, it is cloud-agnostic and so it is possible to

work across cloud and multiple data center without no loss of visibility and

deployment reliability.

3.6.5 Cattle Scheduling

The scheduling subsystem is the core of Cattle. It handles port conflicts and ability

to schedule through labels on host and containers. The concept of the label is the

same that we have already introduced with Kubernetes. As in other solutions,

Rancher does not force users to adopt a specific scheduling strategy [47]. In fact,

it is possible to easily integrate other solutions, such as one chosen from the

Rancher catalog. Furthermore, in Rancher the scheduling mechanism has been

distinguished in three cases: multiple IPs on the host, resource constraints, and

services that can be scheduled on a host. These are the main aspects that the

platform considers when a scheduling decision is needed.

By default, Rancher assumes that one host has its own unique IP address.

Moreover, if no address can be used, it is necessary to configure the system to

notify the Rancher scheduler about which network addresses are being used. A

common scenario is when a load balancer or a service needs a port to be externally

exposed. In this case, Rancher will schedule against all the available scheduler

IPs otherwise it will report the so-called “port conflict” [44]. The other aspect is

about the configuration of a host inside the Rancher platform. In this case, the host

is configured to the infrastructure with automatically assigned resource limits,

which are based on the host characteristics.

Therefore, when users need to deploy an application, Cattle considers parameters,

such as memory or CPU that can be used on the host. Nevertheless, most of the

container scheduling is defined on the service. In fact, a service is defined with

specific rules or host restrictions that the containers can be scheduled with. An

example concerns about a container to be scheduled onto a host that has a specific

host label. This is the last aspect which Cattle allows users to consider when

containers should be run in production environments.

Container Orchestration Engine

102

3.6.6 Rancher WebHook

WebHooks are components that can be created in Rancher in order to trap events

that are useful to be handled to either provide a different behavior or to react when

something happens. These are uniform resource locators (URLs) which can be

used to start an execution action within Rancher. An example is a receiver hook

[48] used to integrate a monitoring system to scale up or down the number of

container instances for a specific service. It is composed of a name for the

receiver, a type and the action associated with the receiver. After defined a

WebHook, an URL is obtained.

Cattle introduces three types of receiver hook: “Scale a Service”, “Scale the

number of Hosts” and “Upgrade a Service based on Docker Hub Tag Updates”.

As the name suggests, we can scale a service. This requires to configure the

WebHook to define the intention, the service involved and the maximum number

of containers at the time. A possible usage of this receiver hook is to scale a

service by implementing an auto-scaling integration with an outside process. This

is another feature that distinguishes Rancher from the explained complementary

solutions. However, each one has its own pros and cons and for this reason, at the

end of this chapter, we will discuss a comparison of these solutions.

3.7 Amazon EC2 Container Service

Amazon EC2 Container Service (Amazon ECS) is a highly scalable and fast

container orchestration service that makes easy to run, stop and manage Docker

containers on a cluster of Amazon Elastic Compute Cloud (Amazon EC2)

instances. By this way, it is possible to get the state of a cluster from a centralized

service, accessing many familiar Amazon EC2 features [49]. It eliminates the

need to operate on cluster management, configuration or worry about scaling the

infrastructure. Basically, it represents the Docker-compatible orchestration

solution from Amazon Web services. So, each amazon cluster consists of tasks

which run in Docker containers, and container instances, among many other

components. Furthermore, the solution manages just amazon container

workloads, resulting in vendor lock-in. In fact, there is no support to run

containers on infrastructure outside of EC2, including physical infrastructure or

other clouds such as Google Cloud Platform and Microsoft Azure. Nevertheless,

the solution is provided by Amazon as a service and so there is the ability to work

with all the other AWS instances services like Elastic Load Balancers, CloudTrail,

CloudWatch, and more.

Container Orchestration Engine

103

3.7.1 AWS Elastic Beanstalk

Amazon Web Services is an elastic, secure, flexible and developer-centric

ecosystem that serves as an ideal platform for Docker deployments. It provides

the scalable infrastructure, APIs, and SDKs that integrate tightly into a

development lifecycle and accentuate the benefits of the lightweight and portable

container that Docker offers to its users. AWS Elastic Beanstalk [50] is a

management solution for AWS services, such as Amazon Elastic Compute Cloud

(Amazon EC2), Amazon Relational Database Service (Amazon RDS), and Elastic

Load Balancing.

By this way, there is no requirement to manually launch the AWS resources to

start the application. Therefore, it is AWS Elastic Beanstalk which handles the

details of capacity provisioning, load balancing, scaling and health monitoring.

In addition, it provides the possibility to deploy and manage containerized

applications, and a command line interface (web tool) that can be used to deploy

both the AWS Elastic Beanstalk environment and Docker containers.

Furthermore, there is the possibility to easily deploy and scale containerized web

applications avoiding the complexities of provisioning the underlying

infrastructure. In fact, we can affirm that: if more granular control over containers

or custom application architectures is needed, it is better to consider working

directly with Amazon ECS.

3.7.2 Amazon ECS

AWS Elastic Beanstalk is useful for deploying a limited number of containers and

the way to run and operate container-enabled applications is quite flexible.

Amazon Elastic Container Service (ECS) is designed to run and manage

containers across a number of hosts that are grouped into clusters [50]. In fact,

managing containers, as the number being run increases, becomes difficult and

makes a not negligible overhead. This takes operators not to focus on core

businesses. So, Amazon ECS provides a way to deal with containers and easily

run distributed applications on a managed cluster of EC2 instances. Basically, it

offers three possibilities to use Docker containers. Firstly, by simple API calls,

with no need to install and operate with the cluster management infrastructure.

Secondly, Amazon ECS is designed for use with other AWS services and includes

access to many familiar features like Elastic Load Balancing, EBS volumes, EC2

security groups, and IAM roles. Lastly, there is the possibility to manage container

scheduling through a variety of solution in order to support a wide set of

applications.

Container Orchestration Engine

104

3.7.3 Architecture

Clusters are made up of container instances, which are EC2 instances running the

Amazon ECS container agent. This is responsible to communicates instances and

container state information to the cluster manager and dockerd (the Docker

daemon). Computation resources executing the Amazon ECS container agent will

automatically register with the default or specified cluster. The Amazon ECS

container agent is open source and freely available, and as such, can be built into

any AMI intended for use with Amazon ECS [50]. Furthermore, when a cluster is

created using the Amazon ECS console, an Auto Scaling group is also associated

with the cluster. This ensures that the cluster grows in response to the needs of the

container workload.

Figure 44 - Amazon ECS Architecture

Figure 44 illustrates the architecture of a typical amazon cluster with ECS as

container orchestration engine. After instances have been deployed to a cluster, a

task definition is used to define application or service to run. This is accomplished

defining the containers and volumes that are deployed to a host.

Task definitions are one or more container definitions. These specify the name

and location of Docker images, how to allocate resources to each container, and

any links to other placement constraints. Furthermore, if it is needed, it is possible

to specify any volume requirements. These are specified the definition of a single

task, which is the minimum unit of work in Amazon ECS.

Container Orchestration Engine

105

3.7.4 Scheduling

Amazon ECS is a shared state, optimistic concurrency system and provides very

flexible scheduling capabilities. Schedulers use cluster state information provided

by the Amazon ECS API actions [50]. Of course, this information is necessary to

make appropriate placement decisions. Actually, Amazon ECS provides two

scheduler options: RunTask and CreateService.

RunTask randomly distributes tasks across the cluster and tries to minimize the

fact in which a single cluster instance will get a disproportionate number of tasks.

The other one is ideally suited to long-running stateless services. This ensures that

an appropriate number of tasks are constantly running and reschedules tasks when

a fault occurs. In addition to default schedulers, Amazon ECS allows for

integration with both custom schedulers and existing third-party schedulers, such

as Apache Mesos Framework.

3.7.5 Network

Amazon ECS takes advantages of native Docker features like port mapping and

container linking while building on host-level Amazon EC2 networking features

[50] such as security groups and IP addresses. In addition, Amazon ECS supports

Docker links, including the usage of injected variables and configuration host

files. This is important to guarantee a simple discovery of other linked containers.

Furthermore, for more advanced users, it is possible to specify the whole

definition that a security group, network interface, and IP addresses should be

used by a single container.

3.7.6 Storage

Data volumes are used to store and share information between containers. These

are used as a persistent data store that can be shared between different containers

on a host, as empty, non-persistent scratch space for containers, or as an exported

volume from one container to be mounted by other containers. ECS task

definitions allow us to reference the location of an appropriate location on the host

(either on instance storage or using EBS volumes) [51]. Then, it is possible to

reference the underlying volume from specific container definitions and let

Docker managing the volumes within containers.

There are different options to use data volumes. An example is the so-called

“sourcePath” that is a reference point to a directory on the underlying host. If a

sourcePath is not provided, docker treats the defined data volumes as scratch

space, and the data is not persisted past the life of the container. Furthermore, data

Container Orchestration Engine

106

volumes can also define the storage relationship between two containers by using

the “volumesFrom” parameter. This configuration allows getting data by

referencing a data volume presented in a different container. This feature is quite

useful when it is needed to export persistent state. However, the mount point for

the exported volume is defined by the container that is exporting the shared

volume.

3.8 Kontena

Kontena is an alternative container orchestrator. Compared to the current big

players, such as Kubernetes and Mesos, it has a little different approach. For this

reason, it is quite popular nowadays. An important difference is about a separate

authentication server. The user context, necessary to interact with Kontena, is

provided by an authentication provider, which can either be self-hosted or the one

centrally hosted by Kontena. This would allow easy integration with an enterprise

infrastructure, such as LDAP. Furthermore, Kontena separates authentication

from authorization and each master does access control based on roles and users.

In addition, there are several other features such as audit logs and supporting

different existing solutions, such as Overlay network and OpenVPN.

The Kontena platform may be deployed on any infrastructure: private, public and

hybrid cloud. This is influenced by the way in which the project is structured. In

fact, the software is packaged as a container and so it works on any Linux machine

capable of running privileged mode Docker container. The principle is the same

used in solutions like Kubernetes: “all batteries included”. An example is about

high-availability. It is designed to guarantee a stable architecture in which the rate

of downtime is continuously reduced. Furthermore, it is based on a declarative

service model through which the behavior of various applications is defined. An

important difference, compared to competitor solutions, is the “Desired State

Reconciliation”. In fact, in Kontena there is a strong monitoring of the grid state

and when the desired state differs from the actual, a reconciliation process will be

performed.

Nevertheless, Kontena is thought to include features already offered by a

traditional orchestration system. For this reason, it is suitable to deploy stateful

services with the possibility to have a complete management of those components.

In fact, the underlying health check mechanism guarantees that a failure is

automatically detected and faced with a new instance of the failed component.

Container Orchestration Engine

107

To conclude this brief overview, we have learned that Kontena has all the basic

ingredients to become a successful container orchestration platform for

enterprises. However, compared to other solutions, it is not still well known and

this might prevent that from reaching feature parity or implement better features

in the orchestration space.

3.8.1 Architecture

The purpose is to run applications composed of multiple containers, such as

elastic, distributed micro-services. To do that, the user starts by telling the

Kontena system to run a service that is composed of one or more containers.

Figure 45 - Kontena Architecture

Figure 45 shows us the architecture of a Kontena deployment [51]. As in other

solutions, it consists of a client/server model in which the server is organized

according to a master/slave architectural pattern. In fact, there is a special node

which works as manager of the whole cluster. This node provides an interface to

manage Kontena object. The specific distinguishes these objects in Grids, Nodes,

and Services. In addition, the master collects log streams and statistics from the

Host Nodes and Services.

As anticipated in the overview of the orchestration tool, the user has to pass the

authentication phase before interacting with the master API. Moreover, each

master node might be used to manage multiple Grids, each of which assigned to

a dedicated set of nodes to provide the computing power. Furthermore, as seen in

Kubernetes, the master node by itself does not provide any computing power for

any of the services.

Container Orchestration Engine

108

On the contrary, the slave nodes are known in Kontena as “Host Nodes”. They

are designed to deliver the computing power to the Grid. The architecture is

completely infrastructure agnostic and so these nodes can be hosted by virtual or

physical machines whose kernel is Linux-compliant.

A Grid receives a number of host nodes. The platform allows us to increase the

available capacity by scaling up the number of host nodes to a Grid. Furthermore,

the communication between the master and the host node is performed via a

secure WebSocket [52] channel. This is an important difference, compared to

other implementation, because this medium is used for all services and so: service

orchestration, management, statistics and log streams.

3.8.2 Network

The network model is based on the Kontena grid, which spans a set of host nodes.

In fact, a Grid object uses an overlay network to provide connectivity between

service containers, even running on different nodes. Furthermore, the Kontena

Agent establishes the overlay network mesh between the nodes and the grid

network [51] provides service discovery for each deployed microservice

component.

As anticipated before, each host node runs the Kontena agent, which establishes

a WebSocket connection to a Kontena master. While the master can manage

multiple grids, each grid has an isolated overlay network with its own address

space. This means that nodes and containers, attached to different Grids, cannot

communicate with each other. Of course, this is an important feature that, as seen

with solutions like Rancher, goes towards the direction of multi-tenancy in an

enterprise deployment.

3.8.3 Storage

Kontena provides an experimental support for managing persistent service data

by using the same concept of “Docker volume”. In the Kontena master, volumes

are supported as first-class objects and can be referred to from stack YAML

definitions [53]. Furthermore, a volume can be used by multiple service instances,

that can be deployed to different host nodes. However, in this case, the scheduler

will automatically create multiple separate volume instances for each Kontena

volume. In fact, these correspond to a specific Docker volume on a specific host

node.

Container Orchestration Engine

109

Furthermore, volumes are defined with a scope that can be distinguished in an

instance, stack or grid. The suitable scope depends highly on the service that relies

on data and to provide the desired durability. Instance scoped volumes are created

per service instance and so each service instance will get its own volume. On the

contrary, stack scoped volumes are created once per stack per node. This means

that services, within the same stack and running on the same node, will use the

same Docker volume. Lastly, grid scoped is used once per grid per node and the

principle is the same to the others complementary scopes.

3.8.4 Scheduling

Kontena has a built-in advanced scheduler [54] that takes care of running and

managing service instances on multiple host nodes. Furthermore, it is guaranteed

an automatic failover and rebalance when the cluster has changes that will affect

services. An important difference between Kontena and other solutions is that the

scheduler is aware of the service nature. In fact, it distinguishes stateless and

stateful services, not migrating stateful services to another node.

The scheduling can be described with deployment strategies and functionality

conditions. Deployment strategies allow users to adopt different scheduling

algorithms. At the moment the supported strategies are High Availability (HA),

Daemon, Random. A service with HA strategy will deploy its instances to

different host nodes. On the contrary, the daemon strategy will deploy a given

number of instances to all nodes and the last one, Random, will deploy service

containers to host nodes randomly.

There is also the possibility for users to provide several conditions and rules to

drive the scheduler in order to determine how and where to deploy service

instances. The currently supported definitions are: “Wait for port”, “Min health”,

and “Affinity”. When a service has multiple instances and the so-called

“wait_for_port” definition, the scheduler waits until the container responds to a

specific port, before starting to deploy another instance. This is performed in order

to achieve zero-downtime deploys. “Min health” is useful to Kontena that will

make sure that at any point in time a number of healthy instances are up. Lastly,

an affinity condition is when Kontena is trying to find a field that matches given

value. Furthermore, Kontena has the ability to compare values against node name,

labels and service name.

Container Orchestration Engine

110

3.8.5 Kontena Objects

Kontena provides the complete environment for orchestrating and running

containerized workloads. In fact, the platform abstracts all available compute

resources and data volumes as a single unified resource pool. Furthermore, these

resources are used by containerized workloads describes through the high-level

Kontena objects. These are classified as described in the following list.

• Grid - the top-level abstraction that consists of a set of nodes. It is created

and managed by Master Node. Furthermore, the creation of a Grid [51]

implies the automatic creation of an overlay network with VPN access

available. Moreover, each node is automatically connected to this overlay

network. Therefore, service may communicate with each other in multi-

host environments just like in a local area network.

• Service – a logical set of containers. In fact, containers are ephemeral

environments that come and go. Furthermore, they get their own IP

addresses and those cannot be predicted in advance. Therefore, a service

[51] defines a logical group of correlated containers by building also a

logical central point to configure and specify the desired runtime state. As

in other orchestration solutions, Kontena provides the support for both

stateful and stateless services but in addition, it offers the possibility to

work also with batch and data streaming processing.

• Stacks – the same concept of Rancher Stack an used to distribute, deploy

and run the pre-packaged application. Furthermore, these are reusable

collections of multiple services with any associated configuration.

3.9 Nomad

Nomad is a cluster manager and scheduler solution that can be included in

different related categories. Until now, we have learned several orchestration tools

whose aim is to provide all the features needed to run application containers,

including additional functionalities such as cluster management, scheduling,

service discovery, and more.

Nomad only aims to provide cluster management and scheduling. It is based on

the Unix philosophy of having a small scope while composing with other

solutions like Consul for service discovery and Vault for secret management.

Furthermore, Nomad is more general purpose and so it supports virtualized,

containerized and standalone applications, including Docker.

Container Orchestration Engine

111

Compared to the solutions which we have just discussed, Nomad is architecturally

much simpler. It is based on a client/server model and does not require any

external services for coordination or storage. This is quite different because, as

we have already seen, solutions like Kubernetes are designed as a collection of

more than a half-dozen interoperating services which together provide the full

functionality.

On the contrary, Nomad combines a lightweight resource manager with a

sophisticated scheduler into a single system. Furthermore, it even supports

working with huge clusters and multi-datacenter deployments. For this reason, it

is a good chance to investigate it as alternative solutions to those we have

discussed before.

3.9.1 Architecture

Nomad is a free and open-source solution which comes from HashiCorp Software

Company. This platform is based on a client-server model through which users

deploy applications in order to take advantages of a well-structured cluster

management.

Before describing the architecture, it is needed to list a set of terms that are used

by a single Nomad deployment.

• Job – a specification provided by users that declare a Nomad workload.

This is a form of the desired state and so the responsibility of Nomad is to

make sure that the cluster state matches the user desired state.

• Task Group – a set of tasks that must be run together. A single job is

composed of one or more task groups. This is the unit of scheduling and

so the entire group must run on the same node.

• Driver – the basic means of executing a single task. An example of the

driver is Docker, Qemu, Java and static binaries.

• Task – the smallest unit of work in Nomad. They are executed by drivers

which allow Nomad to be flexible in the types of tasks it supports.

Nomad infrastructure [55] is classified in regions and data centers. A region can

contain multiple datacenters. The architectural pattern adopted by the platform is

a simple master/slave. However, these are respectively known as server and

clients. Servers are assigned to a specific region and for each region, they manage

the whole state making scheduling decisions. Furthermore, there is the possibility

to federate multiple regions together.

Container Orchestration Engine

112

As seen with other solutions, the master is the brain of the cluster. Each region

containers a cluster of master and data are replicated in order to ensure high-

availability. Therefore, Nomad makes use of an election algorithm to make sure

that at every moment just one node acts as a master. On the contrary, the slave,

but properly called client, is a machine that tasks can be executed. To do that is

necessary to run the Nomad agent. This agent is a long-lived process and it is

responsible to interact with the servers and executing application tasks.

Figure 46 - Nomad Architecture

Figure 46 illustrates the architecture of Nomad [56], based on a single region. As

it possible to see, each region holds both clients and servers. Servers are

responsible for accepting jobs from users, managing clients, and computing task

placements. Each region is fully independent of each other and does not share

jobs, clients or state. Therefore, they are loosely-coupled using a gossip protocol,

which allows users to submit jobs to any region or query the state of any region

transparently.

The servers in each region are all part of a single consensus group. For this reason,

they work together to elect a single leader which has extra responsibilities.

Furthermore, Nomad is optimistically concurrent, all servers participate in

making scheduling decisions in parallel. Of course, the leader provides the

additional coordination needed to do this safely and to ensure clients are not

oversubscribed.

Clients communicate with their regional servers using remote procedure calls

(RPC). This interaction includes registering, sending heartbeats for liveness,

waiting for new allocations and updating the status of allocations. Obviously, this

Container Orchestration Engine

113

information is taken by servers which need to deal with that in order to perform

scheduling decisions and create allocations to assign work to clients.

Even if it is not shown in the picture, Nomad provides a command line interface

client by using APIs to allow users to submit jobs to the servers. Furthermore,

Resource utilization is maximized by the so-called “bin packing”, in which the

scheduling tries to make use of all resources of a machine without exhausting any

dimension. This is the most important feature of Nomad that, compared to other

solutions, gives to that a good value also used in orchestration target.

3.9.2 Scheduling

The scheduling process must respect the constraints as declared in the job and

optimize resource utilization. The design is heavily inspired by the work of

Google on both Omega and Borg. Therefore, it takes care to be flexible and

scalable but also to deal with a large-scale cluster in order to offer a well-designed

service management.

As anticipated before, the high-level resources of Nomad are jobs, nodes,

allocations, and evaluations. Tasks can be scheduled on nodes in the cluster

running the Nomad client. The mapping is done by using allocations. So, an

allocation is used to declare that a set of tasks in a job should be run on a particular

node while scheduling is the process of determining the appropriate allocations

and is done as part of an evaluation. Furthermore, an evaluation begins with an

event causing the process to be created. These are created in the pending state and

are queued into the evaluation broker.

The evaluation broker is unique in the cluster and runs on the leader server. Its

responsibility is to manage the queue of pending evaluations, provide priority

ordering and ensure at least once delivery. Each server runs scheduling workers,

one per CPU core, in order to process evaluations. From the broker, the workers

pull from the queue evaluations and then invoke the appropriate scheduler as

specified by the job.

Nevertheless, Nomad schedulers are classified in service, batch, system, and core.

The first is used for long-lived services; batch is used for fast placement of batch

jobs; a system to run jobs on every node and core is used for internal maintenance.

Furthermore, Nomad can be extended to support custom schedulers as well.

The output result of a scheduler process is an allocation plan [55]. This is the set

of allocations to evict, update or create. Placing allocation is split into two distinct

Container Orchestration Engine

114

phases, feasibility checking, and ranking. Once the scheduler has ranked enough

nodes, the highest-ranking node is selected and added to the allocation plan. When

planning is complete, the scheduler submits the plan to the leader which adds the

plan to the planning queue. This allows the leader node to protect against from

resource over-subscription and for this reason, it performs partial or complete

rejections of a plan.

Once the scheduler has finished processing an evaluation, it updates the status of

the evaluation and acknowledges delivery with the evaluation broker. This

completes the lifecycle of an evaluation and the created allocations are picked up

by client nodes which starts the execution.

3.9.3 Use cases

Nomad is well-designed to act as Microservices Platform, Hybrid Cloud

Deployments, and E-Commerce service application. Microservices [40], or

Service Oriented Architectures (SOA), are design paradigm in which an

application is structured as a collection of loosely coupled services. These should

be fine-grained and the protocols, used to interact, should be lightweight.

Of course, this improves modularity and makes the application easier to be

understood, developed and ready to production. However, they add an operational

challenge of managing hundreds or thousands of services instead of a few large

applications.

Nomad provides a platform for managing microservice components, making it

easier to adopt the paradigm. In fact, Nomad is designed to handle multi-

datacenter and multi-region deployments, being cloud agnostic, and it can be seen

as an enabler to hybrid cloud deployments.

This is useful if servers are set to be executed in private datacenters running bare

metal, OpenStack, or alongside AWS, Azure o Google Cloud. Therefore, it is

easier to incrementally migrate workloads or to utilize the cloud for bursting.

Furthermore, the last case is about a typical E-Commerce web application. Nomad

allows all typical workloads to share an underlying cluster, increasing utilization,

reducing cost, simplifying scaling and providing a clean abstraction for

developers.

3.10 Closing remarks

As expected in the overview, the orchestration level is an important

containerization feature that is fundamental to deal with continuously automated

Container Orchestration Engine

115

scheduling, coordination, and management of complex systems of containerized

components and the resources they consume. On top of the underlying

infrastructure, we have machines (physical or virtual) whose operating system has

to support the execution of a container runtime. Furthermore, this is not enough

because of the automated arrangement, coordination, and management of

complex systems requires the introduction of a middleware layer able to support

these features. That is why the orchestration layer was introduced for.

Moreover, as explained in the correspondent section, an orchestration system is

characterized by three important functionalities: service management, scheduling,

and resource management. Surely, these are functional capabilities that are used

to design and quickly implement a containerized system whose components are

spread over the cluster. Furthermore, there are also other non-functional qualities

which are often required for the following: scalability, usability, availability,

portability flexibility and security. Choosing the right containerization and the

cloud computing cluster management tool can be challenging. Each tool has a

different function even if they can be broken down in application container

schedulers and infrastructure management platforms.

While the container runtime format is largely settled, the real differentiation is in

how to deploy and manage those containers. Therefore, several solutions have

been implemented in order to provide and meet some specific aspects. In fact, in

each solution, the included approaches and features vary enough that comparing

them is necessary to choose the right option for the specific use case. For this

reason, we conclude this chapter describing how these solutions are different in

the context of resource management, scheduling and service management.

Resource Management

Resource Management is the functional set of capabilities that are logically below

the scheduling module. Therefore, scheduling cannot avoid considering resource

management in order to efficiently place components at the orchestration level.

As explained in this chapter, an important point of view is to provide a service

which is infrastructure-agnostic. For this reason, managing objects, such as

Memory, CPU, IPs etc., can be indispensable. Furthermore, this is not just a

functional requirement but also a helper for non-functional qualities, such as

usability, availability, and flexibility.

Container Orchestration Engine

116

Nevertheless, analyzing the different solutions, we can make a set of resources

that need to be considered. Surely, this includes Memory, CPU, GPU, Disk Space,

Volumes, Persistent Volumes, Ports, and IPs.

✓ yes

 part.

Kubernetes Mesos/

Marathon

ECS Swarm Nomad Cattle Kontena

Memory
✓ ✓ ✓ ✓ ✓ ✓ ✓

CPU
✓ ✓ ✓ ✓ ✓ ✓ ✓

GPU 
Disk

Space
 ✓

Volumes
✓ ✓ ✓ ✓ ✓

Persist.

Volumes
  

Ports
✓ ✓ ✓ ✓ ✓ ✓ ✓

IPs    
Table 5 - Container Orchestration Engine: Resource Management Comparison

Table 5 shows us the support comparison for resource management. In this case,

Mesos is better. This is quite acceptable because it was designed for abstracting

the whole infrastructure of the data center.

Scheduling

When applications are scaled out across multiple host systems, the ability to

manage each node and abstract away the complexity of the underlying platform

becomes attractive. The orchestration is a broad term that refers to container

scheduling in order to get the ability for an administrator to load a service file onto

a host system that establishes how to run a specific container. Furthermore, a

cluster scheduler has multiple goals: using efficiently the cluster resources,

working with user-supplied placement constraints, scheduling applications

rapidly not to let them in a pending state, being robust to errors, and guaranteeing

high-availability.

Actually, there are three main scheduler architectures that are adopted by the

solutions which are spread in the scheduling market: monolithic, two-levels, and

Container Orchestration Engine

117

shared state. Monolithic consists of a solution in which the scheduling decision is

performed with no concurrency. This is obviously the simplest even if, often, it

does not guarantee the best performance. A two-level scheduler, as seen in Mesos,

adjusts the allocation of resources to each scheduler dynamically using a central

coordinator to decide how many resources each sub-cluster can have. Lastly, the

shared-state consists of a scheduling module in which there is no central resource

allocator. Table 6 shows us a functional evaluation of the scheduling process in

the solutions that have been discussed in this chapter. We can summarize the

important features of a scheduling system, considering the following capabilities:

• Placement - the main capabilities that allow to users to load a service file

and automatically seeing the execution of scheduling decisions by the

architecture.

• Replication/Scaling - needed to make more than one instance, in order to

provide high-availability and reduce latency.

• Readiness Checking - it allows to include the service only when the

component is ready to answer. This consists of a simple request/response

protocol. In fact, the purpose is to have not just alive components but also

ready service pieces of the application.

• Resurrection - the capability that is useful for long-lived processes whose

job requires to be always up.

• Rescheduling - it consists of being tolerant when a node fails.

• Rolling Deployment–it is important when upgrades/downgrades are

performed and the application will show no downtime

• Collocation – it consists of deploying more than one container on the same

host. This is fundamental to take advantages of local inter-process

communication instead of deploying components on different hosts.

 Kubernetes Mesos/

Marathon

ECS Swarm Nomad Cattle Kontena

Placement ✓ ✓ ✓ ✓ ✓ ✓ ✓
Replication/

Scaling
✓ ✓ ✓ ✓ ✓ ✓

Readiness

checking
✓ ✓ ✓ ✓ ✓ ✓

Resurrection ✓ ✓ ✓ ✓ ✓
Rescheduling ✓ ✓ ✓ ✓ ✓
Rolling

Deployment
✓ ✓ ✓ ✓

Collocation ✓

Table 6 - Container Orchestration Engine: Scheduling Comparison

Container Orchestration Engine

118

As it is possible to notice, Kubernetes is the most featured project It is considered

a pure application container scheduler and for this reason, it has recently moved

on Rancher with a more comprehensive infrastructure management platform.

Service Management

This is the highest capability level of each orchestration system. It provides the

functionalities to manage high-level services such as load-balancing, multi-

tenancy, high-availability and more. This is led by the spectrum of cloud

computing servers. The key difference is about the container deployment and

lifecycle management. This allows us to quickly deploy containers in production

through a management layer which suits the rapid change applications undergo in

a DevOps strategy. However, as happened for scheduling and resource

management, any type of tool automates the management of the underlying

infrastructure according to a specific business strategy.

✓ yes

 ext/part

Kubenetes Mesos/

Marathon

ECS Swarm Nomad Cattle Kontena

Labels ✓ ✓ ✓ ✓ ✓ ✓ ✓
Groups /

Namespaces
✓ ✓ ✓

Dependenci

es
 ✓

Load

Balancing
✓  ✓ ✓ ✓ 

Readiness

checking
✓ ✓

Table 7 - Container Orchestration Engine: Service Management Comparison

Table 7 shows us the comparison, from the service management point of view,

between the analyzed orchestration tools. Mesos, in conjunction with Marathon,

is almost completely featured. However, the focus is not based on the high-level

of container applications and so complementary solutions such as Kubernetes are

designed to include also components like load balancing and more. To conclude,

we understood that there are three key differentiators: the level of abstraction, the

specific container-centric and the integration with external services. However,

there is no solution which is a fit-for-all purpose because, as anticipated before,

an orchestration tool can be distinguished in container and infrastructure focused.

Therefore, users must pay attention at the functional comparison, which we have

just presented, and choose the solution that is more suitable for the specific

business use case.

Container-focused Operating System

119

4 Container-focused Operating System

4.1 Overview

There has been a lot of recent excitement around containers and orchestration

tools. In particular, the containerization focus has been moved to another point of

view: container-focused operating systems [39]. This is a new reality and also

important as much as containers and orchestration systems since the paradigm

analyzed until now, did not include the set of requirements that a containerization

technology nowadays can deal with.

For example, a production environment can require to directly install a specific

component on systems or also mobile devices that do not need the usage of

starting and stop containers. Applications are often built on distributed systems

comprised of a lot of individual services, engines, and data-processing tools. This

is the case for also cloud-based applications inside a large enterprise in which the

consumer needs to point out a much larger software system.

These applications require handling the actual demands around performance,

features, reliability and continuous improvement. So, it is better than all these

pieces work together in order to augment the experience of users, operators, and

developers. The introduction of a distributed operating system is able to face with

these issues in order to allow users to easily deploy a single platform for running

everything that modern applications require. This includes Docker containers but

also every modern infrastructure that makes extensive use of open source projects.

So, containerization contributed to enhancing this model to take existing

advantages to provide other types of services.

4.2 The need of a Container Operating System

Since the launch of Docker, there has been an explosion of new container-centric

operating systems [57]. The success of these new container-centric operating

systems apart is given by their lightness compared with a traditional Linux

distribution. Containers are run somewhere and the host, which container will be

executed on, needs to have an operating system as well. This has led the rise of

these new container-centric operating systems, also identified as “micro OSes”.

Container-focused Operating System

120

Figure 47 - Architectural model of a Distributed Operating System

Figure 47 shows us the layered structure of a Distributed operating system. This

allows us to build a set of the cluster whose machines are primarily fixed to be

managed by a container platform.

However, the idea is not new. In fact, stripped-down operating systems have long

been embedded in electronic systems, ranging from traffic lights to digital video

recordings. Initially, these operating systems were designed to run on a single

node. Today, micro OSes [58] are designed to run in distributed environments, in

which the entire data center is treated as one giant operating system that spans

hundreds or even thousands of nodes. Furthermore, this can be treated with the

containerization paradigm, because the existing solutions allow us to quickly

deploy and run microservice components without no need to face the underlying

configuration problems.

4.3 CoreOS

Nowadays, a plenty of distributions support Docker, but not in a way that seems

designed for large-scale production use. CoreOS [59] is an operating system

designed from the ground up to facilitate container operationalization at any scale.

Container-focused Operating System

121

In fact, it is extremely lightweight and designed to guarantee high-availability and

fault tolerance.

It is the pioneer of the micro OS paradigm [60]. The idea is to build an

environment where changes do not involve any propagation. This is a

consequence of the traditional case in which is difficult to change things in a

Linux server environment. CoreOS is a platform in which the operating system is

treated more like a web browser, that is automatically updated as new components

are released. Furthermore, CoreOS aims to be the general-purpose choice, and so

the company supports numerous deployment options.

The purpose is to provide a container-based Platform as a Service, and so it takes

care of infrastructure and architecture problems. It is a Linux distribution based,

in a way, on Gentoo Linux. Furthermore, it is an important part of many container

stacks and runs on almost any platform, including Vagrant, Amazon EC2,

QUEMU/KVM, VMware, OpenStack and bare-metal hardware.

4.3.1 Architecture

CoreOS is not just a container management system. In fact, it is an entire Linux-

based operating system. It consists of a few critical systems and services that

manage all the scalability and fault tolerance it claims to facilitate.

Figure 48 - CoreOS Architecture

Figure 48 shows the architectural point of view of a typical CoreOS cluster.

Container-focused Operating System

122

The basic components [59] of CoreOS are etcd, fleet, system processes and a

declarative specification, which is called cloud-config. Etcd is the key/value store

that is useful to the API Server in order to provide the RESTful state for the

distributed configuration. Fleet is the agent that is responsible to act as a

distributed scheduler for the system. The others are used to set up the entire cluster

in order to guarantee consistency and synchronization between all nodes of the

cluster.

In the example, there are tree CoreOS machines, each of which, with a container

engine. Actually, the architecture supports the integration with Docker, Rkt but

also future implementations. This is true due to the standardization of the

underlying container runtime infrastructure.

4.3.2 Configuration and Service Discovery

Etcd is a highly-reliability distributed key/value [61] store. It focuses on

distributed consistency and availability over performance. In order to access to it,

the project provides a command line interface which interacts with the core of the

project. It was designed to distribute system and service configurations. As will

be seen soon, etcd is the data store for the CoreOS distributed scheduler, fleet.

Therefore, due to etcd, nodes exchange configuration with other, and they are

aware of what services are available across the cluster. Furthermore, data can be

read from etcd via a command line utility or via an HTTP endpoint.

4.3.3 Application Management and Scheduling

Fleet is the other important component of CoreOS. It helps the platform to act as

a single machine by distributing system units intelligently across the cluster. To

do that, it makes use of etcd in order to distribute the whole state. Fleet gets

requests to start up a number of service units, and it will perform actions across

the cluster. Furthermore, the fleet is considered as a cluster-wide init (the first

process that runs all other processes) system that interacts with the underlying

system processes of each individual node. This allows the project to manage

individual processes on each node from a single central point. However, the fleet

is no longer actively developed or maintained by CoreOS. In fact, it recommends

Kubernetes for cluster orchestration.

4.3.4 Container runtime

The last part of the layout is the container runtime. CoreOS supports Docker and

Rkt. However, as it has already been seen in the correspondent chapter, Rkt is

Container-focused Operating System

123

able to run Docker containers. This is true due to the App Container (appc)

specification through which container images (ACIs) were defined.

4.3.5 Applications

There is no package manager in CoreOS; all applications run inside containers.

To do that, the platform makes use of Docker or the native container engine, Rkt.

The goal of CoreOS is security, consistency, and reliability. Therefore, updates

are automatically done using an active/passive dual-partition scheme [62] to

update CoreOS as a single unit, instead of using a package-by-package method.

So, it uses Linux containers to manage services at a higher level of abstraction.

Furthermore, there is no installing package via yum or apt. In fact, the code of a

single and all its own dependencies are packaged within a container that can be

run on a single CoreOS machine or on the cluster. Considering the fact that

CoreOS is only designed to run application containers, many fewer system-level

packages are required and installed. This means lower CPU and more efficient

memory usage if compared to a typical Linux server.

4.4 RedHat Project Atomic

Red Hat Enterprise Linux Atomic Host is a variation of the Red Hat Enterprise

Linux 7 because it is optimized to run Linux containers. Basically, it is lighter

than a traditional operating system even if it is not as small as some of its

competitors. The idea was to counteract the other solutions by the fact that most

of them integrated several system containers in addition to the application

container. Therefore, the purpose was to integrate just the set of services that

address the most use cases for container applications. These are put in a sort of

middleware, which is called Atomic. So, this is a platform to deploy and manage

containers on bare-metal, virtual, or cloud-based servers.

In fact, there is no requirement to have specific server hosts, considering the fact

that the operating system comes with built-in functions with Docker and the

related system components. Roughly speaking, it is designed to be minimally

focused on the delivery of container services.

The project contains Docker, Flannel, and Kubernetes to build clusters for

container-based services. Docker provides the container runtime, Flannel the

overlay networking while Kubernetes the scheduling and the coordination of host

containers. In addition, it makes use of properly security implementations in order

to secure the deployed containers as well as manage accesses to and from them.

Container-focused Operating System

124

4.4.1 Architecture

Red Hat Atomic Enterprise Platform [63] is an optimized container infrastructure

platform for deploying, running, and managing multi-container based applications

at scale. It is used to provide a scale-out cluster of instances that together form an

enterprise-class foundation for delivering traditional and cloud-native enterprise

applications.

Figure 49 – RedHat Project Atomic Architecture

Figure 49 shows us the architectural point of view of a typical Atomic cluster. The

primary building block is the Atomic Host, a lightweight container operating

system which implements the target idea.

This is immutable since it is imaged from an upstream repository, supporting mass

deployment and applications that are executed by containers. Currently, the host

comes out the box with the orchestration system Kubernetes. However, it is being

analyzed to support different versions of the same host, such as the third version

of OpenShift. Furthermore, the project makes use of several Kubernetes utilities

like etcd and flannel.

The host system is managed via rpm-ostree, an open source tool for managing

bootable, immutable, versioned filesystem trees which come from upstream RPM

content [58]. This and several other components are wrapped in the atomic

command which provides a unified entry point. In addition, many other tools are

included in the container-based infrastructure, such as the following: “Cockpit”,

to give visibility to the hosts and container cluster; “Extensions to Docker”, for

better security and monitoring system integration; “AtomicApp” and “Nulecule”

Container-focused Operating System

125

for composing multi-container applications; “Commissaire”, to provide a better

API for Kubernetes hosts, and “Atomic Developer Bundle” to make easier the

development of containerized applications.

4.4.2 Network

Atomic makes use of Docker and Kubernetes and so it takes advantages of both

solutions. As seen in the correspondent chapter, Docker hosts, by default, give to

each container a network address that is taken from an unused private address

range. This enables containers on the same host to communicate with each other,

by using assigned IP address and their exposed ports. However, with the single-

host-networking model, container linking does not span multiple docker hosts,

and it is difficult for applications running inside containers to advertise their

external IP and port, considering the fact that these are not available to them.

Multi-host docker deployments [64] will benefit from using the additional stack

components that ship with Atomic. In fact, an Atomic cluster comes out with the

possibility to configure flannel and Kubernetes. We have already discussed the

multi-host-networking support of Kubernetes and that addresses this issue by

giving to each application component a sort of network visibility that is

independent of the underlying host operating system.

So, each cluster machine receives a full subnet, in order to reduce the complexity

of doing port mapping. Therefore, Atomic hosts include the networking driver

which provides an overlay network by defining an independent local subnet in a

Kubernetes cluster. By this way, Atomic combines the advantages of Kubernetes

and Docker in order to provide a cluster platform that is able to run and manage

production services.

4.4.3 Storage

RedHat Atomic Enterprise Platform makes use of the concept of “Volume” to

provide a persistent-data-storage subsystem. This is set by default partitioning

through the docker-storage-setup service, which creates a Logical-Volume-

Management (LVM) thin pool to be used by the container images. Firstly, a root

logical volume is created and then that service sets up a LVM pool [65], which is

called docker-pool. This takes 60% of the whole space and the remaining can be

used for extending the root volume or the docker-pool. Furthermore, it is also

possible to override the behavior of the service during the boot process.

Container-focused Operating System

126

When Atomic Host is installed from a cloud image, by default, it makes use of a

partitioning with a set of two logical volumes that is called “Volume Group”.

Furthermore, the underlying host makes use of XFS file system [66]. It is the

default file system for Red Hat Enterprise Linux 7. This is influenced by the fact

that, due to the support of “metadata journaling”, it is highly scalable and

performance. Furthermore, the XFS file system can also be defragmented and

enlarged while mounted and active. However, if the Atomic LVM thin pool runs

out of space, it will lead to a failure because the XFS file system underlying will

be retrying indefinitely in response to any I/O errors. For this reason, it is very

important to monitor the free space in the docker-pool and not to allow it to run

out of space.

Nevertheless, in addition to a LVM thin pool, it is possible to use the so-called

OverlayFS, that we have already discussed it with Docker. This is a copy-on-write

file system that features page-cache sharing between snapshot volumes.

Therefore, it supports efficient data storage and, compared to LVM thin pool, the

container creation and destruction is more performant because it makes use of less

memory

4.5 Mesosphere DCOS

Mesosphere DCOS is a very robust and innovative way of looking at how to

manage containers. The most interesting thing about it is that it is not just limited

to container management but it has cluster computing solutions built-in, such as

Hadoop, Cassandra etc. This is one of the key differentiators from the other

container operating systems that make Mesosphere DCOS [67] very successful.

Furthermore, to do that, the project makes use of other open source projects, such

as Apache Mesos, Marathon, Zookeeper, and a few other services.

The platform abstracts the cluster hardware and software resources by providing

just common services to the applications layer. Similar to Linux, DC/OS has both

system and user spaces. The system space is a protected area that is not accessible

to users and involves low-level operations such as resource allocation, security,

and process isolation. On the contrary, the user space is where the user

applications, jobs, and services are running on. Basically, Mesosphere DCOS is

not a host operating system but it spans multiple machines and relies on each of

which to have its own host operating system and kernel module.

Though containerization offers massive scale, as we have already discussed, it has

one significant gap: lack of tight integration with existing stateful applications.

Container-focused Operating System

127

Therefore, DC/OS is designed to manage both stateful and stateless workloads,

within the same environment. In fact, due to the integration with atop frameworks

like Hadoop and Cassandra, it can handle the scale-out web tier running in

containers that talk to them. Furthermore, customers can use Marathon for

orchestrating applications while they use Chronos for scheduling long-running

tasks. The fact that it is able to run stateful applications, along with the scale-out

of containerized applications, gives to the platform a key differentiator factor,

compared to other container-focused operating systems. Therefore, the purpose

of this section is to investigate the implementation of that solution.

4.5.1 Architecture

The project is a platform for running containerized software. It is infrastructure-

agnostic and so may consist of virtual or physical hardware as long as it provides

compute, storage and networking. The architecture can be split into three most

important layers [43]: software, platform, and infrastructure.

Figure 50 - Mesosphere DCOS Architecture

Figure 50 shows us the layered architecture of Mesosphere DCOS.

The lowest layer is about the underlying resources on which is built. As mentioned

above, DC/OS can be installed on public clouds or private clouds but also on-

premises hardware. At the platform layer, we can find dozens of components

grouped in categories. However, these components are divided across multiple

Container-focused Operating System

128

node types: master nodes, private and public agent nodes. Therefore, each node

must already be provisioned with one of the supported host operating systems.

The highest layer is the one which is shown to users. This provides package

management and a package repository to easily install and manage multiple types

of services. In addition to these packaged applications and services, the user may

install their own custom apps, services, and scheduled jobs. Furthermore, the

project includes and integrates several external components, such as a graphical

user interface (GUI), a client command line interface (CLI), a package repository,

and a container registry. These are used to build a set of application stacks that

are designed by focusing just on the business core of the use case requirements.

This is one of the most adopted solutions in this segment market. This is

influenced by the fact that the sauce behind the platform is the design strategy

used to power such robust applications.

However, it is a sort of fit-for-all because takes advantages of existing solutions

like Apache Mesos. This has led to the introduction of the so-called Container 2.0

workloads. Mesosphere goes toward this direction in order to provide additional

functionalities such as: simultaneously running multiple schedulers and

supporting the multi-tenancy. Container 1.0 systems do not optimize these

workloads and users end up with non-optimal operating constraints, including

being forced to separate clusters for each service. In conclusion, we can affirm

that Mesosphere DC/OS is the best of all the aspects that users can experience

according to the possibilities of the containerization paradigm. In fact, it is open

source and easy to build each type of application that can propel organization

business into the next evolution of the digital age.

4.5.2 Network

The platform provides a number of tools out-of-the-box, ranging from basic

network connectivity between containers to more advanced features, such as load

balancing and discovery. The so-called “IP Per Container” functionality [39]

allows containers to run on any type of IP-based virtual networks. The project

supports this capability for the Universal container runtime (UCR) by using the

Container Network Interface (CNI). Furthermore, it can also use the Docker

container runtime by using the Container network model (CNM). This consists of

a virtual networking solution that works both with UCR and Docker container

runtimes. Basically, it is an overlay network and it makes use of the underlying

Mesos support to provide a unique network address to each container.

Container-focused Operating System

129

Furthermore, DC/OS includes other services such as a resolution name system

and load-balancing. The resolution name system is accomplished by two

components: a centralized Mesos DNS, which runs on every master; a distributed

component called Spartan that runs on every agent. Lastly, the load balancing

option is provided out-of-the-box by three implementations: Minuteman, Edge-

LB, and Marathon-LB. However, there is a difference with the concepts already

introduced in the Mesos section.

4.5.3 Storage

Applications lose their state when they terminate and are started again. This is not

a suitable case for all scenarios, such as a database or a stateful service like Kafka

or Cassandra. So, in order to preserve the durability, it is necessary to configure

Mesos to mount disk resources to enable users to create tasks that can be restarted

without data loss.

Disk Mount Resources [42] are primarily for stateful services and consists of a

dedicated storage available throughout the cluster. However, it is still important

to consider the performance and reliability requirements for the applicative use

case. In fact, they are built by taking advantages of the underlying storage and so

it is not its responsibility to provide data replication services.

Furthermore, in DC/OS, there are other types of persistent resources that are

classified in: local and external persistent volumes. In such way, tasks and their

associated data are stored to the node and will not be lost, even if the container on

that node will terminate. Nevertheless, this guarantees to the application reserving

its own persistent state.

4.5.4 Container Orchestration

DC/OS provides easy-to-use container orchestration right out of the box. It

includes Marathon [39] as a core component, giving to us a production-grade,

battle-hardened scheduler that is capable of orchestrating both containerized and

non-containerized workloads. This allows to us the ability to reach extreme scale,

scheduling tasks across a several numbers of nodes. Moreover, the application

definitions are configurable using a declarative approach to enforce advanced

placement constraints with node, cluster and grouping affinities.

Container-focused Operating System

130

4.6 Snappy Ubuntu Core

The Snappy Ubuntu Core Operating System comes with a new type of application

manager, that is called snappy, and focuses on running applications and

containers. It abstracts the lower-level functionalities that are introduced by etcd,

Consul, fleet, Kubernetes, and all the other tools. The base of the system is the

“Ubuntu Core” [67]. On top of that, applications are realized by read-only images

that can be transitionally updated. This means that it is not needed to download

an entire application to deploy a new version. In fact, it is enough to just download

the changes that have been made.

Snappy is a very tiny and thin operating system. It is the result of a long work that

Canonical performed in order to create a tiny-yet-robust operating system for

mobile devices. Furthermore, the increasing demand of users for reliable systems

and application updates, the target of this solution is to build the so-called

“transaction, image-based delta updates”. This consists of transmitting only

differences to keep downloads small and ensure that upgrades can always be

rolled back.

Therefore, to enhance the security of mobile devices, they created a containment

mechanism that isolates each application running on the device. This is the same

capability that is available using Docker standalone. In addition, for security

improvements, Snappy took advantages of LXD. However, Canonical continues

to recommend Docker for packaging and running applications. In conclusion,

Snappy Ubuntu Core is not a pure container OS but has some interesting aspects

to it. For this reason, the purpose of this chapter is to investigate this solution.

4.6.1 Architecture

The target is Internet-of-Things (IoT) and mobile devices that need support in

order to provide high-quality services. In the classic Ubuntu, any package consists

of writing to any file. The Snappy approach is different because there are two

types of package units: read-only and writable spaces.

This architecture guarantees automatic updates, backups, rollback and by design

the system is secure. In fact, these system packages are confined and isolated and

so, the changes are not spread all over the system such as in classical ubuntu

systems. As it will be seen soon, the build process packages everything needed

into a single “snap” file. For example, “python runtime env” needs to be packaged

into the snap package for python applications.

Container-focused Operating System

131

Snappy is different from a traditional package-based Ubuntu server and desktop

OS. In fact, it guarantees the isolation of each system part in a separate read-only

file and does the same for each application. This allows developers to confidently

update their applications without worrying about breaking other installed

software.

Figure 51 - Ubuntu Snappy Architecture

Figure 51 gives us the layered architecture of Snappy Ubuntu Core.

As it is possible to notice, the underlying target resources concern about IoT

devices in which the purpose is to quickly and securely deploy system

components. So, there is the need to build a sort of middleware which is able to

spread applications, without worrying about system configurations. For this

reason, Ubuntu Snappy Core adopted the principle of “snap packages”, which are

much similar to Docker containers and so they do not expose operators and

developers to face with system-related configuration problems.

4.6.2 Containerization with Internet of Things

Numerous factors are affecting the complexity of modern enterprise applications.

Of course, this is influenced by the surging adoption rates of mobile technologies,

distributed environments, big data and its near instantaneous transmission.

Furthermore, these have considerably complicated enterprise architecture. These

factors are exemplified by the Internet of Things (IoT) [68], which is augured to

involve tens of millions of connected devices by the outset of the subsequent

decade.

Container-focused Operating System

132

Nevertheless, organizations are increasingly attempting to remedy these

complexities by adopting virtualization technologies, in which data is made

available as an abstraction layer accessible to different parties from distinct

location. Containerization represents the next level of virtualization solution by

exploiting the possibility to provide the benefits of real-time application data in a

post-IoT world.

Furthermore, running applications as microservices could very well be the best

means of creating and deploying them in time to account for the extreme volumes

of IoT and velocities of data, especially when they are leveraged within

containers.

Microservices are especially well suited for the IoT because of the machine-to-

machine capacity of the latter. In particular, numerous IoT deployments involve

machine learning. The intersection of the IoT, microservices and containerization

revolves about this fact. In fact, once people get that part of the architectural

thinking down they can realize that microservices will have configuration files,

perhaps task-specific libraries associated with them. In such case, containerizing

that makes it even easier for the DevOps folks to deploy those containers across

the infrastructure.

Nevertheless, the benefits do not concern just development features. In fact, one

of the most important issue that containers aim to solve is the security. Snappy

Ubuntu Core is the version of Ubuntu that is built around container to address the

IoT world. The core mechanism, snap, offers automatic updates and helps

blocking unauthorized updates. Using transactional systems management [69],

snaps ensure that updates either deploy as intended or not at all. In Ubuntu Core,

security is further strengthened with other security-target solutions, like

AppArmor. Therefore, all application files are kept in separate silos, and these are

just read-only. This characterizes the ability run snap packages on any major

distribution, including Ubuntu Server and Ubuntu Cloud, by allowing users to

provide a coherent experience. In literature, this is meant as the relevance from

edge to gateway to the cloud. On the contrary, by applying virtual machines to

IoT, the performances issue and restrictions on direct hardware access is quite

limited. Using container technologies, like Docker, may be natural for enterprise

developers by exploiting the features of the containerization paradigm.

Container-focused Operating System

133

4.6.3 Package build

Snapcraft is a tool which lets developers package their software as the so-called

“snap” file. This allows to incorporate components from different sources and

build well-designed technologies and solutions. However, the tool needs to run

on an Ubuntu OS distribution. In Snappy Ubuntu Core “snaps” is the packaging

mechanism that is used to build and deploy applications. They are self-contained

and made from reusable components, that are called “parts”. Thus, developers can

include all required dependencies in their snaps in order to remove any

dependency on system libraries. Furthermore, they can leverage existing open

source projects by integrating them as part of their snap.

Figure 52 - Snap Package Build

Figure 52 shows us the building process of snap. These are designed to be secure,

sandboxed, and isolated containerized applications. A snap consists of a fancy zip

file containing an application together with its dependencies, and a description of

how it should safely run on the system. As described in the figure, the building

process is made up of four phases: pull, build, stage, and snap. Pull consists of

fetching the package source. After that, it is needed to configure the local system

with the installation of each subcomponent. By this way, the output files of the

previous phase are consolidated in a sort of tree through the usage of the “stage”

process. Lastly, the desired components are put in a snap. This is read-only for

security because the aim is to prevent a hostile party from sneakily changing the

software on the underlying machine. Therefore, it is not possible to modify a snap

once that it is installed on the system. Furthermore, it is even possible to check

the snap signature to make sure that it still exactly the intended software.

Container-focused Operating System

134

4.7 Closing remarks

Container Operating System is the last level of the layered point of view of the

containerization paradigm. This is very important for combine advantages of

containerized applications and distributed operating systems. Table 8 shows us a

comparison of the analyzed solutions.

 CoreOS RHEL

Atomic

Mesosphere

DCOS

Snappy

Ubuntu

Core

Use case

Large-scale

deployments

Large-scale

deployments

Large-scale

deployments

IoT and

mobile

devices

Auto-updates

Yes Yes It relies on

the

underlying

kernel host

Yes

Rollback

version

system

Yes Yes No No

Container

Orchestration

Fleet Kubernetes Marathon Not

included

Application

services

Service

Discovery,

Container

networking,

Resource

scheduling

Service

Discovery,

Telemetry,

Security

Stateful

scale-out,

Service

Discovery

and High-

Availability

Usage

of snaps

Table 8 - A comparison of container-focused operating systems

As expected, each implementation has its own key differentiator features and so

it is more suitable in some applicative use cases. Even in this case, there is not a

fit-for-all solution but each proposal is suitable for the correspondent use cases.

Therefore, the analysis phase requires the indispensable evaluation of the right

choices. In conclusion, this means that users should perform an in-depth analysis

in order to choose the right one which is more suitable for the specific

requirements.

Containers with OpenStack

135

5 Containers with OpenStack

5.1 Overview

OpenStack is the leading cloud framework for adopting and adapting new

technologies. So, the community, influenced by containerization success, decided

to support this new virtualization paradigm. This has led several projects to ensure

that containers, and the third-party of ecosystems, are completely supported in

OpenStack deployments.

For example, OpenStack compute service manages to compute resources which

may be virtual machines but also containers. These are suitable for use cases with

the requirement to treat a container like a lightweight virtual machine, allowing

the usage in a similar way to on-demand virtual machines. Of course, this is the

case of operating system containers.

The goal is to allow users to create and manage containers similarly to how they

use the Nova service to get virtual machines. For this reason, the focus of

OpenStack is based on three important areas: supporting containerized workloads,

simplifying the setup to run a production multi-tenant container service and

offering a modular choice to operators who have not established a definitive

containers strategy yet.

In order to deal with those areas, several projects have been designed with the aim

to easily embrace the containerization paradigm in cloud deployments like

OpenStack. So, this chapter will investigate these solutions in order to provide an

in-depth overview of which implementations are now available to adopt and what

are the correspondent use cases to be associated.

5.2 Cloud Computing

Cloud computing has changed business models and design patterns used to

develop applications. The introduction of this new buzzword has produced the

spread of several opinions and politics on when is better to adopt that model.

However, the most spread definition is from NIST, which defines the cloud as a

useful model to access resources on-demand. These concern about servers,

networks, storage and services which can be rapidly provisioned with a minimum

interaction between users and service provider. Furthermore, another important

feature, that has influenced the cloud adoption, is the so-called pay-per-use

Containers with OpenStack

136

concept. This means that users pay just for the usage time avoiding to waste

money when services are not needed.

Cloud computing was promoted with different provisioning and deployment

models. Considering service provisioning, there are three proposals:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a

Service (SaaS). Using IaaS, users have the responsibility to manage infrastructure

components. At the PaaS layer, there is no visibility on the underlying

infrastructure but, the system provides a set of services that can be used in order

to build a distributed cloud application. Lastly, the highest level, Software as a

Service, provides users the unique possibility to interact with the application

without no visibility on the underlying services.

Considering the cloud deployment, the adopted models are classified in: public,

private or hybrid. A public solution consists of directly using resources provided

by an external provider. Even if there are many advantages, often this solution

becomes difficult to be adopted because organizations should completely rely on

cloud providers. Therefore, it is often deployed an on-premise cloud solution,

which is called private cloud. The last option is to combine advantages of both

solutions and the result is called hybrid cloud.

5.3 OpenStack

OpenStack is an open-source IaaS cloud platform composed by a set of services

for building and managing resources. Each service handles a specific offer to

users. For example, Nova manages and spawn virtual machines, Neutron creates

virtual network resources, and Swift manages different kinds of storage.

OpenStack makes easy horizontal scaling adding new compute nodes on demand

without any specific software requirement. The OpenStack project benefits from

a huge community who decide to focus on a solution without no need to spend

money on commercial licenses. The interaction mechanism with the platform can

be performed through REST APIs or a web-based interface.

5.3.1 Architecture

An OpenStack deployment consists of three main services: compute, networking,

and storage. Compute is designed to provision compute resources. The storage

module provides the concept of “Volume” to store persistent data but also virtual

machines images. The last one, networking, manages two types of

communication: services among virtual machines

Containers with OpenStack

137

Figure 53 - OpenStack Architecture

Figure 53 shows us the architecture of a basic OpenStack deployment.

OpenStack is based on seven key components, which are shown in Table 9. They

are a part of the OpenStack core and maintained by the OpenStack community.

Service Type Service Name

Compute Nova

Object Storage Swift

Identity Keystone

Dashboard Horizon

Block Storage Cinder

Network Neutron

Image Service Glance

Table 9 - OpenStack Projects

Nova manages computing resources and is the main project of OpenStack with

the purpose to guarantee: scalability, fault-tolerance, and compatibility with APIs

of other solutions, such as Amazon EC2.

Object Storage is useful to store and retrieve data and, it is based on Cloud Files

of Rackspace. This is a safe, efficient, and convenient data-storage system.

Keystone is the module responsible to provide authentication and authorization.

It adopts a role-based access control strategy to avoid untrusted accesses to cloud

services. After completed the authentication process, users get an authorization

token that is used to make aware services about which role the user is running

with. Keystone, as other OpenStack services, makes use of external solutions like

MySQL to store persistent management-data.

Horizon is a web-based interface that allows users to interact with OpenStack

services, without no need to install the client command of an OpenStack

Containers with OpenStack

138

component. This is useful to start and stop a virtual machine or interacting with

other services in order to manage networking, storage, and so on.

Block Storage provides to virtual machines a way to store persistent data. To do

that, the concept of volume is introduced also in OpenStack. Each volume

consists of a sort of virtual hard drive and it is attached to a virtual machine. So,

information is saved on blocks of a fixed size. Cinder is the most popular

component to provide the block-storage service. It guarantees high-availability

and fault-tolerance.

Neutron is an OpenStack project to provide “network connectivity as a service”

and so, it provides an API that allows users to set up and define network

connectivity and addressing in the cloud. This handles the creation and

management of a virtual networking infrastructure, including networks, switches,

and routers for devices managed by the OpenStack Compute Service (Nova).

Neutron consists of a neutron-server, a database for persistent storage, and several

plug-in agents, which provide other services such as interfacing with native Linux

networking mechanism, external devices, or SDN controllers.

The last component is an Image Service called Glance. Images are necessary to

spawn a virtual machine. They are disc types with a pre-installed operating system

that, at the booting phase, will be attached to the compute instance.

Containers with OpenStack

139

5.3.2 Nova System Architecture

Nova is a project which is composed of different processes, each of which is

dedicated to performing a specific functionality. Users interact with Nova by

using REST APIs or Horizon, while components inside Nova communicate

through a remote-procedure-call (RPC) message passing mechanism.

Figure 54 - Nova System Architecture

Figure 54 describes the architecture of the Nova system. The main component is

the API server process that receives client requests, which typically, does read and

write from and to a database. Furthermore, this process can interact, by sending

messages, with other Nova components and the cooperation flow determines the

response to the REST invocation.

The RPC messaging communication is done by using the “oslo.messaging”

library. This is an abstraction made up on a message queue and used to guarantee

both time and space decoupling between involved components. Furthermore, it is

possible to install nova components on different servers with a manager that

listens to RPC messages. The unique exception is about nova-compute, a single

process that interacts with the underlying hypervisor to manage compute

instances. Nova uses a central database logically shared between different

components. The access to this structure is performed through nova-compute, in

order to maintain independence from eventual updates of the whole service.

Furthermore, Nova-compute sends RPC requests to a central manager, which is

called nova-conductor.

Containers with OpenStack

140

Nowadays, each cloud computing platform consists of three compute instance

types: virtual machine, container, and bare-metal server. Nevertheless, it is

necessary to analyze when an organization can spend money on a traditional

virtual machine infrastructure or other complementary solutions. It is also difficult

to migrate from a current deployment type to another one and so it is important to

evaluate the introduced overhead by migrating applications. Therefore, these

scenarios should be investigated determining which parameters should be

considered when a cloud-based infrastructure is needed. For this reason, at the end

of this work, a performance analysis between containers and virtual machines will

be discussed.

We have already learned that containerization does not meet everything and so

we need to investigate different use cases in order to understand when is more

suitable to use virtual machines instead of container-based deployments.

In OpenStack, each deployment model is associated to a different sub-project:

1. OpenStack Hypervisor based, which uses solutions like KVM to manage

the whole lifecycle of virtual machines. The communication between

OpenStack and KVM is managed by the driver nova-libvirt.

2. OpenStack Container-based, which uses a container engine to manage

containers. The communication between OpenStack and the underlying

container engine is managed by a driver, like nova-docker or other newer

solutions, such as nova-lxd.

In this case, Nova is responsible to make use of drivers in order to spawn

instances and interact with Neutron for the networking service.

3. OpenStack bare-metal, which uses the Ironic project to directly request

physical server instances.

In contrast to the previous case, with OpenStack bare-metal, Nova delegates

this responsibility to Ironic which has the duty to provide a physical server

instance and interact with the other OpenStack projects.

Containers with OpenStack

141

Figure 55 – Virtualization Architectures with OpenStack

Figure 55 shows us an overview of different virtualization solutions that are

integrated with OpenStack. The Nova service can be structured by supporting one

of these three computational models. LXC is used for containers, KVM for virtual

machines and IRONIC for physical servers. To do that, Ironic uses Preboot

Execution Environment (PXE) and Intelligent Platform Management Interface

(IPMI). PXE is a standardized client-server environment that boots a software,

retrieved from a network, on PXE-enabled clients. IPMI defines a set of interfaces

used by system administrators for out-of-band management of computer systems

and monitoring their operation. This is important to manage a computer that may

be powered off or otherwise unresponsive by using a network connection to the

hardware rather than to an operating system or login shell. In this way, Ironic is

able to switch on a physical server and install on that an operating system that is

booted though a network connection. After completed this phase, Ironic interacts

with the other projects in order to complete the provisioning process.

5.3.3 The adoption of software-container in OpenStack

OpenStack supports containers on bare metal or virtual machines [70]. However,

this requires the attention of operators who must be aware that containers do not

have the same security isolation capabilities as virtual machines. Therefore,

service providers often run container in virtual machines in order to provide robust

protection of processes, which belong to the same tenant, from poorly behaved or

malicious code in other containers. Another way consists of the introduction of

the bay concept. In this case, a set of virtual machines make a bay, which is a

cluster of instances, that is only used by one tenant to address this risk.

OpenStack provides support for all of these configurations in the role of the

overall data center manager. There are multiple OpenStack projects leveraging

Containers with OpenStack

142

container technology to augment the OpenStack quality of usage: Magnum, Kolla,

and Murano.

Magnum is designed to offer container specific APIs for multi-tenant containers-

as-a-service. Murano is an application catalog solution that offers users the

possibility to quickly deploy packaged applications whereas Kolla is the solution

to offer a dynamic OpenStack control plane where each OpenStack service runs

in a Docker container.

5.4 OpenStack Magnum

The adoption of the software-container paradigm has influenced the production

of a new OpenStack project, Magnum. Its target is to provide a sort of API layer

to implement the so-called “Container as a Service”. The principle is the same as

in other projects, such as Nova to provision compute instances and so on. As

described in the correspondent chapter, the introduction of containers used to get

more complexity in management operations. For this reason, a new layer called

container orchestration was designed for. This has influenced the production of

several solutions and the idea of Magnum was to integrate into OpenStack a subset

of these platforms. Furthermore, the purpose is to combine both advantages and

using OpenStack principles, such as multi-tenancy, lifecycle management and so

on. Moreover, users should be able to continue to use the client native tools to

deploy their own applications.

Actually, the supported orchestrations are Docker Swarm, Kubernetes and

Apache Mesos. This project was not designed to be a complementary solution,

but it focuses on requirements that are not still supported, such as multi-tenancy.

This is accomplished by taking advantages of existing projects like Keystone

which implements the fundamental concept of multi-tenancy. This is not at all, in

fact, Magnum allows to users the possibility to contemporarily use multiple

orchestration instances, even from different implementations. This is an important

feature, considering the fact that a generic solution has several use cases but also

other aspects not properly covered.

5.4.1 Architecture

The idea of Magnum is creating a cluster of servers, each one configured with a

container orchestration engine in order to deploy containerized applications.

Furthermore, the project takes advantages of existing solutions like Nova and

Neutron in order to provide the same features as multi-tenancy and automated

management of the underlying resources. For this reason, the project makes use

Containers with OpenStack

143

of the concept of “Bay”. This comprises a set of compute instances, logically

interconnected due to the capability of Neutron, in order to quickly provide a

cluster solution that users can exploit with a container orchestration system.

The architecture of Magnum is structured as in other OpenStack services. So, even

in this case, there is an API server which is responsible to take care of the service

requests invoked by clients. Basically, it consists of a component that implements

its functionalities according to a simple create-read-update-delete (CRUD) model.

This allows users the possibility to work with Magnum resources like “Bay” and

“BayModel”.

Figure 56 - Magnum Architecture

Figure 56 illustrates the architecture point of view of a Magnum solution that is

integrated with an OpenStack deployment. As it is possible to notice, the service

core is placed on the controller node, as the other components, and interact with

them in order to provide a server cluster able to make use of a container

orchestration system.

Therefore, the Magnum API server offers the possibility to work with COE-

dependent resources, such as Service, Pod, and Nodes. The invocation of those

primitives notifies the action of a component inside Magnum, which is called

Magnum-Conductor. This is responsible to interact with Heat in order to

orchestrate resources to be managed for cluster provisioning. Practically

Containers with OpenStack

144

speaking, this involves Nova to create instances and even Neutron to create the

private network inside the cluster. Then, Glance is used to loading distro images

and Cinder to provide the possibility to create mount points on containers. In fact,

each nova instance is deployed with a container runtime, configured according to

the specific orchestration system defined in the BayModel. However, these

magnum resources will be deeply discussed in the correspondent section whereas

the purpose of this part is to provide an overview of the whole Magnum

architecture.

5.4.2 Network

As mentioned before, for network services Magnum is based on existing

OpenStack solutions. So, it makes use of Neutron to configure the network of the

whole cluster. This allows each instance the possibility to communicate with the

others that belong to the same cluster. Of course, the implementation differs

according to the specific orchestration engine that is willing to use. An example

is about Kubernetes that is based on the “Flannel” driver, which establishes an

overlay network to assign an IP per pod, regardless of the host which is currently

executing on. On the contrary, if the chosen orchestration system does not support

the multi-host networking, the network subsystem will avoid implementing such

functionalities.

5.4.3 Security and Multi-tenancy

Magnum resources are started and will be accessible only to users which belong

to the same tenant, in which the compute instances have been created. Bays are

not shared and so containers will not be running on the same kernel of neighboring

tenants. This is a fundamental feature in terms of security because containers of

different tenants will be executed on separate nova instances. Of course, this is

quite different from orchestration solutions, such as Kubernetes. In fact, without

the Magnum support, there is no possibility to include the multi-tenancy

considering that Kubernetes was not designed to offer multi-tenancy and so it

leaves this responsibility to users.

Magnum does not include isolation functionalities but it takes exploits the

capability offered by Nova when virtual machines will be instantiated. Therefore,

if Nova allows isolation between different tenants, Magnum would be considered

secure on providing an isolation level between containers.

Containers with OpenStack

145

5.4.4 Magnum API Objects

According to the Magnum terminology, the cluster is called “Bay” (actually

changed with Cluster). A Bay is a Magnum resource, which is created with a

dedicated container orchestration system. Basically, it consists of a set of Nova

instances that are provided with a pre-defined configuration containing network

capabilities, security groups and so on. However, as seen for multi-tenancy,

Magnum does not include an orchestration functionality and so, it exploits

existing orchestration projects like OpenStack Heat. The orchestration component

is based on templates. As anticipated in the correspondent chapter, the cluster can

scale up or down according to the desired state. Magnum uses Heat templates,

that are pre-defined or manually created by users, in order to define an

architectural design useful to repeat the scenario in similar use cases.

Heat Stack Templates are what Magnum passes to Heat to create a cluster. For

each template, a Heat Stack is created to arrange all of the cloud resources needed

to support the container orchestration environment. The purpose is to provide a

mapping of Magnum object attributes to the Heat Stack Template. This allows

Heat service to create the so-called “Heat Stack” that is the enabler to the output

Container Orchestration Environment.

Figure 57 - Magnum Bays

Figure 57 shows us the concept of the Bay resource which is the minimum

Magnum deployment unit to guarantee the container as a Service paradigm.

Therefore, clusters that belong to different tenants will be configured in such a

way that containers will not be running on the same kernel host. This is the

responsibility of Nova and Neutron. Furthermore, as anticipated before, they are

not the unique projects that are used to implement Magnum services. The idea is

to provide high-level APIs without reinventing the wheel and so the principle is

to combine features that are already provided in OpenStack, due to the presence

of several existing projects.

Containers with OpenStack

146

Figure 58 - Magnum BayModel

Figure 58 shows us the concept of a BayModel.

This is dependent on the container orchestration engine (COE) that is willing to

be installed on the cluster instances. In order to create a Bay, it is needed to specify

a BayModel. This is the template which contains the definition of a set of

parameters that are used by Magnum to configure the whole cluster. Therefore,

this resource is shared between bays that are created from the same template.

Each COE implementation supports at least a cluster driver. In fact, as mentioned

before, Magnum does not include everything but makes use of existing

capabilities. So, a cluster driver consists of a set of resources that are the

following: heat templates, configuration scripts, cloud images and documents

referred to a particular container-orchestration-engine (COE). The cluster driver

is used to enable the infrastructure for a specific container orchestration.

COE Distro

Kubernetes Fedora Atomic, CoreOS

Swarm Fedora Atomic

Mesos Ubuntu

Table 10 - Container Orchestration Engines with Magnum

Table 10 shows us the pre-installed drivers that Magnum includes for each COE.

These are associated with the distributions that are already included in the other

OpenStack services. In fact, Magnum makes use of the OpenStack principle that

is completely based on the integration strategy. So, it is even possible to integrate

other cluster drivers. To do that, it is necessary to define the driver as a directory

which contains some specific files in order to support the building of a container

orchestration system.

Containers with OpenStack

147

Furthermore, in the cluster driver is specified the association mapping between

the BayModel definitions and the correspondent Heat template. The workflow

uses Glance to load a compute image to be installed on Nova instances. These

instances are built with a pre-defined container orchestration engine that is used

by clients, according to the specific declarations of the BayModel.

Figure 59 - Magnum API services

Figure 60 shows the API services which, by default, they make use of secure

communication based on Transport-Layer-Security (TLS). However, it is even

possible to disable this feature configuring the proper configuration in the cluster

definition. Nevertheless, we understood that Magnum takes care only to provision

cloud resources that are indispensable for executing the container orchestration

engine. Furthermore, the remaining is implemented according to politics and

mechanisms that each existing solution provides.

5.4.5 Resource lifecycle

Magnum is an OpenStack API service that offers the possibility to integrate an

existing container orchestration engine such as Docker Swarm, Kubernetes and

Apache Mesos. Furthermore, it takes care of the complete lifecycle management

of each container orchestration engine. Therefore, the purpose of this section is to

investigate how this fundamental feature is managed by Magnum. Of course, this

includes each Magnum resource and the entire flow of the management process

is described by a state diagram, as shown in the picture below. Figure 60 the

diagram state that characterizes a Magnum Bay.

Containers with OpenStack

148

Figure 60 - Magnum Bay Lifecycle

Figure 60 presents the resource lifecycle. Each operation is asynchronous and so

it is possible to instantiate another cluster, before that the previous has reached

the “completed” state. Of course, it is possible that the creation process can fault.

Currently, cluster drivers make use of Heat templates and so resources will be

automatically detected due to the correlation between Magnum and Heat.

There is no difference with the compute instances created through Magnum and

those created through other projects, such as Nova. This means that they are

accessible to the cluster owner and with the possibility to perform any actions.

Furthermore, by modifying directly a single resource is not well considering that

this behavior is completely unexpected from the Magnum components. In fact,

Nova instances, created outside the Magnum service, will not be considered as

those, created by Magnum. Therefore, if a “cluster-delete” operation is invoked,

the private network created for Magnum cannot be deleted until there are

instances, created outside Magnum, that are attached to that network.

5.5 OpenStack Zun

Zun (ex. Higgins) is a Container Management service for OpenStack. It aims to

provide an OpenStack API for launching and managing containers backed by

different container technologies. In fact, the aim is to abstract the whole container

lifecycle management. The solution is fairly new but it deeply integrates with

other OpenStack solutions, such as Keystone, Nova, Neutron, Glance, and

Horizon.

Zun and Magnum are two independent solutions. Magnum provides APIs to

provision and manage Container Orchestration Engines (COEs), such as

Kubernetes. On the other hand, Zun [71] is not specifically based on users who

Containers with OpenStack

149

want to adopt a specific orchestration solution in OpenStack. In fact, it focuses on

users who want to create and manage containers as an OpenStack-managed

resource. This means that users can manage containers without the need to explore

the complexities of different container technologies.

Furthermore, Magnum is for users who want a self-service solution to provision

and manage an orchestration cluster. On the contrary, Zun is completely based on

OpenStack container provisioning in order to manage and perform the basic

operations within the OpenStack container management platform. This is one of

the motivations that has led the OpenStack community to suspend the support of

Nova-docker. In fact, Zun interacts with container compute instances without the

need to have a tight-coupled relationship with Nova.

5.5.1 Architecture

Basically, Zun is designed as other OpenStack projects. There is a server process

whose aim is to receive and process client requests. Furthermore, it is responsible

to interact with another important process that is called “Zun Compute”. This

process is responsible to launch containers and manage the underlying compute

resources. Moreover, it may interact with Nova in order to create a sort of

sandbox, that is actually a docker container. Nevertheless, the concept of “Zun

Sandbox” will be deeply illustrated in the next section.

Figure 61 - Zun Architecture

Figure 61 shows us the whole architecture of the Zun project. As seen in Magnum,

this involves Nova instances, that are scheduled by Nova scheduler, with Neutron

ports attached for providing networking capabilities. Containers are created by

Zun and will run inside the context of a sandbox. All containers that belong to the

Containers with OpenStack

150

same sandbox will be located on the same host in order to share the Linux

namespaces of the entire sandbox.

The key aspect of the Zun project [72] is to support various container technologies

in OpenStack. Such container technologies include Container runtimes (i.e.

Docker, Rkt, Clear Container) and COEs (i.e. Kubernetes, Docker Swarm etc.).

However, these two groups look very different from each other and so it is hard

to abstract all of them into a common set of APIs.

Therefore, the decision of Zun was to separate the support of these two groups of

technologies. Firstly, Zun deeply integrates with existing COEs. In fact, the

exposed APIs provide the common feature set among prevailing COEs, such as

deploying an application to one or multiple containers, and more. On the contrary,

it is needed to provide a sort of API layer that is specific for Zun. So, the project

focuses on the basic management of a single container and integrates those

containers with existing OpenStack primitives (like networking, storage,

authentication, monitoring etc.).

5.5.2 Comparison between Zun and Magnum

The basic promise of Zun is to fill the gap from where the project Magnum ends.

Magnum is really just a system for deploying a container orchestration system

like Kubernetes, Apache Mesos or Docker Swarm. It provides provisioning as

well as scaling capabilities and security feature, serving as a certificate authority

and generating OpenStack Keystone users.

As we have already seen, originally, Magnum was introduced with the mission to

be a container service. In fact, the official mission statement was to provide a set

of services for management application containers in a multi-tenant cloud

environment. Then, Magnum has been changed and now is considered as a

Container Infrastructure Management Service with the mission to provide a set of

capabilities for provisioning, scaling and managing a Container Orchestration

Engine (COE). On the contrary, Zun provides container-specific APIs across

different container technologies. So, this is an interesting idea though it is all very

confusing. Moreover, Zun basically represents the evolution of the older Nova-

Docker API.

Containers with OpenStack

151

Figure 62 - Magnum Vs Zun

Figure 62 shows us the architecture differences between Magnum and Zun. As it

is possible to notice, Zun is not tight-coupled with the underlying virtualization

infrastructure and so it can make use of different container runtime.

However, this is not the unique OpenStack container-centric solution. In fact,

another container-focused OpenStack project is Nova-LXD. This makes use of

LXD and represents a properly integrated solution with the whole OpenStack

architecture.

5.5.3 Zun Concepts

Zun needs to manage containers as well as their associated underlying

infrastructure-related resources, such as network addresses, security groups, ports,

volumes, and more. However, the adopted principle was to decouple the

management of containers from their associated resources. To do that, they

introduced the concept of “sandbox”.

A sandbox is an isolated environment for one or multiple containers. Its

responsibility is to provision and manage infrastructure resources associated with

a container or a group of containers. By this way, each container must have a

sandbox, and resources (such as Neutron ports) are attached to sandboxes (instead

of directly being attached to containers).

Containers with OpenStack

152

Figure 63 - Zun SandBox

Figure 63 shows us the architectural model of a Zun sandbox. In fact, it is defined

a Sandbox interface and the implementation is driver-dependent. So, each driver

needs to implement the sandbox interface. For docker driver, the sandbox can be

implemented by using docker container itself. Furthermore, the design is

extensible so that operators can plug-in their own drivers if they are not satisfied

by the built-in sandbox implementations.

5.6 OpenStack Kolla

Kolla is a project designed to make easier the installation and update of the whole

OpenStack. Releases of OpenStack foundation are published according to a

specific timespan. This introduces a strong flexibility but also much complexities

to deployment operations. Kolla is a new way to configure OpenStack inside

containers, taking advantages of rapidly obtaining a reliable and composable

installation.

In fact, Kolla simplifies the configuration of each service, that is seen as a micro-

service installed through a Docker container. Therefore, in order to update a

service, it is needed to build a new Docker container by using containerized

micro-services and orchestration tool such as Ansible. This mechanism allows us

to install OpenStack without no need to properly configure other system

components. This guarantees the immutability of the entire project because the

unique part which needs to change is the configuration module to load inside

Containers with OpenStack

153

containers. So, it represents a declarative-based system through which is possible

to deploy a cloud environment with no need to spend time in configuration issues.

Kolla is implemented according to the so-called “data container” model. Data

containers are a separate technology from virtualization, though they are based on

some of the same theories. With virtualization, an entire machine is replicated. By

contrast, a data container shares the underlying host kernel by storing only

applicative data. In addition, there is no need for data containers to be provided

with a virtual memory, meaning they consume less processing power when

running. So, a data container can be mounted on the underlying operating system

and every stateful component, such as a database, virtual machines and so on, can

be included in data containers. Each of which can be individually used without no

problem for eventually backup and recovery processes.

Kolla is considered as a deployment system which interacts with the configuration

of four main parts. The leader distribution is CentOS, even if containers are also

available for Fedora, Oracle Linux, Red Hat Enterprise Linux and Ubuntu.

Currently, the project is on experimental phase and still not considered for

production-ready.

5.6.1 Architecture

Kolla makes easier the work of operators who, even with minimal experience, can

quickly deploy OpenStack. In fact, the object is to replace the inflexible, painful,

resource-intensive deployment process of OpenStack with a flexible and

inexpensive deployment process. Finding people experienced in OpenStack

deployment is very difficult and expensive and so Kolla seeks to remedy this set

of problems by simplifying the deployment process by enabling a flexible

deployment model.

Containers with OpenStack

154

Figure 64 - Kolla Architecture

Figure 64 shows us the architecture point of view of a Kolla deployment. It makes

use of Docker containers while it exploits other systems to perform other types of

operations like orchestration and configuration. In this case, Ansible is used to

deploy OpenStack on bare metal or virtual machines, but it is also possible to use

Kubernetes templates to deploy OpenStack on a whole Kubernetes cluster. In fact,

the mission of Kolla is to provide production-ready containers for the whole

OpenStack deployment and management process.

5.6.2 Benefits of using containerized deployment

Usual the system configuration consists of making use of package-based

components through which an entire platform can be deployed. However, this is

now getting replaced with an image-based management due to the introduction of

the so-called software-container paradigm. This is helping to solve the

availability, management and scalability aspects of deployment systems. In fact,

considering operations are atomic, there is minimal interruption of service and it

is even possible to perform full rollback actions [73].

Using containers provides to operators several benefits taking advantages of the

guaranteed isolation and performance feature. Working with the server-based

environment is not as easy as with containers. In fact, what is enough is to start

and stop docker containers on server-nodes, which can be scaled up and down as

compute nodes to OpenStack. Surely, the new way is able to run on any platform,

regardless of the physical host operating system. However, the unique

requirement is to support the container technology.

Containers with OpenStack

155

By the way, upgrading and patching operations are atomic, meaning that they will

either successfully complete or fail. Due to this new configuration approach,

deployment of OpenStack takes on an average about ten minutes, much faster than

any other deployment tools, such as Puppet or Salt. Furthermore, there is no need

to rolling-updates. In fact, when a new container-image is available, it is possible

to simply stop the old-container and start the new one with the latest image.

Moreover, in case of problems, it is possible to fall back to the old image. This

makes everything containerized and so managing services consists of starting and

stopping the related containers.

As we have already discussed, in order to manage those containers, many

orchestration tools can be used, like Kubernetes or Docker Swarm, and so failed

containers can be automatically restarted. This results in a self-healing

deployment and mages, once built, do not change over time. Hence, it is possible

to recreate the same setup on different environments with the exact same piece of

code running that is running on the other one. This is very important because

allows us to easily move everything from a development to the production

environment with ease and no difference.

5.6.3 Deployment

A Kolla Deployment [73] is made of a node which is responsible to manage the

whole provisioning. This is called provisioning node. It makes use of a private

Docker registry and so the correspondent OpenStack nodes are created as Docker

containers.

The major part of OpenStack services is deployed on specific hosts which are

responsible to take care of the whole management of the cluster. These are called

Controller nodes and can hold every service except the nova-compute. In fact, this

is the component responsible to interact with the underlying compute hypervisor.

For this reason, it is deployed on compute nodes where the instances will be

created. Furthermore, these nodes contain also the agent of openvswitch that is

the component responsible to enable the communication by guaranteeing the

multi-tenancy OpenStack feature.

Containers with OpenStack

156

Figure 65 - Kolla Deployment

Figure 65 shows us a typical deployment of OpenStack using Kolla. As it is

possible to see, the provisioning node is responsible for building images. To do

that, the private registry holds docker images that are used to deploy the whole

OpenStack cluster. For this reason, the private Docker registry acts as a central

store from where every node can download the requested Docker-image.

5.6.4 Network

In a usual OpenStack deployment, Neutron manages networking by creating

bridges, namespaces, ports and tying them together. Kolla is based on the same

networking model [73].

Figure 66 - Kolla Network

Figure 66 shows us a network overview of an OpenStack deployment using the

project Kolla. Furthermore, to completely support all neutron models, it is

Containers with OpenStack

157

necessary that bridges and namespaces created, which are created by some

containers, are even visible on the underlying host network stack. Therefore, the

docker engine is started with a networking host type which, as seen in the

correspondent section, provides to containers the possibility of sharing the same

network namespace with the underlying kernel host.

5.7 Murano

Murano is an OpenStack project which aims to provide an application catalog, in

order to be useful to both developers and operators. These applications are

categorized on a repository accessible through the OpenStack dashboard.

Administrators use public repositories to obtain additional services, such as

OpenStack Community App Catalog, Google Container Repository, and Docker

Hub. Furthermore, this project provides to users the possibility to have the full

control of applications lifecycle. This is the same principle which has been

adopted in other complementary solutions such as Rancher. In fact, users can

quickly install reliable applications, simply by pressing a click-button.

Murano enables the provisioning of typical applications with container-based

environments and PaaS solutions, including Kubernetes, Apache Mesos, Cloud

Foundry and Docker Swarm atop of OpenStack. Furthermore, it coordinates the

usage of all Docker drivers inside the context of an application. To do that, as seen

with Magnum, it makes use of existing solutions like Heat orchestration system

and additionally python plugins.

Murano provides a high-level service in order to make easier operations, such as

upgrade, scale up/down, backup and recovery processes. The purpose is to use the

abstraction of service-management to compose and configure environments

through a web-based interface or REST APIs. The execution environments are

simply virtual machines or multi-tier applications with the enhancement of auto-

scaling and self-healing. Therefore, users, who are not able to interact with IT-

specific operators, can easily carry out their own work by simply deploying the

correspondent applications packages. This allows people to focus only on

business parts and organization requirements. In fact, Murano is designed to solve

the problem of integrating third-party components in OpenStack. Nevertheless,

this is quite important because enables the provisioning of a service model that

can be rapidly exchanged between Infrastructure and Platform as a Service.

Containers with OpenStack

158

5.7.1 Architecture

As seen in Magnum, the project makes use other existing OpenStack services to

exploit their target capabilities. These are the orchestration system and the identity

service. Moreover, the interaction between Murano and those services is

performed by using REST invocations.

Heat is used to orchestrate infrastructural resources, such as servers, volumes, and

networks. Based on the application definitions, Murano creates heat templates and

performs the correspondent invocations on the orchestration client. On the other

hand, Keystone is used to make Murano APIs available to all OpenStack users

and so the project has to integrate its own functionalities with the OpenStack

principle that is properly based on multi-tenancy.

This constitutes the principle of the platform which aims to make easier the work

of developers and cloud administrators. In fact, developers want to simply use

applications as opposed to installing and managing them. On the contrary, cloud

administrators focus on offering a well-tested set of on-demand self-service

applications. For this reason, Murano is considered as the project that solves this

problem for both constituents.

Figure 67 - Murano Architecture

Figure 67 illustrates the architectural point of view [74] of Murano. As it is

possible to see, all operations are carried out through an Advanced-Message-

Queuing-Protocol (AMQP) queue that in this case is RabbitMQ. This component

mediates the communication between the API server, the Murano-Engine, and the

Murano-agent. The API server is responsible to process external client requests.

Murano-engine is the component that takes care of the core functionalities, that

Containers with OpenStack

159

are implemented in the controller node, whereas the Murano-agent is the process

that is deployed in each compute instances. Furthermore, the architecture consists

of additional components like a command-line-interface, to perform natively

client requests, and a horizon plug-in, that is used to integrate this important

catalog in a web-based interface like Horizon.

5.7.2 Network

Murano is able to work in various networking environments. The system consists

of a process which is able to detect the deployment network configuration and

automatically chooses the appropriate settings. However, additional actions are

required to support some advanced scenarios [75].

The simplest solution is to use Nova-network. It has limited capabilities but is

available on any OpenStack deployment with no need to install additional

components. When a new Murano environment is created, it checks if a dedicated

networking service exists in the current deployment. If such a service is not

included all the compute instances, that are spawned by Murano, will be joining

the same network.

On the contrary, Murano enables the advanced networking features that are taken

out of user responsibilities. Furthermore, by default, each environment is

configured with an isolated network. Therefore, it is necessary to put a gateway

in order to expose the applications in the spawned virtual machines.

5.7.3 Advantages to using Murano

Murano by itself is not a container environment, but it is an application catalog

[76] that makes use of Kubernetes for deploying application containers.

Furthermore, this guarantees the advantage not to manage Kubernetes even if the

underlying infrastructure makes use of that. In fact, users may be unaware that

applications are running on containers.

By this way, the internal provisioning is handled by Murano and users focus just

on the business aspects through an easy-to-use User Interface. Therefore, Murano

is quite accepted by developers, who are writing applications for other people in

order to exploit a self-service manner in cloud deployments. Furthermore, Murano

and Magnum communities are getting together with a plan to create a Magnum

application for Murano. This allows users to combine advantages of both

solutions, including access to a generic container orchestrator beyond Kubernetes.

Containers with OpenStack

160

5.8 Closing remarks

OpenStack is the leading cloud framework for adopting and adapting new

technologies. For this reason, the community decided that containers were an

important technology to support and that decision has resulted in several projects

to ensure containers, and the third-party ecosystem around containers are

supported in OpenStack clouds.

Moreover, as described in this chapter, the focus on containerization is based on

different requirements that containers are suitable to deal with. OpenStack

Compute Nova manages the compute resources for an OpenStack cloud.

Nowadays, due to the support of containerization in OpenStack, we are able to

spawn compute resources that are running as containers. To do that, we need to

use a specific driver in order to allow the interaction between Nova service and

the underlying container runtime. Initially, Docker was integrated with a project

called Nova-Docker. Nowadays, this is no longer maintained and so, OpenStack

Zun is more suitable for use cases with the requirement to treat a container like a

lightweight virtual machine, allowing use in similar way to on-demand virtual

machines.

Furthermore, containers are excellent for encapsulation of microservices. In

build/continuous integration environments, containers enable organizations to

rapidly test more system permutations as well as deliver increased parallelism,

increasing innovation and feature velocity. In this case, there is the need to work

at a higher level with functionalities like orchestration. OpenStack has even

promoted this integration with the introduction of OpenStack Magnum. This is

designed to offer container specific APIs for multi-tenant containers-as-a-service

by integrating the cloud platform with well-established container orchestrators

such as Kubernetes, Docker Swarm, and Apache Mesos. In addition, there is the

support for packaged applications to be deployed on OpenStack through Murano.

This is a catalog solution that allows users to quickly deploy and configure

enterprise applications by using an existing container orchestrator.

In conclusion, we have seen that containers are supported in OpenStack also for

the deployment point of view. To do that, OpenStack Kolla takes advantages of

containerization to make easier the deployment process of a complex architecture

by running software components as containers.

Experimental Results

161

6 Experimental Results

6.1 Overview

Today, the cloud is a proven delivery model, with a growing number of enterprises

realizing impressive agility and efficiency benefits. However, as the technology

matures, the trend is to extend cloud deployments to even more flexible solutions

that promise exciting new ways to expand the value of enterprise services [77].

So, the purpose is always focused on what organizations need to do in order to get

the most value. In fact, the value proposition of cloud computing is quite stable

but, of course, users need to choose the best way to simplify the delivery of their

own cloud services.

Cloud computing provides a variety of services with the growth of their offerings.

However, this implies numerous challenges to be faced. As seen before, cloud

computing is based on virtualization, which provides users a plenty of computing

resources without managing any component of the underlying virtualization

middleware. Nevertheless, sometimes the abstraction level involved in

virtualization has been reducing the workload performances [78] that are quite

fundamental in a cloud infrastructure.

For this reason, new solutions have been proposed to provide benefits where the

classical virtual machine model ends up. An example is the fundamental concept

of Containerization, which has been deeply introduced in the previous chapters.

The key differentiator is that containerization provides server instances by sharing

a single kernel whereas, in a virtualized server, each virtual “guest” includes a

complete operating system with drivers, binaries, and the same application.

Various related works analyze regarding performances the behavior of virtual

machines and containers. However, notwithstanding the existing solutions, just

with Docker this paradigm has obtained a significative adoption rate. Moreover,

as mentioned in the previous chapter, Docker cannot be considered a full

complementary solution of virtual machines. In fact, it aims to application

containers and not system containers.

Considering the area of system containers, we analyzed the newer proposal of

Canonical, LXD, which is thought to provide what Docker did not. Furthermore,

it is quite integrated into cloud operating systems like OpenStack, and so, in this

chapter, one of the purposes is to propose a performance analysis between two

OpenStack deployments, each of which provides compute instances through a

Experimental Results

162

different virtualization technology. This investigation will be extended to also

analyze the behavior of a quite adopted solution, like Docker, even if this study

cannot be performed with an OpenStack deployment, considering that the solution

does not belong to the category of system containers.

For this reason, subsequently, we will discuss solutions that focus on the

applicative point of view: container orchestrators. As discussed in the

correspondent chapter, they are fundamental to provide high-level services that

are designed to deal with application-deployment and cluster-management.

Thereby, they are also suitable to be adopted in cloud scenarios where the user

requirements are focused on higher services.

6.2 Requirements

Cloud computing services provide resources using virtualization and

Containerization. Virtualization is a crucial part of the Cloud computing

definition, and so we need to manage virtualized resources more efficiently.

Furthermore, the Cloud Infrastructure [78] provides the abstraction to make sure

that application, or the business service model, is completely independent of the

underlying hardware such as servers, storage or networks. In fact, as seen before,

the cloud model depends on virtualization technology by which a bare-metal

server is used to spawn virtual compute instances. These can be virtual machines

or containers, and therefore we need to investigate the concept of reducing the

number of resources wasted during the computational process.

Until now, we discussed cloud computing features and how they are implemented

with virtual machines and containers. Surely, everything is strongly dependent on

infrastructure resources like CPU, Memory, Disk space, Input/Output, and so on.

These are shared among multiple users and so an efficient management is a key

differentiator to success. Therefore, we need to perform a comparison between

containers and virtual machines regarding resources overload. In particular, we

need to point out the so-called “density”. This means how these resources are

influenced by increasing the number of compute instances per server host.

Moreover, a fundamental cloud feature is the “elasticity”, that is the possibility to

complete a service request by introducing the shortest possible time. Therefore, it

is necessary that we also investigate the time needed to create virtual machine-

based and container instances.

This work is not just focused on the infrastructure point of view and so, another

important purpose is to investigate the applicative perspective of the

Experimental Results

163

containerization paradigm. An example concerns the orchestration level that is

referred to the process of managing any kind of infrastructure. This is the case to

provision a distributed enterprise application that, by definition, requires

flexibility and high-availability. For this reason, the goal of this analysis is to

evaluate the behavior of these solutions in terms of service provisioning and Mean

Time to Repair (MTTR).

6.3 Test Plan

6.3.1 Virtualization and Containerization

Containers enable users to pack more applications into a single physical server,

because they share the underlying kernel. Virtual machines do not run just a full

copy of an operating system, but a virtual copy of all the hardware that the

operating system needs to run. Surely, this quickly adds up to a lot of RAM and

CPU cycles. In contrast, all that a container requires is an operating system,

supporting programs, libraries, and system resources to run a specific program.

In order to perform a comparison between system containers and virtual

machines, we chose to deploy two OpenStack implementations: one that makes

use of KVM as hypervisor and the other one that exploits LXD to provide

compute instances as system containers. Furthermore, to evaluate the behavior of

Docker, we chose to build a cluster infrastructure that makes use of that container

solution as compute hypervisor.

The analysis consists of monitoring the performances of the following resources:

CPU, Network, and Disk I/O. In order to reduce the error probability, each

experiment is repeated ten times and the average value is recorded. The aim is to

take out what is better and particularly when is more appropriate to adopt a

container-based deployment instead of the traditional virtual machine model.

CPU Analysis

The CPU analysis is split into two benchmarks: CPU-Power and CPU-

Contention. The first is meant to get the whole execution time of a single process

that exploits the number of existing cores through the concept of Multi-Threading.

On the contrary, the CPU-Contention test consists of analyzing the behavior of

the execution time by putting together multiple compute instances that compete

to access the same resources. For the CPU-Power test, we need some compute

instances, each of which with a different number of vCPUs. In OpenStack, a

flavor defines the resources of a compute instance such as memory, number of

Experimental Results

164

cores and storage. Therefore, in our test, four different OpenStack flavors are

created with a variable number of vCPUs (1, 2, 4, and 6). The dual representation

in Docker is obtained by exploiting the resource limit definition of a Docker

container.

Network Analysis

Network performance refers to measure the network service quality as seen by the

customer. This test includes the analysis of bandwidth, latency, and throughput.

Bandwidth is the maximum rate that information can be transferred. As mentioned

before, the time for a request is a fundamental aspect that needs to be considered

in cloud deployments. For the throughput and bandwidth analysis, the purpose is

to analyze the behavior of these key performance indicators by exploiting UDP

and TCP communications. To do that, we decided to use “iperf”. Furthermore,

just for UDP messages, this gives us the possibility to set a variable target

bandwidth in order to observe the network behavior at different rates. Lastly, the

latency cannot be avoided, and so this test includes even an analysis of how the

performances change between KVM, Docker, and LXD instances.

There are several ways to measure the performances of a network, because every

solution is different in nature and design. For this reason, we chose to split this

test into three parts, each of which refers to a different deployment scenario. The

first concerns the communication between a cloud instance and another one which

runs outside the cluster. The second one is between two pairs that run on different

hosts of the same cluster infrastructure, whereas the last one is between two pairs

that execute on the same physical server.

Input/Output Analysis

A virtual machine replicates an entire server, including the operating system and

the associated drivers. On the contrary, a container makes use of the underlying

kernel host to access external resources, such as I/O devices and networks.

Therefore, an important analysis is the file system that is present within each

compute instance. There are a lot of designed benchmarks, and in our test, we

decided to choose “Bonnie++”. To do that, we need to stress the input/output

system that operates by writing and reading from and to big chunks of data.

Furthermore, it is important for the Input/Output benchmark to limit RAM

involvement. In fact, a big amount of memory would mean that caching would be

a predominant factor and therefore would affect the real results. However, there

Experimental Results

165

is a way to bypass this problem, and so we need to use files and data which are

larger than the amount of system memory. So, for these experiments, the compute

machines are set to 512MB of RAM and the files that they are working with have

a size of 24GB (forty-eight times the size of the RAM).

Density Analysis

Containers are one of the hottest topics in the IT world today, largely due to their

adoption by many web-scale companies like Facebook and Twitter. By the way,

a key differentiator aspect is the density that is the number of compute instances

that a server host is able to execute, without degrading performances. Containers

also enable better workload density within an infrastructure, considering that they

require less memory overhead per instance. In fact, each application is loaded into

a kernel host that is shared across all containers. As already explained, operating

systems and kernel “guests” do not need to be loaded per container and so, more

applications and workloads can be squeezed into the same hardware or

infrastructure footprint. For this reason, the purpose of this benchmark is to

analyze the behavior of CPU and Memory usage, by increasing the number of

compute instances per host. To do that, we decided to monitor the same physical

server in order to get the behavior of CPU-Load and memory usage.

System Analysis

A company, offering cloud-computing services, accomplishes any customer

requests of the computing resource, with the purpose to satisfy two competitive

needs: to provide the proper hardware to fulfill any request and the necessity not

to imply a larger time to complete the service request. Therefore, it is necessary

that this performance analysis is extended to evaluate other system aspects that

are involved in the provisioning of a service request. These are the time needed to

provision a whole instance, the time to boot up a single machine and the whole

time that is required to complete a snapshot of a compute instance. Furthermore,

we also consider, as system aspect, the size impact of an operating system image

that is needed to create the compute instances. Therefore, the purpose of this test

is to compare compute instances, according to these specific aspects, each of

which is taken by a different hypervisor implementation.

6.3.2 Container Orchestration

All container orchestrators do the same thing: automate the provisioning and

management of containerized infrastructure. It is worth noting that orchestrators

Experimental Results

166

are not strictly limited to the container world. These are solutions that exist for

other types of infrastructure with the main purpose to allow developers and

DevOps people to forget about the detail of what needs to happen. Similarly,

containers allow us to standardize the environment and abstract away the specifics

of the underlying operating system and hardware. Thereby, a container

orchestrator does the same job for a whole data center: it allows us the freedom

not to think about what server will host a particular container or how that container

will be started, monitored and killed.

As seen in the correspondent chapter, a container orchestrator is composed of

three modules: resource management, scheduling, and service management.

Nevertheless, the core is the scheduling part of the solution because this is the

crucial responsibility by which a user relies on. In fact, this allows developers to

focus on business aspects regardless of the distributed nature of the enterprise

applications. For this reason, in this test, we want to investigate the behavior of

these solutions in terms of time measurements to provide the following

functionalities: service provisioning, and failover.

Service Provisioning

In cloud computing, the elasticity is defined as the degree to which system is able

to adapt to workload changes by provisioning and de-provisioning resources in an

autonomic manner, such that at every time the available resources match the

current demand as closely as possible. Therefore, an important aspect is to analyze

the time needed to provision an application. To do that, we decided to split this

test in two scenarios: one that requires the deployment of a simple web application

and the other one that exploits enterprise applications of different complexities.

Moreover, the purpose is to determine the behavior of the provisioning time by

incrementally stressing the workload of the container orchestrator. Thereby, we

chose to study the deployment of the first web application by increasing the

number of container replicas, whereas in the other one we analyze the

performances by increasing the number of microservices that compose a single

application.

Failover

The failover system mechanism is used to increase the reliability and availability

of IT resources by using clustering technology to provide redundant

implementations. A failover system is configured to automatically switch over to

Experimental Results

167

a redundant resource instance whenever the currently active IT resources become

unavailable. These are commonly used for mission-critical programs, and this

mechanism may rely on the resource replication mechanism to supply the

redundant IT resource instances, which are actively monitored for the detection

of errors and unavailability conditions. For this reason, as will be illustrated in the

system description, the architecture is cluster-based by which is possible to

schedule again a service that unexpectedly was stopped. A failure can involve the

process or the entire server host. Therefore, in this analysis we will investigate, in

terms of time measurements, both types of failures.

6.4 Deployment Tools

6.4.1 Infrastructure as Code: why do we need it?

The proliferation of virtualization coupled with the increasing number power of

industry-standard servers, and the availability of cloud computing, has led to a

significant uptick in the number of servers that need to be managed within an

organization [79]. Therefore, data center orchestration and configuration

management tools come into play. In many cases, we manage groups of identical

servers, running the same applications and services. Often, these are deployed on

virtualization frameworks within the company, but increasingly they are running

as cloud or hosted instances in remote data centers. To deal with those, different

solutions were built with a single goal in mind: to configure and maintain several

severs much easier. This offers benefits to clusters of different sizes because the

idea is to have a model that is architecture-agnostic in order to facilitate the

provisioning and deployment of a whole enterprise infrastructure. For this reason,

we decided to embrace this pattern and so, we now introduce the solutions used

to deploy our systems.

6.4.2 Maas

Metal-As-A-Service (MaaS) is hardware provisioning software from Canonical

intended to quickly commission and deploy physical servers to run a wide array

of software services or workloads via Juju charms [80]. By this way, servers can

be dynamically associated or connected together to scale up services, and can also

be disconnected to scale down as demand requires it. Furthermore, MAAS treats

physical servers as compute commodities that can be quickly manipulated to meet

customer demand, similar to how a cloud environment creates and removes virtual

resources to adjust to computing demands.

Experimental Results

168

Figure 68 - An example of MAAS deployment

Figure 68 shows us a deployment with a Region Controller and two Cluster

Controllers that are the two types of controllers involved in MAAS. A region

controller is responsible for a data center, or a single region. On the contrary, the

cluster controller (or Rack controller) is the responsible for each server node in a

single data center. Furthermore, both the region and the cluster controller can be

scaled-out as well as made highly available.

Basically, MAAS turns our bare metal data center into an elastic cloud-like

resource. By this way, machines can be quickly provisioned and then destroyed

again as easily as we can with instances in other clouds like Amazon AWS,

OpenStack, and more. Also, it can act as a standalone Preboot Execution

Environment (PXE), or it can be integrated with other technologies. In particular,

it is designed to work well with Juju, the service, and model management

orchestration. This makes a perfect arrangement: MAAS manages the machines

and Juju take care of services running on those machines. So, the next section

discusses this orchestration tool, because the implemented solution for the

Experimental Results

169

performance analysis between virtualization and containerization is properly

based on this deployment pattern.

6.4.3 Juju

In modern environments, applications are rarely deployed in isolation. In fact,

even simple applications may require several other services in order to function

well. For modeling a more complex system, like OpenStack, many more service

components need to be installed, configured and connected to each other. Juju

[81] is an orchestration service that provides tools to express the intent of how to

deploy some applications and to subsequently scale and manage them.

Usually, IT operators make use of traditional configuration management tools like

Chef [79] and Puppet [82], or even general scripting languages as Python or bash,

to automate the configuration of machines to a particular specification. Juju works

at a higher level providing the possibility to create a model of the relationships

between components that together constitute an entire complex system. By this

way, application-specific knowledge such as dependencies, scale-out practices,

operational events like backups and updates, and integration options with other

pieces of software are encapsulated in the so-called “Juju charm”

A charm is a definition of everything is needed for a specific component that can

be integrated into a solution. It is possible to use pre-existing pieces, or otherwise

write them, to deploy a service component in seconds, on any cloud instance or

bare-metal server. Furthermore, it is also possible to integrate Puppet, Chef, and

others with Juju. In fact, it works a layer above by focusing on the service the

application delivers, regardless of which it runs. So, the Juju charm includes all

the logic for writing configuration files for an application that can be written in

whatever language or tool the author prefers.

6.5 System Description

6.5.1 System specification

At its most fundamental, OpenStack is a common API abstraction layer for

infrastructure. This means that OpenStack is essentially a way of enabling

developers to address datacenter infrastructure though a standard set of

instructions, regardless of what that actual infrastructure is. This is quite useful

because there is no need to perform custom integrations for every type of

hardware. Furthermore, this allows us to swap out components with less need to

worry about compatibility issues. The same is about Rancher that, as described in

Experimental Results

170

the correspondent section, does not include any infrastructure requirement but just

Linux systems able to execute Docker containers.

In order to set up two different OpenStack clusters, we made use of two groups of

servers, moreover quite similar in order not to affect the result of our test. The

physical servers are eight MicroServer Hewlett Packard Enterprise (HPE) Proliant

Gen 8. They include 2x Intel (R) Celeron(R) CPU G16610T @ 2.30 GHz

processors with 12 GB di RAM. The unique difference is that the cluster used for

KVM and Rancher is built with two hard drives of 750GB whereas the other one

with two hard drives of 500 GB. Furthermore, both devices work with 7200 rpm.

Figure 69 – Layout of the physical system

Figure 69 shows us the layout of the physical system that has been used for the

test. As it is possible to see, the machines of each cluster are connected with the

aid of two Network-Interface-Cards (NICs) to a 1000 Mbit/s network. In addition,

we used two GS724TV4 ProSafe 24-port Gigabit Ethernet Smart Switch. Both

switches are connected to a single gateway which represents the front-end of each

cluster infrastructure.

6.5.2 Virtualization and Containerization

This section aims to describe the implemented solution in order to achieve the

deployment of two cloud models: one by using KVM as hypervisor and the other

one with LXD, as container management engine. However, the two clouds are

Experimental Results

171

completely independent and running on different server hosts. Deploying and

upgrading a basic OpenStack environment has always been a complex task.

Containerized micro-services and orchestration tools, now allow operators to

upgrade a service by building a new container and redeploying the entire system.

In addition, this allows us to take advantages by supporting different versions and

package mechanisms. For this reason, the implemented solution followed this

principle with the usage of MAAS and Juju. By this way, the environment is

completely immutable, because the only things that change are the configuration

files loaded into a container and how those changes modify the behavior of the

OpenStack services. So, the purpose of the following sections is to describe how

we achieved the deployed solution.

OpenStack Deployment

As seen in the previous chapter, OpenStack is a cloud-operating system with a lot

of service components that interact each other to perform the implementation of

several types of service requests. Furthermore, even with the support of automated

tools like Juju, this solution involves a lot of charms that need to be deployed with

the correspondent relationships. In fact, the principle of each “Juju charm” follows

the idea of each OpenStack service: completely decoupled and asynchronous

communication. Therefore, a single OpenStack deployment needs the usage of a

lot of charms, each of which is properly configured to interact with those that

represent a single OpenStack service. However, the sponsoring company of this

new design model has faced this issue with the introduction of the so-called

concept of “Juju bundle”. This is a set of Juju charms, properly configured, to

work together in order to deploy a single OpenStack cloud environment quickly.

The purpose of this work is to perform a performance analysis of two cloud

deployments: one that makes use of virtual machines and the other one that

exploits LXD containers. So, we thought to divide the implementation into two

different solutions: a single cloud with the compute service (Nova) organized to

interact with KVM as a hypervisor, and the other one that provides Nova instances

through LXD. To do that, we made use of two different Juju bundles: one for

virtual machines [83] and the other properly built to support Nova-LXD [84].

Furthermore, these bundles are designed to run on bare metal using Juju with

MAAS, and so we need to set up a MAAS deployment with a minimum number

of physical servers before using this bundle.

Experimental Results

172

Figure 70 –A layout of the deployed OpenStack cloud

Figure 70 illustrates the layout of the deployed OpenStack. Furthermore, this is

the same for both clouds: hypervisor virtual machine and container-based. As it

is possible to notice, each OpenStack consists of two types of nodes: Controller

and Compute. Controller is responsible for hosting the management part of the

entire architecture whereas the second one is responsible for hosting and

executing the compute instances. Therefore, the key difference between the two

clouds is that the compute nodes make use of a different Nova libvirt

implementation. In fact, the first one has a driver that provides compute instances

by interacting with the underlying KVM hypervisor, while the second one does

the same but by making use of LXD as underlying hypervisor.

6.5.3 Container Orchestration

As discussed in the previous chapter, Rancher has grown very quickly and now

includes support for multiple orchestration frameworks in addition to Cattle. The

support for these different orchestration platforms is delivered by creating isolated

“environments”. Each of which is composed of different hosts, which are just

Linux physical or virtual machines that run Docker and the Rancher agent. In

particular, the Rancher agent is simply a Docker container. This allows users to

quickly deploy and test different orchestration solutions by exploiting the power

of Rancher platform. In fact, from a user perspective, it is not any more complex

Experimental Results

173

to deploy the different platforms, as Rancher automates all the deployment and

configuration of the orchestration platforms.

It is commonly believed that a container orchestrator is a key to successfully

operationalizing containers at scale. This is true if we are running a single cluster

in the cloud or with reasonably homogenous infrastructure. However, many

organizations have a diverse application portfolio and user requirements and

therefore have more expansive and diverse needs. In these situations, setting up

and configuring a cluster like Kubernetes gives rise to several challenges. An

example concerns the customization to the DevOps team or to automate the

upgrade of the whole Kubernetes cluster. For this reason, we decided to build a

Rancher cluster to evaluate the behavior of each orchestration platform.

Figure 71 - A layout of the deployed Rancher cluster

Figure 71 shows us the infrastructure layout of the Rancher cluster that we used

to execute the comparison between some container orchestrations.

As mentioned in the correspondent chapter, just Kubernetes, Docker Swarm,

Apache Mesos, and Cattle are supported. Nevertheless, they are the most known

solutions in the orchestration market, and so the purpose of this work is to analyze

Experimental Results

174

these different orchestration solutions. Furthermore, this architecture is even used

to test containerization at infrastructure level with Docker. Rancher is quite used

for Docker containers in production, and so we decided to adopt this architecture

to repeat the same experiments that we decided to perform on OpenStack.

6.6 Benchmarking Tools

6.6.1 Ganglia monitoring system

Ganglia is a scalable distributed monitoring system for high-performance

computing systems like clusters and Grids. It widely makes use of technologies

such as XML for data representation; XDR for data transport and RRDTool for

data storage and visualization. Furthermore, the used data structures and

algorithms allow that to achieve very low per-node overheads and high

concurrency.

Figure 72 - The Architecture of Ganglia Monitoring System

Figure 72 shows us a diagram of a functional Ganglia cluster [85] that, as it is

possible to notice, it is based on the master/slave architectural pattern.

To do that, each node holds a specific agent that is necessary to act as the

configured role. The master is called “Gmetad” while the slave runs “Gmond”.

Basically, the master agent is responsible for collecting data received by each

slave node. These are then shown by a web-based interface that is used by external

users to exploit this well-defined solution. Furthermore, we made use of Ganglia

to collect data about CPU and Memory usage in the context of the density

Experimental Results

175

benchmark. As explained before, this test consists of using a single server host

and atop create multiple compute instances. Ganglia is installed on the physical

hosts and so, we can collect data about the underlying hypervisor, by increasing

the number of compute instances running on that node.

6.6.2 PXZ

Parallel XZ (PXZ) is a compression utility that takes advantage of running the

classic Lempel-Ziv-Markov algorithm [86]. This tool is a parallel lossless

compression that can be easily configured to run in any number of cores, therefore

making it easy to run on machines with different CPU capabilities [7]. So, we

made use of that by creating different OpenStack flavors in order to exploit an

increasing number of cores to measure the whole execution time of a compression

process. As input for PXZ, we chose to give 300 MB of the random data dump,

that has been replicated on the other machines to execute the same process by

using the same file. The file is fed into the PXZ algorithm while varying the

number of cores. Lastly, the wall time that PXZ takes to compress the file is then

recorded and considered to compare the performances between KVM, Docker,

and LXD compute instances.

6.6.3 Iperf

Iperf is a widely-used tool for network performance measurement and tuning. It

is open source and written in C but it runs on various platforms including Linux,

Unix, and Windows. Usually, it is used to produce standardized performance

measurements for any types of the network [87]. It is based on client/server model,

and the benchmarks are accomplished by creating data streams that are sent from

the client to the server. These can be either Transmission Control Protocol (TCP)

or User Data Protocol (UDP). This allows us to measure several key aspects such

as bandwidth and the throughput between the two ends in one or both directions.

In contrast to other solutions, like ping, iperf tries to consume all the bandwidth

that the medium can support. Furthermore, there is even the possibility to set the

target bandwidth by using UDP data streams. Therefore, in the UDP associated

network test, we measured the throughput and bandwidth also considering an

increased data rate (from 250 Mbit/s to 1000 Mbit/s).

6.6.4 Ping

Ping is a simple system tool that is commonly used to determine connectivity.

Furthermore, it can serve to measure latency – how long it takes one packet to get

from X to Y. In fact, for each ping reply received, a round trip time is reported. It

Experimental Results

176

is measured by the local clock in the pinging computer, from when the request

left to when the reply arrived.

6.6.5 Bonnie++

Bonnie++ is a free file system benchmarking tool for Unix-like operating systems.

It is aimed at performing some simple tests of hard drive and file system

performance [88]. Furthermore, Bonnie++ benchmarks three things: data read and

write speed, number of seeks that can be performed per second and number of file

metadata operations that can be performed per second.

As seen in the correspondent section, LXD is not able to exploit distributed file

systems like Ceph. As of release 2.16, it comes with a Ceph storage driver but,

considering the time release of this new powerful storage API (August/September

2017), it is not included in the used Juju bundle for OpenStack deployment.

Therefore, the OpenStack LXD-based does not support Ceph as block storage,

and it makes use of ZFS that is properly a local file system. So, we decided to

make a comparison between these two block storage implementations.

6.7 Results

6.7.1 Virtualization and Containerization

This section is aimed at showing the results of the performance analysis that have

been executed to compare the usage of containers instead of virtual machines. In

OpenStack, as it will be soon demonstrated, LXD is quite suitable to replace the

classical virtual machine model, due to the less resource overhead that is involved.

However, there are not just advantages, and so, as we have already discussed in

the previous chapters, there are also some aspects that do not make of the

containerization a fit-for-all implementation. In addition, we even included

Docker to repeat the same experiments in a distributed cluster infrastructure with

Rancher. However, even if Docker is not a system container, and therefore it is

not suitable to completely replace a virtual machine, it presents some benefits.

Thereby, if the scenario is suitable, there are cases in which Docker can also be

used in production environments.

CPU

To briefly recap what has been done, this test is split into two benchmarks: one to

measure the execution time of a single process, by exploiting the paradigm of

Multi-threading, and the other one to analyze how this time is influenced in

scenarios where the compute instances compete by accessing the same resources.

Experimental Results

177

Flavors vCPU RAM(MB) Root Disk (GB)

A 1 2048 20

B 2 2048 20

C 4 2048 20

D 6 2048 20

Table 11 - Description of the used Flavors

Table 11 shows us the adopted flavors in order to create different compute

instances.

However, the definition of flavors is about the two OpenStack clouds that we used

to execute compute instances through KVM and LXD. To do the same for Docker,

we exploited the functionality of Rancher to limit the resource capabilities of each

Docker container. Furthermore, considering that this study requires more

resources, we included another physical server host, that is equipped with 64 GB

of RAM and 6 processors. This host was used as compute node just for the CPU-

Power test and for density for every type of virtualization hypervisor.

Figure 73 - CPU Benchmark by exploiting Multi-Threading

Figure 73 illustrates the execution time by increasing the number of threads that

execute the same algorithm. This consists of compressing a file of 300MB that is

Experimental Results

178

replaced in each compute instance. As it is possible to notice, there is not much

difference between the KVM and LXD even if the last one is a bit better. The

same is not for Docker that in this experiment presents the worst results.

The purpose of the other experiment is to analyze the behavior of the different

virtualization solutions that compete to access the shared resources.

Figure 74 - CPU Contention Benchmark

Figure 74 shows us the result of the CPU Contention Benchmark. We made use

of dual-core systems and so we can notice that the execution time of each server

hypervisor presents a curve after the contemporary execution of two instances. In

a nutshell, Docker is a bit better. Up to two instances, container-based machines

imply less time while then KVM is better than LXD. This is not true for Docker

that is not affected by the increasing of contemporary instances. Surely, this is

influenced by the fact that the underlying file system of LXD introduces an

overhead that causes the degradation of the whole performances. On the contrary,

the OpenStack virtual machine-based makes use of CEPH that does not include a

huge difference by increasing the number of compute instances that compete to

access the same physical resources.

Experimental Results

179

Network

This test involves stressing the network subsystem in order to analyze the

behavior of bandwidth, latency, and throughput. To measure bandwidth and

throughput, we used iperf that is based on a client/server model. For each

experiment, the system to be tested acts as a client while another compute instance

works as Iperf server. Therefore, as anticipated in the test plan, we split this

analysis to investigate three different scenarios: “InterCloud”, “IntraCloud”, and

“IntraNode”.

• InterCloud: is the case in which the client is a compute machine that runs

inside the cluster whereas the Iperf Server is another pair that executes

outside the cluster.

• IntraCloud: is the case in which the client is a compute machine that runs

inside the cluster and the Iperf Server is another pair that executes in the

same cluster but on a different physical server host.

• IntraNode: is the case in which the client is a compute machine that runs

inside the cluster and the Iperf Server is another compute machine that runs

on the same physical server host.

Bandwidth and Throughput

As described in the test plan, we stressed the network system by sending UDP

packets with a variable bandwidth target. Considering that the NICs are set to

work with 1000 Mbit/s, we made tests between 250 and 1000 Mbit/s within an

interval of 30s. This is performed just for UDP network traffic. In fact, a key point

to remember when testing bandwidth with Iperf is that it consumes all bandwidth

available between client/server via TCP, regardless of LAN, WAN, or VPN

connection. Furthermore, there is no possibility to define a target bandwidth, and

therefore we did not perform the same experiment with TCP. To do that, we

measured both inbound and outbound throughput.

Experimental Results

180

InterCloud Scenario

Figure 75 – InterCloud: Outbound Bandwidth - UDP Benchmark

Figure 75 is the behavior of the UDP bandwidth by varying the data-rate in the

scenario of InterCloud. As it is possible to notice, KVM is more performant than

LXD. On the other hand, Docker is the worst, and it does not achieve a bandwidth

target more than 300 Mbit/s. Nevertheless, this is expected because the network

subsystem of the container management is implemented with a Network Address

Translator mechanism by exploiting features of the underlying kernel host.

Figure 76 – InterCloud: Outbound Throughput – UDP Benchmark

Figure 76 shows the results of throughput transferred in the scenario of

“InterCloud”. As seen for bandwidth, KVM network subsystem is able to move a

Experimental Results

181

greater data amount, close enough to 3GB whereas in LXD the peak is about

2.5GB. As expected, considering that Docker is the worst regarding bandwidth,

the amount of data transferred is much less than KVM and LXD. On the contrary,

we also tested the inbound network subsystem. As it will be shown in Figure 78

and Figure 79, the results are quite similar between both LXD and KVM and, but

the same is not for Docker. This technology suffers the external network

communication very much and even for inbound communication, the

performances are much worse than KVM and LXD. In fact, KVM and LXD

saturate the bandwidth around 800 Mbit/s while the peak amount of data

transferred is about 2.8 GB.

Figure 77 – InterCloud: Inbound Bandwidth – UDP Benchmark

Figure 78 – InterCloud: Inbound Throughput - UDP Benchmark

Experimental Results

182

As anticipated, for the TCP network traffic, it is not possible to stress the system

by varying the bandwidth data rate, and so we recorded just the information about

a single test by consuming the whole available bandwidth.

Figure 79 –InterCloud: Throughput Analysis between TCP and UDP

Figure 79 demonstrates that we achieved better performances with TCP by

comparing performances with UDP throughput. This is not a surprise. UDP traffic

is often rate-limited by network devices because of the lack of inherent flow

control. This is the contrary to TCP and therefore we obtained a better result by

using a connection-oriented communication with TCP.

Experimental Results

183

IntraCloud Scenario

Figure 80 - IntraCloud: Outbound Bandwidth Benchmark

Figure 80 is the behavior of the outbound UDP bandwidth by varying the data-

rate in the scenario of IntraCloud. As it is possible to notice, in this case, KVM is

less performant than LXD. This means that, as opposed to the deployment LXD-

based, the OpenStack implementation with KVM introduces a greater amount of

network overhead. Furthermore, even in this case, Docker is the worst. As seen

with the previous scenario, the Docker-based compute instances do not achieve a

bandwidth target more than 300 Mbit/s. Figure 81 shows the results of the amount

of data that the system was able to transfer in the scenario of IntraCloud.

Figure 81 - IntraCloud: Outbound Throughput Benchmark

Experimental Results

184

Surely, this behavior is related to the bandwidth analysis seen in the previous

picture. KVM network subsystem moves a smaller data amount, a bit more than

2GB. On the contrary, the LXD behavior is not affected by the different nature of

the test, and the peak is about 2.5GB. As regards Docker, as seen with LXD, there

is no difference with this other scenario, and more nor less there is no distinction

between the two tests.

Even in this case, we analyzed the inbound behavior and, as shown in the next

figure, the evolution of the performances is quite similar to that we have just

analyzed with the Outbound network system.

Figure 82 - IntraCloud: Inbound Bandwidth - UDP Benchmark

Figure 83 - IntraCloud: Inbound Throughput - UDP Benchmark

Figure 82 and Figure 83 shows us the analysis of the Inbound network.

Experimental Results

185

Figure 84 - IntraCloud: Throughput Analysis between TCP and UDP

Figure 84 illustrates us a comparison between TCP and UDP Throughput in the

context of “IntraCloud”. As expected, LXD can achieve better results whereas

Docker is the most affected virtualization technology which is not able to transfer

more than 1 GB.

Experimental Results

186

IntraNode Scenario

Figure 85 - IntraNode: Outbound Bandwidth - UDP Benchmark

Figure 85 shows us the behavior of the bandwidth benchmark by analyzing the

scenario of “IntraNode”. This is the case in which the involved compute instances

are running on the same physical server host. As it is possible to notice from the

picture, there is a substantial difference between Docker and the others. From

what we have seen so far, this result appears quite strange. However, this is not

surprising because the compute instances obtained from LXD and KVM suffer

very much the network overhead introduced by the OpenStack services. On the

contrary, Docker has been used with a Rancher platform by which the

complementary overhead is not so high, considering that the platform itself is built

from Docker containers. So, by this way, we can state that for local

communications Docker is more performant because the underlying network

subsystem exploits the fact that is about inter-process communication.

Experimental Results

187

Figure 86 - IntraNode: Outbound Throughput - UDP Benchmark

Figure 86 shows us the dual behavior for the throughput benchmark in the context

of two compute machines running on the same physical host. The previous

analysis shown us the number of bits per second that the link can send or receive,

including all flows. Of course, this does not refer to data usage.

In fact, the key indicator for that is the throughput. Moreover, these are quite

related and so, as expected, even in this case Docker is able to achieve better

results as opposed to LXD and KVM because they are affected by the network

overhead introduced by OpenStack services. Furthermore, as shown in Figure 87,

we analyzed the behavior of bandwidth and throughput for the inbound network

by using UDP messages. This is after all the same result that we obtained from

the outbound network benchmark.

Figure 87 - IntraNode: Inbound Bandwidth - UDP Benchmark

Experimental Results

188

Figure 88 - IntraNode: Inbound Throughput - UDP Benchmark

Figure 88 shows us the analysis of the Inbound network.

Figure 89 - IntraCloud: Throughput Analysis between TCP and UDP

Figure 89 illustrates us a comparison between TCP and UDP Throughput in the

context of “IntraCloud”. As expected, Docker is better performant, but the most

Experimental Results

189

surprising result is the data transferred with TCP. In fact, as anticipated before,

Iperf tries to consume all the available bandwidth, and therefore the result is quite

different as opposed to that obtained with UDP.

Latency

Latency is a time delay between the moment the request is initiated, and the time

in which the response is received. The word derives from the fact that during the

period of latency the effects of an action are latent, meaning potential or not yet

observed. This is quite important because it is quite visible to people who need

to wait the time necessary to complete a service request. However, latency is

imparted by each element involved in the transmission of data. Therefore, we

made use of the ping system utility by sending ten packets and reporting the

average round-trip-time (RTT) needed to complete the service request.

InterCloud Scenario

Figure 90 – InterCloud: Latency Benchmark

Figure 90 shows us the latency between the different types of server virtualization.

As mentioned in the plan, even this benchmark is based on a client/server model.

Moreover, the obtained result is expected, considering that latency-sensitive

workloads imply less latency under LXD and Docker, as opposed to KVM. This

makes of container-based instances an important new technology in the move to

network function virtualization in telecommunications and media, and the

convergence of cloud and high-performance computing. Furthermore, in contrast

with the previous experiment to test bandwidth and throughput, this benchmark

uses the cloud instance as a server and an external machine as the client.

Experimental Results

190

IntraCloud Scenario

Figure 91 - IntraCloud: Latency Benchmark

Figure 91 shows us the latency between KVM, LXD, and Docker. As a result,

even in this scenario, the container-based compute instances provides us the

possibility to exploit a less amount of time with a complete route to achieve the

destination from the client pair.

IntraNode Scenario

Figure 92 - IntraCloud: Latency

Figure 92 presents the analysis of latency with the last scenario, between two

compute nodes running on the same physical server host. As expected, Docker is

better than others even if there is no much difference between this result and the

Experimental Results

191

previous one. On the contrary, as it is possible to notice from the picture, for KVM

and LXD there is a substantial improvement.

Input/output

This test is quite important, considering that the OpenStack KVM-based makes

use of a distributed file system whereas the other one exploits just a local file

system (ZFS). Therefore, we made a performance analysis also for the file system

inside each compute instance to analyze how sensitive workloads can impact the

input/output subsystem. Moreover, we considered also Docker that, as specified

in the correspondent section, it makes use of a union file system. To do that, we

used Bonnie++ that operates by copying and reading from and to big chunks of

data. As already mentioned in the planning section, it is important that the used

files and data are larger than the amount of system memory. Therefore, we

designed an OpenStack flavor with 512 MB of RAM and the benchmark tool

makes use of files that have a size of 24GB. Even in this case, regarding Docker,

we exploited the possibility to limit the amount of resources of a single Docker

container.

Figure 93 - Input/Output Benchmark Read

Figure 93 shows us the performance achieved with reading benchmarks.

Docker is able to achieve the best performances, considering that the average data

rate is much higher than others. The OpenStack KVM-based instance is a bit

better than LXD, surely influenced by the fact that the first one exploits CEPH

Experimental Results

192

while the second one makes use of ZFS. In fact, ZFS is a local file system that, on

the contrary of the most other file systems, includes a mechanism for snapshots

and replication, including snapshot cloning. Furthermore, this represents an

overhead by reading data that probably is the cause to make LXD less performant

than KVM

Figure 94 - Input/output Benchmark Write

Figure 94 represents the performance results by writing data. As seen in the other

case Docker is better than LXD and KVM. However, as opposed to the previous

case, LXD is much better than KVM. This is expected, considering that KVM

introduces the overhead to distribute the information across the whole cluster,

while ZFS is completely local and so there is no synchronization overhead.

Density

An important virtualization feature is the so-called: server consolidation. This

consists of an approach to the efficient use of physical server resources in order

to reduce the total number of servers or server locations that an organization

requires. This was faced with the fact that there were situations in which multiple

servers were under-utilized and so they took up more space and consumed more

resources instead of using them for their workloads. Containerization is a new

technology that can provide better server consolidation, and so the purpose of this

benchmark is how these resources are influenced by increasing the amount of

compute instances that a physical server host can spawn. To do that, the

benchmark was structured with the usage of the “stress” Linux utility that is

Experimental Results

193

simultaneously executed across each compute instance. Furthermore, the behavior

of the underlying physical resources has been monitored with the support of

Ganglia.

Figure 95 - Density Benchmark with CPU Load

Figure 95 shows us the behavior of CPU load by increasing the number of

compute instances that are scheduled on a single bare-metal OpenStack Compute

Node. As expected, LXD-based OpenStack instances allow us to reduce the CPU

load drastically. Moreover, there is a point where Docker is at most better than

KVM. After that, Docker-based compute instances involved a higher value of

CPU-Load.

Figure 96 - Density Benchmark with Memory Usage

Figure 96 illustrates the behavior of the system memory by increasing the number

of compute instances. As it is possible to see, KVM implies a greater amount of

Experimental Results

194

memory used, considering the fact that a single virtual machine consists of the

inclusion of an entire guest operating system. Furthermore, as seen for the CPU

Load, the fact that each physical resource is emulated in the virtual machine model

justifies this result. This demonstrates how LXD crushes KVM in density and so

this constitutes a dramatic improvement on traditional virtualization. This is

particularly valuable for large hosting environments that can be hosted on a

fraction of the hardware using LXD instead of KVM. In addition, we can notice

the key differentiator of Docker-based instances: memory usage. In fact, as it is

possible to notice from the picture, Docker does not involve a huge amount of

memory by increasing the number of compute instances per host. This is expected,

not just for the overhead introduced by OpenStack components, but particularly

dependent on the underlying architecture of Docker runtime.

System

Lastly, we considered also the impact of containerization on system aspects such

as the time necessary to complete system processes or the size that a single image

requires being hosted by a physical server host. Therefore, we structured this test

to measure such times: boot, snapshot, and provisioning. Furthermore, we

evaluated the disk impact of a single operating system image between different

Linux distributions.

Figure 97 - Provisioning benchmark

Figure 97 illustrates the result of the comparison between the KVM, Docker, and

LXD provisioning. As expected, LXD completes the whole process around 50s

whereas KVM requires a bit greater than 140s. Furthermore, the shortest time is

Experimental Results

195

achieved by Docker that is also more performant than LXD. To do this

experiment, we made use of a private Docker registry, running on a different

server host of the same cluster, that was exploited by the local Docker daemon to

instantiate a single container. This gave us the possibility to emulate the same

OpenStack deployment which has been used to evaluate LXD and KVM.

Moreover, one of the key differentiators of container-based instances is the

provisioning time. This is influenced by the fact that a single virtual machine, to

be provisioned, requires loading the whole operating system, whereas a container

is basically an isolated process, which includes some system functionalities due

to features of the underlying kernel host. Furthermore, as seen for density, this is

one of the key differentiators that make of LXD a more appropriate cloud

hypervisor solution.

Figure 98 - Boot Benchmark

Figure 98 shows us the execution time needed to complete a single boot process.

This is even expected because there is no need to involve scheduling and more,

but it consists of communicating to the hypervisor to start up the compute

instance.

Experimental Results

196

Figure 99 - Snapshot Benchmark

Figure 99 shows us the time needed to complete a single snapshot. This is useful

when we need to preserve the state of the entire compute instance in order to return

to the same state repeatedly. Snapshot technology is commonly defined as a

virtual copy of a set of files, directories or volumes, at a particular point in time.

These are often used in storage systems to enhance data protection and efficiency.

This is fundamental to solve several data backup problems, and so, it is important

in cloud deployments. Moreover, even in this case, container-based instances

offer us the possibility to complete the service request with the shortest time.

Lastly, we performed an analysis of the impact that is involved with the operating

system images. In fact, they are fundamental to create server instances and so, this

test is useful if we want to analyze the overhead introduced by the different

virtualization technologies.

Figure 100 - Comparison of size between Virtualization Images

Figure 100 shows us the impact on disk of the operating system images that are

needed to host in order to create each compute instance. As expected, even in this

Experimental Results

197

case, we can demonstrate how a single container introduces less overhead than a

traditional virtual machine.

6.7.2 Container Orchestration

Until now, we analyzed the behavior of containerization at the infrastructure level,

with the purpose to evaluate its performances as opposed to those obtained by

using the traditional virtual model. However, this is not enough to properly adopt

the technology in distributed environments and particularly to cloud

infrastructures. In fact, as seen in the second chapter, the container management

layer is responsible just to manage the lifecycle of one container on one host.

When there is the need to manage multiple containers, deployed on distributed

hosts, this model falls short. Therefore, we must turn to orchestration tools. These

extend lifecycle management capabilities to complex, multi-container workloads

that can be deployed on a cluster of machines. Furthermore, by abstracting the

host infrastructure, orchestration tools allow users to treat the entire cluster as a

single deployment target.

Containers make software development easier, enabling us to write code faster

and run it better. However, running containers, and the related orchestration tools,

in production can be hard. In fact, there are a wide variety of technologies to

integrate, and new tools are emerging every day. Rancher makes it easy to manage

all aspects of running containers in production. We do not need to develop the

technical skills required to integrate a complex set of open source projects. In fact,

it includes everything we need to manage software-containers in production, with

no need to build a specific container management platform from scratch by using

multiple open source technologies. This is quite important not just for the time to

provision the entire cluster, but also from the flexibility point of view.

As seen in the correspondent chapter, each container orchestration solution

presents something that is different from the others. Therefore, users should be

able to manage different possibilities according to their needs. Rancher gives us

the capability to exploit the same infrastructure level by quickly deploying an

orchestration tool. For this reason, we decided to evaluate the performances of

container orchestrations by provisioning a Rancher cluster. However, at the

moment Rancher does not support every orchestration. In fact, some projects

belong to a specific cloud provider and others that, even if they are open source,

are not quite mature to be adopted in production environments. Therefore, in this

experiment, we tested Kubernetes, Docker Swarm, Apache Mesos, and Cattle.

Furthermore, just Docker is supported at the level of container management, and

Experimental Results

198

so, we performed this test by evaluating different orchestration tools with the same

container runtime.

Considering that we use a single Rancher cluster to deploy each container

orchestration, an important key indicator is the time needed to build the so-called

“environment” with a specific container orchestration. Furthermore, this approach

is affected by the fact that an orchestration model is even used to deploy a single

architecture. This is the same principle of what we have seen for Juju with

OpenStack. Therefore, the purpose of the next picture is to analyze what are the

differences, in terms of time measurements, to provision a single cluster with the

adoption of a supported container orchestrator.

Figure 101 - Cluster Provisioning Time in Rancher

Figure 101 presents the cluster provisioning time to deploy a single orchestration

tool by using the Rancher platform. As it is possible to notice, Cattle requires the

shortest time to deploy a single cluster. This is not surprising. In fact, that is the

native orchestration tool of Rancher platform, and so, the entire architecture is

optimized to deploy the container orchestrator that is provided by default. Another

important aspect is that Kubernetes introduces the highest provisioning time. Of

course, this is affected by the fact that the architecture is more complex than

others. As seen in the correspondent chapter, Kubernetes is the solution that

provides the most capabilities to manage and deploy services in production.

However, it is based on a different design model that introduces a not negligible

overhead, and so, this justifies the result that Rancher takes more time to provision

a Kubernetes cluster.

Experimental Results

199

Nevertheless, an orchestration tool is important to manage enterprise applications

in production, and so, the purpose of this analysis is to evaluate the behavior of

each orchestration tool to provision different container-based applications.

The first analysis concerns the deployment of a simple web application. This is

composed of two microservices: one to host a database to store persistent data

whereas the other one to provide the front-end of the web application. As

explained in the planned test, the goal of this test is to analyze how the

provisioning time is influenced by increasing the number of replicas of the front-

end container.

To do that, we split this investigation into two scenarios: one that makes use of

Docker images pre-installed on each Docker host and the other one that does not

have the Docker image. In this last case, they need to download the Docker image,

and so we designed to download the Docker image from a private Docker registry

that is built on a different physical server on the same cluster.

Figure 102 - Provisioning Time with local images

Figure 102 shows us the provisioning time of the web application that exploits the

fact that each Docker image is present on each server node.

Experimental Results

200

Figure 103 - Provisioning Time with Docker Registry

Figure 103 shows us the provisioning time of the web application that consists of

downloading the Docker image from the Docker private registry that is installed

on a different physical server host of the cluster.

The results are quite different because the two scenarios involve different

operations to perform each user request. In the first case, Kubernetes is the

solution that takes the shortest time to provision the web application. On the

contrary, in the second case, it is the worst. This is affected by the fact that the

interaction between the Kubernetes agent and the Docker registry introduces a not

negligible overhead that makes Kubernetes the solution with the highest time to

provision the entire web application. In fact, in this case, Cattle is more or less the

best solution. This is not surprising because it is the Rancher-native orchestration

tool and so, the interaction between each Cattle agent is optimized to interact with

an external private Docker Registry.

Furthermore, we analyzed another case study to evaluate the behavior of the

provisioning time by deploying different applications that are characterized by an

increasing complexity rate. To do that, we chose three applications: Jenkins,

WordPress, and GitLab.

• Jenkins: is a continuous integration server. This is the practice of running

our tests on a non-developer machine automatically every time someone

pushes new code into the source repository. A single microservice

composes this project.

Experimental Results

201

• WordPress: is a Content Management System (CMS) based on PHP and

MySql. This supports the creation and modification of web sites. Two

microservices compose this application.

• Gitlab: is a web-based Git repository manager with wiki and issue

tracking features. This is important for tracking changes in computer files

and coordinating work on those files among multiple users and teams.

This is composed of four microservices.

Figure 104 - Microservice-application: Provisioning Time with local images

Figure 105 - Microservice-application: Provisioning Time with Docker Registry

Figure 104 shows us the provisioning time with local Docker images while Figure

105 illustrates the case in which the microservice-based applications are deployed

Experimental Results

202

by interacting with a private Docker registry. As seen in the previous experiment,

even in this case Kubernetes is affected by the interaction with a remote Docker

registry. Of course, this is not just network-dependent. In fact, as explained in the

associated chapter, the atomic unit of Kubernetes is the pod and not the single

Docker container.

This is another abstraction level that is needed to co-locate a set of Docker

containers that want to exploit the inter-process communication. However, even

if the pod is composed of a single Docker container there is no constraint to avoid

the creation of that component, and so the number of applicative components

increases, as well as the deployed applications, are built with multiple containers

in a single Kubernetes pod.

The last case concerns the failover time that is needed to guarantee a service level

request that is aimed to provide the highest uptime. This is quite important with

enterprise applications because users do not like to see their applications not

available and so the orchestration capability should guarantee that in every time

the services must be running even if the failure concerns the physical server host

on which the application is executing on.

Figure 106 - Failover Time: container failure

Figure 106 shows us the failover time with a container failure.

Experimental Results

203

Figure 107 - Failover Time: Host failure

Figure 109 shows us the failover time of the single container whereas Figure 110

is related to the host failure.

This feature is the so-called “rescheduling” that is natively supported by

Kubernetes and Docker Swarm. However, Rancher introduces the possibility to

define the minimum number of running containers for each microservice.

Therefore, there is a dedicated Rancher functionality that provides this feature,

even if the underlying container orchestrator does not offer this capability. For

this reason, we used the native feature for Kubernetes and Docker Swarm,

whereas for Cattle and Apache Mesos we exploited the Rancher capability.

As it is possible to see from the pictures, Kubernetes is the best solution to the

failure of the single container. On the contrary, it is the worst in the case of a node

failure. Nevertheless, this is not surprising. In fact, in the first case, the failure is

detected by the local Kubernetes agent that makes sure to guarantee the

availability of the running containers. On the other hand, with the node failure,

there is the so-called “Replication Controller” that is responsible for guaranteeing

the rescheduling of the failed pods. This approach is event-based because the

Kubernetes object is notified by the Kubernetes Controller when the number of

pods changes. Therefore, with Kubernetes we obtained the highest value of

failover time. The same is not for Docker Swarm or Cattle because they exploit

the heartbeat functionality of the Docker architecture and so, they provide the

failover mechanism with the shortest time.

Experimental Results

204

6.8 Closing remarks

As expected, we can confirm that also in cloud environments the containerization

represents a valid alternative to the traditional virtual machine model. However,

there are also open questions that emerge from this work as what about LXD when

the new storage API will be integrated into OpenStack, guaranteeing the same

interoperability with a distributed file system. This paradigm is still not mature,

and so the interoperability with other solutions is a little hampered. As we

anticipated before, the storage API of LXD does not support the adoption of a

distributed file system like CEPH. Therefore, it cannot be integrated into

OpenStack with Cinder, but it makes use of a local file system like ZFS. This is

the most recommended backend storage system because it supports all the features

LXD needs to offer the container experience. Moreover, the purpose of this thesis

is to investigate the performance behavior between compute instances obtained

by virtual machines and containers. So, we just made use of the available

implementation of LXD in the OpenStack architecture.

Therefore, the next chapter discusses a case study in which the purpose is to

design an applicative case in order to provide fault-tolerance with the available

implementation of LXD in OpenStack. In fact, as already mentioned before, by

this way, users cannot exploit low-level services of cloud operating system and

so, there is the necessity to manually provide an ad-hoc solution in order to bypass

this limit.

In the context of container management, we have learned that containerization has

led the classification between application and system containers. LXD focuses on

system containers by trying to provide the same capabilities of the traditional

virtual machine model. On the contrary, application containers like Docker

provides good performances in terms of provisioning time and resources

overload. Nevertheless, application containers cannot be used to replace an entire

virtual machine because they are focused on simplifying the management and

deployment of enterprise applications. Therefore, we then evaluated the behavior

of some container orchestrators to perform a comparison analysis in terms of

performance. They are useful to manage container-based applications that are

spawn along with a whole cluster. As expected, Kubernetes is the best solution

also regarding performances, even if the complex architecture introduces a not

negligible overhead that does not make of that a fit-for-all solution.

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

205

7 Case study: a Fault-Tolerant Cloud-based application

by comparing virtualization architectures

7.1 Overview

Recent development and optimization in virtualization technologies have led to

their wingspread adoption and a growing trend toward hosting workload in

virtualized platforms. In fact, as virtualization promise a reduction in cost and

complexity, it also raises the concerns on the availability of applications hosted

on virtualized platforms. In particular, high compute instance density on a single

host may have a negative impact on the availability of applications encapsulated,

since those compute instances, and the services provided, will fail upon an event

of host failure.

Therefore, in order to guarantee high availability [89] of such applications, there

have been introduced several mechanisms like live migration and

checkpoint/restore. Furthermore, such solutions were even integrated into cloud

operating systems like OpenStack but the lack of distributed file system

integration with LXD does not allow us to face these events. In fact, OpenStack

makes use of internal services to support low-level functionalities such as live

migration. That is implemented by exploiting OpenStack Cinder and so, if the file

system is local, there is no possibility to move the persistent state from a server

host to another.

Nevertheless, we can design an application that stores its own state in a replicated

distributed storage that can be deployed behind load balancers and so, their

failures are masked by redirecting the traffic to other healthy replicas. Therefore,

the purpose of this chapter is to design a fault-tolerant application and analyze

what is the behavior of the performance by exploiting virtual machines for the

first type of replication and LXD containers for the other one.

7.2 Requirements

As already anticipated in the overview of this chapter, the aim of this application

is to design a web-based service that interacts with a persistent data storage system

like a relational database. The purpose is to deploy this application on a cloud

infrastructure such as OpenStack. In the previous chapter, we analyzed the

behavior of an OpenStack deployment between two types of hypervisor solutions:

KVM and LXD. Furthermore, we found that the virtual machine-based

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

206

installation supports the integration with a distributed file system like CEPH. This

is the implementation of the block storage service of the OpenStack architecture.

On the contrary, with LXD, there is no possibility to use distributed file systems

because it is based on ZFS, that is a purely local file system. Therefore, the target

of this chapter is to design a fault-tolerant application that is deployed atop of

OpenStack, considering both KVM and LXD as possible hypervisor

implementations. However, the main requirement is to guarantee fault-tolerance

and so we need to design a robust architecture by comparing the performances

between the virtual machine and the container-based implementation.

7.3 System Analysis

As seen in the previous chapter, we have two OpenStack deployments: one for

virtual machines and the other one for LXD containers. However, the OpenStack

container-based does not support the integration with a distributed file system and

so we need to provide an ad-hoc solution to guarantee fault-tolerance and high-

availability. In this case, as already mentioned in the overview of this chapter,

there are two possible design models: one that exploits the underlying distributed

file systems and the other one that makes use of a replicated distributed data

storage system.

For this reason, we decided to adopt the first model for the implementation with

KVM as hypervisor and the other one for the LXD-based OpenStack deployment.

However, considering that it is a cloud-based application, we need to guarantee

other features such as high-availability. So, we designed the solution by following

a common cloud computing pattern that is focused on distributing the workload

through the introduction of a load-balancer. To do that, we made use of some

software applications that they will be deeply illustrated in the following sections.

7.3.1 Apache Web Server

Apache is the most widely used web server software. It is an open source software

and maintained by Apache Software Foundation. Considering that it is open, it is

possible to customize it to meet the needs of many different environments by

including extensions and external modules. Our aim is to provide a web-based

application and so we need the integration of a process that is able to exchange

HTTP messages. This is called web server and Apache Web Server is used just

for that.

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

207

7.3.2 Apache Tomcat

Tomcat is an application server from the Apache Server Foundation that executes

Java servlets [90] and renders Web pages that include Java Server Page coding.

Furthermore, Tomcat integrates an internal web server and so it can be used as

either a standalone product or together with other Web servers, including Apache,

Netscape Enterprise Server, and more. The requirement is to have a Java Runtime

Enterprise Environment because Tomcat follows that standard.

7.3.3 Apache mod_jk

In computing, load balancing improves the distribution of workloads across

multiple servers. This is aimed to maximize throughput, minimize response time

and avoid overload of a single resource. Furthermore, this increases reliability and

availability if the correspondent back-end system is designed with a replication

grade able to guarantee redundancy. Usually, this involves dedicated software or

hardware, and it differs in the strategy that is adopted to distribute the workload

across the servers behind. Apache mod_jk is a software implementation of a

computing load balancer that follows the Round-Robin principle by using the

arithmetic mod operator.

7.3.4 MySQL RDBMS

MySQL is an open source relational database management system (RDBMS) that

is based on Structured Query Language (SQL). It is cross-platform and so can run

on any platform regardless if it is Linux or Windows-based. Usually, it is

associated with a web-based application. In fact, it is an important component of

the enterprise stack that is called LAMP (Linux, Apache, MySQL, PHP). In this

case, we made use of MySQL as persistent data storage system but not following

the LAMP stack considering that we use Tomcat as application server.

7.3.5 Galera Cluster for MySQL

Galera Cluster is a synchronous multi-master replication plug-in for the MySQL

engine, which is called InnoDB. It varies the regular MySQL Replication and

addresses a number of issues including write conflicts when writing on multiple

masters, replication lag and slaves being out of sync with the master. This allows

users to rely on Galera notwithstanding to know which server they can write to

and which servers they can read from.

By this way, an application can write to any node, and transaction commits are

then applied on all servers, via a certification-based replication [91]. This is an

alternative approach to synchronous database replication using Group

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

208

Communication and transaction ordering techniques. Furthermore, a minimal

Galera cluster consists of three nodes and the number of nodes should guarantee

the possibility to proceed with the transaction commit in case of there is a problem

with a transaction on one node. This is true because the consistency is guaranteed

by a quorum mechanism that allows overcoming a number of failures.

7.4 Test Plan

This phase is aimed to provide information about the quality of the service

designed. In this case, we have two solutions: one is virtual-machine based

whereas the other is container-based. Furthermore, we need to evaluate other

aspects instead of just performance analysis between containers and virtual

machine. In fact, considering that in a solution we use a distributed file system

and in the other a replicated data storage, we want to evaluate the impact of both

design models on the underlying physical resources. So, we need to monitor the

impact on the physical server hosts that run the deployed compute instances. To

do that, we used Ganglia as a monitoring system and Apache JMeter to stress the

entire web-application.

7.4.1 Apache JMeter

Apache JMeter is an open source and Java-based application that is aimed to

perform various testing types like performance, load, stress, regression and

functional testing [92]. This is quite important to get accurate performance metrics

against our web applications. An important feature of JMeter is that it interacts

with a target server by simulating a group of users. Furthermore, it subsequently

collects data to calculate statistics and display performance metrics through

various formats. Therefore, it was used to test our applications in order to get

information about the behavior of the underlying server hosts.

7.5 Design and Implementation

The purpose of this application is to guarantee fault-tolerance and high-

availability. As we have already anticipated, to ensure the fault-tolerance, we need

to adopt two different design models: one that exploits a cloud-based data storage

and the other that is statically built with an ad-hoc solution by using a replicated

and distributed data storage. Furthermore, to guarantee high-availability we need

to exploit a mechanism that is able to detect when a compute instance fails and

then forward the request to another instance. Therefore, we adopted an external

load-balancer that acts as the front-end of the entire web application. Moreover,

we need to guarantee the fault-tolerance even if the underlying physical host

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

209

breaks down. So, we decided to deploy each compute instance on a different

server host.

Figure 108 - The implementation of the container-based service

Figure 108 shows us the layout of the container-based web application.

As it is possible to notice, we have three containers. Each of which is deployed

on a different compute node. Moreover, these are operating system containers and

so they can host multiple services. In this case, we have each container that runs

two processes: an application server and a database server. Furthermore, the entire

database is locally stored because we do not have the support to store that in a

distributed object storage. Lastly, the load-balancer is another container instance

that provides the integration with the existing application servers.

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

210

Figure 109 - The Implementation of the virtual machine-based service

Figure 109 shows us the layout of the virtual machine based implementation. As

the name suggests, in this case, each compute instance consists of a single virtual

machine. Moreover, also this solution consists of a deployment in different

physical server host. Furthermore, as it is possible to notice, the database server

is not included in each “business instance”. So, it is a different virtual machine

that relies on an object storage that is stored within the cloud infrastructure. This

allows us to guarantee the fault-tolerant because, in case of a fault, it is just needed

to migrate the database server process, considering the fact that the persistent

volume is completely distributed across the OpenStack cluster.

Therefore, the purpose of the next sections is to investigate how these solutions

impact the underlying physical resources by increasing the number of client

requests that currently involve a different workload.

7.6 Results

The testing phase is organized by monitoring the physical server hosts that run the

clustered application. In this case, we have two systems, each of which is built on

a different hypervisor model. So, the aim of this work is to analyze how

performances are influenced by deploying an applicative workload on both VM

and container-based instances. Furthermore, considering that we adopted two

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

211

different models, we need to evaluate the behavior of these solutions whose aim

is to guarantee fault-tolerance and high-availability.

So, we decided to split the test into two parts: one aimed to analyze the impact of

the system on the underlying physical resources; the other one, with the purpose

to understand what is the behavior of the high-level components by comparing

the two alternative solutions. In fact, as demonstrated in this work, we need to

evaluate if the containerization is an alternative solution also for cloud

environments. Therefore, this chapter is focused on a case study that combines

the analysis of infrastructure and high-level services. Nevertheless, it should be

stated from the outset that the underlying infrastructure is quite different between

both solutions and so we need to consider even this aspect with the analysis of the

related benchmarks.

7.6.1 CPU Analysis

The idea of this benchmark is to analyze the system load. It is a measure of the

amount of computational work that a computer system performs. Furthermore, for

all tests, we provide a global analysis of the entire cluster. To do that, we made

use of Ganglia monitoring system that provides us a global view of the monitored

resources. The load average represents the average load over a period of time.

Therefore, we organized each benchmark to perform an increasing number of

request in a minute and then collect data by using the monitoring system.

Figure 110 - Case study results: CPU Load

Figure 110 shows us the behavior of the CPU Load by stressing the related

physical resource with an increasing number of requests that are executed within

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

212

a time interval of 60s. In this case, notwithstanding the fact that both clusters make

use of different resources overhead, the CPU Load is greater with the

implementation virtual-machine based. Furthermore, as we have already

anticipated, this analysis depends also on the underlying different OpenStack

implementation.

7.6.2 Memory Analysis

As seen for the CPU Load, even with system memory we want to get the behavior

of the underlying physical resources by increasing the number of client requests

within a time interval of 30s.

Figure 111 - Case study results: Memory Usage

Figure 111 shows us the behavior of the system memory by stressing the

underlying physical resource. As it is possible to observe, this benchmark shows

us that the LXD-based implementation implies a greater amount of memory that

is occupied. Probably, this is quite influenced by the fact that the two

implementations are different. In fact, with the LXD-based solution, we have the

overhead introduced by the synchronization between the database servers and the

usage of ZFS volume pools that locally includes a huge system overhead.

7.6.3 Network Analysis

The analysis of network in cluster computing is quite important. In fact, the

implementation consists of a set of connected servers that work together so that,

in many respects, they can be viewed as a single system. In this case, we have two

solutions that both make use of several network resources. The KVM-based

implementation introduces the overhead to replicate the object storage across the

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

213

compute nodes of the OpenStack cluster. On the contrary, the LXD-based solution

guarantees the same requirement by including an active-active replication that is

performed by three database server processes.

Figure 112 - Case study results: Network Inbound

Figure 112 illustrates the monitoring process of the network inbound. The KVM-

based solution provides a greater data rate. As seen for memory, even in this case,

an important aspect is that the LXD-based solution makes use of a different model

that involves a different overhead. However, we have just seen that KVM

provides better results in network analysis. In fact, the LXD network subsystem

is purely implemented due to the network address translation that the underlying

kernel provides.

Figure 113 - Case study results: Network Outbound

Figure 113 shows us the monitoring of the outbound network. The result is the

same of the inbound network: the KVM-based solution is able to achieve a greater

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

214

data rate. This demonstrates that the ad-hoc solution, that was built to guarantee

fault-tolerance, is not as better as the other one for the network purpose.

Furthermore, this is true due to the greater rate of competition within the

underlying network subsystem. Moreover, this is also influenced by the fact that,

as anticipated in the previous chapter, the two OpenStack deployments make use

of a different architecture and probably, this affects also the obtained results.

7.6.4 Input/Output Database Server Analysis

The analysis of the database server behavior, with the input/output subsystem, had

been the main factor that led us to build this case study. According to the LXD-

state of the art, we thought that a typical solution with this container management

is still aimed to rely on users’ responsibilities. Therefore, we need to evaluate if

an enterprise application can benefit from that or not. Usually, this involves to

work with a database system and so we need to do an analysis of the execution

time between a “SQL-Select” and “SQL-Insert”.

Figure 114 - Case study results: DB Server Benchmark - Select Query

Figure 114 shows us the execution time of a Select query by increasing the

number of concurrent requests that are executed within a time interval of 60s. The

KVM-based solution implies a greater amount of time for the most experiments.

This means that considering both design models, the cloud object storage is not

as performant as the local data storage with LXD containers. The distributed and

replication solution that we used (Galera cluster) is optimized to guarantee read

scalability. In fact, the certification based replication is applied with transactional

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

215

commit and, as demonstrated in the graphic above, the solution does not degrade

the performance of the underlying physical infrastructure.

Figure 115 - Case Study results: DB Server Benchmark - Insert Query

Figure 115 shows us the results for the “SQL Insert Query”. As expected,

compared to the previous experiment, the execution time is greater for both

solutions. Furthermore, we can notice that the KVM-based solution is not as

performant as the LXD-based. This means that for the perspective of the database

server, a simple insert involves much workload with the distributed cloud storage.

This data was recorded due to the information collected by the local schema

provided from the MySQL Engine. Therefore, they are referred to the

implementation that gives us the information after completing the local

input/output process.

7.6.5 Apache Web Server Benchmark

Lastly, we decided to monitor also the performances of the Apache Web Server

installed in each compute instances. In fact, as seen for the execution time of

MySQL queries, the sense of this experiment is to investigate the behavior of both

applications from the perspective of the high-level services.

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

216

Figure 116 - Case Study results: Apache Benchmark

Figure 116 illustrates the behavior of Apache Web Server by monitoring the time

needed to execute a single request notwithstanding the increasing number of

requests that are executed within a time interval of 60s. As it is possible to notice,

we did not get a stable information because there are experiments in which the

KVM-based solution is better and other in which it is worse. However, this was

important to evaluate the healthy state of the web servers and so, this test

demonstrated us that with both solutions we can make use of such applicative

systems.

7.7 Closing remarks

From this case study, we had another possibility to demonstrate how containers

and virtual machines are complementary solutions that are suitable for cloud

deployments. However, as seen with the performance analysis in the previous

chapter, the containerization has not reached a mature state yet. Therefore, there

are still open questions that need to be solved, and an example is the integration

of LXD with a distributed file system such as CEPH. Of course, this was

influenced also by the recent classification between application and operating

system containers. LXD belong to the last one and so it tries to provide the same

capabilities of the traditional server virtualization. Furthermore, an ad-hoc

solution, as shown in this chapter, allows us to achieve the same goal even if the

introduced overhead is not negligible. By this way, we have learned that several

aspects are the key differentiators of the new containerization paradigm but still

with other issues to be faced.

Case study: a Fault-Tolerant Cloud-based application by comparing virtualization

architectures

217

Nevertheless, this case showed us different approaches to solve a common

enterprise problem with both hypervisor implementations. Surely, when

OpenStack integrates LXD with the same architecture components introduced for

KVM, it is quite important to repeat this experiment in order to get more accurate

performance behaviors. This requires a strong refactor of the container

management solution because it is based on the feature of the underlying file

system. Moreover, this depends on the target proposal that can be integrated with

the LXD implementation, as recently introduced with the new storage API to

support the integration with a featured solution like CEPH.

Conclusions

218

Conclusions

The idea of using cloud computing as a utility is attracting companies of all sectors

to adopt this environment in order to cope with a vigorously altering business

environment. The possibility to maintain scalable IT infrastructures allows

business agility by exploiting the principle of “pay-per-use”. This lets consumers

to use resources without worrying about infrastructure cost and processing power.

Therefore, organizations can offload their IT infrastructure in the cloud and gain

from fast scalability.

Depending on the capability that is provided to the consumer, Cloud computing

has been categorized into three models: Software as a Service (SaaS), Platform as

a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS consists of providing

to users an entire application as cloud resource, and so, the client does not have to

manage low-level components like servers, storage, and network. PaaS solutions

are addressed to developers because they have the control over their deployed

applications, but with no need to manage the underlying infrastructure resources.

This capability is offered with an Infrastructure as a Service model in which the

user has the responsibility to control every application resource. At this level, the

“virtual machine” model is the most prevailing technology, even if container-

based solutions are challenging this traditional principle.

Today, containers are being used for two major purposes: system and application

containers. The first one is aimed to run an entire system, whose use cases are

effectively similar to those of virtual machines while the second one is a way of

bundling and running applications in a more portable way in order to break down

and isolate parts of applications.

We started analyzing how containers can be used as alternative to virtual

machines, considering that the key differentiator is the minimalist nature of their

deployment. Then we focused those from the application point of view. In this

case, Docker is the principle actor to this phenomenon. This is also influenced by

the emerging application paradigm of “microservices”. Therefore, we discussed

about a layered structure of the paradigm that is dependent on which capability is

provided to consumers.

Conclusions

219

At the lowest level, we concentrated on system containers in order to compare

how cloud instances are different if we use containers instead of virtual machines.

To do that, we used two OpenStack deployments: one that makes use of LXD, to

provision compute instances as containers, and the other one with KVM for virtual

machines. In addition, we analyzed also the behavior of the predominant solution

that is Docker.

The results showed that containers achieve better performances due to the key

differentiator nature of the technology. In fact, they involve less resources

overload by providing greater density and requiring less time to boot and

provision a single instance. However, there are not just advantages because the

containerization has not reached a mature state yet. Therefore, this does not make

of the technology a fit-for-all implementation.

In addition, we focused on the application point of view in order to evaluate the

development process of enterprise applications. In this case, high-availability is

one of the most important purposes. So, there is the need to introduce high-level

services like orchestration, and therefore we compared different container

orchestrators. To conclude, Kubernetes is the richest solution in terms of

functionalities, even if the complex architecture involves a not negligible

overhead that does not make of Kubernetes the best solution for every

deployment.

References

220

References

[1] Z. Mahmood, Cloud Computing: challenges, limitations and R&D

solutions, London: Springer.

[2] VMWare, Virtualization Overview.

[3] V. Beal, "virtualization," Webopedia.

[4] S. Low, «Block level storage vs. file level storage: A comparison,»

The Enterprise Cloud, February 2011.

[5] S. T. W. Stephen J. Bigelow, «Network virtualization explained,»

[Online]. Available:

http://searchitchannel.techtarget.com/feature/Network-

virtualization-explained.

[6] «Primer: Multi-tenant network for the private cloud,» TechTarget,

August 2010.

[7] Charalampos, «Performance analysis of different virtualization

architectures using OpenStack,» January, 2017.

[8] M. Rouse, «Server Virtualization,» [Online]. Available:

http://searchservervirtualization.techtarget.com/definition/server-

virtualization.

[9] M. J. Scheepers, «Virtualization and Containerization of

Application Infrastructure,» IEEE, 2014.

[10] C. Wolf, «Hardware-Assisted Virtualization».Virtualization &

Cloud Review.

[11] «Paravirtualization,» [Online]. Available:

http://searchservervirtualization.techtarget.com/definition/paravirtu

alization.

References

221

[12] «containerization,» [Online]. Available:

http://searchservervirtualization.techtarget.com/definition/containe

r-based-virtualization-operating-system-level-virtualization.

[13] T. Banerjee, «Understanding the key differences between LXC and

Docker,» Flockport, 19 August 2014.

[14] «Linux-VServer,» [Online].

[15] [Online]. Available: https://openvz.org/Main_Page.

[16] «The Different Types of Virtualization in Cloud Computing,»

RedSwitches, 1 June 2017.

[17] P. A. P. D. Dr. Sanjay, «School of Computing, UNF,» [Online].

Available:

https://www.unf.edu/~sahuja/cloudcourse/Fullandparavirtualizatio

n.pdf. [Consultato il giorno 29 August 2017].

[18] Y. U. M. O. Tatsushi Inagaki, «Container management as

emerging workload for operating systems,» IEEE, 26 September

2016.

[19] J. Nickoloff, in Docker in Action, Mannig.

[20] «rkt Container Engine,» [Online]. Available:

https://coreos.com/rkt.

[21] «rkt Network Modes and Default CNI Configurations,» [Online].

Available: https://coreos.com/blog/rkt-cni-networking.html.

[22] S. Graber, «LXD 2.0: Introduction to LXD,» 11 03 2016. [Online].

Available: https://stgraber.org/2016/03/11/lxd-2-0-introduction-to-

lxd-112/.

[23] S. Graber, «Insights Ubuntu,» 14 March 2016. [Online]. Available:

https://insights.ubuntu.com/2016/03/14/lxd-2-0-introduction-to-

lxd/.

References

222

[24] «Ubuntu Insights,» 14 February 2017. [Online]. Available:

https://insights.ubuntu.com/2017/02/14/network-management-

with-lxd-2-3/.

[25] «Storage management in LXD 2.15,» 12 July 2017. [Online].

Available: https://insights.ubuntu.com/2017/07/12/storage-

management-in-lxd-2-15/.

[26] «8 Surprising facts about real Docker,» DataDog, April 2017.

[Online].

[27] C. Company, «For CTO’s: the no-nonsense way to accelerate your

business with containers,» February 2017.

[28] Mesosphere, «Container Orchestration Wars,» 2016.

[29] M. L. R. Perrey, «Service-oriented architecture».IEEE.

[30] A. S. Prateek Sinha, «Converged infrastructure for enterprise

exchange environment».IEEE.

[31] M. Rouse, «What is Docker Swarm?,» TechTarget, August 2016.

[Online]. Available:

http://searchitoperations.techtarget.com/definition/Docker-Swarm.

[Consultato il giorno 30 August 2017].

[32] «Docker Swarm,» [Online]. Available:

https://docs.docker.com/v1.9/swarm/.

[33] M. Luksa, Kubernetes in Action, Manning.

[34] J. Ellingwood, «An Introduction to Kubernetes,» Digital Ocean, 14

October 2016. [Online]. Available:

https://www.digitalocean.com/community/tutorials/an-

introduction-to-kubernetes. [Consultato il giorno 30 August 2017].

[35] «The Kubernetes API - Kubernetes,» Kubernetes, [Online].

Available:

https://kubernetes.io/docs/concepts/overview/kubernetes-api/.

References

223

[36] «Cluster Networking,» [Online]. Available:

https://kubernetes.io/docs/concepts/cluster-

administration/networking.

[37] «Kubernetes,» [Online]. Available:

https://kubernetes.io/docs/admin/kube-scheduler/.

[38] A. Lichtigstein, «DevOps Kubernetes vs. Docker Swarm vs.

Apache Mesos: Container Orchestration Comparison,» loom, 19

June 2017. [Online]. Available:

https://www.loomsystems.com/blog/single-

post/2017/06/19/kubernetes-vs-docker-swarm-vs-apache-mesos-

container-orchestration-comparison.

[39] «Mesosphere,» [Online]. Available:

https://docs.mesosphere.com/1.9/networking/.

[40] R. Howard, «Orchestration With Kubernetes, Docker Swarm, and

Mesos,» Dzone, July 2017. [Online]. Available:

https://dzone.com/articles/orchestration-with-kubernetes-docker-

swarm-and-mesos.

[41] R. Ignazio, Mesos in action, Manning.

[42] «Mesosphere,» [Online]. Available:

https://docs.mesosphere.com/1.9/storage/.

[43] «Mesosphere,» [Online]. Available:

https://docs.mesosphere.com/1.9/overview/architecture/.

[44] R. LABS, «Easily deploy and scale Kubernetes with Rancher».

[45] M. Pais, «RancerOS: A minimal OS for Docker in Production,»

Infoq, 31 Mar 2015.

[46] «Rancher,» [Online]. Available:

http://rancher.com/docs/rancher/v1.6/en/rancher-

services/scheduler/.

References

224

[47] «Rancher,» [Online]. Available:

http://rancher.com/docs/os/v1.0/en/.

[48] «Rancher Labs,» [Online]. Available: http://rancher.com/cattle-

swarm-kubernetes-side-side/.

[49] «Kubernetes Vs Amazon ECS,» Platform9, 20 July 2017.

[50] B. C. a. T. Jones, «Docker on AWS,» 2015.

[51] «Kontena,» [Online]. Available:

https://www.kontena.io/docs/core-concepts/architecture.html.

[52] «What are WebSockets?,» Pusher, [Online]. Available:

https://pusher.com/websockets.

[53] «Kontena,» [Online]. Available:

https://www.kontena.io/docs/using-kontena/volumes.html.

[54] «Docker Orchestrating and Scheduling,» [Online]. Available:

http://blog.kontena.io/docker-orchestrating-and-scheduling/.

[55] K. Team, «Choosing the Right Containerization and Cluster

Management Tool,» Kublr, [Online]. Available:

https://blog.kublr.com/choosing-the-right-containerization-and-

cluster-management-tool-fdfcec5700df.

[56] HashiCorp, «Architecture - Nomad by HashiCorp,» HashiCorp,

[Online]. Available:

https://www.nomadproject.io/docs/internals/architecture.html.

[57] S. Hall, «RISE OF THE CONTAINER-FOCUSED OPERATING

SYSTEMS,» TheNewStack , 27 January 2016.

[58] Kapal, «MicroOses for containers,» [Online]. Available:

https://kalpacg.wordpress.com/2016/09/03/microoses-for-

containers/.

[59] M. Bailey, «CoreOS in action,» Manning, 2017.

References

225

[60] «Rise of the container-focused operating systems,» The New Stack,

27 January 2016.

[61] C. Ward, «An Introduction to CoreOS,» CODESHIP, 5 5 2017.

[62] R. Mocevicius, «DEIS,» [Online]. Available:

https://deis.com/blog/2016/coreos-overview-p1/.

[63] «ProjectAtomic,» [Online]. Available:

http://www.projectatomic.io/docs/gettingstarted/.

[64] «Atomic,» [Online]. Available:

http://www.projectatomic.io/docs/atomic-host-networking/.

[65] «RedHat,» [Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux_atomic_host/7/html/managing_contai

ners/managing_storage_with_docker_formatted_containers.

[66] RedHat, «CHAPTER 3. THE XFS FILE SYSTEM,» RedHat,

[Online]. Available: https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/storage_administration_guide/c

h-xfs.

[67] J. Rosland, «Container OS comparison,» CodeShip, 16 6 2017.

[68] J. Harper, «Enterprise Architecture for the Internet of Things:

Containerization and Microservices,» AnalyticsWeek, 27 February

2017.

[69] E. Brown, «The Future of IoT: Containers Aim to Solve Security

Crisis,» LiNUX.COM, 10 November 2016.

[70] P. C. S. D. J. G. B. H. J. J. A. M. A. O. C. P. B. E. Kathy

Cacciatore, «Exploring Opportunities: Containers and

OpenStack,» 2015. [Online]. Available:

https://www.openstack.org/assets/pdf-downloads/Containers-and-

OpenStack.pdf.

References

226

[71] «Zun - OpenStack,» OpenStack, [Online]. Available:

https://wiki.openstack.org/wiki/Zun.

[72] [Online]. Available:

https://openstack.nimeyo.com/89062/openstack-dev-zun-higgins-

the-design-of-zun.

[73] Rahul, «OpenStack and Container (project Kolla) | A new

beginning,» 20 September 2016. [Online]. Available:

https://rahulait.wordpress.com/2016/09/20/openstack-and-

containers-project-kolla/.

[74] «Architecture - Murano,» [Online]. Available:

https://murano.readthedocs.io/en/stable-

liberty/intro/architecture.html.

[75] «Configuration - Murano,» [Online]. Available:

https://murano.readthedocs.io/en/stable-liberty/administrator-

guide/configuration.html#network-configuration.

[76] «Magnum vs Murano: An OpenStack container strategy,»

[Online]. Available: https://www.mirantis.com/blog/magnum-vs-

murano-openstack-container-strategy/.

[77] Intel, «Virtualization and Cloud Computing,» August 2013.

[Online]. Available:

https://www.intel.com/content/dam/www/public/us/en/documents/

guides/cloud-computing-virtualization-building-private-iaas-

guide.pdf.

[78] R. K. L. K. R. R. D. G. Rabindra K. Barik, «Performance Analysis

of Virtual Machines and».IEEE.

[79] «Chef - Automate IT Infrastructure,» [Online]. Available:

https://www.chef.io/chef/.

[80] J. D. l. R. M. W. Kent Baxley, «Deploying workloads with Juju

and MAAS in Ubuntu 14.04 LTS».

References

227

[81] «What is Juju?,» [Online]. Available:

https://jujucharms.com/docs/2.0/about-juju.

[82] «How Puppet works,» Puppet, [Online]. Available:

https://puppet.com/products/how-puppet-works.

[83] «OpenStack base | Juju,» Juju, [Online]. Available:

https://jujucharms.com/openstack-base/.

[84] «OpenStack LXD | JUJU,» Juju, [Online]. Available:

https://jujucharms.com/u/openstack-charmers-next/openstack-lxd/.

[85] «Introduction to Ganglia on Ubuntu 14.04,» DigitalOcean,

[Online]. Available:

https://www.digitalocean.com/community/tutorials/introduction-

to-ganglia-on-ubuntu-14-04.

[86] D. A. G. S. E.Jebamalar Leavline, «Hardware Implementation of

LZMA Data Compression Algorithm».International Journal of

Applied Information Systems (IJAIS), Foundation of Computer

Science FCS, NewYork, USA.

[87] K. Tolly, «How to use Iperf to measure throughput,» [Online].

Available: http://searchenterprisewan.techtarget.com/tip/How-to-

use-iPerf-to-measure-throughput. [Consultato il giorno 24

September 2017].

[88] J. Coyle, «Benchmark disk IO with DD and Bonnie++,» 11

September 2013. [Online]. Available:

https://www.jamescoyle.net/how-to/599-benchmark-disk-io-with-

dd-and-bonnie?v=cd32106bcb6d.

[89] E. R. E. M. C. Wubin Li and Ali Kanso, «Comparing Containers

versus Virtual Machines for,» IEEE, 2015.

[90] M. Rouse, «What is Tomcat».TheServerSide.

References

228

[91] «Galera Cluster for MySQL - Tutorial,» Serveral nines, [Online].

Available: https://severalnines.com/resources/tutorials/galera-

cluster-mysql-tutorial.

[92] TOOLSQA, «What is Apache JMeter,» [Online]. Available:

http://toolsqa.com/jmeter/what-is-apache-jmeter/.

[93] V. Beal, «operating system-level virtualization,» [Online].

Available:

http://www.webopedia.com/TERM/O/operating_system_level_virt

ualization.html.

[94] «Full Virtualization,» [Online].

[95] H. Jain, 25 November 2016. [Online]. Available:

https://www.sumologic.com/blog/code/lxc-lxd-explaining-linux-

containers/.

[96] «rkt vs Other Projects,» [Online]. Available:

https://coreos.com/rkt/docs/latest/rkt-vs-other-

projects.html#process-model.

[97] R. Mocevicius. [Online].

[98] M. Hoogendoorn, «Kontena: an alternative container orchestrator,»

[Online]. Available: http://container-solutions.com/kontena-

alternative-container-orchestrator/.

[99] «What is Amazon EC2 Container Service,» Amazon Web

Services, [Online]. Available:

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/W

elcome.html.

[100] «Architecture - Nomad by HashiCorp,» HashiCorp, [Online].

Available:

https://www.nomadproject.io/docs/internals/architecture.html.

[101] D. S. A. @. M. I. Karl Isenberg, Mesosphere, 23 June 2016.

[Online]. Available:

References

229

https://www.slideshare.net/KarlIsenberg/container-orchestration-

wars.

[102] G. Amorim, «The Importance of SOA to Cloud Computing,»

Service Technology Magazine, 2 December 2014.

 [103] G. Nag, «Operating System Containers vs. Application

Containers,» RisingStack, 2015.

